

MQSeries IBM

Application Programming Reference

 SC33-1673-04

MQSeries IBM

Application Programming Reference

 SC33-1673-04

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G, “Notices”
on page 571.

Fifth edition (February 1998)

This edition applies to the following products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for Digital OpenVMS Version 2 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for SunOS Version 2 Release 2
� MQSeries for Sun Solaris Version 5

| � MQSeries for Tandem NonStop Kernel Version 2 Release 2
� MQSeries Three Tier for OS/2 Version 1.0
� MQSeries Three Tier for AIX Version 1.0
� MQSeries for Windows NT Version 5
� MQSeries for Windows Version 2 Release 0
� MQSeries for Windows Version 2 Release 1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994,1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . ix
Who this book is for . ix
What you need to know to understand this book ix
How to use this book . x

Appearance of text in this book . x
Terms used in this book . x
Language compilers . xi

MQSeries publications . xiv
MQSeries cross-platform publications . xiv
MQSeries platform-specific publications . xvi
MQSeries Level 1 product publications . xviii
Softcopy books . xviii

MQSeries information available on the Internet xix
Related publications . xix

Summary of Changes . xxi
| Changes to this edition, SC33-1673-04 . xxi

Changes to the fourth edition . xxi
Changes to the third edition . xxii

Chapter 1. Data type descriptions – elementary 1
Conventions used in the descriptions of data types 1
Elementary data types . 1

Chapter 2. Data type descriptions – structures 7
Conventions used in the descriptions of data types 7
Language considerations . 8
Structure data types . 18
MQBO – Begin options . 19

| MQCIH – CICS bridge header (MVS/ESA only) 21
MQCNO – Connect options . 35
MQDH – Distribution header . 39
MQDLH – Dead-letter header . 45
MQGMO – Get-message options . 56
MQIIH – IMS bridge header . 91
MQMD – Message descriptor . 98
MQMDE – Message descriptor extension . 153
MQOD – Object descriptor . 160
MQOR – Object record . 171
MQPMO – Put message options . 173
MQPMR – Put message record . 194
MQRMH – Message reference header . 197
MQRR – Response record . 207
MQTM – Trigger message . 209
MQTMC2 – Trigger message 2 (character format) 217
MQXP – Exit parameter block (MVS/ESA only) 222
MQXQH – Transmission queue header . 227

 Copyright IBM Corp. 1994,1998 iii

 Contents

Chapter 3. Call descriptions . 237
Conventions used in the call descriptions . 237
Using the calls in the C language . 238
MQBACK – Back out changes . 240
MQBEGIN – Begin unit of work . 244
MQCLOSE – Close object . 248
MQCMIT – Commit changes . 256
MQCONN – Connect queue manager . 261
MQCONNX – Connect queue manager (extended) 267
MQDISC – Disconnect queue manager . 269
MQGET – Get message . 273
MQINQ – Inquire about object attributes . 285
MQOPEN – Open object . 297
MQPUT – Put message . 313
MQPUT1 – Put one message . 324
MQSET – Set object attributes . 333

| MQSYNC – Synchronize statistics updates (Tandem NSK only) 340

Chapter 4. Attributes of MQSeries objects 343
Attributes for all queues . 343
Attributes for local queues and model queues 348
Attributes for local definitions of remote queues 363
Attributes for alias queues . 365
Attributes for namelists (MVS/ESA only) . 366
Attributes for process definitions . 367
Attributes for the queue manager . 370

Chapter 5. Return codes . 383
Completion code . 383
Reason code . 383

Chapter 6. MQSeries constants . 449
List of constants . 449

Appendix A. Rules for validating MQI options 481
MQOPEN . 481
MQPUT . 481
MQPUT1 . 482
MQGET . 482
MQCLOSE . 483

Appendix B. Machine encodings . 485
Binary-integer encoding . 485
Packed-decimal-integer encoding . 486
Floating-point encoding . 486
Constructing encodings . 487
Analyzing encodings . 487
Summary of machine architecture encodings 488

Appendix C. Report options and message flags 489
Structure of the report field . 489
Analyzing the report field . 491
Structure of the message-flags field . 492

iv MQSeries Application Programming Reference

 Tables

Appendix D. Data-conversion . 495
Conversion processing . 495
Processing conventions . 497
Conversion of report messages . 501
MQDXP – Data-conversion exit parameter structure 502
MQXCNVC – Convert characters . 509
MQDATACONVEXIT – Data conversion exit 515

| Appendix E. Signal notification IPC message (Tandem NSK only) . . . 521

Appendix F. Code page conversion tables 523
Code page conversion tables . 524
OS/2 conversion support . 567
OS/400 conversion support . 567
Unicode conversion support . 567

Appendix G. Notices . 571
Programming interface information . 571
Trademarks . 572

Glossary of terms and abbreviations . 573

Index . 585

 Tables

1. Short names used for supported environments x
2. C and C++ language compilers . xii

| 3. Basic language compilers . xiii
4. COBOL language compilers . xiii
5. PL/I language compilers . xiv
6. Assembler/390 language compilers . xiv

| 7. TAL compilers . xiv
8. Elementary data types in C . 3
9. Elementary data types in COBOL . 3

10. Elementary data types in PL/I . 4
11. Elementary data types in System/390 assembler 5

| 12. Elementary data types in TAL . 5
13. C header file . 9
14. COBOL COPY files . 12
15. PL/I INCLUDE file . 15
16. Assembler macros . 16
17. Fields in MQBO . 19
18. Initial values of fields in MQBO . 20

| 19. Fields in MQCIH . 21
| 20. Contents of error information fields in MQCIH structure 22
| 21. Initial values of fields in MQCIH . 29

22. Fields in MQCNO . 35
23. Initial values of fields in MQCNO . 37
24. Fields in MQDH . 39

 Contents v

 Tables

25. Initial values of fields in MQDH . 43
26. Fields in MQDLH . 45
27. Initial values of fields in MQDLH . 52
28. Fields in MQGMO . 56
29. MQGET options relating to messages in groups and segments of logical

messages . 75
30. Outcome when MQGET or MQCLOSE call not consistent with group and

segment information . 77
31. Initial values of fields in MQGMO . 88
32. Fields in MQIIH . 91
33. Initial values of fields in MQIIH . 95
34. Fields in MQMD . 98
35. Initial values of fields in MQMD . 147
36. Fields in MQMDE . 153
37. Queue-manager action when MQMDE specified on MQPUT or MQPUT1 155
38. Initial values of fields in MQMDE . 158
39. Fields in MQOD . 160
40. Initial values of fields in MQOD . 167
41. Fields in MQOR . 171
42. Initial values of fields in MQOR . 172
43. Fields in MQPMO . 173
44. MQPUT options relating to messages in groups and segments of logical

messages . 179
45. Outcome when MQPUT or MQCLOSE call not consistent with group and

segment information . 181
46. Initial values of fields in MQPMO . 190
47. Fields in MQPMR . 194
48. Fields in MQRMH . 197
49. Initial values of fields in MQRMH . 203
50. Fields in MQRR . 207
51. Initial values of fields in MQRR . 207
52. Fields in MQTM . 209
53. Initial values of fields in MQTM . 214
54. Fields in MQTMC2 . 217
55. Initial values of fields in MQTMC2 . 219
56. Fields in MQXP . 222
57. Fields in MQXQH . 227
58. Initial values of fields in MQXQH . 231
59. Effect of MQCLOSE options on various types of object and queue . . . 250
60. Valid MQOPEN options for each queue type 302

| 61. Attributes for all queues . 343
| 62. Attributes for local and model queues . 348
| 63. Attributes for local definitions of remote queues 363
| 64. Attributes for namelists . 366
| 65. Attributes for process definitions . 367
| 66. Attributes for the queue manager . 370

67. Summary of encodings for machine architectures 488
68. Fields in MQDXP . 502
69. Codeset names and CCSIDs . 524
70. Conversion support: US ENGLISH . 525
71. Conversion support: GERMAN . 526
72. Conversion support: DANISH and NORWEGIAN 527
73. Conversion support: FINNISH and SWEDISH 528
74. Conversion support: ITALIAN . 530

vi MQSeries Application Programming Reference

 Tables

75. Conversion support: SPANISH . 531
76. Conversion support: UK ENGLISH / GAELIC 532
77. Conversion support: FRENCH . 533
78. Conversion support: MULTILINGUAL . 534
79. Conversion support: PORTUGUESE . 535
80. Conversion support: ICELANDIC . 537
81. Conversion support: EASTERN EUROPEAN Languages 538
82. Conversion support: CYRILLIC . 539
83. Conversion support: ESTONIAN . 541
84. Conversion support: LATVIAN and LITHUANIAN 542
85. Conversion support: UKRAINIAN . 543
86. Conversion support: GREEK . 544
87. Conversion support: TURKISH . 545
88. Conversion support: HEBREW . 546
89. Conversion support: ARABIC . 547
90. Conversion support: FARSI . 548
91. Conversion support: URDU . 549
92. Conversion support: THAI . 550
93. Conversion support: JAPANESE LATIN SBCS 551
94. Conversion support: JAPANESE KATAKANA SBCS 552
95. Conversion support: JAPANESE KANJI / LATIN MIXED 553
96. Conversion support: JAPANESE KANJI / KATAKANA MIXED 555
97. Conversion support: KOREAN . 557
98. Conversion support: SIMPLIFIED CHINESE 558
99. Conversion support: TRADITIONAL CHINESE 559
100. MVS/ESA V1.1.4 or later single byte CCSID conversion support. 561

 Tables vii

 Tables

viii MQSeries Application Programming Reference

 About this book

About this book

The IBM MQSeries set of products provides application programming services on
various platforms that allow a new style of programming. This style enables you to
code indirect program-to-program communication using message queues.

This book gives a full description of the MQSeries programming interface, the MQI,
for the following products:

MQSeries for AIX, Version 5
| MQSeries for AS/400 Version 4 Release 2

MQSeries for AT&T** GIS UNIX, Version 2 Release 21

| MQSeries for Digital OpenVMS Version 2 Release 2.1
MQSeries for HP-UX**, Version 5
MQSeries for MVS/ESA Version 1 Release 2
MQSeries for OS/2 Warp Version 5
MQSeries for SINIX** and DC/OSx Version 2.2
MQSeries for SunOS** Version 2.2
MQSeries for Sun Solaris** Version 5

| MQSeries for Tandem NonStop Kernel Version 2 Release 2
MQSeries for Windows NT Version 5
MQSeries for Windows Version 2.0
MQSeries for Windows Version 2.1

| Note: This book does not apply to the MQSeries for AS/400 Version 4 Release 2
| product using the RPG programming language. You should use the
| MQSeries for AS/400 Version 4 Release 2 Application Programming
| Reference (RPG), SC33-1957 for this product.

For information on how to design and write applications that use the services
MQSeries provides, see the MQSeries Application Programming Guide.

Who this book is for
This book is for the designers of applications that use message queuing
techniques, and for programmers who have to implement these designs.

What you need to know to understand this book
To write message queuing applications using MQSeries, you need to know how to
write programs in one of the supported programming languages:

� C or COBOL (available on all supported platforms)
� PL/I (available on AIX, OS/2, Windows NT and MVS/ESA)
� System/390 assembler (available on MVS/ESA only)

| � TAL (available on Tandem NonStop Kernel only)

If the applications you are writing are to run within a CICS system, you must also
be familiar with CICS on your platform and its application programming interface.

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1994,1998 ix

 About this book

To understand this book, you do not need to have written message queuing
programs before.

How to use this book
This book enables you to find out quickly, for example, how to use a particular call
or how to correct a particular error situation.

The book presents detailed reference information about the MQSeries programming
interface, called the Message Queue Interface (MQI). It describes the:

� Data types that the MQI calls use
� Parameters and return codes for the calls
� Attributes of MQSeries objects
� Values of constants you need to use when you write MQSeries programs
� Reason codes that may occur when you run your programs

Appearance of text in this book
This book uses the following type styles:

MQOPEN Example of the name of a call
CompCode Example of the name of a parameter of a call, a field in a

structure, or the attribute of an object
MQMD Example of the name of a data type or structure
MQCC_FAILED Example of the name of a constant

Terms used in this book
All new terms that this book introduces are defined in the glossary. In the body of
this book, the following shortened names are used for these products:

MQSeries The MQSeries set of products
CICS The CICS, or Transaction Server, product for the specific platform

on which you are working.

Not all of the capabilities described in this book are available in all environments.
Those calls, structures, fields, or options that are not supported everywhere are
identified as such in the explanatory text. Table 1 shows the short names used in
this book for the various environments, and the products to which they refer.

Table 1 (Page 1 of 2). Short names used for supported environments

Short name used
in this book

Full product or environment name

AIX MQSeries for AIX Version 5.0

DOS client MQ client applications running on PC-DOS

HP-UX MQSeries for HP-UX Version 5.0

MVS/ESA MQSeries for MVS/ESA Version 1.2

OpenVMS MQSeries for Digital Open VMS Version 2.2

OS/2 MQSeries for OS/2 Warp Version 5.0

| OS/400| MQSeries for AS/400 Version 4.2

Sun Solaris MQSeries for Sun Solaris Version 5.0

x MQSeries Application Programming Reference

 About this book

The following table lists the MQSeries products available for Windows, and shows
the Windows platforms on which each runs.

MQSeries for Windows Versions 2.0 and 2.1 support most of the features of the
MQI described in this book. For information on these products, see the MQSeries
for Windows User’s Guide.

Table 1 (Page 2 of 2). Short names used for supported environments

Short name used
in this book

Full product or environment name

| Tandem NSK| MQSeries for Tandem NonStop Kernel Version 2.2

| UNIX systems| The UNIX systems supported by MQSeries that are not Version
| 5. These are:

| � MQSeries for AT&T** GIS UNIX, Version 2 Release 2
| � MQSeries for SINIX** and DC/OSx Version 2.2
| � MQSeries for SunOS** Version 2.2

Windows client MQ client applications running on Windows 3.1, Windows 95, or
Windows NT

Windows NT MQSeries for Windows NT Version 5.0

16-bit Windows MQSeries for Windows Version 2.0

32-bit Windows MQSeries for Windows Version 2.1

MQSeries product Windows 3.1 Windows 95 Windows NT

MQSeries for Windows Client Yes Yes Yes

MQSeries for Windows NT No No Yes

MQSeries for Windows V2.0 Yes Yes No

MQSeries for Windows V2.1 No Yes Yes

 Language compilers
 C++

This book does not describe the C++ programming language binding. For
information on C++ you should see the MQSeries Using C++ book.

Also, we use the following shortened names for these language compilers:

� C – see Table 2 on page xii
� COBOL – see Table 4 on page xiii
� PL/I – see Table 5 on page xiv
� Assembler/390 – see Table 6 on page xiv

| � TAL – see Table 7 on page xiv

 About this book xi

 About this book

Table 2. C and C++ language compilers

Platform Compiler

| AIX| IBM C for AIX Version 3.1.4
| IBM C Set++ for AIX V3.1

| AIX C++| IBM C Set++ for AIX V3.1

| AS/400| IBM ILE C/400 compiler (5769-CX1) for AS/400 V4R2

| AS/400 C++| IBM VisualAge C++ compiler for AS/400 (5769-CX4)

| AT&T| AT&T GIS High Performance C V1.0b compiler

| AT&T C++| AT&T C++ language system for AT&T GIS UNIX

DC/OSx DC/OSx C4.0 Version 4.0.1 compiler

| Digital Open/VMS| DEC C Version 5.0

| Digital Open/VMS C++| DEC C++ V5.0 (VAX) V5.2 (AXP)

| HP-UX| C Softbench Version 5.0
| HP-UX ANSI C
| HP C++ V3.1

| HP-UX C++| HP C++ V3.1

MVS/ESA C/370 Release 2.1.0
IBM SAA AD/Cycle C/370 Compiler

OS/2 IBM VisualAge for C++ for OS/2 V3.0
Borland C++ V2

| OS/2 C++| IBM VisualAge for C++ for OS/2, V3.0

SINIX C compiler (C-DS, MIPS) V1.1

SunOS SPARCompiler C V3.0.1

Sun Solaris SPARCompiler C V4.0 and V4.2

| Tandem NSK| D30 or later using the WIDE memory model (32-bit
| integers)

Windows NT Microsoft Visual C++ V4.0 for Windows NT
IBM VisualAge for C++ for Windows V3.5

| Windows NT C++| IBM VisualAge for C++ for Windows V3.5
| Microsoft Visual C++ V4.0 for Windows NT

| MQSeries for Windows
| V2.0
| 16-bit C - Microsoft Visual C++ V1.5

| MQSeries for Windows
| V2.0
| 32-bit C - Microsoft Visual C++ V2.0

| MQSeries for Windows
| V2.1
| Microsoft Visual C++ V4.0
| Borland C

| DOS clients| Microsoft C/C++ V7
| Microsoft Visual C++ for Windows V4.0

| Windows 3.1 clients| Microsoft C/C++ V7
| Microsoft Visual C++ V2.0

| Windows 3.1 clients C++| Microsoft Visual C++ V1.5

| Windows 95 clients| Microsoft Visual C++ V2.0

| Windows 95 clients C++| IBM VisualAge for C++ V3.5
| Microsoft Visual C++ V2.0

Note: AT&T has become NCR UNIX SVR4 MP-RAS, R3.0

xii MQSeries Application Programming Reference

 About this book

| In addition, MQSeries for Windows V2.0 and MQSeries for Windows V2.1 support
| Basic compilers.

| Table 3. Basic language compilers

| Platform| Compiler

| MQSeries for Windows
| V2.0 - 16-bit
| Microsoft Visual Basic V3.0 or V4.0

| MQSeries for Windows
| V2.0 - 32-bit
| Microsoft Visual Basic V4.0

| MQSeries for Windows
| V2.1
| Microsoft Visual Basic V4.0

Table 4. COBOL language compilers

Platform Compiler

AIX The Micro Focus** COBOL compiler V3.1 and V4.0 for
UNIX Systems and IBM COBOL Set for AIX Version 1.0

| AS/400| IBM ILE COBOL/400 Version 4 compiler (5769-CB1) for
| AS/400 V4R2

| Digital OpenVMS| DEC COBOL V5.0 (VAX) V2.2 (AXP)

| HP-UX| COBOL Softbench Version 4.0
| Micro Focus COBOL compiler Version 4.0 for UNIX
| Systems

MVS/ESA VS COBOL II compiler and IBM SAA AD/Cycle COBOL/370
compiler

OS/2 Micro Focus COBOL compiler V4.0
IBM VisualAge for COBOL for OS/2 V1.1

SINIX and DC/OSx Micro Focus COBOL compiler V3.2 for SINIX

SunOS Micro Focus COBOL compiler V3.0

| Sun Solaris| Micro Focus COBOL compiler for UNIX systems V4.0

| MQSeries for Tandem
| NSK
| D30 or later

Windows NT Micro Focus Object COBOL compiler V3.3 or V4.0 for
Windows NT
Micro Focus Object COBOL compiler V3.1.J for
Windows NT

| DOS clients| Micro Focus COBOL V3.3

| Windows 3.1 clients| Micro Focus Visual COBOL for Windows V3.3

| Windows 95 clients| Micro Focus COBOL Workbench V4.0

 About this book xiii

 MQSeries publications

Table 5. PL/I language compilers

Platform Compiler

| AIX| IBM PL/I Set for AIX V1.1

MVS/ESA OS PL/I Optimizing compiler
IBM SAA AD/Cycle PL/I compiler

OS/2 IBM Visual Age for PL/I for OS/2
IBM PL/I for OS/2 V1.2

Windows NT IBM Visual Age for PL/I for Windows
IBM PL/I for Windows V1.2

Table 6. Assembler/390 language compilers

Platform Compiler

MVS/ESA Assembler H assembler
IBM High Level Assembler/MVS assembler

| Table 7. TAL compilers

Platform Compiler

| Tandem NSK| D30 or later
| IBM High Level Assembler/MVS assembler

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.0
| � MQSeries for AS/400 V4R2

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0

| � MQSeries for Tandem NonStop Kernel V2.2
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on

xiv MQSeries Application Programming Reference

 MQSeries publications

page xviii. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

 About this book xv

 MQSeries publications

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

| MQSeries C++ is also supported by MQSeries for AS/400 V4R2.

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2 Licensed Program Specifications,
| GC33-1958

xvi MQSeries Application Programming Reference

 MQSeries publications

| MQSeries for AS/400 Version 4 Release 2 Administration Guide, GC33-1956

| MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
| (RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

| MQSeries for Tandem NonStop Kernel

| MQSeries for Tandem NonStop Kernel Version 2.2 System Management
| Guide, GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

 About this book xvii

 MQSeries publications

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

xviii MQSeries Application Programming Reference

 MQSeries on the Internet

The MQSeries books are also available from the MQSeries product family Web
site:

| http://www.software.ibm.com/ts/mqseries/

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
MQSeries web site

The MQSeries product family Web site is at:

| http://www.software.ibm.com/ts/mqseries/

| By following links from this Web site you can:

| � Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML format.

| � Download MQSeries SupportPacs.

 Related publications
Character Data Representation Reference, SC09-1390

 About this book xix

 MQSeries on the Internet

xx MQSeries Application Programming Reference

 Summary of changes

Summary of Changes

This section lists the major revisions to this book for the current edition and the
preceding two editions.

| Changes to this edition, SC33-1673-04
| Changes to the book for this edition are marked by vertical bars in the left margin;
| these changes include:

| � New versions of the following products:

| – MQSeries for AS/400
| – MQSeries for Tandem NonStop Kernel

| � Minor technical and editorial improvements throughout the book

Changes to the fourth edition
Changes to the book for the fourth edition included:

� New versions of the following products:

– MQSeries for AIX

– MQSeries for HP-UX

– MQSeries for OS/2

– MQSeries for Sun Solaris

– MQSeries for Windows NT

The changes to the products include:

– Addition of the MQBEGIN and MQCONNX function calls

– Addition of the MQBO and MQCNO data type structures

– Addition of distribution lists, which include the:

- MQDH data type structure
- MQOR data type structure
- MQPMR data type structure
- MQRR data type structure

– Addition of message groups and segmentation of large messages

– Addition of the MQMDE message descriptor extension data type structure

– Addition of reference message support, which includes the MQRMH data
type structure

– Addition of PL/I language support on AIX, OS/2, and Windows NT

 Copyright IBM Corp. 1994,1998 xxi

 Summary of changes

Changes to the third edition
Changes to the book for the third edition included:

� Addition of the MVS/ESA product

� Addition of the OS/400 V3R2 product

� Addition of the following UNIX platforms:

– SINIX and DC/OSx
 – SunOS
 – Sun Solaris

� Addition of the following for data conversion:

– MQCNVC function call
– MQCONVX function call
– MQDXP data type structure
– Language support tables

� Addition of constants for the Windows NT platform

xxii MQSeries Application Programming Reference

 Elementary data types

Chapter 1. Data type descriptions – elementary

This chapter describes the elementary data types used by the MQI.

The elementary data types are:

� MQBYTE – Byte
� MQBYTEn – String of n bytes
� MQCHAR – Single-byte character
� MQCHARn – String of n single-byte characters
� MQHCONN – Connection handle
� MQHOBJ – Object handle
� MQLONG – Long integer

Conventions used in the descriptions of data types
For each elementary data type, this chapter gives a description of its usage, in a
form that is independent of the programming language. This is followed by typical
declarations in each of the supported programming languages.

Elementary data types
All of the other data types described in this chapter equate either directly to these
elementary data types, or to aggregates of these elementary data types (arrays or
structures).

MQBYTE - Byte
The MQBYTE data type represents a single byte of data. No particular
interpretation is placed on the byte—it is treated as a string of bits, and not as a
binary number or character. No special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage
whose nature is not known to the queue manager. For example, the area may
contain application message data or a structure. The boundary alignment of this
area must be compatible with the nature of the data contained within it.

In the C programming language, any data type can be used for function parameters
that are shown as arrays of MQBYTE. This is because such parameters are
always passed by address, and in C the function parameter is declared as a
pointer-to-void.

MQBYTEn – String of n bytes
Each MQBYTEn data type represents a string of n bytes, where n can take one of
the following values:

16, 24, 32, or 64

Each byte is described by the MQBYTE data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with nulls to fill the string.

 Copyright IBM Corp. 1994,1998 1

 Elementary data types

When the queue manager returns byte strings to the application (for example, on
the MQGET call), the queue manager always pads with nulls to the defined length
of the string.

Constants are available that define the lengths of byte string fields; see “MQ_ñ
(Lengths of character string and byte fields)” on page 449.

MQCHAR – character
The MQCHAR data type represents a single character. The coded character set
identifier of the character is that of the queue manager (see the CodedCharSetId
attribute on page 372). No special alignment is required.

Note: Application message data specified on the MQGET, MQPUT, and MQPUT1
calls is described by the MQBYTE data type, not the MQCHAR data type.

MQCHARn – String of n characters
Each MQCHARn data type represents a string of n characters, where n can take
one of the following values:

4, 8, 12, 16, 28, 32, 48, 64, 128, or 256

Each character is described by the MQCHAR data type. No special alignment is
required.

If the data in the string is shorter than the defined length of the string, the data
must be padded with blanks to fill the string. In some cases a null character can
be used to end the string prematurely, instead of padding with blanks; the null
character and characters following it are treated as blanks, up to the defined length
of the string. The places where a null can be used are identified in the call and
data type descriptions.

When the queue manager returns character strings to the application (for example,
on the MQGET call), the queue manager always pads with blanks to the defined
length of the string; the queue manager does not use the null character to delimit
the string.

Constants are available that define the lengths of character string fields; see “MQ_ñ
(Lengths of character string and byte fields)” on page 449.

MQHCONN – Connection handle
The MQHCONN data type represents a connection handle, that is, the connection
to a particular queue manager. A connection handle must be aligned on its natural
boundary.

Note: Applications must test variables of this type for equality only.

MQHOBJ – Object handle
The MQHOBJ data type represents an object handle that gives access to an object.
An object handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

2 MQSeries Application Programming Reference

 Elementary data types

MQLONG – Long integer
The MQLONG data type is a 32-bit signed binary integer that can take any value in
the range −2 147 483 648 through +2 147 483 647, unless otherwise restricted
by the context. For COBOL, the valid range is limited to −999 999 999 through
+999 999 999. An MQLONG must be aligned on its natural boundary.

Elementary data types – C programming language

| See “Data types” on page 9 for a description of the MQPOINTER macro variable.

Table 8. Elementary data types in C

Data type Representation

MQBYTE typedef unsigned char MQBYTE;

MQBYTE16 typedef MQBYTE MQBYTE16[16];

MQBYTE24 typedef MQBYTE MQBYTE24[24];

MQBYTE32 typedef MQBYTE MQBYTE32[32];

MQBYTE64 typedef MQBYTE MQBYTE64[64];

MQCHAR typedef char MQCHAR;

MQCHAR4 typedef MQCHAR MQCHAR4[4];

MQCHAR8 typedef MQCHAR MQCHAR8[8];

MQCHAR12 typedef MQCHAR MQCHAR12[12];

MQCHAR16 typedef MQCHAR MQCHAR16[16];

MQCHAR20 typedef MQCHAR MQCHAR2ð[2ð];

MQCHAR28 typedef MQCHAR MQCHAR28[28];

MQCHAR32 typedef MQCHAR MQCHAR32[32];

MQCHAR48 typedef MQCHAR MQCHAR48[48];

MQCHAR64 typedef MQCHAR MQCHAR64[64];

MQCHAR128 typedef MQCHAR MQCHAR128[128];

MQCHAR256 typedef MQCHAR MQCHAR256[256];

MQHCONN typedef MQLONG MQHCONN;

MQHOBJ typedef MQLONG MQHOBJ;

MQLONG typedef long MQLONG;

MQPTR typedef void MQPOINTER MQPTR;

PMQLONG typedef MQLONG MQPOINTER PMQLONG;

Elementary data types - COBOL programming language
Table 9 (Page 1 of 2). Elementary data types in
COBOL

Data type Representation

MQBYTE PIC X

MQBYTE16 PIC X(16)

MQBYTE24 PIC X(24)

MQBYTE32 PIC X(32)

MQBYTE64 PIC X(64)

MQCHAR PIC X

MQCHAR4 PIC X(4)

 Chapter 1. Data type descriptions – elementary 3

 Elementary data types

Table 9 (Page 2 of 2). Elementary data types in
COBOL

Data type Representation

MQCHAR8 PIC X(8)

MQCHAR12 PIC X(12)

MQCHAR16 PIC X(16)

MQCHAR20 PIC X(2ð)

MQCHAR28 PIC X(28)

MQCHAR32 PIC X(32)

MQCHAR48 PIC X(48)

MQCHAR64 PIC X(64)

MQCHAR128 PIC X(128)

MQCHAR256 PIC X(256)

MQHCONN PIC S9(9) BINARY

MQHOBJ PIC S9(9) BINARY

MQLONG PIC S9(9) BINARY

MQPTR POINTER

PMQLONG POINTER

Elementary data types – PL/I language
Table 10. Elementary data types in PL/I

Data type Representation

MQBYTE char(1)

MQBYTE16 char(16)

MQBYTE24 char(24)

MQBYTE32 char(32)

MQBYTE64 char(64)

MQCHAR char(1)

MQCHAR4 char(4)

MQCHAR8 char(8)

MQCHAR12 char(12)

MQCHAR16 char(16)

MQCHAR20 char(2ð)

MQCHAR28 char(28)

MQCHAR32 char(32)

MQCHAR48 char(48)

MQCHAR64 char(64)

MQCHAR128 char(128)

MQCHAR256 char(256)

MQHCONN fixed bin(31)

MQHOBJ fixed bin(31)

MQLONG fixed bin(31)

PMQLONG pointer

4 MQSeries Application Programming Reference

 Elementary data types

Elementary data types – System/390 Assembler (MVS/ESA only)
Table 11. Elementary data types in System/390
assembler

Data type Representation

MQBYTE DS XL1

MQBYTE16 DS XL16

MQBYTE24 DS XL24

MQBYTE32 DS XL32

MQBYTE64 DS XL64

MQCHAR DS CL1

MQCHAR4 DS CL4

MQCHAR8 DS CL8

MQCHAR12 DS CL12

MQCHAR16 DS CL16

MQCHAR20 DS CL2ð

MQCHAR28 DS CL28

MQCHAR32 DS CL32

MQCHAR48 DS CL48

MQCHAR64 DS CL64

MQCHAR128 DS CL128

MQCHAR256 DS CL256

MQHCONN DS F

MQHOBJ DS F

MQLONG DS F

PMQLONG DS F

| Elementary data types – TAL programming language
| Table 12. Elementary data types in TAL

| Data Type| Representation

| MQBYTE| STRING

| MQBYTE24| BEGIN STRING BYTE [0:23];END

| MQBYTE32| BEGIN STRING BYTE [0:31];END

| MQCHAR| STRING

| MQCHAR4| BEGIN STRING BYTE [0:3];END

| MQCHAR8| BEGIN STRING BYTE [0:7]; END

| MQCHAR12| BEGIN STRING BYTE [0:11];END

| MQCHAR28| BEGIN STRING BYTE [0:27];END

| MQCHAR32| BEGIN STRING BYTE [0:31];END

| MQCHAR48| BEGIN STRING BYTE [0:47];END

| MQCHAR64| BEGIN STRING BYTE [0:63];END

| MQCHAR128| BEGIN STRING BYTE [0:127];END

| MQCHAR256| BEGIN STRING BYTE [0:255];END

| MQHCONN| INT(32)

| MQHOBJ| INT(32)

| MQLONG| INT(32)

 Chapter 1. Data type descriptions – elementary 5

 Elementary data types

6 MQSeries Application Programming Reference

 Structure data types

Chapter 2. Data type descriptions – structures

This chapter describes the structure data types used by the MQI, which are:

� MQBO – Begin options
� MQCNO – Connect options
� MQGMO – Get-message options
� MQMD – Message descriptor
� MQMDE – Message descriptor extension
� MQOD – Object descriptor
� MQOR – Object record
� MQPMO – Put-message options
� MQPMR – Put message record
� MQRR – Response record

The MQI also uses the following structure data types, which are included in this
chapter for completeness, but they are not part of the application programming
interface.

| � MQCIH – CICS bridge header (MVS/ESA only)
� MQDH – Distribution header
� MQDLH – Dead-letter (undelivered-message) header
� MQIIH – IMS bridge header (MVS/ESA only)
� MQTM – Trigger message
� MQTMC2 – Trigger message (character format 2)
� MQXQH – Transmission queue header

Note: The MQDXP – data conversion exit parameter structure is in Appendix D,
“Data-conversion” on page 495, together with the associated data
conversion calls.

Conventions used in the descriptions of data types
For each structure data type, this chapter gives a description of its usage, in a form
that is independent of the programming language. This is followed by typical
declarations in each of the supported programming languages.

The description of each structure data type contains the following sections:

Structure name
The name of the structure, followed by a brief description of the purpose of the
structure.

Fields
For each field, the name is followed by its elementary data type in parentheses
(); for example:

 Version (MQLONG)

There is also a description of the purpose of the field, together with a list of
any values that the field can take. Names of constants are shown in
uppercase; for example, MQGMO_STRUC_ID. A set of constants having the
same prefix is shown using the ñ character, for example: MQIA_ñ.

In the descriptions of the fields, the following terms are used:

 Copyright IBM Corp. 1994,1998 7

 Language considerations

input You supply information in the field when you make a call.

output The queue manager returns information in the field when the
call completes or fails.

input/output You supply information in the field when you make a call, and
the queue manager changes the information when the call
completes or fails.

Initial values
A table showing the initial values for each field in the data definition files
supplied with the MQI.

C declaration
Typical declaration of the structure in C.

COBOL declaration
Typical declaration of the structure in COBOL.

PL/I declaration
Typical declaration of the structure in PL/I2.

System/390 assembler-language declaration
Typical declaration of the structure in System/3902 assembler language.

 Language considerations
This section outlines the requirements for data types in the following programming
languages:

� C – see “Using the data types in the C programming language”
� COBOL – see “Using the data types in the COBOL programming language” on

page 12
� PL/I – see “Using the data types in the PL/I programming language” on

page 15
� Assembler/390 – see “Using the data types in the System/390 Assembler

programming language” on page 16

Using the data types in the C programming language
This section contains information to help you use the MQI from the C programming
language.

 Header files
Header files are provided as part of the definition of the message queue interface,
to assist with the writing of C application programs that use message queuing.
These header files are summarized in Table 13 on page 9.

2 PL/I and assembler are not sensitive to case, so the names of calls, structure fields, and constants can be coded in lowercase,
uppercase, or mixed case.

8 MQSeries Application Programming Reference

 Language considerations

To improve the portability of applications, it is recommended that the name of the
header file should be coded in lowercase on the #include preprocessor directive:

#include "cmqc.h"

Table 13. C header file

Filename Contents

CMQC Function prototypes, data types, and named constants for the main
MQI

CMQXC Function prototypes, data types, and named constants for the
data-conversion exit

 Functions
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; for all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can
be specified as the parameter on the function invocation, in place of the address of
the parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the function; in C terminology, this means
that all functions return void .

The attributes of the function are defined by the MQENTRY macro variable; the
value of this macro variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has
an undefined data type, namely the Buffer parameter. This parameter is used to
send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
perfectly valid to declare the parameters in this way, but it is usually more
convenient to declare them as the particular structure which describes the layout of
the data in the message. The actual function parameter is declared as a
pointer-to-void, and so the address of any sort of data can be specified as the
parameter on the function invocation.

 Data types
All data types are defined by means of the C typedef statement. For each data
type, the corresponding pointer data type is also defined. The name of the pointer
data type is the name of the elementary or structure data type prefixed with the
letter “P” to denote a pointer. The attributes of the pointer are defined by the
MQPOINTER macro variable; the value of this macro variable depends on the
environment. The following illustrates how pointer datatypes are declared:

#define MQPOINTER \ /\ depends on environment \/
...
typedef MQLONG MQPOINTER PMQLONG; /\ pointer to MQLONG \/
typedef MQMD MQPOINTER PMQMD; /\ pointer to MQMD \/

 Chapter 2. Data type descriptions – structures 9

 Language considerations

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types. Whenever
fields of this type are copied, compared, or set, the C functions memcpy ,
memcmp , or memset should be used; for example:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /\ set "MsgId" field to nulls \/
MQMI_NONE, /\ ...using named constant \/

 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /\ set "CorrelId" field to nulls \/
ðxðð, /\ ...using a different method \/

 sizeof(MQBYTE24));

Do not use the string functions strcpy , strcmp , strncpy , or strncmp , because
these do not work correctly for data declared with the MQBYTEn data types.

Manipulating character strings
When the queue manager returns character data to the application, the queue
manager always pads the character data with blanks to the defined length of the
field; the queue manager does not return null-terminated strings. Therefore, when
copying, comparing, or concatenating such strings, the string functions strncpy ,
strncmp , or strncat should be used.

Do not use the string functions, which require the string to be terminated by a null
(strcpy , strcmp , strcat). Also, do not use the function strlen to determine the
length of the string; use instead the sizeof function to determine the length of the
field.

Initial values for structures
The header file CMQC defines various macro variables that may be used to provide
initial values for the message queuing structures when instances of those structures
are declared. These macro variables have names of the form “MQXXX_DEFAULT”,
where “MQXXX” represents the name of the structure. They are used in the
following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields (for example, the StrucId fields which occur in most
structures, or the Format field which occurs in MQMD), the MQI defines particular
values that are valid. For each of the valid values, two macro variables are
provided:

� One macro variable defines the value as a string whose length excluding the
implied null matches exactly the defined length of the field. For example, for
the Format field in MQMD the following macro variable is provided (the symbol
“␣” represents a blank character):

#define MQFMT_STRING "MQSTR␣␣␣"

Use this form with the memcpy and memcmp functions.

10 MQSeries Application Programming Reference

 Language considerations

� The other macro variable defines the value as an array of characters; the name
of this macro variable is the name of the string form suffixed with “_ARRAY”.
For example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro
variable.3

Initial values for dynamic structures
When a variable number of instances of a structure is required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1. Declare an instance of the structure using the appropriate MQXXX_DEFAULT
macro variable to initialize the structure. This instance becomes the “model” for
other instances:

MQMD Model = {MQMD_DEFAULT}; /\ declare model instance \/

The static or auto keywords can be coded on the declaration in order to give
the model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of
the structure:

PMQMD Instance;
Instance = malloc(sizeof(MQMD)); /\ get storage for dynamic instance \/

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(Instance,&Model,sizeof(MQMD)); /\ initialize dynamic instance \/

Use from C++
For the C++ programming language, the header files contain the following
additional statements that are included only when a C++ compiler is used:

#ifdef __cplusplus
extern "C" {

#endif

/\ rest of header file \/

#ifdef __cplusplus
 }
#endif

 Notational conventions
The sections that follow show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared.

3 This is not always necessary; in some environments the string form of the value can be used in both situations. However, the
array form is recommended for declarations, since this is required for compatibility with the C++ programming language.

 Chapter 2. Data type descriptions – structures 11

 Language considerations

In a number of cases, parameters are arrays whose size is not fixed. For these, a
lowercase “n” is used to represent a numeric constant. When the declaration for
that parameter is coded, the “n” must be replaced by the numeric value required.

Using the data types in the COBOL programming language
This section contains information to help you use the MQI from the COBOL
programming language.

 COPY files
Various COPY files are provided as part of the definition of the message queue
interface, to assist with the writing of COBOL application programs that use
message queuing. There are two files containing the named constants, and two
files for each of the structures.

Each structure is provided in two forms: a form with initial values, and a form
without.

� The structures with initial values can be used in the WORKING-STORAGE
SECTION of a COBOL program, and are contained in COPY files which have
names suffixed with the letter “V” (mnemonic for “Values”).

� The structures without initial values can be used in the LINKAGE SECTION of
a COBOL program, and are contained in COPY files which have names
suffixed with the letter “L” (mnemonic for “Linkage”).

The COPY files are summarized in Table 14.

Table 14 (Page 1 of 2). COBOL COPY files

File name
(with initial
values)

File name
(without initial
values)

Contents

CMQBOV CMQBOL Begin options structure

CMQCNOV CMQCNOL Connect options structure

CMQDHV CMQDHL Distribution header structure

CMQDLHV CMQDLHL Dead-letter (undelivered-message) header
structure

CMQDXPV CMQDXPL Data-conversion-exit parameter structure

CMQGMOV CMQGMOL Get-message options structure

CMQIIHV CMQIIHL IMS information header structure

CMQMDV CMQMDL Message descriptor structure

CMQMDEV CMQMDEL Message descriptor extension structure

CMQODV CMQODL Object descriptor structure

CMQORV CMQORL Object record structure

CMQPMOV CMQPMOL Put-message options structure

CMQPMRV CMQPMRL Put-message record structure

CMQRRV CMQRRL Response record structure

CMQTMV CMQTML Trigger-message structure

– CMQTMCL Trigger-message structure (character format)

12 MQSeries Application Programming Reference

 Language considerations

Table 14 (Page 2 of 2). COBOL COPY files

File name
(with initial
values)

File name
(without initial
values)

Contents

CMQXQHV CMQXQHL Transmission-queue header structure

CMQV – Named constants for main MQI

CMQXV – Named constants for data-conversion exit

 Structures
In the COPY file, each structure declaration begins with a level-10 item; this
enables several instances of the structure to be declared, by coding the level-01
declaration and then using the COPY statement to copy in the remainder of the
structure declaration. To reference the appropriate instance, the IN keyword can
be used:

\ Declare two instances of MQMD
 ð1 MY-MQMD.
 COPY CMQMDV.
 ð1 MY-OTHER-MQMD.
 COPY CMQMDV.
\
\ Set MSGTYPE field in MY-OTHER-MQMD

MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-MQMD.

The structures should be aligned on 4-byte boundaries. If the COPY statement is
used to include a structure following an item which is not the level-01 item, try to
ensure that the structure is a multiple of 4-bytes from the start of the level-01 item;
failure to do this may result in a performance degradation.

In Chapter 1, “Data type descriptions – elementary” on page 1, the names of fields
in structures are shown without a prefix. In COBOL, the field names are prefixed
with the name of the structure followed by a hyphen. However, if the structure
name ends with a numeric digit, indicating that the structure is a second or later
version of the original structure, the numeric digit is omitted from the prefix. Field
names in COBOL are shown in uppercase (although mixed case or lowercase can
be used if required). For example, the field MsgType described on page 112
becomes MQMD-MSGTYPE in COBOL.

The V-suffix structures are declared with initial values for all of the fields, and so it
is necessary to set only those fields where the value required is different from the
initial value.

 Pointers
Some structures need to address optional data that may be discontiguous with the
structure. For example, the MQOR and MQRR records addressed by the MQOD
structure are like this. To address this optional data, the structures contain fields
that are declared with the pointer data type. However, COBOL does not support
the pointer data type in all environments. Because of this, the optional data can
also be addressed using fields which contain the offset of the data from the start of
the structure.

If an application is intended to be portable between environments, the application
designer should ascertain whether the pointer data type is available in all of the

 Chapter 2. Data type descriptions – structures 13

 Language considerations

intended environments. If it is not, the application should address the optional data
using the offset fields instead of the pointer fields.

In those environments where pointers are not supported, the pointer fields are
declared as byte strings of the appropriate length, with the initial value being the
all-null byte string. This initial value should not be altered if the offset fields are
being used.

 Named constants
In this book, the names of constants are shown containing the underscore
character (_) as part of the name. In COBOL, the hyphen character (-) must be
used in place of the underscore.

Constants which have character-string values use the single-quote character as the
string delimiter ('). In some environments it may be necessary to specify an
appropriate compiler option to cause the compiler to accept the single quote as the
string delimiter.

The named constants are declared in the COPY files as level-10 items. To use the
constants, the level-01 item must be declared explicitly, and then the COPY
statement used to copy in the declarations of the constants:

\ Declare a structure to hold the constants
 ð1 MY-MQ-CONSTANTS.
 COPY CMQV.

The above method causes the constants to occupy storage in the program even if
they are not referenced. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist; this may result
in a significant amount of main storage being consumed. This can be avoided by
using one of the following techniques:

� Add the GLOBAL clause to the level-01 declaration:

\ Declare a global structure to hold the constants
 ð1 MY-MQ-CONSTANTS GLOBAL.
 COPY CMQV.

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referenced by any program within the run
unit, not just the program which contains the level-01 declaration.

Note: The GLOBAL clause is not supported in all environments.

� Manually copy into each program only those constants that are referenced by
that program; do not use the COPY statement to copy all of the constants into
the program.

 Notational conventions
The sections that follow show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared

In a number of cases, parameters are tables or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When

14 MQSeries Application Programming Reference

 Language considerations

the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

Using the data types in the PL/I programming language
This section contains information to help you use the MQI from the PL/I
programming language.

 INCLUDE files
Two INCLUDE files are provided as part of the definition of the message queue
interface, to assist with the writing of PL/I application programs that use message
queuing. There is one INCLUDE file containing the structures and named
constants, and one containing the entry-point declarations. These files are
summarized in Table 15.

To improve the portability of applications, it is recommended that the names of the
INCLUDE files should be coded in lowercase on the %include compiler directive:

%include syslib(cmqp);
%include syslib(cmqepp);

Table 15. PL/I INCLUDE file

Filename Contents

CMQEPP Entry points

CMQP Structures, named constants

 Structures
Structures are declared with the BASED attribute, and so do not occupy any
storage unless the program declares one or more instances of a structure.

An instance of a structure can be declared by using the LIKE attribute:

%include syslib(cmqp);
%include syslib(cmqepp);

dcl 1 my_mqmd like MQMD; /\ one instance \/
dcl 1 my_other_mqmd like MQMD; /\ another one \/

The structure fields are declared with the INITIAL attribute. When the LIKE
attribute is used to declare an instance of a structure, that instance inherits the
initial values defined for that structure. Thus it is necessary to set only those fields
where the value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and
constants can be coded in lowercase, uppercase, or mixed case.

 Named constants
The named constants are declared as macro variables; as a result, named
constants which are not referenced by the program do not occupy any storage in
the compiled procedure. However, the compiler option which causes the source to
be processed by the macro preprocessor must be specified when the program is
compiled.

 Chapter 2. Data type descriptions – structures 15

 Language considerations

All of the macro variables are character variables, even the ones which represent
numeric values. Although this may seem counter-intuitive, it does not result in any
data-type conflict after the macro variables have been substituted by the macro
processor:

%dcl MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dcl MQMD_VERSION_1 char;
%MQMD_VERSION_1 = '1';

 Notational conventions
The sections following show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

Using the data types in the System/390 Assembler programming
language

This section contains information to help you use the MQI from the System/390
Assembler programming language.

 Macros
Various macros are provided as part of the definition of the message queue
interface, to assist with the writing of assembler application programs that use
message queuing. There is one macro for the named constants, and one macro
for each of the structures. These files are summarized in Table 16.

Table 16. Assembler macros

Filename Contents

CMQA Named constants (“equates”)

CMQDLHA Dead-letter header structure

CMQDXPA Data-conversion exit parameter structure

CMQGMOA Get-message options structure

CMQIIHA IMS bridge structure

CMQMDA Message descriptor structure

CMQODA Object descriptor structure

CMQPMOA Put-message options structure

CMQTMA Trigger message structure

CMQXQHA Transmission-queue header structure

16 MQSeries Application Programming Reference

 Language considerations

 Names
In this book, the names of parameters and the names of fields in structures, are
shown in a mixture of upper and lowercase. In assembler, all names must be
coded in uppercase.

 Structures
The structures are generated by macros that have various parameters to control
the action of the macro.

Specifying the name of the structure: To allow more than one instance of a
structure to be declared, the macro prefixes the name of each field in the structure
with a user-specifiable string and an underscore. The string used is the label
specified on the invocation of the macro. If no label is specified, the name of the
structure is used to construct the prefix:

\ Declare two object descriptors
 CMQODA Prefix used="MQOD_" (the default)
MY_MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations use the default prefix.

Specifying the form of the structure: Structure declarations can be generated
by the macro in one of two forms, controlled by the DSECT parameter:

DSECT=YES An assembler DSECT instruction is used to start a new data
section; the structure definition immediately follows the DSECT
statement. The label on the macro invocation is used as the
name of the data section; if no label is specified, the name of the
structure is used.

DSECT=NO Assembler DC instructions are used to define the structure at the
current position in the routine. The fields are initialized with
values, which can be specified by coding the relevant parameters
on the macro invocation. Fields for which no values are specified
on the macro invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Declaring one structure embedded within another: To declare one structure as
a component of another structure, the NESTED parameter should be used:

NESTED=YES The structure declaration is nested within another.

NESTED=NO The structure declaration is not nested within another.

NESTED=NO is assumed if the NESTED parameter is not
specified.

Controlling the listing: The appearance of the structure declaration in the
assembler listing can be controlled by means of the LIST parameter:

LIST=YES The structure declaration appears in the assembler listing.

LIST=NO The structure declaration does not appear in the assembler
listing.

LIST=NO is assumed if the LIST parameter is not specified.

 Chapter 2. Data type descriptions – structures 17

 Structure data types

Specifying initial values for fields: The value to be used to initialize a field in a
structure can be specified by coding the name of that field (without the prefix) as a
parameter on the macro invocation, accompanied by the value required. For
example, to declare a message-descriptor structure with the MsgType field initialized
with MQMT_REQUEST, and the ReplyToQ field initialized with the string
“MY_REPLY_TO_QUEUE”, the following could be used:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
 REPLYTOQ=MY_REPLY_TO_QUEUE

If a named constant (equate) is specified as a value on the macro invocation, the
CMQA macro must be used in order to define the named constant. Values which
are character strings must not be enclosed in single quotes.

 Notational conventions
The sections that follow show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared.

In the sample declarations of the elementary datatypes, the string “var” is used to
represent the name of a variable; when that declaration is coded, “var” must be
replaced by the actual name required.

In a number of cases, parameters are arrays or character strings whose size is not
fixed. For these, a lowercase “n” is used to represent a numeric constant. When
the declaration for that parameter is coded, the “n” must be replaced by the
numeric value required.

Structure data types
Programming languages vary in their level of support for structures, and certain
rules and conventions are adopted in order to allow the MQI structures to be
mapped consistently in each programming language:

1. Structures are aligned on their natural boundaries. All MQI structures require
4-byte alignment.

2. Each field in the structure is aligned on its natural boundary. Fields with data
types that equate to MQLONG are aligned on 4-byte boundaries; other fields
are aligned on 1-byte boundaries.

3. The length of a structure is a multiple of its boundary alignment. All MQI
structures have lengths that are multiples of 4 bytes.

4. Where necessary, padding fields are declared explicitly to ensure compliance
with rules 2 and 3 above.

18 MQSeries Application Programming Reference

 MQBO – Begin options � MQBO – Options field

MQBO – Begin options
The following table summarizes the fields in the structure.

The MQBO structure is an input/output parameter for the MQBEGIN call.

This structure is supported in the following environments: AIX, HP-UX, OS/2, Sun
Solaris, Windows NT.

Table 17. Fields in MQBO

Field Description Page

StrucId Structure identifier 19

Version Structure version number 19

Options Options that control the action of MQBEGIN 19

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQBO_STRUC_ID
Identifier for begin-options structure.

For the C programming language, the constant
MQBO_STRUC_ID_ARRAY is also defined; this has the same value
as MQBO_STRUC_ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQBO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQBO_VERSION_1
Version number for begin-options structure.

The following constant specifies the version number of the current version:

MQBO_CURRENT_VERSION
Current version of begin-options structure.

This is always an input field. The initial value of this field is
MQBO_VERSION_1.

Options (MQLONG)
Options that control the action of MQBEGIN.

The value must be:

MQBO_NONE
No options specified.

This is always an input field. The initial value of this field is
MQBO_NONE.

 Chapter 2. Data type descriptions – structures 19

 MQBO – language declarations

Table 18. Initial values of fields in MQBO

Field name Name of constant Value of constant

StrucId MQBO_STRUC_ID 'BO␣␣'
(See note 1)

Version MQBO_VERSION_1 1

Options MQBO_NONE ð

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. In the C programming language, the macro variable MQBO_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQBO MyBO = {MQBO_DEFAULT};

C language declaration
typedef struct tagMQBO {
 MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of MQBEGIN \/

 } MQBO;

COBOL language declaration
\\ MQBO structure
 1ð MQBO.
\\ Structure identifier

15 MQBO-STRUCID PIC X(4).
\\ Structure version number

15 MQBO-VERSION PIC S9(9) BINARY.
\\ Options that control the action of MQBEGIN

15 MQBO-OPTIONS PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQBO based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Options fixed bin(31); /\ Options that control the action of

 MQBEGIN \/

20 MQSeries Application Programming Reference

 MQCIH – CICS bridge header

| MQCIH – CICS bridge header (MVS/ESA only)
| The following table summarizes the fields in the structure.

| The MQCIH structure describes the information that can be present at the start of a
| message sent to the CICS bridge through MQSeries for MVS/ESA. The structure
| can be omitted if the values required by the application are the same as the initial
| values shown in Table 21 on page 29. The format name of this structure is
| MQFMT_CICS.

| This structure is supported on MVS/ESA only.

| Special conditions apply to the character set and encoding used for the MQCIH
| structure and application message data:

| � Applications that connect to the queue manager which owns the CICS bridge
| queue must provide an MQCIH structure that is in the character set and
| encoding of the queue manager. This is because data conversion of the
| MQCIH structure is not performed in this case.

| � Applications that connect to other queue managers can provide an MQCIH
| structure that is in any of the supported character sets and encodings;
| conversion of the MQCIH and application message data is performed by the
| queue manager as necessary.

| Note: There is one exception to this. If the queue manager which owns the
| CICS bridge queue is using CICS for distributed queuing, the MQCIH
| must be in the character set and encoding of that queue manager.

| � The application message data following the MQCIH structure must be in the
| same character set and encoding as the MQCIH structure. The

| Table 19. Fields in MQCIH

| Field| Description| Page

| StrucId| Structure identifier| 22

| Version| Structure version number| 22

| StrucLength| Length of MQCIH structure| 22

| Format| MQ format name| 23

| ReturnCode| Return code from bridge| 23

| CompCode| MQ completion code or CICS EIBRESP| 24

| Reason| MQ reason or feedback code, or CICS
| EIBRESP2
| 24

| UOWControl| Unit-of-work control| 24

| GetWaitInterval| Wait interval for MQGET call issued by bridge
| task
| 25

| LinkType| Link type| 25

| OutputDataLength| Output COMMAREA data length| 25

| Function| MQ call name or CICS EIBFN function| 26

| AbendCode| Abend code| 27

| Authenticator| Password or passticket| 27

| ReplyToFormat| MQ format name of reply message| 27

 Chapter 2. Data type descriptions – structures 21

 MQCIH – StrucId field � MQCIH – StrucLength field

| CodedCharSetId and Encoding fields in the MQCIH structure cannot be used to
| specify the character set and encoding of the application message data.

| Error information is returned in the ReturnCode, Function, CompCode, Reason, and
| AbendCode fields. Which of them is set depends on the value of the ReturnCode
| field; see Table 20.

| Table 20. Contents of error information fields in MQCIH structure

| ReturnCode| Function| CompCode| Reason| AbendCode

| MQCRC_OK| –| –| –| –

| MQCRC_BRIDGE_ERROR| –| –| MQFB_CICS_ñ| –

| MQCRC_MQ_API_ERROR
| MQCRC_BRIDGE_TIMEOUT
| MQ call name| MQ CompCode| MQ Reason| –

| MQCRC_CICS_EXEC_ERROR
| MQCRC_SECURITY_ERROR
| MQCRC_PROGRAM_NOT_AVAILABLE
| MQCRC_TRANSID_NOT_AVAILABLE

| CICS EIBFN| CICS EIBRESP| CICS
| EIBRESP2
| –

| MQCRC_BRIDGE_ABEND
| MQCRC_APPLICATION_ABEND
| –| –| –| CICS ABCODE

| Fields
| StrucId (MQCHAR4)
| Structure identifier.

| The value must be:

| MQCIH_STRUC_ID
| Identifier for CICS information header structure.

| For the C programming language, the constant
| MQCIH_STRUC_ID_ARRAY is also defined; this has the same value
| as MQCIH_STRUC_ID, but is an array of characters instead of a
| string.

| The initial value of this field is MQCIH_STRUC_ID.

| Version (MQLONG)
| Structure version number.

| The value must be:

| MQCIH_VERSION_1
| Version number for CICS information header structure.

| The following constant specifies the version number of the current version:

| MQCIH_CURRENT_VERSION
| Current version of CICS information header structure.

| The initial value of this field is MQCIH_VERSION_1.

| StrucLength (MQLONG)
| Length of MQCIH structure.

| The value must be:

22 MQSeries Application Programming Reference

 MQCIH – Encoding field � MQCIH – ReturnCode field

| MQCIH_LENGTH_1
| Length of CICS information header structure.

| The initial value of this field is MQCIH_LENGTH_1.

| Encoding (MQLONG)
| Reserved.

| This is a reserved field; its value is not significant. The initial value of this
| field is 0.

| CodedCharSetId (MQLONG)
| Reserved.

| This is a reserved field; its value is not significant. The initial value of this
| field is 0.

| Format (MQCHAR8)
| MQ format name.

| This is the MQ format name of the application message data which follows
| the MQCIH structure. The rules for coding this are the same as those for
| the Format field in MQMD.

| This format name is also used for the reply message, if the ReplyToFormat
| field has the value MQFMT_NONE.

| If the request message results in the generation of an error reply
| message, the error reply message has a format name of
| MQFMT_STRING.

| The length of this field is given by MQ_FORMAT_LENGTH. The initial
| value of this field is MQFMT_NONE.

| Flags (MQLONG)
| Reserved.

| The value must be:

| MQCIH_NONE
| No flags.

| The initial value of this field is MQCIH_NONE.

| ReturnCode (MQLONG)
| Return code from bridge.

| This is the return code from the CICS bridge describing the outcome of the
| processing performed by the bridge. The Function, CompCode, Reason, and
| AbendCode fields may contain additional information (see Table 20 on
| page 22). The value is one of the following:

| MQCRC_APPLICATION_ABEND
| (5, X'005') Application ended abnormally.

| MQCRC_BRIDGE_ABEND
| (4, X'004') CICS bridge ended abnormally.

| MQCRC_BRIDGE_ERROR
| (3, X'003') CICS bridge detected an error.

 Chapter 2. Data type descriptions – structures 23

 MQCIH – CompCode field � MQCIH – UOWControl field

| MQCRC_BRIDGE_TIMEOUT
| (8, X'008') Second or later message within current unit of work not
| received within specified time.

| MQCRC_CICS_EXEC_ERROR
| (1, X'001') EXEC CICS statement detected an error.

| MQCRC_MQ_API_ERROR
| (2, X'002') MQ call detected an error.

| MQCRC_OK
| (0, X'000') No error.

| MQCRC_PROGRAM_NOT_AVAILABLE
| (7, X'007') Program not available.

| MQCRC_SECURITY_ERROR
| (6, X'006') Security error occurred.

| MQCRC_TRANSID_NOT_AVAILABLE
| (9, X'009') Transaction not available.

| The initial value of this field is MQCRC_OK.

| CompCode (MQLONG)
| MQ completion code or CICS EIBRESP.

| The value returned in this field is dependent on ReturnCode; see Table 20
| on page 22.

| The initial value of this field is MQCC_OK

| Reason (MQLONG)
| MQ reason or feedback code, or CICS EIBRESP2.

| The value returned in this field is dependent on ReturnCode; see Table 20
| on page 22.

| The initial value of this field is MQRC_NONE.

| UOWControl (MQLONG)
| Unit-of-work control.

| This controls the unit-of-work processing performed by the CICS bridge.
| The field indicates whether the CICS bridge should start a unit of work,
| perform the requested function within the current unit of work, or end the
| unit of work by committing it or backing it out. Various combinations are
| supported, to optimize the data transmission flows.

| The value must be one of the following:

| MQCUOWC_FIRST
| Start unit of work and perform function.

| MQCUOWC_MIDDLE
| Perform function within current unit of work.

| MQCUOWC_LAST
| Perform function, then commit the unit of work.

| MQCUOWC_ONLY
| Start unit of work, perform function, then commit the unit of work.

24 MQSeries Application Programming Reference

 MQCIH – GetWaitInterval field � MQCIH – OutputDataLength field

| MQCUOWC_COMMIT
| Commit the unit of work.

| MQCUOWC_BACKOUT
| Back out the unit of work.

| The initial value of this field is MQCUOWC_ONLY.

| GetWaitInterval (MQLONG)
| Wait interval for MQGET call issued by bridge task.

| This field is applicable only when UOWControl has the value
| MQCUOWC_FIRST. It allows the sending application to specify the
| approximate time in milliseconds that the MQGET calls issued by the
| bridge should wait for second and subsequent request messages for the
| unit of work started by this message. This overrides the default wait
| interval used by the bridge. The following special values may be used:

| MQCGWI_DEFAULT
| Default wait interval.

| This causes the CICS bridge to wait for the period of time specified
| when the bridge was started.

| MQWI_UNLIMITED
| Unlimited wait interval.

| The initial value of this field is MQCGWI_DEFAULT.

| LinkType (MQLONG)
| Link type.

| This indicates the type of object that the bridge should try to link. The
| value must be:

| MQCLT_PROGRAM
| Program.

| The initial value of this field is MQCLT_PROGRAM.

| OutputDataLength (MQLONG)
| Output COMMAREA data length.

| This is the length of the user data to be returned to the client in a reply
| message. This length includes the 8-byte program name. The length of
| the COMMAREA passed to the linked program is the maximum of this
| field and the length of the user data in the request message, minus 8.

| Note: The length of the user data in a message is the length of the
| message excluding the MQCIH structure.

| If the length of the user data in the request message is smaller than
| OutputDataLength, the DATALENGTH option of the LINK command is used;
| this allows the LINK to be function-shipped efficiently to another CICS
| region.

| The following special value may be used:

| MQCODL_AS_INPUT
| Output length is same as input length.

| This value may be needed even if no reply is requested, in order to

 Chapter 2. Data type descriptions – structures 25

 MQCIH – FacilityKeepTime field � MQCIH – Function field

| ensure that the COMMAREA passed to the linked program is of
| sufficient size.

| The initial value of this field MQCODL_AS_INPUT.

| FacilityKeepTime (MQLONG)
| Bridge facility release time.

| This is a reserved field. The value must be 0.

| ADSDescriptor (MQLONG)
| Send/receive ADS descriptor.

| This is a reserved field. The value must be 0.

| ConversationalTask (MQLONG)
| Whether task can be conversational.

| This is a reserved field. The value must be 0.

| TaskEndStatus (MQLONG)
| Status at end of task.

| This is a reserved field. The value must be 0.

| Facility (MQBYTE8)
| BVT token value.

| This is a reserved field. The value must be 8 nulls. The length of this
| field is given by MQ_FACILITY_LENGTH.

| Function (MQCHAR4)
| MQ call name or CICS EIBFN function.

| The value returned in this field is dependent on ReturnCode; see Table 20
| on page 22. The following values are possible when Function contains
| an MQ call name:

| MQCFUNC_MQCONN
| MQCONN call.

| MQCFUNC_MQGET
| MQGET call.

| MQCFUNC_MQINQ
| MQINQ call.

| MQCFUNC_MQOPEN
| MQOPEN call.

| MQCFUNC_MQPUT
| MQPUT call.

| MQCFUNC_MQPUT1
| MQPUT1 call.

| MQCFUNC_NONE
| No call.

| In all cases, for the C programming language the constants
| MQCFUNC_ñ_ARRAY are also defined; these have the same values as
| the corresponding MQCFUNC_ñ constants, but are arrays of characters
| instead of strings.

26 MQSeries Application Programming Reference

 MQCIH – AbendCode field � MQCIH – TransactionId field

| The length of this field is given by MQ_FUNCTION_LENGTH. The initial
| value of this field is MQCFUNC_NONE.

| AbendCode (MQCHAR4)
| Abend code.

| The value returned in this field is dependent on ReturnCode; see Table 20
| on page 22.

| The length of this field is given by MQ_ABEND_CODE_LENGTH. The
| initial value of this field is 4 blank characters.

| Authenticator (MQCHAR8)
| Password or passticket.

| This is a password or passticket. If user-identifier authentication is active
| for the CICS bridge, Authenticator is used with the user identifier in the
| MQMD identity context to authenticate the sender of the message.

| The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The
| initial value of this field is 8 blank characters.

| Reserved1 (MQCHAR8)
| Reserved.

| This is a reserved field. The value must be 8 blanks.

| ReplyToFormat (MQCHAR8)
| MQ format name of reply message.

| This is the MQ format name of the reply message which will be sent in
| response to the current message. The rules for coding this are the same
| as those for the Format field in MQMD.

| The length of this field is given by MQ_FORMAT_LENGTH. The initial
| value of this field is MQFMT_NONE.

| RemoteSysId (MQCHAR4)
| Remote sysid to use.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_REMOTE_SYS_ID_LENGTH.

| RemoteTransId (MQCHAR4)
| Remote transid to attach.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_TRANSACTION_ID_LENGTH.

| TransactionId (MQCHAR4)
| Transaction to attach.

| This field is applicable only when UOWControl has the value
| MQCUOWC_FIRST or MQCUOWC_ONLY. TransactionId is the
| transaction code under which all programs within the unit of work are to be
| run. If the value specified is blank, the CICS bridge default transaction
| code is used.

| The initial value of this field is 4 blanks. The length of this field is given by
| MQ_TRANSACTION_ID_LENGTH.

 Chapter 2. Data type descriptions – structures 27

 MQCIH – FacilityLike field � MQCIH – Reserved3 field

| FacilityLike (MQCHAR4)
| Terminal emulated attributes.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_FACILITY_LIKE_LENGTH.

| AttentionId (MQCHAR4)
| AID key.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_ATTENTION_ID_LENGTH.

| StartCode (MQCHAR4)
| Transaction start code.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_START_CODE_LENGTH.

| CancelCode (MQCHAR4)
| Abend transaction code.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_CANCEL_CODE_LENGTH.

| NextTransactionId (MQCHAR4)
| Next transaction to attach.

| This is a reserved field. The value must be 4 blanks. The length of this
| field is given by MQ_TRANSACTION_ID_LENGTH.

| Reserved2 (MQCHAR8)
| Reserved.

| This is a reserved field. The value must be 8 blanks.

| Reserved3 (MQCHAR8)
| Reserved.

| This is a reserved field. The value must be 8 blanks.

| MQFB_ñ feedback codes

| The following new MQ feedback codes are used by the CICS bridge:

| MQFB_CICS_APPL_ABENDED
| Application abended.

| The application program specified in the message abended. This
| feedback code occurs only in the Reason field of the MQDLH
| structure.

| MQFB_CICS_APPL_NOT_STARTED
| Application cannot be started.

| The EXEC CICS LINK for the application program specified in the
| message failed. This feedback code occurs only in the Reason field
| of the MQDLH structure.

| MQFB_CICS_BRIDGE_FAILURE
| CICS bridge terminated abnormally without completing normal error
| processing.

| MQFB_CICS_CCSID_ERROR
| Character set identifier not valid.

28 MQSeries Application Programming Reference

 MQCIH – Reserved3 field

| MQFB_CICS_CIH_ERROR
| CICS information header structure missing or not valid.

| MQFB_CICS_COMMAREA_ERROR
| Length of CICS commarea not valid.

| MQFB_CICS_CORREL_ID_ERROR
| Correlation identifier not valid.

| MQFB_CICS_DLQ_ERROR
| Dead-letter queue not available.

| The CICS bridge task was unable to copy a reply to this request to
| the dead-letter queue. The request was backed out.

| MQFB_CICS_ENCODING_ERROR
| Encoding not valid.

| MQFB_CICS_INTERNAL_ERROR
| CICS bridge encountered unexpected error.

| This feedback code occurs only in the Reason field of the MQDLH
| structure.

| MQFB_CICS_NOT_AUTHORIZED
| User identifier not authorized or password not valid.

| This feedback code occurs only in the Reason field of the MQDLH
| structure.

| MQFB_CICS_UOW_BACKED_OUT
| Unit of work backed out.

| The unit of work was backed out, for one of the following reasons:

| � A failure was detected whilst processing another request within
| the same unit of work.

| � A CICS abend occurred whilst the unit of work was in progress.

| MQFB_CICS_UOW_ERROR
| Unit-of-work control field UOWControl not valid.

| Table 21 (Page 1 of 2). Initial values of fields in MQCIH

Field name Name of constant Value of constant

| StrucId| MQCIH_STRUC_ID| 'CIH␣'
| (See note 1)

| Version| MQCIH_VERSION_1| 1

| StrucLength| MQCIH_LENGTH_1| 164

| Encoding| None| ð

| CodedCharSetId| None| ð

| Format| MQFMT_NONE| '␣␣␣␣␣␣␣␣'

| Flags| MQCIH_NONE| ð

| ReturnCode| MQCRC_OK| ð

| CompCode| MQCC_OK| ð

| Reason| MQRC_NONE| ð

| UOWControl| MQCUOWC_ONLY| 273

 Chapter 2. Data type descriptions – structures 29

 MQCIH – C declaration

| Table 21 (Page 2 of 2). Initial values of fields in MQCIH

| Field name| Name of constant| Value of constant

| GetWaitInterval| MQCGWI_DEFAULT| -2

| LinkType| MQCLT_PROGRAM| 1

| OutputDataLength| MQCODL_AS_INPUT| -1

| FacilityKeepTime| None| ð

| ADSDescriptor| MQCADSD_NONE| ð

| ConversationalTask| MQCCT_NO| ð

| TaskEndStatus| MQCTES_NOSYNC| ð

| Facility| MQCFAC_NONE| Nulls

| Function| MQCFUNC_NONE| '␣␣␣␣'

| AbendCode| None| '␣␣␣␣'

| Authenticator| None| '␣␣␣␣␣␣␣␣'

| Reserved1| None| '␣␣␣␣␣␣␣␣'

| ReplyToFormat| MQFMT_NONE| '␣␣␣␣␣␣␣␣'

| RemoteSysId| None| '␣␣␣␣'

| RemoteTransId| None| '␣␣␣␣'

| TransactionId| None| '␣␣␣␣'

| FacilityLike| None| '␣␣␣␣'

| AttentionId| None| '␣␣␣␣'

| StartCode| MQCSC_NONE| '␣␣␣␣'

| CancelCode| None| '␣␣␣␣'

| NextTransactionId| None| '␣␣␣␣'

| Reserved2| None| '␣␣␣␣␣␣␣␣'

| Reserved3| None| '␣␣␣␣␣␣␣␣'

| Notes:

| 1. The symbol ‘␣’ represents a single blank character.

| 2. In the C programming language, the macro variable MQCIH_DEFAULT contains the
| values listed above. It can be used in the following way to provide initial values for
| the fields in the structure:

| MQCIH MyCIH = {MQCIH_DEFAULT};

| C language declaration
| typedef struct tagMQCIH {
| MQCHAR4 StrucId; /\ Structure identifier \/
| MQLONG Version; /\ Structure version number \/
| MQLONG StrucLength; /\ Length of MQCIH structure \/
| MQLONG Encoding; /\ Reserved \/
| MQLONG CodedCharSetId; /\ Reserved \/
| MQCHAR8 Format; /\ MQ format name \/
| MQLONG Flags; /\ Reserved \/
| MQLONG ReturnCode; /\ Return code from bridge \/
| MQLONG CompCode; /\ MQ completion code or CICS EIBRESP \/
| MQLONG Reason; /\ MQ reason or feedback code, or CICS
| EIBRESP2 \/

30 MQSeries Application Programming Reference

 MQCIH – COBOL declaration

| MQLONG UOWControl; /\ Unit-of-work control \/
| MQLONG GetWaitInterval; /\ Wait interval for MQGET call issued
| by bridge task \/
| MQLONG LinkType; /\ Link type \/
| MQLONG OutputDataLength; /\ Output COMMAREA data length \/
| MQLONG FacilityKeepTime; /\ Bridge facility release time \/
| MQLONG ADSDescriptor; /\ Send/receive ADS descriptor \/
| MQLONG ConversationalTask; /\ Whether task can be conversational \/
| MQLONG TaskEndStatus; /\ Status at end of task \/
| MQBYTE8 Facility; /\ BVT token value \/
| MQCHAR4 Function; /\ MQ call name or CICS EIBFN
| function \/
| MQCHAR4 AbendCode; /\ Abend code \/
| MQCHAR8 Authenticator; /\ Password or passticket \/
| MQCHAR8 Reserved1; /\ Reserved \/
| MQCHAR8 ReplyToFormat; /\ MQ format name of reply message \/
| MQCHAR4 RemoteSysId; /\ Remote sysid to use \/
| MQCHAR4 RemoteTransId; /\ Remote transid to attach \/
| MQCHAR4 TransactionId; /\ Transaction to attach \/
| MQCHAR4 FacilityLike; /\ Terminal emulated attributes \/
| MQCHAR4 AttentionId; /\ AID key \/
| MQCHAR4 StartCode; /\ Transaction start code \/
| MQCHAR4 CancelCode; /\ Abend transaction code \/
| MQCHAR4 NextTransactionId; /\ Next transaction to attach \/
| MQCHAR8 Reserved2; /\ Reserved \/
| MQCHAR8 Reserved3; /\ Reserved \/
| } MQCIH;

| COBOL language declaration
| \\ MQCIH structure
| 1ð MQCIH.
| \\ Structure identifier
| 15 MQCIH-STRUCID PIC X(4).
| \\ Structure version number
| 15 MQCIH-VERSION PIC S9(9) BINARY.
| \\ Length of MQCIH structure
| 15 MQCIH-STRUCLENGTH PIC S9(9) BINARY.
| \\ Reserved
| 15 MQCIH-ENCODING PIC S9(9) BINARY.
| \\ Reserved
| 15 MQCIH-CODEDCHARSETID PIC S9(9) BINARY.
| \\ MQ format name
| 15 MQCIH-FORMAT PIC X(8).
| \\ Reserved
| 15 MQCIH-FLAGS PIC S9(9) BINARY.
| \\ Return code from bridge
| 15 MQCIH-RETURNCODE PIC S9(9) BINARY.
| \\ MQ completion code or CICS EIBRESP
| 15 MQCIH-COMPCODE PIC S9(9) BINARY.
| \\ MQ reason or feedback code, or CICS EIBRESP2
| 15 MQCIH-REASON PIC S9(9) BINARY.
| \\ Unit-of-work control
| 15 MQCIH-UOWCONTROL PIC S9(9) BINARY.
| \\ Wait interval for MQGET call issued by bridge task
| 15 MQCIH-GETWAITINTERVAL PIC S9(9) BINARY.
| \\ Link type

 Chapter 2. Data type descriptions – structures 31

 MQCIH – PL/I declaration

| 15 MQCIH-LINKTYPE PIC S9(9) BINARY.
| \\ Output COMMAREA data length
| 15 MQCIH-OUTPUTDATALENGTH PIC S9(9) BINARY.
| \\ Bridge facility release time
| 15 MQCIH-FACILITYKEEPTIME PIC S9(9) BINARY.
| \\ Send/receive ADS descriptor
| 15 MQCIH-ADSDESCRIPTOR PIC S9(9) BINARY.
| \\ Whether task can be conversational
| 15 MQCIH-CONVERSATIONALTASK PIC S9(9) BINARY.
| \\ Status at end of task
| 15 MQCIH-TASKENDSTATUS PIC S9(9) BINARY.
| \\ BVT token value
| 15 MQCIH-FACILITY PIC X(8).
| \\ MQ call name or CICS EIBFN function
| 15 MQCIH-FUNCTION PIC X(4).
| \\ Abend code
| 15 MQCIH-ABENDCODE PIC X(4).
| \\ Password or passticket
| 15 MQCIH-AUTHENTICATOR PIC X(8).
| \\ Reserved
| 15 MQCIH-RESERVED1 PIC X(8).
| \\ MQ format name of reply message
| 15 MQCIH-REPLYTOFORMAT PIC X(8).
| \\ Remote sysid to use
| 15 MQCIH-REMOTESYSID PIC X(4).
| \\ Remote transid to attach
| 15 MQCIH-REMOTETRANSID PIC X(4).
| \\ Transaction to attach
| 15 MQCIH-TRANSACTIONID PIC X(4).
| \\ Terminal emulated attributes
| 15 MQCIH-FACILITYLIKE PIC X(4).
| \\ AID key
| 15 MQCIH-ATTENTIONID PIC X(4).
| \\ Transaction start code
| 15 MQCIH-STARTCODE PIC X(4).
| \\ Abend transaction code
| 15 MQCIH-CANCELCODE PIC X(4).
| \\ Next transaction to attach
| 15 MQCIH-NEXTTRANSACTIONID PIC X(4).
| \\ Reserved
| 15 MQCIH-RESERVED2 PIC X(8).
| \\ Reserved
| 15 MQCIH-RESERVED3 PIC X(8).

| PL/I language declaration
| dcl
| 1 MQCIH based,
| 3 StrucId char(4), /\ Structure identifier \/
| 3 Version fixed bin(31), /\ Structure version number \/
| 3 StrucLength fixed bin(31), /\ Length of MQCIH structure \/
| 3 Encoding fixed bin(31), /\ Reserved \/
| 3 CodedCharSetId fixed bin(31), /\ Reserved \/
| 3 Format char(8), /\ MQ format name \/
| 3 Flags fixed bin(31), /\ Reserved \/
| 3 ReturnCode fixed bin(31), /\ Return code from bridge \/
| 3 CompCode fixed bin(31), /\ MQ completion code or CICS
| EIBRESP \/

32 MQSeries Application Programming Reference

 MQCIH – S/390 assembler declaration

| 3 Reason fixed bin(31), /\ MQ reason or feedback code, or
| CICS EIBRESP2 \/
| 3 UOWControl fixed bin(31), /\ Unit-of-work control \/
| 3 GetWaitInterval fixed bin(31), /\ Wait interval for MQGET call
| issued by bridge task \/
| 3 LinkType fixed bin(31), /\ Link type \/
| 3 OutputDataLength fixed bin(31), /\ Output COMMAREA data length \/
| 3 FacilityKeepTime fixed bin(31), /\ Bridge facility release time \/
| 3 ADSDescriptor fixed bin(31), /\ Send/receive ADS descriptor \/
| 3 ConversationalTask fixed bin(31), /\ Whether task can be conversa-
| tional \/
| 3 TaskEndStatus fixed bin(31), /\ Status at end of task \/
| 3 Facility char(8), /\ BVT token value \/
| 3 Function char(4), /\ MQ call name or CICS EIBFN
| function \/
| 3 AbendCode char(4), /\ Abend code \/
| 3 Authenticator char(8), /\ Password or passticket \/
| 3 Reserved1 char(8), /\ Reserved \/
| 3 ReplyToFormat char(8), /\ MQ format name of reply
| message \/
| 3 RemoteSysId char(4), /\ Remote sysid to use \/
| 3 RemoteTransId char(4), /\ Remote transid to attach \/
| 3 TransactionId char(4), /\ Transaction to attach \/
| 3 FacilityLike char(4), /\ Terminal emulated attributes \/
| 3 AttentionId char(4), /\ AID key \/
| 3 StartCode char(4), /\ Transaction start code \/
| 3 CancelCode char(4), /\ Abend transaction code \/
| 3 NextTransactionId char(4), /\ Next transaction to attach \/
| 3 Reserved2 char(8), /\ Reserved \/
| 3 Reserved3 char(8); /\ Reserved \/

| System/390 assembler language declaration
| MQCIH DSECT
| MQCIH_STRUCID DS CL4 Structure identifier
| MQCIH_VERSION DS F Structure version number
| MQCIH_STRUCLENGTH DS F Length of MQCIH structure
| MQCIH_ENCODING DS F Reserved
| MQCIH_CODEDCHARSETID DS F Reserved
| MQCIH_FORMAT DS CL8 MQ format name
| MQCIH_FLAGS DS F Reserved
| MQCIH_RETURNCODE DS F Return code from bridge
| MQCIH_COMPCODE DS F MQ completion code or CICS
| \ EIBRESP
| MQCIH_REASON DS F MQ reason or feedback code,
| \ or CICS EIBRESP2
| MQCIH_UOWCONTROL DS F Unit-of-work control
| MQCIH_GETWAITINTERVAL DS F Wait interval for MQGET call
| \ issued by bridge task
| MQCIH_LINKTYPE DS F Link type
| MQCIH_OUTPUTDATALENGTH DS F Output COMMAREA data length
| MQCIH_FACILITYKEEPTIME DS F Bridge facility release time
| MQCIH_ADSDESCRIPTOR DS F Send/receive ADS descriptor
| MQCIH_CONVERSATIONALTASK DS F Whether task can be
| \ conversational
| MQCIH_TASKENDSTATUS DS F Status at end of task
| MQCIH_FACILITY DS XL8 BVT token value
| MQCIH_FUNCTION DS CL4 MQ call name or CICS EIBFN

 Chapter 2. Data type descriptions – structures 33

 MQCIH – S/390 assembler declaration

| \ function
| MQCIH_ABENDCODE DS CL4 Abend code
| MQCIH_AUTHENTICATOR DS CL8 Password or passticket
| MQCIH_RESERVED1 DS CL8 Reserved
| MQCIH_REPLYTOFORMAT DS CL8 MQ format name of reply
| \ message
| MQCIH_REMOTESYSID DS CL4 Remote sysid to use
| MQCIH_REMOTETRANSID DS CL4 Remote transid to attach
| MQCIH_TRANSACTIONID DS CL4 Transaction to attach
| MQCIH_FACILITYLIKE DS CL4 Terminal emulated attributes
| MQCIH_ATTENTIONID DS CL4 AID key
| MQCIH_STARTCODE DS CL4 Transaction start code
| MQCIH_CANCELCODE DS CL4 Abend transaction code
| MQCIH_NEXTTRANSACTIONID DS CL4 Next transaction to attach
| MQCIH_RESERVED2 DS CL8 Reserved
| MQCIH_RESERVED3 DS CL8 Reserved
| MQCIH_LENGTH EQU \-MQCIH Length of structure
| ORG MQCIH
| MQCIH_AREA DS CL(MQCIH_LENGTH)

34 MQSeries Application Programming Reference

 MQCNO – Connect options � MQCNO – Options field

MQCNO – Connect options
The following table summarizes the fields in the structure.

The MQCNO structure is an input/output parameter for the MQCONNX call.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
OS/2, Sun Solaris, Windows client, Windows NT.

Table 22. Fields in MQCNO

Field Description Page

StrucId Structure identifier 35

Version Structure version number 35

Options Options that control the action of MQCONNX 35

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQCNO_STRUC_ID
Identifier for connect-options structure.

For the C programming language, the constant
MQCNO_STRUC_ID_ARRAY is also defined; this has the same
value as MQCNO_STRUC_ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQCNO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQCNO_VERSION_1
Version number for connect-options structure.

The following constant specifies the version number of the current version:

MQCNO_CURRENT_VERSION
Current version of connect-options structure.

This is always an input field. The initial value of this field is
MQCNO_VERSION_1.

Options (MQLONG)
Options that control the action of MQCONNX.

The following options control the type of MQ binding that will be used; only
one of these options can be specified:

MQCNO_STANDARD_BINDING
Standard binding.

This option causes the application and the local-queue-manager

 Chapter 2. Data type descriptions – structures 35

 MQCNO – Options field

agent (the component that manages queuing operations) to run in
separate units of execution (generally, in separate processes). This
arrangement maintains the integrity of the queue manager, that is, it
protects the queue manager from errant programs.

MQCNO_STANDARD_BINDING should be used in situations where
the application may not have been fully tested, or may be unreliable
or untrustworthy. MQCNO_STANDARD_BINDING is the default.

MQCNO_STANDARD_BINDING is defined to aid program
documentation. It is not intended that this option be used with any
other, but as its value is zero, such use cannot be detected.

MQCNO_FASTPATH_BINDING
Fast-path binding.

This option causes the application and the local-queue-manager
agent to be part of the same unit of execution. This is in contrast to
the normal method of binding, where the application and the
local-queue-manager agent run in separate units of execution.

MQCNO_FASTPATH_BINDING is ignored if specified by an MQ
client application; processing continues as though the option had not
been specified.

MQCNO_FASTPATH_BINDING may be of advantage in situations
where the use of multiple processes is a significant performance
overhead compared to the overall resource used by the application.

Note: An application that uses the fastpath binding is known as a
trusted application.

The following important points must be considered when deciding
whether to use the fast-path binding:

1. Use of the MQCNO_FASTPATH_BINDING option
compromises the integrity of the queue manager, as it
permits a rogue application to alter or corrupt messages and
other data areas belonging to the queue manager. It should
therefore be considered for use only in situations where
these issues have been fully evaluated.

| 2. On Windows NT, use of MQCNO_FASTPATH_BINDING requires
| that the program be a member of the mqm group.

| 3. On UNIX systems, use of MQCNO_FASTPATH_BINDING
requires that the program run with the mqm user identifier and the
mqm group identifier. The application can be made to run this
way by configuring the program so that it is owned by the mqm
user identifier and mqm group identifier, and then setting the
setuid and setgid permission bits on the program.

| 4. On OS/2, UNIX systems, and Windows NT, a program that uses
| MQCNO_FASTPATH_BINDING cannot have more than one
| thread connected to a queue manager at any one time.

5. You must not use asynchronous signals and timer interrupts
(such as sigkill) with MQCNO_FASTPATH_BINDING. There
are also restrictions on the use of shared memory segments.

36 MQSeries Application Programming Reference

 MQCNO – Options field

6. You must explicitly disconnect trusted applications from the
queue manager.

7. You must stop trusted applications before ending the queue
manager with the endmqm command.

For more information about the implications of using trusted
applications, see the MQSeries Application Programming Guide.

On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the environment
variable MQ_CONNECT_TYPE can be used in association with the bind type
specified by the Options field, to control the type of binding used. If this
environment variable is specified, it should have the value FASTPATH or
STANDARD; if it has some other value, it is ignored. The value of the
environment variable is case sensitive.

The environment variable and Options field interact as follows:

� If the environment variable is not specified, or has a value which is not
supported, use of the fast-path binding is determined solely by the
Options field.

� If the environment variable is specified and has a supported value, the
fast-path binding is used only if both the environment variable and
Options field specify the fast-path binding.

If none of the options described above is specified, the following option
can be used:

MQCNO_NONE
No options specified.

MQCNO_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

This is always an input field. The initial value of this field is
MQCNO_NONE.

Table 23. Initial values of fields in MQCNO

Field name Name of constant Value of constant

StrucId MQCNO_STRUC_ID 'CNO␣'
(See note 1)

Version MQCNO_VERSION_1 1

Options MQCNO_NONE ð

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. In the C programming language, the macro variable MQCNO_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQCNO MyCNO = {MQCNO_DEFAULT};

 Chapter 2. Data type descriptions – structures 37

 MQCNO – language declarations

C language declaration
typedef struct tagMQCNO {
 MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of MQCONNX \/

 } MQCNO;

COBOL language declaration
\\ MQCNO structure
 1ð MQCNO.
\\ Structure identifier

15 MQCNO-STRUCID PIC X(4).
\\ Structure version number

15 MQCNO-VERSION PIC S9(9) BINARY.
\\ Options that control the action of MQCONNX

15 MQCNO-OPTIONS PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQCNO based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Options fixed bin(31); /\ Options that control the action of

 MQCONNX \/

38 MQSeries Application Programming Reference

 MQDH – Distribution header

MQDH – Distribution header
The following table summarizes the fields in the structure.

The MQDH structure describes the data that is present in a message on a
transmission queue when that message is a distribution-list message (that is, the
message is being sent to multiple destination queues). This structure is for use by
specialized applications that put messages directly on transmission queues, or
which remove messages from transmission queues (for example: message channel
agents).

This structure should not be used by normal applications which simply want to put
messages to distribution lists. Those applications should use the MQOD structure
to define the destinations in the distribution list, and the MQPMO structure to
specify message properties or receive information about the messages sent to the
individual destinations.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

When an application puts a message to a distribution list, and some or all of the
destinations are remote, the queue manager prefixes the application message data
with the MQXQH and MQDH structures, and places the message on the relevant
transmission queue. The data therefore occurs in the following sequence when the
message is on a transmission queue:

 � MQXQH structure
 � MQDH structure
� Application message data

Depending on the destinations, more than one such message may be generated by
the queue manager, and placed on different transmission queues. In this case, the
MQDH structures in those messages identify different subsets of the destinations
defined by the distribution list opened by the application.

Table 24. Fields in MQDH

Field Description Page

StrucId Structure identifier 40

Version Structure version number 40

StrucLength Length of MQDH structure plus following records 40

Encoding Encoding of message data 41

CodedCharSetId Coded character-set identifier of message data 41

Format Format name of message data 41

Flags General flags 41

PutMsgRecFields Flags indicating which MQPMR fields are
present

42

RecsPresent Number of object records present 42

ObjectRecOffset Offset of first object record from start of MQDH 42

PutMsgRecOffset Offset of first put-message record from start of
MQDH

42

 Chapter 2. Data type descriptions – structures 39

 MQDH – Strucid field � MQDH – StrucLength field

An application that puts a distribution-list message directly on a transmission queue
must conform to the sequence described above, and must ensure that the MQDH
structure is correct. If the MQDH structure is not valid, the queue manager may
choose to fail the MQPUT or MQPUT1 call with reason code MQRC_DH_ERROR.

Messages can be stored on a queue in distribution-list form only if the queue is
defined as being able to support distribution list messages (see the DistLists
queue attribute described in “Attributes for local queues and model queues” on
page 348). If an application puts a distribution-list message directly on a queue that
does not support distribution lists, the queue manager splits the distribution list
message into individual messages, and places those on the queue instead.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQDH_STRUC_ID
Identifier for distribution header structure.

For the C programming language, the constant
MQDH_STRUC_ID_ARRAY is also defined; this has the same value
as MQDH_STRUC_ID, but is an array of characters instead of a
string.

The initial value of this field is MQDH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQDH_VERSION_1
Version number for distribution header structure.

The following constant specifies the version number of the current version:

MQDH_CURRENT_VERSION
Current version of distribution header structure.

The initial value of this field is MQDH_VERSION_1.

StrucLength (MQLONG)
Length of MQDH structure plus following records.

This is the number of bytes from the start of the MQDH structure to the
start of the message data following the arrays of MQOR and MQPMR
records. The data occurs in the following sequence:

 � MQDH structure
� Array of MQOR records
� Array of MQPMR records

 � Message data

The arrays of MQOR and MQPMR records are addressed by offsets
contained within the MQDH structure. If these offsets result in unused
bytes between one or more of the MQDH structure, the arrays of records,
and the message data, those unused bytes must be included in the value

40 MQSeries Application Programming Reference

 MQDH – Encoding field � MQDH – Flags field

of StrucLength, but the content of those bytes is not preserved by the
queue manager. It is valid for the array of MQPMR records to precede the
array of MQOR records.

The initial value of this field is 0.

Encoding (MQLONG)
Encoding of message data.

The initial value of this field is 0.

CodedCharSetId (MQLONG)
Coded character-set identifier of message data.

The initial value of this field is 0.

Format (MQCHAR8)
Format name of message data.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
General flags.

The following flag can be specified:

MQDHF_NEW_MSG_IDS
Generate new message identifiers.

This flag indicates that a new message identifier is to be generated
for each destination in the distribution list. This can be set only when
there are no put-message records present, or when the records are
present but they do not contain the MsgId field.

Using this flag defers generation of the message identifiers until the
last possible moment, namely the moment when the distribution-list
message is finally split into individual messages. This minimizes the
amount of control information that must flow with the distribution-list
message.

When an application puts a message to a distribution list, the queue
manager sets MQDHF_NEW_MSG_IDS in the MQDH it generates
when both of the following are true:

� There are no put-message records provided by the application,
or the records provided do not contain the MsgId field.

� The MsgId field in MQMD is MQMI_NONE, or the Options field in
MQPMO includes MQPMO_NEW_MSG_ID

If no flags are needed, the following can be specified:

MQDHF_NONE
No flags.

This constant indicates that no flags have been specified.
MQDHF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

The initial value of this field is MQDHF_NONE.

 Chapter 2. Data type descriptions – structures 41

 MQDH – PutMsgRecFields field � MQDH – PutMsgRecOffset field

PutMsgRecFields (MQLONG)
Flags indicating which MQPMR fields are present.

Zero or more of the following flags can be specified:

MQPMRF_MSG_ID
Message-identifier field is present.

MQPMRF_CORREL_ID
Correlation-identifier field is present.

MQPMRF_GROUP_ID
Group-identifier field is present.

MQPMRF_FEEDBACK
Feedback field is present.

MQPMRF_ACCOUNTING_TOKEN
Accounting-token field is present.

If no MQPMR fields are present, the following can be specified:

MQPMRF_NONE
No put-message record fields are present.

MQPMRF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

The initial value of this field is MQPMRF_NONE.

RecsPresent (MQLONG)
Number of object records present.

This defines the number of destinations. A distribution list must always
contain at least one destination, so RecsPresent must always be greater
than zero.

The initial value of this field is 0.

ObjectRecOffset (MQLONG)
Offset of first object record from start of MQDH.

This field gives the offset in bytes of the first record in the array of MQOR
object records containing the names of the destination queues. There are
RecsPresent records in this array. These records (plus any bytes skipped
between the first object record and the previous field) are included in the
length given by the StrucLength field.

A distribution list must always contain at least one destination, so
ObjectRecOffset must always be greater than zero.

The initial value of this field is 0.

PutMsgRecOffset (MQLONG)
Offset of first put message record from start of MQDH.

This field gives the offset in bytes of the first record in the array of
MQPMR put message records containing the message properties. If
present, there are RecsPresent records in this array. These records (plus
any bytes skipped between the first put message record and the previous
field) are included in the length given by the StrucLength field.

42 MQSeries Application Programming Reference

 MQDH – C declaration

Put message records are optional; if no records are provided,
PutMsgRecOffset is zero, and PutMsgRecFields has the value
MQPMRF_NONE.

The initial value of this field is 0.

Table 25. Initial values of fields in MQDH

Field name Name of constant Value of constant

StrucId MQDH_STRUC_ID 'DH␣␣'
(See note 1)

Version MQDH_VERSION_1 1

StrucLength None 0

Encoding None 0

CodedCharSetId None 0

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

Flags MQDHF_NONE ð

PutMsgRecFields MQPMRF_NONE ð

RecsPresent None 0

ObjectRecOffset None 0

PutMsgRecOffset None 0

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. In the C programming language, the macro variable MQDH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQDH MyDH = {MQDH_DEFAULT};

C language declaration
typedef struct tagMQDH {
 MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG StrucLength; /\ Length of MQDH structure plus following

 records \/
MQLONG Encoding; /\ Encoding of message data \/
MQLONG CodedCharSetId; /\ Coded character-set identifier of

message data \/
 MQCHAR8 Format; /\ Format name of message data \/
MQLONG Flags; /\ General flags \/
MQLONG PutMsgRecFields; /\ Flags indicating which MQPMR fields are

 present \/
MQLONG RecsPresent; /\ Number of object records present \/
MQLONG ObjectRecOffset; /\ Offset of first object record from start

of MQDH \/
MQLONG PutMsgRecOffset; /\ Offset of first put message record from

start of MQDH \/
 } MQDH;

 Chapter 2. Data type descriptions – structures 43

 MQDH – COBOL declaration � MQDH – PL/I declaration

COBOL language declaration
\\ MQDH structure
 1ð MQDH.
\\ Structure identifier
 15 MQDH-STRUCID PIC X(4).
\\ Structure version number

15 MQDH-VERSION PIC S9(9) BINARY.
\\ Length of MQDH structure plus following records

15 MQDH-STRUCLENGTH PIC S9(9) BINARY.
\\ Encoding of message data

15 MQDH-ENCODING PIC S9(9) BINARY.
\\ Coded character-set identifier of message data

15 MQDH-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name of message data
 15 MQDH-FORMAT PIC X(8).
\\ General flags

15 MQDH-FLAGS PIC S9(9) BINARY.
\\ Flags indicating which MQPMR fields are present

15 MQDH-PUTMSGRECFIELDS PIC S9(9) BINARY.
\\ Number of object records present

15 MQDH-RECSPRESENT PIC S9(9) BINARY.
\\ Offset of first object record from start of MQDH

15 MQDH-OBJECTRECOFFSET PIC S9(9) BINARY.
\\ Offset of first put message record from start of MQDH

15 MQDH-PUTMSGRECOFFSET PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQDH based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 StrucLength fixed bin(31), /\ Length of MQDH structure plus fol-

lowing records \/
3 Encoding fixed bin(31), /\ Encoding of message data \/
3 CodedCharSetId fixed bin(31), /\ Coded character-set identifier of

message data \/
3 Format char(8), /\ Format name of message data \/
3 Flags fixed bin(31), /\ General flags \/
3 PutMsgRecFields fixed bin(31), /\ Flags indicating which MQPMR

fields are present \/
3 RecsPresent fixed bin(31), /\ Number of object records

 present \/
3 ObjectRecOffset fixed bin(31), /\ Offset of first object record from

start of MQDH \/
3 PutMsgRecOffset fixed bin(31); /\ Offset of first put message record

from start of MQDH \/

44 MQSeries Application Programming Reference

 MQDLH – Dead-letter header

MQDLH – Dead-letter header
The following table summarizes the fields in the structure.

The MQDLH structure describes the information that is prefixed to the application
message data of messages on the dead-letter (undelivered-message) queue. A
message can arrive on the dead-letter queue either because the queue manager or
message channel agent has redirected it to the queue, or because an application
has put the message directly on the queue.

Special processing is done when a message which is a segment is put with an
MQDLH structure at the front; see the description of the MQMDE structure for
further details.

This structure is not supported in the following environments: 16-bit Windows, 32-bit
Windows.

Applications that put messages directly on the dead-letter queue should prefix the
message data with an MQDLH structure, and initialize the fields with appropriate
values. However, the queue manager does not check that an MQDLH structure is
present, or that valid values have been specified for the fields.

If a message is too long to put on the dead-letter queue, the application should
consider doing one of the following:

� Truncate the message data to fit on the dead-letter queue.

� Record the message on auxiliary storage and place an exception report
message on the dead-letter queue indicating this.

� Discard the message and return an error to its originator. If the message is (or
might be) a critical message, this should be done only if it is known that the

Table 26. Fields in MQDLH

Field Description Page

StrucId Structure identifier 47

Version Structure version number 47

Reason Reason message arrived on dead-letter queue 47

DestQName Name of original destination queue 48

DestQMgrName Name of original destination queue manager 49

Encoding Original data encoding 49

CodedCharSetId Original coded character set identifier 49

Format Original format name 49

PutApplType Type of application that put message on
dead-letter queue

50

PutApplName Name of application that put message on
dead-letter queue

50

PutDate Date when message was put on dead-letter
queue

50

PutTime Time when message was put on dead-letter
queue

51

 Chapter 2. Data type descriptions – structures 45

 MQDLH – Dead-letter header

originator still has a copy of the message—for example, a message received by
a message channel agent from a communication channel.

Which of the above is appropriate (if any) depends on the design of the application.

When a message is put on the dead-letter queue, all of the fields in the message
descriptor MQMD should be copied from those in the original message descriptor (if
there is one), with the exception of the following:

� The CodedCharSetId and Encoding fields should be set to whatever character
set and encoding are used for fields in the MQDLH structure.

� The Format field should be set to MQFMT_DEAD_LETTER_HEADER to
indicate that the data begins with a MQDLH structure.

� The context fields:

 UserIdentifier
 AccountingToken
 ApplIdentityData
 PutApplType
 PutApplName
 PutDate
 PutTime
 ApplOriginData

should be set by using a context option appropriate to the nature of the
program:

– A program putting on the dead-letter queue a message that is not related to
any preceding message should use the MQPMO_DEFAULT_CONTEXT
option; this causes the queue manager to set all of the context fields in the
message descriptor to their default values.

– A program putting on the dead-letter queue a message it has just received
should use the MQPMO_PASS_ALL_CONTEXT option, in order to
preserve the original context information.

– A program putting on the dead-letter queue a reply to a message it has just
received should use the MQPMO_PASS_IDENTITY_CONTEXT option; this
preserves the identity information but sets the origin information to be that
of the server.

– A message channel agent putting on the dead-letter queue a message it
received from its communication channel should use the
MQPMO_SET_ALL_CONTEXT option, to preserve the original context
information.

In the MQDLH structure itself, the fields should be set as follows:

� The CodedCharSetId, Encoding and Format fields should be set to the values
that describe the application message data that follows the MQDLH
structure—usually the values from the original message descriptor.

� The context fields PutApplType, PutApplName, PutDate, and PutTime should be
set to values appropriate to the application that is putting the message on the
dead-letter queue; these values are not related to the original message.

� Other fields should be set as appropriate.

46 MQSeries Application Programming Reference

 MQDLH – Strucid field � MQDLH – Reason field

Character data in the MQDLH structure should be in the character set defined by
the CodedCharSetId field of the message descriptor. Numeric data in the MQDLH
structure should be in the data encoding defined by the Encoding field of the
message descriptor. The application should ensure that all fields have valid values,
and that character fields are padded with blanks to the defined length of the field;
the character data should not be terminated prematurely by using a null character,
because the queue manager does not convert the null and subsequent characters
to blanks in the MQDLH structure.

Applications that get messages from the dead-letter queue should verify that the
messages begin with an MQDLH structure. The application can determine whether
an MQDLH structure is present by examining the Format field in the message
descriptor MQMD; if the field has the value MQFMT_DEAD_LETTER_HEADER,
the message data begins with an MQDLH structure. Applications that get
messages from the dead-letter queue should also be aware that such messages
may have been truncated if they were originally too long for the queue.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQDLH_STRUC_ID
Identifier for dead-letter header structure.

For the C programming language, the constant
MQDLH_STRUC_ID_ARRAY is also defined; this has the same
value as MQDLH_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQDLH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQDLH_VERSION_1
Version number for dead-letter header structure.

The following constant specifies the version number of the current version:

MQDLH_CURRENT_VERSION
Current version of dead-letter header structure.

The initial value of this field is MQDLH_VERSION_1.

Reason (MQLONG)
Reason message arrived on dead-letter (undelivered-message) queue.

This identifies the reason why the message was placed on the dead-letter
queue instead of on the original destination queue. It should be one of the
MQFB_ñ or MQRC_ñ values (for example, MQRC_Q_FULL). See the
description of the Feedback field in “MQMD – Message descriptor” on
page 98 for details of the common MQFB_ñ values that can occur.

 Chapter 2. Data type descriptions – structures 47

 MQDLH – DestQName field

If the value is in the range MQFB_IMS_FIRST through MQFB_IMS_LAST,
the actual IMS error code can be determined by subtracting
MQFB_IMS_ERROR from the value of the Reason field.

Some MQFB_ñ values only ever occur in this field. They relate to trigger
or transmission-queue messages that have been transferred to the
dead-letter queue. These are:

MQFB_APPL_CANNOT_BE_STARTED
Application cannot be started.

An application processing a trigger message was unable to start the
application named in the ApplId field of the trigger message (see
“MQTM – Trigger message” on page 209).

On MVS/ESA, the CKTI CICS transaction is an example of an
application that processes trigger messages.

MQFB_TM_ERROR
MQTM structure not valid or missing.

The Format field in MQMD specifies MQFMT_TRIGGER, but the
message does not begin with a valid MQTM structure. For example,
the StrucId mnemonic eye-catcher may not be valid, the Version
may not be recognized, or the length of the trigger message may be
insufficient to contain the MQTM structure.

On MVS/ESA, the CKTI CICS transaction is an example of an
application that processes trigger messages and can generate this
feedback code.

MQFB_APPL_TYPE_ERROR
Application type error.

An application processing a trigger message was unable to start the
application because the ApplType field of the trigger message is not
valid (see “MQTM – Trigger message” on page 209).

On MVS/ESA, the CKTI CICS transaction is an example of an
application that processes trigger messages.

MQFB_XMIT_Q_MSG_ERROR
Message on transmission queue not in correct format.

A message channel agent has found that a message on the
transmission queue is not in the correct format. The message
channel agent puts the message on the dead-letter queue using this
feedback code.

The initial value of this field is MQRC_NONE.

DestQName (MQCHAR48)
Name of original destination queue.

This is the name of the message queue that was the original destination
for the message.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

48 MQSeries Application Programming Reference

 MQDLH – DestQMgrName field � MQDLH – Format field

DestQMgrName (MQCHAR48)
Name of original destination queue manager.

This is the name of the queue manager that was the original destination
for the message.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

Encoding (MQLONG)
Original data encoding.

This specifies the data encoding used for numeric data in the original
message. It applies to the message data which follows the MQDLH
structure; it does not apply to numeric data in the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
data encoding should be preserved by copying it from the Encoding field in
the message descriptor MQMD to the Encoding field in the MQDLH
structure. The Encoding field in the message descriptor should then be set
to the value appropriate to the numeric data in the MQDLH structure.

The value MQENC_NATIVE can be used for the Encoding field in both the
MQDLH and MQMD structures.

The initial value of this field is ð.

CodedCharSetId (MQLONG)
Original coded character set identifier.

This specifies the coded character set identifier of character data in the
original message. It applies to the message data which follows the
MQDLH structure; it does not apply to character data in the MQDLH
structure itself.

When an MQDLH structure is prefixed to the message data, the original
coded character set identifier should be preserved by copying it from the
CodedCharSetId field in the message descriptor MQMD to the
CodedCharSetId field in the MQDLH structure. The CodedCharSetId field in
the message descriptor should then be set to the value appropriate to the
character data in the MQDLH structure.

The value MQCCSI_Q_MGR can be used for the CodedCharSetId field in
the MQMD structure, but should not be used for the CodedCharSetId field
in the MQDLH structure, as the queue manager does not replace the
value MQCCSI_Q_MGR in the latter field by the value that applies to the
queue manager.

The initial value of this field is ð.

Format (MQCHAR8)
Original format name.

This is the format name of the application data in the original message. It
applies to the message data which follows the MQDLH structure; it does
not apply to the MQDLH structure itself.

When an MQDLH structure is prefixed to the message data, the original
format name should be preserved by copying it from the Format field in
the message descriptor MQMD to the Format field in the MQDLH

 Chapter 2. Data type descriptions – structures 49

 MQDLH – PutApplType field � MQDLH – PutDate field

structure. The Format field in the message descriptor should then be set
to the value MQFMT_DEAD_LETTER_HEADER.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

PutApplType (MQLONG)
Type of application that put message on dead-letter
(undelivered-message) queue.

This field has the same meaning as the PutApplType field in the message
descriptor MQMD (see “MQMD – Message descriptor” on page 98 for
details).

If it is the queue manager that redirects the message to the dead-letter
queue, PutApplType has the value MQAT_QMGR.

The initial value of this field is ð.

PutApplName (MQCHAR28)
Name of application that put message on dead-letter
(undelivered-message) queue.

The format of the name depends on the PutApplType field. See, also, the
description of the PutApplName field in “MQMD – Message descriptor” on
page 98.

If it is the queue manager that redirects the message to the dead-letter
queue, PutApplName contains the first 28 characters of the queue-manager
name, padded with blanks if necessary.

The length of this field is given by MQ_PUT_APPL_NAME_LENGTH. The
initial value of this field is the null string in C, and 28 blank characters in
other programming languages.

PutDate (MQCHAR8)
Date when message was put on dead-letter (undelivered-message) queue.

The format used for the date when this field is generated by the queue
manager is:

 YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On OS/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration.

The length of this field is given by MQ_PUT_DATE_LENGTH. The initial
value of this field is the null string in C, and 8 blank characters in other
programming languages.

50 MQSeries Application Programming Reference

 MQDLH – PutTime field

PutTime (MQCHAR8)
Time when message was put on the dead-letter (undelivered-message)
queue.

The format used for the time when this field is generated by the queue
manager is:

 HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)
MM minutes (00 through 59)
SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)
H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time
standard, it is possible on rare occasions for 60 or 61 to be
returned for the seconds in PutTime. This happens when leap
seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On OS/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration.

The length of this field is given by MQ_PUT_TIME_LENGTH. The initial
value of this field is the null string in C, and 8 blank characters in other
programming languages.

 Chapter 2. Data type descriptions – structures 51

 MQDLH – PutTime field

Table 27. Initial values of fields in MQDLH

Field name Name of constant Value of constant

StrucId MQDLH_STRUC_ID 'DLH␣'
(See note 1)

Version MQDLH_VERSION_1 1

Reason MQRC_NONE ð

DestQName None Blanks
(See note 2)

DestQMgrName None Blanks

Encoding None ð

CodedCharSetId None ð

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

PutApplType None ð

PutApplName None Blanks

PutDate None Blanks

PutTime None Blanks

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQDLH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQDLH MyDLH = {MQDLH_DEFAULT} ;

52 MQSeries Application Programming Reference

 MQDLH – C declaration � MQDLH – COBOL declaration

C language declaration
typedef struct tagMQDLH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Reason; /\ Reason message arrived on dead-letter

(undelivered-message) queue \/
 MQCHAR48 DestQName; /\ Name of original destination queue \/
 MQCHAR48 DestQMgrName; /\ Name of original destination queue
 manager \/
MQLONG Encoding; /\ Original data encoding \/
MQLONG CodedCharSetId; /\ Original coded character set

 identifier \/
MQCHAR8 Format; /\ Original format name \/
MQLONG PutApplType; /\ Type of application that put message on

 dead-letter (undelivered-message)
 queue \/
 MQCHAR28 PutApplName; /\ Name of application that put message on
 dead-letter (undelivered-message)
 queue \/
MQCHAR8 PutDate; /\ Date when message was put on dead-letter

(undelivered-message) queue \/
MQCHAR8 PutTime; /\ Time when message was put on the dead-

letter (undelivered-message) queue \/
 } MQDLH;

COBOL language declaration
\\ MQDLH structure
 1ð MQDLH.
\\ Structure identifier
 15 MQDLH-STRUCID PIC X(4).
\\ Structure version number

15 MQDLH-VERSION PIC S9(9) BINARY.
\\ Reason message arrived on dead-letter (undelivered-message)
\\ queue

15 MQDLH-REASON PIC S9(9) BINARY.
\\ Name of original destination queue
 15 MQDLH-DESTQNAME PIC X(48).
\\ Name of original destination queue manager
 15 MQDLH-DESTQMGRNAME PIC X(48).
\\ Original data encoding

15 MQDLH-ENCODING PIC S9(9) BINARY.
\\ Original coded character set identifier

15 MQDLH-CODEDCHARSETID PIC S9(9) BINARY.
\\ Original format name
 15 MQDLH-FORMAT PIC X(8).
\\ Type of application that put message on dead-letter
\\ (undelivered-message) queue

15 MQDLH-PUTAPPLTYPE PIC S9(9) BINARY.
\\ Name of application that put message on dead-letter
\\ (undelivered-message) queue
 15 MQDLH-PUTAPPLNAME PIC X(28).
\\ Date when message was put on dead-letter
\\ (undelivered-message) queue
 15 MQDLH-PUTDATE PIC X(8).
\\ Time when message was put on the dead-letter
\\ (undelivered-message) queue

 Chapter 2. Data type descriptions – structures 53

 MQDLH – PL/I declaration � MQDLH – S/390 assembler declaration

 15 MQDLH-PUTTIME PIC X(8).

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQDLH based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Reason fixed bin(31), /\ Reason message arrived on dead-

 letter (undelivered-message)
 queue \/
3 DestQName char(48), /\ Name of original destination

 queue \/
3 DestQMgrName char(48), /\ Name of original destination queue

 manager \/
3 Encoding fixed bin(31), /\ Original data encoding \/
3 CodedCharSetId fixed bin(31), /\ Original coded character set iden-

 tifier \/
3 Format char(8), /\ Original format name \/
3 PutApplType fixed bin(31), /\ Type of application that put

message on dead-letter
(undelivered-message) queue \/

3 PutApplName char(28), /\ Name of application that put
message on dead-letter
(undelivered-message) queue \/

3 PutDate char(8), /\ Date when message was put on dead-
 letter (undelivered-message)
 queue \/
3 PutTime char(8); /\ Time when message was put on the

 dead-letter (undelivered-message)
 queue \/

System/390 assembler-language declaration (MVS/ESA only)
MQDLH DSECT
MQDLH_STRUCID DS CL4 Structure identifier
MQDLH_VERSION DS F Structure version number
MQDLH_REASON DS F Reason message arrived on
\ dead-letter
\ (undelivered-message) queue
MQDLH_DESTQNAME DS CL48 Name of original destination
\ queue
MQDLH_DESTQMGRNAME DS CL48 Name of original destination
\ queue manager
MQDLH_ENCODING DS F Original data encoding
MQDLH_CODEDCHARSETID DS F Original coded character set
\ identifier
MQDLH_FORMAT DS CL8 Original format name
MQDLH_PUTAPPLTYPE DS F Type of application that put
\ message on dead-letter
\ (undelivered-message) queue
MQDLH_PUTAPPLNAME DS CL28 Name of application that put
\ message on dead-letter
\ (undelivered-message) queue
MQDLH_PUTDATE DS CL8 Date when message was put on
\ dead-letter
\ (undelivered-message) queue
MQDLH_PUTTIME DS CL8 Time when message was put on

54 MQSeries Application Programming Reference

 MQDLH – TAL declaration

\ the dead-letter
\ (undelivered-message) queue
MQDLH_LENGTH EQU \-MQDLH Length of structure
 ORG MQDLH
MQDLH_AREA DS CL(MQDLH_LENGTH)

| TAL declaration (Tandem NSK only)
| STRUCT MQDLH^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| INT(32) REASON;
| STRUCT DESTQNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT DESTQMGRNAME;
| BEGIN STRING BYTE [ð:47]; END;
| INT(32) ENCODING;
| INT(32) CODEDCHARSETID;
| STRUCT FORMAT;
| BEGIN STRING BYTE [ð:7]; END;
| INT(32) PUTAPPLTYPE;
| STRUCT PUTAPPLNAME;
| BEGIN STRING BYTE [ð:27]; END;
| STRUCT PUTDATE;
| BEGIN STRING BYTE [ð:7]; END;
| STRUCT PUTTIME;
| BEGIN STRING BYTE [ð:7]; END;
| END;

 Chapter 2. Data type descriptions – structures 55

 MQGMO – Get-message options � MQGMO – Strucid field

MQGMO – Get-message options
The following table summarizes the fields in the structure.

The current version of MQGMO is MQGMO_VERSION_2. Fields that exist only in
the version-2 structure are identified as such in the descriptions that follow. The
declarations of MQGMO provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, but the initial value
provided for the Version field is MQGMO_VERSION_1; this ensures compatibility
with existing applications. To use the new fields, the application must set the
version number to MQGMO_VERSION_2. Applications which are intended to be
portable between several environments should use a version-2 MQGMO only if all
of those environments support version 2.

The version-2 structure is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

The MQGMO structure is an input/output parameter for the MQGET call.

Table 28. Fields in MQGMO

Field Description Page

StrucId Structure identifier 56

Version Structure version number 57

Options Options that control the action of MQGET 57

WaitInterval Wait interval 82

Signal1 Signal 82

Signal2 Signal identifier 83

ResolvedQName Resolved name of destination queue 84

Note: The remaining fields are supported only in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

MatchOptions Options controlling selection criteria used for
MQGET

84

GroupStatus Flag indicating whether message retrieved is in a
group

86

SegmentStatus Flag indicating whether message retrieved is a
segment of a logical message

87

Segmentation Flag indicating whether further segmentation is
allowed for the message retrieved

87

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQGMO_STRUC_ID
Identifier for get-message options structure.

For the C programming language, the constant
MQGMO_STRUC_ID_ARRAY is also defined; this has the same

56 MQSeries Application Programming Reference

 MQGMO – Version field � MQGMO – Options field

value as MQGMO_STRUC_ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQGMO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQGMO_VERSION_1
Version-1 get-message options structure.

This version is supported in all environments.

MQGMO_VERSION_2
Version-2 get-message options structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQGMO_CURRENT_VERSION
Current version of get-message options structure.

This is always an input field. The initial value of this field is
MQGMO_VERSION_1.

Options (MQLONG)
Options that control the action of MQGET.

Zero or more of the options described below can be specified. If more
than one is required the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming
language supports bit operations).

Combinations of options that are not valid are noted; all other
combinations are valid. The following options are described:

 MQGMO_WAIT
 MQGMO_NO_WAIT
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_NO_SYNCPOINT
 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_MSG_UNDER_CURSOR
 MQGMO_LOCK
 MQGMO_UNLOCK
 MQGMO_ACCEPT_TRUNCATED_MSG

 Chapter 2. Data type descriptions – structures 57

 MQGMO – Options field

 MQGMO_SET_SIGNAL
 MQGMO_FAIL_IF_QUIESCING
 MQGMO_CONVERT
 MQGMO_LOGICAL_ORDER
 MQGMO_COMPLETE_MSG
 MQGMO_ALL_MSGS_AVAILABLE
 MQGMO_ALL_SEGMENTS_AVAILABLE
 MQGMO_NONE

MQGMO_WAIT
Wait for message to arrive.

The application is to wait until a suitable message arrives. The
maximum time the application waits is specified in WaitInterval.

If MQGET requests are inhibited, or MQGET requests become
inhibited while waiting, the wait is canceled and the call completes
with MQCC_FAILED and reason code MQRC_GET_INHIBITED,
regardless of whether there are suitable messages on the queue.

This option can be used with the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options.

On MVS/ESA, if it is desirable for the application to proceed with
other work while waiting for the message to arrive, consider using
the signal option (MQGMO_SET_SIGNAL) instead. However this
option is environment specific, and so should not be used by
applications which are intended to be portable between different
environments.

If several applications are waiting on the same shared queue, the
application, or applications, that are activated when a suitable
message arrives are described below.

Note: In the description below, a browse MQGET call is one which
specifies one of the browse options, but not MQGMO_LOCK;
an MQGET call specifying the MQGMO_LOCK option is
treated as a nonbrowse call.

� If one or more nonbrowse MQGET calls is waiting, one is
activated.

� If one or more browse MQGET calls is waiting, but no
nonbrowse MQGET calls are waiting, all are activated.

� If one or more nonbrowse MQGET calls, and one or more
browse MQGET calls are waiting, one nonbrowse MQGET call is
activated, and none, some, or all of the browse MQGET calls.
(The number of browse MQGET calls activated cannot be
predicted, because it depends on the scheduling considerations
of the operating system, and other factors.)

If more than one nonbrowse MQGET call is waiting on the same
shared queue, only one is activated; in this situation the queue
manager attempts to give priority to waiting nonbrowse calls in the
following order:

1. Specific get-wait requests that can be satisfied only by certain
messages, for example, ones with a specific MsgId or CorrelId
(or both).

58 MQSeries Application Programming Reference

 MQGMO – Options field

2. General get-wait requests that can be satisfied by any message.

The following points should be noted:

� Within the first category, no additional priority is given to more
specific get-wait requests, for example those that specify both
MsgId and CorrelId.

� Within either category, it cannot be predicted which application is
selected. In particular, the application waiting longest is not
necessarily the one selected.

� Path length, and priority-scheduling considerations of the
operating system, can mean that a waiting application of lower
operating system priority than expected retrieves the message.

� It may also happen that an application that is not waiting
retrieves the message in preference to one that is.

On MVS/ESA, if there is more than one MQGET call waiting for the
same message, with a mixture of wait and signal options, each
waiting call is considered equally. It is an error to specify
MQGMO_SET_SIGNAL with MQGMO_WAIT. It is also an error to
specify this option with a queue handle for which a signal is
outstanding.

MQGMO_WAIT is ignored if specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR or
MQGMO_MSG_UNDER_CURSOR; no error is raised.

| On Tandem NSK, only one nonbrowse MQGET call is activated for
| any given message. Nonbrowse MQGET calls are not given priority
| over browse MQGET calls waiting for the same message.

MQGMO_NO_WAIT
Return immediately if no suitable message.

The application is not to wait if no suitable message is available.
This is the opposite of the MQGMO_WAIT option, and is defined to
aid program documentation. It is the default if neither is specified.

MQGMO_SYNCPOINT
Get message with syncpoint control.

The request is to operate within the normal unit of work protocols.
The message is marked as being unavailable to other applications,
but it is deleted from the queue only when the unit of work is
committed. The message is made available again if the unit of work
is backed out.

If neither this option nor MQGMO_NO_SYNCPOINT is specified, the
inclusion of the get request in unit of work protocols is determined by
the environment.

� On MVS/ESA, the get request is within a unit of work.

� In all other environments, the get request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either

 Chapter 2. Data type descriptions – structures 59

 MQGMO – Options field

MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT should be
specified explicitly.

This option is not valid with any of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_BROWSE_NEXT
 MQGMO_LOCK
 MQGMO_NO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

MQGMO_SYNCPOINT_IF_PERSISTENT
Get message with syncpoint control if message is persistent.

The request is to operate within the normal unit of work protocols,
but only if the message retrieved is persistent. A persistent message
has the value MQPER_PERSISTENT in the Persistence field in
MQMD.

� If the message is persistent, the queue manager processes the
call as though the application had specified
MQGMO_SYNCPOINT (see above for details).

� If the message is not persistent, the queue manager processes
the call as though the application had specified
MQGMO_NO_SYNCPOINT (see below for details).

This option is not valid with any of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_BROWSE_NEXT
 MQGMO_COMPLETE_MSG
 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_NO_SYNCPOINT
 MQGMO_SYNCPOINT
 MQGMO_UNLOCK

This option is supported in the following environments: AIX, DOS
client, HP-UX, MVS/ESA, OS/2, OS/400, Sun Solaris, Windows
client, 32-bit Windows, Windows NT.

MQGMO_NO_SYNCPOINT
Get message without syncpoint control.

The request is to operate outside the normal unit of work protocols.
The message is deleted from the queue immediately (unless this is a
browse request). The message cannot be made available again by
backing out a unit of work.

This option is assumed if MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT is specified.

If neither this option nor MQGMO_SYNCPOINT is specified, the
inclusion of the get request in unit of work protocols is determined by
the environment.

� On MVS/ESA, the get request is within a unit of work.

60 MQSeries Application Programming Reference

 MQGMO – Options field

� In all other environments, the get request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT should be
specified explicitly.

This option is not valid with any of the following options:

 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT

| On Tandem NSK, if MQPUT is issued outside a Tandem TMF
| transaction without the MQPMO_NO_SYNCPOINT option, the
| reason code MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

MQGMO_MARK_SKIP_BACKOUT
Mark the get request as skipping backout.

This option allows a unit of work to be backed out, but without
reinstating on the queue the message that was marked with this
option.

When an application requests the backout of a unit of work
containing a get request, a message that was retrieved using this
option is not restored to its previous state. (Other resource updates,
however, are still backed out.) Instead, the message is treated as if
it had been retrieved by a get request without this option, in a new
unit of work started by the backout request.

This is useful if a message is retrieved by your application, but only
after some resource updates have been made does it become
apparent that the unit of work cannot complete successfully. A
normal backout, if this option had not been specified, would cause
the message to be reinstated on the queue, so that the same
sequence of events would occur when the message was next
retrieved. Using this option on the original MQGET, however, means
that the backout will cause the updates to the other resources to be
backed out, as is required, but the message is treated as if it had
been retrieved under a new unit of work. The application can now
perform some exception handling, such as informing the originator
that the message has been discarded, and commit this new unit of
work, which causes the message to be removed from the queue.

This option has an effect only if the unit of work containing the get
request is terminated by an application request to back it out. (Such
requests use calls or commands that depend on the environment.)
This option has no effect if the unit of work containing the get
request is backed out for any other reason (for example, the abend
of a transaction or the system). In this situation, any message
retrieved using this option is backed out on to the queue in the same
way as messages retrieved without this option.

 Chapter 2. Data type descriptions – structures 61

 MQGMO – Options field

Notes:

1. If you have not applied IMS APAR PN60855 (or PN57124 for
IMS V4), an IMS MPP or BMP application, returning a message
obtained with the MQGMO_MARK_SKIP_BACKOUT option to
the queue, must issue an MQ call (any MQ call will do) in
between the two ROLB commands.

2. A CICS application, returning a message obtained with the
MQGMO_MARK_SKIP_BACKOUT option to the queue, must
issue an MQ call (any MQ call will do) in between the two EXEC
CICS SYNCPOINT ROLLBACK commands.

Within a unit of work, there can be only one get request marked as
skipping backout, as well as none or several unmarked get requests.

If this option is specified, MQGMO_SYNCPOINT must also be
specified. MQGMO_MARK_SKIP_BACKOUT is not valid with any of
the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_BROWSE_NEXT
 MQGMO_LOCK
 MQGMO_NO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

This option is not supported in the following environments:
| OpenVMS, OS/2, OS/400, Tandem NSK, UNIX systems, 16-bit

Windows, 32-bit Windows, Windows NT.

MQGMO_BROWSE_FIRST
Browse from start of queue.

When a queue is opened with the MQOO_BROWSE option, a
browse cursor is established, positioned logically before the first
message on the queue. Subsequent MQGET calls specifying the
MQGMO_BROWSE_FIRST, MQGMO_BROWSE_NEXT or
MQGMO_BROWSE_MSG_UNDER_CURSOR option can be used to
retrieve messages from the queue nondestructively. The browse
cursor marks the position, within the messages on the queue, from
which the next MQGET call with MQGMO_BROWSE_NEXT will
search for a suitable message.

An MQGET call with MQGMO_BROWSE_FIRST causes the
previous position of the browse cursor to be ignored. The first
message on the queue that satisfies the conditions specified in the
message descriptor is retrieved. The message remains on the
queue, and the browse cursor is positioned on this message.

After this call, the browse cursor is positioned on the message that
has been returned. If the message is removed from the queue
before the next MQGET call with MQGMO_BROWSE_NEXT is
issued, the browse cursor remains at the position in the queue that
the message occupied, even though that position is now empty.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

62 MQSeries Application Programming Reference

 MQGMO – Options field

Note that the browse cursor is not moved by a nonbrowse MQGET
call using the same Hobj handle. Nor is it moved by a browse
MQGET call that returns a completion code of MQCC_FAILED, or a
reason code of MQRC_TRUNCATED_MSG_FAILED.

The MQGMO_LOCK option can be specified together with this
option, to cause the message that is browsed to be locked.

MQGMO_BROWSE_FIRST can be specified with any valid
combination of the MQGMO_ñ and MQMO_ñ options that control the
processing of messages in groups and segments of logical
messages.

If MQGMO_LOGICAL_ORDER is specified, the messages are
browsed in logical order. If that option is omitted, the messages are
browsed in physical order. When MQGMO_BROWSE_FIRST is
specified, it is possible to switch between logical order and physical
order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that the queue manager
retains for MQGET calls that remove messages from the queue.
When MQGMO_BROWSE_FIRST is specified, the queue manager
ignores the group and segment information for browsing, and scans
the queue as though there were no current group and no current
logical message. If the MQGET call is successful (completion code
MQCC_OK or MQCC_WARNING), the group and segment
information for browsing is set to that of the message returned; if the
call fails, the group and segment information remains the same as it
was prior to the call.

This option is not valid with any of the following options:

 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_BROWSE_NEXT
 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_MSG_UNDER_CURSOR
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_NEXT
Browse from current position in queue.

The browse cursor is advanced to the next message on the queue
that satisfies the selection criteria specified on the MQGET call. The
message is returned to the application, but remains on the queue.

After a queue has been opened for browse, the first browse call
using the handle has the same effect whether it specifies the
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.

If the message is removed from the queue before the next MQGET
call with MQGMO_BROWSE_NEXT is issued, the browse cursor

 Chapter 2. Data type descriptions – structures 63

 MQGMO – Options field

logically remains at the position in the queue that the message
occupied, even though that position is now empty.

Messages are stored on the queue in one of two ways:

� FIFO within priority (MQMDS_PRIORITY), or
� FIFO regardless of priority (MQMDS_FIFO)

The MsgDeliverySequence queue attribute indicates which method
applies (see “Attributes for local queues and model queues” on
page 348 for details).

If the queue has a MsgDeliverySequence of MQMDS_PRIORITY, and
a message arrives on the queue that is of a higher priority than the
one currently pointed to by the browse cursor, that message will not
be found during the current sweep of the queue using
MQGMO_BROWSE_NEXT. It can only be found after the browse
cursor has been reset with MQGMO_BROWSE_FIRST (or by
reopening the queue).

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

Note that the browse cursor is not moved by nonbrowse MQGET
calls using the same Hobj handle.

The MQGMO_LOCK option can be specified together with this
option, to cause the message that is browsed to be locked.

MQGMO_BROWSE_NEXT can be specified with any valid
combination of the MQGMO_ñ and MQMO_ñ options that control the
processing of messages in groups and segments of logical
messages.

If MQGMO_LOGICAL_ORDER is specified, the messages are
browsed in logical order. If that option is omitted, the messages are
browsed in physical order. When MQGMO_BROWSE_FIRST is
specified, it is possible to switch between logical order and physical
order, but subsequent MQGET calls using
MQGMO_BROWSE_NEXT must browse the queue in the same
order as the most-recent call that specified
MQGMO_BROWSE_FIRST for the queue handle. The call fails with
reason code MQRC_INCONSISTENT_BROWSE if this condition is
not satisfied.

Note: Special care is needed if an MQGET call is used to browse
beyond the end of a message group (or logical message not
in a group) when MQGMO_LOGICAL_ORDER is not
specified. For example, if the last message in the group
happens to precede the first message in the group on the
queue, using MQGMO_BROWSE_NEXT to browse beyond
the end of the group, specifying
MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber
set to 1 (to find the first message of the next group) would
return again the first message in the group already browsed.
This could happen immediately, or a number of MQGET calls
later (if there are intervening groups).

64 MQSeries Application Programming Reference

 MQGMO – Options field

The possibility of an infinite loop can be avoided by opening
the queue twice for browse:

� Use the first handle to browse only the first message in
each group.

� Use the second handle to browse only the messages
within a specific group.

� Use the MQMO_ñ options to move the second browse
cursor to the position of the first browse cursor, before
browsing the messages in the group.

� Do not use MQGMO_BROWSE_NEXT to browse beyond
the end of a group.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that it retains for MQGET
calls that remove messages from the queue.

This option is not valid with any of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_MSG_UNDER_CURSOR
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Browse message under browse cursor.

This option causes the message pointed to by the browse cursor to
be retrieved nondestructively, regardless of the MQMO_ñ options
specified in the MatchOptions field in MQGMO.

On MVS/ESA, this option is not supported.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option. The call fails if neither of these
calls has been issued for this queue since it was opened, or if the
message that was under the browse cursor has since been retrieved
destructively.

The position of the browse cursor is not changed by this call.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be
used with a nonbrowse MQGET call if required, to remove the
message from the queue.

Note that the browse cursor is not moved by a nonbrowse MQGET
call using the same Hobj handle. Nor is it moved by a browse
MQGET call that returns a completion code of MQCC_FAILED, or a
reason code of MQRC_TRUNCATED_MSG_FAILED.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified with
MQGMO_LOCK:

 Chapter 2. Data type descriptions – structures 65

 MQGMO – Options field

� If there is already a message locked, it must be the one under
the cursor, so that is returned without unlocking and relocking it;
the message remains locked.

� If there is no locked message, the message under the browse
cursor (if there is one) is locked and returned to the application; if
there is no message under the browse cursor the call fails.

If MQGMO_BROWSE_MSG_UNDER_CURSOR is specified without
MQGMO_LOCK:

� If there is already a message locked, it must be the one under
the cursor. This message is returned to the application and then
unlocked. Because the message is now unlocked, there is no
guarantee that it can be browsed again, or retrieved destructively
(it may be retrieved destructively by another application getting
messages from the queue).

� If there is no locked message, the message under the browse
cursor (if there is one) is returned to the application; if there is no
message under the browse cursor the call fails.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must identify a message whose Offset field in MQMD is zero. If this
condition is not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

The group and segment information that the queue manager retains
for MQGET calls that browse messages on the queue is separate
from the group and segment information that it retains for MQGET
calls that remove messages from the queue.

This option is not valid with any of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_MSG_UNDER_CURSOR
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

It is also an error if the queue was not opened for browse.

MQGMO_MSG_UNDER_CURSOR
Get message under browse cursor.

This option causes the message pointed to by the browse cursor to
be retrieved, regardless of the MQMO_ñ options specified in the
MatchOptions field in MQGMO. The message is removed from the
queue.

The message pointed to by the browse cursor is the one that was
last retrieved using either the MQGMO_BROWSE_FIRST or the
MQGMO_BROWSE_NEXT option.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR, the browse cursor must identify
a message whose Offset field in MQMD is zero. If this condition is

66 MQSeries Application Programming Reference

 MQGMO – Options field

not satisfied, the call fails with reason code
MQRC_INVALID_MSG_UNDER_CURSOR.

This option is not valid with any of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_BROWSE_NEXT
 MQGMO_UNLOCK

It is also an error if the queue was not opened both for browse and
for input. If the browse cursor is not currently pointing to a
retrievable message, an error is returned by the MQGET call.

MQGMO_LOCK
Lock message.

This option locks the message that is browsed, so that the message
becomes invisible to any other handle open for the queue. The
option can be specified only if one of the following options is also
specified:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR

Only one message can be locked per handle, but this can be a
logical message or a physical message:

� If MQGMO_COMPLETE_MSG is specified, all of the message
segments that comprise the logical message are locked to the
queue handle (provided that they are all present on the queue
and available for retrieval).

� If MQGMO_COMPLETE_MSG is not specified, only a single
physical message is locked to the queue handle. If this
message happens to be a segment of a logical message, the
locked segment prevents other applications using
MQGMO_COMPLETE_MSG to retrieve or browse the logical
message.

The locked message is always the one under the browse cursor, and
the message can be removed from the queue by a later MQGET call
that specifies the MQGMO_MSG_UNDER_CURSOR option. Other
MQGET calls for that queue handle can also remove the message
(for example, a call that specifies the message identifier of the locked
message).

If MQCC_FAILED is returned (or MQCC_WARNING with
MQRC_TRUNCATED_MSG_FAILED), no message is locked.

If the application decides not to remove the message from the
queue, the lock is released by:

� Issuing another MQGET call for this handle, with either
MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT
specified (with or without MQGMO_LOCK); the message is
unlocked if the call completes with MQCC_OK or
MQCC_WARNING, but remains locked if the call completes with
MQCC_FAILED. However, the following exceptions apply:

 Chapter 2. Data type descriptions – structures 67

 MQGMO – Options field

– The message is not unlocked if MQCC_WARNING is
returned with MQRC_TRUNCATED_MSG_FAILED.

– The message is unlocked if MQCC_FAILED is returned with
MQRC_NO_MSG_AVAILABLE.

If MQGMO_LOCK is also specified, the new message is locked.
If MQGMO_LOCK is not specified, there is no locked message
after the call.

If MQGMO_WAIT is specified, and no message is immediately
available, the unlock on the original message occurs before the
start of the wait (providing the call is otherwise free from error).

� Issuing another MQGET call for this handle, with
MQGMO_BROWSE_MSG_UNDER_CURSOR (without
MQGMO_LOCK); the message is unlocked if the call completes
with MQCC_OK or MQCC_WARNING, but remains locked if the
call completes with MQCC_FAILED. However, the following
exception applies:

– The message is not unlocked if MQCC_WARNING is
returned with MQRC_TRUNCATED_MSG_FAILED.

� Issuing another MQGET call for this handle with
MQGMO_UNLOCK.

� Issuing an MQCLOSE call for this handle (either explicitly, or
implicitly by the application ending).

No special open option is required to specify this option, other than
MQOO_BROWSE, which is needed in order to specify the
accompanying browse option.

This option is not valid with any of the following options:

 MQGMO_MARK_SKIP_BACKOUT
 MQGMO_SYNCPOINT
 MQGMO_SYNCPOINT_IF_PERSISTENT
 MQGMO_UNLOCK

This option is not supported in the following environments:
| MVS/ESA, Tandem NSK, 16-bit Windows, 32-bit Windows.

MQGMO_UNLOCK
Unlock message.

The message to be unlocked must have been previously locked by
an MQGET call with the MQGMO_LOCK option. If there is no
message locked for this handle, the call completes with
MQCC_WARNING and MQRC_NO_MSG_LOCKED.

The MsgDesc, BufferLength, Buffer, and DataLength parameters are
not checked or altered if MQGMO_UNLOCK is specified. No
message is returned in Buffer.

No special open option is required to specify this option (although
MQOO_BROWSE is needed to issue the lock request in the first
place).

This option is not valid with any options except the following:

 MQGMO_NO_WAIT

68 MQSeries Application Programming Reference

 MQGMO – Options field

 MQGMO_NO_SYNCPOINT

Both of these options are assumed whether specified or not.

This option is not supported in the following environments:
| MVS/ESA, Tandem NSK, 16-bit Windows, 32-bit Windows.

MQGMO_ACCEPT_TRUNCATED_MSG
Allow truncation of message data.

If the message buffer is too small to hold the complete message, this
option allows the MQGET call to fill the buffer with as much of the
message as the buffer can hold, issue a warning completion code,
and complete its processing. This means:

� When browsing messages, the browse cursor is advanced to the
returned message.

� When removing messages, the returned message is removed
from the queue.

� Reason code MQRC_TRUNCATED_MSG_ACCEPTED is
returned if no other error occurs.

Without this option, the buffer is still filled with as much of the
message as it can hold, a warning completion code is issued, but
processing is not completed. This means:

� When browsing messages, the browse cursor is not advanced.

� When removing messages, the message is not removed from the
queue.

� Reason code MQRC_TRUNCATED_MSG_FAILED is returned if
no other error occurs.

MQGMO_SET_SIGNAL
Request signal to be set.

This option is used in conjunction with the Signal1 and Signal2
fields to allow applications to proceed with other work while waiting
for a message to arrive, and also (if suitable operating system
facilities are available) to wait for messages arriving on more than
one queue.

The MQGMO_SET_SIGNAL option is environment specific, and
should not be used by applications which are intended to be
portable.

If a currently available message satisfies the criteria specified in the
message descriptor, or if a parameter error or other synchronous
error is detected, the call completes in the same way as if this option
had not been specified.

If no message satisfying the criteria specified in the message
descriptor is currently available, control returns to the application
without waiting for a message to arrive. The output fields in the
message descriptor and the output parameters of the MQGET call
are not set, other than the CompCode and Reason parameters (which
are set to MQCC_WARNING and
MQRC_SIGNAL_REQUEST_ACCEPTED respectively). When a

 Chapter 2. Data type descriptions – structures 69

 MQGMO – Options field

suitable message arrives subsequently, the signal is delivered in a
manner dependent on the environment:

� On MVS/ESA, the signal is delivered by posting the ECB.

� On 32-bit Windows, a Windows message is sent to the
application.

The caller should then reissue the MQGET call to retrieve the
message. The application can wait for this signal, using functions
provided by the operating system.

If the operating system provides a multiple wait mechanism, the
application can use this technique to wait for a message arriving on
any one of several queues.

If a nonzero WaitInterval is specified, after this time the signal is
delivered. The wait may also be canceled by the queue manager, in
which case again the signal is delivered.

If more than one MQGET call has set a signal for the same
message, the order in which applications are activated is the same
as that described for MQGMO_WAIT.

If there is more than one MQGET call waiting for the same message,
with a mixture of wait and signal options, each waiting call is
considered equally.

Under certain conditions it is possible for a message to be retrieved
by the MQGET call, and for a signal resulting from the arrival of the
same message to be delivered. When a signal is delivered, an
application must be prepared for no message to be available.

A given handle can have no more than one signal outstanding.

This option is supported only in the following environments:
| MVS/ESA, Tandem NSK, 32-bit Windows.

On MVS/ESA and 32-bit Windows, MQGMO_SET_SIGNAL is not
valid with any of the following options:

 MQGMO_UNLOCK
 MQGMO_WAIT

| On Tandem NSK, MQGMO_SET_SIGNAL is not valid with any of the
| following options:

| MQGMO_BROWSE_FIRST
| MQGMO_BROWSE_NEXT
| MQGMO_BROWSE_MSG_UNDER_CURSOR
| MQGMO_LOCK
| MQGMO_UNLOCK
| MQGMO_WAIT

MQGMO_FAIL_IF_QUIESCING
Fail if queue manager is quiescing.

This option forces the MQGET call to fail if the queue manager is in
the quiescing state.

On MVS/ESA, this option also forces the MQGET call to fail if the
connection (for a CICS or IMS application) is in the quiescing state.

70 MQSeries Application Programming Reference

 MQGMO – Options field

If this option is specified together with MQGMO_WAIT or
MQGMO_SET_SIGNAL, and the wait or signal is outstanding at the
time the queue manager enters the quiescing state:

� The wait is canceled and the call returns completion code
MQCC_FAILED with reason code MQRC_Q_MGR_QUIESCING
or MQRC_CONNECTION_QUIESCING.

� The signal is canceled with an environment-specific signal
completion code.

On MVS/ESA, the signal completes with event completion code
MQEC_Q_MGR_QUIESCING or
MQEC_CONNECTION_QUIESCING.

If MQGMO_FAIL_IF_QUIESCING is not specified and the queue
manager or connection enters the quiescing state, the wait or signal
is not canceled.

In the following environments, this option is accepted but ignored:
16-bit Windows, 32-bit Windows.

MQGMO_CONVERT
Convert message data.

This option requests that the application data in the message should
be converted, to conform to the CodedCharSetId and Encoding values
specified in the MsgDesc parameter on the MQGET call, before the
data is copied to the Buffer parameter.

The Format field specified when the message was put is assumed by
the conversion process to identify the nature of the data in the
message. Conversion of the message data is by the queue manager
for built-in formats, and by a user-written exit for other formats. See
Appendix D, “Data-conversion” on page 495 for details of the
data-conversion exit.

� If conversion is performed successfully, the CodedCharSetId and
Encoding fields specified in the MsgDesc parameter are
unchanged on return from the MQGET call.

� If conversion cannot be performed successfully (but the MQGET
call otherwise completes without error), the message data is
returned unconverted, and the CodedCharSetId and Encoding
fields in MsgDesc are set to the values for the unconverted
message. The completion code is MQCC_WARNING in this
case.

In either case, therefore, these fields describe the character-set
identifier and encoding of the message data that is returned in the
Buffer parameter.

See the Format field described in “MQMD – Message descriptor” on
page 98 for a list of format names for which the queue manager
performs the conversion.

This option is not supported in the following environments: MVS/ESA
using CICS version 2, 16-bit Windows, 32-bit Windows.

Group and segment options : The options described below control the
way that messages in groups and segments of logical messages are

 Chapter 2. Data type descriptions – structures 71

 MQGMO – Options field

returned by the MQGET call. The following definitions may be of help in
understanding these options:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values
for the message identifier (MsgId field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a
physical message. But where logical messages are extremely large,
system constraints may make it advisable or necessary to split a
logical message into two or more physical messages, called
segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier
(GroupId field in MQMD), and the same message sequence number
(MsgSeqNumber field in MQMD). The segments are distinguished by
differing values for the segment offset (Offset field in MQMD), which
gives the offset of the data in the physical message from the start of
the data in the logical message. Because each segment is a
physical message, the segments in a logical message usually have
differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also
has a nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message
does not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a
null group identifier (MQGI_NONE), unless the logical message
belongs to a message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical
messages is segmented, there will be more than n physical
messages in the group.

MQGMO_LOGICAL_ORDER
Messages in groups and segments of logical messages are returned
in logical order.

This option controls the order in which messages are returned by
successive MQGET calls for the queue handle. The option must be
specified on each of those calls in order to have an effect.

72 MQSeries Application Programming Reference

 MQGMO – Options field

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

If MQGMO_LOGICAL_ORDER is specified for successive MQGET
calls for the queue handle, messages in groups are returned in the
order given by their message sequence numbers, and segments of
logical messages are returned in the order given by their segment
offsets. This order may be different from the order in which those
messages and segments occur on the queue.

| Note: Specifying MQGMO_LOGICAL_ORDER has no adverse
| consequences on messages that do not belong to groups
| and that are not segments. In effect, such messages are
| treated as though each belonged to a message group
| consisting of only one message. Thus it is perfectly safe to
| specify MQGMO_LOGICAL_ORDER when retrieving
| messages from queues that may contain a mixture of
| messages in groups, message segments, and unsegmented
| messages not in groups.

To return the messages in the required order, the queue manager
retains the group and segment information between successive
MQGET calls. This information identifies the current message group
and current logical message for the queue handle, the current
position within the group and logical message, and whether the
messages are being retrieved within a unit of work. Because the
queue manager retains this information, the application does not
need to set the group and segment information prior to each MQGET
call. Specifically, it means that the application does not need to set
the GroupId, MsgSeqNumber, and Offset fields in MQMD. However,
the application does need to set the MQGMO_SYNCPOINT or
MQGMO_NO_SYNCPOINT option correctly on each call.

When the queue is opened, there is no current message group and
no current logical message. A message group becomes the current
message group when a message that has the
MQMF_MSG_IN_GROUP flag is returned by the MQGET call. With
MQGMO_LOGICAL_ORDER specified on successive calls, that
group remains the current group until a message is returned that
has:

� MQMF_LAST_MSG_IN_GROUP without MQMF_SEGMENT
(that is, the last logical message in the group is not segmented),
or

� MQMF_LAST_MSG_IN_GROUP with MQMF_LAST_SEGMENT
(that is, the message returned is the last segment of the last
logical message in the group).

When such a message is returned, the message group is terminated,
and on successful completion of that MQGET call there is no longer
a current group. In a similar way, a logical message becomes the
current logical message when a message that has the
MQMF_SEGMENT flag is returned by the MQGET call, and that
logical message is terminated when the message that has the
MQMF_LAST_SEGMENT flag is returned.

 Chapter 2. Data type descriptions – structures 73

 MQGMO – Options field

If no selection criteria are specified, successive MQGET calls return
(in the correct order) the messages for the first message group on
the queue, then the messages for the second message group, and
so on, until there are no more messages available. It is possible to
select the particular message groups returned by specifying one or
more of the following options in the MatchOptions field:

 MQMO_MATCH_MSG_ID
 MQMO_MATCH_CORREL_ID
 MQMO_MATCH_GROUP_ID

However, these options are effective only when there is no current
message group or logical message; see the MatchOptions field
described in “MQGMO – Get-message options” on page 56 for
further details.

Table 29 on page 75 shows the values of the MsgId, CorrelId,
GroupId, MsgSeqNumber, and Offset fields that the queue manager
looks for when attempting to find a message to return on the
MQGET call. This applies both to removing messages from the
queue, and browsing messages on the queue. The abbreviated
column headings have the following meanings:

� LOG ORD means the MQGMO_LOGICAL_ORDER option.
� Cur grp means that a current message group exists prior to the

call.
� Cur log msg means that a current logical message exists prior

to the call.

In the table:

� “(√)” indicates that the row applies whether or not there is a √ in
that column.

� “Previous” denotes the value returned for that field in the
previous message for the queue handle.

74 MQSeries Application Programming Reference

 MQGMO – Options field

Table 29. MQGET options relating to messages in groups and segments of logical messages

Options
you

specify

Group and
log-msg status

prior to call

Values the queue manager looks for

LOG
ORD

Cur
grp

Cur
log

msg

MsgId CorrelId GroupId MsgSeqNumber Offset

√ Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

1 0

√ √ Any message
identifier

Any correlation
identifier

Previous
group identifier

1 Previous offset
+ previous
segment

length

√ √ Any message
identifier

Any correlation
identifier

Previous
group identifier

Previous
sequence

number + 1

0

√ √ √ Any message
identifier

Any correlation
identifier

Previous
group identifier

Previous
sequence
number

Previous offset
+ previous
segment

length

 (√) (√) Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

Controlled by
MatchOptions

When multiple message groups are present on the queue and
eligible for return, the groups are returned in the order determined by
the position on the queue of the first segment of the first logical
message in each group (that is, the physical messages that have
message sequence numbers of 1, and offsets of 0, determine the
order in which eligible groups are returned).

The MQGMO_LOGICAL_ORDER option affects units of work as
follows:

� If the first logical message or segment in a group is retrieved
within a unit of work, all of the other logical messages and
segments in the group must be retrieved within a unit of work, if
the same queue handle is used. However, they need not be
retrieved within the same unit of work. This allows a message
group consisting of many physical messages to be split across
two or more consecutive units of work for the queue handle.

� If the first logical message or segment in a group is not retrieved
within a unit of work, none of the other logical messages and
segments in the group can be retrieved within a unit of work, if
the same queue handle is used.

If these conditions are not satisfied, the MQGET call fails with reason
code MQRC_INCONSISTENT_UOW.

When MQGMO_LOGICAL_ORDER is specified, the MQGMO
supplied on the MQGET call must not be less than
MQGMO_VERSION_2, and the MQMD must not be less than
MQMD_VERSION_2. If this condition is not satisfied, the call fails
with reason code MQRC_WRONG_GMO_VERSION or
MQRC_WRONG_MD_VERSION, as appropriate.

 Chapter 2. Data type descriptions – structures 75

 MQGMO – Options field

If MQGMO_LOGICAL_ORDER is not specified for successive
MQGET calls for the queue handle, messages are returned without
regard for whether they belong to message groups, or whether they
are segments of logical messages. This means that messages or
segments from a particular group or logical message may be
returned out of order, or they may be intermingled with messages or
segments from other groups or logical messages, or with messages
that are not in groups and are not segments. In this situation, the
particular messages that are returned by successive MQGET calls is
controlled by the MQMO_ñ options specified on those calls (see the
MatchOptions field described in “MQGMO – Get-message options” on
page 56 for details of these options).

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the GroupId,
MsgSeqNumber, Offset, and MatchOptions fields to the appropriate
values, and then issue the MQGET call with MQGMO_SYNCPOINT
or MQGMO_NO_SYNCPOINT set as desired, but without specifying
MQGMO_LOGICAL_ORDER. If this call is successful, the queue
manager retains the group and segment information, and subsequent
MQGET calls using that queue handle can specify
MQGMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains
for the MQGET call is separate from the group and segment
information that it retains for the MQPUT call. In addition, the queue
manager retains separate information for:

� MQGET calls that remove messages from the queue.
� MQGET calls that browse messages on the queue.

For any given queue handle, the application is free to mix MQGET
calls that specify MQGMO_LOGICAL_ORDER with MQGET calls
that do not, but the following points should be noted:

� Each successful MQGET call that does not specify
MQGMO_LOGICAL_ORDER causes the queue manager to set
the saved group and segment information to the values
corresponding to the message returned; this replaces the
existing group and segment information retained by the queue
manager for the queue handle. Only the information appropriate
to the action of the call (browse or remove) is modified.

� If MQGMO_LOGICAL_ORDER is not specified, the call does not
fail if there is a current message group or logical message, but
the message or segment retrieved is not the next one in the
group or logical message. The call may however succeed with
an MQCC_WARNING completion code. Table 30 on page 77
shows the various cases that can arise. In these cases, if the
completion code is not MQCC_OK, the reason code is one of the
following (as appropriate):

 MQRC_INCOMPLETE_GROUP
 MQRC_INCOMPLETE_MSG
 MQRC_INCONSISTENT_UOW

76 MQSeries Application Programming Reference

 MQGMO – Options field

Note: The queue manager does not check the group and
segment information when browsing a queue, or when
closing a queue that was opened for browse but not
input; in those cases the completion code is always
MQCC_OK (assuming no other errors).

Table 30. Outcome when MQGET or MQCLOSE call not consistent with group and segment information

Current call Previous call

MQGET with
MQGMO_LOGICAL_ORDER

MQGET without
MQGMO_LOGICAL_ORDER

MQGET with
MQGMO_LOGICAL_ORDER

MQCC_FAILED MQCC_FAILED

MQGET without
MQGMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated group
or logical message

MQCC_WARNING MQCC_OK

Applications that simply want to retrieve messages and segments in
logical order are recommended to specify
MQGMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the group
and segment information, because the queue manager manages that
information. However, specialized applications may need more
control than provided by the MQGMO_LOGICAL_ORDER option,
and this can be achieved by not specifying that option. If this is
done, the application must ensure that the MsgId, CorrelId, GroupId,
MsgSeqNumber, and Offset fields in MQMD, and the MQMO_ñ options
in MatchOptions in MQGMO, are set correctly, prior to each MQGET
call.

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify
MQGMO_LOGICAL_ORDER. This is because in a complex network
with multiple paths between sending and receiving queue managers,
the physical messages may arrive out of order. By specifying neither
MQGMO_LOGICAL_ORDER, nor the corresponding
MQPMO_LOGICAL_ORDER on the MQPUT call, the forwarding
application can retrieve and forward each physical message as soon
as it arrives, without having to wait for the next one in logical order to
arrive.

MQGMO_LOGICAL_ORDER can be specified with any of the other
MQGMO_ñ options, and with various of the MQMO_ñ options in
appropriate circumstances (see above).

MQGMO_COMPLETE_MSG
Only complete logical messages are retrievable.

This option specifies that only a complete logical message can be
returned by the MQGET call. If the logical message is segmented,
the queue manager reassembles the segments and returns the
complete logical message to the application; the fact that the logical

 Chapter 2. Data type descriptions – structures 77

 MQGMO – Options field

message was segmented is not apparent to the application retrieving
it.

Note: This is the only option that causes the queue manager to
reassemble message segments. If not specified, segments
are returned individually to the application if they are present
on the queue (and they satisfy the other selection criteria
specified on the MQGET call). Applications that do not wish
to receive individual segments should therefore always
specify MQGMO_COMPLETE_MSG.

To use this option, the application must provide a buffer which is big
enough to accommodate the complete message, or specify the
MQGMO_ACCEPT_TRUNCATED_MSG option.

If the queue contains segmented messages with some of the
segments missing (perhaps because they have been delayed in the
network and have not yet arrived), specifying
MQGMO_COMPLETE_MSG prevents the retrieval of segments
belonging to incomplete logical messages. However, those message
segments still contribute to the value of the CurrentQDepth queue
attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero.

For persistent messages, the queue manager can reassemble the
segments only within a unit of work:

� If the MQGET call is operating within a user-defined unit of work,
that unit of work is used. If the call fails partway through the
reassembly process, the queue manager reinstates on the queue
any segments that were removed during reassembly. However,
the failure does not prevent the unit of work being committed
successfully.

� If the call is operating outside a user-defined unit of work, and
there is no user-defined unit of work in existence, the queue
manager creates a unit of work just for the duration of the call. If
the call is successful, the queue manager commits the unit of
work automatically (the application does not need to do this). If
the call fails, the queue manager backs out the unit of work.

� If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is
unable to perform reassembly. If the message does not require
reassembly, the call can still succeed. But if the message does
require reassembly, the call fails with reason code
MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a
unit of work to be available in order to perform reassembly.

Each physical message which is a segment has its own message
descriptor. For the segments constituting a single logical message,
most of the fields in the message descriptor will be the same for all
segments in the logical message – usually it is only the MsgId,
Offset, and MsgFlags fields that differ between segments in the
logical message. However, when segments take different paths
through the network, and some of those paths have MCA sender
conversion enabled, it is possible for the CodedCharSetId and

78 MQSeries Application Programming Reference

 MQGMO – Options field

Encoding fields to differ between segments when the segments
eventually arrive at the destination queue. A logical message
consisting of segments in which the CodedCharSetId and/or Encoding
fields differ cannot be reassembled by the queue manager into a
single logical message. Instead, the queue manager reassembles
and returns the first few consecutive segments at the start of the
logical message that have the same character-set identifiers and
encodings, and the MQGET call completes with completion code
MQCC_WARNING and reason code
MQRC_INCONSISTENT_CCSIDS or
MQRC_INCONSISTENT_ENCODINGS, as appropriate. This
happens regardless of whether MQGMO_CONVERT is specified. To
retrieve the remaining segments, the application must reissue the
MQGET call without the MQGMO_COMPLETE_MSG option,
retrieving the segments one by one. MQGMO_LOGICAL_ORDER
can be used to retrieve the remaining segments in order.

It is also possible for an application which puts segments to set other
fields in the message descriptor to values that differ between
segments. However, there is no advantage in doing this if the
receiving application uses MQGMO_COMPLETE_MSG to retrieve
the logical message. When the queue manager reassembles a
logical message, it returns in the message descriptor the values from
the message descriptor for the first segment; the only exception is
the MsgFlags field, which the queue manager sets to indicate that the
reassembled message is the only segment.

If MQGMO_COMPLETE_MSG is specified for a report message, the
queue manager performs special processing. The queue manager
checks the queue to see if all of the report messages of that report
type relating to the different segments in the logical message are
present on the queue. If they are, they can be retrieved as a single
message by specifying MQGMO_COMPLETE_MSG. For this to be
possible, either the report messages must be generated by a queue
manager or MCA which supports segmentation, or the originating
application must request at least 100 bytes of message data (that is,
the appropriate MQRO_ñ_WITH_DATA or
MQRO_ñ_WITH_FULL_DATA options must be specified). If less
than the full amount of application data is present for a segment, the
missing bytes are replaced by nulls in the report message returned.

If MQGMO_COMPLETE_MSG is specified with
MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR, the browse cursor
must be positioned on a message whose Offset field in MQMD has
a value of 0. If this condition is not satisfied, the call fails with
reason code MQRC_INVALID_MSG_UNDER_CURSOR.

MQGMO_COMPLETE_MSG implies
MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore
be specified.

MQGMO_COMPLETE_MSG can be specified with any of the other
MQGMO_ñ options apart from
MQGMO_SYNCPOINT_IF_PERSISTENT, and with any of the
MQMO_ñ options apart from MQMO_MATCH_OFFSET.

 Chapter 2. Data type descriptions – structures 79

 MQGMO – Options field

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_ALL_MSGS_AVAILABLE
All messages in group must be available.

This option specifies that messages in a group become available for
retrieval only when all messages in the group are available. If the
queue contains message groups with some of the messages missing
(perhaps because they have been delayed in the network and have
not yet arrived), specifying MQGMO_ALL_MSGS_AVAILABLE
prevents retrieval of messages belonging to incomplete groups.
However, those messages still contribute to the value of the
CurrentQDepth queue attribute; this means that there may be no
retrievable message groups, even though CurrentQDepth is greater
than zero. If there are no other messages that are retrievable,
reason code MQRC_NO_MSG_AVAILABLE is returned after the
specified wait interval (if any) has expired.

The processing of MQGMO_ALL_MSGS_AVAILABLE depends on
whether MQGMO_LOGICAL_ORDER is also specified:

� If both options are specified, MQGMO_ALL_MSGS_AVAILABLE
has an effect only when there is no current group or logical
message. If there is a current group or logical message,
MQGMO_ALL_MSGS_AVAILABLE is ignored. This means that
MQGMO_ALL_MSGS_AVAILABLE can remain on when
processing messages in logical order.

� If MQGMO_ALL_MSGS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL_MSGS_AVAILABLE always has an effect. This
means that the option must be turned off after the first message
in the group has been removed from the queue, in order to be
able to remove the remaining messages in the group.

If this option is not specified, messages belonging to groups can be
retrieved even when the group is incomplete.

MQGMO_ALL_MSGS_AVAILABLE implies
MQGMO_ALL_SEGMENTS_AVAILABLE, which need not therefore
be specified.

MQGMO_ALL_MSGS_AVAILABLE can be specified with any of the
other MQGMO_ñ options, and with any of the MQMO_ñ options.

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQGMO_ALL_SEGMENTS_AVAILABLE
All segments in a logical message must be available.

This option specifies that segments in a logical message become
available for retrieval only when all segments in the logical message
are available. If the queue contains segmented messages with some
of the segments missing (perhaps because they have been delayed
in the network and have not yet arrived), specifying
MQGMO_ALL_SEGMENTS_AVAILABLE prevents retrieval of

80 MQSeries Application Programming Reference

 MQGMO – Options field

segments belonging to incomplete logical messages. However those
segments still contribute to the value of the CurrentQDepth queue
attribute; this means that there may be no retrievable logical
messages, even though CurrentQDepth is greater than zero. If there
are no other messages that are retrievable, reason code
MQRC_NO_MSG_AVAILABLE is returned after the specified wait
interval (if any) has expired.

The processing of MQGMO_ALL_SEGMENTS_AVAILABLE depends
on whether MQGMO_LOGICAL_ORDER is also specified:

� If both options are specified,
MQGMO_ALL_SEGMENTS_AVAILABLE has an effect only
when there is no current logical message. If there is a current
logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is
ignored. This means that
MQGMO_ALL_SEGMENTS_AVAILABLE can remain on when
processing messages in logical order.

� If MQGMO_ALL_SEGMENTS_AVAILABLE is specified without
MQGMO_LOGICAL_ORDER,
MQGMO_ALL_SEGMENTS_AVAILABLE always has an effect.
This means that the option must be turned off after the first
segment in the logical message has been removed from the
queue, in order to be able to remove the remaining segments in
the logical message.

If this option is not specified, message segments can be retrieved
even when the logical message is incomplete.

While both MQGMO_COMPLETE_MSG and
MQGMO_ALL_SEGMENTS_AVAILABLE require all segments to be
available before any of them can be retrieved, the former returns the
complete message, whereas the latter allows the segments to be
retrieved one by one.

If MQGMO_ALL_SEGMENTS_AVAILABLE is specified for a report
message, the queue manager performs special processing. The
queue manager checks the queue to see if there is at least one
report message for each of the segments that comprise the complete
logical message. If there is, the
MQGMO_ALL_SEGMENTS_AVAILABLE condition is satisfied.
However, the queue manager does not check the type of the report
messages present, and so there may be a mixture of report types in
the report messages relating to the segments of the logical message.
As a result, the success of MQGMO_ALL_SEGMENTS_AVAILABLE
does not imply that MQGMO_COMPLETE_MSG will succeed. If
there is a mixture of report types present for the segments of a
particular logical message, those report messages must be retrieved
one by one.

MQGMO_ALL_SEGMENTS_AVAILABLE can be specified with any
of the other MQGMO_ñ options, and with any of the MQMO_ñ
options.

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

 Chapter 2. Data type descriptions – structures 81

 MQGMO – WaitInterval field � MQGMO – Signal1 field

MQGMO_NONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. MQGMO_NONE
is defined to aid program documentation; it is not intended that this
option be used with any other, but as its value is zero, such use
cannot be detected.

The initial value of the Options field is MQGMO_NO_WAIT.

WaitInterval (MQLONG)
Wait interval.

This is the approximate time, expressed in milliseconds, that the MQGET
call waits for a suitable message to arrive (that is, a message satisfying
the selection criteria specified in the MsgDesc parameter of the MQGET
call; see the MsgId field described in “MQMD – Message descriptor” on
page 98 for more details). If no suitable message has arrived after this
time has elapsed, the call completes with MQCC_FAILED and reason
code MQRC_NO_MSG_AVAILABLE.

On MVS/ESA, the period of time that the MQGET call actually waits is
affected by system loading and work-scheduling considerations, and can
vary between the value specified for WaitInterval and approximately 250
milliseconds greater than WaitInterval.

WaitInterval is used in conjunction with the MQGMO_WAIT or
MQGMO_SET_SIGNAL option. It is ignored if neither of these is
specified. If one of these is specified, WaitInterval must be greater than
or equal to zero, or the following special value:

MQWI_UNLIMITED
Unlimited wait interval.

The initial value of this field is ð.

Signal1 (MQLONG)
Signal.

This is an input field that is used only in conjunction with the
MQGMO_SET_SIGNAL option; it identifies a signal that is to be delivered
when a message is available. The data type and usage of this field are
determined by the environment; for this reason, signals should not be used
by applications which are intended to be portable between different
environments.

� On MVS/ESA, this field contains the address of an Event Control
Block (ECB). The ECB must be cleared by the application before the
MQGET call is issued. The storage containing the ECB must not be
freed until the queue is closed. The ECB is posted by the queue
manager with one of the signal completion codes described below.
These completion codes are set in bits 2 through 31 of the ECB—the
area defined in the MVS mapping macro IHAECB as being for a user
completion code.

� On 32-bit Windows, this field contains the window handle of a window
to which the signal is sent. If this is zero, the signal is sent to the

82 MQSeries Application Programming Reference

 MQGMO – Signal2 field

thread requesting the signal. The signal is a Windows message with
the identifier specified by the Signal2 field. The message contains a
signal completion code in the WPARAM field.

� In all other environments, this is a reserved field; its value is not
significant.

The signal completion codes are:

MQEC_MSG_ARRIVED
Message has arrived.

A suitable message has arrived on the queue. This message has
not been reserved for the caller; a second MQGET request must be
issued, but note that another application might retrieve the message
before the second request is made.

MQEC_WAIT_INTERVAL_EXPIRED
Requested wait period has expired.

The specified WaitInterval has expired without a suitable message
arriving.

MQEC_WAIT_CANCELED
Requested wait period has been canceled.

The wait was canceled for an indeterminate reason (such as the
queue manager terminating, or the queue being disabled). The
request must be reissued if further diagnosis is required.

MQEC_Q_MGR_QUIESCING
Queue manager quiescing.

The wait was canceled because the queue manager has entered the
quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on
the MQGET call).

MQEC_CONNECTION_QUIESCING
Connection quiescing.

The wait was canceled because the connection has entered the
quiescing state (MQGMO_FAIL_IF_QUIESCING was specified on
the MQGET call).

The initial value of this field is determined by the environment:

� On MVS/ESA, the initial value is the null pointer.
� In all other environments, the initial value is ð.

Signal2 (MQLONG)
Signal identifier.

This is an input field that is used only in conjunction with the
MQGMO_SET_SIGNAL option. The data type and usage of this field are
determined by the environment:

� On 32-bit Windows, this field contains the identifier of a Windows
message that is sent to the application window (as specified by the
Signal1 field) to signal that a suitable message has arrived. The
Windows call RegisterWindowMessage should be used to obtain a
suitable identifier.

 Chapter 2. Data type descriptions – structures 83

 MQGMO – ResolvedQName field � MQGMO – MatchOptions field

� In all other environments, this is a reserved field; its value is not
significant.

The initial value of this field is ð.

ResolvedQName (MQCHAR48)
Resolved name of destination queue.

This is an output field which is set by the queue manager to the local
name of the queue from which the message was retrieved, as defined to
the local queue manager. This will be different from the name used to
open the queue if:

� An alias queue was opened (in which case, the name of the local
queue to which the alias resolved is returned), or

� A model queue was opened (in which case, the name of the dynamic
local queue is returned).

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

The remaining fields in this structure are not present if Version is less than
MQGMO_VERSION_2.

MatchOptions (MQLONG)
Options controlling selection criteria used for MQGET.

These options allow the application to choose which fields in the MsgDesc
parameter will be used to select the message returned by the MQGET
call. The application sets the required options in this field, and then sets
the corresponding fields in the MsgDesc parameter to the values required
for those fields. Only messages that have those values in the MQMD for
the message are candidates for retrieval using that MsgDesc parameter on
the MQGET call. Fields for which the corresponding match option is not
specified are ignored when selecting the message to be returned. If no
selection criteria are to be used on the MQGET call (that is, any message
is acceptable), MatchOptions should be set to MQMO_NONE.

If MQGMO_LOGICAL_ORDER is specified, only certain messages are
eligible for return by the next MQGET call:

� If there is no current group or logical message, only messages that
have MsgSeqNumber equal to 1 and Offset equal to ð are eligible for
return. In this situation, one or more of the following match options
can be used to select which of the eligible messages is the one
actually returned:

 MQMO_MATCH_MSG_ID
 MQMO_MATCH_CORREL_ID
 MQMO_MATCH_GROUP_ID

� If there is a current group or logical message, only the next message
in the group or next segment in the logical message is eligible for
return, and this cannot be altered by specifying MQMO_ñ options.

In both of the above cases, match options which are not applicable can
still be specified, but the value of the relevant field in the MsgDesc
parameter must match the value of the corresponding field in the message

84 MQSeries Application Programming Reference

 MQGMO – MatchOptions field

to be returned; the call fails with reason code
MQRC_MATCH_OPTIONS_ERROR is this condition is not satisfied.

MatchOptions is ignored if either MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR is specified.

One or more of the following match options can be specified:

MQMO_MATCH_MSG_ID
Retrieve message with specified message identifier.

This option specifies that the message to be retrieved must have a
message identifier that matches the value of the MsgId field in the
MsgDesc parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the correlation
identifier).

If this option is not specified, the MsgId field in the MsgDesc parameter
is ignored, and any message identifier will match.

Note: The message identifier MQMI_NONE is a special value that
matches any message identifier in the MQMD for the
message. Therefore, specifying MQMO_MATCH_MSG_ID
with MQMI_NONE is the same as not specifying
MQMO_MATCH_MSG_ID.

MQMO_MATCH_CORREL_ID
Retrieve message with specified correlation identifier.

This option specifies that the message to be retrieved must have a
correlation identifier that matches the value of the CorrelId field in
the MsgDesc parameter of the MQGET call. This match is in addition
to any other matches that may apply (for example, the message
identifier).

If this option is not specified, the CorrelId field in the MsgDesc
parameter is ignored, and any correlation identifier will match.

Note: The correlation identifier MQCI_NONE is a special value that
matches any correlation identifier in the MQMD for the
message. Therefore, specifying
MQMO_MATCH_CORREL_ID with MQCI_NONE is the same
as not specifying MQMO_MATCH_CORREL_ID.

MQMO_MATCH_GROUP_ID
Retrieve message with specified group identifier.

This option specifies that the message to be retrieved must have a
group identifier that matches the value of the GroupId field in the
MsgDesc parameter of the MQGET call. This match is in addition to
any other matches that may apply (for example, the correlation
identifier).

If this option is not specified, the GroupId field in the MsgDesc
parameter is ignored, and any group identifier will match.

Note: The group identifier MQGI_NONE is a special value that
matches any group identifier in the MQMD for the message.
Therefore, specifying MQMO_MATCH_GROUP_ID with
MQGI_NONE is the same as not specifying
MQMO_MATCH_GROUP_ID.

 Chapter 2. Data type descriptions – structures 85

 MQGMO – GroupStatus field

MQMO_MATCH_MSG_SEQ_NUMBER
Retrieve message with specified message sequence number.

This option specifies that the message to be retrieved must have a
message sequence number that matches the value of the
MsgSeqNumber field in the MsgDesc parameter of the MQGET call.
This match is in addition to any other matches that may apply (for
example, the group identifier).

If this option is not specified, the MsgSeqNumber field in the MsgDesc
parameter is ignored, and any message sequence number will
match.

MQMO_MATCH_OFFSET
Retrieve message with specified offset.

This option specifies that the message to be retrieved must have an
offset that matches the value of the Offset field in the MsgDesc
parameter of the MQGET call. This match is in addition to any other
matches that may apply (for example, the message sequence
number).

If this option is not specified, the Offset field in the MsgDesc
parameter is ignored, and any offset will match.

If none of the options described above is specified, the following option
can be used:

MQMO_NONE
No matches.

This option specifies that no matches are to be used in selecting the
message to be returned; therefore, all messages on the queue are
eligible for retrieval (but subject to control by the
MQGMO_ALL_MSGS_AVAILABLE,
MQGMO_ALL_SEGMENTS_AVAILABLE, and
MQGMO_COMPLETE_MSG options).

MQMO_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

This is an input field. The initial value of this field is
MQMO_MATCH_MSG_ID with MQMO_MATCH_CORREL_ID. This field
is not present if Version is less than MQGMO_VERSION_2.

Note: The initial value of the MatchOptions field is defined for
compatibility with earlier MQSeries queue managers. However,
when reading a series of messages from a queue without using
selection criteria, this initial value requires the application to reset
the MsgId and CorrelId fields to MQMI_NONE and MQCI_NONE
prior to each MQGET call. The need to reset MsgId and CorrelId
can be avoided by setting Version to MQGMO_VERSION_2, and
MatchOptions to MQMO_NONE.

GroupStatus (MQCHAR)
Flag indicating whether message retrieved is in a group.

It has one of the following values:

86 MQSeries Application Programming Reference

 MQGMO – SegmentStatus field � MQGMO – Reserved1 field

MQGS_NOT_IN_GROUP
Message is not in a group.

MQGS_MSG_IN_GROUP
Message is in a group, but is not the last in the group.

MQGS_LAST_MSG_IN_GROUP
Message is the last in the group.

This is also the value returned if the group consists of only one
message.

This is an output field. The initial value of this field is
MQGS_NOT_IN_GROUP. This field is not present if Version is less than
MQGMO_VERSION_2.

SegmentStatus (MQCHAR)
Flag indicating whether message retrieved is a segment of a logical
message.

It has one of the following values:

MQSS_NOT_A_SEGMENT
Message is not a segment.

MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical
message.

MQSS_LAST_SEGMENT
Message is the last segment of the logical message.

This is also the value returned if the logical message consists of only
one segment.

This is an output field. The initial value of this field is
MQSS_NOT_A_SEGMENT. This field is not present if Version is less
than MQGMO_VERSION_2.

Segmentation (MQCHAR)
Flag indicating whether further segmentation is allowed for the message
retrieved.

It has one of the following values:

MQSEG_INHIBITED
Segmentation not allowed.

MQSEG_ALLOWED
Segmentation allowed.

This is an output field. The initial value of this field is
MQSEG_INHIBITED. This field is not present if Version is less than
MQGMO_VERSION_2.

Reserved1 (MQCHAR)
Reserved.

This is a reserved field. The initial value of this field is a blank character.
This field is not present if Version is less than MQGMO_VERSION_2.

 Chapter 2. Data type descriptions – structures 87

 MQGMO – Reserved1 field

Table 31. Initial values of fields in MQGMO

Field name Name of constant Value of constant

StrucId MQGMO_STRUC_ID 'GMO␣'
(See note 1)

Version MQGMO_VERSION_1 1

Options MQGMO_NO_WAIT ð

WaitInterval None ð

Signal1 None Null pointer on
MVS/ESA;
ð otherwise

Signal2 None ð

ResolvedQName None Blanks
(See note 2)

MatchOptions MQMO_MATCH_MSG_ID +
MQMO_MATCH_CORREL_ID

3

GroupStatus MQGS_NOT_IN_GROUP '␣'

SegmentStatus MQSS_NOT_A_SEGMENT '␣'

Segmentation MQSEG_INHIBITED '␣'

Reserved1 None '␣'

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQGMO_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQGMO MyGMO = {MQGMO_DEFAULT};

88 MQSeries Application Programming Reference

 MQGMO – C declaration � MQGMO – COBOL declaration

C language declaration
typedef struct tagMQGMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

 MQGET \/
MQLONG WaitInterval; /\ Wait interval \/
MQLONG Signal1; /\ Signal \/
MQLONG Signal2; /\ Signal identifier \/

 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
MQLONG MatchOptions; /\ Options controlling selection criteria

used for MQGET \/
MQCHAR GroupStatus; /\ Flag indicating whether message retrieved

is in a group \/
MQCHAR SegmentStatus; /\ Flag indicating whether message retrieved

is a segment of a logical message \/
MQCHAR Segmentation; /\ Flag indicating whether segmentation is

allowed for the message retrieved \/
MQCHAR Reserved1; /\ Reserved \/

 } MQGMO;

COBOL language declaration
\\ MQGMO structure
 1ð MQGMO.
\\ Structure identifier
 15 MQGMO-STRUCID PIC X(4).
\\ Structure version number

15 MQGMO-VERSION PIC S9(9) BINARY.
\\ Options that control the action of MQGET

15 MQGMO-OPTIONS PIC S9(9) BINARY.
\\ Wait interval

15 MQGMO-WAITINTERVAL PIC S9(9) BINARY.
\\ Signal

15 MQGMO-SIGNAL1 PIC S9(9) BINARY.
\\ Reserved

15 MQGMO-SIGNAL2 PIC S9(9) BINARY.
\\ Resolved name of destination queue

15 MQGMO-RESOLVEDQNAME PIC X(48).
\\ Options controlling selection criteria used for MQGET

15 MQGMO-MATCHOPTIONS PIC S9(9) BINARY.
\\ Flag indicating whether message retrieved is in a group
 15 MQGMO-GROUPSTATUS PIC X.
\\ Flag indicating whether message retrieved is a segment of a
\\ logical message

15 MQGMO-SEGMENTSTATUS PIC X.
\\ Flag indicating whether segmentation is allowed for the
\\ message retrieved
 15 MQGMO-SEGMENTATION PIC X.
\\ Reserved
 15 MQGMO-RESERVED1 PIC X.

 Chapter 2. Data type descriptions – structures 89

 MQGMO – PL/I declaration � MQGMO – TAL declaration

PL/I declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQGMO based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Options fixed bin(31), /\ Options that control the action of

 MQGET \/
3 WaitInterval fixed bin(31), /\ Wait interval \/
3 Signal1 fixed bin(31), /\ Signal \/
3 Signal2 fixed bin(31), /\ Reserved \/
3 ResolvedQName char(48), /\ Resolved name of destination

 queue \/
3 MatchOptions fixed bin(31), /\ Options controlling selection cri-

teria used for MQGET \/
3 GroupStatus char(1), /\ Flag indicating whether message

retrieved is in a group \/
3 SegmentStatus char(1), /\ Flag indicating whether message

retrieved is a segment of a logical
 message \/
3 Segmentation char(1), /\ Flag indicating whether segmentation

is allowed for the message
 retrieved \/
3 Reserved1 char(1); /\ Reserved \/

System/390 assembler-language declaration (MVS/ESA only)
MQGMO DSECT
MQGMO_STRUCID DS CL4 Structure identifier
MQGMO_VERSION DS F Structure version number
MQGMO_OPTIONS DS F Options that control the
\ action of MQGET
MQGMO_WAITINTERVAL DS F Wait interval
MQGMO_SIGNAL1 DS F Signal
MQGMO_SIGNAL2 DS F Reserved
MQGMO_RESOLVEDQNAME DS CL48 Resolved name of destination
\ queue
MQGMO_LENGTH EQU \-MQGMO Length of structure
 ORG MQGMO
MQGMO_AREA DS CL(MQGMO_LENGTH)

| TAL declaration (Tandem NSK only)
| STRUCT MQGMO^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| INT(32) OPTIONS;
| INT(32) WAITINTERVAL;
| INT(32) SIGNAL1;
| INT(32) SIGNAL2;
| STRUCT RESOLVEDQNAME;
| BEGIN STRING BYTE [ð:47]; END;
| END;

90 MQSeries Application Programming Reference

 MQIIH – IMS bridge header

MQIIH – IMS bridge header
The following table summarizes the fields in the structure.

The MQIIH structure describes the information that must be present at the start of a
message sent to the IMS bridge through MQSeries for MVS/ESA. The format
name of this structure is MQFMT_IMS.

Special conditions apply to the character set and encoding used for the MQIIH
structure and application message data:

� Applications that connect to the queue manager which owns the IMS bridge
queue must provide an MQIIH structure that is in the character set and
encoding of the queue manager. This is because data conversion of the
MQIIH structure is not performed in this case.

� Applications that connect to other queue managers can provide an MQIIH
structure that is in any of the supported character sets and encodings;
conversion of the MQIIH and application message data is performed by the
queue manager as necessary.

Note: There is one exception to this. If the queue manager which owns the
IMS bridge queue is using CICS for distributed queuing, the MQIIH
must be in the character set and encoding of that queue manager.

� The application message data following the MQIIH structure must be in the
same character set and encoding as the MQIIH structure. The CodedCharSetId
and Encoding fields in the MQIIH structure cannot be used to specify the
character set and encoding of the application message data.

This structure is not supported in the following environments: 16-bit Windows, 32-bit
Windows.

Table 32. Fields in MQIIH

Field Description Page

StrucId Structure identifier 92

Version Structure version number 92

StrucLength Length of MQIIH structure 92

Format MQ format name 92

LTermOverride Logical terminal override 93

MFSMapName Message format services map name 93

ReplyToFormat MQ format name of reply message 93

Authenticator RACF password or passticket 93

TranInstanceId Transaction instance identifier 94

TranState Transaction state 94

CommitMode Commit mode 94

SecurityScope Security scope 94

 Chapter 2. Data type descriptions – structures 91

 MQIIH – Strucid field � MQIIH – Format field

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQIIH_STRUC_ID
Identifier for IMS information header structure.

For the C programming language, the constant
MQIIH_STRUC_ID_ARRAY is also defined; this has the same value
as MQIIH_STRUC_ID, but is an array of characters instead of a
string.

The initial value of this field is MQIIH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQIIH_VERSION_1
Version number for IMS information header structure.

The following constant specifies the version number of the current version:

MQIIH_CURRENT_VERSION
Current version of IMS information header structure.

The initial value of this field is MQIIH_VERSION_1.

StrucLength (MQLONG)
Length of MQIIH structure.

The value must be:

MQIIH_LENGTH_1
Length of IMS information header structure.

The initial value of this field is MQIIH_LENGTH_1.

Encoding (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is 0.

CodedCharSetId (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is 0.

Format (MQCHAR8)
MQ format name.

This is the MQ format name of the application message data which follows
the MQIIH structure. The rules for coding this are the same as those for
the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

92 MQSeries Application Programming Reference

 MQIIH – Flags field � MQIIH – Authenticator field

Flags (MQLONG)
Reserved.

The value must be:

MQIIH_NONE
No flags.

The initial value of this field is MQIIH_NONE.

LTermOverride (MQCHAR8)
Logical terminal override.

This is placed in the IO PCB field. It is optional; if it is not specified the
TPIPE name is used. It is ignored if the first byte is blank, or null.

The length of this field is given by MQ_LTERM_OVERRIDE_LENGTH.
The initial value of this field is 8 blank characters.

MFSMapName (MQCHAR8)
Message format services map name.

This is placed in the IO PCB field. It is optional. On input it represents
the MID, on output it represents the MOD. It is ignored if the first byte is
blank or null.

The length of this field is given by MQ_MFS_MAP_NAME_LENGTH. The
initial value of this field is 8 blank characters.

ReplyToFormat (MQCHAR8)
MQ format name of reply message.

This is the MQ format name of the reply message which will be sent in
response to the current message. The rules for coding this are the same
as those for the Format field in MQMD.

The length of this field is given by MQ_FORMAT_LENGTH. The initial
value of this field is MQFMT_NONE.

Authenticator (MQCHAR8)
RACF password or passticket.

This is optional; if specified, it is used with the user ID in the MQMD
security context to build a Utoken that is sent to IMS to provide a security
context. If it is not specified, the user ID is used without verification. This
depends on the setting of the RACF switches, which may require an
authenticator to be present.

This is ignored if the first byte is blank or null. The following special value
may be used:

MQIAUT_NONE
No authentication.

For the C programming language, the constant
MQIAUT_NONE_ARRAY is also defined; this has the same value as
MQIAUT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_AUTHENTICATOR_LENGTH. The
initial value of this field is MQIAUT_NONE.

 Chapter 2. Data type descriptions – structures 93

 MQIIH – TranInstanceId field � MQIIH – SecurityScope field

TranInstanceId (MQBYTE16)
Transaction instance identifier.

This field is used by output messages from IMS so is ignored on first
input. If TranState is set to MQITS_IN_CONVERSATION, this must be
provided in the next input, and all subsequent inputs, to enable IMS to
correlate the messages to the correct conversation. The following special
value may be used:

MQITII_NONE
No transaction instance id.

For the C programming language, the constant
MQITII_NONE_ARRAY is also defined; this has the same value as
MQITII_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_TRAN_INSTANCE_ID_LENGTH.
The initial value of this field is MQITII_NONE.

TranState (MQCHAR)
Transaction state.

This indicates the IMS conversation state. This is ignored on first input
because no conversation exists. On subsequent inputs it indicates
whether a conversation is active or not. On output it is set by IMS. The
value must be one of the following:

MQITS_IN_CONVERSATION
In conversation.

MQITS_NOT_IN_CONVERSATION
Not in conversation.

The initial value of this field is MQITS_NOT_IN_CONVERSATION.

CommitMode (MQCHAR)
Commit mode.

See the OTMA User’s Guide for more information about IMS commit
modes. The value must be one of the following:

MQICM_COMMIT_THEN_SEND
Commit then send.

This mode implies double queuing of output, but shorter region
occupancy times. Fast-path and conversational transactions cannot
run with this mode.

MQICM_SEND_THEN_COMMIT
Send then commit.

The initial value of this field is MQICM_COMMIT_THEN_SEND.

SecurityScope (MQCHAR)
Security scope.

This indicates the desired IMS security processing. The value must be
one of the following:

94 MQSeries Application Programming Reference

 MQIIH – Reserved field

MQISS_CHECK
Check security scope.

An ACEE is built in the control region, but not in the dependent
region.

MQISS_FULL
Full security scope.

A cached ACEE is built in the control region and a non-cached
ACEE is built in the dependent region. If you use MQISS_FULL, you
must ensure that the user ID for which the ACEE is built has access
to the resources used in the dependent region.

The initial value of this field is MQISS_CHECK.

Reserved (MQCHAR)
Reserved.

This is a reserved field; it must be blank.

Table 33. Initial values of fields in MQIIH

Field name Name of constant Value of constant

StrucId MQIIH_STRUC_ID 'IIH␣'
(See note 1)

Version MQIIH_VERSION_1 1

StrucLength MQIIH_LENGTH_1 84

Encoding None ð

CodedCharSetId None ð

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

Flags MQIIH_NONE ð

LTermOverride None '␣␣␣␣␣␣␣␣'

MFSMapName None '␣␣␣␣␣␣␣␣'

ReplyToFormat MQFMT_NONE '␣␣␣␣␣␣␣␣'

Authenticator MQIAUT_NONE '␣␣␣␣␣␣␣␣'

TranInstanceId MQITII_NONE Nulls

TranState MQITS_NOT_IN_CONVERSATION '␣'

CommitMode MQICM_COMMIT_THEN_SEND 'ð'

SecurityScope MQISS_CHECK 'C'

Reserved None '␣'

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. In the C programming language, the macro variable MQIIH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQIIH MyIIH = {MQIIH_DEFAULT};

 Chapter 2. Data type descriptions – structures 95

 MQIIH – C declaration � MQIIH – COBOL declaration

C language declaration
typedef struct tagMQIIH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG StrucLength; /\ Length of MQIIH structure \/
MQLONG Encoding; /\ Reserved \/
MQLONG CodedCharSetId; /\ Reserved \/
MQCHAR8 Format; /\ Format name \/
MQLONG Flags; /\ Reserved \/
MQCHAR8 LTermOverride; /\ Logical terminal override \/
MQCHAR8 MFSMapName; /\ Message format services map name \/
MQCHAR8 ReplyToFormat; /\ Format name of reply message \/
MQCHAR8 Authenticator; /\ RACF password or passticket \/

 MQBYTE16 TranInstanceId; /\ Transaction instance id \/
MQCHAR TranState; /\ Transaction state \/
MQCHAR CommitMode; /\ Commit mode \/
MQCHAR SecurityScope; /\ Security scope \/
MQCHAR Reserved; /\ Reserved \/

 } MQIIH;

COBOL language declaration
\\ MQIIH structure
 1ð MQIIH.
\\ Structure identifier
 15 MQIIH-STRUCID PIC X(4).
\\ Structure version number

15 MQIIH-VERSION PIC S9(9) BINARY.
\\ Length of MQIIH structure

15 MQIIH-STRUCLENGTH PIC S9(9) BINARY.
\\ Reserved

15 MQIIH-ENCODING PIC S9(9) BINARY.
\\ Reserved

15 MQIIH-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name
 15 MQIIH-FORMAT PIC X(8).
\\ Reserved

15 MQIIH-FLAGS PIC S9(9) BINARY.
\\ Logical terminal override
 15 MQIIH-LTERMOVERRIDE PIC X(8).
\\ Message format services map name
 15 MQIIH-MFSMAPNAME PIC X(8).
\\ Format name of reply message
 15 MQIIH-REPLYTOFORMAT PIC X(8).
\\ RACF password or passticket
 15 MQIIH-AUTHENTICATOR PIC X(8).
\\ Transaction instance id

15 MQIIH-TRANINSTANCEID PIC X(16).
\\ Transaction state
 15 MQIIH-TRANSTATE PIC X.
\\ Commit mode
 15 MQIIH-COMMITMODE PIC X.
\\ Security scope
 15 MQIIH-SECURITYSCOPE PIC X.
\\ Reserved
 15 MQIIH-RESERVED PIC X.

96 MQSeries Application Programming Reference

 MQIIH – PL/I declaration � MQIIH – S/390 assembler declaration

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQIIH based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 StrucLength fixed bin(31), /\ Length of MQIIH structure \/
3 Encoding fixed bin(31), /\ Reserved \/
3 CodedCharSetId fixed bin(31), /\ Reserved \/
3 Format char(8), /\ Format name \/
3 Flags fixed bin(31), /\ Reserved \/
3 LTermOverride char(8), /\ Logical terminal override \/
3 MFSMapName char(8), /\ Message format services map name \/
3 ReplyToFormat char(8), /\ Format name of reply message \/
3 Authenticator char(8), /\ RACF password or passticket \/
3 TranInstanceId char(16), /\ Transaction instance id \/
3 TranState char(1), /\ Transaction state \/
3 CommitMode char(1), /\ Commit mode \/
3 SecurityScope char(1), /\ Security scope \/
3 Reserved char(1); /\ Reserved \/

System/390 assembler-language declaration (MVS/ESA only)
MQIIH DSECT
MQIIH_STRUCID DS CL4 Structure identifier
MQIIH_VERSION DS F Structure version number
MQIIH_STRUCLENGTH DS F Length of MQIIH structure
MQIIH_ENCODING DS F Reserved
MQIIH_CODEDCHARSETID DS F Reserved
MQIIH_FORMAT DS CL8 Format name
MQIIH_FLAGS DS F Reserved
MQIIH_LTERMOVERRIDE DS CL8 Logical terminal override
MQIIH_MFSMAPNAME DS CL8 Message format services map
\ name
MQIIH_REPLYTOFORMAT DS CL8 Format name of reply message
MQIIH_AUTHENTICATOR DS CL8 RACF password or passticket
MQIIH_TRANINSTANCEID DS XL16 Transaction instance id
MQIIH_TRANSTATE DS CL1 Transaction state
MQIIH_COMMITMODE DS CL1 Commit mode
MQIIH_SECURITYSCOPE DS CL1 Security scope
MQIIH_RESERVED DS CL1 Reserved
MQIIH_LENGTH EQU \-MQIIH Length of structure
 ORG MQIIH
MQIIH_AREA DS CL(MQIIH_LENGTH)

 Chapter 2. Data type descriptions – structures 97

 MQMD – Message descriptor

MQMD – Message descriptor
The following table summarizes the fields in the structure.

The MQMD structure contains the control information that accompanies the
application data when a message travels between the sending and receiving
applications.

Table 34. Fields in MQMD

Field Description Page

StrucId Structure identifier 100

Version Structure version number 100

Report Options for report messages 101

MsgType Message type 112

Expiry Message lifetime 113

Feedback Feedback or reason code 115

Encoding Data encoding 118

CodedCharSetId Coded character set identifier 118

Format Format name 119

Priority Message priority 124

Persistence Message persistence 125

MsgId Message identifier 126

CorrelId Correlation identifier 128

BackoutCount Backout counter 129

ReplyToQ Name of reply queue 130

ReplyToQMgr Name of reply queue manager 131

UserIdentifier User identifier 131

AccountingToken Accounting token 133

ApplIdentityData Application data relating to identity 134

PutApplType Type of application that put the message 134

PutApplName Name of application that put the message 136

PutDate Date when message was put 137

PutTime Time when message was put 138

ApplOriginData Application data relating to origin 139

Note: The remaining fields are supported only in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

GroupId Group identifier 139

MsgSeqNumber Sequence number of logical message within
group

141

Offset Offset of data in physical message from start of
logical message.

141

MsgFlags Message flags 142

OriginalLength Length of original message 147

98 MQSeries Application Programming Reference

 MQMD – Message descriptor

Character data in the message descriptor is in the character set of the queue
manager to which the application is connected; this is given by the CodedCharSetId
queue-manager attribute. Numeric data in the message descriptor is in the native
machine encoding (given by MQENC_NATIVE).

If the sending and receiving queue managers use different character sets or
encodings, the data in the message descriptor is converted automatically—it is not
necessary for the receiving application to perform these conversions.

If the application message data requires conversion, this can be accomplished by
means of a user-written exit invoked when the message is retrieved using the
MQGET call. For further information, see:

� The MQGMO_CONVERT option described in “MQGMO – Get-message
options” on page 56

� The usage note describing MQGMO_CONVERT in “MQGET – Get message”
on page 273

� MQSeries Application Programming Guide

When a message is on a transmission queue, some of the fields in MQMD are set
to particular values; see “MQXQH – Transmission queue header” on page 227 for
details.

The current version of MQMD is MQMD_VERSION_2. Fields that exist only in the
version-2 structure are identified as such in the descriptions that follow. The
declarations of MQMD provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, but the initial value
provided for the Version field is MQMD_VERSION_1; this ensures compatibility
with existing applications. To use the new fields, the application must set the
version number to MQMD_VERSION_2. A declaration for the version-1 structure is
available with the name MQMD1. Applications which are intended to be portable
between several environments should use a version-2 MQMD only if all of those
environments support version 2.

The version-2 structure is supported in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

A version-2 MQMD is generally equivalent to using a version-1 MQMD and
prefixing the application message data with an MQMDE structure. However, if all
of the fields in the MQMDE structure have their default values, the MQMDE can be
omitted. A version-1 MQMD plus MQMDE are used as follows:

� On the MQPUT and MQPUT1 calls, if the application provides a version-1
MQMD, the application can optionally prefix the message data with an
MQMDE, setting the Format field in MQMD to MQFMT_MD_EXTENSION to
indicate that an MQMDE is present. If the application does not provide an
MQMDE, the queue manager assumes default values for the fields in the
MQMDE.

Note: Several of the fields that exist in the version-2 MQMD but not the
version-1 MQMD are input/output fields on MQPUT and MQPUT1.
However, the queue manager does not return any values in the
equivalent fields in the MQMDE on output from the MQPUT and
MQPUT1 calls; if the application requires those output values, it must
use a version-2 MQMD.

 Chapter 2. Data type descriptions – structures 99

 MQMD – Strucid field � MQMD – Version field

� On the MQGET call, if the application provides a version-1 MQMD, the queue
manager prefixes the message returned with an MQMDE, but only if one or
more of the fields in the MQMDE has a non-default value. The Format field in
MQMD will have the value MQFMT_MD_EXTENSION to indicate that an
MQMDE is present.

The default values that the queue manager used for the fields in the MQMDE are
the same as the initial values of those fields, shown in Table 38 on page 158.

This structure is an input/output parameter for the MQGET, MQPUT, and MQPUT1
calls.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQMD_STRUC_ID
Identifier for message descriptor structure.

For the C programming language, the constant
MQMD_STRUC_ID_ARRAY is also defined; this has the same value
as MQMD_STRUC_ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQMD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQMD_VERSION_1
Version-1 message descriptor structure.

This version is supported in all environments.

MQMD_VERSION_2
Version-2 message descriptor structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

| Note: When a version-2 MQMD is used, the queue manager
| performs additional checks on any MQ header structures that
| may be present at the beginning of the application message
| data; for further details see usage note 3 on page 320 for the
| MQPUT call.

The following constant specifies the version number of the current version:

MQMD_CURRENT_VERSION
Current version of message descriptor structure.

100 MQSeries Application Programming Reference

 MQMD – Report field

This is always an input field. The initial value of this field is
MQMD_VERSION_1.

Report (MQLONG)
Options for report messages.

A report is a message about another message, used to inform an
application about expected or unexpected events that relate to the original
message. The Report field enables the application sending the original
message to specify which report messages are required, whether the
application message data is to be included in them, and also (for both
reports and replies) how the message and correlation identifiers in the
report or reply message are to be set. Any or all (or none) of the following
report types can be requested:

 � Exception
 � Expiration
� Confirm on arrival (COA)
� Confirm on delivery (COD)
� Positive action notification (PAN)
� Negative action notification (NAN)

If more than one type of report message is required, or other report
options are needed, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming
language supports bit operations).

The application that receives the report message can determine the
reason the report was generated by examining the Feedback field in the
MQMD; see the Feedback field for more details.

Exception options : You can specify one of the following to request an
exception report message:

MQRO_EXCEPTION
Exception reports required.

This type of report can be generated by a message channel agent
when a message is sent to another queue manager and the
message cannot be delivered to the specified destination queue. For
example, the destination queue or an intermediate transmission
queue might be full, or the message might be too big for the queue.

| Generation of the exception report message depends on the
| persistence of the original message, and the speed of the message
| channel (normal or fast) through which the original message travels:

| � For all persistent messages, and for nonpersistent messages
| traveling through normal message channels, the exception report
| is generated only if the action specified by the sending
| application for the error condition can be completed successfully.
| The sending application can specify one of the following actions
| to control the disposition of the original message when the error
| condition arises:

| – MQRO_DEAD_LETTER_Q (this causes the original message
| to be placed on the dead-letter queue).

 Chapter 2. Data type descriptions – structures 101

 MQMD – Report field

| – MQRO_DISCARD_MSG (this causes the original message to
| be discarded).

| If the action specified by the sending application cannot be
| completed successfully, the original message is left on the
| transmission queue, and no exception report message is
| generated.

| � For nonpersistent messages traveling through fast message
| channels, the original message is removed from the transmission
| queue and the exception report generated even if the specified
| action for the error condition cannot be completed successfully.
| For example, if MQRO_DEAD_LETTER_Q is specified, but the
| original message cannot be placed on the dead-letter queue
| because (say) that queue is full, the exception report message is
| generated and the original message discarded.

| Refer to the MQSeries Intercommunication book for more
| information about normal and fast message channels.

An exception report is not generated if the application that put the
original message can be notified synchronously of the problem by
means of the reason code returned by the MQPUT or MQPUT1 call.

Applications can also send exception reports, to indicate that a
message that it has received cannot be processed (for example,
because it is a debit transaction that would cause the account to
exceed its credit limit).

Message data from the original message is not included with the
report message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_DATA
Exception reports with data required.

This is the same as MQRO_EXCEPTION, except that the first 100
bytes of the application message data from the original message are
included in the report message. If the length of the message data in
the original message is less than 100 bytes, the length of the
message data in the report is the same length as the original
message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

MQRO_EXCEPTION_WITH_FULL_DATA
Exception reports with full data required.

This is the same as MQRO_EXCEPTION, except that all of the
application message data from the original message is included in
the report message.

Do not specify more than one of MQRO_EXCEPTION,
MQRO_EXCEPTION_WITH_DATA, and
MQRO_EXCEPTION_WITH_FULL_DATA.

102 MQSeries Application Programming Reference

 MQMD – Report field

On MVS/ESA, the MQRO_EXCEPTION_WITH_FULL_DATA option
is not supported.

Expiration options : You can specify one of the following to request an
expiration report message:

MQRO_EXPIRATION
Expiration reports required.

This type of report is generated by the queue manager if the
message is discarded prior to delivery to an application because its
expiry time has passed (see the Expiry field). If this option is not
set, no report message is generated if a message is discarded for
this reason (even if one of the MQRO_EXCEPTION_ñ options is
specified).

Message data from the original message is not included with the
report message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_DATA
Expiration reports with data required.

This is the same as MQRO_EXPIRATION, except that the first 100
bytes of the application message data from the original message are
included in the report message. If the length of the message data in
the original message is less than 100 bytes, the length of the
message data in the report is the same length as the original
message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

MQRO_EXPIRATION_WITH_FULL_DATA
Expiration reports with full data required.

This is the same as MQRO_EXPIRATION, except that all of the
application message data from the original message is included in
the report message.

Do not specify more than one of MQRO_EXPIRATION,
MQRO_EXPIRATION_WITH_DATA, and
MQRO_EXPIRATION_WITH_FULL_DATA.

On MVS/ESA, the MQRO_EXPIRATION_WITH_FULL_DATA option
is not supported.

Confirm-on-arrival options : You can specify one of the following to
request a confirm-on-arrival report message:

MQRO_COA
Confirm-on-arrival reports required.

This type of report is generated by the queue manager that owns the
destination queue, when the message is placed on the destination
queue. Message data from the original message is not included with
the report message.

 Chapter 2. Data type descriptions – structures 103

 MQMD – Report field

If the message is put as part of a unit of work, and the destination
queue is a local queue, the COA report message generated by the
queue manager becomes available for retrieval only if and when the
unit of work is committed.

A COA report is not generated if the Format field in the message
descriptor is MQFMT_XMIT_Q_HEADER or
MQFMT_DEAD_LETTER_HEADER. This prevents a COA report
being generated if the message is put on a transmission queue, or is
undeliverable and put on a dead-letter queue.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_DATA
Confirm-on-arrival reports with data required.

This is the same as MQRO_COA, except that the first 100 bytes of
the application message data from the original message are included
in the report message. If the length of the message data in the
original message is less than 100 bytes, the length of the message
data in the report is the same length as the original message.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

MQRO_COA_WITH_FULL_DATA
Confirm-on-arrival reports with full data required.

This is the same as MQRO_COA, except that all of the application
message data from the original message is included in the report
message.

Do not specify more than one of MQRO_COA,
MQRO_COA_WITH_DATA, and MQRO_COA_WITH_FULL_DATA.

On MVS/ESA, the MQRO_COA_WITH_FULL_DATA option is not
supported.

Confirm-on-delivery options : You can specify one of the following to
request a confirm-on-delivery report message:

MQRO_COD
Confirm-on-delivery reports required.

This type of report is generated by the queue manager when an
application retrieves the message from the destination queue in a
way that causes the message to be deleted from the queue.
Message data from the original message is not included with the
report message.

If the message is retrieved as part of a unit of work, the report
message is generated within the same unit of work, so that the
report is not available until the unit of work is committed. If the unit
of work is backed out, the report is not sent.

A COD report is not always generated if a message is retrieved with
the MQGMO_MARK_SKIP_BACKOUT option. If the primary unit of
work is backed out but the secondary unit of work is committed, the
message is removed from the queue, but a COD report is not
generated.

104 MQSeries Application Programming Reference

 MQMD – Report field

A COD report is not generated if the Format field in the message
descriptor is MQFMT_DEAD_LETTER_HEADER. This prevents a
COD report being generated if the message is undeliverable and put
on a dead-letter queue.

MQRO_COD is not valid if the destination queue is an XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_DATA
Confirm-on-delivery reports with data required.

This is the same as MQRO_COD, except that the first 100 bytes of
the application message data from the original message are included
in the report message. If the length of the message data in the
original message is less than 100 bytes, the length of the message
data in the report is the same length as the original message.

Note that any truncation of the original message on retrieval (using
the MQGMO_ACCEPT_TRUNCATED_MSG option) has no effect on
the size of the message data in the COD report.

MQRO_COD_WITH_DATA is not valid if the destination queue is an
XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

MQRO_COD_WITH_FULL_DATA
Confirm-on-delivery reports with full data required.

This is the same as MQRO_COD, except that all of the application
message data from the original message is included in the report
message.

MQRO_COD_WITH_FULL_DATA is not valid if the destination
queue is an XCF queue.

Do not specify more than one of MQRO_COD,
MQRO_COD_WITH_DATA, and MQRO_COD_WITH_FULL_DATA.

On MVS/ESA, the MQRO_COD_WITH_FULL_DATA option is not
supported.

Action-notification options : You can specify one or both of the following
to request that the receiving application send a positive-action or
negative-action report message:

MQRO_PAN
Positive action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in
the message has been performed successfully. The application
generating the report determines whether or not any data is to be
included with the report.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this
option. It is the responsibility of the retrieving application to generate
the report if appropriate.

 Chapter 2. Data type descriptions – structures 105

 MQMD – Report field

MQRO_NAN
Negative action notification reports required.

This type of report is generated by the application that retrieves the
message and acts upon it. It indicates that the action requested in
the message has not been performed successfully. The application
generating the report determines whether or not any data is to be
included with the report. For example, it may be desirable to include
some data indicating why the request could not be performed.

Other than conveying this request to the application retrieving the
message, the queue manager takes no action based upon this
option. It is the responsibility of the retrieving application to generate
the report if appropriate.

Determination of which conditions correspond to a positive action and
which correspond to a negative action is the responsibility of the
application. However, it is recommended that if the request has been only
partially performed, a NAN report rather than a PAN report should be
generated if requested. It is also recommended that every possible
condition should correspond to either a positive action, or a negative
action, but not both.

Message-identifier options : You can specify one of the following to
control how the MsgId of the report message (or of the reply message) is
to be set:

MQRO_NEW_MSG_ID
New message identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, a new MsgId is to be
generated for the report or reply message.

MQRO_PASS_MSG_ID
Pass message identifier.

If a report or reply is generated as a result of this message, the
MsgId of this message is to be copied to the MsgId of the report or
reply message.

If this option is not specified, MQRO_NEW_MSG_ID is assumed.

Correlation-identifier options : You can specify one of the following to
control how the CorrelId of the report message (or of the reply message)
is to be set:

MQRO_COPY_MSG_ID_TO_CORREL_ID
Copy message identifier to correlation identifier.

This is the default action, and indicates that if a report or reply is
generated as a result of this message, the MsgId of this message is
to be copied to the CorrelId of the report or reply message.

MQRO_PASS_CORREL_ID
Pass correlation identifier.

If a report or reply is generated as a result of this message, the
CorrelId of this message is to be copied to the CorrelId of the
report or reply message.

106 MQSeries Application Programming Reference

 MQMD – Report field

If this option is not specified,
MQRO_COPY_MSG_ID_TO_CORREL_ID is assumed.

Servers replying to requests or generating report messages are
recommended to check whether the MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID options were set in the original message. If
they were, the servers should take the action described for those options.
If neither is set, the servers should take the corresponding default action.

Disposition options : You can specify one of the following to control the
disposition of the original message when it cannot be delivered to the
destination queue:

MQRO_DEAD_LETTER_Q
Place message on dead-letter queue.

This is the default action, and indicates that the message should be
placed on the dead-letter queue, if the message cannot be delivered
to the destination queue. An exception report message will be
generated, if one was requested by the sender.

MQRO_DISCARD_MSG
Discard message.

This indicates that the message should be discarded if it cannot be
delivered to the destination queue. An exception report message will
be generated, if one was requested by the sender.

On MVS/ESA, the MQRO_DISCARD_MSG option is not supported.

If it is desired to return the original message to the sender, without
the original message being placed on the dead-letter queue, the
sender should specify MQRO_DISCARD_MSG with
MQRO_EXCEPTION_WITH_FULL_DATA.

Default option : You can specify the following if no report options are
required:

MQRO_NONE
No reports required.

This value can be used to indicate that no other options have been
specified. MQRO_NONE is defined to aid program documentation.
It is not intended that this option be used with any other, but as its
value is zero, such use cannot be detected.

General information : All report types required must be specifically
requested by the application sending the original message. For example,
if a COA report is requested, but an exception report is not (with or without
the data option in either case), a COA report is generated when the
message is placed on the destination queue, but no exception report is
generated if the destination queue is full when the message arrives there.
If no Report options are set, no report messages are generated by the
queue manager or message channel agent.

Some report options can be specified even though the local queue
manager does not recognize them; this is useful when the option is to be
processed by the destination queue manager. See Appendix C, “Report
options and message flags” on page 489 for more details.

 Chapter 2. Data type descriptions – structures 107

 MQMD – Report field

If a report message is requested, the name of the queue to which the
report should be sent must be specified in the ReplyToQ field. When a
report message is received, the nature of the report can be determined by
examining the Feedback field in the message descriptor.

If the queue manager or message channel agent that generates a report
message is unable to put the report message on the reply queue (for
example, because the reply queue or transmission queue is full), the
report message is placed instead on the dead-letter queue. If that also
fails, or there is no dead-letter queue, the action taken depends on the
type of the report message:

� If the report message is an exception report, the message which
caused the exception report to be generated is left on its transmission
queue; this ensures that the message is not lost.

� For all other report types, the report message is discarded and
processing continues normally. This is done because either the
original message has already been delivered safely (for COA or COD
report messages), or is no longer of any interest (for an expiration
report message).

Once a report message has been placed successfully on a queue (either
the destination queue or an intermediate transmission queue), the
message is no longer subject to special processing — it is treated just like
any other message.

When the report is generated, the ReplyToQ queue is opened to put the
report using the authority of the UserIdentifier of the original message,
except in the following cases:

� Exception reports generated by a receiving message channel agent
use the same authority as was used to put the original message.

� COA reports generated by the queue manager use the same authority
as was used to put the original message.

Applications generating reports should normally use the same authority as
they would have used to generate a reply; this should normally be the
authority of the user ID in the original message.

If the report has to travel to a remote destination, senders and receivers
can decide whether or not to accept it, in the same way as they do for
other messages.

If a report message with data is requested:

� The report message is always generated with the amount of data
requested by the sender of the original message. If the report
message is too big for the reply queue, the processing described
above occurs; the report message is never truncated in order to fit on
the reply queue.

� If the Format of the original message is MQFMT_XMIT_Q_HEADER,
the data included in the report does not include the MQXQH. The
report data starts with the first byte of the data beyond the MQXQH in
the original message. This occurs whether or not the queue is a
transmission queue.

108 MQSeries Application Programming Reference

 MQMD – Report field

If a COA, COD, or expiration report message is received at the reply
queue, it is guaranteed that the original message arrived, was delivered, or
expired, as appropriate. However, if one or more of these report
messages is requested and is not received, the reverse cannot be
assumed, since one of the following may have occurred:

1. The report message is held up because a link is down.

2. The report message is held up because a blocking condition exists at
an intermediate transmission queue or at the reply queue (for
example, the queue is full or inhibited for puts).

3. The report message is on a dead-letter queue.

4. When the queue manager was attempting to generate the report
message, it was unable to put it on the appropriate queue, and was
also unable to put it on the dead-letter queue, so the report message
could not be generated.

5. A failure of the queue manager occurred between the action being
reported (arrival, delivery or expiry), and generation of the
corresponding report message. (This does not happen for COD report
messages if the application retrieves the original message within a unit
of work, as the COD report message is generated within the same unit
of work.)

Exception report messages may be held up in the same way for reasons
1, 2, and 3 above. However, when a message channel agent is unable to
generate an exception report message (the report message cannot be put
either on the reply queue or the dead-letter queue), the original message
remains on the transmission queue at the sender, and the channel is
closed. This occurs irrespective of whether the report message was to be
generated at the sending or the receiving end of the channel.

If the original message is temporarily blocked (resulting in an exception
report message being generated and the original message being put on a
dead-letter queue), but the blockage clears and an application then reads
the original message from the dead-letter queue and puts it again to its
destination, the following may occur:

� Even though an exception report message has been generated, the
original message eventually arrives successfully at its destination.

� More than one exception report message is generated in respect of a
single original message, since the original message may encounter
another blockage later.

Report messages for message segments : Report messages can be
requested for messages that have segmentation allowed (see the
description of the MQMF_SEGMENTATION_ALLOWED flag). If the
queue manager finds it necessary to segment the message, a report
message can be generated for each of the segments that subsequently
encounters the relevant condition. Applications should therefore be
prepared to receive multiple report messages for each type of report
message requested. The GroupId field in the report message can be used
to correlate the multiple reports with the group identifier of the original
message, and the Feedback field used to identify the type of each report
message.

 Chapter 2. Data type descriptions – structures 109

 MQMD – Report field

If MQGMO_LOGICAL_ORDER is used to retrieve report messages for
segments, be aware that reports of different types may be returned by the
successive MQGET calls. For example, if both COA and COD reports are
requested for a message that is segmented by the queue manager, the
MQGET calls for the report messages may return the COA and COD
report messages interleaved in an unpredictable fashion. This can be
avoided by using the MQGMO_COMPLETE_MSG option (optionally with
MQGMO_ACCEPT_TRUNCATED_MSG). MQGMO_COMPLETE_MSG
causes the queue manager to reassemble report messages that have the
same report type. For example, the first MQGET call might reassemble all
of the COA messages relating to the original message, and the second
MQGET call might reassemble all of the COD messages. Which is
reassembled first depends on which type of report message happens to
occur first on the queue.

Applications that themselves put segments can specify different report
options for each segment. However, the following points should be noted:

� If the segments are retrieved using the MQGMO_COMPLETE_MSG
option, only the report options in the first segment are honored by the
queue manager.

� If the segments are retrieved one by one, and most of them have one
of the MQRO_COD_ñ options, but at least one segment does not, it
will not be possible to use the MQGMO_COMPLETE_MSG option to
retrieve the report messages with a single MQGET call, or use the
MQGMO_ALL_SEGMENTS_AVAILABLE option to detect when all of
the report messages have arrived.

In an MQ network, it is possible for the queue managers to have differing
capabilities. If a report message for a segment is generated by a queue
manager or MCA that does not support segmentation, the queue manager
or MCA will not by default include the necessary segment information in
the report message, and this may make it difficult to identify the original
message that caused the report to be generated. This difficulty can be
avoided by requesting data with the report message, that is, by specifying
the appropriate MQRO_ñ_WITH_DATA or MQRO_ñ_WITH_FULL_DATA
options. However, be aware that if MQRO_ñ_WITH_DATA is specified,
less than 100 bytes of application message data may be returned to the
application which retrieves the report message, if the report message is
generated by a queue manager or MCA that does not support
segmentation.

Contents of the message descriptor for a report message : When the
queue manager or message channel agent generates a report message, it
sets the fields in the message descriptor to the following values, and then
puts the message in the normal way:

Field in MQMD Value used
StrucId MQMD_STRUC_ID
Version MQMD_VERSION_1
Report MQRO_NONE
MsgType MQMT_REPORT
Expiry MQEI_UNLIMITED

110 MQSeries Application Programming Reference

 MQMD – Report field

Feedback As appropriate for the nature of the report
(MQFB_COA, MQFB_COD, MQFB_EXPIRATION,
or an MQRC_ñ value)

Encoding Copied from the original message descriptor
CodedCharSetId Copied from the original message descriptor
Format Copied from the original message descriptor
Priority Copied from the original message descriptor
Persistence Copied from the original message descriptor
MsgId As specified by the report options in the original

message descriptor
CorrelId As specified by the report options in the original

message descriptor
 BackoutCount 0

ReplyToQ Blanks
ReplyToQMgr Name of queue manager
UserIdentifier As set by the

MQPMO_PASS_IDENTITY_CONTEXT option
AccountingToken As set by the

MQPMO_PASS_IDENTITY_CONTEXT option
ApplIdentityData As set by the

MQPMO_PASS_IDENTITY_CONTEXT option
PutApplType MQAT_QMGR, or as appropriate for the message

channel agent
PutApplName First 28 bytes of the queue-manager name or

message channel agent name. For report
messages generated by the IMS bridge, this field
contains the XCF group name and XCF member
name of the IMS system to which the message
relates.

PutDate Date when report message is sent
PutTime Time when report message is sent
ApplOriginData Blanks
GroupId Copied from the original message descriptor
MsgSeqNumber Copied from the original message descriptor
Offset Copied from the original message descriptor
MsgFlags Copied from the original message descriptor
OriginalLength Copied from the original message descriptor if not

MQOL_UNDEFINED, and set to the length of the
original message data otherwise

An application generating a report is recommended to set similar values,
except for the following:

� The ReplyToQMgr field can be set to blanks (the queue manager will
change this to the name of the local queue manager when the
message is put).

� The context fields should be set using the option that would have been
used for a reply, normally MQPMO_PASS_IDENTITY_CONTEXT.

Analyzing the report field : The Report field contains subfields; because
of this, applications that need to check whether the sender of the message
requested a particular report should use one of the techniques described
in “Analyzing the report field” on page 491.

 Chapter 2. Data type descriptions – structures 111

 MQMD – MsgType field

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQRO_NONE.

MsgType (MQLONG)
Message type.

This indicates the type of the message. Message types are grouped as
follows:

MQMT_SYSTEM_FIRST
Lowest value for system-defined message types.

MQMT_SYSTEM_LAST
Highest value for system-defined message types.

The following values are currently defined within the system range:

MQMT_DATAGRAM
Message not requiring a reply.

The message is one that does not require a reply.

MQMT_REQUEST
Message requiring a reply.

The message is one that requires a reply.

The name of the queue to which the reply should be sent must be
specified in the ReplyToQ field. The Report field indicates how the
MsgId and CorrelId of the reply are to be set.

MQMT_REPLY
Reply to an earlier request message.

The message is the reply to an earlier request message
(MQMT_REQUEST). The message should be sent to the queue
indicated by the ReplyToQ field of the request message. The Report
field of the request should be used to control how the MsgId and
CorrelId of the reply are set.

Note: The queue manager does not enforce the request-reply
relationship; this is an application responsibility.

MQMT_REPORT
Report message.

The message is reporting on some expected or unexpected
occurrence, usually related to some other message (for example, a
request message was received which contained data that was not
valid). The message should be sent to the queue indicated by the
ReplyToQ field of the message descriptor of the original message.
The Feedback field should be set to indicate the nature of the report.
The Report field of the original message can be used to control how
the MsgId and CorrelId of the report message should be set.

Report messages generated by the queue manager or message
channel agent are always sent to the ReplyToQ queue, with the
Feedback and CorrelId fields set as described above.

112 MQSeries Application Programming Reference

 MQMD – Expiry field

Other values within the system range may be defined in future versions of
the MQI, and are accepted by the MQPUT and MQPUT1 calls without
error.

Application-defined values can also be used. They must be within the
following range:

MQMT_APPL_FIRST
Lowest value for application-defined message types.

MQMT_APPL_LAST
Highest value for application-defined message types.

For the MQPUT and MQPUT1 calls, the MsgType value must be within
either the system-defined range or the application-defined range; if it is
not, the call fails with reason code MQRC_MSG_TYPE_ERROR.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQMT_DATAGRAM.

Expiry (MQLONG)
Message lifetime.

This is a period of time expressed in tenths of a second, set by the
application that puts the message. The message becomes eligible to be
discarded if it has not been removed from the destination queue before
this period of time elapses.

The value is decremented to reflect the time the message spends on the
destination queue, and also on any intermediate transmission queues if
the put is to a remote queue. It may also be decremented by message
channel agents to reflect transmission times, if these are significant.
Likewise, an application forwarding this message to another queue might
decrement the value if necessary, if it has retained the message for a
significant time. However, the expiration time is treated as approximate,
and the value need not be decremented to reflect small time intervals.

When the message is retrieved by an application using the MQGET call,
the Expiry field represents the amount of the original expiry time that still
remains.

After a message’s expiry time has elapsed, it becomes eligible to be
discarded by the queue manager. It is not defined, however, precisely

| when a message that is eligible for discarding is actually discarded. The
| discard often happens when a nonbrowse MQGET call occurs that would
| have returned the message had it not already expired (for example, a
| nonbrowse MQGET call with the MatchOptions field in MQGMO set to
| MQMO_NONE), but the discard can occur earlier or later than this.

A message that has expired is never returned to an application (either by
a browse or a nonbrowse MQGET call), so the value in the Expiry field of
the message descriptor after a successful MQGET call is either greater
than zero, or the special value MQEI_UNLIMITED.

If a message is put on a remote queue, the message may expire (and be
discarded) whilst it is on an intermediate transmission queue, before the
message reaches the destination queue.

 Chapter 2. Data type descriptions – structures 113

 MQMD – Expiry field

A report is generated when an expired message is discarded, if the
message specified one of the MQRO_EXPIRATION_ñ report options. If
none of these options is specified, no such report is generated; the
message is assumed to be no longer relevant after this time period
(perhaps because a later message has superseded it).

Any other program that discards messages based on expiry time must
also send an appropriate report message if one was requested.

Notes:

1. If a message is put with an Expiry time of zero, the MQPUT or
MQPUT1 call fails with reason code MQRC_EXPIRY_ERROR; no
report message is generated in this case.

2. Since a message whose expiry time has elapsed may not actually be
discarded until later, there may be messages on a queue that have
passed their expiry time, and which are not therefore eligible for
retrieval. These messages nevertheless count towards the number of
messages on the queue for all purposes, including depth triggering.

3. An expiration report is generated, if requested, when the message is
actually discarded, not when it becomes eligible for discarding.

4. Discarding of an expired message, and the generation of an expiration
report if requested, are never part of the application’s unit of work,
even if the message was scheduled for discarding as a result of an
MQGET call operating within a unit of work.

5. If a nearly-expired message is retrieved by an MQGET call within a
unit of work, and the unit of work is subsequently backed out, the
message may become eligible to be discarded before it can be
retrieved again.

6. If a nearly-expired message is locked by an MQGET call with
MQGMO_LOCK, the message may become eligible to be discarded
before it can be retrieved by an MQGET call with
MQGMO_MSG_UNDER_CURSOR; reason code
MQRC_NO_MSG_UNDER_CURSOR is returned on this subsequent
MQGET call if that happens.

7. Servers should not normally reflect the unused expiry time of a request
in the reply; the default action should be to put the reply with
MQEI_UNLIMITED. However, the default action for putting messages
to a dead-letter (undelivered-message) queue is to preserve the
outstanding expiry time of the message, and to continue to decrement
it.

8. Trigger messages are always generated with MQEI_UNLIMITED.

9. A message (normally on a transmission queue) which has a Format
name of MQFMT_XMIT_Q_HEADER has a second message
descriptor within the MQXQH. It therefore has two Expiry fields
associated with it. The following additional points should be noted in
this case:

� When an application puts a message on a remote queue, the
queue manager places the message initially on a local
transmission queue, and prefixes the application message data
with an MQXQH structure. The queue manager sets the values of

114 MQSeries Application Programming Reference

 MQMD – Feedback field

the two Expiry fields to be the same as that specified by the
application.

If an application puts a message directly on a local transmission
queue, the message data must already begin with an MQXQH
structure, and the format name must be
MQFMT_XMIT_Q_HEADER (but the queue manager does not
enforce this). In this case the application need not set the values
of these two Expiry fields to be the same. (The queue manager
does not check that the Expiry field within the MQXQH contains a
valid value, or even that the message data is long enough to
include it.)

� When a message with a Format name of
MQFMT_XMIT_Q_HEADER is retrieved from a queue (whether
this is a normal or a transmission queue), the queue manager
decrements both these Expiry fields with the time spent waiting on
the queue. No error is raised if the message data is not long
enough to include the Expiry field in the MQXQH.

� The queue manager uses the Expiry field in the separate
message descriptor (that is, not the one in the message descriptor
embedded within the MQXQH structure) to test whether the
message is eligible for discarding.

� If the initial values of the two Expiry fields were different, it is
therefore possible for the Expiry time in the separate message
descriptor when the message is retrieved to be greater than zero
(so the message is not eligible for discarding), while the time
according to the Expiry field in the MQXQH has elapsed. In this
case the Expiry field in the MQXQH is set to zero.

The following special value is recognized:

MQEI_UNLIMITED
Unlimited lifetime.

The message has an unlimited expiration time.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQEI_UNLIMITED.

Feedback (MQLONG)
Feedback or reason code.

This is used with a message of type MQMT_REPORT to indicate the
nature of the report, and is only meaningful with that type of message.

Feedback codes are grouped as follows:

MQFB_NONE
No feedback provided.

MQFB_SYSTEM_FIRST
Lowest value for system-generated feedback.

MQFB_SYSTEM_LAST
Highest value for system-generated feedback.

The range of system-generated feedback codes

 Chapter 2. Data type descriptions – structures 115

 MQMD – Feedback field

MQFB_SYSTEM_FIRST through MQFB_SYSTEM_LAST includes
the special feedback codes (MQFB_ñ) listed below, and also the
reason codes (MQRC_ñ) that can occur when the message cannot
be put on the destination queue.

MQFB_APPL_FIRST
Lowest value for application-generated feedback.

MQFB_APPL_LAST
Highest value for application-generated feedback.

Applications that generate report messages should not use feedback
codes in the system range (other than MQFB_QUIT), unless they wish to
simulate report messages generated by the queue manager or message
channel agent.

On the MQPUT or MQPUT1 calls, the value specified must be within
either the system range or the application range. This is checked
whatever the value of MsgType.

Special feedback codes are:

MQFB_EXPIRATION
Message expired.

Message was discarded because it had not been removed from the
destination queue before its expiry time had elapsed.

MQFB_COA
Confirmation of arrival on the destination queue (see MQRO_COA).

MQFB_COD
Confirmation of delivery to the receiving application (see
MQRO_COD).

MQFB_PAN
Positive action notification (see MQRO_PAN).

MQFB_NAN
Negative action notification (see MQRO_NAN).

MQFB_QUIT
Application should end.

This can be used by a workload scheduling program to control the
number of instances of an application program that are running.
Sending an MQMT_REPORT message with this feedback code to an
instance of the application program indicates to that instance that it
should stop processing. However, adherence to this convention is a
matter for the application; it is not enforced by the queue manager.

The following feedback codes are related to the IMS bridge:

MQFB_DATA_LENGTH_ZERO
Data length zero.

A segment length was zero in the application data of the message.

MQFB_DATA_LENGTH_NEGATIVE
Data length negative.

A segment length was negative in the application data of the
message.

116 MQSeries Application Programming Reference

 MQMD – Feedback field

MQFB_DATA_LENGTH_TOO_BIG
Data length too big.

A segment length was too big in the application data of the message.

MQFB_BUFFER_OVERFLOW
Buffer overflow.

The value of one of the length fields would cause the data to
overflow the MQSeries message buffer.

MQFB_LENGTH_OFF_BY_ONE
Length in error by one.

The value of one of the length fields was one byte too short.

MQFB_IIH_ERROR
MQIIH structure not valid or missing.

The Format field in MQMD specifies MQFMT_IMS, but the message
does not begin with a valid MQIIH structure.

MQFB_NOT_AUTHORIZED_FOR_IMS
Userid not authorized for use in IMS.

The user ID contained in the message descriptor MQMD, or the
password contained in the Authenticator field in the MQIIH
structure, failed the validation performed by the IMS bridge. As a
result the message was not passed to IMS.

MQFB_IMS_ERROR
Unexpected error returned by IMS.

An unexpected error was returned by IMS. Consult the MQSeries
error log on the system on which the IMS bridge resides for more
information about the error.

MQFB_IMS_FIRST
Lowest value for IMS-generated feedback.

IMS-generated feedback codes occupy the range MQFB_IMS_FIRST
through MQFB_IMS_LAST. The IMS error code itself is Feedback
minus MQFB_IMS_ERROR.

MQFB_IMS_LAST
Highest value for IMS-generated feedback.

For exception report messages, Feedback contains a reason code. Among
possible reason codes are:

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of
messages.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

 Chapter 2. Data type descriptions – structures 117

 MQMD – Encoding field � MQMD – CodedCharSetId field

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

MQRC_MSG_TOO_BIG_FOR_Q_MGR
(2031, X'7EF') Message length greater than maximum for queue
manager.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

For a full list of reason codes, see “Reason code” on page 383.

This is an output field for the MQGET call, and an input field for MQPUT
and MQPUT1 calls. The initial value of this field is MQFB_NONE.

Encoding (MQLONG)
Data encoding.

This identifies the representation used for numeric values in the application
message data; this applies to binary integer data, packed-decimal integer
data, and floating-point data. The following value is defined:

MQENC_NATIVE
Native machine encoding.

The encoding is the default for the programming language and
machine on which the application is running.

Note: The value of this constant is programming-language and
environment specific.

The queue manager does not validate the contents of this field.

Applications that put messages should normally specify MQENC_NATIVE.
Applications that retrieve messages should compare this field against the
value MQENC_NATIVE; if the values differ, the application may need to
convert numeric data in the message. See Appendix B, “Machine
encodings” on page 485 for details of how this field is constructed.

If the MQGMO_CONVERT option is specified on the MQGET call, this
field is an input/output field. The value specified by the application is the
encoding to which the message data should be converted if necessary. If
conversion is successful or unnecessary, the value is unchanged. If
conversion is unsuccessful, the value after the MQGET call represents the
encoding of the unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is
MQENC_NATIVE.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of character data in the
application message data.

Note that character data in the message descriptor and the other MQI data
structures must be in the character set used by the queue manager. This
is defined by the queue manager’s CodedCharSetId attribute; see
“Attributes for the queue manager” on page 370 for details of this attribute.

118 MQSeries Application Programming Reference

 MQMD – Format field

The following values are defined:

MQCCSI_Q_MGR
Queue manager’s coded character set identifier.

Character data in the application message data is in the queue
manager’s character set.

MQCCSI_EMBEDDED
Embedded coded character set identifiers.

The coded character-set identifier for character data in the message
is embedded within the application message data itself. There can
be any number of character-set identifiers embedded within the
message, applying to different parts of the message.

Specify this value only on the MQPUT and MQPUT1 calls. If it is
specified on the MQGET call, it prevents conversion of the message.

On the MQPUT and MQPUT1 calls, the queue manager changes the
value MQCCSI_Q_MGR to the value of the queue manager’s
CodedCharSetId attribute; as a result, the value MQCCSI_Q_MGR is never
returned by the MQGET call. No other check is carried out on the value
specified.

Applications that retrieve messages should compare this field against the
value the application is expecting; if the values differ, the application may
need to convert character data in the message.

If the MQGMO_CONVERT option is specified on the MQGET call, this
field is an input/output field. The value specified by the application is the
coded character-set identifier to which the message data should be
converted if necessary. If conversion is successful or unnecessary, the
value is unchanged (except that the value MQCCSI_Q_MGR is converted
to the actual value). If conversion is unsuccessful, the value after the
MQGET call represents the coded character-set identifier of the
unconverted message that is returned to the application.

Otherwise, this is an output field for the MQGET call, and an input field for
the MQPUT and MQPUT1 calls. The initial value of this field is
MQCCSI_Q_MGR.

Format (MQCHAR8)
Format name.

This is a name that the sender of the message may use to indicate to the
receiver the nature of the data in the message. Any characters that are in
the queue manager’s character set may be specified for the name, but it is
recommended that the name be restricted to the following:

� Uppercase A through Z
� Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field, or a null
character used to terminate the name before the end of the field; the null
and any subsequent characters are treated as blanks. Do not specify a
name with leading or embedded blanks. For the MQGET call, the queue
manager returns the name padded with blanks to the length of the field.

 Chapter 2. Data type descriptions – structures 119

 MQMD – Format field

The queue manager does not check that the name complies with the
recommendations described above.

Names beginning “MQ” have meanings that are defined by the queue
manager; you should not use names beginning with these letters for your
own formats. The queue manager built-in formats are:

MQFMT_NONE
No format name.

The nature of the application message data is undefined. This
means that the data cannot be converted when the message is
retrieved from a queue.

Note: If MQGMO_CONVERT is specified on the MQGET call for a
message that has a format name of MQFMT_NONE, and the
character set or encoding of the message differs from that
specified in the MsgDesc parameter, the message is still
returned in the Buffer parameter (assuming no other errors),
but the call completes with completion code
MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

For the C programming language, the constant
MQFMT_NONE_ARRAY is also defined; this has the same value as
MQFMT_NONE, but is an array of characters instead of a string.

MQFMT_ADMIN
Command server request/reply message.

The message is a command-server request or reply message in
programmable command format (PCF). Messages of this format can
be converted if the MQGMO_CONVERT option is specified on the
MQGET call. Refer to the MQSeries Programmable Command
Formats for more information about programmable command format.

For the C programming language, the constant
MQFMT_ADMIN_ARRAY is also defined; this has the same value as
MQFMT_ADMIN, but is an array of characters instead of a string.

| MQFMT_CICS
| CICS information header.

| The message data begins with the CICS information header MQCIH,
| which is followed by the application data. The format name of the
| application data is given by the Format field in the MQCIH structure.

| On MVS/ESA, the MQGMO_CONVERT option can be specified on
| the MQGET call to convert messages that have format
| MQFMT_CICS.

| For the C programming language, the constant
| MQFMT_CICS_ARRAY is also defined; this has the same value as
| MQFMT_CICS, but is an array of characters instead of a string.

MQFMT_COMMAND_1
Type 1 command reply message.

The message is an MQSC command-server reply message
containing the object count, completion code, and reason code.

120 MQSeries Application Programming Reference

 MQMD – Format field

Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_COMMAND_1_ARRAY is also defined; this has the same
value as MQFMT_COMMAND_1, but is an array of characters
instead of a string.

MQFMT_COMMAND_2
Type 2 command reply message.

The message is an MQSC command-server reply message
containing information about the object(s) requested. Messages of
this format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

For the C programming language, the constant
MQFMT_COMMAND_2_ARRAY is also defined; this has the same
value as MQFMT_COMMAND_2, but is an array of characters
instead of a string.

MQFMT_DEAD_LETTER_HEADER
Dead-letter header.

The message data begins with the dead-letter header MQDLH. The
data from the original message immediately follows the MQDLH
structure. The format name of the original message data is given by
the Format field in the MQDLH structure; see “MQDLH – Dead-letter
header” on page 45 for details of this structure. Messages of this
format can be converted if the MQGMO_CONVERT option is
specified on the MQGET call.

COA and COD reports are not generated for messages which have a
Format of MQFMT_DEAD_LETTER_HEADER.

For the C programming language, the constant
MQFMT_DEAD_LETTER_HEADER_ARRAY is also defined; this has
the same value as MQFMT_DEAD_LETTER_HEADER, but is an
array of characters instead of a string.

MQFMT_DIST_HEADER
Distribution-list header.

The message data begins with the distribution-list header MQDH;
this includes the arrays of MQOR and MQPMR records. The
distribution-list header may be followed by additional data. The
format of the additional data (if any) is given by the Format field in
the MQDH structure; see “MQDH – Distribution header” on page 39
for details of this structure. Messages with format
MQFMT_DIST_HEADER can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_DIST_HEADER_ARRAY is also defined; this has the same
value as MQFMT_DIST_HEADER, but is an array of characters
instead of a string.

 Chapter 2. Data type descriptions – structures 121

 MQMD – Format field

MQFMT_EVENT
Event message.

The message is an MQ event message that reports an event that
occurred. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call. Event
messages have the same structure as programmable commands;
refer to the MQSeries Programmable Command Formats for more
information about this structure.

For the C programming language, the constant
MQFMT_EVENT_ARRAY is also defined; this has the same value as
MQFMT_EVENT, but is an array of characters instead of a string.

MQFMT_IMS
IMS information header.

The message data begins with the IMS information header MQIIH,
which is followed by the application data. The format name of the
application data is given by the Format field in the MQIIH structure.

In the following environments, the MQGMO_CONVERT option can
be specified on the MQGET call to convert messages that have
format MQFMT_IMS: AIX, DOS client, HP-UX, MVS/ESA, OS/2,
OS/400, Sun Solaris, Windows client, Windows NT.

For the C programming language, the constant
MQFMT_IMS_ARRAY is also defined; this has the same value as
MQFMT_IMS, but is an array of characters instead of a string.

MQFMT_IMS_VAR_STRING
IMS variable string.

The message is an IMS variable string, which is a string of the form
llzzccc, where:

ll is a 2-byte length field specifying the total length of the IMS
variable string item. This length is equal to the length of ll (2
bytes), plus the length of zz (2 bytes), plus the length of the
character string itself. ll is a 2-byte binary integer in the
encoding specified by the Encoding field.

zz is a 2-byte field containing flags that are significant to IMS.
zz is a byte string consisting of two MQBYTE fields, and is
transmitted without change from sender to receiver (that is, zz
is not subject to any conversion).

ccc is a variable-length character string containing ll-4
characters. ccc is in the character set specified by the the
CodedCharSetId field.

In the following environments, the MQGMO_CONVERT option can
be specified on the MQGET call to convert messages that have
format MQFMT_IMS: AIX, DOS client, HP-UX, MVS/ESA, OS/2,
OS/400, Sun Solaris, Windows client, Windows NT.

For the C programming language, the constant
MQFMT_IMS_VAR_STRING_ARRAY is also defined; this has the
same value as MQFMT_IMS_VAR_STRING, but is an array of
characters instead of a string.

122 MQSeries Application Programming Reference

 MQMD – Format field

MQFMT_MD_EXTENSION
Message-descriptor extension.

The message data begins with the message-descriptor extension
MQMDE, and is optionally followed by other data (usually the
application message data). The format name, character set, and
encoding of the data which follows the MQMDE is given by the
Format, CodedCharSetId, and Encoding fields in the MQMDE. See
“MQMDE – Message descriptor extension” on page 153 for details of
this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_MD_EXTENSION_ARRAY is also defined; this has the
same value as MQFMT_MD_EXTENSION, but is an array of
characters instead of a string.

MQFMT_PCF
User-defined message in programmable command format (PCF).

The message is a user-defined message that conforms to the
structure of a programmable command format (PCF) message.
Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call. Refer
to the MQSeries Programmable Command Formats for more
information about programmable command format.

For the C programming language, the constant
MQFMT_PCF_ARRAY is also defined; this has the same value as
MQFMT_PCF, but is an array of characters instead of a string.

MQFMT_REF_MSG_HEADER
Reference message header.

The message data begins with the reference message header
MQRMH, and is optionally followed by other data. The format name,
character set, and encoding of the data is given by the Format,
CodedCharSetId, and Encoding fields in the MQRMH. See “MQMDE
– Message descriptor extension” on page 153 for details of this
structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

This format is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

For the C programming language, the constant
MQFMT_REF_MSG_HEADER_ARRAY is also defined; this has the
same value as MQFMT_REF_MSG_HEADER, but is an array of
characters instead of a string.

MQFMT_STRING
Message consisting entirely of characters.

The application message data can be either an SBCS string
(single-byte character set), or a DBCS string (double-byte character

 Chapter 2. Data type descriptions – structures 123

 MQMD – Priority field

set). Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_STRING_ARRAY is also defined; this has the same value
as MQFMT_STRING, but is an array of characters instead of a
string.

MQFMT_TRIGGER
Trigger message.

The message is a trigger message, described by the MQTM
structure; see “MQTM – Trigger message” on page 209 for details of
this structure. Messages of this format can be converted if the
MQGMO_CONVERT option is specified on the MQGET call.

For the C programming language, the constant
MQFMT_TRIGGER_ARRAY is also defined; this has the same value
as MQFMT_TRIGGER, but is an array of characters instead of a
string.

MQFMT_XMIT_Q_HEADER
Transmission queue header.

The message data begins with the transmission queue header
MQXQH. The data from the original message immediately follows
the MQXQH structure. The format name of the original message
data is given by the Format field in the MQMD structure which is part
of the transmission queue header MQXQH. See “MQXQH –
Transmission queue header” on page 227 for details of this
structure.

COA and COD reports are not generated for messages which have a
Format of MQFMT_XMIT_Q_HEADER.

For the C programming language, the constant
MQFMT_XMIT_Q_HEADER_ARRAY is also defined; this has the
same value as MQFMT_XMIT_Q_HEADER, but is an array of
characters instead of a string.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_FORMAT_LENGTH. The initial value of this field is MQFMT_NONE.

Priority (MQLONG)
Message priority.

For the MQPUT and MQPUT1 calls, the value must be greater than or
equal to zero; zero is the lowest priority.

On MVS/ESA, the value must be in the range zero through MaxPriority
(see “Attributes for the queue manager” on page 370).

The following special value can also be used:

MQPRI_PRIORITY_AS_Q_DEF
Default priority for queue.

The priority for the message is taken from the DefPriority attribute
for the destination queue, as defined at the local queue manager.
The value of DefPriority is copied into the Priority field when the

124 MQSeries Application Programming Reference

 MQMD – Persistence field

message is put. If DefPriority is changed subsequently, messages
that have already been put are not affected.

If there is more than one definition in the queue-name resolution
path, the default priority is taken from the value of this attribute in the
first definition in the path (even if this is a queue-manager alias).

When replying to a message, applications should normally use for the
reply message the priority of the request message. In other situations,
defaulting to the queue definition allows priority tuning to be carried out
without changing the application.

If a message is put with a priority greater than the maximum supported by
the local queue manager (this maximum is given by the MaxPriority
queue-manager attribute), the message is accepted by the queue
manager, but placed on the queue at the queue manager’s maximum
priority; the MQPUT or MQPUT1 call completes with MQCC_WARNING
and reason code MQRC_PRIORITY_EXCEEDS_MAXIMUM. However,
the Priority field retains the value specified by the application which put
the message.

On MVS/ESA, the call fails with completion code MQCC_FAILED and
reason code MQRC_PRIORITY_ERROR if the message is put with a
priority greater than the maximum supported by the local queue manager.

The value returned by the MQGET call is always greater than or equal to
zero; the value MQPRI_PRIORITY_AS_Q_DEF is never returned.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQPRI_PRIORITY_AS_Q_DEF.

Persistence (MQLONG)
Message persistence.

For the MQPUT and MQPUT1 calls, the value must be one of the
following:

MQPER_PERSISTENT
Message is persistent.

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be put on temporary dynamic
queues; persistent messages can however be put on permanent
dynamic queues, and predefined queues.

Once a persistent message has been put (or the unit of work
committed, if the put request is part of a unit of work), the message
is available on auxiliary storage until such time as the message is
removed from the queue (or the unit of work committed, if the get
request is part of a unit of work).

When a persistent message is sent to a remote queue, a
store-and-forward mechanism is used to hold the message at each
queue manager along the route to the destination, until the message
is known to have arrived at the next queue manager.

 Chapter 2. Data type descriptions – structures 125

 MQMD – MsgId field

MQPER_NOT_PERSISTENT
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

MQPER_PERSISTENCE_AS_Q_DEF
Message has default persistence.

The persistence for the message is taken from the DefPersistence
attribute for the destination queue, as defined at the local queue
manager. The value of DefPersistence is copied into the
Persistence field when the message is put. If DefPersistence is
changed subsequently, messages that have already been put are not
affected.

If there is more than one definition in the queue-name resolution
path, the default persistence is taken from the value of this attribute
in the first definition in the path (even if this is a queue-manager
alias).

Both persistent and nonpersistent messages can exist on the same queue.

When replying to a message, applications should normally use for the
reply message the persistence of the request message. In other
situations, defaulting to the queue definition allows persistence to be
changed without changing the application.

For an MQGET call, the value returned is either MQPER_PERSISTENT or
MQPER_NOT_PERSISTENT.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The initial value of this field is
MQPER_PERSISTENCE_AS_Q_DEF.

MsgId (MQBYTE24)
Message identifier.

This is a byte string that is used to distinguish one message from another.
Generally, no two messages should have the same message identifier,
although this is not disallowed by the queue manager. The message
identifier is a permanent property of the message, and persists across
restarts of the queue manager. Because the message identifier is a byte
string and not a character string, the message identifier is not converted
between character sets when the message flows from one queue manager
to another.

For the MQPUT and MQPUT1 calls, if MQMI_NONE or
MQPMO_NEW_MSG_ID is specified by the application, the queue
manager generates a unique message identifier4 when the message is put,

4 A MsgId generated by the queue manager consists of a 4-byte product identifier (‘AMQ␣’ or ‘CSQ␣’ in either ASCII or EBCDIC,
where ‘␣’ represents a blank), followed by a product-specific implementation of a unique string. In MQSeries this contains the first
12 characters of the queue-manager name, and a value derived from the system clock. All queue managers that can
intercommunicate must therefore have names that differ in the first 12 characters, in order to ensure that message identifiers are
unique. The ability to generate a unique string also depends upon the system clock not being changed backward. To eliminate
the possibility of a message identifier generated by the queue manager duplicating one generated by the application, the
application should avoid generating identifiers with initial characters in the range A through I in ASCII or EBCDIC (X'41' through

126 MQSeries Application Programming Reference

 MQMD – MsgId field

and places it in the message descriptor sent with the message. The
queue manager also returns this message identifier in the message
descriptor belonging to the sending application. The application can use
this value to record information about particular messages, and to respond
to queries from other parts of the application.

If the message is being put to a distribution list, the queue manager
generates unique message identifiers as necessary, but the value of the
MsgId field in MQMD is unchanged on return from the call, even if
MQMI_NONE or MQPMO_NEW_MSG_ID was specified. If the application
needs to know the message identifiers generated by the queue manager,
the application must provide MQPMR records containing the MsgId field.

The sending application can also specify a particular value for the
message identifier, other than MQMI_NONE; this stops the queue
manager generating a unique message identifier. An application that is
forwarding a message can use this facility to propagate the message
identifier of the original message.

The queue manager does not itself make any use of this field except to:

� Generate a unique value if requested, as described above

� Deliver the value to the application that issues the get request for the
message

� Copy the value to the CorrelId field of any report message that it
generates about this message (depending on the Report options)

When the queue manager or a message channel agent generates a report
message, it sets the MsgId field in the way specified by the Report field of
the original message, either MQRO_NEW_MSG_ID or
MQRO_PASS_MSG_ID. Applications that generate report messages
should also do this.

For the MQGET call, MsgId is one of the five fields that can be used to
select a particular message to be retrieved from the queue. Normally the
MQGET call returns the next message on the queue, but if a particular
message is required, this can be obtained by specifying one or more of
the five selection criteria, in any combination; these fields are:

 MsgId
 CorrelId
 GroupId
 MsgSeqNumber
 Offset

The application sets one or more of these field to the values required, and
then sets the corresponding MQMO_ñ match options in the MatchOptions
field in MQGMO to indicate that those fields should be used as selection
criteria. Only messages that have the specified values in those fields are
candidates for retrieval. The default for the MatchOptions field (if not
altered by the application) is to match both the message identifier and the
correlation identifier.

X'49' and X'C1' through X'C9'). However, the application is not prevented from generating identifiers with initial characters in
these ranges.

 Chapter 2. Data type descriptions – structures 127

 MQMD – CorrelId field

Normally, the message returned is the first message on the queue that
satisfies the selection criteria. But if MQGMO_BROWSE_NEXT is
specified, the message returned is the next message that satisfies the
selection criteria; the scan for this message starts with the message
following the current cursor position.

Note: The queue is scanned sequentially for a message that satisfies the
selection criteria, so retrieval times will be slower than if no
selection criteria are specified, especially if many messages have
to be scanned before a suitable one is found.

See Table 29 on page 75 for more information about how selection
criteria are used in various situations.

Specifying MQMI_NONE as the message identifier has the same effect as
not specifying MQMO_MATCH_MSG_ID, that is, any message identifier
will match.

This field is ignored if the MQGMO_MSG_UNDER_CURSOR option is
specified in the GetMsgOpts parameter on the MQGET call.

On return from an MQGET call, the MsgId field is set to the message
identifier of the message returned (if any).

The following special value may be used:

MQMI_NONE
No message identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQMI_NONE_ARRAY is also defined; this has the same value as
MQMI_NONE, but is an array of characters instead of a string.

This is an input/output field for the MQGET, MQPUT, and MQPUT1 calls.
The length of this field is given by MQ_MSG_ID_LENGTH. The initial
value of this field is MQMI_NONE.

CorrelId (MQBYTE24)
Correlation identifier.

This is a byte string that the application can use to relate one message to
another, or to relate the message to other work that the application is
performing. The correlation identifier is a permanent property of the
message, and persists across restarts of the queue manager. Because
the correlation identifier is a byte string and not a character string, the
correlation identifier is not converted between character sets when the
message flows from one queue manager to another.

For the MQPUT and MQPUT1 calls, the application can specify any value.
The queue manager transmits this value with the message and delivers it
to the application that issues the get request for the message.

If the application specifies MQPMO_NEW_CORREL_ID, the queue
manager generates a unique correlation identifier which is sent with the
message, and also returned to the sending application on output from the
MQPUT or MQPUT1 call.

When the queue manager or a message channel agent generates a report
message, it sets the CorrelId field in the way specified by the Report field

128 MQSeries Application Programming Reference

 MQMD – BackoutCount field

of the original message, either MQRO_COPY_MSG_ID_TO_CORREL_ID
or MQRO_PASS_CORREL_ID. Applications which generate report
messages should also do this.

For the MQGET call, CorrelId is one of the five fields that can be used to
select a particular message to be retrieved from the queue. See the
description of the MsgId field for details of how to specify values for this
field.

Specifying MQCI_NONE as the correlation identifier has the same effect
as not specifying MQMO_MATCH_CORREL_ID, that is, any correlation
identifier will match.

If the MQGMO_MSG_UNDER_CURSOR option is specified in the
GetMsgOpts parameter on the MQGET call, this field is ignored.

On return from an MQGET call, the CorrelId field is set to the correlation
identifier of the message returned (if any).

The following special value may be used:

MQCI_NONE
No correlation identifier is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQCI_NONE_ARRAY is also defined; this has the same value as
MQCI_NONE, but is an array of characters instead of a string.

| MQCI_NEW_SESSION
| Message is the start of a new session.

| This value is recognized by the CICS bridge as indicating the start of
| a new session, that is, the start of a new sequence of messages.

| For the C programming language, the constant
| MQCI_NEW_SESSION_ARRAY is also defined; this has the same
| value as MQCI_NEW_SESSION, but is an array of characters
| instead of a string.

For the MQGET call, this is an input/output field. For the MQPUT and
MQPUT1 calls, this is an input field if MQPMO_NEW_CORREL_ID is not
specified, and an output field if MQPMO_NEW_CORREL_ID is specified.
The length of this field is given by MQ_CORREL_ID_LENGTH. The initial
value of this field is MQCI_NONE.

BackoutCount (MQLONG)
Backout counter.

This is a count of the number of times the message has been previously
returned by the MQGET call as part of a unit of work, and subsequently
backed out. It is provided as an aid to the application in detecting
processing errors that are based on message content. The count
excludes MQGET calls that specified the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options.

The accuracy of this count is affected by the HardenGetBackout local
queue attribute; see “Attributes for local queues and model queues” on
page 348.

 Chapter 2. Data type descriptions – structures 129

 MQMD – ReplyToQ field

On MVS/ESA, a value of 255 means that the message has been backed
out 255 or more times; the value returned is never greater than 255.

| On Tandem NSK, a backout count is maintained for each message. This
| count is an estimate of the number of times, within a single queue
| manager association, a message has been returned to an application on
| consecutive nonbrowse MQGET calls, and subsequently backed out under
| TMF control. The backout count is not saved to disk, and is therefore not
| guaranteed to be accurate. The backout count is reset to zero when an
| implicit or explicit MQDISC call is issued, when an MQGET call returns a
| different message, and at queue manager restart.

This is an output field for the MQGET call. It is ignored for the MQPUT
and MQPUT1 calls. The initial value of this field is ð.

ReplyToQ (MQCHAR48)
Name of reply queue.

This is the name of the message queue to which the application that
issued the get request for the message should send MQMT_REPLY and
MQMT_REPORT messages. The name is the local name of a queue that
is defined on the queue manager identified by ReplyToQMgr. This queue
should not be a model queue, although the sending queue manager does
not verify this when the message is put.

For the MQPUT and MQPUT1 calls, this field must not be blank if the
MsgType field has the value MQMT_REQUEST, or if any reports are
requested by the Report field. However, the value specified (or
substituted; see below) is passed on to the application that issues the get
request for the message, whatever the message type.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its own queue definitions. If a local definition of a
remote queue exists with this name, the ReplyToQ value in the transmitted
message is replaced by the value of the RemoteQName attribute from the
definition of the remote queue, and this value will be returned in the
message descriptor when the receiving application issues an MQGET call
for the message. If a local definition of a remote queue does not exist,
ReplyToQ is unchanged.

If the name is specified, it may contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise,
however, no check is made that the name satisfies the naming rules for
queues; this is also true for the name transmitted, if the ReplyToQ is
replaced in the transmitted message. The only check made is that a
name has been specified, if the circumstances require it.

If a reply-to queue is not required, it is recommended (although this is not
checked) that the ReplyToQ field should be set to blanks, or (in the C
programming language) to the null string, or to one or more blanks
followed by a null character; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

If a message that requires a report message cannot be delivered, and the
report message also cannot be delivered to the queue specified, both the
original message and the report message go to the dead-letter

130 MQSeries Application Programming Reference

 MQMD – ReplyToQMgr field � MQMD – UserIdentifier field

(undelivered-message) queue (see the DeadLetterQName attribute
described in “Attributes for the queue manager” on page 370).

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ReplyToQMgr (MQCHAR48)
Name of reply queue manager.

This is the name of the queue manager to which the reply message or
report message should be sent. ReplyToQ is the local name of a queue
that is defined on this queue manager.

If the ReplyToQMgr field is blank, the local queue manager looks up the
ReplyToQ name in its queue definitions. If a local definition of a remote
queue exists with this name, the ReplyToQMgr value in the transmitted
message is replaced by the value of the RemoteQMgrName attribute from the
definition of the remote queue, and this value will be returned in the
message descriptor when the receiving application issues an MQGET call
for the message. If a local definition of a remote queue does not exist, the
ReplyToQMgr that is transmitted with the message is the name of the local
queue manager.

If the name is specified, it may contain trailing blanks; the first null
character and characters following it are treated as blanks. Otherwise,
however, no check is made that the name satisfies the naming rules for
queue managers, or that this name is known to the sending queue
manager; this is also true for the name transmitted, if the ReplyToQMgr is
replaced in the transmitted message. For more information about names,
see the MQSeries Application Programming Guide.

If a reply-to queue is not required, it is recommended (although this is not
checked) that the ReplyToQMgr field should be set to blanks, or (in the C
programming language) to the null string, or to one or more blanks
followed by a null character; the field should not be left uninitialized.

For the MQGET call, the queue manager always returns the name padded
with blanks to the length of the field.

This is an output field for the MQGET call, and an input field for the
MQPUT and MQPUT1 calls. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

UserIdentifier (MQCHAR12)
User identifier.

This is part of the identity context of the message; it identifies the user
that originated this message. This information can be used in the
AlternateUserId field of the ObjDesc parameter when opening an object,
so that the authorization check is performed for the UserIdentifier user
instead of the application performing the open.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this
information, it uses the AlternateUserId from the ObjDesc parameter if
MQOO_ALTERNATE_USER_AUTHORITY was specified on the

 Chapter 2. Data type descriptions – structures 131

 MQMD – UserIdentifier field

corresponding MQOPEN call (or if
MQPMO_ALTERNATE_USER_AUTHORITY is specified with the MQPUT1
call). Otherwise, it uses a user identifier determined by the environment:

� On MVS/ESA, it uses:

– For MVS (batch), the user ID from the JES JOB card or started
task

– For TSO, the user ID propagated to the job during job submission

– For CICS, the user ID associated with the task

– For IMS, the user ID depends on the type of application:

 - For:

� Nonmessage BMP regions
� Nonmessage IFP regions
� Message BMP and message IFP regions that have not

issued a successful GU call

the queue manager uses the user ID from the region JES JOB
card or the TSO user ID. If these are blank or null, it uses the
name of the program specification block (PSB).

 - For:

� Message BMP and message IFP regions that have issued
a successful GU call

 � MPP regions

the queue manager uses one of:

� The signed-on user ID associated with the message
� The logical terminal (LTERM) name
� The user ID from the region JES JOB card
� The TSO user ID
� The PSB name

� On OS/2, it uses the string “OS/2”.

� On OS/400, it uses the name of the signed-on user profile.

| � On OpenVMS, Tandem NSK, and UNIX systems, it uses:

– The application’s logon name
– The effective user ID of the process if no logon is available
– The user ID associated with the transaction, if the application is a

CICS transaction

� On 16-bit Windows, it uses the string “WINDOWS”.

� On 32-bit Windows and Windows NT, it uses the first 12 characters of
the logged-on user name.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. Any information following a null
character within the field is discarded. The null character and any
following characters are converted to blanks by the queue manager. If
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
not specified, this field is ignored on input and is an output-only field.

132 MQSeries Application Programming Reference

 MQMD – AccountingToken field

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the UserIdentifier that was transmitted with the message. If
the message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_USER_ID_LENGTH. The initial value of this field is the null string
in C, and 12 blank characters in other programming languages.

AccountingToken (MQBYTE32)
Accounting token.

This is part of the identity context of the message; it allows an
application to cause work done as a result of the message to be
appropriately charged.

The queue manager treats this information as a string of bits and does not
check its content. When the queue manager generates this information, it
sets:

� The first byte of the field to the length of the accounting information
present in the remainder of the field; this length is in the range zero
through 31, and is stored in the first byte as a binary integer.

� The second and subsequent bytes, as indicated by the length field, to
the accounting information appropriate to the environment.

– On MVS/ESA the accounting information is set to:

- For MVS batch, the accounting information from the JES JOB
card or from a JES ACCT statement in the EXEC card
(comma separators are changed to X'FF'). This information
is truncated, if necessary, to 31 bytes.

- For TSO, the user’s account number.
- For CICS, the LU 6.2 unit of work identifier (UEPUOWDS) (26

bytes).
- For IMS, the 8-character PSB name concatenated with the

16-character IMS recovery token.

– On OS/400, the accounting information is set to the accounting
code for the job.

| – On OpenVMS, Tandem NSK, and UNIX systems, the accounting
information is set to the numeric user ID, in ASCII characters.

– On OS/2, DOS client, Windows client, and Windows NT, the
accounting information is set to the ASCII character '1'.

� All remaining bytes are set to binary zero.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. If neither
MQPMO_SET_IDENTITY_CONTEXT nor MQPMO_SET_ALL_CONTEXT
is specified, this field is ignored on input and is an output-only field. For
more information on message context, see the MQSeries Application
Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the AccountingToken that was transmitted with the message. If
the message has no context, the field is entirely binary zero.

 Chapter 2. Data type descriptions – structures 133

 MQMD – ApplIdentityData field � MQMD – PutApplType field

This is an output field for the MQGET call.

This field is not subject to any translation based on the character set of the
queue manager—the field is treated as a string of bits, and not as a string
of characters.

The queue manager does nothing with the information in this field. The
application must interpret the information if it wants to use the information
for accounting purposes.

The following special value may be used:

MQACT_NONE
No accounting token is specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQACT_NONE_ARRAY is also defined; this has the same value as
MQACT_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_ACCOUNTING_TOKEN_LENGTH.
The initial value of this field is MQACT_NONE.

ApplIdentityData (MQCHAR32)
Application data relating to identity.

This is part of the identity context of the message; it is information that is
defined by the application suite, and can be used to provide additional
information about the message or its originator.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
specified in the PutMsgOpts parameter. If a null character is present, the
null and any following characters are converted to blanks by the queue
manager. If neither MQPMO_SET_IDENTITY_CONTEXT nor
MQPMO_SET_ALL_CONTEXT is specified, this field is ignored on input
and is an output-only field. For more information on message context, see
the MQSeries Application Programming Guide.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the ApplIdentityData that was transmitted with the message. If
the message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_APPL_IDENTITY_DATA_LENGTH. The initial value of this field is
the null string in C, and 32 blank characters in other programming
languages.

PutApplType (MQLONG)
Type of application that put the message.

This is part of the origin context of the message. For more information
on message context, see the MQSeries Application Programming Guide.

It may have one of the following standard types. User-defined types can
also be used but should be restricted to values in the range
MQAT_USER_FIRST through MQAT_USER_LAST.

134 MQSeries Application Programming Reference

 MQMD – PutApplType field

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

MQAT_DOS
DOS client application.

MQAT_IMS
IMS application.

MQAT_IMS_BRIDGE
IMS bridge.

MQAT_MVS
MVS or TSO application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_OS400
OS/400 application.

MQAT_QMGR
Queue-manager-generated message.

MQAT_UNIX
UNIX application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_XCF
XCF.

MQAT_DEFAULT
Default application type.

This is the default application type for the platform on which the
application is running.

Note: The value of this constant is environment-specific. Because
of this, the application must be compiled using the header,
include, or COPY files that are appropriate to the platform on
which the application will run.

MQAT_UNKNOWN
Unknown application type.

This value can be used to indicate that the application type is
unknown, even though other context information is present.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

The following special value can also occur:

 Chapter 2. Data type descriptions – structures 135

 MQMD – PutApplName field

MQAT_NO_CONTEXT
No context information present in message.

This value is set by the queue manager when a message is put with
no context (that is, the MQPMO_NO_CONTEXT context option is
specified).

When a message is retrieved, PutApplType can be tested for this
value to decide whether the message has context (it is
recommended that PutApplType is never set to
MQAT_NO_CONTEXT, by an application using
MQPMO_SET_ALL_CONTEXT, if any of the other context fields are
nonblank).

When the queue manager generates this information as a result of an
application put, the field is set to a value that is determined by the
environment. Note that on OS/400, it is set to MQAT_OS400; the queue
manager never uses MQAT_CICS on OS/400.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
If MQPMO_SET_ALL_CONTEXT is not specified, this field is ignored on
input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutApplType that was transmitted with the message. If the
message has no context, the field is set to MQAT_NO_CONTEXT.

This is an output field for the MQGET call. The initial value of this field is
MQAT_NO_CONTEXT.

PutApplName (MQCHAR28)
Name of application that put the message.

This is part of the origin context of the message. The format of the
name depends on the PutApplType. For more information on message
context, see the MQSeries Application Programming Guide.

When this field is set by the queue manager, (that is, for all options except
MQPMO_SET_ALL_CONTEXT), it is set to value which is determined by
the environment:

� On MVS/ESA, the queue manager uses:

– For MVS batch, the 8-character job name from the JES JOB card
– For TSO, the 7-character TSO user ID
– For CICS, the 8-character applid, followed by the 4-character

tranid
– For IMS, the 8-character IMS system ID, followed by the

8-character PSB name
– For XCF, the 8-character XCF group name, followed by the

16-character XCF member name
– For a message generated by a queue manager, the first 28

characters of the queue manager name
– For distributed queuing without CICS, the 8-character jobname of

the channel initiator followed by the 8-character name of the
module putting to the dead-letter queue followed by an 8-character
task identifier.

136 MQSeries Application Programming Reference

 MQMD – PutDate field

The name or names are each padded to the right with blanks, as is
any space in the remainder of the field. Where there is more than one
name, there is no separator between them.

� On OS/2, DOS client, Windows client, and Windows NT, the queue
manager uses:

– For a CICS application, the CICS transaction name
– For a non-CICS application, the rightmost 28 characters of the

fully-qualified name of the executable

� On OS/400, the queue manager uses the fully-qualified job name.

| � On OpenVMS, Tandem NSK, and UNIX systems, the queue manager
uses:

– For a CICS application, the CICS transaction name
– For a non-CICS application, the rightmost 28 characters of the

fully-qualified name of the executable, if this is available to the
queue manager, and blanks otherwise

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
Any information following a null character within the field is discarded. The
null character and any following characters are converted to blanks by the
queue manager. If MQPMO_SET_ALL_CONTEXT is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutApplName that was transmitted with the message. If the
message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_APPL_NAME_LENGTH. The initial value of this field is the
null string in C, and 28 blank characters in other programming languages.

PutDate (MQCHAR8)
Date when message was put.

This is part of the origin context of the message. For more information
on message context, see the MQSeries Application Programming Guide.

The format used for the date when this field is generated by the queue
manager is:

 YYYYMMDD

where the characters represent:

YYYY year (four numeric digits)
MM month of year (01 through 12)
DD day of month (01 through 31)

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On OS/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration.

If the message was put as part of a unit of work, the date is that when the
message was put, and not the date when the unit of work was committed.

 Chapter 2. Data type descriptions – structures 137

 MQMD – PutTime field

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is discarded.
The null character and any following characters are converted to blanks by
the queue manager. If MQPMO_SET_ALL_CONTEXT is not specified,
this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutDate that was transmitted with the message. If the
message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_DATE_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

PutTime (MQCHAR8)
Time when message was put.

This is part of the origin context of the message. For more information
on message context, see the MQSeries Application Programming Guide.

The format used for the time when this field is generated by the queue
manager is:

 HHMMSSTH

where the characters represent (in order):

HH hours (00 through 23)
MM minutes (00 through 59)
SS seconds (00 through 59; see note below)
T tenths of a second (0 through 9)
H hundredths of a second (0 through 9)

Note: If the system clock is synchronized to a very accurate time
standard, it is possible on rare occasions for 60 or 61 to be
returned for the seconds in PutTime. This happens when leap
seconds are inserted into the global time standard.

Greenwich Mean Time (GMT) is used for the PutDate and PutTime fields,
subject to the system clock being set accurately to GMT.

On OS/2, the queue manager uses the TZ environment variable to
calculate GMT. For more information on setting this variable, refer to the
MQSeries System Administration.

If the message was put as part of a unit of work, the time is that when the
message was put, and not the time when the unit of work was committed.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
The contents of the field are not checked by the queue manager, except
that any information following a null character within the field is discarded.
The null character and any following characters are converted to blanks by
the queue manager. If MQPMO_SET_ALL_CONTEXT is not specified,
this field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the PutTime that was transmitted with the message. If the
message has no context, the field is entirely blank.

138 MQSeries Application Programming Reference

 MQMD – ApplOriginData field � MQMD – GroupId field

This is an output field for the MQGET call. The length of this field is given
by MQ_PUT_TIME_LENGTH. The initial value of this field is the null
string in C, and 8 blank characters in other programming languages.

ApplOriginData (MQCHAR4)
Application data relating to origin.

This is part of the origin context of the message; it is information that is
defined by the application suite that can be used to provide additional
information about the origin of the message. For example, it could be set
by suitably authorized applications to indicate whether the identity data is
trusted. For more information on message context, see the MQSeries
Application Programming Guide.

The queue manager treats this information as character data, but does not
define the format of it. When the queue manager generates this
information, it is entirely blank.

For the MQPUT and MQPUT1 calls, this is an input/output field if
MQPMO_SET_ALL_CONTEXT is specified in the PutMsgOpts parameter.
Any information following a null character within the field is discarded. The
null character and any following characters are converted to blanks by the
queue manager. If MQPMO_SET_ALL_CONTEXT is not specified, this
field is ignored on input and is an output-only field.

After the successful completion of an MQPUT or MQPUT1 call, this field
contains the ApplOriginData that was transmitted with the message. If the
message has no context, the field is entirely blank.

This is an output field for the MQGET call. The length of this field is given
by MQ_APPL_ORIGIN_DATA_LENGTH. The initial value of this field is
the null string in C, and 4 blank characters in other programming
languages.

The remaining fields in this structure are not present if Version is less than
MQMD_VERSION_2.

GroupId (MQBYTE24)
Group identifier.

This is a byte string that is used to identify the particular message group
or logical message to which the physical message belongs. GroupId is
also used if segmentation is allowed for the message. In all of these
cases, GroupId has a non-null value, and one or more of the following
flags is set in the MsgFlags field:

 MQMF_MSG_IN_GROUP
 MQMF_LAST_MSG_IN_GROUP
 MQMF_SEGMENT
 MQMF_LAST_SEGMENT
 MQMF_SEGMENTATION_ALLOWED

If none of these flags is set, GroupId has the special null value
MQGI_NONE.

This field need not be set by the application on the MQPUT or MQGET
call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
� On the MQGET call, MQMO_MATCH_GROUP_ID is not specified.

 Chapter 2. Data type descriptions – structures 139

 MQMD – GroupId field

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application requires more
control, or the call is MQPUT1, the application must ensure that GroupId is
set to an appropriate value.

Message groups and segments can be processed correctly only if the
group identifier is unique. For this reason, applications should not
generate their own group identifiers; instead, applications should do one of
the following:

� If MQPMO_LOGICAL_ORDER is specified, the queue manager
automatically generates a unique group identifier for the first message
in the group or segment of the logical message, and uses that group
identifier for the remaining messages in the group or segments of the
logical message, so the application does not need to take any special
action. This is the recommended procedure.

� If MQPMO_LOGICAL_ORDER is not specified, the application should
request the queue manager to generate the group identifier, by setting
GroupId to MQGI_NONE on the first MQPUT or MQPUT1 call for a
message in the group or segment of the logical message. The group
identifier returned by the queue manager on output from that call
should then be used for the remaining messages in the group or
segments of the logical message. If a message group contains
segmented messages, the same group identifier must be used for all
segments and messages in the group.

When MQPMO_LOGICAL_ORDER is not specified, messages in
groups and segments of logical messages can be put in any order (for
example, in reverse order), but the group identifier must be allocated
by the first MQPUT or MQPUT1 call that is issued for any of those
messages.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the
value detailed in Table 44 on page 179. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message if the object opened is a single queue and not a
distribution list, but leaves it unchanged if the object opened is a
distribution list. In the latter case, if the application needs to know the
group identifiers generated, the application must provide MQPMR records
containing the GroupId field.

On input to the MQGET call, the queue manager uses the value detailed
in Table 29 on page 75. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The following special value is defined:

MQGI_NONE
No group identifier specified.

The value is binary zero for the length of the field. This is the value
that is used for messages that are not in groups, not segments of
logical messages, and for which segmentation is not allowed.

For the C programming language, the constant
MQGI_NONE_ARRAY is also defined; this has the same value as
MQGI_NONE, but is an array of characters instead of a string.

140 MQSeries Application Programming Reference

 MQMD – MsgSeqNumber field � MQMD – Offset field

The length of this field is given by MQ_GROUP_ID_LENGTH. The initial
value of this field is MQGI_NONE. This field is not present if Version is
less than MQMD_VERSION_2.

MsgSeqNumber (MQLONG)
Sequence number of logical message within group.

Sequence numbers start at 1, and increase by 1 for each new logical
message in the group, up to a maximum of 999 999 999. A physical
message which is not in a group has a sequence number of 1.

This field need not be set by the application on the MQPUT or MQGET
call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
� On the MQGET call, MQMO_MATCH_MSG_SEQ_NUMBER is not

specified.

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application requires more
control, or the call is MQPUT1, the application must ensure that
MsgSeqNumber is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the
value detailed in Table 44 on page 179. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

On input to the MQGET call, the queue manager uses the value detailed
in Table 29 on page 75. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The initial value of this field is one. This field is not present if Version is
less than MQMD_VERSION_2.

Offset (MQLONG)
Offset of data in physical message from start of logical message.

This is the offset in bytes of the data in the physical message from the
start of the logical message of which the data forms part. This data is
called a segment. The offset is in the range 0 through 999 999 999. A
physical message which is not a segment of a logical message has an
offset of zero.

This field need not be set by the application on the MQPUT or MQGET
call if:

� On the MQPUT call, MQPMO_LOGICAL_ORDER is specified.
� On the MQGET call, MQMO_MATCH_OFFSET is not specified.

These are the recommended ways of using these calls for messages that
are not report messages. However, if the application does not comply with
these conditions, or the call is MQPUT1, the application must ensure that
Offset is set to an appropriate value.

On input to the MQPUT and MQPUT1 calls, the queue manager uses the
value detailed in Table 44 on page 179. On output from the MQPUT and
MQPUT1 calls, the queue manager sets this field to the value that was
sent with the message.

 Chapter 2. Data type descriptions – structures 141

 MQMD – MsgFlags field

For a report message reporting on a segment of a logical message, the
OriginalLength field (provided it is not MQOL_UNDEFINED) is used to
update the offset in the segment information retained by the queue
manager.

On input to the MQGET call, the queue manager uses the value detailed
in Table 29 on page 75. On output from the MQGET call, the queue
manager sets this field to the value for the message retrieved.

The initial value of this field is zero. This field is not present if Version is
less than MQMD_VERSION_2.

MsgFlags (MQLONG)
Message flags.

These are flags that specify attributes of the message, or control its
processing. The flags are divided into the following categories:

 � Segmentation flag
 � Status flags

These are described in turn.

Segmentation flag : When a message is too big for a queue, an attempt
to put the message on the queue usually fails. Segmentation is a
technique whereby the queue manager or application splits the message
into smaller pieces called segments, and places each segment on the
queue as a separate physical message. The application which retrieves
the message can either retrieve the segments one by one, or request the
queue manager to reassemble the segments into a single message which
is returned by the MQGET call. The latter is achieved by specifying the
MQGMO_COMPLETE_MSG option on the MQGET call, and supplying a
buffer that is big enough to accommodate the complete message. (See
“MQGMO – Get-message options” on page 56 for details of the
MQGMO_COMPLETE_MSG option.) Segmentation of a message can
occur at the sending queue manager, at an intermediate queue manager,
or at the destination queue manager.

You can specify one of the following to control the segmentation of a
message:

MQMF_SEGMENTATION_INHIBITED
Segmentation inhibited.

This option prevents the message being broken into segments by the
queue manager. If specified for a message that is already a
segment, this option prevents the segment being broken into smaller
segments.

The value of this flag in binary zero. This is the default.

MQMF_SEGMENTATION_ALLOWED
Segmentation allowed.

This option allows the message to be broken into segments by the
queue manager. If specified for a message that is already a
segment, this option allows the segment to be broken into smaller
segments. MQMF_SEGMENTATION_ALLOWED can be set without
either MQMF_SEGMENT or MQMF_LAST_SEGMENT being set.

142 MQSeries Application Programming Reference

 MQMD – MsgFlags field

| Note: Care is needed when messages are put with
| MQMF_SEGMENTATION_ALLOWED but without
| MQPMO_LOGICAL_ORDER. If the message is:

| � not a segment, and
| � not in a group, and
| � not being forwarded,

| the application must remember to reset the GroupId field to
| MQGI_NONE prior to each MQPUT or MQPUT1 call, in order
| to cause a unique group identifier to be generated by the
| queue manager for each message. If this is not done,
| unrelated messages could inadvertently end up with the
| same group identifier, which might lead to incorrect
| processing subsequently. See the descriptions of the
| GroupId field and the MQPMO_LOGICAL_ORDER option for
| more information about when the GroupId field must be reset.

The queue manager splits messages into segments as necessary in
order to ensure that the segments (plus any header data that may be

| required) fit on the queue. However, there is a lower limit for the
| size of a segment generated by the queue manager (see below), and
| only the last segment created from a message can be smaller than
| this limit. The lower limit for the size of an application-generated
| segment is one byte. Segments generated by the queue manager
| may be of unequal length. The queue-manager processes the

message as follows:

� User-defined formats are split on boundaries which are multiples
| of 16 bytes. This means that the queue manager will not
| generate segments that are smaller than 16 bytes (other than the
| last segment).

� Built-in formats other than MQFMT_STRING are split at points
appropriate to the nature of the data present. However, the
queue manager never splits a message in the middle of an MQ

| header structure. This means that a segment containing a single
| MQ header structure cannot be split further by the queue
| manager, and as a result the minimum possible segment size for
| that message is greater than 16 bytes.

The second or later segment generated by the queue manager
will begin with one of the following:

– An MQ header structure
– The start of the application message data
– Part-way through the application message data

� MQFMT_STRING is split without regard for the nature of the
data present (SBCS, DBCS, or mixed SBCS/DBCS). When the
string is DBCS or mixed SBCS/DBCS, this may result in
segments which cannot be converted from one character set to

| another (see below). The queue manager never splits
| MQFMT_STRING messages into segments that are smaller than
| 16 bytes (other than the last segment).

� The Format, CodedCharSetId, and Encoding fields in the MQMD
of each segment are set by the queue manager to describe
correctly the data present at the start of the segment; the format

 Chapter 2. Data type descriptions – structures 143

 MQMD – MsgFlags field

name will be either the name of a built-in format, or the name of
a user-defined format.

� The Report field in the MQMD of segments with Offset greater
than zero are modified as follows:

– For each report type, if the report option is
MQRO_ñ_WITH_DATA, but the segment cannot possibly
contain any of the first 100 bytes of user data (that is, the
data following any MQ header structures that may be
present), the report option is changed to MQRO_ñ.

The queue manager follows the above rules, but otherwise splits
messages as it thinks fit; no assumptions should be made about the
way that the queue manager will choose to split a particular
message.

For persistent messages, the queue manager can perform
segmentation only within a unit of work:

� If the MQPUT or MQPUT1 call is operating within a user-defined
unit of work, that unit of work is used. If the call fails part way
through the segmentation process, the queue manager removes
any segments that were placed on the queue as a result of the
failing call. However, the failure does not prevent the unit of
work being committed successfully.

� If the call is operating outside a user-defined unit of work, and
there is no user-defined unit of work in existence, the queue
manager creates a unit of work just for the duration of the call. If
the call is successful, the queue manager commits the unit of
work automatically (the application does not need to do this). If
the call fails, the queue manager backs out the unit of work.

� If the call is operating outside a user-defined unit of work, but a
user-defined unit of work does exist, the queue manager is
unable to perform segmentation. If the message does not
require segmentation, the call can still succeed. But if the
message does require segmentation, the call fails with reason
code MQRC_UOW_NOT_AVAILABLE.

For nonpersistent messages, the queue manager does not require a
unit of work to be available in order to perform segmentation.

Special consideration must be given to data conversion of messages
which may be segmented:

� If data conversion is performed only by the receiving application
on the MQGET call, and the application specifies the
MQGMO_COMPLETE_MSG option, the data-conversion exit will
be passed the complete message for the exit to convert, and the
fact that the message was segmented will not be apparent to the
exit.

� If the receiving application retrieves one segment at a time, the
data-conversion exit will be invoked to convert one segment at a
time. The exit must therefore be capable of converting the data
in a segment independently of the data in any of the other
segments.

144 MQSeries Application Programming Reference

 MQMD – MsgFlags field

If the nature of the data in the message is such that arbitrary
segmentation of the data on 16-byte boundaries may result in
segments which cannot be converted by the exit, or the format is
MQFMT_STRING and the character set is DBCS or mixed
SBCS/DBCS, the sending application should itself create and put
the segments, specifying MQMF_SEGMENTATION_INHIBITED
to suppress further segmentation. In this way, the sending
application can ensure that each segment contains sufficient
information to allow the data-conversion exit to convert the
segment successfully.

� If sender conversion is specified for a sending message channel
agent (MCA), the MCA converts only messages which are not
segments of logical messages; the MCA never attempts to
convert messages which are segments.

This flag is an input flag on the MQPUT and MQPUT1 calls, and an output
flag on the MQGET call. On the latter call, the queue manager also
echoes the value of the flag to the Segmentation field in MQGMO.

The initial value of this flag is MQMF_SEGMENTATION_INHIBITED.

Status flags : These are flags that indicate whether the physical message
belongs to a message group, is a segment of a logical message, both, or
neither. One or more of the following can be specified on the MQPUT or
MQPUT1 call, or returned by the MQGET call:

MQMF_MSG_IN_GROUP
Message is a member of a group.

MQMF_LAST_MSG_IN_GROUP
Message is the last logical message in a group.

If this flag is set, the queue manager turns on
MQMF_MSG_IN_GROUP in the copy of MQMD that is sent with the
message, but does not alter the settings of these flags in the MQMD
provided by the application on the MQPUT or MQPUT1 call.

It is valid for a group to consist of only one logical message. If this
is the case, MQMF_LAST_MSG_IN_GROUP is set, but the
MsgSeqNumber field has the value one.

MQMF_SEGMENT
Message is a segment of a logical message.

When MQMF_SEGMENT is specified without
MQMF_LAST_SEGMENT, the length of the application message
data in the segment (excluding the lengths of any MQ header
structures that may be present) must be at least one. If the length is
zero, the MQPUT or MQPUT1 call fails with reason code
MQRC_SEGMENT_LENGTH_ZERO.

MQMF_LAST_SEGMENT
Message is the last segment of a logical message.

If this flag is set, the queue manager turns on MQMF_SEGMENT in
the copy of MQMD that is sent with the message, but does not alter
the settings of these flags in the MQMD provided by the application
on the MQPUT or MQPUT1 call.

 Chapter 2. Data type descriptions – structures 145

 MQMD – MsgFlags field

It is valid for a logical message to consist of only one segment. If
this is the case, MQMF_LAST_SEGMENT is set, but the Offset field
has the value zero.

When MQMF_LAST_SEGMENT is specified, it is permissible for the
length of the application message data in the segment (excluding the
lengths of any header structures that may be present) to be zero.

The application must ensure that these flags are set correctly when putting
messages. If MQPMO_LOGICAL_ORDER is specified, or was specified
on the preceding MQPUT call for the queue handle, the settings of the
flags must be consistent with the group and segment information retained
by the queue manager for the queue handle. The following conditions
apply to successive MQPUT calls for the queue handle when
MQPMO_LOGICAL_ORDER is specified:

� If there is no current group or logical message, all of these flags (and
combinations of them) are valid.

� Once MQMF_MSG_IN_GROUP has been specified, it must remain on
until MQMF_LAST_MSG_IN_GROUP is specified. The call fails with
reason code MQRC_INCOMPLETE_GROUP if this condition is not
satisfied.

� Once MQMF_SEGMENT has been specified, it must remain on until
MQMF_LAST_SEGMENT is specified. The call fails with reason code
MQRC_INCOMPLETE_MSG if this condition is not satisfied.

� Once MQMF_SEGMENT has been specified without
MQMF_MSG_IN_GROUP, MQMF_MSG_IN_GROUP must remain off
until after MQMF_LAST_SEGMENT has been specified. The call fails
with reason code MQRC_INCOMPLETE_MSG if this condition is not
satisfied.

Table 44 on page 179 shows the valid combinations of the flags, and the
values used for various fields.

These flags are input flags on the MQPUT and MQPUT1 calls, and output
flags on the MQGET call. On the latter call, the queue manager also
echoes the values of the flags to the GroupStatus and SegmentStatus
fields in MQGMO.

Default flags : The following can be specified to indicate that the message
has default attributes:

MQMF_NONE
No message flags (default message attributes).

This inhibits segmentation, and indicates that the message is not in a
group and is not a segment of a logical message. MQMF_NONE is
defined to aid program documentation. It is not intended that this
flag be used with any other, but as its value is zero, such use cannot
be detected.

The MsgFlags field is partitioned into subfields; for details see Appendix C,
“Report options and message flags” on page 489.

The initial value of this field is MQMF_NONE. This field is not present if
Version is less than MQMD_VERSION_2.

146 MQSeries Application Programming Reference

 MQMD – OriginLength field

OriginalLength (MQLONG)
Length of original message.

This field is of relevance only for report messages; it specifies the length
of the message to which the report relates. If the report message is
reporting on a segment, OriginalLength is the length of the segment, and
not the length of the logical message of which the segment forms part, nor
the length of the data in the report message.

OriginalLength should be set by the program which generates the report,
or which segments the original message, but if that program does not set
the field, OriginalLength has the following special value:

MQOL_UNDEFINED
Original length of message not defined.

This is an input field on the MQPUT and MQPUT1 calls, but the value
provided by the application is used only in particular circumstances:

� If the message being put is a segment but not a report message, the
queue manager ignores the field and uses the length of the application
message data instead.

� If the message being put is a report message reporting on a segment,
the queue manager accepts the value specified. The value must be:

– Greater than zero if the segment is not the last segment
– Not less than zero if the segment is the last segment
– Not less than the length of data present in the message

If these conditions are not satisfied, the call fails with reason code
MQRC_ORIGINAL_LENGTH_ERROR.

� In all other cases, the queue manager ignores the field and uses the
value MQOL_UNDEFINED instead.

This is an output field on the MQGET call.

The initial value of this field is MQOL_UNDEFINED. This field is not
present if Version is less than MQMD_VERSION_2.

Table 35 (Page 1 of 2). Initial values of fields in MQMD

Field name Name of constant Value of constant

StrucId MQMD_STRUC_ID 'MD␣␣'
(See note 1)

Version MQMD_VERSION_1 1

Report MQRO_NONE ð

MsgType MQMT_DATAGRAM 8

Expiry MQEI_UNLIMITED -1

Feedback MQFB_NONE ð

Encoding MQENC_NATIVE See note 2

CodedCharSetId MQCCSI_Q_MGR ð

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

Priority MQPRI_PRIORITY_AS_Q_DEF -1

Persistence MQPER_PERSISTENCE_AS_Q_DEF 2

 Chapter 2. Data type descriptions – structures 147

 MQMD – C declaration

Table 35 (Page 2 of 2). Initial values of fields in MQMD

Field name Name of constant Value of constant

MsgId MQMI_NONE Nulls

CorrelId MQCI_NONE Nulls

BackoutCount None ð

ReplyToQ None Blanks
(See note 3)

ReplyToQMgr None Blanks

UserIdentifier None Blanks

AccountingToken MQACT_NONE Nulls

ApplIdentityData None Blanks

PutApplType MQAT_NO_CONTEXT ð

PutApplName None Blanks

PutDate None Blanks

PutTime None Blanks

ApplOriginData None Blanks

GroupId MQGI_NONE Nulls

MsgSeqNumber None 1

Offset None 0

MsgFlags MQMF_NONE ð

OriginalLength MQOL_UNDEFINED -1

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value of this constant is environment-specific.

3. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

4. In the C programming language, the macro variable MQMD_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQMD MyMD = {MQMD_DEFAULT};

C language declaration
typedef struct tagMQMD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Report; /\ Report options \/
MQLONG MsgType; /\ Message type \/
MQLONG Expiry; /\ Expiry time \/
MQLONG Feedback; /\ Feedback or reason code \/
MQLONG Encoding; /\ Data encoding \/
MQLONG CodedCharSetId; /\ Coded character set identifier \/
MQCHAR8 Format; /\ Format name \/
MQLONG Priority; /\ Message priority \/
MQLONG Persistence; /\ Message persistence \/

 MQBYTE24 MsgId; /\ Message identifier \/
 MQBYTE24 CorrelId; /\ Correlation identifier \/

148 MQSeries Application Programming Reference

 MQMD – COBOL declaration

MQLONG BackoutCount; /\ Backout counter \/
 MQCHAR48 ReplyToQ; /\ Name of reply-to queue \/
 MQCHAR48 ReplyToQMgr; /\ Name of reply queue manager \/
 MQCHAR12 UserIdentifier; /\ User identifier \/
 MQBYTE32 AccountingToken; /\ Accounting token \/
 MQCHAR32 ApplIdentityData; /\ Application data relating to
 identity \/
MQLONG PutApplType; /\ Type of application that put the

 message \/
 MQCHAR28 PutApplName; /\ Name of application that put the
 message \/
MQCHAR8 PutDate; /\ Date when message was put \/
MQCHAR8 PutTime; /\ Time when message was put \/
MQCHAR4 ApplOriginData; /\ Application data relating to origin \/

 MQBYTE24 GroupId; /\ Group identifier \/
MQLONG MsgSeqNumber; /\ Sequence number of logical message

within group \/
MQLONG Offset; /\ Offset of data in physical message

from start of logical message \/
MQLONG MsgFlags; /\ Message flags \/
MQLONG OriginalLength; /\ Length of original message \/

 } MQMD;

COBOL language declaration
\\ MQMD structure
 1ð MQMD.
\\ Structure identifier
 15 MQMD-STRUCID PIC X(4).
\\ Structure version number

15 MQMD-VERSION PIC S9(9) BINARY.
\\ Report options

15 MQMD-REPORT PIC S9(9) BINARY.
\\ Message type

15 MQMD-MSGTYPE PIC S9(9) BINARY.
\\ Expiry time

15 MQMD-EXPIRY PIC S9(9) BINARY.
\\ Feedback or reason code

15 MQMD-FEEDBACK PIC S9(9) BINARY.
\\ Data encoding

15 MQMD-ENCODING PIC S9(9) BINARY.
\\ Coded character set identifier

15 MQMD-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name
 15 MQMD-FORMAT PIC X(8).
\\ Message priority

15 MQMD-PRIORITY PIC S9(9) BINARY.
\\ Message persistence

15 MQMD-PERSISTENCE PIC S9(9) BINARY.
\\ Message identifier
 15 MQMD-MSGID PIC X(24).
\\ Correlation identifier
 15 MQMD-CORRELID PIC X(24).
\\ Backout counter

15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY.
\\ Name of reply-to queue
 15 MQMD-REPLYTOQ PIC X(48).
\\ Name of reply queue manager

 Chapter 2. Data type descriptions – structures 149

 MQMD – PL/I declaration

 15 MQMD-REPLYTOQMGR PIC X(48).
\\ User identifier
 15 MQMD-USERIDENTIFIER PIC X(12).
\\ Accounting token
 15 MQMD-ACCOUNTINGTOKEN PIC X(32).
\\ Application data relating to identity

15 MQMD-APPLIDENTITYDATA PIC X(32).
\\ Type of application that put the message

15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY.
\\ Name of application that put the message
 15 MQMD-PUTAPPLNAME PIC X(28).
\\ Date when message was put
 15 MQMD-PUTDATE PIC X(8).
\\ Time when message was put
 15 MQMD-PUTTIME PIC X(8).
\\ Application data relating to origin
 15 MQMD-APPLORIGINDATA PIC X(4).
\\ Group identifier
 15 MQMD-GROUPID PIC X(24).
\\ Sequence number of logical message within group

15 MQMD-MSGSEQNUMBER PIC S9(9) BINARY.
\\ Offset of data in physical message from start of logical
\\ message

15 MQMD-OFFSET PIC S9(9) BINARY.
\\ Message flags

15 MQMD-MSGFLAGS PIC S9(9) BINARY.
\\ Length of original message

15 MQMD-ORIGINALLENGTH PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQMD based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Report fixed bin(31), /\ Report options \/
3 MsgType fixed bin(31), /\ Message type \/
3 Expiry fixed bin(31), /\ Expiry time \/
3 Feedback fixed bin(31), /\ Feedback or reason code \/
3 Encoding fixed bin(31), /\ Data encoding \/
3 CodedCharSetId fixed bin(31), /\ Coded character set identifier \/
3 Format char(8), /\ Format name \/
3 Priority fixed bin(31), /\ Message priority \/
3 Persistence fixed bin(31), /\ Message persistence \/
3 MsgId char(24), /\ Message identifier \/
3 CorrelId char(24), /\ Correlation identifier \/
3 BackoutCount fixed bin(31), /\ Backout counter \/
3 ReplyToQ char(48), /\ Name of reply-to queue \/
3 ReplyToQMgr char(48), /\ Name of reply queue manager \/
3 UserIdentifier char(12), /\ User identifier \/
3 AccountingToken char(32), /\ Accounting token \/
3 ApplIdentityData char(32), /\ Application data relating to

 identity \/
3 PutApplType fixed bin(31), /\ Type of application that put the

 message \/
3 PutApplName char(28), /\ Name of application that put the

 message \/
3 PutDate char(8), /\ Date when message was put \/

150 MQSeries Application Programming Reference

 MQMD – S/390 assembler declaration � MQMD – TAL declaration

3 PutTime char(8), /\ Time when message was put \/
3 ApplOriginData char(4), /\ Application data relating to

 origin \/
3 GroupId char(24), /\ Group identifier \/
3 MsgSeqNumber fixed bin(31), /\ Sequence number of logical

message within group \/
3 Offset fixed bin(31), /\ Offset of data in physical

message from start of logical
 message \/
3 MsgFlags fixed bin(31), /\ Message flags \/
3 OriginalLength fixed bin(31); /\ Length of original message \/

System/390 assembler-language declaration (MVS/ESA only)
MQMD DSECT
MQMD_STRUCID DS CL4 Structure identifier
MQMD_VERSION DS F Structure version number
MQMD_REPORT DS F Report options
MQMD_MSGTYPE DS F Message type
MQMD_EXPIRY DS F Expiry time
MQMD_FEEDBACK DS F Feedback or reason code
MQMD_ENCODING DS F Data encoding
MQMD_CODEDCHARSETID DS F Coded character set
\ identifier
MQMD_FORMAT DS CL8 Format name
MQMD_PRIORITY DS F Message priority
MQMD_PERSISTENCE DS F Message persistence
MQMD_MSGID DS XL24 Message identifier
MQMD_CORRELID DS XL24 Correlation identifier
MQMD_BACKOUTCOUNT DS F Backout counter
MQMD_REPLYTOQ DS CL48 Name of reply-to queue
MQMD_REPLYTOQMGR DS CL48 Name of reply queue manager
MQMD_USERIDENTIFIER DS CL12 User identifier
MQMD_ACCOUNTINGTOKEN DS XL32 Accounting token
MQMD_APPLIDENTITYDATA DS CL32 Application data relating to
\ identity
MQMD_PUTAPPLTYPE DS F Type of application that put
\ the message
MQMD_PUTAPPLNAME DS CL28 Name of application that put
\ the message
MQMD_PUTDATE DS CL8 Date when message was put
MQMD_PUTTIME DS CL8 Time when message was put
MQMD_APPLORIGINDATA DS CL4 Application data relating to
\ origin
MQMD_LENGTH EQU \-MQMD Length of structure
 ORG MQMD
MQMD_AREA DS CL(MQMD_LENGTH)

| TAL declaration (Tandem NSK only)
| STRUCT MQMD^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| INT(32) REPORTOPTIONS;
| INT(32) MSGTYPE;
| INT(32) EXPIRY;

 Chapter 2. Data type descriptions – structures 151

 MQMD – TAL declaration

| INT(32) FEEDBACK;
| INT(32) ENCODING;
| INT(32) CODEDCHARSETID;
| STRUCT FORMAT;
| BEGIN STRING BYTE [ð:7]; END;
| INT(32) PRIORITY;
| INT(32) PERSISTENCE;
| STRUCT MSGID;
| BEGIN STRING BYTE [ð:23]; END;
| STRUCT CORRELID;
| BEGIN STRING BYTE [ð:23]; END;
| INT(32) BACKOUTCOUNT;
| STRUCT REPLYTOQ;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT REPLYTOQMGR;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT USERIDENTIFIER;
| BEGIN STRING BYTE [ð:11]; END;
| STRUCT ACCOUNTINGTOKEN;
| BEGIN STRING BYTE [ð:31]; END;
| STRUCT APPLIDENTITYDATA;
| BEGIN STRING BYTE [ð:31]; END;
| INT(32) PUTAPPLTYPE;
| STRUCT PUTAPPLNAME;
| BEGIN STRING BYTE [ð:27]; END;
| STRUCT PUTDATE;
| BEGIN STRING BYTE [ð:7]; END;
| STRUCT PUTTIME;
| BEGIN STRING BYTE [ð:7]; END;
| STRUCT APPLORIGINDATA;
| BEGIN STRING BYTE [ð:3]; END;
| END;

152 MQSeries Application Programming Reference

 MQMDE – Message descriptor extension

MQMDE – Message descriptor extension
The following table summarizes the fields in the structure.

The MQMDE structure describes the data that sometimes occurs preceding the
application message data. Normal applications should use a version-2 MQMD, in
which case they will not encounter an MQMDE structure. However, specialized
applications, and applications that continue to use a version-1 MQMD, may
encounter an MQMDE in some situations.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

The MQMDE structure contains those MQMD fields that exist in the version-2
MQMD, but not in the version-1 MQMD. It can occur in the following
circumstances:

� Specified on the MQPUT and MQPUT1 calls
� Returned by the MQGET call
� In messages on transmission queues

These are described below.

MQMDE specified on MQPUT and MQPUT1 calls : On the MQPUT and MQPUT1
calls, if the application provides a version-1 MQMD, the application can optionally
prefix the message data with an MQMDE, setting the Format field in MQMD to
MQFMT_MD_EXTENSION to indicate that an MQMDE is present. If the
application does not provide an MQMDE, the queue manager assumes default
values for the fields in the MQMDE. The default values that the queue manager
uses are the same as the initial values for the structure – see Table 38 on
page 158.

Table 36. Fields in MQMDE

Field Description Page

StrucId Structure identifier 156

Version Structure version number 156

StrucLength Length of MQMDE structure 156

Encoding Encoding of the data following the MQMDE 156

CodedCharSetId Character-set identifier of the data following the
MQMDE

156

Format Format name of the data following the MQMDE 156

Flags General flags 157

GroupId Group identifier 157

MsgSeqNumber Sequence number of logical message within
group

157

Offset Offset of data in physical message from start of
logical message

157

MsgFlags Message flags 157

OriginalLength Length of original message 157

 Chapter 2. Data type descriptions – structures 153

 MQMDE – Message descriptor extension

If the application provides a version-2 MQMD and prefixes the application message
data with an MQMDE, the structures are processed as shown in Table 37 on
page 155.

There is one special case. If the application uses a version-2 MQMD to put a
message that is a segment (that is, the MQMF_SEGMENT or
MQMF_LAST_SEGMENT flag is set), and the format name in the MQMD is
MQFMT_DEAD_LETTER_HEADER, the queue manager generates an MQMDE
structure and inserts it between the MQDLH structure and the data that follows it.
In the MQMD that the queue manager retains with the message, the version-2
fields are set to their default values.

The data in the MQMDE structure must be in the queue manager’s character set
and encoding. The former is given by the CodedCharSetId queue-manager attribute
(see “Attributes for the queue manager” on page 370), while in most cases the
latter is given by the value of MQENC_NATIVE. If this condition is not satisfied,
the MQMDE is accepted but not honored, that is, the MQMDE is treated as
message data.

Note: On OS/2 and Windows NT, applications compiled with Micro Focus COBOL
use a value of MQENC_NATIVE that is different from the queue-manager’s
encoding. Although numeric fields in the MQMD structure on the MQPUT,
MQPUT1, and MQGET calls must be in the Micro Focus COBOL encoding,
numeric fields in the MQMDE structure must be in the queue-manager’s
encoding. This latter is given by MQENC_NATIVE for the C programming
language, and has the value 546.

Several of the fields that exist in the version-2 MQMD but not the version-1 MQMD
are input/output fields on MQPUT and MQPUT1. However, the queue manager
does not return any values in the equivalent fields in the MQMDE on output from
the MQPUT and MQPUT1 calls; if the application requires those output values, it
must use a version-2 MQMD.

MQMDE returned by MQGET call : On the MQGET call, if the application provides
a version-1 MQMD, the queue manager prefixes the message returned with an
MQMDE, but only if one or more of the fields in the MQMDE has a nondefault
value. The Format field in MQMD will have the value MQFMT_MD_EXTENSION to
indicate that an MQMDE is present.

If the application provides an MQMDE at the start of the Buffer parameter, the
MQMDE is ignored. On return from the MQGET call, it will have been replaced by
the MQMDE for the message (if one is needed), or overwritten by the application
message data (if the MQMDE is not needed).

If an MQMDE is returned by the MQGET call, the data in the MQMDE will usually
be in the queue manager’s character set and encoding. The one exception is if the
MQMDE was treated as data on the MQPUT or MQPUT1 call (see Table 37 on
page 155 for the circumstances that can cause this).

Note: On OS/2 and Windows NT, applications compiled with Micro Focus COBOL
use a value of MQENC_NATIVE that is different from the queue-manager’s
encoding (see above).

MQMDE in messages on transmission queues : Messages on transmission
queues are prefixed with the MQXQH structure, which contains within it a version-1

154 MQSeries Application Programming Reference

 MQMDE – Message descriptor extension

Table 37. Queue-manager action when MQMDE specified on MQPUT or MQPUT1.
This table shows the action taken by the queue manager when the application specifies
an MQMDE structure at the start of the application message data on the MQPUT or
MQPUT1 call.

MQMD
version

Values of
version-2

fields

Values of corresponding
fields in MQMDE

Action taken by queue
manager

1 – Valid MQMDE is honored

1 – Not valid Call fails with an
appropriate reason code

1 – MQMDE is in the wrong
character set or encoding,
or is an unsupported
version

MQMDE is treated as
message data

2 Default Valid MQMDE is honored

2 Default Not valid Call fails with an
appropriate reason code

2 Default MQMDE is in the wrong
character set or encoding,
or is an unsupported
version

MQMDE is treated as
message data

2 Not default Valid, and same as
MQMD

MQMDE is honored

2 Not default Valid, but different from
MQMD

MQMDE is treated as
message data

2 Not default Not valid Call fails with an
appropriate reason code

2 Not default MQMDE is in the wrong
character set or encoding,
or is an unsupported
version

MQMDE is treated as
message data

MQMD. An MQMDE may also be present, positioned between the MQXQH
structure and application message data, but it will usually be present only if one or
more of the fields in the MQMDE has a nondefault value.

Other MQ header structures can also occur between the MQXQH structure and the
application message data. For example, when the dead-letter header MQDLH is
present, and the message is not a segment, the order is:

� MQXQH (containing a version-1 MQMD)
 � MQMDE
 � MQDLH
� application message data

 Chapter 2. Data type descriptions – structures 155

 MQMDE – Strucid field � MQMDE – Format field

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQMDE_STRUC_ID
Identifier for message descriptor extension structure.

For the C programming language, the constant
MQMDE_STRUC_ID_ARRAY is also defined; this has the same
value as MQMDE_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQMDE_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQMDE_VERSION_2
Version-2 message descriptor extension structure.

The following constant specifies the version number of the current version:

MQMDE_CURRENT_VERSION
Current version of message descriptor extension structure.

The initial value of this field is MQMDE_VERSION_2.

StrucLength (MQLONG)
Length of MQMDE structure.

The following value is defined:

MQMDE_LENGTH_2
Length of version-2 message descriptor extension structure.

The initial value of this field is MQMDE_LENGTH_2.

Encoding (MQLONG)
Encoding of the data following the MQMDE.

The queue manager does not check the value of this field. See the
Encoding field described in “MQMD – Message descriptor” on page 98 for
more information about data encodings.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
Character-set identifier of the data following the MQMDE.

The queue manager does not check the value of this field.

The initial value of this field is ð.

Format (MQCHAR8)
Format name of the data following the MQMDE.

The queue manager does not check the value of this field. See the
Format field described in “MQMD – Message descriptor” on page 98 for
more information about format names.

156 MQSeries Application Programming Reference

 MQMDE – Flags field � MQMDE – OriginalLength field

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
General flags.

The following flag can be specified:

MQMDEF_NONE
No flags.

The initial value of this field is MQMDEF_NONE.

GroupId (MQBYTE24)
Group identifier.

See the GroupId field described in “MQMD – Message descriptor” on
page 98. The initial value of this field is MQGI_NONE.

MsgSeqNumber (MQLONG)
Sequence number of logical message within group.

See the MsgSeqNumber field described in “MQMD – Message descriptor” on
page 98. The initial value of this field is 1.

Offset (MQLONG)
Offset of data in physical message from start of logical message.

See the Offset field described in “MQMD – Message descriptor” on
page 98. The initial value of this field is 0.

MsgFlags (MQLONG)
Message flags.

See the MsgFlags field described in “MQMD – Message descriptor” on
page 98. The initial value of this field is MQMF_NONE.

OriginalLength (MQLONG)
Length of original message.

See the OriginalLength field described in “MQMD – Message descriptor”
on page 98. The initial value of this field is MQOL_UNDEFINED.

 Chapter 2. Data type descriptions – structures 157

 MQMDE – C declaration

Table 38. Initial values of fields in MQMDE

Field name Name of constant Value of constant

StrucId MQMDE_STRUC_ID 'MDE␣'
(See note 1)

Version MQMDE_VERSION_2 2

StrucLength MQMDE_LENGTH_2 72

Encoding MQENC_NATIVE See note 2

CodedCharSetId None ð

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

Flags MQMDEF_NONE ð

GroupId MQGI_NONE Nulls

MsgSeqNumber None 1

Offset None ð

MsgFlags MQMF_NONE ð

OriginalLength MQOL_UNDEFINED -1

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQMDE_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQMDE MyMDE = {MQMDE_DEFAULT};

C language declaration
typedef struct tagMQMDE {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG StrucLength; /\ Length of MQMDE structure \/
MQLONG Encoding; /\ Encoding of message data \/
MQLONG CodedCharSetId; /\ Coded character-set identifier of

message data \/
MQCHAR8 Format; /\ Format name of message data \/
MQLONG Flags; /\ General flags \/

 MQBYTE24 GroupId; /\ Group identifier \/
MQLONG MsgSeqNumber; /\ Sequence number of logical message

within group \/
MQLONG Offset; /\ Offset of data in physical message from

start of logical message \/
MQLONG MsgFlags; /\ Message flags \/
MQLONG OriginalLength; /\ Length of original message \/

 } MQMDE;

158 MQSeries Application Programming Reference

 MQMDE – COBOL declaration � MQMDE – PL/I declaration

COBOL language declaration
\\ MQMDE structure
 1ð MQMDE.
\\ Structure identifier
 15 MQMDE-STRUCID PIC X(4).
\\ Structure version number

15 MQMDE-VERSION PIC S9(9) BINARY.
\\ Length of MQMDE structure

15 MQMDE-STRUCLENGTH PIC S9(9) BINARY.
\\ Encoding of message data

15 MQMDE-ENCODING PIC S9(9) BINARY.
\\ Coded character-set identifier of message data

15 MQMDE-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name of message data
 15 MQMDE-FORMAT PIC X(8).
\\ General flags

15 MQMDE-FLAGS PIC S9(9) BINARY.
\\ Group identifier
 15 MQMDE-GROUPID PIC X(24).
\\ Sequence number of logical message within group

15 MQMDE-MSGSEQNUMBER PIC S9(9) BINARY.
\\ Offset of data in physical message from start of logical
\\ message

15 MQMDE-OFFSET PIC S9(9) BINARY.
\\ Message flags

15 MQMDE-MSGFLAGS PIC S9(9) BINARY.
\\ Length of original message

15 MQMDE-ORIGINALLENGTH PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQMDE based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 StrucLength fixed bin(31), /\ Length of MQMDE structure \/
3 Encoding fixed bin(31), /\ Encoding of message data \/
3 CodedCharSetId fixed bin(31), /\ Coded character-set identifier of

message data \/
3 Format char(8), /\ Format name of message data \/
3 Flags fixed bin(31), /\ General flags \/
3 GroupId char(24), /\ Group identifier \/
3 MsgSeqNumber fixed bin(31), /\ Sequence number of logical message

within group \/
3 Offset fixed bin(31), /\ Offset of data in physical message

from start of logical message \/
3 MsgFlags fixed bin(31), /\ Message flags \/
3 OriginalLength fixed bin(31); /\ Length of original message \/

 Chapter 2. Data type descriptions – structures 159

 MQOD – Object descriptor

MQOD – Object descriptor
The following table summarizes the fields in the structure.

The MQOD structure is used to specify an object by name. The following types of
object are valid:

� Queue or distribution list
� Namelist (MVS/ESA only)

 � Process definition
 � Queue manager

The current version of MQOD is MQOD_VERSION_2. Fields that exist only in the
version-2 structure are identified as such in the descriptions that follow. The
declarations of MQOD provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, but the initial value
provided for the Version field is MQOD_VERSION_1; this ensures compatibility
with existing applications. To use the new fields, the application must set the
version number to MQOD_VERSION_2. Applications which are intended to be
portable between several environments should use a version-2 MQOD only if all of
those environments support version 2.

The version-2 structure is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

To open a distribution list, a version-2 MQOD must be used.

This structure is an input/output parameter for the MQOPEN and MQPUT1 calls.

Table 39. Fields in MQOD

Field Description Page

StrucId Structure identifier 161

Version Structure version number 161

ObjectType Object type 161

ObjectName Object name 162

ObjectQMgrName Object queue manager name 162

DynamicQName Dynamic queue name 163

AlternateUserId Alternate user identifier 163

Note: The remaining fields are supported only in the following environments: AIX, DOS
| client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

RecsPresent Number of object records present 164

KnownDestCount Number of local queues opened successfully 164

UnknownDestCount Number of remote queues opened successfully 164

InvalidDestCount Number of queues that failed to open 164

ObjectRecOffset Offset of first object record from start of MQOD 165

ResponseRecOffset Offset of first response record from start of
MQOD

165

ObjectRecPtr Address of first object record 166

ResponseRecPtr Address of first response record 166

160 MQSeries Application Programming Reference

 MQOD – Strucid field � MQOD – ObjectType field

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQOD_STRUC_ID
Identifier for object descriptor structure.

For the C programming language, the constant
MQOD_STRUC_ID_ARRAY is also defined; this has the same value
as MQOD_STRUC_ID, but is an array of characters instead of a
string.

This is always an input field. The initial value of this field is
MQOD_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQOD_VERSION_1
Version-1 object descriptor structure.

This version is supported in all environments.

MQOD_VERSION_2
Version-2 object descriptor structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQOD_CURRENT_VERSION
Current version of object descriptor structure.

This is always an input field. The initial value of this field is
MQOD_VERSION_1.

ObjectType (MQLONG)
Object type.

Type of object being named in ObjectName. Possible values are:

MQOT_Q
Queue.

MQOT_NAMELIST
Namelist (MVS/ESA only).

MQOT_PROCESS
Process definition (not 16-bit Windows, 32-bit Windows).

MQOT_Q_MGR
Queue manager.

MQOT_RESERVED_1
Reserved (MVS/ESA only).

This is always an input field. The initial value of this field is MQOT_Q.

 Chapter 2. Data type descriptions – structures 161

 MQOD – ObjectName field � MQOD – ObjectQMgrName field

ObjectName (MQCHAR48)
Object name.

The local name of the object as defined on the queue manager identified
by ObjectQMgrName.

The name must not contain leading or embedded blanks, but may contain
trailing blanks; the first null character and characters following it are
treated as blanks. For more information about names, see the MQSeries
Application Programming Guide.

If ObjectType is MQOT_Q_MGR, special rules apply; in this case the
name must be entirely blank up to the first null character or the end of the
field.

If ObjectName is the name of a model queue, the queue manager creates a
dynamic queue with the attributes of the model queue, and returns in the
ObjectName field the name of the queue created. A model queue can be
specified only for the MQOPEN call.

If a distribution list is being opened (that is, RecsPresent is present and
greater than zero), ObjectName must be blank or the null string. If this
condition is not satisfied, the call fails with reason code
MQRC_OBJECT_NAME_ERROR.

This is an input/output field for the MQOPEN call when ObjectName is the
name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q_NAME_LENGTH. The initial value of
this field is the null string in C, and 48 blank characters in other
programming languages.

ObjectQMgrName (MQCHAR48)
Object queue manager name.

This is the name of the queue manager on which the ObjectName object is
defined.

If the name is specified, it must not contain leading or embedded blanks,
but may contain trailing blanks; the first null character and characters
following it are treated as blanks.

A name that is entirely blank up to the first null character or the end of the
field denotes the queue manager to which the application is connected.

If ObjectType is MQOT_Q_MGR, the name of the local queue manager
must either be specified explicitly, or specified as blank.

If ObjectName is the name of a model queue, the queue manager creates a
dynamic queue with the attributes of the model queue, and returns in the
ObjectQMgrName field the name of the queue manager on which the queue
is created; this is the name of the local queue manager. A model queue
can be specified only for the MQOPEN call.

If a distribution list is being opened (that is, RecsPresent is greater than
zero), ObjectQMgrName must be blank or the null string. If this condition is
not satisfied, the call fails with reason code
MQRC_OBJECT_Q_MGR_NAME_ERROR.

This is an input/output field for the MQOPEN call when ObjectName is the
name of a model queue, and an input-only field in all other cases. The
length of this field is given by MQ_Q_MGR_NAME_LENGTH. The initial

162 MQSeries Application Programming Reference

 MQOD – DynamicQueue field � MQOD – AlternateUserId field

value of this field is the null string in C, and 48 blank characters in other
programming languages.

DynamicQName (MQCHAR48)
Dynamic queue name.

This is an input field that is ignored unless ObjectName specifies the name
of a model queue. If it does, this field specifies the name of the dynamic
queue to be created.

The name must not contain leading or embedded blanks, but may contain
trailing blanks; the first null character and characters following it are
treated as blanks. A completely blank name (or one in which only blanks
appear before the first null character) is not valid if ObjectName specifies
the name of a model queue.

If the last nonblank character in the name is an asterisk (*), the queue
manager replaces the asterisk with a string of characters that guarantees
that the name generated for the queue is unique at the local queue
manager. To allow a sufficient number of characters for this, the asterisk
is valid only in positions 1 through 33. There must be no characters other
than blanks or a null character following the asterisk.

It is valid for the asterisk to appear in the first character position, in which
case the name consists solely of the characters generated by the queue
manager.

On MVS/ESA, it is not recommended to use a name with the asterisk in
the first character position, as there can be no security checks made on a
queue whose full name is generated automatically.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is determined by the environment:

� On MVS/ESA, the value is 'CSQ.\'.
� On other platforms, the value is 'AMQ.\'.

In all cases, the value is a null-terminated string in C, and a blank-padded
string in other programming languages.

AlternateUserId (MQCHAR12)
Alternate user identifier.

If MQOO_ALTERNATE_USER_AUTHORITY is specified for the MQOPEN
call, or MQPMO_ALTERNATE_USER_AUTHORITY for the MQPUT1 call,
this field contains an alternate user identifier that is to be used to check
the authorization for the open, in place of the user identifier that the
application is currently running under. Some checks, however, are still
carried out with the current user identifier (for example, context checks).

On MVS/ESA, only the first 8 characters of AlternateUserId are used to
check the authorization for the open. However, the current user identifier
must be authorized to specify this particular alternate user identifier; all 12
characters of the alternate user identifier are used for this check. The
user ID must contain only characters allowed by the external security
manager.

In the following environments, this field is accepted but ignored: 16-bit
Windows, 32-bit Windows.

 Chapter 2. Data type descriptions – structures 163

 MQOD – RecsPresent field � MQOD – InvalidDestCount field

If MQOO_ALTERNATE_USER_AUTHORITY or
MQPMO_ALTERNATE_USER_AUTHORITY is specified and this field is
entirely blank up to the first null character or the end of the field, the open
can succeed only if no user authorization is needed to open this object
with the options specified.

If neither MQOO_ALTERNATE_USER_AUTHORITY nor
MQPMO_ALTERNATE_USER_AUTHORITY is specified, this field is
ignored.

This is an input field. The length of this field is given by
MQ_USER_ID_LENGTH. The initial value of this field is the null string in
C, and 12 blank characters in other programming languages.

The remaining fields in this structure are not present if Version is less than
MQOD_VERSION_2.

RecsPresent (MQLONG)
Number of object records present.

This is the number of MQOR object records that have been provided by
the application. If this number is greater than zero, it indicates that a
distribution list is being opened, with RecsPresent being the number of
destination queues in the list. It is valid for a distribution list to contain
only one destination.

The value of RecsPresent must not be less than zero, and if it is greater
than zero ObjectType must be MQOT_Q; the call fails with reason code
MQRC_RECS_PRESENT_ERROR if these conditions are not satisfied.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

KnownDestCount (MQLONG)
Number of local queues opened successfully.

This is the number of queues in the distribution list that resolve to local
queues and that were opened successfully. The count does not include
queues that resolve to remote queues (even though a local transmission
queue is used initially to store the message). If present, this field is also
set when opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

UnknownDestCount (MQLONG)
Number of remote queues opened successfully

This is the number of queues in the distribution list that resolve to remote
queues and that were opened successfully. If present, this field is also set
when opening a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

InvalidDestCount (MQLONG)
Number of queues that failed to open.

This is the number of queues in the distribution list that failed to open
successfully. If present, this field is also set when opening a single queue
which is not in a distribution list.

164 MQSeries Application Programming Reference

 MQOD – ObjectRecOffset field � MQOD – ResponseRecOffset field

Note: If present, this field is set only if the CompCode parameter on the
MQOPEN or MQPUT1 call is MQCC_OK or MQCC_WARNING; it
is not set if the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

ObjectRecOffset (MQLONG)
Offset of first object record from start of MQOD.

This is the offset in bytes of the first MQOR object record from the start of
the MQOD structure. The offset can be positive or negative.
ObjectRecOffset is used only when a distribution list is being opened.
The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQOR
object records must be provided in order to specify the names of the
destination queues in the distribution list. This can be done in one of two
ways:

� By using the offset field ObjectRecOffset

In this case, the application should declare its own structure containing
an MQOD followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the
first element in the array from the start of the MQOD. Care must be
taken to ensure that this offset is correct.

Using ObjectRecOffset is recommended for programming languages
which do not support the pointer data type, or which implement the
pointer data type in a fashion which is not portable to different
environments (for example, the COBOL programming language).

� By using the pointer field ObjectRecPtr

In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ObjectRecPtr to the
address of the array.

Using ObjectRecPtr is recommended for programming languages
which support the pointer data type in a fashion which is portable to
different environments (for example, the C programming language).

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr
must be used; the call fails with reason code
MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are
nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

ResponseRecOffset (MQLONG)
Offset of first response record from start of MQOD.

This is the offset in bytes of the first MQRR response record from the start
of the MQOD structure. The offset can be positive or negative.
ResponseRecOffset is used only when a distribution list is being opened.
The field is ignored if RecsPresent is zero.

When a distribution list is being opened, an array of one or more MQRR
response records can be provided in order to identify the queues that

 Chapter 2. Data type descriptions – structures 165

 MQOD – ObjectRecPtr field � MQOD – ResponseRecPtr field

failed to open (CompCode field in MQRR), and the reason for each failure
(Reason field in MQRR). The data is returned in the array of response
records in the same order as the queue names occur in the array of object
records. The queue manager sets the response records only when the
outcome of the call is mixed (that is, some queues were opened
successfully while others failed, or all failed but for differing reasons);
reason code MQRC_MULTIPLE_REASONS from the call indicates this
case. If the same reason code applies to all queues, that reason is
returned in the Reason parameter of the MQOPEN or MQPUT1 call, and
the response records are not set. Response records are optional, but if
they are supplied there must be RecsPresent of them.

The response records can be provided in the same way as the object
records, either by specifying an offset in ResponseRecOffset, or by
specifying an address in ResponseRecPtr; see the description of
ObjectRecOffset above for details of how to do this. However, no more
than one of ResponseRecOffset and ResponseRecPtr can be used; the call
fails with reason code MQRC_RESPONSE_RECORDS_ERROR if both
are nonzero.

For the MQPUT1 call, these response records are used to return
information about errors that occur when the message is sent to the
queues in the distribution list, as well as errors that occur when the
queues are opened. The completion code and reason code from the put
operation for a queue replace those from the open operation for that
queue only if the completion code from the latter was MQCC_OK or
MQCC_WARNING.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQOD_VERSION_2.

ObjectRecPtr (MQPTR)
Address of first object record.

This is the address of the first MQOR object record. ObjectRecPtr is
used only when a distribution list is being opened. The field is ignored if
RecsPresent is zero.

Either ObjectRecPtr or ObjectRecOffset can be used to specify the object
records, but not both; see the description of the ObjectRecOffset field
above for details. If ObjectRecPtr is not used, it must be set to the null
pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

ResponseRecPtr (MQPTR)
Address of first response record.

This is the address of the first MQRR response record. ResponseRecPtr

166 MQSeries Application Programming Reference

 MQOD – ResponseRecPtr field

is used only when a distribution list is being opened. The field is ignored if
RecsPresent is zero.

Either ResponseRecPtr or ResponseRecOffset can be used to specify the
response records, but not both; see the description of the
ResponseRecOffset field above for details. If ResponseRecPtr is not used, it
must be set to the null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQOD_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

Table 40 (Page 1 of 2). Initial values of fields in MQOD

Field name Name of constant Value of constant

StrucId MQOD_STRUC_ID 'OD␣␣'
(See note 1)

Version MQOD_VERSION_1 1

ObjectType MQOT_Q 1

ObjectName None Blanks
(See note 2)

ObjectQMgrName None Blanks

DynamicQName None 'CSQ.\' on
MVS/ESA;
'AMQ.\' otherwise

AlternateUserId None Blanks

RecsPresent None 0

KnownDestCount None 0

UnknownDestCount None 0

InvalidDestCount None 0

ObjectRecOffset None 0

ResponseRecOffset None 0

ObjectRecPtr None Null pointer or null
bytes

 Chapter 2. Data type descriptions – structures 167

 MQOD – C declaration � MQOD – COBOL declaration

Table 40 (Page 2 of 2). Initial values of fields in MQOD

Field name Name of constant Value of constant

ResponseRecPtr None Null pointer or null
bytes

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQOD_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQOD MyOD = {MQOD_DEFAULT};

C language declaration
typedef struct tagMQOD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG ObjectType; /\ Object type \/

 MQCHAR48 ObjectName; /\ Object name \/
 MQCHAR48 ObjectQMgrName; /\ Object queue manager name \/
 MQCHAR48 DynamicQName; /\ Dynamic queue name \/
 MQCHAR12 AlternateUserId; /\ Alternate user identifier \/
MQLONG RecsPresent; /\ Number of object records present \/
MQLONG KnownDestCount; /\ Number of local queues opened suc-

 cessfully \/
MQLONG UnknownDestCount; /\ Number of remote queues opened suc-

 cessfully \/
MQLONG InvalidDestCount; /\ Number of queues that failed to

 open \/
MQLONG ObjectRecOffset; /\ Offset of first object record from

start of MQOD \/
MQLONG ResponseRecOffset; /\ Offset of first response record from

start of MQOD \/
MQPTR ObjectRecPtr; /\ Address of first object record \/
MQPTR ResponseRecPtr; /\ Address of first response record \/

 } MQOD;

COBOL language declaration
\\ MQOD structure
 1ð MQOD.
\\ Structure identifier
 15 MQOD-STRUCID PIC X(4).
\\ Structure version number

15 MQOD-VERSION PIC S9(9) BINARY.
\\ Object type

15 MQOD-OBJECTTYPE PIC S9(9) BINARY.
\\ Object name
 15 MQOD-OBJECTNAME PIC X(48).
\\ Object queue manager name
 15 MQOD-OBJECTQMGRNAME PIC X(48).
\\ Dynamic queue name
 15 MQOD-DYNAMICQNAME PIC X(48).
\\ Alternate user identifier

168 MQSeries Application Programming Reference

 MQOD – PL/I declaration � MQOD – S/390 assembler declaration

 15 MQOD-ALTERNATEUSERID PIC X(12).
\\ Number of object records present

15 MQOD-RECSPRESENT PIC S9(9) BINARY.
\\ Number of local queues opened successfully

15 MQOD-KNOWNDESTCOUNT PIC S9(9) BINARY.
\\ Number of remote queues opened successfully

15 MQOD-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
\\ Number of queues that failed to open

15 MQOD-INVALIDDESTCOUNT PIC S9(9) BINARY.
\\ Offset of first object record from start of MQOD

15 MQOD-OBJECTRECOFFSET PIC S9(9) BINARY.
\\ Offset of first response record from start of MQOD

15 MQOD-RESPONSERECOFFSET PIC S9(9) BINARY.
\\ Address of first object record
 15 MQOD-OBJECTRECPTR POINTER.
\\ Address of first response record
 15 MQOD-RESPONSERECPTR POINTER.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQOD based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 ObjectType fixed bin(31), /\ Object type \/
3 ObjectName char(48), /\ Object name \/
3 ObjectQMgrName char(48), /\ Object queue manager name \/
3 DynamicQName char(48), /\ Dynamic queue name \/
3 AlternateUserId char(12), /\ Alternate user identifier \/
3 RecsPresent fixed bin(31), /\ Number of object records

 present \/
3 KnownDestCount fixed bin(31), /\ Number of local queues opened

 successfully \/
3 UnknownDestCount fixed bin(31), /\ Number of remote queues opened

 successfully \/
3 InvalidDestCount fixed bin(31), /\ Number of queues that failed to

 open \/
3 ObjectRecOffset fixed bin(31), /\ Offset of first object record

from start of MQOD \/
3 ResponseRecOffset fixed bin(31), /\ Offset of first response record

from start of MQOD \/
3 ObjectRecPtr pointer, /\ Address of first object

 record \/
3 ResponseRecPtr pointer; /\ Address of first response

 record \/

System/390 assembler-language declaration (MVS/ESA only)
MQOD DSECT
MQOD_STRUCID DS CL4 Structure identifier
MQOD_VERSION DS F Structure version number
MQOD_OBJECTTYPE DS F Object type
MQOD_OBJECTNAME DS CL48 Object name
MQOD_OBJECTQMGRNAME DS CL48 Object queue manager name
MQOD_DYNAMICQNAME DS CL48 Dynamic queue name
MQOD_ALTERNATEUSERID DS CL12 Alternate user identifier
MQOD_LENGTH EQU \-MQOD Length of structure

 Chapter 2. Data type descriptions – structures 169

 MQOD –TAL declaration

 ORG MQOD
MQOD_AREA DS CL(MQOD_LENGTH)

| TAL declaration (Tandem NSK only)
| STRUCT MQOD^DEF (\);BEGINSTRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;INT(32) VERSION;
| INT(32) OBJECTTYPE;STRUCT
| OBJECTNAME;
| BEGIN STRING BYTE [ð:47]; END;STRUCT OBJECTQMGRNAME;
| BEGIN STRING BYTE [ð:47]; END;STRUCT DYNAMICQNAME;
| BEGIN STRING BYTE [ð:47]; END;STRUCT ALTERNATEUSERID;
| BEGIN STRING BYTE [ð:11]; END;

170 MQSeries Application Programming Reference

 MQOR – Object record � MQOR – ObjectQMgrName field

MQOR – Object record
The following table summarizes the fields in the structure.

The MQOR structure is used to specify the queue name and queue-manager name
of a single destination queue. By providing an array of these structures on the
MQOPEN call, it is possible to open a list of queues; this list is called a distribution
list. Each message put using the queue handle returned by that MQOPEN call is
placed on each of the queues in the list, provided that the queue was opened
successfully.

The character data in the MQOR structure must be in the queue-manager’s
character set. MQOR is an input structure for the MQOPEN and MQPUT1 calls.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Table 41. Fields in MQOR

Field Description Page

ObjectName Object name 171

ObjectQMgrName Object queue manager name 171

 Fields
ObjectName (MQCHAR48)

Object name.

This is the same as the ObjectName field in the MQOD structure (see
MQOD for details), except that:

� It must be the name of a queue.
� It must not be the name of a model queue.

This is always an input field. The initial value of this field is the null string
in C, and 48 blank characters in other programming languages.

ObjectQMgrName (MQCHAR48)
Object queue manager name.

This is the same as the ObjectQMgrName field in the MQOD structure (see
MQOD for details).

This is always an input field. The initial value of this field is the null string
in C, and 48 blank characters in other programming languages.

 Chapter 2. Data type descriptions – structures 171

 MQOR – language declarations

Table 42. Initial values of fields in MQOR

Field name Name of constant Value of constant

ObjectName None Blanks
(See note 1)

ObjectQMgrName None Blanks

Notes:

1. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

2. In the C programming language, the macro variable MQOR_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQOR MyOR = {MQOR_DEFAULT};

C language declaration
typedef struct tagMQOR {
 MQCHAR48 ObjectName; /\ Object name \/
 MQCHAR48 ObjectQMgrName; /\ Object queue manager name \/
 } MQOR;

COBOL language declaration
\\ MQOR structure
 1ð MQOR.
\\ Object name
 15 MQOR-OBJECTNAME PIC X(48).
\\ Object queue manager name

15 MQOR-OBJECTQMGRNAME PIC X(48).

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQOR based,
3 ObjectName char(48), /\ Object name \/
3 ObjectQMgrName char(48); /\ Object queue manager name \/

172 MQSeries Application Programming Reference

 MQPMO – Put-message options

MQPMO – Put message options
The following table summarizes the fields in the structure.

The current version of MQPMO is MQPMO_VERSION_2. Fields that exist only in
the version-2 structure are identified as such in the descriptions that follow. The
declarations of MQPMO provided in the header, COPY, and INCLUDE files for the
supported programming languages contain the new fields, but the initial value
provided for the Version field is MQPMO_VERSION_1; this ensures compatibility
with existing applications. To use the new fields, the application must set the
version number to MQPMO_VERSION_2. Applications which are intended to be
portable between several environments should use a version-2 MQPMO only if all
of those environments support version 2.

The version-2 structure is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

The MQPMO structure is an input/output parameter for the MQPUT and MQPUT1
calls.

Table 43. Fields in MQPMO

Field Description Page

StrucId Structure identifier 174

Version Structure version number 174

Options Options that control the action of MQPUT and
MQPUT1

174

Context Object handle of input queue 184

KnownDestCount Number of messages sent successfully to local
queues

184

UnknownDestCount Number of messages sent successfully to
remote queues

185

InvalidDestCount Number of messages that could not be sent 185

ResolvedQName Resolved name of destination queue 185

ResolvedQMgrName Resolved name of destination queue manager 185

Note: The remaining fields are supported only in the following environments: AIX, DOS
| client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

RecsPresent Number of put message records or response
records present

186

PutMsgRecFields Flags indicating which MQPMR fields are
present

186

PutMsgRecOffset Offset of first put-message record from start of
MQPMO

187

ResponseRecOffset Offset of first response record from start of
MQPMO

188

PutMsgRecPtr Address of first put message record 189

ResponseRecPtr Address of first response record 189

 Chapter 2. Data type descriptions – structures 173

 MQPMO – Strucid field � MQPMO – Options field

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQPMO_STRUC_ID
Identifier for put-message options structure.

For the C programming language, the constant
MQPMO_STRUC_ID_ARRAY is also defined; this has the same
value as MQPMO_STRUC_ID, but is an array of characters instead
of a string.

This is always an input field. The initial value of this field is
MQPMO_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be one of the following:

MQPMO_VERSION_1
Version-1 put-message options structure.

This version is supported in all environments.

MQPMO_VERSION_2
Version-2 put-message options structure.

This version is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Fields that exist only in the version-2 structure are identified as such
in the descriptions that follow.

The following constant specifies the version number of the current version:

MQPMO_CURRENT_VERSION
Current version of put-message options structure.

This is always an input field. The initial value of this field is
MQPMO_VERSION_1.

Options (MQLONG)
Options that control the action of MQPUT and MQPUT1.

Any or none of the following can be specified. If more than one is
required the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming
language supports bit operations).

Combinations that are not valid are noted; any other combinations are
valid. The following options are described:

 MQPMO_SYNCPOINT
 MQPMO_NO_SYNCPOINT
 MQPMO_NEW_MSG_ID

174 MQSeries Application Programming Reference

 MQPMO – Options field

 MQPMO_NEW_CORREL_ID
 MQPMO_LOGICAL_ORDER
 MQPMO_NO_CONTEXT
 MQPMO_DEFAULT_CONTEXT
 MQPMO_PASS_IDENTITY_CONTEXT
 MQPMO_PASS_ALL_CONTEXT
 MQPMO_SET_IDENTITY_CONTEXT
 MQPMO_SET_ALL_CONTEXT
 MQPMO_ALTERNATE_USER_AUTHORITY
 MQPMO_FAIL_IF_QUIESCING
 MQPMO_NONE

MQPMO_SYNCPOINT
Put message with syncpoint control.

The request is to operate within the normal unit of work protocols.
The message is not visible outside the unit of work until the unit of
work is committed. If the unit of work is backed out, the message is
deleted.

If neither this option nor MQPMO_NO_SYNCPOINT is specified, the
inclusion of the put request in unit of work protocols is determined by
the environment:

� On MVS/ESA, the put request is within a unit of work.

� In all other environments, the put request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT should be
specified explicitly.

MQPMO_SYNCPOINT must not be specified with
MQPMO_NO_SYNCPOINT.

MQPMO_NO_SYNCPOINT
Put message without syncpoint control.

The request is to operate outside the normal unit of work protocols.
The message is available immediately, and it cannot be deleted by
backing out a unit of work.

If neither this option nor MQPMO_SYNCPOINT is specified, the
inclusion of the put request in unit of work protocols is determined by
the environment:

� On MVS/ESA, the put request is within a unit of work.

� In all other environments, the put request is not within a unit of
work.

Because of these differences, an application which is intended to be
portable should not allow this option to default; either
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT should be
specified explicitly.

MQPMO_NO_SYNCPOINT must not be specified with
MQPMO_SYNCPOINT.

 Chapter 2. Data type descriptions – structures 175

 MQPMO – Options field

| On Tandem NSK, if MQPUT is issued outside a Tandem TMF
| transaction without the MQPMO_NO_SYNCPOINT option, the
| reason code MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

MQPMO_NEW_MSG_ID
Generate a new message identifier.

This option causes the queue manager to replace the contents of the
MsgId field in MQMD with a new message identifier. This message
identifier is sent with the message, and returned to the application on
output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to
a distribution list; see the description of the MsgId field in the
MQPMR structure for details.

Using this option relieves the application of the need to reset the
MsgId field to MQMI_NONE prior to each MQPUT or MQPUT1 call.

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

MQPMO_NEW_CORREL_ID
Generate a new correlation identifier.

This option causes the queue manager to replace the contents of the
CorrelId field in MQMD with a new correlation identifier. This
correlation identifier is sent with the message, and returned to the
application on output from the MQPUT or MQPUT1 call.

This option can also be specified when the message is being put to
a distribution list; see the description of the CorrelId field in the
MQPMR structure for details.

MQPMO_NEW_CORREL_ID is useful in situations where the
application requires a unique correlation identifier.

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

Group and segment option : The option described below relates to
messages in groups and segments of logical messages. The following
definitions may be of help in understanding this option:

Physical message
This is the smallest unit of information that can be placed on or
removed from a queue; it often corresponds to the information
specified or retrieved on a single MQPUT, MQPUT1, or MQGET call.
Every physical message has its own message descriptor (MQMD).
Generally, physical messages are distinguished by differing values
for the message identifier (MsgId field in MQMD), although this is not
enforced by the queue manager.

Logical message
This is a single unit of application information. In the absence of
system constraints, a logical message would be the same as a
physical message. But where logical messages are extremely large,
system constraints may make it advisable or necessary to split a

176 MQSeries Application Programming Reference

 MQPMO – Options field

logical message into two or more physical messages, called
segments.

A logical message that has been segmented consists of two or more
physical messages that have the same nonnull group identifier
(GroupId field in MQMD), and the same message sequence number
(MsgSeqNumber field in MQMD). The segments are distinguished by
differing values for the segment offset (Offset field in MQMD), which
gives the offset of the data in the physical message from the start of
the data in the logical message. Because each segment is a
physical message, the segments in a logical message usually have
differing message identifiers.

A logical message that has not been segmented, but for which
segmentation has been permitted by the sending application, also
has a nonnull group identifier, although in this case there is only one
physical message with that group identifier if the logical message
does not belong to a message group. Logical messages for which
segmentation has been inhibited by the sending application have a
null group identifier (MQGI_NONE), unless the logical message
belongs to a message group.

Message group
This is a set of one or more logical messages that have the same
nonnull group identifier. The logical messages in the group are
distinguished by differing values for the message sequence number,
which is an integer in the range 1 through n, where n is the number
of logical messages in the group. If one or more of the logical
messages is segmented, there will be more than n physical
messages in the group.

MQPMO_LOGICAL_ORDER
Messages in groups and segments of logical messages will be put in
logical order.

This option tells the queue manager how the application will put
messages in groups and segments of logical messages. It can be
specified only on the MQPUT call; it is not valid on the MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the
application will use successive MQPUT calls to:

� Put the segments in each logical message in the order of
increasing segment offset, starting from 0, with no gaps.

� Put all of the segments in one logical message before putting the
segments in the next logical message.

� Put the logical messages in each message group in the order of
increasing message sequence number, starting from 1, with no
gaps.

� Put all of the logical messages in one message group before
putting logical messages in the next message group.

The above order is called “logical order”.

Because the application has told the queue manager how it will put
messages in groups and segments of logical messages, the
application does not have to maintain and update the group and

 Chapter 2. Data type descriptions – structures 177

 MQPMO – Options field

segment information on each MQPUT call, as the queue manager
does this. Specifically, it means that the application does not need
to set the GroupId, MsgSeqNumber, and Offset fields in MQMD, as the
queue manager sets these to the appropriate values. The
application need set only the the MsgFlags field in MQMD, to indicate
when messages belong to groups or are segments of logical
messages, and to indicate the last message in a group or last
segment of a logical message.

Once a message group or logical message has been started,
subsequent MQPUT calls must specify the appropriate MQMF_ñ
flags in MsgFlags in MQMD. If the application tries to put a message
not in a group when there is an unterminated message group, or put
a message which is not a segment when there is an unterminated
logical message, the call fails with reason code
MQRC_INCOMPLETE_GROUP or MQRC_INCOMPLETE_MSG, as
appropriate. However, the queue manager retains the information
about the current message group and/or current logical message,
and the application can terminate them by sending a message
(possibly with no application message data) specifying
MQMF_LAST_MSG_IN_GROUP and/or MQMF_LAST_SEGMENT
as appropriate, before reissuing the MQPUT call to put the message
that is not in the group or not a segment.

Table 44 on page 179 shows the combinations of options and flags
that are valid, and the values of the GroupId, MsgSeqNumber, and
Offset fields that the queue manager uses in each case.
Combinations of options and flags that are not shown in the table are
not valid. The abbreviated column headings denote the following
options, flags, and group and logical-message status:

� LOG ORD means the MQPMO_LOGICAL_ORDER option.
� MIG means the MQMF_MSG_IN_GROUP and/or

MQMF_LAST_MSG_IN_GROUP flag.
� SEG means the MQMF_SEGMENT and/or

MQMF_LAST_SEGMENT flag.
� SEG OK means the MQMF_SEGMENTATION_ALLOWED flag.
� Cur grp means that a current message group exists prior to the

call.
� Cur log msg means that a current logical message exists prior

to the call.

In the table:

� “(√)” indicates that the row applies whether or not there is a √ in
that column.

� “Previous” denotes the value used for that field in the previous
message for the queue handle.

178 MQSeries Application Programming Reference

 MQPMO – Options field

Table 44. MQPUT options relating to messages in groups and segments of logical messages

Options you specify Group and
log-msg status

prior to call

Values the queue manager uses

LOG
ORD

MIG SEG SEG
OK

Cur
grp

Cur
log

msg

GroupId MsgSeqNumber Offset

√ MQGI_NONE 1 0

√ √ New group id 1 0

√ √ (√) New group id 1 0

√ √ (√) √ Previous group id 1 Previous offset +
previous segment

length

√ √ (√) (√) New group id 1 0

√ √ (√) (√) √ Previous group id Previous sequence
number + 1

0

√ √ √ (√) √ √ Previous group id Previous sequence
number

Previous offset +
previous segment

length

 (√) (√) MQGI_NONE 1 0

 √ (√) (√) New group id if
MQGI_NONE, else

value in field

1 0

 √ (√) (√) (√) New group id if
MQGI_NONE, else

value in field

1 Value in field

 √ (√) (√) (√) New group id if
MQGI_NONE, else

value in field

Value in field 0

 √ √ (√) (√) (√) New group id if
MQGI_NONE, else

value in field

Value in field Value in field

Notes:

� MQPMO_LOGICAL_ORDER is not valid on the MQPUT1 call.

� For the MsgId field, the queue manager generates a new message identifier if MQPMO_NEW_MSG_ID or MQMI_NONE is specified, and uses
the value in the field otherwise.

� For the CorrelId field, the queue manager generates a new correlation identifier if MQPMO_NEW_CORREL_ID is specified, and uses the
value in the field otherwise.

When MQPMO_LOGICAL_ORDER is specified, the queue manager
requires that all messages in a group and segments in a logical
message be put with the same value in the Persistence field in
MQMD, that is, all must be persistent, or all must be nonpersistent.
If this condition is not satisfied, the MQPUT call fails with reason
code MQRC_INCONSISTENT_PERSISTENCE.

The MQPMO_LOGICAL_ORDER option affects units of work as
follows:

� If the first physical message in a group or logical message is put
within a unit of work, all of the other physical messages in the
group or logical message must be put within a unit of work, if the
same queue handle is used. However, they need not be put
within the same unit of work. This allows a message group or
logical message consisting of many physical messages to be
split across two or more consecutive units of work for the queue
handle.

 Chapter 2. Data type descriptions – structures 179

 MQPMO – Options field

� If the first physical message in a group or logical message is not
put within a unit of work, none of the other physical messages in
the group or logical message can be put within a unit of work, if
the same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason
code MQRC_INCONSISTENT_UOW.

When MQPMO_LOGICAL_ORDER is specified, the MQMD supplied
on the MQPUT call must not be less than MQMD_VERSION_2. If
this condition is not satisfied, the call fails with reason code
MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in groups
and segments of logical messages can be put in any order, and it is
not necessary to put complete message groups or complete logical
messages. It is the application’s responsibility to ensure that the
GroupId, MsgSeqNumber, Offset, and MsgFlags fields have appropriate
values.

This is the technique that can be used to restart a message group or
logical message in the middle, after a system failure has occurred.
When the system restarts, the application can set the GroupId,
MsgSeqNumber, Offset, MsgFlags, and Persistence fields to the
appropriate values, and then issue the MQPUT call with
MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as desired,
but without specifying MQPMO_LOGICAL_ORDER. If this call is
successful, the queue manager retains the group and segment
information, and subsequent MQPUT calls using that queue handle
can specify MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains
for the MQPUT call is separate from the group and segment
information that it retains for the MQGET call.

For any given queue handle, the application is free to mix MQPUT
calls that specify MQPMO_LOGICAL_ORDER with MQPUT calls that
do not, but the following points should be noted:

� Each successful MQPUT call that does not specify
MQPMO_LOGICAL_ORDER causes the queue manager to set
the group and segment information for the queue handle to the
values specified by the application; this replaces the existing
group and segment information retained by the queue manager
for the queue handle.

� If MQPMO_LOGICAL_ORDER is not specified, the call does not
fail if there is a current message group or logical message, but
the message or segment put is not the next one in the group or
logical message. The call may however succeed with an
MQCC_WARNING completion code. Table 45 on page 181
shows the various cases that can arise. In these cases, if the
completion code is not MQCC_OK, the reason code is one of the
following (as appropriate):

 MQRC_INCOMPLETE_GROUP
 MQRC_INCOMPLETE_MSG
 MQRC_INCONSISTENT_PERSISTENCE
 MQRC_INCONSISTENT_UOW

180 MQSeries Application Programming Reference

 MQPMO – Options field

Note: The queue manager does not check the group and
segment information for the MQPUT1 call.

Table 45. Outcome when MQPUT or MQCLOSE call not consistent with group and segment information

Current call Previous call

MQPUT with
MQPMO_LOGICAL_ORDER

MQPUT without
MQPMO_LOGICAL_ORDER

MQPUT with
MQPMO_LOGICAL_ORDER

MQCC_FAILED MQCC_FAILED

MQPUT without
MQPMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated group
or logical message

MQCC_WARNING MQCC_OK

Applications that simply want to put messages and segments in
logical order are recommended to specify
MQPMO_LOGICAL_ORDER, as this is the simplest option to use.
This option relieves the application of the need to manage the group
and segment information, because the queue manager manages that
information. However, specialized applications may need more
control than provided by the MQPMO_LOGICAL_ORDER option, and
this can be achieved by not specifying that option. If this is done,
the application must ensure that the GroupId, MsgSeqNumber, Offset,
and MsgFlags fields in MQMD are set correctly, prior to each MQPUT
or MQPUT1 call.

For example, an application that wants to forward physical messages
that it receives, without regard for whether those messages are in
groups or segments of logical messages, should not specify
MQPMO_LOGICAL_ORDER. There are two reasons for this:

� If the messages are retrieved and put in order, specifying
MQPMO_LOGICAL_ORDER will cause a new group identifier to
be assigned to the messages, and this may make it difficult or
impossible for the originator of the messages to correlate any
reply or report messages that result from the message group.

� In a complex network with multiple paths between sending and
receiving queue managers, the physical messages may arrive
out of order. By specifying neither MQPMO_LOGICAL_ORDER,
nor the corresponding MQGMO_LOGICAL_ORDER on the
MQGET call, the forwarding application can retrieve and forward
each physical message as soon as it arrives, without having to
wait for the next one in logical order to arrive.

Applications that generate report messages for messages in groups
or segments of logical messages should also not specify
MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any of the other
MQPMO_ñ options.

This option is supported in the following environments: AIX, DOS
client, HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows
NT.

 Chapter 2. Data type descriptions – structures 181

 MQPMO – Options field

MQPMO_NO_CONTEXT
No context is to be associated with the message.

Both identity and origin context are set to indicate no context. This
means that the context fields in MQMD are set to:

� Blanks for character fields
� Nulls for byte fields
� Zeros for numeric fields

MQPMO_DEFAULT_CONTEXT
Use default context.

The message is to have default context information associated with
it, for both identity and origin. The queue manager sets the context
fields in the message descriptor as follows:

Field in MQMD Value used
UserIdentifier Determined from the environment if possible;

set to blanks otherwise.
AccountingToken Determined from the environment if possible;

set to MQACT_NONE otherwise.
ApplIdentityData Set to blanks.
PutApplType Determined from the environment.
PutApplName Determined from the environment if possible;

set to blanks otherwise.
PutDate Set to date when message is put.
PutTime Set to time when message is put.
ApplOriginData Set to blanks.

For more information on message context, see the MQSeries
Application Programming Guide.

This is the default action if no context options are specified.

MQPMO_PASS_IDENTITY_CONTEXT
Pass identity context from an input queue handle.

The message is to have context information associated with it.
Identity context is taken from the queue handle specified in the
Context field. Origin context information is generated by the queue
manager in the same way that it is for
MQPMO_DEFAULT_CONTEXT (see above for values). For more
information on message context, see the MQSeries Application
Programming Guide.

For the MQPUT call, the queue must have been opened with the
MQOO_PASS_IDENTITY_CONTEXT option (or an option that
implies it). For the MQPUT1 call, the same authorization check is
carried out as for the MQOPEN call with the
MQOO_PASS_IDENTITY_CONTEXT option.

This option is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MQPMO_PASS_ALL_CONTEXT
Pass all context from an input queue handle.

The message is to have context information associated with it. Both
identity and origin context are taken from the queue handle specified

182 MQSeries Application Programming Reference

 MQPMO – Options field

in the Context field. For more information on message context, see
the MQSeries Application Programming Guide.

For the MQPUT call, the queue must have been opened with the
MQOO_PASS_ALL_CONTEXT option (or an option that implies it).
For the MQPUT1 call, the same authorization check is carried out as
for the MQOPEN call with the MQOO_PASS_ALL_CONTEXT option.

This option is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MQPMO_SET_IDENTITY_CONTEXT
Set identity context from the application.

The message is to have context information associated with it. The
application specifies the identity context in the MQMD structure.
Origin context information is generated by the queue manager in the
same way that it is for MQPMO_DEFAULT_CONTEXT (see above
for values). For more information on message context, see the
MQSeries Application Programming Guide.

For the MQPUT call, the queue must have been opened with the
MQOO_SET_IDENTITY_CONTEXT option (or an option that implies
it). For the MQPUT1 call, the same authorization check is carried
out as for the MQOPEN call with the
MQOO_SET_IDENTITY_CONTEXT option.

MQPMO_SET_ALL_CONTEXT
Set all context from the application.

The message is to have context information associated with it. The
application specifies the identity and origin context in the MQMD
structure. For more information on message context, see the
MQSeries Application Programming Guide.

For the MQPUT call, the queue must have been opened with the
MQOO_SET_ALL_CONTEXT option. For the MQPUT1 call, the
same authorization check is carried out as for the MQOPEN call with
the MQOO_SET_ALL_CONTEXT option.

Only one of the MQPMO_ñ_CONTEXT context options can be specified.
If none of these options is specified, MQPMO_DEFAULT_CONTEXT is
assumed.

MQPMO_ALTERNATE_USER_AUTHORITY
Validate with specified user identifier.

This indicates that the AlternateUserId field in the ObjDesc
parameter of the MQPUT1 call contains a user identifier that is to be
used to validate authority to put messages on the queue. The call
can succeed only if this AlternateUserId is authorized to open the
queue with the specified options, regardless of whether the user
identifier under which the application is running is authorized to do
so. (This does not apply to the context options specified, however,
which are always checked against the user identifier under which the
application is running.)

This option is valid only with the MQPUT1 call.

 Chapter 2. Data type descriptions – structures 183

 MQPMO – Timeout field � MQPMO – KnownDestCount field

This option is accepted but ignored in the following environments:
16-bit Windows, 32-bit Windows.

MQPMO_FAIL_IF_QUIESCING
Fail if queue manager is quiescing.

This option forces the MQPUT or MQPUT1 call to fail if the queue
manager is in the quiescing state.

On MVS/ESA, this option also forces the MQPUT or MQPUT1 call to
fail if the connection (for a CICS or IMS application) is in the
quiescing state.

The call returns completion code MQCC_FAILED with reason code
MQRC_Q_MGR_QUIESCING or
MQRC_CONNECTION_QUIESCING.

This option is accepted but ignored in the following environments:
16-bit Windows, 32-bit Windows.

MQPMO_NONE
No options specified.

This value can be used to indicate that no other options have been
specified; all options assume their default values. MQPMO_NONE is
defined to aid program documentation; it is not intended that this
option be used with any other, but as its value is zero, such use
cannot be detected.

This is an input field. The initial value of the Options field is
MQPMO_NONE.

Timeout (MQLONG)
Reserved.

This is a reserved field; its value is not significant. The initial value of this
field is −1.

Context (MQHOBJ)
Object handle of input queue.

If MQPMO_PASS_IDENTITY_CONTEXT or
MQPMO_PASS_ALL_CONTEXT is specified, this field must contain the
input queue handle from which context information to be associated with
the message being put is taken.

If neither MQPMO_PASS_IDENTITY_CONTEXT nor
MQPMO_PASS_ALL_CONTEXT is specified, this field is ignored.

This is an input field. The initial value of this field is ð.

KnownDestCount (MQLONG)
Number of messages sent successfully to local queues.

This is the number of messages that the current MQPUT or MQPUT1 call
has sent successfully to queues in the distribution list that are local
queues. The count does not include messages sent to queues that
resolve to remote queues (even though a local transmission queue is used
initially to store the message). This field is also set when putting a
message to a single queue which is not in a distribution list.

184 MQSeries Application Programming Reference

 MQPMO – UnknownDestCount field � MQPMO – ResolvedQMgrName field

This is an output field. The initial value of this field is 0. This field is not
set if Version is less than MQPMO_VERSION_2.

UnknownDestCount (MQLONG)
Number of messages sent successfully to remote queues.

This is the number of messages that the current MQPUT or MQPUT1 call
has sent successfully to queues in the distribution list that resolve to
remote queues. Messages that the queue manager retains temporarily in
distribution-list form count as the number of individual destinations that
those distribution lists contain. This field is also set when putting a
message to a single queue which is not in a distribution list.

This is an output field. The initial value of this field is 0. This field is not
set if Version is less than MQPMO_VERSION_2.

InvalidDestCount (MQLONG)
Number of messages that could not be sent.

This is the number of messages that could not be sent to queues in the
distribution list. The count includes queues that failed to open, as well as
queues that were opened successfully but for which the put operation
failed. This field is also set when putting a message to a single queue
which is not in a distribution list.

Note: This field is set only if the CompCode parameter on the MQPUT or
MQPUT1 call is MQCC_OK or MQCC_WARNING; it is not set if
the CompCode parameter is MQCC_FAILED.

This is an output field. The initial value of this field is 0. This field is not
set if Version is less than MQPMO_VERSION_2.

ResolvedQName (MQCHAR48)
Resolved name of destination queue.

This is an output field that is set by the queue manager to the name of the
queue (after alias resolution) on which the message will be placed. This
can be either the name of a local queue, or the name of a remote queue.
If the destination queue opened was a model queue, the name of the
dynamic local queue that was created is returned. In all cases, the name
returned is the name of a queue that is defined on the queue manager
identified by ResolvedQMgrName.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

This is an output field. The length of this field is given by
MQ_Q_NAME_LENGTH. The initial value of this field is the null string in
C, and 48 blank characters in other programming languages.

ResolvedQMgrName (MQCHAR48)
Resolved name of destination queue manager.

This is the name of the queue manager (after alias resolution) that owns
the queue specified by ResolvedQName.

If the MQPUT or MQPUT1 call is used to put the message to a distribution
list, the value returned in this field is undefined.

 Chapter 2. Data type descriptions – structures 185

 MQPMO – RecsPresent field � MQPMO – PutMsgRecFields field

This is an output field. The length of this field is given by
MQ_Q_MGR_NAME_LENGTH. The initial value of this field is the null
string in C, and 48 blank characters in other programming languages.

The remaining fields in this structure are not present if Version is less than
MQPMO_VERSION_2.

RecsPresent (MQLONG)
Number of put message records or response records present.

This is the number of MQPMR put message records or MQRR response
records that have been provided by the application. This number can be
greater than zero only if the message is being put to a distribution list. Put
message records and response records are optional – the application
need not provide any records, or it can choose to provide records of only
one type. However, if the application provides records of both types, it
must provide RecsPresent records of each type.

The value of RecsPresent need not be the same as the number of
destinations in the distribution list. If too many records are provided, the
excess are not used; if too few records are provided, default values are
used for the message properties for those destinations that do not have
put message records (see PutMsgRecOffset below).

If RecsPresent is less than zero, or is greater than zero but the message is
not being put to a distribution list, the call fails with reason code
MQRC_RECS_PRESENT_ERROR.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQPMO_VERSION_2.

PutMsgRecFields (MQLONG)
Flags indicating which MQPMR fields are present.

This field contains flags that must be set to indicate which MQPMR fields
are present in the put message records provided by the application.
PutMsgRecFields is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero, or both
PutMsgRecOffset and PutMsgRecPtr are zero.

For fields that are present, the queue manager uses for each destination
the values from the fields in the corresponding put message record. For
fields that are absent, the queue manager uses the values from the
MQMD structure.

One or more of the following flags can be specified to indicate which fields
are present in the put message records:

MQPMRF_MSG_ID
Message-identifier field is present.

MQPMRF_CORREL_ID
Correlation-identifier field is present.

MQPMRF_GROUP_ID
Group-identifier field is present.

MQPMRF_FEEDBACK
Feedback field is present.

186 MQSeries Application Programming Reference

 MQPMO – PutMsgRecOffset field

MQPMRF_ACCOUNTING_TOKEN
Accounting-token field is present.

If this flag is specified, either MQPMO_SET_IDENTITY_CONTEXT
or MQPMO_SET_ALL_CONTEXT must be specified in the Options
field; if this condition is not satisfied, the call fails with reason code
MQRC_PMO_RECORD_FLAGS_ERROR.

If no MQPMR fields are present, the following can be specified:

MQPMRF_NONE
No put-message record fields are present.

If this value is specified, either RecsPresent must be zero, or both
PutMsgRecOffset and PutMsgRecPtr must be zero.

MQPMRF_NONE is defined to aid program documentation. It is not
intended that this constant be used with any other, but as its value is
zero, such use cannot be detected.

If PutMsgRecFields contains flags which are not valid, or put message
records are provided but PutMsgRecFields has the value
MQPMRF_NONE, the call fails with reason code
MQRC_PMO_RECORD_FLAGS_ERROR.

This is an input field. The initial value of this field is MQPMRF_NONE.
This field is not present if Version is less than MQPMO_VERSION_2.

PutMsgRecOffset (MQLONG)
Offset of first put message record from start of MQPMO.

This is the offset in bytes of the first MQPMR put message record from the
start of the MQPMO structure. The offset can be positive or negative.
PutMsgRecOffset is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or
more MQPMR put message records can be provided in order to specify
certain properties of the message for each destination individually; these
properties are:

 � message identifier
 � correlation identifier
 � group identifier
 � feedback value
 � accounting token

It is not necessary to specify all of these properties, but whatever subset is
chosen, the fields must be specified in the correct order. See the
description of the MQPMR structure for further details.

Usually, there should be as many put message records as there are object
records specified by MQOD when the distribution list is opened; each put
message record supplies the message properties for the queue identified
by the corresponding object record. Queues in the distribution list which
fail to open must still have put message records allocated for them at the
appropriate positions in the array, although the message properties are
ignored in this case.

 Chapter 2. Data type descriptions – structures 187

 MQPMO – ResponseRecOffset field

It is possible for the number of put message records to differ from the
number of object records. If there are fewer put message records than
object records, the message properties for the destinations which do not
have put message records are taken from the corresponding fields in the
message descriptor MQMD. If there are more put message records than
object records, the excess are not used (although it must still be possible
to access them). Put message records are optional, but if they are
supplied there must be RecsPresent of them.

The put message records can be provided in a similar way to the object
records in MQOD, either by specifying an offset in PutMsgRecOffset, or by
specifying an address in PutMsgRecPtr; for details of how to do this, see
the ObjectRecOffset field described in “MQOD – Object descriptor” on
page 160.

No more than one of PutMsgRecOffset and PutMsgRecPtr can be used; the
call fails with reason code MQRC_PUT_MSG_RECORDS_ERROR if both
are nonzero.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQPMO_VERSION_2.

ResponseRecOffset (MQLONG)
Offset of first response record from start of MQPMO.

This is the offset in bytes of the first MQRR response record from the start
of the MQPMO structure. The offset can be positive or negative.
ResponseRecOffset is used only when the message is being put to a
distribution list. The field is ignored if RecsPresent is zero.

When the message is being put to a distribution list, an array of one or
more MQRR response records can be provided in order to identify the
queues to which the message was not sent successfully (CompCode field in
MQRR), and the reason for each failure (Reason field in MQRR). The
message may not have been sent either because the queue failed to
open, or because the put operation failed. The queue manager sets the
response records only when the outcome of the call is mixed (that is,
some messages were sent successfully while others failed, or all failed but
for differing reasons); reason code MQRC_MULTIPLE_REASONS from
the call indicates this case. If the same reason code applies to all queues,
that reason is returned in the Reason parameter of the MQPUT or
MQPUT1 call, and the response records are not set.

Usually, there should be as many response records as there are object
records specified by MQOD when the distribution list is opened; when
necessary, each response record is set to the completion code and reason
code for the put to the queue identified by the corresponding object record.
Queues in the distribution list which fail to open must still have response
records allocated for them at the appropriate positions in the array,
although they are set to the completion code and reason code resulting
from the open operation, rather than the put operation.

It is possible for the number of response records to differ from the number
of object records. If there are fewer response records than object records,
it may not be possible for the application to identify all of the destinations
for which the put operation failed, or the reasons for the failures. If there
are more response records than object records, the excess are not used

188 MQSeries Application Programming Reference

 MQPMO – PutMsgRecPtr field � MQPMO – ResponseRecPtr field

(although it must still be possible to access them). Response records are
optional, but if they are supplied there must be RecsPresent of them.

The response records can be provided in a similar way to the object
records in MQOD, either by specifying an offset in ResponseRecOffset, or
by specifying an address in ResponseRecPtr; for details of how to do this,
see the ObjectRecOffset field described in “MQOD – Object descriptor” on
page 160. However, no more than one of ResponseRecOffset and
ResponseRecPtr can be used; the call fails with reason code
MQRC_RESPONSE_RECORDS_ERROR if both are nonzero.

| For the MQPUT1 call, this field must be zero. This is because the
response information (if requested) is returned in the response records
specified by the object descriptor MQOD.

This is an input field. The initial value of this field is 0. This field is not
present if Version is less than MQPMO_VERSION_2.

PutMsgRecPtr (MQPTR)
Address of first put message record.

This is the address of the first MQPMR put message record.
PutMsgRecPtr is used only when the message is being put to a distribution
list. The field is ignored if RecsPresent is zero.

Either PutMsgRecPtr or PutMsgRecOffset can be used to specify the put
message records, but not both; see the description of the PutMsgRecOffset
field above for details. If PutMsgRecPtr is not used, it must be set to the
null pointer or null bytes.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQPMO_VERSION_2.

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

ResponseRecPtr (MQPTR)
Address of first response record.

This is the address of the first MQRR response record. ResponseRecPtr
is used only when the message is being put to a distribution list. The field
is ignored if RecsPresent is zero.

Either ResponseRecPtr or ResponseRecOffset can be used to specify the
response records, but not both; see the description of the
ResponseRecOffset field above for details. If ResponseRecPtr is not used, it
must be set to the null pointer or null bytes.

For the MQPUT1 call, this field must be the null pointer or null bytes. This
is because the response information (if requested) is returned in the
response records specified by the object descriptor MQOD.

This is an input field. The initial value of this field is the null pointer in
those programming languages that support pointers, and an all-null byte
string otherwise. This field is not present if Version is less than
MQPMO_VERSION_2.

 Chapter 2. Data type descriptions – structures 189

 MQPMO – C declaration

Note: On platforms where the programming language does not support
the pointer data type, this field is declared as a byte string of the
appropriate length, with the initial value being the all-null byte
string.

Table 46. Initial values of fields in MQPMO

Field name Name of constant Value of constant

StrucId MQPMO_STRUC_ID 'PMO␣'
(See note 1)

Version MQPMO_VERSION_1 1

Options MQPMO_NONE ð

Timeout None -1

Context None ð

KnownDestCount None ð

UnknownDestCount None ð

InvalidDestCount None ð

ResolvedQName None Blanks
(See note 2)

ResolvedQMgrName None Blanks

RecsPresent None ð

PutMsgRecFields MQPMRF_NONE ð

PutMsgRecOffset None ð

ResponseRecOffset None ð

PutMsgRecPtr None Null pointer or null
bytes

ResponseRecPtr None Null pointer or null
bytes

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQPMO_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQPMO MyPMO = {MQPMO_DEFAULT};

C language declaration
typedef struct tagMQPMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

MQPUT or MQPUT1 \/
MQLONG Timeout; /\ Reserved \/
MQHOBJ Context; /\ Object handle of input queue \/
MQLONG KnownDestCount; /\ Number of messages sent successfully

to local queues \/

190 MQSeries Application Programming Reference

 MQPMO – COBOL declaration

MQLONG UnknownDestCount; /\ Number of messages sent successfully
to remote queues \/

MQLONG InvalidDestCount; /\ Number of messages that could not be
 sent \/
 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
 MQCHAR48 ResolvedQMgrName; /\ Resolved name of destination queue
 manager \/
MQLONG RecsPresent; /\ Number of put message records or

response records present \/
MQLONG PutMsgRecFields; /\ Flags indicating which MQPMR fields

are present \/
MQLONG PutMsgRecOffset; /\ Offset of first put message record

from start of MQPMO \/
MQLONG ResponseRecOffset; /\ Offset of first response record from

start of MQPMO \/
MQPTR PutMsgRecPtr; /\ Address of first put message

 record \/
MQPTR ResponseRecPtr; /\ Address of first response record \/

 } MQPMO;

COBOL language declaration
\\ MQPMO structure
 1ð MQPMO.
\\ Structure identifier
 15 MQPMO-STRUCID PIC X(4).
\\ Structure version number

15 MQPMO-VERSION PIC S9(9) BINARY.
\\ Options that control the action of MQPUT or MQPUT1

15 MQPMO-OPTIONS PIC S9(9) BINARY.
\\ Reserved

15 MQPMO-TIMEOUT PIC S9(9) BINARY.
\\ Object handle of input queue

15 MQPMO-CONTEXT PIC S9(9) BINARY.
\\ Number of messages sent successfully to local queues

15 MQPMO-KNOWNDESTCOUNT PIC S9(9) BINARY.
\\ Number of messages sent successfully to remote queues

15 MQPMO-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
\\ Number of messages that could not be sent

15 MQPMO-INVALIDDESTCOUNT PIC S9(9) BINARY.
\\ Resolved name of destination queue
 15 MQPMO-RESOLVEDQNAME PIC X(48).
\\ Resolved name of destination queue manager
 15 MQPMO-RESOLVEDQMGRNAME PIC X(48).
\\ Number of put message records or response records present

15 MQPMO-RECSPRESENT PIC S9(9) BINARY.
\\ Flags indicating which MQPMR fields are present

15 MQPMO-PUTMSGRECFIELDS PIC S9(9) BINARY.
\\ Offset of first put message record from start of MQPMO

15 MQPMO-PUTMSGRECOFFSET PIC S9(9) BINARY.
\\ Offset of first response record from start of MQPMO

15 MQPMO-RESPONSERECOFFSET PIC S9(9) BINARY.
\\ Address of first put message record
 15 MQPMO-PUTMSGRECPTR POINTER.
\\ Address of first response record
 15 MQPMO-RESPONSERECPTR POINTER.

 Chapter 2. Data type descriptions – structures 191

 MQPMO – PL/I declaration � MQPMO – S/390 declaration

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQPMO based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 Options fixed bin(31), /\ Options that control the action

of MQPUT or MQPUT1 \/
3 Timeout fixed bin(31), /\ Reserved \/
3 Context fixed bin(31), /\ Object handle of input queue \/
3 KnownDestCount fixed bin(31), /\ Number of messages sent success-

fully to local queues \/
3 UnknownDestCount fixed bin(31), /\ Number of messages sent success-

fully to remote queues \/
3 InvalidDestCount fixed bin(31), /\ Number of messages that could

not be sent \/
3 ResolvedQName char(48), /\ Resolved name of destination

 queue \/
3 ResolvedQMgrName char(48), /\ Resolved name of destination

queue manager \/
3 RecsPresent fixed bin(31), /\ Number of put message records or

response records present \/
3 PutMsgRecFields fixed bin(31), /\ Flags indicating which MQPMR

fields are present \/
3 PutMsgRecOffset fixed bin(31), /\ Offset of first put message

record from start of MQPMO \/
3 ResponseRecOffset fixed bin(31), /\ Offset of first response record

from start of MQPMO \/
3 PutMsgRecPtr pointer, /\ Address of first put message

 record \/
3 ResponseRecPtr pointer; /\ Address of first response

 record \/

System/390 assembler-language declaration (MVS/ESA only)
MQPMO DSECT
MQPMO_STRUCID DS CL4 Structure identifier
MQPMO_VERSION DS F Structure version number
MQPMO_OPTIONS DS F Options that control the
\ action of MQPUT or MQPUT1
MQPMO_TIMEOUT DS F Reserved
MQPMO_CONTEXT DS F Object handle of input queue
MQPMO_KNOWNDESTCOUNT DS F Reserved
MQPMO_UNKNOWNDESTCOUNT DS F Reserved
MQPMO_INVALIDDESTCOUNT DS F Reserved
MQPMO_RESOLVEDQNAME DS CL48 Resolved name of destination
\ queue
MQPMO_RESOLVEDQMGRNAME DS CL48 Resolved name of destination
\ queue manager
MQPMO_LENGTH EQU \-MQPMO Length of structure
 ORG MQPMO
MQPMO_AREA DS CL(MQPMO_LENGTH)

192 MQSeries Application Programming Reference

 MQPMO – TAL declaration

| TAL declaration (Tandem NSK only)
| STRUCT MQPMO^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| INT(32) OPTIONS;
| INT(32) TIMEOUT;
| INT(32) CONTEXT;
| INT(32) KNOWNDESTCOUNT;
| INT(32) UNKNOWNDESTCOUNT;
| INT(32) INVALIDDESTCOUNT;
| STRUCT RESOLVEDQNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT RESOLVEDQMGRNAME;
| BEGIN STRING BYTE [ð:47]; END;
| END;

 Chapter 2. Data type descriptions – structures 193

 MQPMR – Put-message record � MQPMR – Msgid field

MQPMR – Put message record
The following table summarizes the fields in the structure.

The MQPMR structure is used to specify various message properties for a single
destination. By providing an array of these structures on the MQPUT or MQPUT1
call, it is possible to specify different values for each destination queue in a
distribution list. Some of the fields are input only, others are input/output.

Note: This structure is unusual in that it does not have a fixed layout. The fields
in this structure are optional, and the presence or absence of each field is
indicated by the flags in the PutMsgRecFields field in MQPMO. Fields that
are present must occur in the order shown below . Fields that are absent
occupy no space in the record.

Because MQPMR does not have a fixed layout, no declaration is provided
for it in a header, COPY, and INCLUDE files for the supported programming
languages. The application programmer should create a declaration
containing the fields that are required by the application, and set the flags in
PutMsgRecFields to indicate the fields that are present.

MQPMR is an input/output structure for the MQPUT and MQPUT1 calls.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Table 47. Fields in MQPMR

Field Description Page

MsgId Message identifier 194

CorrelId Correlation identifier 195

GroupId Group identifier 195

Feedback Feedback or reason code 195

AccountingToken Accounting token 196

 Fields
MsgId (MQBYTE24)

Message identifier.

This is the message identifier to be used for the message sent to the
queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call. It
is processed in the same way as the MsgId field in MQMD for a put to a
single queue.

If this field is not present in the MQPMR record, or there are fewer
MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a MsgId field.
If that value is MQMI_NONE, a new message identifier is generated for
each of those destinations (that is, no two of those destinations have the
same message identifier).

If MQPMO_NEW_MSG_ID is specified, new message identifiers are
generated for all of the destinations in the distribution list, regardless of

194 MQSeries Application Programming Reference

 MQPMR – Corelid field � MQPMR – Feedback field

whether they have MQPMR records. This is different from the way that
MQPMO_NEW_CORREL_ID is processed (see below).

This is an input/output field.

CorrelId (MQBYTE24)
Correlation identifier.

This is the correlation identifier to be used for the message sent to the
queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call. It
is processed in the same way as the CorrelId field in MQMD for a put to
a single queue.

If this field is not present in the MQPMR record, or there are fewer
MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a CorrelId
field.

If MQPMO_NEW_CORREL_ID is specified, a single new correlation
identifier is generated and used for all of the destinations in the distribution
list, regardless of whether they have MQPMR records. This is different
from the way that MQPMO_NEW_MSG_ID is processed (see above).

This is an input/output field.

GroupId (MQBYTE24)
Group identifier.

This is the group identifier to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is
processed in the same way as the GroupId field in MQMD for a put to a
single queue.

If this field is not present in the MQPMR record, or there are fewer
MQPMR records than destinations, the value in MQMD is used for those
destinations that do not have an MQPMR record containing a GroupId
field. The value is processed as documented in Table 44 on page 179,
but with the following differences:

� In those cases where a new group identifier would be used, the queue
manager generates a different group identifier for each destination
(that is, no two destinations have the same group identifier).

� In those cases where the value in the field would be used, the call
fails with reason code MQRC_GROUP_ID_ERROR.

This is an input/output field.

Feedback (MQLONG)
Feedback or reason code.

This is the feedback code to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is
processed in the same way as the Feedback field in MQMD for a put to a
single queue. If this field is not present, the value in MQMD is used.

This is an input field.

 Chapter 2. Data type descriptions – structures 195

 MQPMR – AccountingToken field � MQPMR – language declarations

AccountingToken (MQBYTE32)
Accounting token.

This is the accounting token to be used for the message sent to the queue
whose name was specified by the corresponding element in the array of
MQOR structures provided on the MQOPEN or MQPUT1 call. It is
processed in the same way as the AccountingToken field in MQMD for a
put to a single queue. If this field is not present, the value in MQMD is
used.

This is an input field.

There are no initial values defined for this structure, as no structure declarations
are provided in the header, COPY, and INCLUDE files for the supported
programming languages. The sample declarations below show how the structure
should be declared by the application programmer if all of the fields are required.

C language declaration
typedef struct tagMQPMR {
 MQBYTE24 MsgId; /\ Message identifier \/
 MQBYTE24 CorrelId; /\ Correlation identifier \/
 MQBYTE24 GroupId; /\ Group identifier \/
MQLONG Feedback; /\ Feedback or reason code \/

 MQBYTE32 AccountingToken; /\ Accounting token \/
 } MQPMR;

COBOL language declaration
\\ MQPMR structure
 1ð MQPMR.
\\ Message identifier
 15 MQPMR-MSGID PIC X(24).
\\ Correlation identifier
 15 MQPMR-CORRELID PIC X(24).
\\ Group identifier
 15 MQPMR-GROUPID PIC X(24).
\\ Feedback or reason code

15 MQPMR-FEEDBACK PIC S9(9) BINARY.
\\ Accounting token

15 MQPMR-ACCOUNTINGTOKEN PIC X(32).

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQPMR based,
3 MsgId char(24), /\ Message identifier \/
3 CorrelId char(24), /\ Correlation identifier \/
3 GroupId char(24), /\ Group identifier \/
3 Feedback fixed bin(31), /\ Feedback or reason code \/
3 AccountingToken char(32); /\ Accounting token \/

196 MQSeries Application Programming Reference

 MQRMH – Message reference header

MQRMH – Message reference header
The following table summarizes the fields in the structure.

The MQRMH structure defines the format of a reference message header. An
application can put a message in this format, omitting the bulk data. When the
message is read from the transmission queue by a message channel agent (MCA),
a user-supplied message exit is invoked to process the reference message header.
The exit can append to the reference message the bulk data identified by the
MQRMH structure, before the MCA sends the message through the channel to the
next queue manager.

At the receiving end, a message exit that waits for reference messages should
exist. When a reference message is received, the exit should create the object
from the bulk data that follows the MQRMH in the message, and then pass on the
reference message without the bulk data. The reference message can later be
retrieved by an application reading the reference message (without the bulk data)
from a queue.

Normally, the MQRMH structure (optionally with the bulk data) is all that is in the
message. However, if the message is on a transmission queue, one or more
additional headers will precede the MQRMH structure.

Table 48. Fields in MQRMH

Field Description Page

StrucId Structure identifier 198

Version Structure version number 198

StrucLength Total length of MQRMH, including strings at end
of fixed fields, but not the bulk data

199

Encoding Data encoding 199

CodedCharSetId Coded character set identifier 199

Format Format name 199

Flags Reference message flags 199

ObjectType Object type 200

ObjectInstanceId Object instance identifier 200

SrcEnvLength Length of source environment data 200

SrcEnvOffset Offset of source environment data 200

SrcNameLength Length of source object name 201

SrcNameOffset Offset of source object name 201

DestEnvLength Length of destination environment data 201

DestEnvOffset Offset of destination environment data 201

DestNameLength Length of destination object name 202

DestNameOffset Offset of destination object name 202

DataLogicalLength Length of bulk data 202

DataLogicalOffset Low offset of bulk data 203

DataLogicalOffset2 High offset of bulk data 203

 Chapter 2. Data type descriptions – structures 197

 MQRMH – Strucid field � MQRMH – Version field

A reference message can also be sent to a distribution list. In this case, the MQDH
structure and its related records precede the MQRMH structure when the message
is on a transmission queue.

Note: A reference message should not be sent as a segmented message,
because the message exit cannot process it correctly.

For data conversion purposes, conversion of the MQRMH structure includes
conversion of the source environment data, source object name, destination
environment data, and destination object name. Any other bytes within
StrucLength are either discarded or have undefined values after data conversion.
The bulk data will be converted provided that all of the following are true:

� The bulk data is present in the message when the data conversion is
performed.

� The Format field in MQRMH has a value other than MQFMT_NONE.

� A user-written data-conversion exit exists with the format name specified.

Be aware, however, that usually the bulk data is not present in the message when
the message is on a queue, and that as a result the bulk data will not be converted
by the MQGMO_CONVERT option.

The format name of an MQRMH structure is MQFMT_REF_MSG_HEADER. The
fields in the MQRMH structure, and the strings addressed by the offset fields, are in
the character set and encoding given by the CodedCharSetId and Encoding fields in
the header structure that precedes the MQRMH, or by those fields in the MQMD
structure if the MQRMH is at the start of the application message data.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQRMH_STRUC_ID
Identifier for reference message header structure.

For the C programming language, the constant
MQRMH_STRUC_ID_ARRAY is also defined; this has the same
value as MQRMH_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQRMH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQRMH_VERSION_1
Version-1 reference message header structure.

The following constant specifies the version number of the current version:

198 MQSeries Application Programming Reference

 MQRMH – StrucLength field � MQRMH – Flags field

MQRMH_CURRENT_VERSION
Current version of reference message header structure.

The initial value of this field is MQRMH_VERSION_1.

StrucLength (MQLONG)
Total length of MQRMH, including strings at end of fixed fields, but not the
bulk data.

The initial value of this field is zero.

Encoding (MQLONG)
Data encoding.

This identifies the representation used for numeric values in the bulk data;
this applies to binary integer data, packed-decimal integer data, and
floating-point data.

The initial value of this field is MQENC_NATIVE.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of character data in the
bulk data.

Note that character data in the MQ data structures must be in the
character set used by the queue manager. This is defined by the queue
manager’s CodedCharSetId attribute; see “Attributes for the queue
manager” on page 370 for details of this attribute.

The initial value of this field is ð.

Format (MQCHAR8)
Format name.

This is a name that the sender of the message may use to indicate to the
receiver the nature of the bulk data. Any characters that are in the queue
manager’s character set may be specified for the name, but it is
recommended that the name be restricted to the following:

� Uppercase A through Z
� Numeric digits 0 through 9

If other characters are used, it may not be possible to translate the name
between the character sets of the sending and receiving queue managers.

The name should be padded with blanks to the length of the field. Do not
use a null character to terminate the name before the end of the field, as
the queue manager does not change the null and subsequent characters
to blanks in the MQRMH structure. Do not specify a name with leading or
embedded blanks.

The initial value of this field is MQFMT_NONE.

Flags (MQLONG)
Reference message flags.

The following flags are defined:

 Chapter 2. Data type descriptions – structures 199

 MQRMH – ObjectType field � MQRMH – SrcEnvOffset field

MQRMHF_LAST
Reference message contains or represents last part of object.

This flag indicates that the reference message represents or contains
the last part of the referenced object.

MQRMHF_NOT_LAST
Reference message does not contain or represent last part of object.

MQRMHF_NOT_LAST is defined to aid program documentation. It
is not intended that this option be used with any other, but as its
value is zero, such use cannot be detected.

The initial value of this field is MQRMHF_NOT_LAST.

ObjectType (MQCHAR8)
Object type.

This is a name that can be used by the message exit to recognize types of
reference message that it supports. It is recommended that the name
conform to the same rules as the Format field described above.

The initial value of this field is 8 blanks.

ObjectInstanceId (MQBYTE24)
Object instance identifier.

This field can be used to identify a specific instance of an object. If it is
not needed, it should be set to the following value:

MQOII_NONE
No object instance identifier specified.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQOII_NONE_ARRAY is also defined; this has the same value as
MQOII_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_OBJECT_INSTANCE_ID_LENGTH.
The initial value of this field is MQOII_NONE.

SrcEnvLength (MQLONG)
Length of source environment data.

If this field is zero, there is no source environment data, and SrcEnvOffset
is ignored.

The initial value of this field is 0.

SrcEnvOffset (MQLONG)
Offset of source environment data.

This field specifies the offset of the source environment data from the start
of the MQRMH structure. Source environment data can be specified by
the creator of the reference message, if that data is known to the creator.
For example, on OS/2 the source environment data might be the directory
path of the object containing the bulk data. However, if the creator does
not know the source environment data, it is the responsibility of the
user-supplied message exit to determine any environment information
needed.

200 MQSeries Application Programming Reference

 MQRMH – SrcNameLength field � MQRMH – DestEnvOffset field

The length of the source environment data is given by SrcEnvLength; if this
length is zero, there is no source environment data, and SrcEnvOffset is
ignored. If present, the source environment data must reside completely
within StrucLength bytes from the start of the structure.

Applications should not assume that the environment data starts
immediately after the last fixed field in the structure or that it is contiguous
with any of the data addressed by the SrcNameOffset, DestEnvOffset, and
DestNameOffset fields.

The initial value of this field is 0.

SrcNameLength (MQLONG)
Length of source object name.

If this field is zero, there is no source object name, and SrcNameOffset is
ignored.

The initial value of this field is 0.

SrcNameOffset (MQLONG)
Offset of source object name.

This field specifies the offset of the source object name from the start of
the MQRMH structure. The source object name can be specified by the
creator of the reference message, if that data is known to the creator.
However, if the creator does not know the source object name, it is the
responsibility of the user-supplied message exit to identify the object to be
accessed.

The length of the source object name is given by SrcNameLength; if this
length is zero, there is no source object name, and SrcNameOffset is
ignored. If present, the source object name must reside completely within
StrucLength bytes from the start of the structure.

Applications should not assume that the source object name is contiguous
with any of the data addressed by the SrcEnvOffset, DestEnvOffset, and
DestNameOffset fields.

The initial value of this field is 0.

DestEnvLength (MQLONG)
Length of destination environment data.

If this field is zero, there is no destination environment data, and
DestEnvOffset is ignored.

DestEnvOffset (MQLONG)
Offset of destination environment data.

This field specifies the offset of the destination environment data from the
start of the MQRMH structure. Destination environment data can be
specified by the creator of the reference message, if that data is known to
the creator. For example, on OS/2 the destination environment data might
be the directory path of the object where the bulk data is to be stored.
However, if the creator does not know the destination environment data, it
is the responsibility of the user-supplied message exit to determine any
environment information needed.

The length of the destination environment data is given by DestEnvLength;
if this length is zero, there is no destination environment data, and

 Chapter 2. Data type descriptions – structures 201

 MQRMH – DestNameLength field � MQRMH – DataLogicalLength field

DestEnvOffset is ignored. If present, the destination environment data
must reside completely within StrucLength bytes from the start of the
structure.

Applications should not assume that the destination environment data is
contiguous with any of the data addressed by the SrcEnvOffset,
SrcNameOffset, and DestNameOffset fields.

The initial value of this field is 0.

DestNameLength (MQLONG)
Length of destination object name.

If this field is zero, there is no destination object name, and
DestNameOffset is ignored.

DestNameOffset (MQLONG)
Offset of destination object name.

This field specifies the offset of the destination object name from the start
of the MQRMH structure. The destination object name can be specified
by the creator of the reference message, if that data is known to the
creator. However, if the creator does not know the destination object
name, it is the responsibility of the user-supplied message exit to identify
the object to be created or modified.

The length of the destination object name is given by DestNameLength; if
this length is zero, there is no destination object name, and
DestNameOffset is ignored. If present, the destination object name must
reside completely within StrucLength bytes from the start of the structure.

Applications should not assume that the destination object name is
contiguous with any of the data addressed by the SrcEnvOffset,
SrcNameOffset, and DestEnvOffset fields.

The initial value of this field is 0.

DataLogicalLength (MQLONG)
Length of bulk data.

The DataLogicalLength field specifies the length of the bulk data
referenced by the MQRMH structure.

If the bulk data is actually present in the message, the data begins at an
offset of StrucLength bytes from the start of the MQRMH structure. The
length of the entire message minus StrucLength gives the length of the
bulk data present.

If data is present in the message, DataLogicalLength specifies the amount
of that data that is relevant. The normal case is for DataLogicalLength to
have the same value as the length of data actually present in the
message.

If the MQRMH structure represents the remaining data in the object
(starting from the specified logical offset), the value zero can be used for
DataLogicalLength, provided that the bulk data is not actually present in
the message.

If no data is present, the end of MQRMH coincides with the end of the
message.

The initial value of this field is 0.

202 MQSeries Application Programming Reference

 MQRMH – DataLogicalOffset field � MQRMH – DataLogicalOffset2 field

DataLogicalOffset (MQLONG)
Low offset of bulk data.

This field specifies the low offset of the bulk data from the start of the
object of which the bulk data forms part. The offset of the bulk data from
the start of the object is called the logical offset. This is not the physical
offset of the bulk data from the start of the MQRMH structure – that offset
is given by StrucLength.

To allow large objects to be sent using reference messages, the logical
offset is divided into two fields, and the actual logical offset is given by the
sum of these two fields:

� DataLogicalOffset represents the remainder obtained when the logical
offset is divided by 1 000 000 000. It is thus a value in the range 0
through 999 999 999.

� DataLogicalOffset2 represents the result obtained when the logical
offset is divided by 1 000 000 000. It is thus the number of complete
multiples of 1 000 000 000 that exist in the logical offset. The number
of multiples is in the range 0 through 999 999 999.

The initial value of this field is 0.

DataLogicalOffset2 (MQLONG)
High offset of bulk data.

This field specifies the high offset of the bulk data from the start of the
object of which the bulk data forms part. It is a value in the range 0
through 999 999 999. See DataLogicalOffset for details.

The initial value of this field is 0.

Table 49 (Page 1 of 2). Initial values of fields in MQRMH

Field name Name of constant Value of constant

StrucId MQRMH_STRUC_ID 'RMH␣'
(See note 1)

Version MQRMH_VERSION_1 1

StrucLength None ð

Encoding MQENC_NATIVE See note 2

CodedCharSetId None ð

Format MQFMT_NONE '␣␣␣␣␣␣␣␣'

Flags MQRMHF_NOT_LAST ð

ObjectType None '␣␣␣␣␣␣␣␣'

ObjectInstanceId MQOII_NONE Nulls

SrcEnvLength None ð

SrcEnvOffset None ð

SrcNameLength None ð

SrcNameOffset None ð

DestEnvLength None ð

DestEnvOffset None ð

DestNameLength None ð

 Chapter 2. Data type descriptions – structures 203

 MQRMH – C declaration � MQRMH – COBOL declaration

Table 49 (Page 2 of 2). Initial values of fields in MQRMH

Field name Name of constant Value of constant

DestNameOffset None ð

DataLogicalLength None ð

DataLogicalOffset None ð

DataLogicalOffset2 None ð

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value of this constant is environment-specific.

3. In the C programming language, the macro variable MQRMH_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQRMH MyRMH = {MQRMH_DEFAULT};

C language declaration
typedef struct tagMQRMH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG StrucLength; /\ Total length of MQRMH, including

strings at end of fixed fields, but
not the bulk data \/

MQLONG Encoding; /\ Data encoding \/
MQLONG CodedCharSetId; /\ Coded character set identifier \/
MQCHAR8 Format; /\ Format name \/
MQLONG Flags; /\ Reference message flags \/
MQCHAR8 ObjectType; /\ Object type \/

 MQBYTE24 ObjectInstanceId; /\ Object instance identifier \/
MQLONG SrcEnvLength; /\ Length of source environment data \/
MQLONG SrcEnvOffset; /\ Offset of source environment data \/
MQLONG SrcNameLength; /\ Length of source object name \/
MQLONG SrcNameOffset; /\ Offset of source object name \/
MQLONG DestEnvLength; /\ Length of destination environment

 data \/
MQLONG DestEnvOffset; /\ Offset of destination environment

 data \/
MQLONG DestNameLength; /\ Length of destination object name \/
MQLONG DestNameOffset; /\ Offset of destination object name \/
MQLONG DataLogicalLength; /\ Length of bulk data \/
MQLONG DataLogicalOffset; /\ Low offset of bulk data \/
MQLONG DataLogicalOffset2; /\ High offset of bulk data \/

 } MQRMH;

COBOL language declaration
\\ MQRMH structure
 1ð MQRMH.
\\ Structure identifier
 15 MQRMH-STRUCID PIC X(4).
\\ Structure version number

15 MQRMH-VERSION PIC S9(9) BINARY.
\\ Total length of MQRMH, including strings at end of fixed
\\ fields, but not the bulk data

204 MQSeries Application Programming Reference

 MQRMH – PL/I declaration

15 MQRMH-STRUCLENGTH PIC S9(9) BINARY.
\\ Data encoding

15 MQRMH-ENCODING PIC S9(9) BINARY.
\\ Coded character set identifier

15 MQRMH-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name
 15 MQRMH-FORMAT PIC X(8).
\\ Reference message flags

15 MQRMH-FLAGS PIC S9(9) BINARY.
\\ Object type
 15 MQRMH-OBJECTTYPE PIC X(8).
\\ Object instance identifier
 15 MQRMH-OBJECTINSTANCEID PIC X(24).
\\ Length of source environment data

15 MQRMH-SRCENVLENGTH PIC S9(9) BINARY.
\\ Offset of source environment data

15 MQRMH-SRCENVOFFSET PIC S9(9) BINARY.
\\ Length of source object name

15 MQRMH-SRCNAMELENGTH PIC S9(9) BINARY.
\\ Offset of source object name

15 MQRMH-SRCNAMEOFFSET PIC S9(9) BINARY.
\\ Length of destination environment data

15 MQRMH-DESTENVLENGTH PIC S9(9) BINARY.
\\ Offset of destination environment data

15 MQRMH-DESTENVOFFSET PIC S9(9) BINARY.
\\ Length of destination object name

15 MQRMH-DESTNAMELENGTH PIC S9(9) BINARY.
\\ Offset of destination object name

15 MQRMH-DESTNAMEOFFSET PIC S9(9) BINARY.
\\ Length of bulk data

15 MQRMH-DATALOGICALLENGTH PIC S9(9) BINARY.
\\ Low offset of bulk data

15 MQRMH-DATALOGICALOFFSET PIC S9(9) BINARY.
\\ High offset of bulk data

15 MQRMH-DATALOGICALOFFSET2 PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQRMH based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 StrucLength fixed bin(31), /\ Total length of MQRMH,

including strings at end of
fixed fields, but not the bulk

 data \/
3 Encoding fixed bin(31), /\ Data encoding \/
3 CodedCharSetId fixed bin(31), /\ Coded character set

 identifier \/
3 Format char(8), /\ Format name \/
3 Flags fixed bin(31), /\ Reference message flags \/
3 ObjectType char(8), /\ Object type \/
3 ObjectInstanceId char(24), /\ Object instance identifier \/
3 SrcEnvLength fixed bin(31), /\ Length of source environment

 data \/
3 SrcEnvOffset fixed bin(31), /\ Offset of source environment

 data \/
3 SrcNameLength fixed bin(31), /\ Length of source object name \/

 Chapter 2. Data type descriptions – structures 205

 MQRMH – PL/I declaration

3 SrcNameOffset fixed bin(31), /\ Offset of source object name \/
3 DestEnvLength fixed bin(31), /\ Length of destination environ-

ment data \/
3 DestEnvOffset fixed bin(31), /\ Offset of destination environ-

ment data \/
3 DestNameLength fixed bin(31), /\ Length of destination object

 name \/
3 DestNameOffset fixed bin(31), /\ Offset of destination object

 name \/
3 DataLogicalLength fixed bin(31), /\ Length of bulk data \/
3 DataLogicalOffset fixed bin(31), /\ Low offset of bulk data \/
3 DataLogicalOffset2 fixed bin(31); /\ High offset of bulk data \/

206 MQSeries Application Programming Reference

 MQRR – Response record � MQRR – Reason field

MQRR – Response record
The following table summarizes the fields in the structure.

The MQRR structure is used to receive the completion code and reason code
resulting from the open or put operation for a single destination queue. By
providing an array of these structures on the MQOPEN and MQPUT calls, or on the
MQPUT1 call, it is possible to determine the completion codes and reason codes
for all of the queues in a distribution list, when the outcome of the call is mixed, that
is, when the call succeeds for some queues in the list, but fails for others. Reason
code MQRC_MULTIPLE_REASONS from the call indicates that the response
records (if provided by the application) have been set by the queue manager.

MQRR is an output structure for the MQOPEN, MQPUT, and MQPUT1 calls.

This structure is supported in the following environments: AIX, DOS client, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Table 50. Fields in MQRR

Field Description Page

CompCode Completion code for queue 207

Reason Reason code for queue 207

 Fields
CompCode (MQLONG)

Completion code for queue.

This is the completion code resulting from the open or put operation for
the queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is MQCC_OK.

Reason (MQLONG)
Reason code for queue.

This is the reason code resulting from the open or put operation for the
queue whose name was specified by the corresponding element in the
array of MQOR structures provided on the MQOPEN or MQPUT1 call.

This is always an output field. The initial value of this field is
MQRC_NONE.

Table 51. Initial values of fields in MQRR

Field name Name of constant Value of constant

CompCode MQCC_OK ð

Reason MQRC_NONE ð

Notes:

1. In the C programming language, the macro variable MQRR_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQRR MyRR = {MQRR_DEFAULT};

 Chapter 2. Data type descriptions – structures 207

 MQRR – language declarations

C language declaration
typedef struct tagMQRR {
 MQLONG CompCode; /\ Completion code for queue \/
 MQLONG Reason; /\ Reason code for queue \/
 } MQRR;

COBOL language declaration
\\ MQRR structure
 1ð MQRR.
\\ Completion code for queue

15 MQRR-COMPCODE PIC S9(9) BINARY.
\\ Reason code for queue

15 MQRR-REASON PIC S9(9) BINARY.

PL/I language declaration (AIX, OS/2, and Windows NT)
dcl
 1 MQRR based,
3 CompCode fixed bin(31), /\ Completion code for queue \/
3 Reason fixed bin(31); /\ Reason code for queue \/

208 MQSeries Application Programming Reference

 MQTM – Trigger message

MQTM – Trigger message
The following table summarizes the fields in the structure.

The MQTM structure describes the data in the trigger message that is sent by the
queue manager to a trigger-monitor application when a trigger event occurs for a
queue. This structure is part of the MQSeries Trigger Monitor Interface (TMI),
which is one of the MQSeries framework interfaces.

A trigger-monitor application may need to pass some or all of the information in the
trigger message to the application which is started by the trigger-monitor
application. Information which may be needed by the started application includes
QName, TriggerData, and UserData. The trigger monitor application can pass the
MQTM structure directly to the started application, or pass an MQTMC2 structure,
depending on what is most convenient for the started application. For information
about MQTMC2, see “MQTMC2 – Trigger message 2 (character format)” on
page 217.

� On MVS/ESA, for an MQAT_CICS application that is started using the CKTI
transaction, the entire trigger message structure MQTM is made available to
the started transaction; the information can be retrieved by using the EXEC
CICS RETRIEVE command.

� On OS/400, the trigger monitor application provided with MQSeries passes an
MQTMC structure to the started application. The MQTMC structure is the
same as MQTMC2, but with the Version field set to MQTMC_VERSION_1, and
the QMgrName field omitted.

� On 16-bit Windows and 32-bit Windows, there is no trigger monitor application,
and this structure is not supported.

For information about triggers, see the MQSeries Application Programming Guide.

The fields in the message descriptor of the trigger message are set as follows:

Field in MQMD Value used
StrucId MQMD_STRUC_ID
Version MQMD_VERSION_1
Report MQRO_NONE
MsgType MQMT_DATAGRAM

Table 52. Fields in MQTM

Field Description Page

StrucId Structure identifier 210

Version Structure version number 210

QName Name of triggered queue 211

ProcessName Name of process object 211

TriggerData Trigger data 211

ApplType Application type 212

ApplId Application identifier 212

EnvData Environment data 213

UserData User data 213

 Chapter 2. Data type descriptions – structures 209

 MQTM – Strucid field � MQTM – Version field

Expiry MQEI_UNLIMITED
Feedback MQFB_NONE
Encoding MQENC_NATIVE
CodedCharSetId Queue manager’s CodedCharSetId attribute
Format MQFMT_TRIGGER
Priority Initiation queue’s DefPriority attribute
Persistence MQPER_NOT_PERSISTENT
MsgId A unique value
CorrelId MQCI_NONE
BackoutCount 0
ReplyToQ Blanks
ReplyToQMgr Name of queue manager
UserIdentifier Blanks
AccountingToken MQACT_NONE
ApplIdentityData Blanks
PutApplType MQAT_QMGR, or as appropriate for the message channel

agent
PutApplName First 28 bytes of the queue-manager name
PutDate Date when trigger message is sent
PutTime Time when trigger message is sent
ApplOriginData Blanks

An application that generates a trigger message is recommended to set similar
values, except for the following:

� The Priority field can be set to MQPRI_PRIORITY_AS_Q_DEF (the queue
manager will change this to the default priority for the initiation queue when the
message is put).

� The ReplyToQMgr field can be set to blanks (the queue manager will change this
to the name of the local queue manager when the message it put).

� The context fields should be set as appropriate for the application.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQTM_STRUC_ID
Identifier for trigger message structure.

For the C programming language, the constant
MQTM_STRUC_ID_ARRAY is also defined; this has the same value
as MQTM_STRUC_ID, but is an array of characters instead of a
string.

The initial value of this field is MQTM_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQTM_VERSION_1
Version number for trigger message structure.

210 MQSeries Application Programming Reference

 MQTM – QName field � MQTM – TriggerData field

The following constant specifies the version number of the current version:

MQTM_CURRENT_VERSION
Current version of trigger message structure.

The initial value of this field is MQTM_VERSION_1.

QName (MQCHAR48)
Name of triggered queue.

This is the name of the queue for which a trigger event occurred, and is
used by the application started by the trigger-monitor application. The
queue manager initializes this field with the value of the QName attribute of
the triggered queue; see “Attributes for all queues” on page 343 for details
of this attribute.

Names that are shorter than the defined length of the field are padded to
the right with blanks; they are not ended prematurely by a null character.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

ProcessName (MQCHAR48)
Name of process object.

This is the name of the queue-manager process object specified for the
triggered queue, and can be used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with
the value of the ProcessName attribute of the queue identified by the QName
field; see “Attributes for local queues and model queues” on page 348 for
details of this attribute.

Names that are shorter than the defined length of the field are always
padded to the right with blanks; they are not ended prematurely by a null
character.

The length of this field is given by MQ_PROCESS_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

TriggerData (MQCHAR64)
Trigger data.

This is free-format data for use by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with
the value of the TriggerData attribute of the queue identified by the QName
field; see “Attributes for local queues and model queues” on page 348 for
details of this attribute. The content of this data is of no significance to the
queue manager.

On MVS/ESA, for a CICS application started using the CKTI transaction,
this information is not used.

The length of this field is given by MQ_TRIGGER_DATA_LENGTH. The
initial value of this field is the null string in C, and 64 blank characters in
other programming languages.

 Chapter 2. Data type descriptions – structures 211

 MQTM – ApplType field � MQTM – ApplId field

ApplType (MQLONG)
Application type.

This identifies the nature of the program to be started, and is used by the
trigger-monitor application that receives the trigger message. The queue
manager initializes this field with the value of the ApplType attribute of the
process object identified by the ProcessName field; see “Attributes for
process definitions” on page 367 for details of this attribute. The content
of this data is of no significance to the queue manager.

ApplType can have one of the following standard values. User-defined
types can also be used, but should be restricted to values in the range
MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

MQAT_DOS
DOS client application.

MQAT_IMS
IMS application.

MQAT_MVS
MVS or TSO application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_OS400
OS/400 application.

MQAT_UNIX
UNIX application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

The initial value of this field is ð.

ApplId (MQCHAR256)
Application identifier.

This is a character string that identifies the application to be started, and is
used by the trigger-monitor application that receives the trigger message.
The queue manager initializes this field with the value of the ApplId
attribute of the process object identified by the ProcessName field; see
“Attributes for process definitions” on page 367 for details of this attribute.
The content of this data is of no significance to the queue manager.

The interpretation to be placed on the information is determined by the
trigger-monitor application. For example, ApplId could be:

� A program name (for MQAT_MVS applications)
� A CICS transaction ID (for MQAT_CICS applications).

212 MQSeries Application Programming Reference

 MQTM – EnvData field � MQTM – UserData field

On MVS/ESA, for a CICS application to be started using the CKTI
transaction, or an IMS application to be started using the CSQQTRMN
transaction, ApplId is a CICS or IMS transaction ID.

The length of this field is given by MQ_PROCESS_APPL_ID_LENGTH.
The initial value of this field is the null string in C, and 256 blank
characters in other programming languages.

EnvData (MQCHAR128)
Environment data.

This is a character string that contains environment-related information
pertaining to the application to be started, and is used by the
trigger-monitor application that receives the trigger message. The queue
manager initializes this field with the value of the EnvData attribute of the
process object identified by the ProcessName field; see “Attributes for
process definitions” on page 367 for details of this attribute. The content
of this data is of no significance to the queue manager.

On MVS/ESA, for a CICS application started using the CKTI transaction, or
an IMS application to be started using the CSQQTRMN transaction, this
information is not used.

The length of this field is given by MQ_PROCESS_ENV_DATA_LENGTH.
The initial value of this field is the null string in C, and 128 blank
characters in other programming languages.

UserData (MQCHAR128)
User data.

This is a character string that contains user information relevant to the
application to be started, and is used by the trigger-monitor application that
receives the trigger message. The queue manager initializes this field with
the value of the UserData attribute of the process object identified by the
ProcessName field; see “Attributes for process definitions” on page 367 for
details of this attribute. The content of this data is of no significance to the
queue manager.

The length of this field is given by
MQ_PROCESS_USER_DATA_LENGTH. The initial value of this field is
the null string in C, and 128 blank characters in other programming
languages.

 Chapter 2. Data type descriptions – structures 213

 MQTM – C declaration

Table 53. Initial values of fields in MQTM

Field name Name of constant Value of constant

StrucId MQTM_STRUC_ID 'TM␣␣'
(See note 1)

Version MQTM_VERSION_1 1

QName None Blanks
(See note 2)

ProcessName None Blanks

TriggerData None Blanks

ApplType None ð

ApplId None Blanks

EnvData None Blanks

UserData None Blanks

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQTM_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQTM MyTM = {MQTM_DEFAULT};

C language declaration
typedef struct tagMQTM {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQCHAR48 QName; /\ Name of triggered queue \/
MQCHAR48 ProcessName; /\ Name of process object \/
MQCHAR64 TriggerData; /\ Trigger data \/
MQLONG ApplType; /\ Application type \/

 MQCHAR256 ApplId; /\ Application identifier \/
 MQCHAR128 EnvData; /\ Environment data \/
 MQCHAR128 UserData; /\ User data \/
 } MQTM;

COBOL language declaration
\\ MQTM structure
 1ð MQTM.
\\ Structure identifier
 15 MQTM-STRUCID PIC X(4).
\\ Structure version number

15 MQTM-VERSION PIC S9(9) BINARY.
\\ Name of triggered queue
 15 MQTM-QNAME PIC X(48).
\\ Name of process object

15 MQTM-PROCESSNAME PIC X(48).
\\ Trigger data

15 MQTM-TRIGGERDATA PIC X(64).
\\ Application type

214 MQSeries Application Programming Reference

 MQTM – PL/I declaration

15 MQTM-APPLTYPE PIC S9(9) BINARY.
\\ Application identifier
 15 MQTM-APPLID PIC X(256).
\\ Environment data
 15 MQTM-ENVDATA PIC X(128).
\\ User data
 15 MQTM-USERDATA PIC X(128).

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQTM based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 QName char(48), /\ Name of triggered queue \/
3 ProcessName char(48), /\ Name of process object \/
3 TriggerData char(64), /\ Trigger data \/
3 ApplType fixed bin(31), /\ Application type \/
3 ApplId char(256), /\ Application identifier \/
3 EnvData char(128), /\ Environment data \/
3 UserData char(128); /\ User data \/

 Chapter 2. Data type descriptions – structures 215

 MQTM – S/390 assembler declaration � MQTM – TAL declaration

System/390 assembler-language declaration (MVS/ESA only)
MQTM DSECT
MQTM_STRUCID DS CL4 Structure identifier
MQTM_VERSION DS F Structure version number
MQTM_QNAME DS CL48 Name of triggered queue
MQTM_PROCESSNAME DS CL48 Name of process object
MQTM_TRIGGERDATA DS CL64 Trigger data
MQTM_APPLTYPE DS F Application type
MQTM_APPLID DS CL256 Application identifier
MQTM_ENVDATA DS CL128 Environment data
MQTM_USERDATA DS CL128 User data
MQTM_LENGTH EQU \-MQTM Length of structure
 ORG MQTM
MQTM_AREA DS CL(MQTM_LENGTH)

| TAL declaration (Tandem NSK only)
| STRUCT MQTM^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| STRUCT QNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT PROCESSNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT TRIGGERDATA;
| BEGIN STRING BYTE [ð:63]; END;
| INT(32) APPLTYPE;
| STRUCT APPLID;
| BEGIN STRING BYTE [ð:255]; END;
| STRUCT ENVDATA;
| BEGIN STRING BYTE [ð:127]; END;
| STRUCT USERDATA;
| BEGIN STRING BYTE [ð:127]; END;
| END;

216 MQSeries Application Programming Reference

 MQTMC2 – Trigger message 2 (character format)

MQTMC2 – Trigger message 2 (character format)
The following table summarizes the fields in the structure.

When a trigger-monitor application retrieves a trigger message (MQTM) from an
initiation queue, the trigger monitor may need to pass some or all of the information
in the trigger message to the application that is started by the trigger monitor.
Information that may be needed by the started application includes QName,
TriggerData, and UserData. The trigger monitor application can pass the MQTM
structure directly to the started application, or an MQTMC2 structure, depending on
what is most convenient for the started application.

This structure is part of the MQSeries Trigger Monitor Interface (TMI), which is one
of the MQSeries framework interfaces.

� On MVS/ESA, for an MQAT_IMS application that is started using the
CSQQTRMN application, an MQTMC2 structure is made available to the started
application.

� On OS/400, the trigger monitor application provided with MQSeries passes an
MQTMC structure to the started application. The MQTMC structure is the
same as MQTMC2, but with the QMgrName field omitted, and the Version field
set to MQTMC_VERSION_1.

� On 16-bit Windows and 32-bit Windows, there is no trigger monitor application,
and this structure is not supported.

The MQTMC2 structure is very similar to the format of the trigger message (MQTM
structure). The difference is that the non-character fields in MQTM are changed in
MQTMC2 to character fields of the same length, and the queue manager name is
added at the end of the structure.

See “MQTM – Trigger message” on page 209 for details of the fields that are the
same in this structure.

Table 54. Fields in MQTMC2

Field Description Page

StrucId Structure identifier 218

Version Structure version number 218

QName Name of triggered queue 218

ProcessName Name of process object 218

TriggerData Trigger data 218

ApplType Application type 218

ApplId Application identifier 218

EnvData Environment data 218

UserData User data 219

QMgrName Queue manager name 219

 Chapter 2. Data type descriptions – structures 217

 MQTMC2 – Strucid field � MQTMC2 – EnvData field

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQTMC_STRUC_ID
Identifier for trigger message (character format) structure.

For the C programming language, the constant
MQTMC_STRUC_ID_ARRAY is also defined; this has the same
value as MQTMC_STRUC_ID, but is an array of characters instead
of a string.

Version (MQCHAR4)
Structure version number.

The value must be:

MQTMC_VERSION_2
Version 2 trigger message (character format) structure.

For the C programming language, the constant
MQTMC_VERSION_2_ARRAY is also defined; this has the same
value as MQTMC_VERSION_2, but is an array of characters instead
of a string.

The following constant specifies the version number of the current version:

MQTMC_CURRENT_VERSION
Current version of trigger message (character format) structure.

QName (MQCHAR48)
Name of triggered queue.

See the QName field in the MQTM structure.

ProcessName (MQCHAR48)
Name of process object.

See the ProcessName field in the MQTM structure.

TriggerData (MQCHAR64)
Trigger data.

See the TriggerData field in the MQTM structure.

ApplType (MQCHAR4)
Application type.

This field always contains blanks, whatever the value in the ApplType field
in the MQTM structure of the original trigger message.

ApplId (MQCHAR256)
Application identifier.

See the ApplId field in the MQTM structure.

EnvData (MQCHAR128)
Environment data.

See the EnvData field in the MQTM structure.

218 MQSeries Application Programming Reference

 MQTMC2 – UserData field � MQTMC2 – C declaration

UserData (MQCHAR128)
User data.

See the UserData field in the MQTM structure.

QMgrName (MQCHAR48)
Queue manager name.

This is the name of the queue manager at which the trigger event
occurred.

Table 55. Initial values of fields in MQTMC2

Field name Name of constant Value of constant

StrucId MQTMC_STRUC_ID 'TMC␣'
(See note 1)

Version MQTMC_VERSION_2 '␣␣␣2'

QName None Blanks
(See note 2)

ProcessName None Blanks

TriggerData None Blanks

ApplType None '␣␣␣␣'

ApplId None Blanks

EnvData None Blanks

UserData None Blanks

QMgrName None Blanks

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQTMC2_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQTMC2 MyTMC = {MQTMC2_DEFAULT};

C language declaration
typedef struct tagMQTMC2 {
MQCHAR4 StrucId; /\ Structure identifier \/
MQCHAR4 Version; /\ Structure version number \/
MQCHAR48 QName; /\ Name of triggered queue \/
MQCHAR48 ProcessName; /\ Name of process object \/
MQCHAR64 TriggerData; /\ Trigger data \/
MQCHAR4 ApplType; /\ Application type \/

 MQCHAR256 ApplId; /\ Application identifier \/
 MQCHAR128 EnvData; /\ Environment data \/
 MQCHAR128 UserData; /\ User data \/
MQCHAR48 QMgrName; /\ Queue manager name \/

 } MQTMC2;

 Chapter 2. Data type descriptions – structures 219

 MQTMC2 – COBOL declaration � MQTMC2 – S/390 assembler declaration

COBOL language declaration
\\ MQTMC2 structure
 1ð MQTMC.
\\ Structure identifier
 15 MQTMC-STRUCID PIC X(4).
\\ Structure version number
 15 MQTMC-VERSION PIC X(4).
\\ Name of triggered queue
 15 MQTMC-QNAME PIC X(48).
\\ Name of process object

15 MQTMC-PROCESSNAME PIC X(48).
\\ Trigger data

15 MQTMC-TRIGGERDATA PIC X(64).
\\ Application type
 15 MQTMC-APPLTYPE PIC X(4).
\\ Application identifier
 15 MQTMC-APPLID PIC X(256).
\\ Environment data
 15 MQTMC-ENVDATA PIC X(128).
\\ User data
 15 MQTMC-USERDATA PIC X(128).
\\ Queue manager name
 15 MQTMC-QMGRNAME PIC X(48).

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQTMC2 based,
3 StrucId char(4), /\ Structure identifier \/
3 Version char(4), /\ Structure version number \/
3 QName char(48), /\ Name of triggered queue \/
3 ProcessName char(48), /\ Name of process object \/
3 TriggerData char(64), /\ Trigger data \/
3 ApplType char(4), /\ Application type \/
3 ApplId char(256), /\ Application identifier \/
3 EnvData char(128), /\ Environment data \/
3 UserData char(128), /\ User data \/
3 QMgrName char(48); /\ Queue manager name \/

System/390 assembler-language declaration (MVS/ESA only)
MQTMC DSECT
MQTMC2_STRUCID DS CL4 Structure identifier
MQTMC2_VERSION DS CL4 Structure version number
MQTMC2_QNAME DS CL48 Name of triggered queue
MQTMC2_PROCESSNAME DS CL48 Name of process object
MQTMC2_TRIGGERDATA DS CL64 Trigger data
MQTMC2_APPLTYPE DS CL4 Application type
MQTMC2_APPLID DS CL256 Application identifier
MQTMC2_ENVDATA DS CL128 Environment data
MQTMC2_USERDATA DS CL128 User data
MQTMC2_QMGRNAME DS CL48 Queue manager name
MQTMC2_LENGTH EQU \-MQTMC2 Length of structure
 ORG MQTMC
MQTMC2_AREA DS CL(MQTMC2_LENGTH)

220 MQSeries Application Programming Reference

 MQTMC2 – TAL declaration

| TAL declaration (Tandem NSK only)
| STRUCT MQTMC2^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| STRUCT VERSION;
| BEGIN STRING BYTE [ð:3]; END;
| STRUCT QNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT PROCESSNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT TRIGGERDATA;
| BEGIN STRING BYTE [ð:63]; END;
| STRUCT APPLTYPE;
| BEGIN STRING BYTE [ð:3]; END;
| STRUCT APPLID;
| BEGIN STRING BYTE [ð:255]; END;
| STRUCT ENVDATA;
| BEGIN STRING BYTE [ð:127]; END;
| STRUCT USERDATA;
| BEGIN STRING BYTE [ð:127]; END;
| STRUCT QMQRNAME;
| BEGIN STRING BYTE [ð:47]; END;
| END;

 Chapter 2. Data type descriptions – structures 221

 MQXP – Exit parameter block � MQXP – Version field

MQXP – Exit parameter block (MVS/ESA only)
The following table summarizes the fields in the structure.

The MQXP structure is used as an input/output variable to the API crossing exit.
For more information on this exit, see the MQSeries Application Programming
Guide.

This structure is supported only on MVS/ESA.

Table 56. Fields in MQXP

Field Description Page

StrucId Structure identifier 222

Version Structure version number 222

ExitId Exit identifier 223

ExitReason Reason for invocation of exit 223

ExitResponse Response from exit 223

ExitCommand API call code 224

ExitParmCount Parameter count 224

ExitUserArea User area 224

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQXP_STRUC_ID
Identifier for exit parameter structure.

For the C programming language, the constant
MQXP_STRUC_ID_ARRAY is also defined; this has the same value
as MQXP_STRUC_ID, but is an array of characters instead of a
string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value must be:

MQXP_VERSION_1
Version number for exit parameter-block structure.

Note: When a new version of this structure is introduced, the layout of
the existing part is not changed. The exit should therefore check
that the version number is equal to or greater than the lowest
version that contains the fields that the exit needs to use.

This is an input field to the exit.

222 MQSeries Application Programming Reference

 MQXP – ExitId field � MQXP – ExitResponse field

ExitId (MQLONG)
Exit identifier.

This is set on entry to the exit routine, and indicates the type of exit:

MQXT_API_CROSSING_EXIT
API crossing exit.

This is an input field to the exit.

On MVS/ESA and MQSeries for Windows, the channel message-retry exit
and channel auto-definition exit are not supported.

ExitReason (MQLONG)
Reason for invocation of exit.

This is set on entry to the exit routine. For the API crossing exit it
indicates whether the routine is called before or after execution of the API
call:

MQXR_BEFORE
Before API execution.

MQXR_AFTER
After API execution.

ExitResponse (MQLONG)
Response from exit.

The value is set by the exit to communicate with the caller.

The following values are defined:

MQXCC_OK
Continue normally.

MQXCC_SUPPRESS_FUNCTION
Suppress function.

When this value is set by an API crossing exit called before the API
call, the API call is not performed. The CompCode for the call is set to
MQCC_OK, the Reason is set to MQRC_SUPPRESSED_BY_EXIT,
and all other parameters remain as the exit left them.

When this value is set by an API crossing exit called after the API
call, it is ignored by the queue manager.

MQXCC_SKIP_FUNCTION
Skip function.

When this value is set by an API crossing exit called before the API
call, the API call is not performed; the CompCode and Reason and all
other parameters remain as the exit left them.

When this value is set by an API crossing exit called after the API
call, it is ignored by the queue manager.

This is an output field from the exit.

 Chapter 2. Data type descriptions – structures 223

 MQXP – ExitCommand field � MQXP – ExitUserArea field

ExitCommand (MQLONG)
API call code.

This field is set on entry to the exit routine. It identifies the API call that
caused the exit to be invoked:

MQXC_MQBACK
The MQBACK call.

MQXC_MQCLOSE
The MQCLOSE call.

MQXC_MQCMIT
The MQCMIT call.

MQXC_MQGET
The MQGET call.

MQXC_MQINQ
The MQINQ call.

MQXC_MQOPEN
The MQOPEN call.

MQXC_MQPUT
The MQPUT call.

MQXC_MQPUT1
The MQPUT1 call.

MQXC_MQSET
The MQSET call.

This is an input field to the exit.

ExitParmCount (MQLONG)
Parameter count.

This field is set on entry to the exit routine. It contains the number of
parameters that the API call takes. These are:

MQBACK 3
MQCLOSE 5
MQCMIT 3
MQGET 9
MQINQ 10
MQOPEN 6
MQPUT 8
MQPUT1 8
MQSET 10

This is an input field to the exit.

Reserved (MQLONG)
Reserved.

This is a reserved field. Its value is not significant to the exit.

ExitUserArea (MQBYTE16)
User area.

This is a field that is available for the exit to use. It is initialized to binary
zero for the length of the field before the first invocation of the exit for the

224 MQSeries Application Programming Reference

 MQXP – C declaration � MQXP – COBOL declaration

task, and thereafter any changes made to this field by the exit are
preserved across invocations of the exit.

The following value is defined:

MQXUA_NONE
No user information.

The value is binary zero for the length of the field.

For the C programming language, the constant
MQXUA_NONE_ARRAY is also defined; this has the same value as
MQXUA_NONE, but is an array of characters instead of a string.

The length of this field is given by MQ_EXIT_USER_AREA_LENGTH.

This is an input/output field to the exit.

C language declaration
typedef struct tagMQXP {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG ExitId; /\ Exit identifier \/
MQLONG ExitReason; /\ Reason for invocation of exit \/
MQLONG ExitResponse; /\ Response from exit \/
MQLONG ExitCommand; /\ API call code \/
MQLONG ExitParmCount; /\ Parameter count \/
MQLONG Reserved; /\ Reserved \/

 MQBYTE16 ExitUserArea; /\ User area \/
 } MQXP;

COBOL language declaration
\\ MQXP structure
 1ð MQXP.
\\ Structure identifier
 15 MQXP-STRUCID PIC X(4).
\\ Structure version number

15 MQXP-VERSION PIC S9(9) BINARY.
\\ Exit identifier

15 MQXP-EXITID PIC S9(9) BINARY.
\\ Reason for invocation of exit

15 MQXP-EXITREASON PIC S9(9) BINARY.
\\ Response from exit

15 MQXP-EXITRESPONSE PIC S9(9) BINARY.
\\ API call code

15 MQXP-EXITCOMMAND PIC S9(9) BINARY.
\\ Parameter count

15 MQXP-EXITPARMCOUNT PIC S9(9) BINARY.
\\ Reserved

15 MQXP-RESERVED PIC S9(9) BINARY.
\\ User area
 15 MQXP-EXITUSERAREA PIC X(16).

 Chapter 2. Data type descriptions – structures 225

 MQXP – PL/I declaration � MQXP – S/390 assembler declaration

PL/I language declaration
dcl
 1 MQXP based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 ExitId fixed bin(31), /\ Exit identifier \/
3 ExitReason fixed bin(31), /\ Reason for invocation of exit \/
3 ExitResponse fixed bin(31), /\ Response from exit \/
3 ExitCommand fixed bin(31), /\ API call code \/
3 ExitParmCount fixed bin(31), /\ Parameter count \/
3 Reserved fixed bin(31), /\ Reserved \/
3 ExitUserArea char(16); /\ User area \/

System/390 assembler language declaration
MQXP DSECT
MQXP_STRUCID DS CL4 Structure identifier
MQXP_VERSION DS F Structure version number
MQXP_EXITID DS F Exit identifier
MQXP_EXITREASON DS F Reason for invocation of
\ exit
MQXP_EXITRESPONSE DS F Response from exit
MQXP_EXITCOMMAND DS F API call code
MQXP_EXITPARMCOUNT DS F Parameter count
MQXP_RESERVED DS F Reserved
MQXP_EXITUSERAREA DS XL16 User area
MQXP_LENGTH EQU \-MQXP Length of structure
 ORG MQXP
MQXP_AREA DS CL(MQXP_LENGTH)

226 MQSeries Application Programming Reference

 MQXQH – Transmission-queue header

MQXQH – Transmission queue header
The following table summarizes the fields in the structure.

The MQXQH structure describes the information that is prefixed to the application
message data of messages when they are on transmission queues. A transmission
queue is a special type of local queue that temporarily holds messages destined for
remote queues (that is, destined for queues that do not belong to the local queue
manager). A transmission queue is denoted by the Usage queue attribute having
the value MQUS_TRANSMISSION.

A message that is on a transmission queue has two message descriptors:

� One message descriptor is stored separately from the message data; this is
called the separate message descriptor, and is a modified version of the
message descriptor provided by the application in the MsgDesc parameter of the
MQPUT or MQPUT1 call (see below for details).

The message put by the application may be a message in a group, or a
segment of a logical message, or may have segmentation allowed, but these
properties are not propagated into the separate message descriptor – the
version-2 fields in the separate message descriptor always have their default
values.

The separate message descriptor is the one that is returned to the application
in the MsgDesc parameter of the MQGET call when the message is removed
from the transmission queue.

� A second message descriptor is stored within the MQXQH structure, as part of
the message data; this is called the embedded message descriptor, and is a
close copy of the message descriptor that was provided by the application in
the MsgDesc parameter of the MQPUT or MQPUT1 call (see below for details).

The embedded message descriptor is always a version-1 MQMD. If the
message put by the application has nondefault values for one or more of the
version-2 fields in the MQMD, an MQMDE structure follows the MQXQH, and is
in turn followed by the application message data (if any). The MQMDE is
either:

– Generated by the queue manager (if the application uses a version-2
MQMD to put the message), or

– Already present at the start of the application message data (if the
application uses a version-1 MQMD to put the message).

The embedded message descriptor is the one that is returned to the application
in the MsgDesc parameter of the MQGET call when the message is removed
from the final destination queue.

Table 57. Fields in MQXQH

Field Description Page

StrucId Structure identifier 230

Version Structure version number 230

RemoteQName Name of destination queue 230

RemoteQMgrName Name of destination queue manager 230

MsgDesc Original message descriptor 231

 Chapter 2. Data type descriptions – structures 227

 MQXQH – Transmission-queue header

Putting messages on remote queues : When an application puts a message on a
remote queue (either by specifying the name of the remote queue directly, or by
using a local definition of the remote queue), the local queue manager:

� Creates an MQXQH structure containing the embedded message descriptor
� Appends an MQMDE if one is needed and is not already present
� Appends the application message data
� Places the message on an appropriate transmission queue

Character data in the MQXQH structure is in the character set of the local queue
manager (defined by the CodedCharSetId queue manager attribute), and integer
data is in the native machine encoding. These values are stored in the separate
message descriptor, and may be different from the values of the CodedCharSetId
and Encoding fields in the embedded message descriptor, because the latter fields
relate to the application message data and not the MQXQH structure itself.

The fields in the embedded message descriptor have the same values as those in
the MsgDesc parameter of the MQPUT or MQPUT1 call, with the exception of the
following:

� The Version field always has the value MQMD_VERSION_1.

� If the Priority field has the value MQPRI_PRIORITY_AS_Q_DEF, it is
replaced by the value of the queue’s DefPriority attribute.

� If the Persistence field has the value MQPER_PERSISTENCE_AS_Q_DEF, it
is replaced by the value of the queue’s DefPersistence attribute.

� If the MsgId field has the value MQMI_NONE, or the MQPMO_NEW_MSG_ID
option was specified, or the message is a distribution-list message, MsgId is
replaced by a new message identifier generated by the queue manager.

When a distribution-list message is split into smaller distribution-list messages
placed on different transmission queues, the MsgId field in each of the new
embedded message descriptors is the same as that in the original
distribution-list message.

� If the MQPMO_NEW_CORREL_ID option was specified, CorrelId is replaced
by a new correlation identifier generated by the queue manager.

� The context fields are set as indicated by the MQPMO_ñ_CONTEXT context
option(s) specified in the PutMsgOpts parameter; the context fields are the fields
UserIdentifier through ApplOriginData in the list below.

� The version-2 fields (if they were present) are removed from the MQMD, and
moved into an MQMDE structure, if one or more of the version-2 fields has a
nondefault value.

The fields in the separate message descriptor are set by the queue manager as
shown below. If the queue manager does not support the version-2 MQMD, a
version-1 MQMD is used without loss of function.

Field in separate MQMD Value used

StrucId MQMD_STRUC_ID
Version MQMD_VERSION_2
Report Copied from the embedded message descriptor, but with the

bits identified by MQRO_ACCEPT_UNSUP_IF_XMIT_MASK
set to zero. (This prevents a COA or COD report message
being generated when a message is placed on or removed
from a transmission queue.)

228 MQSeries Application Programming Reference

 MQXQH – Transmission-queue header

On OS/2 and Windows NT, the value of MQENC_NATIVE for Micro Focus COBOL
differs from the value for C. The value in the Encoding field in the separate
message descriptor is always the value for C in these environments; this value is
546 in decimal. Also, the integer fields in the MQXQH structure are in the encoding
that corresponds to this value (the native Intel encoding).

Putting messages directly on transmission queues : It is also possible for an
application to put a message directly on a transmission queue. In this case the
application must prefix the application message data with an MQXQH structure,
and initialize the fields with appropriate values. In addition, the Format field in the
MsgDesc parameter of the MQPUT or MQPUT1 call must have the value
MQFMT_XMIT_Q_HEADER.

Character data in the MQXQH structure created by the application must be in the
character set of the local queue manager (defined by the CodedCharSetId
queue-manager attribute), and integer data must be in the native machine
encoding. In addition, character data in the MQXQH structure must be padded with
blanks to the defined length of the field; the data must not be ended prematurely by
using a null character, because the queue manager does not convert the null and
subsequent characters to blanks in the MQXQH structure.

Note however that the queue manager does not check that an MQXQH structure is
present, or that valid values have been specified for the fields.

Getting messages from transmission queues : Applications that get messages
from a transmission queue must process the information in the MQXQH structure in

Field in separate MQMD Value used

MsgType Copied from the embedded message descriptor.
Expiry Copied from the embedded message descriptor.
Feedback Copied from the embedded message descriptor.
Encoding MQENC_NATIVE (see note below)
CodedCharSetId Queue manager’s CodedCharSetId attribute.
Format MQFMT_XMIT_Q_HEADER
Priority Copied from the embedded message descriptor.
Persistence Copied from the embedded message descriptor.
MsgId A new value is generated by the queue manager. This

message identifier is different from the MsgId that the queue
manager may have generated for the embedded message
descriptor (see above).

CorrelId The MsgId from the embedded message descriptor.
BackoutCount 0
ReplyToQ Copied from the embedded message descriptor.
ReplyToQMgr Copied from the embedded message descriptor.
UserIdentifier Copied from the embedded message descriptor.
AccountingToken Copied from the embedded message descriptor.
ApplIdentityData Copied from the embedded message descriptor.
PutApplType MQAT_QMGR
PutApplName First 28 bytes of the queue-manager name.
PutDate Date when message was put on transmission queue.
PutTime Time when message was put on transmission queue.
ApplOriginData Blanks
GroupId MQGI_NONE
MsgSeqNumber 1
Offset 0
MsgFlags MQMF_NONE
OriginalLength MQOL_UNDEFINED

 Chapter 2. Data type descriptions – structures 229

 MQXQH – Strucid field � MQXQH – RemoteQMgrName field

an appropriate fashion. The presence of the MQXQH structure at the beginning of
the application message data is indicated by the value MQFMT_XMIT_Q_HEADER
being returned in the Format field in the MsgDesc parameter of the MQGET call.
The values returned in the CodedCharSetId and Encoding fields in the MsgDesc
parameter indicate the character set and encoding of the character and integer data
in the MQXQH structure, respectively. The character set and encoding of the
application message data are defined by the CodedCharSetId and Encoding fields in
the embedded message descriptor.

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

MQXQH_STRUC_ID
Identifier for transmission-queue header structure.

For the C programming language, the constant
MQXQH_STRUC_ID_ARRAY is also defined; this has the same
value as MQXQH_STRUC_ID, but is an array of characters instead
of a string.

The initial value of this field is MQXQH_STRUC_ID.

Version (MQLONG)
Structure version number.

The value must be:

MQXQH_VERSION_1
Version number for transmission-queue header structure.

The following constant specifies the version number of the current version:

MQXQH_CURRENT_VERSION
Current version of transmission-queue header structure.

The initial value of this field is MQXQH_VERSION_1.

RemoteQName (MQCHAR48)
Name of destination queue.

This is the name of the message queue that is the apparent eventual
destination for the message (this may prove not to be the actual eventual
destination if, for example, this queue is defined at RemoteQMgrName to be a
local definition of another remote queue).

If the message is a distribution-list message (that is, the Format field in the
embedded message descriptor is MQFMT_DIST_HEADER), RemoteQName
is blank.

The length of this field is given by MQ_Q_NAME_LENGTH. The initial
value of this field is the null string in C, and 48 blank characters in other
programming languages.

RemoteQMgrName (MQCHAR48)
Name of destination queue manager.

This is the name of the queue manager that owns the queue that is the
apparent eventual destination for the message.

230 MQSeries Application Programming Reference

 MQXQH – MsgDesc field � MQXQH – C declaration

If the message is a distribution-list message, RemoteQMgrName is blank.

The length of this field is given by MQ_Q_MGR_NAME_LENGTH. The
initial value of this field is the null string in C, and 48 blank characters in
other programming languages.

MsgDesc (MQMD1)
Original message descriptor.

This is the embedded message descriptor, and is a close copy of the
message descriptor MQMD that was specified as the MsgDesc parameter
on the MQPUT or MQPUT1 call when the message was originally put to
the remote queue.

Note: This is a version-1 MQMD.

The initial values of the fields in this structure are the same as those in the
MQMD structure.

Table 58. Initial values of fields in MQXQH

Field name Name of constant Value of constant

StrucId MQXQH_STRUC_ID 'XQH␣'
(See note 1)

Version MQXQH_VERSION_1 1

RemoteQName None Blanks
(See note 2)

RemoteQMgrName None Blanks

MsgDesc Same names and values as for MQMD;
see Table 35 on page 147

Notes:

1. The symbol ‘␣’ represents a single blank character.

2. The value ‘Blanks’ denotes the null string in C, and blank characters in other
programming languages.

3. In the C programming language, the macro variable MQXQH_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQXQH MyXQH = {MQXQH_DEFAULT};

C language declaration
typedef struct tagMQXQH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/

 MQCHAR48 RemoteQName; /\ Name of destination queue \/
 MQCHAR48 RemoteQMgrName; /\ Name of destination queue manager \/
MQMD1 MsgDesc; /\ Original message descriptor \/

 } MQXQH;

 Chapter 2. Data type descriptions – structures 231

 MQXQH – COBOL declaration

COBOL language declaration
\\ MQXQH structure
 1ð MQXQH.
\\ Structure identifier
 15 MQXQH-STRUCID PIC X(4).
\\ Structure version number

15 MQXQH-VERSION PIC S9(9) BINARY.
\\ Name of destination queue
 15 MQXQH-REMOTEQNAME PIC X(48).
\\ Name of destination queue manager
 15 MQXQH-REMOTEQMGRNAME PIC X(48).
\\ Original message descriptor
 15 MQXQH-MSGDESC.
\\ Structure identifier
 2ð MQXQH-MSGDESC-STRUCID PIC X(4).
\\ Structure version number

2ð MQXQH-MSGDESC-VERSION PIC S9(9) BINARY.
\\ Report options

2ð MQXQH-MSGDESC-REPORT PIC S9(9) BINARY.
\\ Message type

2ð MQXQH-MSGDESC-MSGTYPE PIC S9(9) BINARY.
\\ Expiry time

2ð MQXQH-MSGDESC-EXPIRY PIC S9(9) BINARY.
\\ Feedback or reason code

2ð MQXQH-MSGDESC-FEEDBACK PIC S9(9) BINARY.
\\ Data encoding

2ð MQXQH-MSGDESC-ENCODING PIC S9(9) BINARY.
\\ Coded character set identifier

2ð MQXQH-MSGDESC-CODEDCHARSETID PIC S9(9) BINARY.
\\ Format name
 2ð MQXQH-MSGDESC-FORMAT PIC X(8).
\\ Message priority

2ð MQXQH-MSGDESC-PRIORITY PIC S9(9) BINARY.
\\ Message persistence

2ð MQXQH-MSGDESC-PERSISTENCE PIC S9(9) BINARY.
\\ Message identifier
 2ð MQXQH-MSGDESC-MSGID PIC X(24).
\\ Correlation identifier
 2ð MQXQH-MSGDESC-CORRELID PIC X(24).
\\ Backout counter

2ð MQXQH-MSGDESC-BACKOUTCOUNT PIC S9(9) BINARY.
\\ Name of reply-to queue
 2ð MQXQH-MSGDESC-REPLYTOQ PIC X(48).
\\ Name of reply queue manager
 2ð MQXQH-MSGDESC-REPLYTOQMGR PIC X(48).
\\ User identifier
 2ð MQXQH-MSGDESC-USERIDENTIFIER PIC X(12).
\\ Accounting token
 2ð MQXQH-MSGDESC-ACCOUNTINGTOKEN PIC X(32).
\\ Application data relating to identity

2ð MQXQH-MSGDESC-APPLIDENTITYDATA PIC X(32).
\\ Type of application that put the message

2ð MQXQH-MSGDESC-PUTAPPLTYPE PIC S9(9) BINARY.
\\ Name of application that put the message
 2ð MQXQH-MSGDESC-PUTAPPLNAME PIC X(28).
\\ Date when message was put

232 MQSeries Application Programming Reference

 MQXQH – PL/I declaration

 2ð MQXQH-MSGDESC-PUTDATE PIC X(8).
\\ Time when message was put
 2ð MQXQH-MSGDESC-PUTTIME PIC X(8).
\\ Application data relating to origin
 2ð MQXQH-MSGDESC-APPLORIGINDATA PIC X(4).

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQXQH based,
3 StrucId char(4), /\ Structure identifier \/
3 Version fixed bin(31), /\ Structure version number \/
3 RemoteQName char(48), /\ Name of destination queue \/
3 RemoteQMgrName char(48), /\ Name of destination queue

 manager \/
3 MsgDesc, /\ Original message descriptor \/
5 StrucId char(4), /\ Structure identifier \/
5 Version fixed bin(31), /\ Structure version number \/
5 Report fixed bin(31), /\ Report options \/
5 MsgType fixed bin(31), /\ Message type \/
5 Expiry fixed bin(31), /\ Expiry time \/
5 Feedback fixed bin(31), /\ Feedback or reason code \/
5 Encoding fixed bin(31), /\ Data encoding \/
5 CodedCharSetId fixed bin(31), /\ Coded character set

 identifier \/
5 Format char(8), /\ Format name \/
5 Priority fixed bin(31), /\ Message priority \/
5 Persistence fixed bin(31), /\ Message persistence \/
5 MsgId char(24), /\ Message identifier \/
5 CorrelId char(24), /\ Correlation identifier \/
5 BackoutCount fixed bin(31), /\ Backout counter \/
5 ReplyToQ char(48), /\ Name of reply-to queue \/
5 ReplyToQMgr char(48), /\ Name of reply queue manager \/
5 UserIdentifier char(12), /\ User identifier \/
5 AccountingToken char(32), /\ Accounting token \/
5 ApplIdentityData char(32), /\ Application data relating to

 identity \/
5 PutApplType fixed bin(31), /\ Type of application that put the

 message \/
5 PutApplName char(28), /\ Name of application that put the

 message \/
5 PutDate char(8), /\ Date when message was put \/
5 PutTime char(8), /\ Time when message was put \/
5 ApplOriginData char(4); /\ Application data relating to

 origin \/

 Chapter 2. Data type descriptions – structures 233

 MQXQH – S/390 assembler declaration

System/390 assembler-language declaration (MVS/ESA only)
MQXQH DSECT
MQXQH_STRUCID DS CL4 Structure identifier
MQXQH_VERSION DS F Structure version number
MQXQH_REMOTEQNAME DS CL48 Name of destination queue
MQXQH_REMOTEQMGRNAME DS CL48 Name of destination queue
\ manager
MQXQH_MSGDESC DS ðF Force fullword alignment
MQXQH_MSGDESC_STRUCID DS CL4 Structure identifier
MQXQH_MSGDESC_VERSION DS F Structure version number
MQXQH_MSGDESC_REPORT DS F Report options
MQXQH_MSGDESC_MSGTYPE DS F Message type
MQXQH_MSGDESC_EXPIRY DS F Expiry time
MQXQH_MSGDESC_FEEDBACK DS F Feedback or reason code
MQXQH_MSGDESC_ENCODING DS F Data encoding
MQXQH_MSGDESC_CODEDCHARSETID DS F Coded character set
\ identifier
MQXQH_MSGDESC_FORMAT DS CL8 Format name
MQXQH_MSGDESC_PRIORITY DS F Message priority
MQXQH_MSGDESC_PERSISTENCE DS F Message persistence
MQXQH_MSGDESC_MSGID DS XL24 Message identifier
MQXQH_MSGDESC_CORRELID DS XL24 Correlation identifier
MQXQH_MSGDESC_BACKOUTCOUNT DS F Backout counter
MQXQH_MSGDESC_REPLYTOQ DS CL48 Name of reply-to queue
MQXQH_MSGDESC_REPLYTOQMGR DS CL48 Name of reply queue manager
MQXQH_MSGDESC_USERIDENTIFIER DS CL12 User identifier
MQXQH_MSGDESC_ACCOUNTINGTOKEN DS XL32 Accounting token
MQXQH_MSGDESC_APPLIDENTITYDATA DS CL32 Application data relating to
\ identity
MQXQH_MSGDESC_PUTAPPLTYPE DS F Type of application that put
\ the message
MQXQH_MSGDESC_PUTAPPLNAME DS CL28 Name of application that put
\ the message
MQXQH_MSGDESC_PUTDATE DS CL8 Date when message was put
MQXQH_MSGDESC_PUTTIME DS CL8 Time when message was put
MQXQH_MSGDESC_APPLORIGINDATA DS CL4 Application data relating to
\ origin
MQXQH_MSGDESC_LENGTH EQU \-MQXQH_MSGDESC
 ORG MQXQH_MSGDESC
MQXQH_MSGDESC_AREA DS CL(MQXQH_MSGDESC_LENGTH)
MQXQH_LENGTH EQU \-MQXQH Length of structure
 ORG MQXQH
MQXQH_AREA DS CL(MQXQH_LENGTH)

234 MQSeries Application Programming Reference

 MQXQH – TAL declaration

| TAL declaration (Tandem NSK only)
| STRUCT MQXQH^DEF (\);
| BEGIN
| STRUCT STRUCID;
| BEGIN STRING BYTE [ð:3]; END;
| INT(32) VERSION;
| STRUCT REMOTEQNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT REMOTEQMGRNAME;
| BEGIN STRING BYTE [ð:47]; END;
| STRUCT MSGDESC(MQMD^DEF);
| END;

 Chapter 2. Data type descriptions – structures 235

 MQXQH – TAL declaration

236 MQSeries Application Programming Reference

 Call descriptions

 Chapter 3. Call descriptions

This chapter describes the MQI calls:

� MQBACK – Back out
� MQBEGIN – Begin unit of work
� MQCLOSE – Close object
� MQCMIT – Commit
� MQCONN – Connect to queue manager
� MQCONNX – Connect to queue manager with options
� MQDISC – Disconnect from queue manager
� MQGET – Get message
� MQINQ – Inquire about object attributes
� MQOPEN – Open object
� MQPUT – Put message
� MQPUT1 – Put one message
� MQSET – Set object attributes

| � MQSYNC – Synchronize statistics updates (Tandem NSK only)

Online help on the UNIX platforms, in the form of man pages, is available for these
calls.

Note: The calls associated with data conversion, MQXCNVC and
MQDATACONVEXIT, are in Appendix D, “Data-conversion” on page 495.

Conventions used in the call descriptions
For each call, this chapter gives a description of the parameters and usage of the
call in a format that is independent of programming language. This is followed by
typical invocations of the call, and typical declarations of its parameters, in each of
the supported programming languages.

The description of each call contains the following sections:

Call name The call name, followed by a brief description of the purpose of the
call.

Parameters For each parameter, the name is followed by its data type in
parentheses () and one of the following:

input You supply information in the parameter when you
make the call.

output The queue manager returns information in the
parameter when the call completes or fails.

input/output You supply information in the parameter when you
make the call, and the queue manager changes the
information when the call completes or fails.

For example:

Compcode (MQLONG) — output

In some cases, the data type is a structure. In all cases, there is
more information about the data type or structure in Chapter 1, “Data
type descriptions – elementary” on page 1.

 Copyright IBM Corp. 1994,1998 237

 Call descriptions

The last two parameters in each call are a completion code and a
reason code. The completion code indicates whether the call
completed successfully, partially, or not at all. Further information
about the partial success or the failure of the call is given in the
reason code. You will find more information about each completion
and reason code in Chapter 5, “Return codes” on page 383.

Usage notes
Additional information about the call, describing how to use it and any
restrictions on its use.

Assembler language invocation
Typical invocation of the call, and declaration of its parameters, in
assembler language.

C invocation
Typical invocation of the call, and declaration of its parameters, in C.

COBOL invocation
Typical invocation of the call, and declaration of its parameters, in
COBOL.

PL/I invocation
Typical invocation of the call, and declaration of its parameters, in
PL/I.

All parameters are passed by reference.

Other notation conventions are:

Constants Names of constants are shown in uppercase; for example,
MQOO_OUTPUT. A set of constants having the same prefix is
shown like this: MQIA_ñ. See Chapter 6, “MQSeries constants” on
page 449 for the value of a constant.

Arrays In some calls, parameters are arrays of character strings whose size
is not fixed. In the descriptions of these parameters, a lowercase “n”
represents a numeric constant. When you code the declaration for
that parameter, replace the “n” with the numeric value you require.

Using the calls in the C language
Parameters that are input only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value. For all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can
be specified as the parameter on the function invocation, in place of the address of
parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the call; in C terminology, this means that
all calls return void .

238 MQSeries Application Programming Reference

 Call descriptions

Declaring the Buffer parameter
The MQGET, MQPUT, and MQPUT1 calls each have one parameter that has an
undefined data type—the Buffer parameter. This parameter is used to send and
receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
perfectly valid to declare the parameters in this way, but it is usually more
convenient to declare them as the particular structure that describes the layout of
the data in the message. The function prototype declares the parameter as a
pointer-to-void, so that you can specify the address of any sort of data as the
parameter on the call invocation.

Pointer-to-void is a pointer to data of undefined format. It is defined as:

typedef void \PMQVOID;

 Chapter 3. Call descriptions 239

 MQBACK – Reason parameter

 MQBACK – Back out changes
The MQBACK call indicates to the queue manager that all of the message gets and
puts that have occurred since the last syncpoint are to be backed out. Messages
put as part of a unit of work are deleted; messages retrieved as part of a unit of
work are reinstated on the queue.

� On MVS/ESA, this call is used only by batch programs (including IMS batch
DL/I programs).

� On OS/400 and Tandem NSK, this call is not supported.

MQBACK (Hconn, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

240 MQSeries Application Programming Reference

 MQBACK – Usage notes

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

See Chapter 5, “Return codes” on page 383 for more details.

 Usage notes
1. This call is available only in those environments where there is no suitable

unit-of-work manager; in these cases the queue manager itself coordinates the
units of work. These can be:

� A local unit of work, where the changes affect only MQ resources.

� A global unit of work, where the changes can affect resources belonging to
other resource managers, as well as affecting MQ resources.

See “MQBEGIN – Begin unit of work” on page 244 for further details about
local and global units of work.

In environments where there is a suitable unit-of-work manager, the appropriate
back-out call must be used instead of MQBACK, or the application terminated
abnormally in order to back out the unit of work.

� On MVS/ESA, this call is used only by batch programs (including IMS batch
DL/I programs). It is not supported for CICS applications, which should use
the EXEC CICS SYNCPOINT ROLLBACK command instead to cause changes
to be backed out. IMS applications (other than batch DL/I programs)
should use IMS calls, such as ROLB.

� On OS/400 and Tandem NSK, this call is not supported.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message
group and logical message for the last successful MQPUT and MQGET calls.
This information is associated with the queue handle, and includes such things
as:

� The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in
MQMD.

� Whether the message is part of a unit of work.

� For the MQPUT call: whether the message is persistent or nonpersistent.

The queue manager keeps three sets of group and segment information, one
set for each of the following:

� The last successful MQPUT call (this can be part of a unit of work).

� The last successful MQGET call that removed a message from the queue
(this can be part of a unit of work).

� The last successful MQGET call that browsed a message on the queue
(this cannot be part of a unit of work).

 Chapter 3. Call descriptions 241

 MQBACK – Usage notes

If the application puts or gets the messages as part of a unit of work, and the
application then decides to back out the unit of work, the group and segment
information is restored to the value that it had previously:

� The information associated with the MQPUT call is restored to the value
that it had prior to the first successful MQPUT call for that queue handle in
the current unit of work.

� The information associated with the MQGET call is restored to the value
that it had prior to the first successful MQGET call for that queue handle in
the current unit of work.

Queues which were updated by the application after the unit of work had
started, but outside the scope of the unit of work, do not have their group and
segment information restored if the unit of work is backed out.

Restoring the group and segment information to its previous value when a unit
of work is backed out allows the application to spread a large message group
or large logical message consisting of many segments across several units of
work, and to restart at the correct point in the message group or logical
message if one of the units of work fails. Using several units of work may be
advantageous if the local queue manager has only limited queue storage.
However, the application must maintain sufficient information to be able to
restart putting or getting messages at the correct point in the event that a
system failure occurs. For details of how to restart at the correct point after a
system failure, see the MQPMO_LOGICAL_ORDER option described in
“MQPMO – Put message options” on page 173, and the
MQGMO_LOGICAL_ORDER option described in “MQGMO – Get-message
options” on page 56.

The remaining usage notes apply only when the queue manager coordinates the
units of work:

3. A unit of work has the same scope as a connection handle. This means that
all MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work.
See the Hconn parameter described in “MQCONN – Connect queue manager”
on page 261 for information about the scope of connection handles.

4. Only messages that were put or retrieved as part of the current unit of work are
affected by this call.

5. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls
within a unit of work, but which never issues a commit or backout call, will
cause queues to fill up with messages that are not available to other
applications.

6. On MVS/ESA, ending an application abnormally while there are uncommitted
requests causes an implicit backout to occur.

| 7. On Tandem NSK, MQBACK always returns a CompCode of MQCC_FAILED and
| a Reason of MQRC_ENVIRONMENT_ERROR. Transactions are managed
| externally through TM/MP.

242 MQSeries Application Programming Reference

 MQBACK – language invocations

C language invocation
MQBACK (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQBACK' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, MVS/ESA, OS/2 and, Windows NT)
call MQBACK (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQBACK,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT Hconn;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQBACK(HConn, CC, Reason);

 Chapter 3. Call descriptions 243

 MQBEGIN – Reason parameter

 MQBEGIN – Begin unit of work
The MQBEGIN call begins a unit of work that is coordinated by the queue
manager, and that may involve external resource managers.

This call is supported in the following environments: AIX, HP-UX, OS/2, Sun
Solaris, Windows NT.

MQBEGIN (Hconn, BeginOptions, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

BeginOptions (MQBO) – input/output
Options that control the action of MQBEGIN.

See “MQBO – Begin options” on page 19 for details.

BeginOptions is a reserved parameter. Programs written in C or S/390
assembler can specify a null parameter address, instead of specifying the
address of an MQBO structure.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_NO_EXTERNAL_PARTICIPANTS
(2121, X'849') No participating resource managers registered.

MQRC_PARTICIPANT_NOT_AVAILABLE
(2122, X'84A') Participating resource manager not available.

If CompCode is MQCC_FAILED:

MQRC_BO_ERROR
(2134, X'856') Begin-options structure not valid.

244 MQSeries Application Programming Reference

 MQBEGIN – Usage notes

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_IN_PROGRESS
(2128, X'850') Unit of work already started.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. The MQBEGIN call can be used to start a unit of work that is coordinated by

the queue manager and that may involve changes to resources owned by other
resource managers.

The queue manager supports three types of unit-of-work:

Queue-manager-coordinated local unit of work
This is a unit of work in which the queue manager is the only participant,
and so the queue manager acts as the unit-of-work coordinator.

� To start this type of unit of work, the MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT option should be specified on the first
MQPUT, MQPUT1, or MQGET call in the unit of work. It is not
necessary for the application to issue the MQBEGIN call to start the
unit of work. However, if it is used the unit of work is started, but the
call completes with MQCC_WARNING and reason code
MQRC_NO_EXTERNAL_PARTICIPANTS.

� To commit or back out this type of unit of work, the MQCMIT and
MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Queue-manager-coordinated global unit of work
This is a unit of work in which the queue manager acts as the unit-of-work
coordinator, both for MQ resources and for resources belonging to other
resource managers. Those resource managers cooperate with the queue
manager to ensure that all changes to resources in the unit of work are
committed or backed out together.

� To start this type of unit of work, the MQBEGIN call must be used.

 Chapter 3. Call descriptions 245

 MQBEGIN – Usage notes

� To commit or back out this type of unit of work, the MQCMIT and
MQBACK calls must be used. If the application issues neither call,
the unit of work is committed if the application issues the MQDISC
call, but backed out if the application ends without issuing the
MQDISC call.

Externally-coordinated global unit of work
This is a unit of work in which the queue manager is a participant, but the
queue manager does not act as the unit-of-work coordinator. Instead,
there is an external unit-of-work coordinator with whom the queue
manager cooperates.

� To start this type of unit of work, the relevant call provided by the
external unit-of-work coordinator must be used. If the MQBEGIN call
is used to try to start the unit of work, the call fails with reason code
MQRC_ENVIRONMENT_ERROR.

� To commit or back out this type of unit of work, the commit and
back-out calls provided by the external unit-of-work coordinator must
be used; the MQCMIT and MQBACK calls cannot be used.

2. An application can participate in only one unit of work at a time. The
MQBEGIN call fails with reason code MQRC_UOW_IN_PROGRESS if there is
already a unit of work in existence for the application, regardless of which type
of unit of work it is.

3. The MQBEGIN call is not valid in an MQ client environment. An attempt to use
the call fails with reason code MQRC_ENVIRONMENT_ERROR.

4. When the queue manager is acting as the unit-of-work coordinator for global
units of work, the resource managers that can participate in the unit of work are
defined in the queue manager’s configuration file.

246 MQSeries Application Programming Reference

 MQBEGIN – language invocations

C language invocation
MQBEGIN (Hconn, &BeginOptions, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQBO BeginOptions; /\ Options that control the action of MQBEGIN \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQBEGIN' USING HCONN, BEGINOPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Options that control the action of MQBEGIN
 ð1 BEGINOPTIONS.
 COPY CMQBOV.
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, OS/2, and Windows NT)
call MQBEGIN (Hconn, BeginOptions, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl BeginOptions like MQBO; /\ Options that control the action of
 MQBEGIN \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

 Chapter 3. Call descriptions 247

 MQCLOSE – Options parameter

 MQCLOSE – Close object
The MQCLOSE call relinquishes access to an object, and is the inverse of the
MQOPEN call.

MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Hobj (MQHOBJ) – input/output
Object handle.

This handle represents the object that is being closed. The object can be
of any type. The value of Hobj was returned by a previous MQOPEN call.

On successful completion of the call, the queue manager sets this
parameter to a value that is not a valid handle for the environment. This
value is:

MQHO_UNUSABLE_HOBJ
Unusable object handle.

On MVS/ESA, Hobj is set to a value that is undefined.

Options (MQLONG) – input
Options that control the action of MQCLOSE.

The Options parameter controls how the object is closed. Only permanent
dynamic queues can be closed in more than one way, being either
retained or deleted; these are queues whose DefinitionType attribute has
the value MQQDT_PERMANENT_DYNAMIC (see the DefinitionType
attribute described in “Attributes for local queues and model queues” on
page 348). The close options are summarized in Table 59 on page 250.

One (and only one) of the following must be specified:

MQCO_NONE
No optional close processing required.

This must be specified for:

� Objects other than queues

 � Predefined queues

248 MQSeries Application Programming Reference

 MQCLOSE – Options parameter

� Temporary dynamic queues (but only in those cases where Hobj
is not the handle returned by the MQOPEN call that created the
queue).

 � Distribution lists

In all of the above cases, the object is retained and not deleted.

If this option is specified for a temporary dynamic queue:

� The queue is deleted, if it was created by the MQOPEN call that
returned Hobj; any messages that are on the queue are purged.

� In all other cases the queue (and any messages on it) are
retained.

If this option is specified for a permanent dynamic queue, the queue
is retained and not deleted.

On MVS/ESA, if the queue is a dynamic queue that has been
logically deleted (see Usage note 3 on page 252), and this is the last
handle for it, the queue is physically deleted.

MQCO_DELETE
Delete the queue.

The queue is deleted if either of the following is true:

� It is a permanent dynamic queue, and there are no messages on
the queue and no uncommitted get or put requests outstanding
for the queue (either for the current task or any other task).

� It is the temporary dynamic queue that was created by the
MQOPEN call that returned Hobj. In this case, all the messages
on the queue are purged.

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not
deleted.

On MVS/ESA, if the queue is a dynamic queue that has been
logically deleted (see Usage note 3 on page 252), and this is the last
handle for it, the queue is physically deleted.

MQCO_DELETE_PURGE
Delete the queue, purging any messages on it.

The queue is deleted if either of the following is true:

� It is a permanent dynamic queue and there are no uncommitted
get or put requests outstanding for the queue (either for the
current task or any other task).

� It is the temporary dynamic queue that was created by the
MQOPEN call that returned Hobj.

In all other cases the call fails with reason code
MQRC_OPTION_NOT_VALID_FOR_TYPE, and the object is not
deleted.

 Chapter 3. Call descriptions 249

 MQCLOSE – Reason parameter

Table 59. Effect of MQCLOSE options on various types of object and queue. This table shows which close
options are valid, and whether the object is retained or deleted.

Type of object or queue MQCO_NONE MQCO_DELETE MQCO_DELETE_PURGE

Object other than a queue retained not valid not valid

Predefined queue retained not valid not valid

Permanent dynamic queue retained deleted if empty and
no pending updates

messages deleted; queue deleted if no pending
updates

Temporary dynamic queue
(call issued by creator of

queue)

deleted deleted deleted

Temporary dynamic queue
(call not issued by creator

of queue)

retained not valid not valid

Distribution list retained not valid not valid

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

250 MQSeries Application Programming Reference

 MQCLOSE – Usage notes

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') Option not valid for object type.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or
uncommitted put or get requests.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

See Chapter 5, “Return codes” on page 383 for more details.

 Usage notes
1. When an application issues the MQDISC call, or ends either normally or

abnormally, any objects that were opened by the application and are still open
are closed automatically with the MQCO_NONE option.

2. The following points apply only if the object being closed is a queue:

� If operations on the queue were performed as part of a unit of work, the
queue can be closed before or after the syncpoint occurs without affecting
the outcome of the syncpoint.

� On MVS/ESA, if there is an MQGET request with the
MQGMO_SET_SIGNAL option outstanding against the queue handle being
closed, the request is canceled (see the MQGMO_SET_SIGNAL option
described in “MQGMO – Get-message options” on page 56). Signal

 Chapter 3. Call descriptions 251

 MQCLOSE – Usage notes

requests for the same queue but lodged against different handles (Hobj)
are not affected (unless it is a dynamic queue that is being deleted, in
which case they are also canceled).

� If the queue was opened with the MQOO_BROWSE option, the browse
cursor is destroyed. If the queue is subsequently reopened with the
MQOO_BROWSE option, a new browse cursor is created (see the
MQOO_BROWSE option described in MQOPEN).

� If a message is currently locked for this handle at the time of the
MQCLOSE call, the lock is released (see the MQGMO_LOCK option
described in “MQGMO – Get-message options” on page 56).

3. The following points apply only if the object being closed is a dynamic queue:

� For a dynamic queue, the options MQCO_DELETE or
MQCO_DELETE_PURGE can be specified regardless of the options
specified on the corresponding MQOPEN call.

� When a temporary dynamic queue is closed using the Hobj handle
returned by the MQOPEN call that created it, the queue is deleted (along
with any messages that may still be on it) regardless of which of the valid
options is specified in the Options parameter. This is true even if there are
uncommitted MQGET, MQPUT, or MQPUT1 calls (issued using this or
another handle) outstanding against the queue; any uncommitted updates
that are lost do not cause the unit of work of which they are a part to fail.

� When a dynamic queue is deleted, any MQGET requests with the
MQGMO_WAIT option that are outstanding against the queue (using
different Hobj handles) are canceled and reason code MQRC_Q_DELETED
is returned. See the MQGMO_WAIT option described in “MQGMO –
Get-message options” on page 56.

� After a dynamic queue (either temporary or permanent) has been deleted,
any call (other than MQCLOSE) that attempts to reference the queue using
another previously acquired Hobj handle will fail with reason code
MQRC_Q_DELETED.

� On MVS/ESA, until the last such handle has been closed, the queue is
logically deleted, but does still exist (for example, it can still be displayed),
although no messages can be retrieved from it or put on it. During this
time, any attempt to create a new queue (either dynamic or predefined)
with the same name fails; in the case of a dynamic queue the MQOPEN
call fails with the reason code MQRC_NAME_IN_USE. This is true for the
application that caused the queue to become logically deleted, as well as
for other applications.

After the last Hobj handle referencing the queue has been closed, the
queue is physically deleted, and a new queue with the same name can
now be created. However, in the case of a temporary dynamic queue, if
there are any corresponding unresolved units of work when the last Hobj
handle referencing the queue has been closed, the queue is not physically
deleted until the application terminates.

As a result of a race condition, it is possible that a logically-deleted
permanent dynamic queue does have uncommitted updates. In this case
the queue can only be physically deleted after the corresponding units of
work have been resolved (as well as all of the handles closed).

252 MQSeries Application Programming Reference

 MQCLOSE – Usage notes

� When an MQCLOSE call is issued to delete a permanent dynamic queue,
using an Hobj handle other than the one returned by the MQOPEN call that
created the queue, a check is made that the user identifier which was used
to validate the MQOPEN call (the alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) is authorized to
delete the queue.

No check is made when a temporary dynamic queue is deleted in this way,
nor for a permanent dynamic queue if the handle specified is the one
returned by the MQOPEN call that created the queue.

4. The following points apply only if the object being closed is a distribution list:

� The only valid close option for a distribution list is MQCO_NONE; the call
fails with reason code MQRC_OPTIONS_ERROR or
MQRC_OPTION_NOT_VALID_FOR_TYPE if any other options are
specified.

� When a distribution list is closed, individual completion codes and reason
codes are not returned for the queues in the list – only the CompCode and
Reason parameters of the call are available for diagnostic purposes.

If a failure occurs closing one of the queues, the queue manager continues
processing and attempts to close the remaining queues in the distribution
list. The CompCode and Reason parameters of the call are then set to return
information describing the failure. Thus it is possible for the completion
code to be MQCC_FAILED, even though most of the queues were closed
successfully. The queue that encountered the error is not identified.

If there is a failure on more than one queue, it is not defined which failure
is reported in the CompCode and Reason parameters.

5. On OS/400, if the application was connected implicitly when the first MQOPEN
call was issued, an implicit MQDISC occurs when the last MQCLOSE is issued.

 Chapter 3. Call descriptions 253

 MQCLOSE – C invocation � MQCLOSE – S/390 assembler invocation

 C invocation
MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG Options; /\ Options that control the action of MQCLOSE \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQCLOSE' USING HCONN, HOBJ, OPTIONS, COMPCODE,

 REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Options that control the action of MQCLOSE
 ð1 OPTIONS PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQCLOSE (Hconn, Hobj, Options, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl Options fixed bin(31); /\ Options that control the action of
 MQCLOSE \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQCLOSE,(HCONN,HOBJ,OPTIONS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
OPTIONS DS F Options that control the action
\ of MQCLOSE
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

254 MQSeries Application Programming Reference

 MQCLOSE – TAL invocation

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn ;
| INT(32) .EXT HObj;
| INT(32) Options;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQCLOSE(HConn, HObj, Options, CC, Reason);

 Chapter 3. Call descriptions 255

 MQCMIT – Reason parameter

 MQCMIT – Commit changes
The MQCMIT call indicates to the queue manager that the application has reached
a syncpoint, and that all of the message gets and puts that have occurred since the
last syncpoint are to be made permanent. Messages put as part of a unit of work
are made available to other applications; messages retrieved as part of a unit of
work are deleted.

� On MVS/ESA, the call is used only by batch programs (including IMS batch
DL/I programs).

� On OS/400 and Tandem NSK, this call is not supported.

MQCMIT (Hconn, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

MQRC_OUTCOME_PENDING
(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

256 MQSeries Application Programming Reference

 MQCMIT – Usage notes

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

See Chapter 5, “Return codes” on page 383 for more details.

 Usage notes
1. This call is available only in those environments where there is no suitable

unit-of-work manager; in these cases the queue manager itself coordinates the
units of work. These can be:

� A local unit of work, where the changes affect only MQ resources.

� A global unit of work, where the changes can affect resources belonging to
other resource managers, as well as affecting MQ resources.

See “MQBEGIN – Begin unit of work” on page 244 for further details about
local and global units of work.

In environments where there is a suitable unit-of-work manager, the appropriate
commit call must be used instead of MQCMIT. The environment may also
support an implicit syncpoint caused by the application terminating normally.

� On MVS/ESA, this call is used only by batch programs (including IMS batch
DL/I programs). It is not supported for CICS applications, which should use
the EXEC CICS SYNCPOINT command instead to cause a syncpoint, or end
the transaction, and thus cause an implicit syncpoint. IMS applications
(other than batch DL/I programs) should use IMS calls such as GU and
CHKP.

� On OS/400 and Tandem NSK, this call is not supported.

2. When an application puts or gets messages in groups or segments of logical
messages, the queue manager retains information relating to the message
group and logical message for the last successful MQPUT and MQGET calls.
This information is associated with the queue handle, and includes such things
as:

� The values of the GroupId, MsgSeqNumber, Offset, and MsgFlags fields in
MQMD.

 Chapter 3. Call descriptions 257

 MQCMIT – Usage notes

� Whether the message is part of a unit of work.

� For the MQPUT call: whether the message is persistent or nonpersistent.

When a unit of work is committed, the queue manager retains the group and
segment information, and the application can continue putting or getting
messages in the current message group or logical message.

Retaining the group and segment information when a unit of work is committed
allows the application to spread a large message group or large logical
message consisting of many segments across several units of work. Using
several units of work may be advantageous if the local queue manager has
only limited queue storage. However, the application must maintain sufficient
information to be able to restart putting or getting messages at the correct point
in the event that a system failure occurs. For details of how to restart at the
correct point after a system failure, see the MQPMO_LOGICAL_ORDER option
described in “MQPMO – Put message options” on page 173, and the
MQGMO_LOGICAL_ORDER option described in “MQGMO – Get-message
options” on page 56.

The remaining usage notes apply only when the queue manager coordinates the
units of work:

3. A unit of work has the same scope as a connection handle. This means that
all MQ calls which affect a particular unit of work must be performed using the
same connection handle. Calls issued using a different connection handle (for
example, calls issued by another application) affect a different unit of work.
See the Hconn parameter described in MQCONN for information about the
scope of connection handles.

4. Only messages that were put or retrieved as part of the current unit of work are
affected by this call.

5. If an application ends without issuing the MQCMIT or MQBACK call when there
are uncommitted changes within a unit of work, the disposition of those
changes depends on how the application ends:

� If the application issues the MQDISC call before ending, that call causes
the unit of work to be committed.

Note: On MVS/ESA, the MQDISC call has this effect only for batch
applications (including IMS and batch DL/1 applications). For CICS
applications, the MQDISC call does not commit the unit of work.

� If the application does not issue the MQDISC call but otherwise ends
normally, the action taken depends on the environment:

– On MVS/ESA, the unit of work is committed.
– In all other environments, the unit of work is backed out.

Because of the differences between environments, applications which are
intended to be portable should always issue the MQCMIT or MQDISC call
to commit the unit of work before ending, or the MQBACK call to back out
the unit of work.

� If the application ends abnormally, the unit of work is backed out; this has
the same effect as the application issuing the MQBACK call.

6. A long-running application that issues MQGET, MQPUT, or MQPUT1 calls
within a unit of work, but which never issues a commit or back-out call, will

258 MQSeries Application Programming Reference

 MQCMIT – Usage notes

cause queues to fill up with messages that are not available to other
applications.

7. Note that in some environments, if the Reason parameter is
MQRC_CONNECTION_BROKEN (with a CompCode of MQCC_FAILED), it is
possible that the unit of work was successfully committed.

This applies to MQ client applications running in the following environments:
| OpenVMS, OS/2, Tandem NSK, UNIX systems, and Windows NT.

| 8. On Tandem NSK, the MQCMIT call always returns a CompCode of
| MQCC_FAILED and a Reason of MQRC_ENVIRONMENT_ERROR.
| Transactions are managed externally through TM/MP.

 Chapter 3. Call descriptions 259

 MQCMIT – language invocations

C language invocation
MQCMIT (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQCMIT' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQCMIT (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQCMIT,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT Hconn;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

260 MQSeries Application Programming Reference

 MQCONN – QMgrName parameter

 MQCONN – Connect queue manager
The MQCONN call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent message queuing calls.

� On MVS/ESA, this call need not be issued by CICS applications. These
applications are connected automatically to the queue manager to which the
CICS system is connected. However, the MQCONN and MQDISC calls are still
accepted from CICS applications.

� On OS/400, this call need not be issued. Applications are connected
automatically to the queue manager when they issue the first MQOPEN call.
However, the MQCONN and MQDISC calls are still accepted from OS/400
applications.

MQCONN (QMgrName, Hconn, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Name of queue manager.

The name specified must be the name of a connectable queue manager.
The name must not contain leading or embedded blanks, but may contain
trailing blanks; the first null character and characters following it are
treated as blanks. If the name consists entirely of blanks, the name of the
default queue manager is used.

The queue managers to which it is possible to connect are determined by
the environment:

 � On MVS/ESA:

– For CICS, you can use only the queue manager to which the
CICS system is connected.

– For IMS, only queue managers which are listed in the subsystem
definition table (CSQQDEFV), and listed in the SSM table in IMS,
are connectable (see Usage note 6 on page 265).

– For MVS batch and TSO, only queue managers that reside on the
same system as the application are connectable (see Usage note
6 on page 265).

� On OS/400, only the default queue manager is connectable.

MQ client applications : For MQ client applications, a connection is
attempted for each client-connection channel definition with the specified
queue-manager name, until one is successful. The queue manager,
however, must have the same name as the specified name. If an all-blank
name is specified, each client-connection channel with an all-blank
queue-manager name is tried until one is successful; in this case there is
no check against the actual name of the queue manager.

MQ client applications are not supported in the following environments:
MVS/ESA, OS/400, 16-bit Windows, 32-bit Windows. However, MVS/ESA

 Chapter 3. Call descriptions 261

 MQCONN – Hconn parameter

and OS/400 can act as MQ servers, to which MQ client applications can
connect.

Queue-manager groups : If the specified name starts with an asterisk (*),
the actual queue manager to which connection is made may have a name
that is different from that specified by the application. The specified name
(without the asterisk) defines a group of queue managers that are eligible
for connection. The implementation selects one from the group by trying
each one in turn (in no defined order) until one is found to which a
connection can be made. If none of the queue managers in the group is
available for connection, the call fails. Each queue manager is tried once
only. If an asterisk alone is specified for the name, an
implementation-defined default queue-manager group is used.

Queue-manager groups are supported only for applications running in a
client environment; the call fails if a non-client application specifies a
queue-manager name beginning with an asterisk. A group is defined by
providing several client connection channel definitions with the same
queue-manager name (the specified name without the asterisk), to
communicate with each of the queue managers in the group. The default
group is defined by providing one or more client connection channel
definitions, each with a blank queue-manager name (specifying an
all-blank name therefore has the same effect as specifying a single
asterisk for the name for a client application).

After connecting to one queue manager of a group, an application can
specify blanks in the usual way in the queue-manager name fields in the
message and object descriptors to mean the name of the queue manager
to which the application has actually connected (the local queue manager).
If the application needs to know this name, the MQINQ call can be issued
to inquire the QMgrName queue-manager attribute.

Prefixing an asterisk to the connection name in this way implies that the
application is not sensitive to which queue manager in the group the
application is connected. This will not be suitable for certain types of
application, for example those which need to get messages from a
particular queue at a particular queue manager; such applications should
not prefix the name with an asterisk. Use of queue-manager groups is
suitable for applications that put messages, and/or get messages from
temporary dynamic queues which they have created.

Note that if an asterisk is specified, the maximum length of the remainder
of the name is 47 characters.

The length of this parameter is given by MQ_Q_MGR_NAME_LENGTH.
Queue-manager groups are not supported in the following environments:
MVS/ESA, OS/400, 16-bit Windows, 32-bit Windows.

Hconn (MQHCONN) – output
Connection handle.

This handle represents the connection to the queue manager. It must be
specified on all subsequent message queuing calls issued by the
application. It ceases to be valid when the MQDISC call is issued, or
when the unit of processing that defines the scope of the handle
terminates.

262 MQSeries Application Programming Reference

 MQCONN – Reason parameter

The scope of the handle is restricted to the smallest unit of parallel
processing within the environment concerned; the handle is not valid
outside the unit of parallel processing from which the MQCONN call was
issued.

| � On OpenVMS, the scope of the handle is the thread issuing the call.
� On DOS client, the scope of the handle is the system.
� On MVS/ESA, the scope of the handle is:

– For CICS: the CICS task
– For IMS: the Task Control Block, excluding any subtasks (usually

this is the application program running in the dependent region)
– For MVS batch and TSO: the Task Control Block, excluding any

subtasks issuing the call. For IMS and MVS batch applications,
the scope of the handle excludes any subtasks of the task.

� On OS/2, the scope of the handle is the thread issuing the call.
� On OS/400, the scope of the handle is the job issuing the call.

| � On Tandem NSK, the scope of the handle is the thread issuing the
| call.

� On UNIX systems, the scope of the handle is the thread issuing the
call.

� On Windows client and 16-bit Windows, the scope of the handle is the
process issuing the call.

� On 32-bit Windows and Windows NT, the scope of the handle is the
thread issuing the call.

On OS/400, and on MVS/ESA for CICS applications, the value returned is:

MQHC_DEF_HCONN
Default connection handle.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_ALREADY_CONNECTED
(2002, X'7D2') Application already connected.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_CONN_LOAD_ERROR
(2129, X'851') Unable to load adapter connection module.

 Chapter 3. Call descriptions 263

 MQCONN – Reason parameter

MQRC_ADAPTER_DEFS_ERROR
(2131, X'853') Adapter subsystem definition module not valid.

MQRC_ADAPTER_DEFS_LOAD_ERROR
(2132, X'854') Unable to load adapter subsystem definition module.

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ADAPTER_STORAGE_SHORTAGE
(2127, X'84F') Insufficient storage for adapter.

MQRC_ANOTHER_Q_MGR_CONNECTED
(2103, X'837') Another queue manager already connected.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CONN_ID_IN_USE
(2160, X'870') Connection identifier already in use.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_DUPLICATE_RECOV_COORD
(2163, X'873') Recovery coordinator already exists.

MQRC_MAX_CONNS_LIMIT_REACHED
(2025, X'7E9') Maximum number of connections reached.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

264 MQSeries Application Programming Reference

 MQCONN – Usage notes

 Usage notes
1. The queue manager to which connection is made using the MQCONN call is

called the local queue manager.

2. Queues that belong to the local queue manager appear to the application as
local queues. It is possible to put messages on and get messages from local
queues.

Queues belonging to remote queue managers appear as remote queues. It is
possible to put messages on remote queues, but not possible to get messages
from remote queues.

3. On MVS/ESA, this call must be issued by each batch or IMS application
needing to use MQI calls.

4. After a failure of the queue manager, this call must be reissued. The
application program can periodically reissue MQCONN calls until it finds that
the queue manager has been restarted. If an application is not sure whether or
not it is connected to the queue manager, it can safely reissue an MQCONN
call. If the application is already connected, the same handle from the previous
MQCONN call is returned, together with a warning completion code and reason
code MQRC_ALREADY_CONNECTED.

On MVS/ESA, this call need be reissued only by batch applications. IMS
programs can keep reissuing the MQCONN call as many times as they want.
However, this is not recommended for online message processing programs
(MPPs).

5. Use the MQDISC call to disconnect from the queue manager.

6. On MVS/ESA, to define the available queue managers:

� For batch applications, system programmers can use the CSQBDEF macro
to create a module (CSQBDEFV) that defines the default queue-manager
name.

� For IMS applications, system programmers can use the CSQQDEFX macro
to create a module (CSQQDEFV) that defines the names of the available
queue managers and specifies the default queue manager.

For more information on using these macros, see the MQSeries for MVS/ESA
System Management Guide.

7. On MVS/ESA, a queue manager must be defined to the IMS control region and
to each dependent region accessing that queue manager. To do this, you must
create a subsystem member in the IMS.PROCLIB library and identify the
subsystem member to the applicable IMS regions. If an application attempts to
connect to a queue manager that is not defined in the subsystem member for
its IMS region, the application abends.

8. On MVS/ESA, it is possible for batch, TSO, and IMS applications to connect to
more than one queue manager concurrently.

 Chapter 3. Call descriptions 265

 MQCONN – C invocation � MQCONN – TAL invocation

C language invocation
MQCONN (Name, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 Name; /\ Name of queue manager \/
MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQCONN' USING NAME, HCONN, COMPCODE, REASON.

Declare the parameters as follows:

\\ Name of queue manager
 ð1 NAME PIC X(48).
\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQCONN (Name, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Name char(48); /\ Name of queue manager \/
dcl Hconn fixed bin(31); /\ Connection handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQCONN,(NAME,HCONN,COMPCODE,REASON)

Declare the parameters as follows:

NAME DS CL48 Name of queue manager
HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| STRING .EXT InQMgr[ð:47];
| INT(32) .EXT HConn ;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQCONN(InQMgr, HConn, CC, Reason);

266 MQSeries Application Programming Reference

 MQCONNX – Reason parameter

 MQCONNX – Connect queue manager (extended)
The MQCONNX call connects an application program to a queue manager. It
provides a queue manager connection handle, which is used by the application on
subsequent MQ calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX allows
options to be specified to control the way that the call works.

This call is supported in the following environments: AIX, DOS client, HP-UX, OS/2,
Sun Solaris, Windows client, Windows NT.

MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Name of queue manager.

See the QMgrName parameter described in “MQCONN – Connect queue
manager” on page 261 for details.

ConnectOpts (MQCNO) – input/output
Options that control the action of MQCONNX.

See “MQCNO – Connect options” on page 35 for details.

Hconn (MQHCONN) – output
Connection handle.

See the Hconn parameter described in “MQCONN – Connect queue
manager” on page 261 for details.

CompCode (MQLONG) – output
Completion code.

See the CompCode parameter described in “MQCONN – Connect queue
manager” on page 261 for details.

Reason (MQLONG) – output
Reason code qualifying CompCode.

See the Reason parameter described in “MQCONN – Connect queue
manager” on page 261 for details of possible reason codes. The following
additional reason code can be returned by the MQCONNX call:

If CompCode is MQCC_FAILED:

MQRC_CNO_ERROR
(2139, X'85B') Connect-options structure not valid.

For more information on this reason code, see Chapter 5, “Return codes”
on page 383.

 Chapter 3. Call descriptions 267

 MQCONNX – language invocations

C language invocation
MQCONNX (QMgrName, &ConnectOpts, &Hconn, &CompCode,
 &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Name of queue manager \/
MQCNO ConnectOpts; /\ Options that control the action of MQCONNX \/
MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQCONNX' USING QMGRNAME, CONNECTOPTS, HCONN,

 COMPCODE, REASON.

Declare the parameters as follows:

\\ Name of queue manager
 ð1 QMGRNAME PIC X(48).
\\ Options that control the action of MQCONNX
 ð1 CONNECTOPTS.
 COPY CMQCNOV
\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, OS/2, and Windows NT)
call MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl QMgrName char(48); /\ Name of queue manager \/
dcl ConnectOpts like MQCNO; /\ Options that control the action of
 MQCONNX \/
dcl Hconn fixed bin(31); /\ Connection handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

268 MQSeries Application Programming Reference

 MQDISC – CompCode parameter

 MQDISC – Disconnect queue manager
The MQDISC call breaks the connection between the queue manager and the
application program, and is the inverse of the MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, this call need not be issued.
See “MQCONN – Connect queue manager” on page 261 for more information.

MQDISC (Hconn, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input/output

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, both the MQCONN
and MQDISC calls can be omitted, and the following value used where
Hconn would normally be specified:

MQHC_DEF_HCONN
Default connection handle.

On successful completion of the call, the queue manager sets Hconn to a
value that is not a valid handle for the environment. This value is:

MQHC_UNUSABLE_HCONN
Unusable connection handle.

On MVS/ESA, Hconn is set to a value which is undefined.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

 Chapter 3. Call descriptions 269

 MQDISC – Reason parameter

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

MQRC_OUTCOME_PENDING
(2124, X'84C') Result of commit operation is pending.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_DISC_LOAD_ERROR
(2138, X'85A') Unable to load adapter disconnection module.

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

270 MQSeries Application Programming Reference

 MQDISC – Usage notes

 Usage notes
1. If an MQDISC call is issued when the application still has objects open, these

objects are implicitly closed, with the close options set to MQCO_NONE.

2. On OS/400, and on MVS/ESA for CICS applications, this call need not be
used; see the MQCONN call for more details.

| 3. On OpenVMS, OS/2, Tandem NSK, UNIX systems, and Windows NT, if a
queue-manager-coordinated unit of work is in progress when this call is issued,
an implicit syncpoint occurs; the unit of work is committed if possible. See
MQBEGIN for more information about units of work coordinated by the queue
manager.

4. On OS/2 and Windows NT, if an application terminates a thread without first
issuing MQDISC, and a new thread is subsequently created (within the same
process), and that thread issues message-queuing calls, the behavior of the
queue manager is undefined.

 Chapter 3. Call descriptions 271

 MQDISC – language invocations

C language invocation
MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQDISC' USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQDISC (Hconn, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQDISC,(HCONN,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn ;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQDISC(HConn, CC, Reason);

272 MQSeries Application Programming Reference

 MQGET – MsgDesc parameter

 MQGET – Get message
The MQGET call retrieves a message from a local queue that has been opened
using the MQOPEN call.

MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,
DataLength, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Hobj (MQHOBJ) – input
Object handle.

This handle represents the queue from which a message is to be
retrieved. The value of Hobj was returned by a previous MQOPEN call.
The queue must have been opened with one or more of the following
options (see “MQOPEN – Open object” on page 297 for details):

 MQOO_INPUT_SHARED
 MQOO_INPUT_EXCLUSIVE
 MQOO_INPUT_AS_Q_DEF
 MQOO_BROWSE

MsgDesc (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message required, and the
attributes of the message retrieved. See “MQMD – Message descriptor”
on page 98 for details.

If BufferLength is less than the message length, MsgDesc is still filled in by
the queue manager, whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field described in “MQGMO – Get-message
options” on page 56).

If the application provides a version-1 MQMD, the message returned has
an MQMDE prefixed to the application message data, but only if one or
more of the fields in the MQMDE has a nondefault value. If all of the
fields in the MQMDE have default values, the MQMDE is omitted. A
format name of MQFMT_MD_EXTENSION in the Format field in MQMD
indicates that an MQMDE is present.

 Chapter 3. Call descriptions 273

 MQGET – DataLength parameter

GetMsgOpts (MQGMO) – input/output
Options that control the action of MQGET.

See “MQGMO – Get-message options” on page 56 for details.

BufferLength (MQLONG) – input
Length in bytes of the Buffer area.

Zero can be specified for messages that have no data, or if the message
is to be removed from the queue and the data discarded
(MQGMO_ACCEPT_TRUNCATED_MSG must be specified in this case).

Note: The length of the longest message that it is possible to read from
the queue is given by the MaxMsgLength local queue attribute; see
“Attributes for local queues and model queues” on page 348.

Buffer (MQBYTE×BufferLength) – output
Area to contain the message data.

If BufferLength is less than the message length, as much of the message
as possible is moved into Buffer; this happens whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field described in “MQGMO – Get-message
options” on page 56 for more information).

The character set and encoding of the data in Buffer are given
(respectively) by the CodedCharSetId and Encoding fields returned in the
MsgDesc parameter. If these are different from the values required by the
receiver, the receiver must convert the application message data to the
character set and encoding required. The MQGMO_CONVERT option can
be used with a user-written exit to perform the conversion of the message
data (see “MQGMO – Get-message options” on page 56 for details of this
option).

Note: All of the other parameters on the MQGET call are in the character
set and encoding of the local queue manager (given by the
CodedCharSetId queue-manager attribute and MQENC_NATIVE,
respectively).

If the call fails, the contents of the buffer may still have changed.

In the C programming language, the parameter is declared as a
pointer-to-void; this means that the address of any type of data can be
specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this
case, the parameter address passed by programs written in C or
System/390 assembler can be null.

DataLength (MQLONG) – output
Length of the message.

This is the length in bytes of the application data in the message. If this is
greater than BufferLength, only BufferLength bytes are returned in the
Buffer parameter (that is, the message is truncated). If the value is zero,
it means that the message contains no application data.

If BufferLength is less than the message length, DataLength is still filled in
by the queue manager, whether or not
MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts

274 MQSeries Application Programming Reference

 MQGET – Reason parameter

parameter (see the Options field described in “MQGMO – Get-message
options” on page 56 for more information). This allows the application to
determine the size of the buffer required to accommodate the message
data, and then reissue the call with a buffer of the appropriate size.

However, if the MQGMO_CONVERT option is specified, and the converted
message data is too long to fit in Buffer, the value returned for
DataLength is:

� The length of the unconverted data, for queue-manager defined
formats.

In this case, if the nature of the data causes it to expand during
conversion, the application must allocate a buffer somewhat bigger
than the value returned by the queue manager for DataLength.

� The value returned by the data-conversion exit, for application-defined
formats.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

The reason codes listed below are the ones that the queue manager can
return for the Reason parameter. If the application specifies the
MQGMO_CONVERT option, and a user-written exit is invoked to convert
some or all of the message data, it is the exit that decides what value is
returned for the Reason parameter. As a result, values other than those
documented below are possible.

If CompCode is MQCC_OK :

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for application buffer.

MQRC_FORMAT_ERROR
(2110, X'83E') Message format not valid.

MQRC_INCONSISTENT_CCSIDS
(2243, X'8C3') Message segments have differing CCSIDs.

MQRC_INCONSISTENT_ENCODINGS
(2244, X'8C4') Message segments have differing encodings.

MQRC_NO_MSG_LOCKED
(2209, X'8A1') No message locked.

 Chapter 3. Call descriptions 275

 MQGET – Reason parameter

MQRC_NOT_CONVERTED
(2119, X'847') Application message data not converted.

MQRC_SIGNAL_REQUEST_ACCEPTED
(2070, X'816') No message returned (but signal request accepted).

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message not
recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not
recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing
completed).

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned (processing not
completed).

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_CONV_LOAD_ERROR
(2133, X'855') Unable to load data conversion services modules.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

276 MQSeries Application Programming Reference

 MQGET – Reason parameter

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQRC_GMO_ERROR
(2186, X'88A') Get-message options structure not valid.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_BROWSE
(2259, X'8D3') Inconsistent browse specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_INVALID_MSG_UNDER_CURSOR
(2246, X'8C6') Message under cursor not valid for retrieval.

MQRC_MATCH_OPTIONS_ERROR
(2247, X'8C7') Match options not valid.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

| MQRC_MSG_SEQ_NUMBER_ERROR
| (2250, X'8CA') Message sequence number not valid.

MQRC_NO_MSG_AVAILABLE
(2033, X'7F1') No message available.

MQRC_NO_MSG_UNDER_CURSOR
(2034, X'7F2') Browse cursor not positioned on message.

MQRC_NOT_OPEN_FOR_BROWSE
(2036, X'7F4') Queue not open for browse.

MQRC_NOT_OPEN_FOR_INPUT
(2037, X'7F5') Queue not open for input.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

 Chapter 3. Call descriptions 277

 MQGET – Usage notes

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SECOND_MARK_NOT_ALLOWED
(2062, X'80E') A message is already marked.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815') Signal outstanding for this handle.

MQRC_SIGNAL1_ERROR
(2099, X'833') Signal field not valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current
unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to
use.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

MQRC_WRONG_GMO_VERSION
(2256, X'8D0') Wrong version of MQGMO supplied.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. The message retrieved is normally deleted from the queue. This deletion can

occur as part of the MQGET call itself, or as part of a syncpoint. Message
deletion does not occur if an MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT option is specified on the GetMsgOpts parameter
(see the Options field described in “MQGMO – Get-message options” on
page 56).

If the MQGMO_LOCK option is specified with one of the browse options, the
browsed message is locked so that it is visible only to this handle.

If the MQGMO_UNLOCK option is specified, a previously-locked message is
unlocked. No message is retrieved in this case, and the MsgDesc,
BufferLength, Buffer and DataLength parameters are not checked or altered.

2. If an application puts a sequence of messages on the same queue, the order of
those messages is preserved provided that all of the following are true:

� The messages all have the same priority.

278 MQSeries Application Programming Reference

 MQGET – Usage notes

� All of the MQPUT calls are made using the same object handle Hobj.

In some environments, message sequence is also preserved when different
object handles are used, provided the calls are made from the same
application. The meaning of “same application” is determined by the
environment:

| – On OpenVMS, the application is the thread.
– On DOS client, the application is the system.
– On MVS/ESA, the application is:

- For CICS, the CICS task
- For IMS, the Task Control Block
- For MVS batch, the Task Control Block

– On OS/2, the application is the thread.
– On OS/400, the application is the job.

| – On Tandem NSK, the application is the thread.
– On UNIX systems, the application is the thread.
– On Windows client and 16-bit Windows, the application is the process.
– On Windows NT and 32-bit Windows, the application is the thread.

� All of the MQPUT calls are within the same unit of work, or none of them is
within a unit of work.

� The queue is local to the queue manager at which the MQPUT calls were
made (but see note 2b).

If these conditions are satisfied, the messages will be presented to the
receiving application in the order in which they were sent, provided that:

� The receiver does not deliberately change the order of retrieval, for
example by specifying a particular MsgId or CorrelId.

� Only one receiver is getting messages from the queue.

If there are two or more applications getting messages from the queue,
they must agree with the sender the mechanism to be used to identify
messages that belong to a sequence. For example, the sender could set
all of the CorrelId fields in the messages in a sequence to a value that
was unique to that sequence of messages.

Notes:

a. When messages are put onto a particular queue within a single unit of
work, messages from other applications may be interspersed with the
sequence of messages on the queue.

b. For remote queues, the order of the messages is preserved if the
configuration is such that there is only one path from the sender’s queue
manager to the destination queue manager. If there is a possibility that
some messages in the sequence may go on a different path (for example,
because of reconfiguration, traffic balancing, or path selection based on
message size), the order of the messages at the destination cannot be
guaranteed. Messages destined for remote queues can also become out
of sequence if one or more of them is put to a dead-letter queue (for
example, because the destination queue is temporarily full).

If the required conditions are not met, applications can include their own
sequencing information within the application message data, or establish a
conversation scheme in which each message is acknowledged, and the
acknowledgement received by the sender, before the next message is put.

 Chapter 3. Call descriptions 279

 MQGET – Usage notes

3. Applications should test for the feedback code MQFB_QUIT in the Feedback
field of the MsgDesc parameter. If this value is found, the application should
end. See the Feedback field described in “MQMD – Message descriptor” on
page 98 for more information.

4. If the queue identified by Hobj was opened with the
MQOO_SAVE_ALL_CONTEXT option, and the completion code from the
MQGET call is MQCC_OK or MQCC_WARNING, the context associated with
the queue handle Hobj is set to the context of the message that has been
retrieved (unless the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT
option is set, in which case it is marked as not available). This context can be
used on a subsequent MQPUT or MQPUT1 call (for example, when a message
is forwarded to another queue). For more information on message context, see
the MQSeries Application Programming Guide.

5. If the MQGMO_CONVERT option is included in the GetMsgOpts parameter, the
application message data is converted to the representation requested by the
receiving application, before the data is placed in the Buffer parameter.

The Format field in the control information in the message identifies the
structure of the application data, and the CodedCharSetId and Encoding fields in
the control information in the message specify its character-set identifier and
encoding. The application issuing the MQGET call specifies in the
CodedCharSetId and Encoding fields in the MsgDesc parameter the character-set
identifier and encoding to which the application message data should be
converted. If the CodedCharSetId and Encoding values in the control
information in the message are identical to those in the MsgDesc parameter, no
conversion is necessary.

When conversion of the message data is necessary, the conversion is
performed either by the queue manager itself or by a user-written exit,
depending on the value of the Format field in the control information in the
message:

� The format names listed below are formats that are converted automatically
by the queue manager; these are called “built-in” formats:

 MQFMT_ADMIN
 MQFMT_COMMAND_1
 MQFMT_COMMAND_2
 MQFMT_DEAD_LETTER_HEADER

| MQFMT_DIST_HEADER
 MQFMT_EVENT
 MQFMT_IMS
 MQFMT_IMS_VAR_STRING
 MQFMT_MD_EXTENSION
 MQFMT_PCF
 MQFMT_REF_MSG_HEADER
 MQFMT_STRING
 MQFMT_TRIGGER
 MQFMT_XMIT_Q_HEADER

� The format name MQFMT_NONE is a special value that indicates that the
nature of the data in the message is undefined. As a consequence, the
queue manager does not attempt conversion when the message is
retrieved from the queue.

280 MQSeries Application Programming Reference

 MQGET – Usage notes

Note: If MQGMO_CONVERT is specified on the MQGET call for a
message that has a format name of MQFMT_NONE, and the
character set or encoding of the message differs from that specified
in the MsgDesc parameter, the message is still returned in the Buffer
parameter (assuming no other errors), but the call completes with
completion code MQCC_WARNING and reason code
MQRC_FORMAT_ERROR.

MQFMT_NONE can be used either when the nature of the message data
means that it does not require conversion, or when the sending and
receiving applications have agreed between themselves the form in which
the message data should be sent.

� All other format names cause the message to be passed to a user-written
exit for conversion. The exit has the same name as the format, apart from
environment-specific additions. User-specified format names should not
begin with the letters “MQ”, as such names may conflict with queue-
manager-defined format names supported in the future.

See Appendix D, “Data-conversion” on page 495 for details of the
data-conversion exit.

On return from MQGET, the following reason code indicates that the message
was converted successfully:

 MQRC_NONE

The following reason code indicates that the message may have been
converted successfully; the application should check the CodedCharSetId and
Encoding fields in the MsgDesc parameter to find out:

 MQRC_TRUNCATED_MSG_ACCEPTED

All other reason codes indicate that the message was not converted.

Note: The interpretation of the reason code described above will be true for
conversions performed by user-written exits only if the exit conforms to
the processing guidelines described in Appendix D, “Data-conversion”
on page 495.

6. For the built-in formats listed above, the queue manager may perform default
conversion of character strings in the message when the MQGMO_CONVERT
option is specified. Default conversion allows the queue manager to use an
installation-specified default character set that approximates the actual
character set, when converting string data. As a result, the MQGET call can
succeed with completion code MQCC_OK, instead of completing with
MQCC_WARNING and reason code MQRC_SOURCE_CCSID_ERROR or
MQRC_TARGET_CCSID_ERROR.

Note: The result of using an approximate character set to convert string data
is that some characters may be converted incorrectly. This can be
avoided by using in the string only characters which are common to
both the actual character set and the default character set.

Default conversion applies both to the application message data and to
character fields in the MQMD and MQMDE structures:

� Default conversion of the application message data occurs only when all of
the following are true:

– The application specifies MQGMO_CONVERT.

 Chapter 3. Call descriptions 281

 MQGET – Usage notes

– The message contains data that must be converted either from or to a
character set which is not supported.

– Default conversion was enabled when the queue manager was installed
or restarted.

� Default conversion of the character fields in the MQMD and MQMDE
structures occurs as necessary, provided that default conversion is enabled
for the queue manager. The conversion is performed even if the
MQGMO_CONVERT option is not specified by the application on the
MQGET call.

| 7. On Tandem NSK, the following restrictions apply:

| � The message retrieved by the MQGET call is deleted from the queue
| unless the MQGMO_BROWSE_FIRST option or the
| MQGMO_BROWSE_NEXT option is specified.

| � If MQGET is issued outside a Tandem TMF transaction without the
| MQGMO_NO_SYNCPOINT option, the reason code
| MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

| � If the MQGMO_CONVERT option is specified for an MQGET call, and the
| message that is retrieved is not in one of the built-in formats (MQFMT_*),
| the message is passed to the data conversion exit function
| MQDATACONVEXIT() for conversion. A single data conversion exit is
| provided by the product, because the Tandem NSK operating system does
| not support dynamic linking. The format name of the unconverted
| message, from the MQMD of the message, is passed to
| MQDATACONVEXIT() in the MsgDesc parameter.

282 MQSeries Application Programming Reference

 MQGET – C invocation � MQGET – PL/I invocation

C language invocation
MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer,

&DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQGMO GetMsgOpts; /\ Options that control the action of MQGET \/
MQLONG BufferLength; /\ Length in bytes of the Buffer area \/
MQBYTE Buffer[n]; /\ Area to contain the message data \/
MQLONG DataLength; /\ Length of the message \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQGET' USING HCONN, HOBJ, MSGDESC, GETMSGOPTS,

BUFFERLENGTH, BUFFER, DATALENGTH, COMPCODE,
 REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Message descriptor
 ð1 MSGDESC.
 COPY CMQMDV.
\\ Options that control the action of MQGET
 ð1 GETMSGOPTS.
 COPY CMQGMOV.
\\ Length in bytes of the Buffer area
ð1 BUFFERLENGTH PIC S9(9) BINARY.
\\ Area to contain the message data
 ð1 BUFFER PIC X(n).
\\ Length of the message
 ð1 DATALENGTH PIC S9(9) BINARY.
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,

DataLength, CompCode, Reason);

Declare the parameters as follows:

 Chapter 3. Call descriptions 283

 MQGET – S/390 assembler invocation � MQGET – TAL invocation

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl MsgDesc like MQMD; /\ Message descriptor \/
dcl GetMsgOpts like MQGMO; /\ Options that control the action of
 MQGET \/
dcl BufferLength fixed bin(31); /\ Length in bytes of the Buffer
 area \/
dcl Buffer char(n); /\ Area to contain the message data \/
dcl DataLength fixed bin(31); /\ Length of the message \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQGET,(HCONN,HOBJ,MSGDESC,GETMSGOPTS,BUFFERLENGTH,BUFFER, X
 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
MSGDESC CMQMDA Message descriptor
GETMSGOPTS CMQGMOA Options that control the action
\ of MQGET
BUFFERLENGTH DS F Length in bytes of the Buffer
\ area
BUFFER DS CL(n) Area to contain the message data
DATALENGTH DS F Length of the message
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT Hconn;
| INT(32) .EXT Hobj;
| STRUCT .EXT MsgDesc(MQMD^Def);
| STRUCT .EXT GetMsgOpt(MQGMO^Def);
| INT(32) .EXT BufferLen;
| INT(32) .EXT Buffer[ð:BUFFER^LEN];
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQGET(HConn, HObj, MsgDesc, GetMsgOpt, BufferLen, Buffer,
| DataLen, CC, Reason);

284 MQSeries Application Programming Reference

 MQINQ – Selectors parameter

 MQINQ – Inquire about object attributes
The MQINQ call returns an array of integers and a set of character strings
containing the attributes of an object. The following types of object are valid:

 � Queue
� Namelist (MVS/ESA only)

 � Process definition
 � Queue manager

MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
CharAttrLength, CharAttrs, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call. call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Hobj (MQHOBJ) – input
Object handle.

This handle represents the object (of any type) whose attributes are
required. The handle must have been returned by a previous MQOPEN
call that specified the MQOO_INQUIRE option.

SelectorCount (MQLONG) – input
Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It
is the number of attributes that are to be returned. Zero is a valid value.
The maximum number allowed is 256.

Selectors (MQLONG×SelectorCount) – input
Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector
identifies an attribute (integer or character) whose value is required.

Each selector must be valid for the type of object that Hobj represents,
otherwise the call fails with completion code MQCC_FAILED and reason
code MQRC_SELECTOR_ERROR.

In the special case of queues:

� If the selector is not valid for queues of any type, the call fails with
completion code MQCC_FAILED and reason code
MQRC_SELECTOR_ERROR.

 Chapter 3. Call descriptions 285

 MQINQ – Selectors parameter

� If the selector is applicable only to queues of type or types other than
that of the object, the call succeeds with completion code
MQCC_WARNING and reason code
MQRC_SELECTOR_NOT_FOR_TYPE.

Selectors can be specified in any order. Attribute values that correspond
to integer attribute selectors (MQIA_ñ selectors) are returned in IntAttrs
in the same order in which these selectors occur in Selectors. Attribute
values that correspond to character attribute selectors (MQCA_ñ selectors)
are returned in CharAttrs in the same order in which those selectors
occur. MQIA_ñ selectors can be interleaved with the MQCA_ñ selectors;
only the relative order within each type is important.

Notes:

1. The integer and character attribute selectors are allocated within two
different ranges; the MQIA_ñ selectors reside within the range
MQIA_FIRST through MQIA_LAST, and the MQCA_ñ selectors within
the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and
MQCA_LAST_USED define the highest value that the queue manager
will accept.

2. If all of the MQIA_ñ selectors occur first, the same element numbers
can be used to address corresponding elements in the Selectors and
IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to; in
this case, the parameter address passed by programs written in C or
System/390 assembler may be null.

For the MQCA_ñ selectors in the following descriptions, the constant that
defines the length in bytes of the resulting string in CharAttrs is given in
parentheses.

Selectors for queue manager

MQCA_CHANNEL_AUTO_DEF_EXIT
Automatic channel definition exit name
(MQ_EXIT_NAME_LENGTH).

MQCA_COMMAND_INPUT_Q_NAME
System command input queue name
(MQ_Q_NAME_LENGTH).

MQCA_DEAD_LETTER_Q_NAME
Name of dead-letter queue (MQ_Q_NAME_LENGTH).

MQCA_DEF_XMIT_Q_NAME
Default transmission queue name (MQ_Q_NAME_LENGTH).

MQCA_Q_MGR_DESC
Queue manager description (MQ_Q_MGR_DESC_LENGTH).

MQCA_Q_MGR_NAME
Name of local queue manager
(MQ_Q_MGR_NAME_LENGTH).

MQIA_AUTHORITY_EVENT
Control attribute for authority events.

MQIA_CHANNEL_AUTO_DEF
Control attribute for automatic channel definition.

286 MQSeries Application Programming Reference

 MQINQ – Selectors parameter

MQIA_CHANNEL_AUTO_DEF_EVENT
Control attribute for automatic channel definition events.

MQIA_CODED_CHAR_SET_ID
Coded character set identifier.

MQIA_COMMAND_LEVEL
Command level supported by queue manager.

MQIA_DIST_LISTS
Distribution list support.

MQIA_INHIBIT_EVENT
Control attribute for inhibit events.

MQIA_LOCAL_EVENT
Control attribute for local events.

MQIA_MAX_HANDLES
Maximum number of handles.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_MAX_PRIORITY
Maximum priority.

MQIA_MAX_UNCOMMITTED_MSGS
Maximum number of uncommitted messages within a unit of
work.

MQIA_PERFORMANCE_EVENT
Control attribute for performance events.

MQIA_PLATFORM
Platform on which the queue manager resides.

MQIA_REMOTE_EVENT
Control attribute for remote events.

MQIA_START_STOP_EVENT
Control attribute for start stop events.

MQIA_SYNCPOINT
Syncpoint availability.

MQIA_TRIGGER_INTERVAL
Trigger interval.

On MVS/ESA, the following selectors are not supported:

 MQCA_CHANNEL_AUTO_DEF_EXIT
 MQIA_AUTHORITY_EVENT
 MQIA_CHANNEL_AUTO_DEF
 MQIA_CHANNEL_AUTO_DEF_EVENT
 MQIA_DIST_LISTS
 MQIA_INHIBIT_EVENT
 MQIA_LOCAL_EVENT
 MQIA_MAX_UNCOMMITTED_MSGS
 MQIA_PERFORMANCE_EVENT
 MQIA_REMOTE_EVENT
 MQIA_START_STOP_EVENT

The selectors listed below are supported only in the following
| environments: AIX, DOS client, HP-UX, OS/2, OS/400, Sun Solaris,

Windows client, Windows NT.

 MQCA_CHANNEL_AUTO_DEF_EXIT
 MQIA_CHANNEL_AUTO_DEF
 MQIA_CHANNEL_AUTO_DEF_EVENT
 MQIA_DIST_LISTS

 Chapter 3. Call descriptions 287

 MQINQ – Selectors parameter

Selectors for namelists (MVS/ESA only)

MQCA_NAMELIST_DESC
Namelist description (MQ_NAMELIST_DESC_LENGTH).

MQCA_NAMELIST_NAME
Name of namelist object (MQ_NAMELIST_NAME_LENGTH).

MQCA_NAMES
Name of each queue in the list
(MQ_Q_NAME_LENGTH × Number of queue names in the
list).

MQIA_NAME_COUNT
Number of queue names in the list.

Selectors for all types of queue

MQCA_Q_DESC
Queue description (MQ_Q_DESC_LENGTH).

MQCA_Q_NAME
Queue name (MQ_Q_NAME_LENGTH).

MQIA_DEF_PERSISTENCE
Default message persistence.

MQIA_DEF_PRIORITY
Default message priority.

MQIA_INHIBIT_PUT
Whether put operations are allowed.

MQIA_Q_TYPE
Queue type.

Selectors for local queues

MQCA_BACKOUT_REQ_Q_NAME
Excessive backout requeue name (MQ_Q_NAME_LENGTH).

MQCA_CREATION_DATE
Queue creation date (MQ_CREATION_DATE_LENGTH).

MQCA_CREATION_TIME
Queue creation time (MQ_CREATION_TIME_LENGTH).

MQCA_INITIATION_Q_NAME
Initiation queue name (MQ_Q_NAME_LENGTH).

MQCA_PROCESS_NAME
Name of process definition (MQ_PROCESS_NAME_LENGTH).

MQCA_STORAGE_CLASS
Name of storage class (MQ_STORAGE_CLASS_LENGTH).

MQCA_TRIGGER_DATA
Trigger data (MQ_TRIGGER_DATA_LENGTH).

MQIA_BACKOUT_THRESHOLD
Backout threshold.

MQIA_CURRENT_Q_DEPTH
Number of messages on queue.

MQIA_DEF_INPUT_OPEN_OPTION
Default open-for-input option.

MQIA_DEFINITION_TYPE
Queue definition type.

MQIA_DIST_LISTS
Distribution list support.

MQIA_HARDEN_GET_BACKOUT
Whether to harden backout count.

288 MQSeries Application Programming Reference

 MQINQ – Selectors parameter

MQIA_INDEX_TYPE
Type of index maintained for queue.

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_MAX_Q_DEPTH
Maximum number of messages allowed on queue.

MQIA_MSG_DELIVERY_SEQUENCE
Whether message priority is relevant.

MQIA_OPEN_INPUT_COUNT
Number of MQOPEN calls that have the queue open for input.

MQIA_OPEN_OUTPUT_COUNT
Number of MQOPEN calls that have the queue open for output.

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

MQIA_RETENTION_INTERVAL
Queue retention interval.

MQIA_SCOPE
Queue definition scope.

MQIA_SHAREABILITY
Whether queue can be shared.

MQIA_TRIGGER_CONTROL
Trigger control.

MQIA_TRIGGER_DEPTH
Trigger depth.

MQIA_TRIGGER_MSG_PRIORITY
Threshold message priority for triggers.

MQIA_TRIGGER_TYPE
Trigger type.

MQIA_USAGE
Usage.

On MVS/ESA, the following selectors are not supported:

 MQIA_DIST_LISTS
 MQIA_Q_DEPTH_HIGH_EVENT
 MQIA_Q_DEPTH_HIGH_LIMIT
 MQIA_Q_DEPTH_LOW_EVENT
 MQIA_Q_DEPTH_LOW_LIMIT
 MQIA_Q_DEPTH_MAX_EVENT
 MQIA_Q_SERVICE_INTERVAL
 MQIA_Q_SERVICE_INTERVAL_EVENT

 Chapter 3. Call descriptions 289

 MQINQ – Selectors parameter

 MQIA_SCOPE

The following selectors are supported only on MVS/ESA:

 MQCA_STORAGE_CLASS
 MQIA_INDEX_TYPE

The selector listed below is supported only in the following
| environments: AIX, DOS client, HP-UX, OS/2, OS/400, Sun Solaris,

Windows client, Windows NT.

 MQIA_DIST_LISTS

Selectors for local definitions of remote queues

MQCA_REMOTE_Q_MGR_NAME
Name of remote queue manager
(MQ_Q_MGR_NAME_LENGTH).

MQCA_REMOTE_Q_NAME
Name of remote queue as known on remote queue manager
(MQ_Q_NAME_LENGTH).

MQCA_XMIT_Q_NAME
Transmission queue name (MQ_Q_NAME_LENGTH).

MQIA_SCOPE
Queue definition scope.

On MVS/ESA, the following selector is not supported:

 MQIA_SCOPE

Selectors for alias queues

MQCA_BASE_Q_NAME
Name of queue that alias resolves to
(MQ_Q_NAME_LENGTH).

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQIA_SCOPE
Queue definition scope.

On MVS/ESA, the following selector is not supported:

 MQIA_SCOPE

Selectors for process definitions

MQCA_APPL_ID
Application identifier (MQ_PROCESS_APPL_ID_LENGTH).

MQCA_ENV_DATA
Environment data (MQ_PROCESS_ENV_DATA_LENGTH).

MQCA_PROCESS_DESC
Description of process definition
(MQ_PROCESS_DESC_LENGTH).

MQCA_PROCESS_NAME
Name of process definition (MQ_PROCESS_NAME_LENGTH).

MQCA_USER_DATA
User data (MQ_PROCESS_USER_DATA_LENGTH).

MQIA_APPL_TYPE
Application type.

290 MQSeries Application Programming Reference

 MQINQ – CompCode parameter

IntAttrCount (MQLONG) – input
Count of integer attributes.

This is the number of elements in the IntAttrs array. Zero is a valid
value.

If this is at least the number of MQIA_ñ selectors in the Selectors
parameter, all integer attributes requested are returned.

IntAttrs (MQLONG×IntAttrCount) – output
Array of integer attributes.

This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_ñ
selectors in the Selectors parameter. If the array contains more elements
than the number of MQIA_ñ selectors, the excess elements are
unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to
that type of queue, the specific value MQIAV_NOT_APPLICABLE is
returned for the corresponding element in the IntAttrs array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not
referred to; in this case, the parameter address passed by programs
written in C or System/390 assembler may be null.

CharAttrLength (MQLONG) – input
Length of character attributes buffer.

This is the length in bytes of the CharAttrs parameter.

This must be at least the sum of the lengths of the requested character
attributes (see Selectors). Zero is a valid value.

CharAttrs (MQCHAR×CharAttrLength) – output
Character attributes.

This is the buffer in which the character attributes are returned,
concatenated together. The length of the buffer is given by the
CharAttrLength parameter.

Character attributes are returned in the same order as the MQCA_ñ
selectors in the Selectors parameter. The length of each attribute string
is fixed for each attribute (see Selectors), and the value in it is padded to
the right with blanks if necessary. If the buffer is larger than that needed
to contain all of the requested character attributes (including padding), the
bytes beyond the last attribute value returned are unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to
that type of queue, a character string consisting entirely of asterisks (*) is
returned as the value of that attribute in CharAttrs.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is
not referred to; in this case, the parameter address passed by programs
written in C or System/390 assembler may be null.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

 Chapter 3. Call descriptions 291

 MQINQ – Reason parameter

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CHAR_ATTRS_TOO_SHORT
(2008, X'7D8') Not enough space allowed for character attributes.

MQRC_INT_ATTR_COUNT_TOO_SMALL
(2022, X'7E6') Not enough space allowed for integer attributes.

MQRC_SELECTOR_NOT_FOR_TYPE
(2068, X'814') Selector not applicable to queue type.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CHAR_ATTR_LENGTH_ERROR
(2006, X'7D6') Length of character attributes not valid.

MQRC_CHAR_ATTRS_ERROR
(2007, X'7D7') Character attributes string not valid.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

292 MQSeries Application Programming Reference

 MQINQ – Usage notes

MQRC_NOT_OPEN_FOR_INQUIRE
(2038, X'7F6') Queue not open for inquire.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. The values returned are a snapshot of the selected attributes. There is no

guarantee that the attributes will not change before the application can act
upon the returned values.

2. When you open a model queue, even for inquiring about its attributes, a
dynamic queue is created. The attributes of the dynamic queue (except for
CreationDate, CreationTime, and DefinitionType) are the same as those of
the model queue at the time the dynamic queue is created. If you
subsequently use the MQINQ call with the same object handle, the queue
manager returns the attributes of the dynamic queue, not those of the model
queue.

3. The attributes returned by the MQINQ call directed at an alias queue are those
of the alias queue, not those of the base queue to which the alias resolves.

4. If a number of attributes are to be inquired, and subsequently some of them are
to be set using the MQSET call, it may be convenient to position at the
beginning of the selector arrays the attributes that are to be set, so that the
same arrays (with reduced counts) can be used for MQSET.

 Chapter 3. Call descriptions 293

 MQINQ – Usage notes

5. If more than one of the warning situations arise (see the CompCode parameter),
the reason code returned is the first one in the following list that applies:

 a. MQRC_SELECTOR_NOT_FOR_TYPE
 b. MQRC_INT_ATTR_COUNT_TOO_SMALL
 c. MQRC_CHAR_ATTRS_TOO_SHORT

6. For more information about object attributes, see Chapter 4, “Attributes of
MQSeries objects.”

294 MQSeries Application Programming Reference

 MQINQ – C invocation � MQINQ – COBOL invocation

C language invocation
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQINQ' USING HCONN, HOBJ, SELECTORCOUNT,

SELECTORS-TABLE, INTATTRCOUNT, INTATTRS-TABLE,
CHARATTRLENGTH, CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Count of selectors
 ð1 SELECTORCOUNT PIC S9(9) BINARY.
\\ Array of attribute selectors
 ð1 SELECTORS-TABLE.
 ð2 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.
\\ Count of integer attributes
 ð1 INTATTRCOUNT PIC S9(9) BINARY.
\\ Array of integer attributes
 ð1 INTATTRS-TABLE.
 ð2 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.
\\ Length of character attributes buffer
 ð1 CHARATTRLENGTH PIC S9(9) BINARY.
\\ Character attributes
 ð1 CHARATTRS PIC X(n).
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

 Chapter 3. Call descriptions 295

 MQINQ – PL/I invocation � MQINQ – TAL invocation

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl SelectorCount fixed bin(31); /\ Count of selectors \/
dcl Selectors(n) fixed bin(31); /\ Array of attribute selectors \/
dcl IntAttrCount fixed bin(31); /\ Count of integer attributes \/
dcl IntAttrs(n) fixed bin(31); /\ Array of integer attributes \/
dcl CharAttrLength fixed bin(31); /\ Length of character attributes
 buffer \/
dcl CharAttrs char(n); /\ Character attributes \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying
 CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQINQ,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X
 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
SELECTORCOUNT DS F Count of selectors
SELECTORS DS (n)F Array of attribute selectors
INTATTRCOUNT DS F Count of integer attributes
INTATTRS DS (n)F Array of integer attributes
CHARATTRLENGTH DS F Length of character attributes
\ buffer
CHARATTRS DS CL(n) Character attributes
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn ;
| INT(32) .EXT HObj ;
| INT(32) SelectorCount;
| INT(32) .EXT Selectors[ð:NUM^SELECTORS];
| INT(32) IntAttrCount;
| INT(32) .EXT IntAttrs[ð:NUM^INT^ATTR];
| INT(32) CharAttrLength;
| STRING .EXT CharAttrs[ð:LEN^CHAR^ATTR];
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| PROC MQINQ(HConn, HObj, SelectorCount, Selectors, IntAttrCount,
| IntAttrs, CharAttrLength, CharAttrs, CC, Reason)

296 MQSeries Application Programming Reference

 MQOPEN – Options parameter

 MQOPEN – Open object
The MQOPEN call establishes access to an object. The following types of object
are valid:

� Queue (including distribution lists)
� Namelist (MVS/ESA only)
� Process definition (not 16-bit Windows, 32-bit Windows)

 � Queue manager

MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

ObjDesc (MQOD) – input/output
Object descriptor.

This is a structure that identifies the object to be opened; see “MQOD –
Object descriptor” on page 160 for details.

If the ObjectName field in the ObjDesc parameter is the name of a model
queue, a dynamic local queue is created with the attributes of the model
queue; this happens irrespective of the open options specified by the
Options parameter. Subsequent operations using the Hobj returned by the
MQOPEN call are performed on the new dynamic queue, and not on the
model queue. This is true even for the MQINQ and MQSET calls. The
name of the model queue in the ObjDesc parameter is replaced with the
name of the dynamic queue created. The type of the dynamic queue is
determined by the value of the DefinitionType attribute of the model
queue (see “Attributes for local queues and model queues” on page 348).
For information about the close options applicable to dynamic queues, see
the description of the MQCLOSE call.

Options (MQLONG) – input
Options that control the action of MQOPEN.

At least one of the following options must be specified:

 MQOO_BROWSE
MQOO_INPUT_ñ (only one of these)

 MQOO_INQUIRE
 MQOO_OUTPUT
 MQOO_SET

 Chapter 3. Call descriptions 297

 MQOPEN – Options parameter

See below for details of these options; other options can be specified as
required. If more than one option is required, the values can be:

� Added together (do not add the same constant more than once), or

� Combined using the bitwise OR operation (if the programming
language supports bit operations).

Combinations that are not valid are noted; all other combinations are valid.
Only options that are applicable to the type of object specified by ObjDesc
are allowed (see Table 60 on page 302).

The following options control the operations that can be performed on an
object:

MQOO_INPUT_AS_Q_DEF
Open queue to get messages using queue-defined default.

The queue is opened for use with subsequent MQGET calls. The
type of access is either shared or exclusive, depending on the value
of the DefInputOpenOption queue attribute; see “Attributes for local
queues and model queues” on page 348 for details.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The
call can succeed if the queue is currently open by this or another
application with MQOO_INPUT_SHARED, but fails with reason code
MQRC_OBJECT_IN_USE if the queue is currently open with
MQOO_INPUT_EXCLUSIVE.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The
call fails with reason code MQRC_OBJECT_IN_USE if the queue is
currently open by this or another application for input of any type
(MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects that are not
queues.

The following notes apply to:

 MQOO_INPUT_AS_Q_DEF
 MQOO_INPUT_SHARED
 MQOO_INPUT_EXCLUSIVE

� Only one of these options can be specified.

� An MQOPEN call with one of these options can succeed even if the
InhibitGet queue attribute is set to MQQA_GET_INHIBITED

298 MQSeries Application Programming Reference

 MQOPEN – Options parameter

(although subsequent MQGET calls will fail while the attribute is set to
this value).

� If the queue is defined as not being shareable (that is, the
Shareability local-queue attribute has the value
MQQA_NOT_SHAREABLE), attempts to open the queue for shared
access are treated as attempts to open the queue with exclusive
access.

� If an alias queue is opened with one of these options, the test for
exclusive use (or for whether another application has exclusive use) is
against the base queue to which the alias resolves.

� These options are not valid if ObjectQMgrName is the name of a queue
manager alias; this is true even if the value of the RemoteQMgrName
attribute in the local definition of a remote queue used for
queue-manager aliasing is the name of the local queue manager.

MQOO_BROWSE
Open queue to browse messages.

The queue is opened for use with subsequent MQGET calls with one
of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR

This is allowed even if the queue is currently open for
MQOO_INPUT_EXCLUSIVE. An MQOPEN call with the
MQOO_BROWSE option establishes a browse cursor, and positions
it logically before the first message on the queue; see the Options
field descibed in “MQGMO – Get-message options” on page 56 for
further information.

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
queues. It is also not valid if ObjectQMgrName is the name of a queue
manager alias; this is true even if the value of the RemoteQMgrName
attribute in the local definition of a remote queue used for
queue-manager aliasing is the name of the local queue manager.

MQOO_OUTPUT
Open queue to put messages.

The queue is opened for use with subsequent MQPUT calls.

An MQOPEN call with this option can succeed even if the
InhibitPut queue attribute is set to MQQA_PUT_INHIBITED
(although subsequent MQPUT calls will fail while the attribute is set
to this value).

This option is valid for all types of queue, including distribution lists.

MQOO_INQUIRE
Open object to inquire attributes.

The queue, namelist, process definition, or queue manager is
opened for use with subsequent MQINQ calls.

 Chapter 3. Call descriptions 299

 MQOPEN – Options parameter

This option is valid for all types of object other than distribution lists.
It is not valid if ObjectQMgrName is the name of a queue manager
alias; this is true even if the value of the RemoteQMgrName attribute in
the local definition of a remote queue used for queue-manager
aliasing is the name of the local queue manager.

MQOO_SET
Open queue to set attributes.

The queue is opened for use with subsequent MQSET calls.

This option is valid for all types of queue other than distribution lists.
It is not valid if ObjectQMgrName is the name of a local definition of a
remote queue; this is true even if the value of the RemoteQMgrName
attribute in the local definition of a remote queue used for
queue-manager aliasing is the name of the local queue manager.

The following options control the processing of message context:

MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved.

Context information is associated with this queue handle. This
information is set from the context of any message retrieved using
this handle. For more information on message context, see the
MQSeries Application Programming Guide.

This context information can be passed to a message that is
subsequently put on a queue using the MQPUT or MQPUT1 calls.
See the MQPMO_PASS_IDENTITY_CONTEXT and
MQPMO_PASS_ALL_CONTEXT options described in “MQPMO –
Put message options” on page 173.

Until a message has been successfully retrieved, context cannot be
passed to a message being put on a queue.

A message retrieved using one of the MQGMO_BROWSE_ñ browse
options does not have its context information saved (although the
context fields in the MsgDesc parameter are set after a browse).

This option is valid only for local, alias, and model queues; it is not
valid for remote queues, distribution lists, and objects which are not
queues. One of the MQOO_INPUT_ñ options must be specified.

This option is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MQOO_PASS_IDENTITY_CONTEXT
Allow identity context to be passed.

This allows the MQPMO_PASS_IDENTITY_CONTEXT option to be
specified in the PutMsgOpts parameter when a message is put on a
queue; this gives the message the identity context information from
an input queue that was opened with the
MQOO_SAVE_ALL_CONTEXT option. For more information on
message context, see the MQSeries Application Programming Guide.

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

300 MQSeries Application Programming Reference

 MQOPEN – Options parameter

This option is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MQOO_PASS_ALL_CONTEXT
Allow all context to be passed.

This allows the MQPMO_PASS_ALL_CONTEXT option to be
specified in the PutMsgOpts parameter when a message is put on a
queue; this gives the message the identity and origin context
information from an input queue that was opened with the
MQOO_SAVE_ALL_CONTEXT option. For more information on
message context, see the MQSeries Application Programming Guide.

This option implies MQOO_PASS_IDENTITY_CONTEXT, which
need not therefore be specified. The MQOO_OUTPUT option must
be specified.

This option is valid for all types of queue, including distribution lists.

This option is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MQOO_SET_IDENTITY_CONTEXT
Allow identity context to be set.

This allows the MQPMO_SET_IDENTITY_CONTEXT option to be
specified in the PutMsgOpts parameter when a message is put on a
queue; this gives the message the identity context information
contained in the MsgDesc parameter specified on the MQPUT or
MQPUT1 call. For more information on message context, see the
MQSeries Application Programming Guide.

This option implies MQOO_PASS_IDENTITY_CONTEXT, which
need not therefore be specified. The MQOO_OUTPUT option must
be specified.

This option is valid for all types of queue, including distribution lists.

MQOO_SET_ALL_CONTEXT
Allow all context to be set.

This allows the MQPMO_SET_ALL_CONTEXT option to be specified
in the PutMsgOpts parameter when a message is put on a queue; this
gives the message the identity and origin context information
contained in the MsgDesc parameter specified on the MQPUT or
MQPUT1 call. For more information on message context, see the
MQSeries Application Programming Guide.

This option implies the following options, which need not therefore be
specified:

 MQOO_PASS_IDENTITY_CONTEXT
 MQOO_PASS_ALL_CONTEXT
 MQOO_SET_IDENTITY_CONTEXT

The MQOO_OUTPUT option must be specified.

This option is valid for all types of queue, including distribution lists.

The following options control authorization checking, and what happens
when the queue manager is quiescing:

 Chapter 3. Call descriptions 301

 MQOPEN – Options parameter

MQOO_ALTERNATE_USER_AUTHORITY
Validate with specified user identifier.

This indicates that the AlternateUserId field in the ObjDesc
parameter contains a user identifier that is to be used to validate this
MQOPEN call. The call can succeed only if this AlternateUserId is
authorized to open the object with the specified options, regardless
of whether the user identifier under which the application is running
is authorized to do so. (This does not apply to any context options
specified, however, which are always checked against the user
identifier under which the application is running.)

This option is valid for all types of object.

In the following environments, this option is accepted but ignored:
16-bit Windows, 32-bit Windows.

MQOO_FAIL_IF_QUIESCING
Fail if queue manager is quiescing.

This option forces the MQOPEN call to fail if the queue manager is
in quiescing state.

On MVS/ESA, for a CICS or IMS application, this option also forces
the MQOPEN call to fail if the connection is in quiescing state.

This option is valid for all types of object.

In the following environments, this option is accepted but ignored:
16-bit Windows, 32-bit Windows.

Table 60. Valid MQOPEN options for each queue type

Option Alias
(see note

1)

Local Model Remote Distribution
list

MQOO_INPUT_AS_Q_DEF √ √ √ — —

MQOO_INPUT_SHARED √ √ √ — —

MQOO_INPUT_EXCLUSIVE √ √ √ — —

MQOO_BROWSE √ √ √ — —

MQOO_OUTPUT √ √ √ √ √

MQOO_INQUIRE √ √ √ √
(see note

2)

—

MQOO_SET √ √ √ √
(see note

2)

—

MQOO_SAVE_ALL_CONTEXT √ √ √ — —

MQOO_PASS_IDENTITY_CONTEXT √ √ √ √ √

MQOO_PASS_ALL_CONTEXT √ √ √ √ √

MQOO_SET_IDENTITY_CONTEXT √ √ √ √ √

MQOO_SET_ALL_CONTEXT √ √ √ √ √

MQOO_ALTERNATE_USER_AUTHORITY √ √ √ √ √

MQOO_FAIL_IF_QUIESCING √ √ √ √ √

Notes:

1. The validity of options for aliases depends on the validity of the option for the queue to which the alias resolves.

2. This option is valid only for the local definition of a remote queue.

302 MQSeries Application Programming Reference

 MQOPEN – Reason parameter

Hobj (MQHOBJ) – output
Object handle.

This handle represents the access that has been established to the object.
It must be specified on subsequent message queuing calls that operate on
the object. It ceases to be valid when the MQCLOSE call is issued, or
when the unit of processing that defines the scope of the handle
terminates.

The scope of the handle is restricted to the smallest unit of parallel
processing within the environment concerned; the handle is not valid
outside the unit of parallel processing from which the MQOPEN call was
issued:

| � On OpenVMS, the scope of the handle is the thread issuing the call.
� On DOS client, the scope of the handle is the system.
� On MVS/ESA, the scope of the handle is:

– For CICS, the CICS task issuing the call
– For IMS, the Task Control Block issuing the call, up to the next

syncpoint; this excludes any subtasks of the task
– For MVS batch, the Task Control Block; this excludes any

subtasks of the task.
� On OS/2, the scope of the handle is the thread issuing the call.
� On OS/400, the scope of the handle is the job issuing the call.

| � On Tandem NSK, the scope of the handle is the thread issuing the
| call.

� On UNIX systems, the scope of the handle is the thread issuing the
call.

� On Windows client and 16-bit Windows, the scope of the handle is the
process issuing the call.

� On 32-bit Windows and Windows NT, the scope of the handle is the
thread issuing the call.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

If CompCode is MQCC_FAILED:

 Chapter 3. Call descriptions 303

 MQOPEN – Reason parameter

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ALIAS_BASE_Q_TYPE_ERROR
(2001, X'7D1') Alias base queue not a valid type.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

MQRC_DYNAMIC_Q_NAME_ERROR
(2011, X'7DB') Name of dynamic queue not valid.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_NAME_IN_USE
(2201, X'899') Name in use.

MQRC_NAME_NOT_VALID_FOR_TYPE
(2194, X'892') Object name not valid for object type.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_ALREADY_EXISTS
(2100, X'834') Object already exists.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE
(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_NAME_ERROR
(2152, X'868') Object name not valid.

MQRC_OBJECT_Q_MGR_NAME_ERROR
(2153, X'869') Object queue-manager name not valid.

MQRC_OBJECT_RECORDS_ERROR
(2155, X'86B') Object records not valid.

304 MQSeries Application Programming Reference

 MQOPEN – Reason parameter

MQRC_OBJECT_TYPE_ERROR
(2043, X'7FB') Object type not valid.

MQRC_OD_ERROR
(2044, X'7FC') Object descriptor structure not valid.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') Option not valid for object type.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_PAGESET_FULL
(2192, X'890') Page set data set full.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

 Chapter 3. Call descriptions 305

 MQOPEN – Usage notes

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. The object opened is one of the following:

� A queue, in order to:

– Get or browse messages (using the MQGET call)
– Put messages (using the MQPUT call)
– Inquire about the attributes of the queue (using the MQINQ call)
– Set the attributes of the queue (using the MQSET call)

If the queue named is a model queue, a dynamic local queue is created.
See the ObjDesc parameter described in “MQOPEN – Open object” on
page 297.

A distribution list is a special type of queue object that contains a list of
queues. It can be opened to put messages, but not to get or browse
messages, or to inquire or set attributes.

� A namelist, in order to:

– Inquire about the names of the queues in the list (using the MQINQ
call).

Namelists are supported only on MVS/ESA.

� A process definition, in order to:

– Inquire about the process attributes (using the MQINQ call).

� The queue manager, in order to:

– Inquire about the attributes of the local queue manager (using the
MQINQ call).

2. It is valid for an application to open the same object more than once. A
different object handle is returned for each open. Each handle that is returned
can be used for the functions for which the corresponding open was performed.

3. All name resolution within the local queue manager takes place at the time of
the MQOPEN call. This may include one or more of the following for a given
MQOPEN call:

� Alias resolution to the name of a base queue

� Resolution of the name of a local definition of a remote queue to the
remote queue-manager name and the name by which that queue is known
at the remote queue manager

� Resolution of the remote queue-manager name to the name of a
transmission queue

However, be aware that subsequent MQINQ or MQSET calls for the handle
relate solely to the name that has been opened, and not to the object resulting
after name resolution has occurred. For example, if the object opened is an
alias, the attributes returned by the MQINQ call are the attributes of the alias,
not the attributes of the base queue to which the alias resolves. Name

306 MQSeries Application Programming Reference

 MQOPEN – Usage notes

resolution checking is still carried out, however, regardless of what is specified
for the Options parameter on the corresponding MQOPEN.

4. The attributes of an object can change while an application has the object
open. In many cases, the application does not notice this, but for certain
attributes the queue manager marks the handle as no longer valid. These are:

� Any attribute that affects the name resolution of the object (see Usage note
3 on page 306), regardless of the open options used. This includes the
following:

– A change to the BaseQName of an alias queue that is open.

– With one exception, any change that causes a currently-open handle
for a remote queue to resolve to a different transmission queue, or to
fail to resolve to one at all. For example, a change to the XmitQName
attribute of the local definition of a remote queue, whether the definition
is being used for a queue, or for a queue-manager alias.

The exception is the creation of a new transmission queue. A handle
that would have resolved to this queue, had it been present when the
handle was opened, but instead resolved to the default transmission
queue, is not made invalid.

– A change to the DefXmitQName queue-manager attribute. In this case all
open handles that resolved to the previously-named queue (that
resolved to it only because it was the default transmission queue) are
marked as invalid. Handles that resolved to this queue for other
reasons are not affected.

On MVS/ESA, the DefXmitQName attribute is not supported.

– The RemoteQName or RemoteQMgrName remote queue attributes, for any
handle that is open for this queue, or for a queue which resolves
through this definition as a queue-manager alias.

� The Shareability local queue attribute, if there are two or more handles
that are currently providing MQOO_INPUT_SHARED access for this queue,
or for a queue that resolves to this queue. If this is the case, all handles
that are open for this queue, or for a queue that resolves to this queue, are
marked as invalid, regardless of the open options.

On MVS/ESA, the handles described above are marked as invalid if one or
more handles is currently providing MQOO_INPUT_SHARED or
MQOO_INPUT_EXCLUSIVE access to the queue.

� The Usage local queue attribute, for all handles that are open for this queue,
or for a queue that resolves to this queue, regardless of the open options.

When a handle is marked as invalid, all subsequent calls (other than
MQCLOSE) using this handle fail with reason code
MQRC_OBJECT_CHANGED; the application should issue an MQCLOSE call
(using the original handle) and then reopen the queue. Any uncommitted
updates against the old handle from previous successful calls can still be
committed or backed out, as required by the application logic.

If changing an attribute will cause this to happen, a special “force” version of
the command must be used.

5. The queue manager performs security checks when an MQOPEN call is
issued, to verify that the user identifier under which the application is running

 Chapter 3. Call descriptions 307

 MQOPEN – Usage notes

has the appropriate level of authority before access is permitted. The authority
check is made on the name of the object being opened, and not on the name,
or names, resulting after a name has been resolved.

On MVS/ESA, the queue manager performs security checks only if security is
enabled. For more information on security checking, see the MQSeries for
MVS/ESA System Management Guide.

6. If the object being opened is a model queue, the queue manager performs a
full security check against both the name of the model queue and the name of
the dynamic queue that is created. If the resulting dynamic queue is
subsequently opened explicitly, a further resource security check is performed
against the name of the dynamic queue.

7. A remote queue can be specified in one of two ways in the ObjDesc parameter
of this call (see the ObjectName and ObjectQMgrName fields described in “MQOD
– Object descriptor” on page 160):

� By specifying for ObjectName the name of a local definition of the remote
queue. In this case, ObjectQMgrName refers to the local queue manager,
and can be specified as blanks or (in the C programming language) a null
string.

The security validation performed by the local queue manager verifies that
the application is authorized to open the local definition of the remote
queue.

� By specifying for ObjectName the name of the remote queue as known to
the remote queue manager. In this case, ObjectQMgrName is the name of
the remote queue manager.

The security validation performed by the local queue manager verifies that
the application is authorized to send messages to the transmission queue
resulting from the name resolution process.

In either case:

� No messages are sent by the local queue manager to the remote queue
manager in order to check that the application is authorized to put
messages on the queue.

� When a message arrives at the remote queue manager, the remote queue
manager may reject it because the user originating the message is not
authorized.

8. The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

a. Fields in the MQOD structure must be set as follows when opening a
distribution list:

� Version must be MQOD_VERSION_2.
� ObjectType must be MQOT_Q.
� ObjectName must be blank or the null string.
� ObjectQMgrName must be blank or the null string.
� RecsPresent must be greater than zero.
� One of ObjectRecOffset and ObjectRecPtr must be zero and the other

nonzero.

308 MQSeries Application Programming Reference

 MQOPEN – Usage notes

� No more than one of ResponseRecOffset and ResponseRecPtr can be
nonzero.

� There must be RecsPresent object records, addressed by either
ObjectRecOffset or ObjectRecPtr. The object records must be set to
the names of the destination queues to be opened.

� If one of ResponseRecOffset and ResponseRecPtr is nonzero, there
must be RecsPresent response records present. They are set by the
queue manager if the call completes with reason code
MQRC_MULTIPLE_REASONS.

A version-2 MQOD can also be used to open a single queue that is not in a
distribution list, by ensuring that RecsPresent is zero.

b. Only the following open options are valid in the Options parameter:

 MQOO_OUTPUT
 MQOO_PASS_ñ_CONTEXT
 MQOO_SET_ñ_CONTEXT
 MQOO_ALTERNATE_USER_AUTHORITY
 MQOO_FAIL_IF_QUIESCING

c. The destination queues in the distribution list can be local, alias, or remote
queues, but they cannot be model queues. If a model queue is specified,
that queue fails to open, with reason code MQRC_Q_TYPE_ERROR.
However, this does not prevent other queues in the list being opened
successfully.

d. The completion code and reason code parameters are set as follows:

� If the open operations for the queues in the distribution list all succeed
or fail in the same way, the completion code and reason code
parameters are set to describe the common result. The MQRR
response records (if provided by the application) are not set in this
case.

For example, if every open succeeds, the completion code and reason
code are set to MQCC_OK and MQRC_NONE respectively; if every
open fails because none of the queues exists, the parameters are set
to MQCC_FAILED and MQRC_UNKNOWN_OBJECT_NAME.

� If the open operations for the queues in the distribution list do not all
succeed or fail in the same way:

– The completion code parameter is set to MQCC_WARNING if at
least one open succeeded, and to MQCC_FAILED if all failed.

– The reason code parameter is set to
MQRC_MULTIPLE_REASONS.

– The response records (if provided by the application) are set to the
individual completion codes and reason codes for the queues in the
distribution list.

e. When a distribution list has been opened successfully, the handle Hobj
returned by the call can be used on subsequent MQPUT calls to put
messages to queues in the distribution list, and on an MQCLOSE call to
relinquish access to the distribution list. The only valid close option for a
distribution list is MQCO_NONE.

The MQPUT1 call can also be used to put a message to a distribution list;
the MQOD structure defining the queues in the list is specified as a
parameter on that call.

 Chapter 3. Call descriptions 309

 MQOPEN – Usage notes

f. Each successfully-opened destination in the distribution list counts as a
separate handle when checking whether the application has exceeded the
permitted maximum number of handles (see the MaxHandles
queue-manager attribute). This is true even when two or more of the
destinations in the distribution list actually resolve to the same physical
queue.

In a similar fashion, each destination that is opened successfully may have
the value of its OpenOutputCount attribute incremented by one.

g. Any change to the queue definitions that would have caused a handle to
become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle to
become invalid. However, it does result in a failure for that particular
queue when the distribution-list handle is used on a subsequent MQPUT
call.

h. It is valid for a distribution list to contain only one destination.

9. An MQOPEN call with the MQOO_BROWSE option establishes a browse
cursor, for use with MQGET calls that specify the object handle and one of the
browse options. This allows the queue to be scanned without altering its
contents. A message that has been found by browsing can subsequently be
removed from the queue by using the MQGMO_MSG_UNDER_CURSOR
option.

Multiple browse cursors can be active for a single application by issuing several
MQOPEN requests for the same queue.

10. On OS/400, the first MQOPEN call performs an implicit MQCONN function, if
MQCONN has not already been issued.

11. Applications started by a trigger monitor are passed the name of the queue that
is associated with the application when the application is started. This queue
name can be specified in the ObjDesc parameter to open the queue. See the
description of the MQTMC2 structure for further details.

310 MQSeries Application Programming Reference

 MQOPEN – C invocation � MQOPEN – S/390 assembler invocation

C language invocation
MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQLONG Options; /\ Options that control the action of MQOPEN \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQOPEN' USING HCONN, OBJDESC, OPTIONS, HOBJ,

 COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object descriptor
 ð1 OBJDESC.
 COPY CMQODV.
\\ Options that control the action of MQOPEN
 ð1 OPTIONS PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Completion code
ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I invocation (AIX, MVS/ESA, OS/2 and Windows NT)
call MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl ObjDesc like MQOD; /\ Object descriptor \/
dcl Options fixed bin(31); /\ Options that control the action of
 MQOPEN \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQOPEN,(HCONN,OBJDESC,OPTIONS,HOBJ,COMPCODE,REASON)

Declare the parameters as follows:

 Chapter 3. Call descriptions 311

 MQOPEN – TAL invocation

HCONN DS F Connection handle
OBJDESC CMQODA Object descriptor
OPTIONS DS F Options that control the action
\ of MQOPEN
HOBJ DS F Object handle
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn;
| STRUCT .EXT ObjDesc(MQOD^Def);
| INT(32) Options; INT(32) .EXT Hobj;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQOPEN(HConn, ObjDesc, Options, HObj, CC, Reason);

312 MQSeries Application Programming Reference

 MQPUT – BufferLength parameter

 MQPUT – Put message
The MQPUT call puts a message on a queue or distribution list. The queue or
distribution list must already be open.

MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer,
CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Hobj (MQHOBJ) – input
Object handle.

This handle represents the queue to which the message is added. The
value of Hobj was returned by a previous MQOPEN call that specified the
MQOO_OUTPUT option.

MsgDesc (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message being sent, and
receives information about the message after the put request is complete.
See “MQMD – Message descriptor” on page 98 for details.

If the application provides a version-1 MQMD, the message data can be
prefixed with an MQMDE structure in order to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The Format field
in the MQMD must be set to MQFMT_MD_EXTENSION to indicate that an
MQMDE is present. See “MQMDE – Message descriptor extension” on
page 153 for more details.

PutMsgOpts (MQPMO) – input/output
Options that control the action of MQPUT.

See “MQPMO – Put message options” on page 173 for details.

BufferLength (MQLONG) – input
Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

| If the destination is a local queue, or resolves to a local queue, the upper
| limit for BufferLength depends on whether:

| � The local queue manager supports segmentation.

 Chapter 3. Call descriptions 313

 MQPUT – Buffer parameter

| � The sending application specifies the flag that allows the queue
| manager to segment the message.

| This flag is MQMF_SEGMENTATION_ALLOWED, and can be
| specified either in a version-2 MQMD, or in an MQMDE used with a
| version-1 MQMD.

| If both of these conditions are satisfied, there is no specific upper limit on
| the length of the message that can be put. Resource constraints imposed
| by the operating system or by the environment in which the application is
| running will impose some upper limit, but that limit can be greater than
| either the queue’s MaxMsgLength attribute or queue-manager’s
| MaxMsgLength attribute.

| If one or both of the above conditions is not satisfied, BufferLength cannot
| exceed the smaller of the queue’s MaxMsgLength attribute and
| queue-manager’s MaxMsgLength attribute.

| If the destination is a remote queue, or resolves to a remote queue, the
| same conditions apply, but at each queue manager through which the
| message must pass in order to reach the destination queue; in particular:

1. The local transmission queue used to store the message temporarily
at the local queue manager

2. Intermediate transmission queues (if any) used to store the message
at queue managers on the route between the local and destination
queue managers

3. The destination queue at the destination queue manager

| The longest message that can be put is therefore governed by the
| most-restrictive of these queues and queue managers.

When a message is on a transmission queue, additional information
resides with the message data, and this reduces the amount of application
data that can be carried. In this situation it is recommended that
MQ_MSG_HEADER_LENGTH bytes be subtracted from the MaxMsgLength
values of the transmission queues when determining the limit for
BufferLength.

Note: Only failure to comply with condition 1 can be diagnosed
synchronously (with reason code MQRC_MSG_TOO_BIG_FOR_Q
or MQRC_MSG_TOO_BIG_FOR_Q_MGR) when the message is
put. If conditions 2 or 3 are not satisfied, the message is
redirected to a dead-letter (undelivered-message) queue, either at
an intermediate queue manager or at the destination queue
manager. If this happens, a report message is generated if one
was requested by the sender.

Buffer (MQBYTE×BufferLength) – input
Message data.

This is a buffer containing the application data to be sent.

If Buffer contains character and/or numeric data, the CodedCharSetId and
Encoding fields in the MsgDesc parameter should be set to the values
appropriate to the data; this will enable the receiver of the message to
convert the data (if necessary) to the character set and encoding used by
the receiver.

314 MQSeries Application Programming Reference

 MQPUT – Reason parameter

Note: All of the other parameters on the MQPUT call must be in the
character set and encoding of the local queue manager (given by
the CodedCharSetId queue-manager attribute and
MQENC_NATIVE, respectively).

In the C programming language, the parameter is declared as a
pointer-to-void; this means that the address of any type of data can be
specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this
case, the parameter address passed by programs written in C or
System/390 assembler C can be null.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_PRIORITY_EXCEEDS_MAXIMUM
(2049, X'801') Message Priority exceeds maximum value supported.

MQRC_UNKNOWN_REPORT_OPTION
(2104, X'838') Report option(s) in message descriptor not
recognized.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

 Chapter 3. Call descriptions 315

 MQPUT – Reason parameter

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_COD_NOT_VALID_FOR_XCF_Q
(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CONTEXT_HANDLE_ERROR
(2097, X'831') Queue handle referred to does not save context.

MQRC_CONTEXT_NOT_AVAILABLE
(2098, X'832') Context not available for queue handle referred to.

MQRC_DH_ERROR
(2135, X'857') Distribution header structure not valid.

MQRC_EXPIRY_ERROR
(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

MQRC_GROUP_ID_ERROR
(2258, X'8D2') Group identifier not valid.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

MQRC_INCONSISTENT_PERSISTENCE
(2185, X'889') Inconsistent persistence specification.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR
(2248, X'8C8') Message descriptor extension not valid.

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue.

MQRC_MSG_FLAGS_ERROR
(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

316 MQSeries Application Programming Reference

 MQPUT – Reason parameter

MQRC_NOT_OPEN_FOR_OUTPUT
(2039, X'7F7') Queue not open for output.

MQRC_NOT_OPEN_FOR_PASS_ALL
(2093, X'82D') Queue not open for pass all context.

MQRC_NOT_OPEN_FOR_PASS_IDENT
(2094, X'82E') Queue not open for pass identity context.

MQRC_NOT_OPEN_FOR_SET_ALL
(2095, X'82F') Queue not open for set all context.

MQRC_NOT_OPEN_FOR_SET_IDENT
(2096, X'830') Queue not open for set identity context.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OFFSET_ERROR
(2251, X'8CB') Message segment offset not valid.

MQRC_OPEN_FAILED
(2137, X'859') Queue not opened successfully.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR
(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_PAGESET_FULL
(2192, X'890') Page set data set full.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR
(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQRC_PUT_MSG_RECORDS_ERROR
(2159, X'86F') Put message records not valid.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of
messages.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

 Chapter 3. Call descriptions 317

 MQPUT – Usage notes

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SEGMENT_LENGTH_ZERO
(2253, X'8CD') Length of data in message segment is zero.

MQRC_STORAGE_CLASS_ERROR
(2105, X'839') Storage class error.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current
unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to
use.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a

queue; which call to use depends on the circumstances:

� The MQPUT call should be used when multiple messages are to be placed
on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first,
followed by one or more MQPUT requests to add messages to the queue;
finally the queue is closed with an MQCLOSE call. This gives better
performance than repeated use of the MQPUT1 call.

� The MQPUT1 call should be used when only one message is to be put on
a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a
single call, thereby minimizing the number of calls that must be issued.

2. The following notes apply to the use of distribution lists.

Distribution lists are supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

318 MQSeries Application Programming Reference

 MQPUT – Usage notes

a. Messages can be put to a distribution list using either a version-1 or a
version-2 MQPMO. If a version-1 MQPMO is used (or a version-2 MQPMO
with RecsPresent equal to zero), no put message records or response
records can be provided by the application. This means that it will not be
possible to identify the queues which encounter errors, if the message is
sent successfully to some queues in the distribution list and not others.

If put message records or response records are provided by the
application, the Version field must be set to MQPMO_VERSION_2.

A version-2 MQPMO can also be used to send messages to a single queue
that is not in a distribution list, by ensuring that RecsPresent is zero.

b. The completion code and reason code parameters are set as follows:

� If the puts to the queues in the distribution list all succeed or fail in the
same way, the completion code and reason code parameters are set to
describe the common result. The MQRR response records (if provided
by the application) are not set in this case.

For example, if every put succeeds, the completion code and reason
code are set to MQCC_OK and MQRC_NONE respectively; if every put
fails because all of the queues are inhibited for puts, the parameters
are set to MQCC_FAILED and MQRC_PUT_INHIBITED.

� If the puts to the queues in the distribution list do not all succeed or fail
in the same way:

– The completion code parameter is set to MQCC_WARNING if at
least one put succeeded, and to MQCC_FAILED if all failed.

– The reason code parameter is set to
MQRC_MULTIPLE_REASONS.

– The response records (if provided by the application) are set to the
individual completion codes and reason codes for the queues in the
distribution list.

If the put to a destination fails because the open for that destination
failed, the fields in the response record are set to MQCC_FAILED and
MQRC_OPEN_FAILED; that destination is included in
InvalidDestCount.

c. If a destination in the distribution list resolves to a local queue, the
message is placed on that queue in normal form (that is, not as a
distribution-list message). If more than one destination resolves to the
same local queue, one message is placed on the queue for each such
destination.

If a destination in the distribution list resolves to a remote queue, a
message is placed on the appropriate transmission queue. Where several
destinations resolve to the same transmission queue, a single
distribution-list message containing those destinations may be placed on
the transmission queue, even if those destinations were not adjacent in the
list of destinations provided by the application. However, this can be done
only if the transmission queue supports distribution-list messages (see the
DistLists queue attribute described in “Attributes for local queues and
model queues” on page 348).

If the transmission queue does not support distribution lists, one copy of the
message in normal form is placed on the transmission queue for each
destination that uses that transmission queue.

 Chapter 3. Call descriptions 319

 MQPUT – Usage notes

If a distribution list with the application message data is too big for a
transmission queue, the distribution list message is split up into smaller
distribution-list messages, each containing fewer destinations. If the
application message data only just fits on the queue, distribution-list
messages cannot be used at all, and the queue manager generates one
copy of the message in normal form for each destination that uses that
transmission queue.

If different destinations have different message priority or message
persistence (this can occur when the application specifies
MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF),
the messages are not held in the same distribution-list message. Instead,
the queue manager generates as many distribution-list messages as are
necessary to accommodate the differing priority and persistence values.

d. A put to a distribution list may result in:

� A single distribution-list message, or
� A number of smaller distribution-list messages, or
� A mixture of distribution list messages and normal messages, or
� Normal messages only.

Which of the above occurs depends on whether:

� The destinations in the list are local, remote, or a mixture.
� The destinations have the same message priority and message

persistence.
� The transmission queues can hold distribution-list messages.
� The transmission queues’ maximum message lengths are large enough

to accommodate the message in distribution-list form.

However, regardless of which of the above occurs, each physical message
resulting (that is, each normal message or distribution-list message
resulting from the put) counts as only one message when:

� Checking whether the application has exceeded the permitted
maximum number of messages in a unit of work (see the
MaxUncommittedMsgs queue-manager attribute).

� Checking whether the triggering conditions are satisfied.

� Incrementing queue depths and checking whether the queues’
maximum queue depth would be exceeded.

e. Any change to the queue definitions that would have caused a handle to
become invalid had the queues been opened individually (for example, a
change in the resolution path), does not cause the distribution-list handle to
become invalid. However, it does result in a failure for that particular
queue when the distribution-list handle is used on a subsequent MQPUT
call.

3. If a message is put with one or more MQ header structures at the beginning of
the application message data, the queue manager performs certain checks on
the header structures to verify that they are valid. If the queue manager
detects an error, the call fails with an appropriate reason code. The checks
performed vary according to the particular structures that are present. In
addition, the checks are performed only if a version-2 or later MQMD is used
on the MQPUT or MQPUT1 call; the checks are not performed if a version-1
MQMD is used, even if an MQMDE is present at the start of the application
message data.

320 MQSeries Application Programming Reference

 MQPUT – Usage notes

The following MQ header structures are validated completely by the queue
manager: MQDH, MQMDE.

For other MQ header structures, the queue manager performs some validation,
but does not check every field. Structures that are not supported by the local
queue manager, and structures following the first MQDLH in the message, are
not validated.

In addition to general checks on the fields in MQ structures, the following
conditions must be satisfied:

� An MQ structure must not be split over two or more segments – the
structure must be entirely contained within one segment.

� The sum of the lengths of the structures in a PCF message must equal the
length specified by the BufferLength parameter on the MQPUT or
MQPUT1 call. A PCF message is a message that has one of the following
format names:

 MQFMT_ADMIN
 MQFMT_EVENT
 MQFMT_PCF

� MQ structures must not be truncated, except in the following situations
where truncated structures are permitted:

– Messages which are report messages.
 – PCF messages.

– Messages containing an MQDLH structure. (Structures following the
first MQDLH can be truncated; structures preceding the MQDLH
cannot.)

| 4. On Tandem NSK, if the MQPUT call is issued outside a Tandem TMF
| transaction without the MQPMO_NO_SYNCPOINT option, the reason code
| MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

 Chapter 3. Call descriptions 321

 MQPUT – C invocation � MQPUT – PL/I invocation

C language invocation
MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQPUT' USING HCONN, HOBJ, MSGDESC, PUTMSGOPTS,

BUFFERLENGTH, BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Message descriptor
 ð1 MSGDESC.
 COPY CMQMDV.
\\ Options that control the action of MQPUT
 ð1 PUTMSGOPTS.
 COPY CMQPMOV.
\\ Length of the message in Buffer
ð1 BUFFERLENGTH PIC S9(9) BINARY.
\\ Message data
 ð1 BUFFER PIC X(n).
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl MsgDesc like MQMD; /\ Message descriptor \/
dcl PutMsgOpts like MQPMO; /\ Options that control the action of
 MQPUT \/
dcl BufferLength fixed bin(31); /\ Length of the message in Buffer \/
dcl Buffer char(n); /\ Message data \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

322 MQSeries Application Programming Reference

 MQPUT – S/390 assembler invocation � MQPUT – TAL invocation

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQPUT,(HCONN,HOBJ,MSGDESC,PUTMSGOPTS,BUFFERLENGTH,BUFFER, X
 COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
MSGDESC CMQMDA Message descriptor
PUTMSGOPTS CMQPMOA Options that control the action
\ of MQPUT
BUFFERLENGTH DS F Length of the message in Buffer
BUFFER DS CL(n) Message data
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn;
| INT(32) .EXT Hobj;
| STRUCT .EXT MsgDesc(MQMD^Def);
| STRUCT .EXT PutMsgOpt(MQPMO^Def);
| INT(32) .EXT BufferLen
| STRING .EXT Buffer[ð:BUFFER^SIZE]
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQPUT(HConn, HObj, MsgDesc, PutMsgOpt, BufferLen, Buffer,
| CC, Reason);

 Chapter 3. Call descriptions 323

 MQPUT1 – BufferLength parameter

 MQPUT1 – Put one message
The MQPUT1 call puts one message on a queue. The queue need not be open.

MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

ObjDesc (MQOD) – input
Object descriptor.

This is a structure which identifies the queue to which the message is
added. See “MQOD – Object descriptor” on page 160 for details.

The application must be authorized to open the queue for output. The
queue must not be a model queue.

MsgDesc (MQMD) – input/output
Message descriptor.

This structure describes the attributes of the message being sent, and
receives feedback information after the put request is complete. See
“MQMD – Message descriptor” on page 98 for details.

If the application provides a version-1 MQMD, the message data can be
prefixed with an MQMDE structure in order to specify values for the fields
that exist in the version-2 MQMD but not the version-1. The Format field
in the MQMD must be set to MQFMT_MD_EXTENSION to indicate that an
MQMDE is present. See “MQMDE – Message descriptor extension” on
page 153 for more details.

PutMsgOpts (MQPMO) – input/output
Options that control the action of MQPUT1.

See “MQPMO – Put message options” on page 173 for details.

BufferLength (MQLONG) – input
Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.
| The upper limit depends on various factors; see the description of the
| BufferLength parameter of the MQPUT call for further details.

324 MQSeries Application Programming Reference

 MQPUT1 – Reason parameter

Buffer (MQBYTE×BufferLength) – input
Message data.

This is a buffer containing the application message data to be sent.

If Buffer contains character and/or numeric data, the CodedCharSetId and
Encoding fields in the MsgDesc parameter should be set to the values
appropriate to the data; this will enable the receiver of the message to
convert the data (if necessary) to the character set and encoding used by
the receiver.

Note: All of the other parameters on the MQPUT1 call must be in the
character set and encoding of the local queue manager (given by
the CodedCharSetId queue-manager attribute and
MQENC_NATIVE, respectively).

In the C programming language, the parameter is declared as a
pointer-to-void; this means that the address of any type of data can be
specified as the parameter.

If the BufferLength parameter is zero, Buffer is not referred to; in this
case, the parameter address passed by programs written in C or
System/390 assembler can be null.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

MQRC_PRIORITY_EXCEEDS_MAXIMUM
(2049, X'801') Message Priority exceeds maximum value supported.

MQRC_UNKNOWN_REPORT_OPTION
(2104, X'838') Report option(s) in message descriptor not
recognized.

If CompCode is MQCC_FAILED:

 Chapter 3. Call descriptions 325

 MQPUT1 – Reason parameter

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_ALIAS_BASE_Q_TYPE_ERROR
(2001, X'7D1') Alias base queue not a valid type.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_COD_NOT_VALID_FOR_XCF_Q
(2106, X'83A') COD report option not valid for XCF queue.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_CONTEXT_HANDLE_ERROR
(2097, X'831') Queue handle referred to does not save context.

MQRC_CONTEXT_NOT_AVAILABLE
(2098, X'832') Context not available for queue handle referred to.

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

MQRC_DH_ERROR
(2135, X'857') Distribution header structure not valid.

MQRC_EXPIRY_ERROR
(2013, X'7DD') Expiry time not valid.

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

MQRC_GROUP_ID_ERROR
(2258, X'8D2') Group identifier not valid.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'7E1') No more handles available.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQRC_MDE_ERROR
(2248, X'8C8') Message descriptor extension not valid.

326 MQSeries Application Programming Reference

 MQPUT1 – Reason parameter

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue.

MQRC_MSG_FLAGS_ERROR
(2249, X'8C9') Message flags not valid.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_OBJECT_IN_USE
(2042, X'7FA') Object already open with conflicting options.

MQRC_OBJECT_NAME_ERROR
(2152, X'868') Object name not valid.

MQRC_OBJECT_Q_MGR_NAME_ERROR
(2153, X'869') Object queue-manager name not valid.

MQRC_OBJECT_RECORDS_ERROR
(2155, X'86B') Object records not valid.

MQRC_OBJECT_TYPE_ERROR
(2043, X'7FB') Object type not valid.

MQRC_OD_ERROR
(2044, X'7FC') Object descriptor structure not valid.

MQRC_OFFSET_ERROR
(2251, X'8CB') Message segment offset not valid.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_ORIGINAL_LENGTH_ERROR
(2252, X'8CC') Original length not valid.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_PAGESET_FULL
(2192, X'890') Page set data set full.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

MQRC_PMO_RECORD_FLAGS_ERROR
(2158, X'86E') Put message record flags not valid.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQRC_PUT_MSG_RECORDS_ERROR
(2159, X'86F') Put message records not valid.

 Chapter 3. Call descriptions 327

 MQPUT1 – Reason parameter

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of
messages.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

MQRC_SEGMENT_LENGTH_ZERO
(2253, X'8CD') Length of data in message segment is zero.

MQRC_STORAGE_CLASS_ERROR
(2105, X'839') Storage class error.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current
unit of work.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

328 MQSeries Application Programming Reference

 MQPUT1 – Usage notes

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to
use.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. Both the MQPUT and MQPUT1 calls can be used to put messages on a

queue; which call to use depends on the circumstances:

� The MQPUT call should be used when multiple messages are to be placed
on the same queue.

An MQOPEN call specifying the MQOO_OUTPUT option is issued first,
followed by one or more MQPUT requests to add messages to the queue;
finally the queue is closed with an MQCLOSE call. This gives better
performance than repeated use of the MQPUT1 call.

� The MQPUT1 call should be used when only one message is to be put on
a queue.

This call encapsulates the MQOPEN, MQPUT, and MQCLOSE calls into a
single call, thereby minimizing the number of calls that must be issued.

2. The MQPUT1 call can be used to put messages to distribution lists. For
general information about this, see usage note 8 on page 308 for the
MQOPEN call, and usage note 2 on page 318 for the MQPUT call.

Distribution lists are supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

The following differences apply when using the MQPUT1 call:

a. If MQRR response records are provided by the application, they must be
provided using the MQOD structure; they cannot be provided using the
MQPMO structure.

b. The reason code MQRC_OPEN_FAILED is never returned by MQPUT1 in
the response records; if a queue fails to open, the response record for that
queue contains the actual reason code resulting from the open operation.

If an open operation for a queue succeeds with a completion code of
MQCC_WARNING, the completion code and reason code in the response
record for that queue are replaced by the completion and reason codes
resulting from the put operation.

As with the MQOPEN and MQPUT calls, the queue manager sets the
response records (if provided) only when the outcome of the call is not the
same for all queues in the distribution list; this is indicated by the call
completing with reason code MQRC_MULTIPLE_REASONS.

 Chapter 3. Call descriptions 329

 MQPUT1 – Usage notes

3. If a message is put with one or more MQ header structures at the beginning of
the application message data, the queue manager performs certain checks on
the header structures to verify that they are valid. For more information about
this, see usage note 3 on page 320 for the MQPUT call.

4. If more than one of the warning situations arise (see the CompCode parameter),
the reason code returned is the first one in the following list that applies:

 a. MQRC_MULTIPLE_REASONS
 b. MQRC_INCOMPLETE_MSG
 c. MQRC_INCOMPLETE_GROUP
 d. MQRC_PRIORITY_EXCEEDS_MAXIMUM or

MQRC_UNKNOWN_REPORT_OPTION

| 5. On Tandem NSK, if the MQPUT1 call is issued outside a Tandem TMF
| transaction without the MQPMO_NO_SYNCPOINT option, the reason code
| MQRC_UNIT_OF_WORK_NOT_STARTED is returned.

330 MQSeries Application Programming Reference

 MQPUT1 – C invocation � MQPUT1 – PL/I invocation

C language invocation
MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts,

BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT1 \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQPUT1' USING HCONN, OBJDESC, MSGDESC, PUTMSGOPTS,

BUFFERLENGTH, BUFFER, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object descriptor
 ð1 OBJDESC.
 COPY CMQODV.
\\ Message descriptor
 ð1 MSGDESC.
 COPY CMQMDV.
\\ Options that control the action of MQPUT1
 ð1 PUTMSGOPTS.
 COPY CMQPMOV.
\\ Length of the message in Buffer
ð1 BUFFERLENGTH PIC S9(9) BINARY.
\\ Message data
 ð1 BUFFER PIC X(n).
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl ObjDesc like MQOD; /\ Object descriptor \/
dcl MsgDesc like MQMD; /\ Message descriptor \/
dcl PutMsgOpts like MQPMO; /\ Options that control the action of
 MQPUT1 \/
dcl BufferLength fixed bin(31); /\ Length of the message in Buffer \/
dcl Buffer char(n); /\ Message data \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying CompCode \/

 Chapter 3. Call descriptions 331

 MQPUT1 – S/390 assembler invocation � MQPUT1 – TAL invocation

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQPUT1,(HCONN,OBJDESC,MSGDESC,PUTMSGOPTS,BUFFERLENGTH, X
 BUFFER,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
OBJDESC CMQODA Object descriptor
MSGDESC CMQMDA Message descriptor
PUTMSGOPTS CMQPMOA Options that control the action
\ of MQPUT1
BUFFERLENGTH DS F Length of the message in Buffer
BUFFER DS CL(n) Message data
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn ;
| STRUCT .EXT ObjDesc(MQOD^Def);
| STRUCT .EXT MsgDesc(MQMD^Def);
| STRUCT .EXT PutMsgOpt(MQPMO^Def);
| INT(32) .EXT BufferLen
| STRING .EXT Buffer[ð:BUFFER^SIZE]
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQPUT1(HConn, ObjDesc, MsgDesc, PutMsgOpt, BufferLen, Buffer,
| CC, Reason);

332 MQSeries Application Programming Reference

 MQSET – Selectors parameter

 MQSET – Set object attributes
The MQSET call is used to change the attributes of an object represented by a
handle. The object must be a queue.

MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
CharAttrLength, CharAttrs, CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. The value
of Hconn was returned by a previous MQCONN or MQCONNX call.

On OS/400, and on MVS/ESA for CICS applications, the MQCONN call
can be omitted, and the following value specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Hobj (MQHOBJ) – input
Object handle.

This handle represents the queue object whose attributes are to be set.
The handle was returned by a previous MQOPEN call that specified the
MQOO_SET option.

SelectorCount (MQLONG) – input
Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It
is the number of attributes that are to be set. Zero is a valid value. The
maximum number allowed is 256.

Selectors (MQLONG×SelectorCount) – input
Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector
identifies an attribute (integer or character) whose value is to be set.

Each selector must be valid for the type of queue that Hobj represents.
Only certain MQIA_ñ and MQCA_ñ values are allowed; these values are
listed below.

Selectors can be specified in any order. Attribute values that correspond
to integer attribute selectors (MQIA_ñ selectors) must be specified in
IntAttrs in the same order in which these selectors occur in Selectors.
Attribute values that correspond to character attribute selectors (MQCA_ñ
selectors) must be specified in CharAttrs in the same order in which
those selectors occur. MQIA_ñ selectors can be interleaved with the
MQCA_ñ selectors; only the relative order within each type is important.

It is not an error to specify the same selector more than once; if this is
done, the last value specified for a given selector is the one that takes
effect.

 Chapter 3. Call descriptions 333

 MQSET – IntAttrCount parameter

Notes:

1. The integer and character attribute selectors are allocated within two
different ranges; the MQIA_ñ selectors reside within the range
MQIA_FIRST through MQIA_LAST, and the MQCA_ñ selectors within
the range MQCA_FIRST through MQCA_LAST.

For each range, the constants MQIA_LAST_USED and
MQCA_LAST_USED define the highest value that the queue manager
will accept.

2. If all the MQIA_ñ selectors occur first, the same element numbers can
be used to address corresponding elements in the Selectors and
IntAttrs arrays.

3. If the SelectorCount parameter is zero, Selectors is not referred to; in
this case, the parameter address passed by programs written in C or
System/390 assembler may be null.

For the MQCA_ñ selectors in the following descriptions, the constant that
defines the length in bytes of the string that is required in CharAttrs is
given in parentheses.

Selectors for all types of queue

MQIA_INHIBIT_PUT
Whether put operations are allowed.

Selectors for local queues

MQCA_TRIGGER_DATA
Trigger data (MQ_TRIGGER_DATA_LENGTH).

MQIA_DIST_LISTS
Distribution list support.

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQIA_TRIGGER_CONTROL
Trigger control.

MQIA_TRIGGER_DEPTH
Trigger depth.

MQIA_TRIGGER_MSG_PRIORITY
Threshold message priority for triggers.

MQIA_TRIGGER_TYPE
Trigger type.

The selector listed below is supported only in the following
| environments: AIX, DOS client, HP-UX, OS/2, OS/400, Sun Solaris,

Windows client, Windows NT.

 MQIA_DIST_LISTS

Selectors for alias queues

MQIA_INHIBIT_GET
Whether get operations are allowed.

No other attributes can be set using this call.

IntAttrCount (MQLONG) – input
Count of integer attributes.

This is the number of elements in the IntAttrs array, and must be at least

334 MQSeries Application Programming Reference

 MQSET – Reason parameter

the number of MQIA_ñ selectors in the Selectors parameter. Zero is a
valid value if there are none.

IntAttrs (MQLONG×IntAttrCount) – input
Array of integer attributes.

This is an array of IntAttrCount integer attribute values. These attribute
values must be in the same order as the MQIA_ñ selectors in the
Selectors array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not
referred to; in this case, the parameter address passed by programs
written in C or System/390 assembler may be null.

CharAttrLength (MQLONG) – input
Length of character attributes buffer.

This is the length in bytes of the CharAttrs parameter, and must be at
least the sum of the lengths of the character attributes specified in the
Selectors array. Zero is a valid value if there are no MQCA_ñ selectors
in Selectors.

CharAttrs (MQCHAR×CharAttrLength) – input
Character attributes.

This is the buffer containing the character attribute values, concatenated
together. The length of the buffer is given by the CharAttrLength
parameter.

The characters attributes must be specified in the same order as the
MQCA_ñ selectors in the Selectors array. The length of each character
attribute is fixed (see Selectors). If the value to be set for an attribute
contains fewer nonblank characters than the defined length of the attribute,
the value in CharAttrs must be padded to the right with blanks to make
the attribute value match the defined length of the attribute.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is
not referred to; in this case, the parameter address passed by programs
written in C or System/390 assembler may be null.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

 Chapter 3. Call descriptions 335

 MQSET – Reason parameter

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

MQRC_CHAR_ATTR_LENGTH_ERROR
(2006, X'7D6') Length of character attributes not valid.

MQRC_CHAR_ATTRS_ERROR
(2007, X'7D7') Character attributes string not valid.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

MQRC_INHIBIT_VALUE_ERROR
(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not
valid.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

MQRC_NOT_OPEN_FOR_SET
(2040, X'7F8') Queue not open for set.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

336 MQSeries Application Programming Reference

 MQSET – Usage notes

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too big.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

MQRC_TRIGGER_CONTROL_ERROR
(2075, X'81B') Value for trigger-control attribute not valid.

MQRC_TRIGGER_DEPTH_ERROR
(2076, X'81C') Value for trigger-depth attribute not valid.

MQRC_TRIGGER_MSG_PRIORITY_ERR
(2077, X'81D') Value for trigger-message-priority attribute not valid.

MQRC_TRIGGER_TYPE_ERROR
(2078, X'81E') Value for trigger-type attribute not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Usage notes
1. Using this call, the application can specify an array of integer attributes, or a

collection of character attribute strings, or both. The attributes specified are all
set simultaneously, if no errors occur. If an error does occur (for example, if a
selector is not valid, or an attempt is made to set an attribute to a value that is
not valid), the call fails and no attributes are set.

2. The values of attributes can be determined using the MQINQ call; see
“MQINQ – Inquire about object attributes” on page 285 for details.

Note: Not all attributes whose values can be inquired using the MQINQ call
can have their values changed using the MQSET call. For example, no
process-object or queue-manager attributes can be set with this call.

3. Attribute changes are preserved across restarts of the queue manager (other
than alterations to temporary dynamic queues, which do not survive restarts of
the queue manager).

4. It is not possible to change the attributes of a model queue using the MQSET
call. However, if you open a model queue using the MQOPEN call with the
MQOO_SET option, you can use the MQSET call to set the attributes of the
dynamic queue that is created by the MQOPEN call.

5. For more information about object attributes, see Chapter 4, “Attributes of
MQSeries objects.”

 Chapter 3. Call descriptions 337

 MQSET – C invocation � MQSET – COBOL invocation

C language invocation
MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

COBOL language invocation
CALL 'MQSET' USING HCONN, HOBJ, SELECTORCOUNT,

SELECTORS-TABLE, INTATTRCOUNT, INTATTRS-TABLE,
CHARATTRLENGTH, CHARATTRS, COMPCODE, REASON.

Declare the parameters as follows:

\\ Connection handle
 ð1 HCONN PIC S9(9) BINARY.
\\ Object handle
 ð1 HOBJ PIC S9(9) BINARY.
\\ Count of selectors
 ð1 SELECTORCOUNT PIC S9(9) BINARY.
\\ Array of attribute selectors
 ð1 SELECTORS-TABLE.
 ð2 SELECTORS PIC S9(9) BINARY OCCURS n TIMES.
\\ Count of integer attributes
 ð1 INTATTRCOUNT PIC S9(9) BINARY.
\\ Array of integer attributes
 ð1 INTATTRS-TABLE.
 ð2 INTATTRS PIC S9(9) BINARY OCCURS n TIMES.
\\ Length of character attributes buffer
 ð1 CHARATTRLENGTH PIC S9(9) BINARY.
\\ Character attributes
 ð1 CHARATTRS PIC X(n).
\\ Completion code
 ð1 COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode
 ð1 REASON PIC S9(9) BINARY.

338 MQSeries Application Programming Reference

 MQSET – PL/I invocation � MQSET –TAL invocation

PL/I language invocation (AIX, MVS/ESA, OS/2, and Windows NT)
call MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,

IntAttrs, CharAttrLength, CharAttrs, CompCode, Reason);

Declare the parameters as follows:

dcl Hconn fixed bin(31); /\ Connection handle \/
dcl Hobj fixed bin(31); /\ Object handle \/
dcl SelectorCount fixed bin(31); /\ Count of selectors \/
dcl Selectors(n) fixed bin(31); /\ Array of attribute selectors \/
dcl IntAttrCount fixed bin(31); /\ Count of integer attributes \/
dcl IntAttrs(n) fixed bin(31); /\ Array of integer attributes \/
dcl CharAttrLength fixed bin(31); /\ Length of character attributes
 buffer \/
dcl CharAttrs char(n); /\ Character attributes \/
dcl CompCode fixed bin(31); /\ Completion code \/
dcl Reason fixed bin(31); /\ Reason code qualifying
 CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQSET,(HCONN,HOBJ,SELECTORCOUNT,SELECTORS,INTATTRCOUNT, X
 INTATTRS,CHARATTRLENGTH,CHARATTRS,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
HOBJ DS F Object handle
SELECTORCOUNT DS F Count of selectors
SELECTORS DS (n)F Array of attribute selectors
INTATTRCOUNT DS F Count of integer attributes
INTATTRS DS (n)F Array of integer attributes
CHARATTRLENGTH DS F Length of character attributes
\ buffer
CHARATTRS DS CL(n) Character attributes
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

| TAL invocation (Tandem NSK only)
| INT(32) .EXT HConn ;
| INT(32) .EXT HObj;
| INT(32) SelectorCount;
| INT(32) .EXT Selectors[ð:NUM^SELECTORS];
| INT(32) IntAttrCount;
| INT(32) .EXT IntAttrs[ð:NUM^INT^ATTR];
| INT(32) CharAttrLength;
| STRING .EXT CharAttrs[ð:LEN^CHAR^ATTR];
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQSET(HConn, HObj, SelectorCount, Selectors, IntAttrCount, IntAttrs,
| CharAttrLength, CharAttrs, CC, Reason);

 Chapter 3. Call descriptions 339

 MQSYNC – Synchronize statistics updates (Tandem NSK only)

| MQSYNC – Synchronize statistics updates (Tandem NSK only)
| The MQSYNC call is included in this release of MQSeries for Tandem NonStop
| Kernel for backwards compatibility with MQSeries for Tandem NSK, Version 1.5.1.
| but performs no function.

| The call always returns a CompCode of MQCC_OK, and a Reason of MQRC_NONE.

| MQSYNC (TransId, CommitAbort, CompCode, Reason)

| Parameters
| TransId (MQCHAR48) – input
| Transaction identifier.

| CommitAbort (MQCHAR48) – input
| Commit flag.

| CompCode (MQLONG) – output
| Completion code.

| It is the following:

| MQCC_OK
| Successful completion.

| Reason (MQLONG) – output
| Reason code qualifying CompCode.

| For CompCode of MQCC_OK:

| MQRC_NONE
| (0, X'000') No reason to report.

340 MQSeries Application Programming Reference

 MQSYNC – language invocations

| C language invocation
| transaction_id_def TransID;
| int CommitAbort;
| MQLONG CompCode;
| MQLONG Reason;

| MQSYNC(&TransID, CommitAbort, &CompCode, &Reason);

| MQSYNC – COBOL invocation
| ð1 TRANSID NATIVE-4.
| ð1 COMMITABORT NATIVE-4.
| ð1 COMPCODE NATIVE-4.
| ð1 REASON NATIVE-4.

| CALL 'MQSYNC' USING TRANSID COMMITABORT.

| MQSYNC – TAL invocation
| STRING .EXT TransID;
| INT CommitAbort;
| INT(32) .EXT CC;
| INT(32) .EXT Reason;

| CALL MQSYNC(TransID, CommitAbort, CC, Reason);

 Chapter 3. Call descriptions 341

 MQSYNC – language invocations

342 MQSeries Application Programming Reference

 Attributes � Attributes—all queues

Chapter 4. Attributes of MQSeries objects

MQSeries objects consist of:

 � Channels
 � Queues
 � Queue managers
� Namelists (MVS/ESA only)

 � Processes
� Storage Classes (MVS/ESA only)

This chapter describes the attributes (or properties) of MQSeries objects that are
accessible through the API, which are queues, queue managers, namelists, and

| processes. The attributes are grouped according to the type of object to which they
| apply; see:

| � “Attributes for all queues”
| � “Attributes for local queues and model queues” on page 348
| � “Attributes for local definitions of remote queues” on page 363
| � “Attributes for alias queues” on page 365
| � “Attributes for namelists (MVS/ESA only)” on page 366
| � “Attributes for process definitions” on page 367
| � “Attributes for the queue manager” on page 370

| Within each section, the attributes are listed in alphabetic order.

Note: The names of the attributes of objects are shown in this book in the form
that you use them with the MQINQ and MQSET calls. When you use
MQSeries commands to define, alter, or display the attributes, you use the
keywords shown in the descriptions of the commands in the MQSeries
Command Reference.

Attributes for all queues
| The following table summarizes the attributes that are common to all queue types
| (except where noted). The attributes are described in alphabetic order.

| Table 61. Attributes for all queues

| Attribute| Description| Page

| DefPersistence| Default message persistence| 344

| DefPriority| Default message priority| 344

| InhibitGet| Controls whether get operations for the queue
| are allowed
| 345

| InhibitPut| Controls whether put operations for the queue
| are allowed
| 345

| QDesc| Queue description| 346

| QName| Queue name| 346

| QType| Queue type| 346

| Scope| Controls whether an entry for the queue also
| exists in a cell directory
| 346

 Copyright IBM Corp. 1994,1998 343

 Attributes—all queues

DefPersistence (MQLONG)
Default message persistence.

This is the default persistence for messages on a queue. This applies if
MQPER_PERSISTENCE_AS_Q_DEF is specified in the message
descriptor when the message is put.

If there is more than one definition in the queue-name resolution path, the
default persistence is taken from the value of this attribute in the first
definition in the path at the time of the put operation (even if this is a
queue-manager alias).

The value is one of the following:

MQPER_PERSISTENT
Message is persistent.

The message survives restarts of the queue manager. Because
temporary dynamic queues do not survive restarts of the queue
manager, persistent messages cannot be put on temporary dynamic
queues; persistent messages can however be put on permanent
dynamic queues, and predefined queues.

MQPER_NOT_PERSISTENT
Message is not persistent.

The message does not survive restarts of the queue manager. This
applies even if an intact copy of the message is found on auxiliary
storage during the restart procedure.

Both persistent and nonpersistent messages can exist on the same queue.

To determine the value of this attribute, use the
MQIA_DEF_PERSISTENCE selector with the MQINQ call.

DefPriority (MQLONG)
Default message priority

This is the default priority for messages on the queue. This applies if
MQPRI_PRIORITY_AS_Q_DEF is specified in the message descriptor
when the message is put on the queue.

If there is more than one definition in the queue-name resolution path, the
default priority for the message is taken from the value of this attribute in
the first definition in the path at the time of the put operation (even if this is
a queue-manager alias).

| The way in which a message is placed on a queue depends on the value
| of the queue’s MsgDeliverySequence attribute:

| � If the MsgDeliverySequence attribute is MQMDS_PRIORITY, the logical
| position at which a message is placed on the queue is dependent on
| the value of the Priority field in the message descriptor.

| � If the MsgDeliverySequence attribute is MQMDS_FIFO, messages are
| placed on the queue as though they had a priority equal to the
| DefPriority of the resolved queue, regardless of the value of the
| Priority field in the message descriptor. However, the Priority field
| retains the value specified by the application that put the message.
| See the MsgDeliverySequence attribute described in “Attributes for local
| queues and model queues” on page 348 for more information.

344 MQSeries Application Programming Reference

 Attributes—all queues

Priorities are in the range zero (lowest) through MaxPriority (highest);
see the MaxPriority attribute described in “Attributes for the queue
manager” on page 370.

To determine the value of this attribute, use the MQIA_DEF_PRIORITY
selector with the MQINQ call.

InhibitGet (MQLONG)
Controls whether get operations for this queue are allowed.

This attribute applies only to local, model, and alias queues.

If the queue is an alias queue, get operations must be allowed for both the
alias and the base queue at the time of the get operation, in order for the
MQGET call to succeed.

The value is one of the following:

MQQA_GET_INHIBITED
Get operations are inhibited.

MQGET calls fail with reason code MQRC_GET_INHIBITED. This
includes MQGET calls that specify MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT.

Note: If an MQGET call operating within a unit of work completes
successfully, changing the value of the InhibitGet attribute
subsequently to MQQA_GET_INHIBITED does not prevent
the unit of work being committed.

MQQA_GET_ALLOWED
Get operations are allowed.

To determine the value of this attribute, use the MQIA_INHIBIT_GET
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

InhibitPut (MQLONG)
Controls whether put operations for this queue are allowed.

If there is more than one definition in the queue-name resolution path, put
operations must be allowed for every definition in the path (including any
queue-manager alias definitions) at the time of the put operation, in order
for the MQPUT or MQPUT1 call to succeed.

The value is one of the following:

MQQA_PUT_INHIBITED
Put operations are inhibited.

MQPUT and MQPUT1 calls fail with reason code
MQRC_PUT_INHIBITED.

Note: If an MQPUT call operating within a unit of work completes
successfully, changing the value of the InhibitPut attribute
subsequently to MQQA_PUT_INHIBITED does not prevent
the unit of work being committed.

MQQA_PUT_ALLOWED
Put operations are allowed.

 Chapter 4. Attributes of MQSeries objects 345

 Attributes—all queues

To determine the value of this attribute, use the MQIA_INHIBIT_PUT
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

QDesc (MQCHAR64)
Queue description.

This is a field that may be used for descriptive commentary. The content
of the field is of no significance to the queue manager, but the queue
manager may require that the field contain only characters that can be
displayed. It cannot contain any null characters; if necessary, it is padded
to the right with blanks. In a DBCS installation, the field can contain
DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_Q_DESC selector
with the MQINQ call. The length of this attribute is given by
MQ_Q_DESC_LENGTH.

QName (MQCHAR48)
Queue name.

This is the name of a queue defined on the local queue manager. For
more information about queue names, see the MQSeries Application
Programming Guide. All queues defined on a queue manager share the
same queue name space. Therefore, a MQQT_LOCAL queue and a
MQQT_ALIAS queue cannot have the same name.

To determine the value of this attribute, use the MQCA_Q_NAME selector
with the MQINQ call. The length of this attribute is given by
MQ_Q_NAME_LENGTH.

QType (MQLONG)
Queue type.

This attribute has one of the following values:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_MODEL
Model queue definition.

MQQT_REMOTE
Local definition of a remote queue.

To determine the value of this attribute, use the MQIA_Q_TYPE selector
with the MQINQ call.

Scope (MQLONG)
Controls whether an entry for this queue also exists in a cell directory.

A cell directory is provided by an installable Name service. This attribute
applies only to local and alias queues, and to local definitions of remote
queues. It does not apply to model queues.

346 MQSeries Application Programming Reference

 Attributes—all queues

The value is one of the following:

MQSCO_Q_MGR
Queue-manager scope.

The queue definition has queue-manager scope. This means that
the definition of the queue does not extend beyond the queue
manager which owns it. To open the queue for output from some
other queue manager, either the name of the owning queue manager
must be specified, or the other queue manager must have a local
definition of the queue.

MQSCO_CELL
Cell scope.

The queue definition has cell scope. This means that the queue
definition is also placed in a cell directory available to all of the
queue managers in the cell. The queue can be opened for output
from any of the queue managers in the cell merely by specifying the
name of the queue; the name of the queue manager which owns the
queue need not be specified. However, the cell definition is not
available to any queue manager in the cell which also has a local
definition of a queue with that name, as the local definition takes
precedence.

A cell directory is provided by an installable Name service. For
example, the DCE Name service inserts the queue definition into the
DCE directory.

Model and dynamic queues cannot have cell scope.

This value is only valid if a name service supporting a cell directory
has been configured.

To determine the value of this attribute, use the MQIA_SCOPE selector
with the MQINQ call.

Support for this attribute is subject to the following restrictions:

� On OS/400, the attribute is supported, but only MQSCO_Q_MGR is
valid.

� On MVS/ESA, 16-bit Windows, and 32-bit Windows, the attribute is not
supported.

 Chapter 4. Attributes of MQSeries objects 347

 Attributes—local and model queues

Attributes for local queues and model queues
| The following table summarizes the attributes that are specific to local queues and
| model queues (except where noted). The attributes are described in alphabetic
| order.

| Table 62 (Page 1 of 2). Attributes for local and model queues

| Attribute| Description| Page

| BackoutRequeueQName| Excessive backout requeue queue name| 349

| BackoutThreshold| Backout threshold| 349

| CreationDate| Date the queue was created| 349

| CreationTime| Time the queue was created| 349

| CurrentQDepth| Current queue depth| 350

| DefinitionType| Queue definition type| 350

| DefInputOpenOption| Default input open option| 351

| DistLists| Distribution list support| 351

| HardenGetBackout| Whether to maintain an accurate backout count| 352

| IndexType| Index type| 353

| InitiationQName| Name of initiation queue| 354

| MaxMsgLength| Maximum message length in bytes| 354

| MaxQDepth| Maximum queue depth| 355

| MsgDeliverySequence| Message delivery sequence| 355

| OpenInputCount| Number of opens for input| 356

| OpenOutputCount| Number of opens for output| 356

| ProcessName| Process name| 357

| QDepthHighEvent| Controls whether Queue Depth High events are
| generated
| 357

| QDepthHighLimit| High limit for queue depth| 357

| QDepthLowEvent| Controls whether Queue Depth Low events are
| generated
| 358

| QDepthLowLimit| Low limit for queue depth| 358

| QDepthMaxEvent| Controls whether Queue Full events are
| generated
| 358

| QServiceInterval| Target for queue service interval| 359

| QServiceIntervalEvent| Controls whether Service Interval High or
| Service Interval OK events are generated
| 359

| RetentionInterval| Retention interval| 360

| Shareability| Queue shareability| 360

| StorageClass| Storage class for queue| 360

| TriggerControl| Trigger control| 361

| TriggerData| Trigger data| 361

| TriggerDepth| Trigger depth| 361

| TriggerMsgPriority| Threshold message priority for triggers| 362

348 MQSeries Application Programming Reference

 Attributes—local and model queues

BackoutRequeueQName (MQCHAR48)
Excessive backout requeue queue name.

Apart from allowing its value to be queried, the queue manager takes no
action based on the value of this attribute.

To determine the value of this attribute, use the
MQCA_BACKOUT_REQ_Q_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_NAME_LENGTH.

BackoutThreshold (MQLONG)
Backout threshold.

Apart from allowing its value to be queried, the queue manager takes no
action based on the value of this attribute.

To determine the value of this attribute, use the
MQIA_BACKOUT_THRESHOLD selector with the MQINQ call.

CreationDate (MQCHAR12)
Date this queue was created.

The format is

YYYY-MM-DD

with 2 bytes of blank padding to the right to make the length 12 bytes. For
example:

1992-ð9-23␣␣

is 23 September 1992 (“␣␣” represents 2 blank characters).

On OS/400, the creation date of a queue may differ from that of the
underlying operating system entity (file or userspace) that represents the
queue.

To determine the value of this attribute, use the MQCA_CREATION_DATE
selector with the MQINQ call. The length of this attribute is given by
MQ_CREATION_DATE_LENGTH.

CreationTime (MQCHAR8)
Time this queue was created.

The format is

HH.MM.SS

using the 24-hour clock, with a leading zero if the hour is less than 10.
For example:

21.1ð.2ð

This is an 8-character string. The time is local time.

� On MVS/ESA, the time is Greenwich Mean Time (GMT), subject to the
system clock being set accurately to GMT.

| Table 62 (Page 2 of 2). Attributes for local and model queues

| Attribute| Description| Page

| TriggerType| Trigger type| 362

| Usage| Queue usage| 363

 Chapter 4. Attributes of MQSeries objects 349

 Attributes—local and model queues

� On OS/400, the creation time of a queue may differ from that of the
underlying operating system entity (file or userspace) that represents
the queue.

To determine the value of this attribute, use the MQCA_CREATION_TIME
selector with the MQINQ call. The length of this attribute is given by
MQ_CREATION_TIME_LENGTH.

CurrentQDepth (MQLONG)
Current queue depth.

This is the number of messages currently on the queue. It is incremented
during an MQPUT call, and during backout of an MQGET call. It is
decremented during a nonbrowse MQGET call, and during backout of an
MQPUT call. The effect of this is that the count includes messages that
have been put on the queue within a unit of work, but which have not yet
been committed, even though they are not eligible to be retrieved by the
MQGET call. Similarly, it excludes messages that have been retrieved
within a unit of work using the MQGET call, but which have yet to be
committed.

The count also includes messages which have passed their expiry time
but have not yet been discarded, although these messages are not eligible
to be retrieved. See the Expiry field described in “MQMD – Message
descriptor” on page 98.

The value of this attribute fluctuates as the queue manager operates.

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions
using the MQOPEN call.

To determine the value of this attribute, use the
MQIA_CURRENT_Q_DEPTH selector with the MQINQ call.

DefinitionType (MQLONG)
Queue definition type.

This indicates how the queue was defined. It is one of the following:

MQQDT_PREDEFINED
Predefined permanent queue.

The queue is a permanent queue created by the system
administrator; only the system administrator can delete it.

Predefined queues are created using the DEFINE command, and
can be deleted only by using the DELETE command. Predefined
queues cannot be created from model queues.

Commands can be issued either by an operator, or by an authorized
application sending a command message to the command input
queue (see the CommandInputQName attribute described in “Attributes
for the queue manager” on page 370).

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

The queue is a permanent queue that was created by an application
issuing an MQOPEN call with the name of a model queue specified
in the object descriptor. The model queue definition has the value

350 MQSeries Application Programming Reference

 Attributes—local and model queues

MQQDT_PERMANENT_DYNAMIC for the DefinitionType attribute.
This type of queue can be deleted using the MQCLOSE call. See
“MQCLOSE – Close object” on page 248 for more details.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

The queue is a temporary queue that was created by an application
issuing an MQOPEN call with the name of a model queue specified
in the object descriptor. The model queue definition has the value
MQQDT_TEMPORARY_DYNAMIC for the DefinitionType attribute.
This type of queue is deleted automatically by the MQCLOSE call
when it is closed by the application that created it.

This attribute in a model queue definition does not indicate how the model
queue was defined, because model queues are always predefined.
Instead, the value of this attribute in the model queue is used to determine
the DefinitionType of each of the dynamic queues created from the
model queue definition using the MQOPEN call.

To determine the value of this attribute, use the MQIA_DEFINITION_TYPE
selector with the MQINQ call.

DefInputOpenOption (MQLONG)
Default input open option.

This is the default way in which the queue should be opened for input. It
applies if the MQOO_INPUT_AS_Q_DEF option is specified on the
MQOPEN call when the queue is opened. It is one of the following:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

The queue is opened for use with subsequent MQGET calls. The
call fails with reason code MQRC_OBJECT_IN_USE if the queue is
currently open by this or another application for input of any type
(MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE).

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

The queue is opened for use with subsequent MQGET calls. The
call can succeed if the queue is currently open by this or another
application with MQOO_INPUT_SHARED, but fails with reason code
MQRC_OBJECT_IN_USE if the queue is currently open with
MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the
MQIA_DEF_INPUT_OPEN_OPTION selector with the MQINQ call.

DistLists (MQLONG)
Distribution list support.

This indicates whether distribution-list messages can be placed on the
queue. The attribute is set by a message channel agent (MCA) to inform
the local queue manager whether the queue manager at the other end of
the channel supports distribution lists. This latter queue manager (called
the “partnering queue manager”) is the one which next receives the
message, after it has been removed from the local transmission queue by
a sending MCA.

 Chapter 4. Attributes of MQSeries objects 351

 Attributes—local and model queues

The attribute is set by the sending MCA whenever it establishes a
connection to the receiving MCA on the partnering queue manager. In this
way, the sending MCA can cause the local queue manager to place on the
transmission queue only messages which the partnering queue manager is
capable of processing correctly.

This attribute is primarily for use with transmission queues, but the
processing described is performed regardless of the usage defined for the
queue (see the Usage attribute).

The value is one of the following:

MQDL_SUPPORTED
Distribution lists supported.

This indicates that distribution-list messages can be stored on the
queue, and transmitted to the partnering queue manager in that form.
This reduces the amount of processing required to send the
message to multiple destinations.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

This indicates that distribution-list messages cannot be stored on the
queue, because the partnering queue manager does not support
distribution lists. If an application puts a distribution-list message,
and that message is to be placed on this queue, the queue manager
splits the distribution-list message and places the individual
messages on the queue instead. This increases the amount of
processing required to send the message to multiple destinations,
but ensures that the messages will be processed correctly by the
partnering queue manager.

To determine the value of this attribute, use the MQIA_DIST_LISTS
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

This attribute is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

HardenGetBackout (MQLONG)
Whether to maintain an accurate backout count.

For each message, a count is kept of the number of times that the
message is retrieved by an MQGET call within a unit of work, and that unit
of work subsequently backed out. This count is available in the
BackoutCount field in the message descriptor after the MQGET call has
completed.

The message backout count survives restarts of the queue manager.
However, to ensure that the count is accurate, information has to be
“hardened” (recorded on disk or other permanent storage device) each
time a message is retrieved by an MQGET call within a unit of work for
this queue. If this is not done, and a failure of the queue manager occurs
together with backout of the MQGET call, the count may or may not be
incremented.

Hardening information for each MQGET call within a unit of work,
however, imposes a performance overhead, and the HardenGetBackout

352 MQSeries Application Programming Reference

 Attributes—local and model queues

attribute should be set to MQQA_BACKOUT_HARDENED only if it is
essential that the count is accurate.

| On OpenVMS, OS/2, OS/400, Tandem NSK, UNIX systems, and Windows
| NT, the message backout count is always hardened, regardless of the

setting of this attribute.

The following values are possible:

MQQA_BACKOUT_HARDENED
Backout count remembered.

Hardening is used to ensure that the backout count for messages on
this queue is accurate.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

Hardening is not used to ensure that the backout count for messages
on this queue is accurate. The count may therefore be lower than it
should be.

To determine the value of this attribute, use the
MQIA_HARDEN_GET_BACKOUT selector with the MQINQ call.

IndexType (MQLONG)
Index type.

This specifies the type of index that the queue manager maintains in order
to speed MQGET operations on the queue. No single value is optimal for
all queues – it depends on how the messages on the queue are retrieved
by the application.

The value is one of the following:

MQIT_NONE
No index.

No index is maintained by the queue manager for this queue. This is
the value that should be used for queues which are usually
processed sequentially, that is, without using any selection criteria on
the MQGET call.

MQIT_MSG_ID
Queue is indexed using message identifiers.

The queue manager maintains an index that uses the message
identifiers of the messages on the queue. This is the value that
should be used for queues where the application usually retrieves
messages using the message identifier as the selection criterion on
the MQGET call (that is, the application usually specifies a value
other than MQMI_NONE for the MsgId field in the MQMD structure).

MQIT_CORREL_ID
Queue is indexed using correlation identifiers.

The queue manager maintains an index that uses the correlation
identifiers of the messages on the queue. This is the value that
should be used for queues where the application usually retrieves
messages using the correlation identifier as the selection criterion on
the MQGET call (that is, the application usually specifies a value

 Chapter 4. Attributes of MQSeries objects 353

 Attributes—local and model queues

other than MQCI_NONE for the CorrelId field in the MQMD
structure).

Applications can retrieve messages from the queue regardless of the value
of this attribute; its purpose is merely to improve performance in those
situations where the application processes the queue in one of the ways
described above.

To determine the value of this attribute, use the MQIA_INDEX_TYPE
selector with the MQINQ call.

This attribute is supported only on MVS/ESA. On other platforms retrieval
optimization may be provided, but it is not controlled by an attribute.

InitiationQName (MQCHAR48)
Name of initiation queue.

This is the name of a queue defined on the local queue manager; the
queue must be of type MQQT_LOCAL. The queue manager sends a
trigger message to the initiation queue when application start-up is
required as a result of a message arriving on the queue to which this
attribute belongs. The initiation queue must be monitored by a trigger
monitor application which will start the appropriate application after receipt
of the trigger message.

To determine the value of this attribute, use the
MQCA_INITIATION_Q_NAME selector with the MQINQ call. The length of
this attribute is given by MQ_Q_NAME_LENGTH.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

MaxMsgLength (MQLONG)
Maximum message length in bytes.

This is the maximum length of the application message data that can exist
in each message on the queue. The MaxMsgLength local-queue attribute
can be set independently of the MaxMsgLength queue-manager attribute,
and the longest physical message that can be placed on a queue is the
lesser of those two values. An attempt to place on the queue a message
that is too long fails with reason code:

� MQRC_MSG_TOO_BIG_FOR_Q if the message to too big for the
queue

� MQRC_MSG_TOO_BIG_FOR_Q_MGR if the message to too big for
the queue manager, but not too big for the queue

The value of this attribute is greater than or equal to zero. The upper limit
is determined by the environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, MVS/ESA, OS/400, Tandem NSK, UNIX systems not
listed above, 16-bit Windows, and 32-bit Windows, the maximum
message length is 4 MB (4 194 304 bytes).

For more information, see the BufferLength parameter described in
“MQPUT – Put message” on page 313.

354 MQSeries Application Programming Reference

 Attributes—local and model queues

To determine the value of this attribute, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

MaxQDepth (MQLONG)
Maximum queue depth.

This is the defined upper limit for the number of physical messages that
can exist on the queue at any one time. An attempt to put a message on
a queue that already contains MaxQDepth messages fails with reason code
MQRC_Q_FULL.

Note: Unit-of-work processing and the segmentation of messages can
both cause the actual number of physical messages on the queue
to exceed MaxQDepth. However, this does not affect the
retrievability of the messages – all messages on the queue can be
retrieved using the MQGET call in the normal way.

The value of this attribute is zero or greater. The upper limit is determined
by the environment:

| � On OpenVMS, OS/2, OS/400, Tandem NSK, UNIX systems, and
Windows NT, the value cannot exceed 640 000.

Note: It is possible for the storage space available to the queue to be
exhausted even if there are fewer than MaxQDepth messages on
the queue.

To determine the value of this attribute, use the MQIA_MAX_Q_DEPTH
selector with the MQINQ call.

MsgDeliverySequence (MQLONG)
Message delivery sequence.

This determines the order in which messages are returned to the
application by the MQGET call:

MQMDS_PRIORITY
Messages are returned in priority order.

This means that an MQGET call will return the highest-priority
message that satisfies the selection criteria specified on the call.
Within each priority level, messages are returned in FIFO order (first
in, first out).

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

This means that an MQGET call will return the first message that
satisfies the selection criteria specified on the call, regardless of
priority.

If the relevant attributes are changed while there are messages on the
queue, the delivery sequence is as follows:

The order in which messages are returned by the MQGET call is
determined by the values of the MsgDeliverySequence and
DefPriority attributes in force for the queue at the time the message
arrives on the queue:

 Chapter 4. Attributes of MQSeries objects 355

 Attributes—local and model queues

� If MsgDeliverySequence is MQMDS_FIFO when the message
arrives, the message is placed on the queue as though its priority
were DefPriority.

� If MsgDeliverySequence is MQMDS_PRIORITY when the message
arrives, the message is placed on the queue at the place
appropriate to priority given by the Priority field in the message
descriptor.

If the value of the MsgDeliverySequence attribute is subsequently
changed while there are messages on the queue, the order of the
messages on the queue is not changed. This does not affect the
value of the Priority field in the MQMD, which retains the value it had
when the message was first put.

This means that if the value of the DefPriority attribute is changed,
messages will not necessarily be delivered in FIFO order, even though
the MsgDeliverySequence attribute is set to MQMDS_FIFO; those that
were placed on the queue at the higher priority are delivered first.

To determine the value of this attribute, use the
MQIA_MSG_DELIVERY_SEQUENCE selector with the MQINQ call.

OpenInputCount (MQLONG)
Number of opens for input.

This is the number of handles that are currently valid for removing
messages from the queue by means of the MQGET call. It is the total
number of such handles known to the local queue manager.

The count includes handles where an alias queue which resolves to this
queue was opened for input. The count does not include handles where
the queue was opened for action(s) which did not include input (for
example, a queue opened only for browse).

The value of this attribute fluctuates as the queue manager operates.

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions
using the MQOPEN call.

To determine the value of this attribute, use the
MQIA_OPEN_INPUT_COUNT selector with the MQINQ call.

OpenOutputCount (MQLONG)
Number of opens for output.

This is the number of handles that are currently valid for adding messages
to the queue by means of the MQPUT call. It is the total number of such
handles known to the local queue manager; it does not include opens for
output that were performed for this queue at remote queue managers.

The count includes handles where an alias queue which resolves to this
queue was opened for output. The count does not include handles where
the queue was opened for action(s) which did not include output (for
example, a queue opened only for inquire).

The value of this attribute fluctuates as the queue manager operates.

356 MQSeries Application Programming Reference

 Attributes—local and model queues

This attribute does not apply to model queues, but it does apply to the
dynamically-defined queues created from the model queue definitions
using the MQOPEN call.

To determine the value of this attribute, use the
MQIA_OPEN_OUTPUT_COUNT selector with the MQINQ call.

ProcessName (MQCHAR48)
Process name.

This is the name of a process object that is defined on the local queue
manager. The process object identifies a program that can service the
queue.

To determine the value of this attribute, use the MQCA_PROCESS_NAME
selector with the MQINQ call. The length of this attribute is given by
MQ_PROCESS_NAME_LENGTH.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

QDepthHighEvent (MQLONG)
Controls whether Queue Depth High events are generated.

A Queue Depth High event indicates that an application has put a
message on a queue, and this has caused the number of messages on
the queue to become greater than or equal to the queue depth high
threshold (see the QDepthHighLimit attribute).

Note: The value of this attribute can change dynamically. See the
description of the Queue Depth High event for more details.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_Q_DEPTH_HIGH_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

QDepthHighLimit (MQLONG)
High limit for queue depth.

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

This event indicates that an application has put a message on a queue,
and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold. See the
QDepthHighEvent attribute.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and is greater than or equal to 0 and less than or
equal to 100. The default value is 80.

To determine the value of this attribute, use the
MQIA_Q_DEPTH_HIGH_LIMIT selector with the MQINQ call.

 Chapter 4. Attributes of MQSeries objects 357

 Attributes—local and model queues

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

QDepthLowEvent (MQLONG)
Controls whether Queue Depth Low events are generated.

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on
the queue to become less than or equal to the queue depth low threshold
(see the QDepthLowLimit attribute).

Note: The value of this attribute can change dynamically. See the
description of the Queue Depth Low event for more details.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_Q_DEPTH_LOW_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

QDepthLowLimit (MQLONG)
Low limit for queue depth.

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

This event indicates that an application has retrieved a message from a
queue, and this has caused the number of messages on the queue to
become less than or equal to the queue depth low threshold. See the
QDepthLowEvent attribute.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and is greater than or equal to 0 and less than or
equal to 100. The default value is 20.

To determine the value of this attribute, use the
MQIA_Q_DEPTH_LOW_LIMIT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

QDepthMaxEvent (MQLONG)
Controls whether Queue Full events are generated.

A Queue Full event indicates that a put to a queue has been rejected
because the queue is full, that is, the queue depth has already reached its
maximum value.

358 MQSeries Application Programming Reference

 Attributes—local and model queues

Note: The value of this attribute can change dynamically. See the
description of the Queue Full event for more details.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_Q_DEPTH_MAX_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

QServiceInterval (MQLONG)
Target for queue service interval.

The service interval used for comparison to generate Service Interval High
and Service Interval OK events. See the QServiceIntervalEvent attribute.

The value is in units of milliseconds, and is greater than or equal to zero,
and less than or equal to 999 999 999.

To determine the value of this attribute, use the
MQIA_Q_SERVICE_INTERVAL selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

QServiceIntervalEvent (MQLONG)
Controls whether Service Interval High or Service Interval OK events are
generated.

A Service Interval High event is generated when a check indicates that no
messages have been retrieved from the queue for at least the time
indicated by the QServiceInterval attribute.

A Service Interval OK event is generated when a check indicates that
messages have been retrieved from the queue within the time indicated by
the QServiceInterval attribute.

Note: The value of this attribute can change dynamically. See the
description of the Service Interval High and Service Interval OK
events for more details.

It is one of the following:

MQQSIE_HIGH
Queue Service Interval High events enabled.

� Queue Service Interval High events are enabled and
� Queue Service Interval OK events are disabled .

MQQSIE_OK
Queue Service Interval OK events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are enabled .

 Chapter 4. Attributes of MQSeries objects 359

 Attributes—local and model queues

MQQSIE_NONE
No queue service interval events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are also disabled .

To determine the value of this attribute, use the
MQIA_Q_SERVICE_INTERVAL_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

RetentionInterval (MQLONG)
Retention interval.

This is the period of time for which the queue should be retained. After
this time has elapsed, the queue is eligible for deletion.

The time is measured in hours, counting from the date and time when the
queue was created. The creation date and time of the queue are recorded
in the CreationDate and CreationTime attributes, respectively.

This information is provided to enable a housekeeping application or the
operator to identify and delete queues that are no longer required.

Note: The queue manager never takes any action to delete queues
based on this attribute, or to prevent the deletion of queues whose
retention interval has not expired; it is the user’s responsibility to
cause any required action to be taken.

A realistic retention interval should be used to prevent the accumulation of
permanent dynamic queues (see DefinitionType). However, this attribute
can also be used with predefined queues.

To determine the value of this attribute, use the
MQIA_RETENTION_INTERVAL selector with the MQINQ call.

Shareability (MQLONG)
Queue shareability.

This indicates whether the queue can be opened for input multiple times
concurrently. It is one of the following:

MQQA_SHAREABLE
Queue is shareable.

Multiple opens with the MQOO_INPUT_SHARED option are allowed.

MQQA_NOT_SHAREABLE
Queue is not shareable.

An MQOPEN call with the MQOO_INPUT_SHARED option is treated
as MQOO_INPUT_EXCLUSIVE.

To determine the value of this attribute, use the MQIA_SHAREABILITY
selector with the MQINQ call.

StorageClass (MQCHAR8)
Storage class for queue.

This is a user-defined name that defines the physical storage used to hold
the queue. In practice, a message is written to disk only if it needs to be
paged out of its memory buffer.

360 MQSeries Application Programming Reference

 Attributes—local and model queues

To determine the value of this attribute, use the
MQCA_STORAGE_CLASS selector with the MQINQ call. The length of
this attribute is given by MQ_STORAGE_CLASS_LENGTH.

This attribute is supported only on MVS/ESA.

TriggerControl (MQLONG)
Trigger control.

This controls whether trigger messages are written to an initiation queue,
in order to cause an application to be started to service the queue.

This is one of the following:

MQTC_OFF
Trigger messages not required.

No trigger messages are to be written for this queue. The value of
TriggerType is irrelevant in this case.

MQTC_ON
Trigger messages required.

Trigger messages are to be written for this queue, when the
appropriate trigger events occur.

To determine the value of this attribute, use the
MQIA_TRIGGER_CONTROL selector with the MQINQ call. To change
the value of this attribute, use the MQSET call.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

TriggerData (MQCHAR64)
Trigger data.

This is free-format data that the queue manager inserts into the trigger
message when a message arriving on this queue causes a trigger
message to be written to the initiation queue.

The content of this data is of no significance to the queue manager. It is
meaningful either to the trigger-monitor application which processes the
initiation queue, or to the application which is started by the trigger
monitor.

The character string cannot contain any nulls. It is padded to the right
with blanks if necessary.

To determine the value of this attribute, use the MQCA_TRIGGER_DATA
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call. The length of this attribute is given by
MQ_TRIGGER_DATA_LENGTH.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

TriggerDepth (MQLONG)
Trigger depth.

This is the number of messages that have to be on the queue before a
trigger message is written when TriggerType is set to MQTT_DEPTH.
The value of TriggerDepth is one or greater. This attribute is not used
otherwise.

 Chapter 4. Attributes of MQSeries objects 361

 Attributes—local and model queues

To determine the value of this attribute, use the MQIA_TRIGGER_DEPTH
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

TriggerMsgPriority (MQLONG)
Threshold message priority for triggers.

This is the message priority below which messages do not contribute to
the generation of trigger messages (that is, the queue manager ignores
these messages when deciding whether a trigger message should be
generated). TriggerMsgPriority can be in the range zero (lowest)
through MaxPriority (highest; see “Attributes for the queue manager” on
page 370); a value of zero causes all messages to contribute to the
generation of trigger messages.

To determine the value of this attribute, use the
MQIA_TRIGGER_MSG_PRIORITY selector with the MQINQ call. To
change the value of this attribute, use the MQSET call.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

TriggerType (MQLONG)
Trigger type.

This controls the conditions under which trigger messages are written as a
result of messages arriving on this queue.

It is one of the following:

MQTT_NONE
No trigger messages.

No trigger messages are written as a result of messages on this
queue. This has the same effect as setting TriggerControl to
MQTC_OFF.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

A trigger message is written whenever the queue changes from
empty (no messages on the queue) to not-empty (one or more
messages on the queue).

MQTT_EVERY
Trigger message for every message.

A trigger message is written every time a message arrives on the
queue.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

A trigger message is written when a certain number of messages
(TriggerDepth) are on the queue. After the trigger message has
been written, TriggerControl is set to MQTC_OFF to prevent further
triggering until it is explicitly turned on again.

362 MQSeries Application Programming Reference

 Attributes—remote queues

To determine the value of this attribute, use the MQIA_TRIGGER_TYPE
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

Usage (MQLONG)
Queue usage.

This indicates what the queue is used for. It is one of the following:

MQUS_NORMAL
Normal usage.

This is a queue that normal applications use when putting and
getting messages; the queue is not a transmission queue.

MQUS_TRANSMISSION
Transmission queue.

This is a queue used to hold messages destined for remote queue
managers. When a normal application sends a message to a remote
queue, the local queue manager stores the message temporarily on
the appropriate transmission queue in a special format. A message
channel agent then reads the message from the transmission queue,
and transports the message to the remote queue manager. For
more information about transmission queues, see the MQSeries
Application Programming Guide.

Only privileged applications can open a transmission queue for
MQOO_OUTPUT to put messages on it directly. Only utility
applications would normally be expected to do this. Care must be
taken that the message data format is correct (see “MQXQH –
Transmission queue header” on page 227), otherwise errors may
occur during the transmission process. Context is not passed or set
unless one of the MQPMO_ñ_CONTEXT context options is specified.

To determine the value of this attribute, use the MQIA_USAGE selector
with the MQINQ call.

Attributes for local definitions of remote queues
| The following table summarizes the attributes that are specific to the local
| definitions of remote queues. The attributes are described in alphabetic order.

A local definition of a remote queue is normally used to refer to a queue that exists
on a remote queue manager. It specifies the name of the queue manager at which
the queue exists, and optionally the name of the transmission queue to be used to
convey messages destined for that queue at that queue manager.

| Table 63. Attributes for local definitions of remote queues

| Attribute| Description| Page

| RemoteQMgrName| Name of remote queue manager| 364

| RemoteQName| Name of remote queue| 364

| XmitQName| Transmission queue name| 365

 Chapter 4. Attributes of MQSeries objects 363

 Attributes—remote queues

However, the same type of definition can also be used for the following purposes:

� Reply queue aliasing

The name of the definition is the name of a reply-to queue. For more
information, see the MQSeries Intercommunication book.

 � Queue-manager aliasing

The name of the definition is actually the alias name of a queue manager, not
the name of a queue. For more information, see the MQSeries
Intercommunication book.

RemoteQMgrName (MQCHAR48)
Name of remote queue manager.

The name of the remote queue manager on which the queue RemoteQName
is defined.

If an application opens the local definition of a remote queue,
RemoteQMgrName must not be blank and must not be the name of the local
queue manager. If XmitQName is blank, the local queue whose name is the

| same as RemoteQMgrName is used as the transmission queue. If there is no
| queue with the name RemoteQMgrName, the queue identified by the
| DefXmitQName queue-manager attribute is used.

If this definition is used for a queue-manager alias, RemoteQMgrName is the
name of the queue manager that is being aliased. It can be the name of
the local queue manager. Otherwise, if XmitQName is blank when the open
occurs, there must be a local queue whose name is the same as
RemoteQMgrName; this queue is used as the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the
queue manager which is to be the ReplyToQMgr.

Note: No validation is performed on the value specified for this attribute
when the queue definition is created or modified.

To determine the value of this attribute, use the
MQCA_REMOTE_Q_MGR_NAME selector with the MQINQ call.

The length of this attribute is given by MQ_Q_MGR_NAME_LENGTH.

RemoteQName (MQCHAR48)
Name of remote queue.

The name of the queue as it is known on the remote queue manager
RemoteQMgrName.

If an application opens the local definition of a remote queue, when the
open occurs RemoteQName must not be blank.

If this definition is used for a queue-manager alias definition, when the
open occurs RemoteQName must be blank.

If the definition is used for a reply-to alias, this name is the name of the
queue that is to be the ReplyToQ.

Note: No validation is performed on the value specified for this attribute
when the queue definition is created or modified.

To determine the value of this attribute, use the
MQCA_REMOTE_Q_NAME selector with the MQINQ call.

364 MQSeries Application Programming Reference

 Attributes—alias queues

The length of this attribute is given by MQ_Q_NAME_LENGTH.

XmitQName (MQCHAR48)
Transmission queue name.

If this attribute is nonblank when an open occurs, either for a remote
queue or for a queue-manager alias definition, it specifies the name of the
local transmission queue to be used for forwarding the message.

If XmitQName is blank, the local queue whose name is the same as
| RemoteQMgrName is used as the transmission queue. If there is no queue
| with the name RemoteQMgrName, the queue identified by the DefXmitQName
| queue-manager attribute is used.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the local queue manager.

It is also ignored if the definition is used as a reply-to queue alias
definition.

To determine the value of this attribute, use the MQCA_XMIT_Q_NAME
selector with the MQINQ call.

The length of this attribute is given by MQ_Q_NAME_LENGTH.

Attributes for alias queues
The following attribute is associated with alias queues:

BaseQName (MQCHAR48)
The queue name to which the alias resolves.

This is the name of a queue that is defined to the local queue manager.
(For more information on queue names, see the MQSeries Application
Programming Guide.) The queue is one of the following types:

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

To determine the value of this attribute, use the MQCA_BASE_Q_NAME
selector with the MQINQ call.

The length of this attribute is given by MQ_Q_NAME_LENGTH.

 Chapter 4. Attributes of MQSeries objects 365

 Attributes—namelists

Attributes for namelists (MVS/ESA only)
| Namelists are supported on MVS/ESA only. The following table summarizes the
| attributes that are specific to namelists. The attributes are described in alphabetic
| order.

NameCount (MQLONG)
Number of names in namelist.

This is greater than or equal to zero.

To determine the value of this attribute, use the MQIA_NAME_COUNT
selector with the MQINQ call.

NamelistDesc (MQCHAR64)
Namelist description.

This is a field that may be used for descriptive commentary; its value is
established by the definition process. The content of the field is of no
significance to the queue manager, but the queue manager may require
that the field contain only characters that can be displayed. It cannot
contain any null characters; if necessary, it is padded to the right with
blanks. In a DBCS installation, this field can contain DBCS characters
(subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_NAMELIST_DESC
selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_DESC_LENGTH.

NamelistName (MQCHAR48)
Namelist name.

This is the name of a namelist that is defined on the local queue manager.
For more information about namelist names, see the MQSeries Application
Programming Guide.

Each namelist has a name that is different from the names of other
namelists belonging to the queue manager, but may duplicate the names
of other queue manager objects of different types (for example, queues).

To determine the value of this attribute, use the MQCA_NAMELIST_NAME
selector with the MQINQ call.

The length of this attribute is given by MQ_NAMELIST_NAME_LENGTH.

| Table 64. Attributes for namelists

| Attribute| Description| Page

| NameCount| Number of names in namelist| 366

| NamelistDesc| Namelist description| 366

| NamelistName| Namelist name| 366

| Names| A list of NameCount names| 367

366 MQSeries Application Programming Reference

 Attributes—process definitions

Names (MQCHAR48×NameCount)
A list of NameCount names.

Each name is the name of a queue that is defined to the local queue
manager. For more information about queue names, see the MQSeries
Application Programming Guide.

To determine the value of this attribute, use the MQCA_NAMES selector
with the MQINQ call.

The length of each name in the list is given by MQ_Q_NAME_LENGTH.

Attributes for process definitions
| Process definitions are not supported on: 16-bit Windows, 32-bit Windows. The
| following table summarizes the attributes that are specific to process definitions.
| The attributes are described in alphabetic order.

ApplId (MQCHAR256)
Application identifier.

This is a character string that identifies the application to be started.

This information is for use by a trigger monitor application that processes
messages on the initiation queue; the information is sent to the initiation
queue as part of the trigger message.

The interpretation to be placed on this information is determined by the
trigger-monitor application. For example, ApplId could be:

� A program name (for MQAT_MVS applications)
� A CICS transaction ID (for MQAT_CICS applications)

On MVS/ESA, for a CICS application to be started using the CKTI
transaction, or an IMS application to be started using the CSQQTRMN
application, ApplId is a CICS or IMS transaction ID.

The character string cannot contain any nulls. It is padded to the right
with blanks if necessary.

To determine the value of this attribute, use the MQCA_APPL_ID selector
with the MQINQ call.

The length of this attribute is given by
MQ_PROCESS_APPL_ID_LENGTH.

| Table 65. Attributes for process definitions

| Attribute| Description| Page

| ApplId| Application identifier| 367

| ApplType| Application type| 368

| EnvData| Environment data| 368

| ProcessDesc| Process description| 369

| ProcessName| Process name| 369

| UserData| User data| 369

 Chapter 4. Attributes of MQSeries objects 367

 Attributes—process definitions

ApplType (MQLONG)
Application type.

This identifies the nature of the program to be started in response to the
receipt of a trigger message.

This information is for use by a trigger monitor application that processes
messages on the initiation queue; the information is sent to the initiation
queue as part of the trigger message.

ApplType can have any value, but the following values are recommended
for standard types; user-defined application types should be restricted to
values in the range MQAT_USER_FIRST through MQAT_USER_LAST:

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

MQAT_DOS
DOS client application.

MQAT_IMS
IMS application.

MQAT_MVS
MVS or TSO application.

| MQAT_NSK
| Tandem NSK application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_OS400
OS/400 application.

MQAT_UNIX
UNIX application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_USER_FIRST
Lowest value for user-defined application type.

MQAT_USER_LAST
Highest value for user-defined application type.

To determine the value of this attribute, use the MQIA_APPL_TYPE
selector with the MQINQ call.

EnvData (MQCHAR128)
Environment data.

This is a character string that contains environment-related information
pertaining to the application to be started.

This information is for use by a trigger monitor application that processes
messages on the initiation queue; the information is sent to the initiation
queue as part of the trigger message.

On MVS/ESA, for a CICS application started using the CKTI transaction, or
an IMS application started using the CSQQTRMN transaction, this
information is not used.

368 MQSeries Application Programming Reference

 Attributes—process definitions

The character string cannot contain any nulls. It is padded to the right
with blanks if necessary.

To determine the value of this attribute, use the MQCA_ENV_DATA
selector with the MQINQ call.

The length of this attribute is given by
MQ_PROCESS_ENV_DATA_LENGTH.

ProcessDesc (MQCHAR64)
Process description.

This is a field that may be used for descriptive commentary. The content
of the field is of no significance to the queue manager, but the queue
manager may require that the field contain only characters that can be
displayed. It cannot contain any null characters; if necessary, it is padded
to the right with blanks. In a DBCS installation, the field can contain
DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field
is sent to another queue manager.

To determine the value of this attribute, use the MQCA_PROCESS_DESC
selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_DESC_LENGTH.

ProcessName (MQCHAR48)
Process name.

This is the name of a process definition that is defined on the local queue
manager.

Each process definition has a name that is different from the names of
other process definitions belonging to the queue manager. But the name
of the process definition may be the same as the names of other queue
manager objects of different types (for example, queues).

To determine the value of this attribute, use the MQCA_PROCESS_NAME
selector with the MQINQ call.

The length of this attribute is given by MQ_PROCESS_NAME_LENGTH.

UserData (MQCHAR128)
User data.

This is a character string that contains user information pertaining to the
application to be started.

This information is for use by the trigger monitor application that processes
messages on the initiation queue, or the application which is started by the
trigger monitor. The information is sent to the initiation queue as part of
the trigger message.

The character string cannot contain any nulls. It is padded to the right
with blanks if necessary.

To determine the value of this attribute, use the MQCA_USER_DATA
selector with the MQINQ call.

 Chapter 4. Attributes of MQSeries objects 369

 Attributes—queue manager

The length of this attribute is given by
MQ_PROCESS_USER_DATA_LENGTH.

Attributes for the queue manager
| The following table summarizes the attributes that are specific to the queue
| manager. The attributes are described in alphabetic order.

| Table 66. Attributes for the queue manager

| Attribute| Description| Page

| AuthorityEvent| Controls whether authorization (Not Authorized)
| events are generated
| 371

| ChannelAutoDef| Controls whether automatic channel definition is
| permitted
| 371

| ChannelAutoDefEvent| Controls whether channel automatic-definition
| events are generated
| 371

| ChannelAutoDefExit| Name of user exit for automatic channel
| definition
| 371

| CodedCharSetId| Coded character set identifier| 372

| CommandInputQName| Command input queue name| 372

| CommandLevel| Command level| 373

| DeadLetterQName| Name of dead-letter queue| 374

| DefXmitQName| Default transmission queue name| 375

| DistLists| Distribution list support| 375

| InhibitEvent| Controls whether inhibit (Inhibit Get and Inhibit
| Put) events are generated
| 376

| LocalEvent| Controls whether local error events are
| generated
| 376

| MaxHandles| Maximum number of handles| 376

| MaxMsgLength| Maximum message length in bytes| 377

| MaxPriority| Maximum priority| 377

| MaxUncommittedMsgs| Maximum number of uncommitted messages
| within a unit of work
| 377

| PerformanceEvent| Controls whether performance-related events are
| generated
| 378

| Platform| Platform on which the queue manager is running| 378

| QMgrDesc| Queue manager description| 379

| QMgrName| Queue manager name| 379

| RemoteEvent| Controls whether remote error events are
| generated
| 380

| StartStopEvent| Controls whether start and stop events are
| generated
| 380

| SyncPoint| Syncpoint availability| 380

| TriggerInterval| Trigger-message interval| 380

370 MQSeries Application Programming Reference

 Attributes—queue manager

Some of these attributes are fixed for particular implementations, others can be
changed with the ALTER QMGR command. All can be inquired by opening a
special MQOT_Q_MGR object, and using the MQINQ call with the handle returned.
They can also all be displayed with the DISPLAY QMGR command.

AuthorityEvent (MQLONG)
Controls whether authorization (Not Authorized) events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_AUTHORITY_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute, and the attribute is always in the disabled state.

ChannelAutoDef (MQLONG)
Controls whether automatic channel definition is permitted.

This attribute controls the automatic definition of channels of type
MQCHT_RECEIVER and MQCHT_SVRCONN. It is one of the following:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

To determine the value of this attribute, use the
MQIA_CHANNEL_AUTO_DEF selector with the MQINQ call.

This attribute is supported in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

ChannelAutoDefEvent (MQLONG)
Controls whether channel automatic-definition events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_CHANNEL_AUTO_DEF_EVENT selector with the MQINQ call.

This attribute is supported in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

ChannelAutoDefExit (MQCHARn)
Name of user exit for automatic channel definition.

If this name is nonblank, and ChannelAutoDef has the value
MQCHAD_ENABLED, the exit is called each time that the queue manager

 Chapter 4. Attributes of MQSeries objects 371

 Attributes—queue manager

is about to create a channel definition. The exit can then do one of the
following:

� Allow the creation of the channel definition to proceed without change.

� Modify the attributes of the channel definition that is created.

� Suppress creation of the channel entirely.

Note: Both the length and the value of this attribute are environment
specific. See the introduction to the MQCD structure in the
MQSeries Intercommunication book for details of the value of this
attribute in various environments.

To determine the value of this attribute, use the
MQCA_CHANNEL_AUTO_DEF_EXIT selector with the MQINQ call.

This attribute is supported in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

CodedCharSetId (MQLONG)
Coded character set identifier.

This defines the character set used by the queue manager for all character
string fields defined in the MQI, including the names of objects, and queue
creation date and time. It must be the identifier of a single-byte character
set (SBCS). It does not apply to application data carried in the message.
The value depends on the environment:

� On MVS/ESA, the value is set from the system parameters when the
queue manager is started; the default value is 500. Refer to the
MQSeries for MVS/ESA System Management Guide for further
information.

� On OS/2 and Windows NT, the value is the primary CODEPAGE of the
user creating the queue manager.

� On OS/400, the value is that which is set in the environment when the
queue manager is first created.

| � On OpenVMS, Tandem NSK, and UNIX systems, the value is the
default CODESET for the “locale”. of the user creating the queue
manager.

To determine the value of this attribute, use the
MQIA_CODED_CHAR_SET_ID selector with the MQINQ call.

CommandInputQName (MQCHAR48)
Command input queue name.

This is the name of the command input queue defined on the local queue
manager. This is a queue to which applications can send commands, if
authorized to do so. The name of the queue depends on the environment:

� On MVS/ESA, the name of the queue is SYSTEM.COMMAND.INPUT,
and only MQSC commands can be sent to it. Refer to MQSeries
Command Reference for details of MQSC commands.

� In all other environments, the name of the queue is
SYSTEM.ADMIN.COMMAND.QUEUE, and only PCF commands can
be sent to it. However, an MQSC command can be sent to this queue
if the MQSC command is enclosed within a PCF command of type

372 MQSeries Application Programming Reference

 Attributes—queue manager

MQCMD_ESCAPE. Refer to MQSeries Programmable System
Management book for details of PCF commands.

To determine the value of this attribute, use the
MQCA_COMMAND_INPUT_Q_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_NAME_LENGTH.

CommandLevel (MQLONG)
Command Level.

This indicates the level of system control commands supported by the
queue manager. The value is one of the following:

MQCMDL_LEVEL_1
Level 1 of system control commands.

This value is returned by the following:

� MQSeries for AIX version 2 release 2
� MQSeries for MVS/ESA:

– version 1 release 1.1
– version 1 release 1.2
– version 1 release 1.3

� MQSeries for OS/2 version 2 release 0
� MQSeries for OS/400:

– version 2 release 3
– version 3 release 1
– version 3 release 6

� MQSeries for Windows version 2 release 0.

MQCMDL_LEVEL_101
MQSeries for Windows version 2 release 0.1.

MQCMDL_LEVEL_110
MQSeries for Windows version 2 release 1.

MQCMDL_LEVEL_114
MQSeries for MVS/ESA version 1 release 1.4.

MQCMDL_LEVEL_120
MQSeries for MVS/ESA version 1 release 2.0.

MQCMDL_LEVEL_200
MQSeries for Windows NT version 2 release 0.

MQCMDL_LEVEL_201
MQSeries for OS/2 version 2 release 0.1.

| MQCMDL_LEVEL_220
| Level 220 of system control commands.

| This value is returned by the following:

| � MQSeries for AT&T GIS UNIX version 2 release 2
| � MQSeries for SINIX and DC/OSx version 2 release 2
| � MQSeries for SunOS version 2 release 2
| � MQSeries for Tandem NonStop Kernel version 2 release 2

MQCMDL_LEVEL_221
Level 221 of system control commands.

This value is returned by the following:

 Chapter 4. Attributes of MQSeries objects 373

 Attributes—queue manager

� MQSeries for AIX version 2 release 2.1
| � MQSeries for Digital OpenVMS version 2 release 2

MQCMDL_LEVEL_320
MQSeries for OS/400 version 3 release 2, and version 3 release 7.

| MQCMDL_LEVEL_420
| MQSeries for AS/400 version 4 release 2.

MQCMDL_LEVEL_500
Level 500 of system control commands.

This value is returned by the following:

� MQSeries for AIX version 5 release 0
� MQSeries for HP-UX version 5 release 0
� MQSeries for OS/2 version 5 release 0
� MQSeries for Solaris version 5 release 0
� MQSeries for Windows NT version 5 release 0

The set of system control commands that corresponds to a particular value
of the CommandLevel attribute varies according to the value of the Platform
attribute; both must be used to decide which system control commands
are supported.

To determine the value of this attribute, use the
MQIA_COMMAND_LEVEL selector with the MQINQ call.

DeadLetterQName (MQCHAR48)
Name of dead-letter (undelivered-message) queue.

This is the name of a queue defined on the local queue manager.
Messages are sent to this queue if they cannot be routed to their correct
destination.

For example, messages are put on this queue when:

� A message arrives at a queue manager, destined for a queue that is
not yet defined on that queue manager

� A message arrives at a queue manager, but the queue for which it is
destined cannot receive it because, possibly:

– The queue is full
– Put requests are inhibited
– The sending node does not have authority to put messages on the

queue

Applications can also put messages on the dead-letter queue.

Report messages are treated in the same way as ordinary messages; if
the report message cannot be delivered to its destination queue (usually
the queue specified by the ReplyToQ field in the message descriptor of the
original message), the report message is placed on the dead-letter
(undelivered-message) queue.

Note: Messages that have passed their expiry time (see the Expiry field
described in “MQMD – Message descriptor” on page 98) are not
transferred to this queue when they are discarded. However, an
expiration report message (MQRO_EXPIRATION) is still generated
and sent to the ReplyToQ queue, if requested by the sending
application.

374 MQSeries Application Programming Reference

 Attributes—queue manager

Messages are not put on the dead-letter (undelivered-message) queue
when the application that issued the put request has been notified
synchronously of the problem by means of the reason code returned by
the MQPUT or MQPUT1 call (for example, a message put on a local
queue for which put requests are inhibited).

Messages on the dead-letter (undelivered-message) queue sometimes
have their application message data prefixed with an MQDLH structure.
This structure contains extra information that indicates why the message
was placed on the dead-letter (undelivered-message) queue. See
“MQDLH – Dead-letter header” on page 45 for more details of this
structure.

This queue must be a local queue, with a Usage attribute of
MQUS_NORMAL.

If a dead-letter (undelivered-message) queue is not supported by a queue
manager, or one has not been defined, the name is all blanks. All
MQSeries queue managers support a dead-letter (undelivered-message)
queue, but by default it is not defined.

If the dead-letter (undelivered-message) queue is not defined, or it is full,
or unusable for some other reason, a message which would have been
transferred to it by a message channel agent is retained instead on the
transmission queue.

To determine the value of this attribute, use the
MQCA_DEAD_LETTER_Q_NAME selector with the MQINQ call. The
length of this attribute is given by MQ_Q_NAME_LENGTH.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

DefXmitQName (MQCHAR48)
Default transmission queue name.

This is the name of the transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

If there is no default transmission queue, the name is entirely blank. The
initial value of this attribute is blank.

To determine the value of this attribute, use the
MQCA_DEF_XMIT_Q_NAME selector with the MQINQ call. The length of
this attribute is given by MQ_Q_NAME_LENGTH.

DistLists (MQLONG)
Distribution list support.

This indicates whether the local queue manager supports distribution lists
on the MQPUT and MQPUT1 calls. The value is one of the following:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

 Chapter 4. Attributes of MQSeries objects 375

 Attributes—queue manager

To determine the value of this attribute, use the MQIA_DIST_LISTS
selector with the MQINQ call. To change the value of this attribute, use
the MQSET call.

This attribute is supported in the following environments: AIX, DOS client,
HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

InhibitEvent (MQLONG)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the MQIA_INHIBIT_EVENT
selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

LocalEvent (MQLONG)
Controls whether local error events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the MQIA_LOCAL_EVENT
selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

MaxHandles (MQLONG)
Maximum number of handles.

This is the maximum number of open handles that any one task can use
| concurrently. Each successful MQOPEN call for a single queue (or for an
| object that is not a queue) uses one handle. That handle becomes
| available for reuse when the object is closed. However, when a
| distribution list is opened, each queue in the distribution list is allocated a
| separate handle, and so that MQOPEN call uses as many handles as
| there are queues in the distribution list. This must be taken into account
| when deciding on a suitable value for MaxHandles.

| The MQPUT1 call performs an MQOPEN call as part of its processing; as
| a result, MQPUT1 uses as many handles as MQOPEN would, but the
| handles are used only for the duration of the MQPUT1 call itself.

On MVS/ESA, “task” means a CICS task, an MVS task, or an IMS
dependent region.

The value is in the range 1 through 999 999 999. The default value is
determined by the environment:

376 MQSeries Application Programming Reference

 Attributes—queue manager

� On MVS/ESA, the default value is 100.

� In all other environments, the default value is 256.

To determine the value of this attribute, use the MQIA_MAX_HANDLES
selector with the MQINQ call.

MaxMsgLength (MQLONG)
Maximum message length in bytes.

This is the length of the longest physical message that can be handled by
the queue manager. The MaxMsgLength queue-manager attribute can be
set independently of the MaxMsgLength local-queue attribute, and the
longest physical message that can be placed on a queue is the lesser of
those two values.

| If the queue manager supports segmentation, it is possible for an
| application to put a message that is longer than the lesser of the two
| MaxMsgLength attributes, but only if the application specifies the
| MQMF_SEGMENTATION_ALLOWED flag. In these circumstances, the
| longest message that can be put depends on resource constraints
| imposed by the operating system or by the environment in which the
| application is running.

The lower limit for this attribute is 32 KB (32 768 bytes). The upper limit is
determined by the environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, MVS/ESA, OS/400, Tandem NSK, UNIX systems not
listed above, 16-bit Windows, and 32-bit Windows, the maximum
message length is 4 MB (4 194 304 bytes).

To determine the value of this attribute, use the
MQIA_MAX_MSG_LENGTH selector with the MQINQ call.

MaxPriority (MQLONG)
Maximum priority.

This is the maximum message priority supported by the queue manager.
Priorities range from zero (lowest) to MaxPriority (highest).

To determine the value of this attribute, use the MQIA_MAX_PRIORITY
selector with the MQINQ call.

MaxUncommittedMsgs (MQLONG)
Maximum number of uncommitted messages within a unit of work.

This is the maximum number of uncommitted messages that can exist
within a unit of work. The number of uncommitted messages is the sum of
the following since the start of the current unit of work:

� Messages put by the application with the MQPMO_SYNCPOINT
option

� Messages retrieved by the application with the MQGMO_SYNCPOINT
option

� Trigger messages and COA report messages generated by the queue
manager for messages put with the MQPMO_SYNCPOINT option

 Chapter 4. Attributes of MQSeries objects 377

 Attributes—queue manager

� COD report messages generated by the queue manager for messages
retrieved with the MQGMO_SYNCPOINT option

The following are not counted as uncommitted messages:

� Messages put or retrieved by the application outside a unit of work

� Trigger messages or COA/COD report messages generated by the
queue manager as a result of messages put or retrieved outside a unit
of work.

� Expiration report messages generated by the queue manager (even if
the call causing the expiration report message specified
MQGMO_SYNCPOINT)

� Event messages generated by the queue manager (even if the call
causing the event message specified MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT)

Note: Exception report messages are generated by the Message
Channel Agent (MCA), or by the application, and so are treated in
the same way as ordinary messages put or retrieved by the
application.

The lower limit for this attribute is 1; the upper limit is 999 999 999.

To determine the value of this attribute, use the
MQIA_MAX_UNCOMMITTED_MSGS selector with the MQINQ call.

On MVS/ESA, this attribute is not supported.

PerformanceEvent (MQLONG)
Controls whether performance-related events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_PERFORMANCE_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

Platform (MQLONG)
Platform on which the queue manager is running.

This indicates the architecture of the platform on which the queue
manager is running:

MQPL_AIX
AIX (same value as MQPL_UNIX).

MQPL_MVS
MVS/ESA.

| MQPL_NSK
| Tandem NonStop Kernel.

378 MQSeries Application Programming Reference

 Attributes—queue manager

MQPL_OS2
OS/2.

MQPL_OS400
OS/400.

MQPL_UNIX
UNIX systems.

| MQPL_VMS
| OpenVMS.

MQPL_WINDOWS
16-bit Windows.

MQPL_WINDOWS_NT
Windows NT or 32-bit Windows.

To determine the value of this attribute, use the MQIA_PLATFORM
selector with the MQINQ call.

QMgrDesc (MQCHAR64)
Queue manager description.

This is a field that may be used for descriptive commentary. The content
of the field is of no significance to the queue manager, but the queue
manager may require that the field contain only characters that can be
displayed. It cannot contain any null characters; if necessary, it is padded
to the right with blanks. In a DBCS installation, this field can contain
DBCS characters (subject to a maximum field length of 64 bytes).

Note: If this field contains characters that are not in the queue manager’s
character set (as defined by the CodedCharSetId queue manager
attribute), those characters may be translated incorrectly if this field
is sent to another queue manager.

� On MVS/ESA, the default value is:

MQSeries for MVS/ESA Vx.y.z

| where x, y, and z are replaced by the version, release, and
| modification numbers, respectively.

| � In all other environments, the default value is blanks.

To determine the value of this attribute, use the MQCA_Q_MGR_DESC
selector with the MQINQ call. The length of this attribute is given by
MQ_Q_MGR_DESC_LENGTH.

QMgrName (MQCHAR48)
Queue manager name.

This is the name of the local queue manager, that is, the name of the
queue manager to which the application is connected.

The first 12 characters of the name are used to construct a unique
message identifier (see the MsgId field described in “MQMD – Message
descriptor” on page 98). Queue managers that can intercommunicate
must therefore have names that differ in the first 12 characters, in order for
message identifiers to be unique in the queue-manager network.

On MVS/ESA, the name is the same as the subsystem name, which is
limited to 4 nonblank characters.

 Chapter 4. Attributes of MQSeries objects 379

 Attributes—queue manager

To determine the value of this attribute, use the MQCA_Q_MGR_NAME
selector with the MQINQ call. The length of this attribute is given by
MQ_Q_MGR_NAME_LENGTH.

RemoteEvent (MQLONG)
Controls whether remote error events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the MQIA_REMOTE_EVENT
selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

StartStopEvent (MQLONG)
Controls whether start and stop events are generated.

It is one of the following:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

To determine the value of this attribute, use the
MQIA_START_STOP_EVENT selector with the MQINQ call.

On MVS/ESA, the MQINQ call cannot be used to determine the value of
this attribute.

SyncPoint (MQLONG)
Syncpoint availability.

This indicates whether the local queue manager supports units of work
and syncpointing with the MQGET, MQPUT, and MQPUT1 calls.

MQSP_AVAILABLE
Units of work and syncpointing available.

MQSP_NOT_AVAILABLE
Units of work and syncpointing not available.

On MVS/ESA and OS/400, this value is never returned.

To determine the value of this attribute, use the MQIA_SYNCPOINT
selector with the MQINQ call.

TriggerInterval (MQLONG)
Trigger-message interval.

This is a time interval (in milliseconds) used to restrict the number of
trigger messages. This is relevant only when the TriggerType is
MQTT_FIRST. In this case trigger messages are normally generated only
when a suitable message arrives on the queue, and the queue was
previously empty. Under certain circumstances, however, an additional

380 MQSeries Application Programming Reference

 Attributes—queue manager

trigger message can be generated with MQTT_FIRST triggering even if
the queue was not empty. These additional trigger messages are not
generated more often than every TriggerInterval milliseconds.

For more information on triggering, see the MQSeries Application
Programming Guide.

The value is not less than 0 and not greater than 999 999 999. The default
value is 999 999 999.

To determine the value of this attribute, use the
MQIA_TRIGGER_INTERVAL selector with the MQINQ call.

This attribute is not supported in the following environments: 16-bit
Windows, 32-bit Windows.

 Chapter 4. Attributes of MQSeries objects 381

 Attributes—queue manager

382 MQSeries Application Programming Reference

 Return codes

 Chapter 5. Return codes

This book contains the return codes associated with the API. The return codes
associated with Programmable Command Format (PCF) commands are listed in
the MQSeries Programmable System Management book.

For each call, a completion code and a reason code are returned by the queue
manager or by an exit routine, to indicate the success or failure of the call.

Applications must not depend upon errors being checked for in a specific order,
except where specifically noted. If more than one completion code or reason code
could arise from a call, the particular error reported depends on the implementation.

 Completion code
The completion code parameter (CompCode) allows the caller to see quickly whether
the call completed successfully, completed partially, or failed.

The following is a list of completion codes, with more detail than is given in the call
descriptions:

MQCC_OK
Successful completion.

The call completed fully; all output parameters have been set. The Reason
parameter always has the value MQRC_NONE in this case.

MQCC_WARNING
Warning (partial completion).

The call completed partially. Some output parameters may have been set in
addition to the CompCode and Reason output parameters. The Reason
parameter gives additional information about the partial completion.

MQCC_FAILED
Call failed.

The processing of the call did not complete, and the state of the queue
manager is normally unchanged; exceptions are specifically noted. The
CompCode and Reason output parameters have been set; other parameters are
unchanged, except where noted.

The reason may be a fault in the application program, or it may be a result of
some situation external to the program, for example the application’s authority
may have been revoked. The Reason parameter gives additional information
about the error.

 Reason code
The reason code parameter (Reason) is a qualification to the completion code
parameter (CompCode).

If there is no special reason to report, MQRC_NONE is returned. A successful call
returns MQCC_OK and MQRC_NONE.

 Copyright IBM Corp. 1994,1998 383

 Return codes

If the completion code is either MQCC_WARNING or MQCC_FAILED, the queue
manager always reports a qualifying reason; details are given under each call
description.

Where user exit routines set completion codes and reasons, they should adhere to
these rules.

Any special reason values defined by user exits should be less than zero, to ensure
that they do not conflict with values defined by the queue manager. Exits can set
reasons already defined by the queue manager, where these are appropriate.

Reason codes also occur in:

� The Reason field of the MQDLH structure (for messages on the dead-letter
queue)

� The Feedback field of the MQMD structure (message descriptor)

The following is a list of reason codes, in alphabetic order, with more detail than is
given in the call descriptions. See “MQRC_ñ (Reason code)” on page 470 for a list
of reason codes in numeric order.

MQRC_ADAPTER_CONN_LOAD_ERROR
(2129, X'851') Unable to load adapter connection module.

On an MQCONN call, the connection handling module (CSQBCON for batch
and CSQQCONN for IMS) could not be loaded, so the adapter could not link
to it.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified in the batch application program execution JCL, and in the
MQSeries startup JCL.

MQRC_ADAPTER_CONV_LOAD_ERROR
(2133, X'855') Unable to load data conversion services modules.

On an MQGET call, the adapter (batch or IMS) could not load the data
conversion services modules.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified in the batch application program execution JCL, and in the
MQSeries startup JCL.

MQRC_ADAPTER_DEFS_ERROR
(2131, X'853') Adapter subsystem definition module not valid.

On an MQCONN call, the subsystem definition module (CSQBDEFV for batch
and CSQQDEFV for IMS) does not contain the required control block
identifier.

This reason code occurs only on MVS/ESA.

Corrective action: Check your library concatenation. If this is correct, check
that the CSQBDEFV or CSQQDEFV module contains the required subsystem
ID.

384 MQSeries Application Programming Reference

 Return codes

MQRC_ADAPTER_DEFS_LOAD_ERROR
(2132, X'854') Unable to load adapter subsystem definition module.

On an MQCONN call, the subsystem definition module (CSQBDEFV for batch
and CSQQDEFV for IMS) could not be loaded.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified in the application program execution JCL, and in the MQSeries
startup JCL.

MQRC_ADAPTER_DISC_LOAD_ERROR
(2138, X'85A') Unable to load adapter disconnection module.

On an MQDISC call, the disconnect handling module (CSQBDSC for batch
and CSQQDISC for IMS) could not be loaded, so the adapter could not link to
it.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified in the application program execution JCL, and in the MQSeries
startup JCL.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

MQRC_ADAPTER_NOT_AVAILABLE
(2204, X'89C') Adapter not available.

This is issued only for CICS applications, if any call is issued and the CICS
adapter (a Task Related User Exit) has been disabled, or has not been
enabled.

This reason code occurs only on MVS/ESA.

Corrective action: The application should tidy up and terminate.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

MQRC_ADAPTER_SERV_LOAD_ERROR
(2130, X'852') Unable to load adapter service module.

On an API call, the batch adapter could not load the API service module
CSQBSRV, and so could not link to it.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified in the batch application program execution JCL, and in the
MQSeries startup JCL.

MQRC_ADAPTER_STORAGE_SHORTAGE
(2127, X'84F') Insufficient storage for adapter.

On an MQCONN call, the adapter was unable to acquire storage.

This reason code occurs only on MVS/ESA.

Corrective action: Notify the system programmer.

 Chapter 5. Return codes 385

 Return codes

The system programmer should determine why the system is short on
storage, and take appropriate action, for example, increase the region size on
the step or job card.

MQRC_ALIAS_BASE_Q_TYPE_ERROR
(2001, X'7D1') Alias base queue not a valid type.

An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
destination, but the BaseQName in the alias queue definition resolves to a
queue that is not a local queue, or local definition of a remote queue.

Corrective action: Correct the queue definitions.

MQRC_ALREADY_CONNECTED
(2002, X'7D2') Application already connected.

An MQCONN call was issued, but the application is already connected to the
queue manager.

On MVS/ESA, this reason code occurs for batch and IMS applications only; it
does not occur for CICS applications.

Corrective action: None. The Hconn parameter returned has the same value
as was returned for the previous MQCONN call.

Note: An MQCONN call that returns this reason code does not mean that an
additional MQDISC call must be issued in order to disconnect from the
queue manager. If this reason code is returned because the
application (or portion thereof) has been called in a situation where the
connect has already been done, a corresponding MQDISC should not
be issued, because this will cause the application that issued the
original MQCONN call to be disconnected as well.

MQRC_ANOTHER_Q_MGR_CONNECTED
(2103, X'837') Another queue manager already connected.

An MQCONN call was issued, but the thread or process is already connected
to a different queue manager. The thread or process can connect to only one
queue manager at a time.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Use the MQDISC call to disconnect from the queue
manager which is already connected, and then issue the MQCONN call to
connect to the new queue manager.

Note: Disconnecting from the existing queue manager will close any queues
which are currently open; it is recommended that any uncommitted
units of work should be committed or backed out before the MQDISC
call is used.

MQRC_API_EXIT_LOAD_ERROR
(2183, X'887') Unable to load API crossing exit.

The API crossing exit module could not be linked.

If this reason is returned when the API crossing exit is invoked after the call
has been executed, the call itself may have executed correctly.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the correct library concatenation has been
specified, and that the API crossing exit module is executable and correctly
named.

386 MQSeries Application Programming Reference

 Return codes

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

MQRC_ASID_MISMATCH
(2157, X'86D') Primary and home ASIDs differ.

On any API call, the caller’s primary ASID was found to be different from the
home ASID.

This reason code occurs only on MVS/ESA.

Corrective action: Correct the application. MQM calls cannot be issued in
cross-memory mode.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

MQRC_BACKED_OUT
(2003, X'7D3') Unit of work encountered fatal error or backed out.

This occurs in the following cases:

� On an MQCMIT or MQDISC call, when the commit operation has failed
and the unit of work has been backed out. All protected resources have
been returned to their state at the start of the unit of work. The MQCMIT
call returns completion code MQCC_FAILED; the MQDISC call returns
completion code MQCC_WARNING.

On MVS/ESA, this reason code occurs only for batch applications.

� On an MQGET, MQPUT, or MQPUT1 call that is operating within a unit of
work, when the unit of work has already encountered an error that
prevents the unit of work being committed (for example, when the log
space is exhausted). The application must issue the appropriate call to
back out the unit of work. For a unit of work coordinated by the queue
manager, this call is the MQBACK call, although the MQCMIT call has the
same effect in these circumstances.

On MVS/ESA this case does not occur.

On OS/400, this reason code does not occur.

Corrective action: Check the returns from previous calls to the queue
manager. For example, a previous MQPUT call may have failed.

MQRC_BO_ERROR
(2134, X'856') Begin-options structure not valid.

On an MQBEGIN call, the begin-options structure MQBO is not valid, for one
of the following reasons:

� The StrucId mnemonic eye-catcher is not MQBO_STRUC_ID.

� The Version field is not MQBO_VERSION_1.

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the pointer points to read-only storage.

 Chapter 5. Return codes 387

 Return codes

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQBO structure. Ensure that
required input fields are set correctly.

MQRC_BRIDGE_STARTED
(2125, X'84D') Bridge started.

The IMS bridge has been started.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_BRIDGE_STOPPED
(2126, X'84E') Bridge stopped.

The IMS bridge has been stopped.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_BUFFER_ERROR
(2004, X'7D4') Buffer parameter not valid.

Buffer is not valid. The parameter pointer is not valid, or points to read-only
storage for MQGET calls, or to storage that cannot be accessed for the entire
length specified by BufferLength. (It is not always possible to detect
parameter pointers that are not valid; if it is not detected, unpredictable results
occur.)

Corrective action: Correct the parameter.

MQRC_BUFFER_LENGTH_ERROR
(2005, X'7D5') Buffer length parameter not valid.

BufferLength or the parameter pointer is not valid. (It is not always possible
to detect an invalid parameter pointer; if not detected, unpredictable results
occur.)

This reason can also be returned to an MQ client program on the MQCONN
call if the negotiated maximum message size for the channel is smaller than
the fixed part of any call structure.

Corrective action: Specify a nonnegative value.

MQRC_CALL_IN_PROGRESS
(2219, X'8AB') MQI call reentered before previous call complete.

The application issued an MQI call whilst another MQI call was already being
processed for that connection. Only one call per application connection can
be processed at a time.

Concurrent calls can arise only in certain specialized situations, such as in an
exit invoked as part of the processing of an MQI call. For example, the
data-conversion exit may be invoked as part of the processing of the MQGET
call.

� On MVS/ESA, concurrent calls can arise only with batch or IMS
applications; an example is when a subtask ends while an MQI call is in
progress (for example, an MQGET which is waiting), and there is an
end-of-task exit routine that issues another MQI call.

388 MQSeries Application Programming Reference

 Return codes

� On OS/2, Windows client, and Windows NT concurrent calls can also
arise if an MQI call is issued in response to a user message while another
MQI call is in progress.

Corrective action: Ensure that an MQI call cannot be issued while another one
is active. Do not issue MQI calls from within a data-conversion exit.

On MVS/ESA, if you want to provide a subtask to allow an application that is
waiting for a message to arrive to be canceled, use MQGET with
MQGMO_SET_SIGNAL, rather than with MQGMO_WAIT, to wait for the
message.

MQRC_CFH_ERROR
(2235, X'8BB') PCF header structure not valid.

On an MQPUT or MQPUT1 call, the PCF header structure MQCFH in the
message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFH structure. Ensure that
the fields are set correctly.

MQRC_CFIL_ERROR
(2236, X'8BC') PCF integer list parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF integer list parameter structure
MQCFIL in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFIL structure. Ensure that
the fields are set correctly.

MQRC_CFIN_ERROR
(2237, X'8BD') PCF integer parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF integer parameter structure
MQCFIN in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFIN structure. Ensure that
the fields are set correctly.

MQRC_CFSL_ERROR
(2238, X'8BE') PCF string list parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF string list parameter structure
MQCFSL in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFSL structure. Ensure
that the fields are set correctly.

MQRC_CFST_ERROR
(2239, X'8BF') PCF string parameter structure not valid.

On an MQPUT or MQPUT1 call, the PCF string parameter structure MQCFST
in the message data is not valid.

 Chapter 5. Return codes 389

 Return codes

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCFST structure. Ensure
that the fields are set correctly.

MQRC_CHANNEL_ACTIVATED
(2295, X'8F7') Channel activated.

This condition is detected when a channel which has been waiting to become
active, and for which a Channel Not Activated event has been generated, is
now able to become active because an active slot has been released by
another channel.

This event is not generated for a channel which is able to become active
without waiting for an active slot to be released.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHANNEL_AUTO_DEF_ERROR
(2234, X'8BA') Automatic channel definition failed.

This condition is detected when the automatic definition of a channel fails; this
may be because an error occurred during the definition process, or because
the channel automatic-definition exit inhibited the definition. Additional
information is returned in the event message indicating the reason for the
failure.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Examine the additional information returned in the event
message to determine the reason for the failure.

MQRC_CHANNEL_AUTO_DEF_OK
(2233, X'8B9') Automatic channel definition succeeded.

This condition is detected when the automatic definition of a channel is
successful. The channel is defined by the MCA.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHANNEL_CONV_ERROR
(2284, X'8EC') Channel conversion error.

This condition is detected when a channel is unable to do data conversion
and the MQGET call to get a message from the transmission queue resulted
in a data conversion error. The conversion reason code identifies the reason
for the failure.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHANNEL_NOT_ACTIVATED
(2296, X'8F8') Channel cannot be activated.

This condition is detected when a channel is required to become active, either
because it is starting or because it is about to make another attempt to
establish connection with its partner. However, it is unable to do so because

390 MQSeries Application Programming Reference

 Return codes

the limit on the number of active channels has been reached (see the
MaxActiveChannels parameter in the qm.ini file, or, for MVS/ESA see the
ACTCHL parameter in CSQXPARM). The channel waits until it is able to take
over an active slot released when another channel ceases to be active. At
that time a Channel Activated event is generated.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHANNEL_STARTED
(2282, X'8EA') Channel started.

One of the following has occurred:

� An operator has issued a Start Channel command.

� An instance of a channel has been successfully established.

This condition is detected when Initial Data negotiation is complete and
resynchronization has been performed where necessary such that
message transfer can proceed.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHANNEL_STOPPED
(2283, X'8EB') Channel stopped.

This condition is detected when the channel has been stopped. The reason
qualifier identifies the reasons for stopping.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_CHAR_ATTR_LENGTH_ERROR
(2006, X'7D6') Length of character attributes not valid.

CharAttrLength is negative (for MQINQ or MQSET calls), or is not large
enough to hold all selected attributes (MQSET calls only). This reason also
occurs if the parameter pointer is not valid. (It is not always possible to detect
an invalid parameter pointer; if not detected, unpredictable results occur.)

Corrective action: Specify a value large enough to hold the concatenated
strings for all selected attributes.

MQRC_CHAR_ATTRS_ERROR
(2007, X'7D7') Character attributes string not valid.

CharAttrs is not valid. The parameter pointer is not valid, or points to
read-only storage for MQINQ calls or to storage that is not as long as implied
by CharAttrLength. (It is not always possible to detect parameter pointers
that are not valid; if it is not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_CHAR_ATTRS_TOO_SHORT
(2008, X'7D8') Not enough space allowed for character attributes.

For MQINQ calls, CharAttrLength is not large enough to contain all of the
character attributes for which MQCA_ñ selectors are specified in the
Selectors parameter.

The call still completes, with the CharAttrs parameter string filled in with as
many character attributes as there is room for. Only complete attribute strings

 Chapter 5. Return codes 391

 Return codes

are returned: if there is insufficient space remaining to accommodate an
attribute in its entirety, that attribute and subsequent character attributes are
omitted. Any space at the end of the string not used to hold an attribute is
unchanged.

An attribute that represents a set of values (for example, the Names attribute)
is treated as a single entity—either all of its values are returned, or none.

Corrective action: Specify a large enough value, unless only a subset of the
values is needed.

| MQRC_CICS_BRIDGE_RESTRICTION
| (2187, X'88B') Requested function not supported by CICS bridge.

| It is not permitted to use the MQI from user transactions that are run in an
| MQSeries-CICS bridge environment where the bridge exit also uses the MQI.
| The MQI request fails. If this occurs in the bridge exit, it will result in a
| transaction abend. If it occurs in the user transaction, this may result in a
| transaction abend.

| This reason code occurs only on MVS/ESA.

| Corrective action: The transaction cannot be run using the MQSeries-CICS
| bridge. Refer to the appropriate CICS manual for information about
| restrictions in the MQSeries-CICS bridge environment.

MQRC_CICS_WAIT_FAILED
(2140, X'85C') Wait request rejected by CICS.

On any API call, the CICS adapter issued an EXEC CICS WAIT request, but
the request was rejected by CICS.

This reason code occurs only on MVS/ESA.

Corrective action: Examine the CICS trace data for actual response codes.
The most likely cause is that the task has been canceled by the operator or
by the system.

MQRC_CNO_ERROR
(2139, X'85B') Connect-options structure not valid.

On an MQCONNX call, the connect-options structure MQCNO is not valid, for
one of the following reasons:

� The StrucId mnemonic eye-catcher is not MQCNO_STRUC_ID.

� The Version field is not MQCNO_VERSION_1.

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the parameter pointer points to read-only storage.

This reason code occurs in the following environments: AIX, DOS client,
HP-UX, OS/2, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQCNO structure. Ensure that
required input fields are set correctly.

MQRC_COD_NOT_VALID_FOR_XCF_Q
(2106, X'83A') COD report option not valid for XCF queue.

An MQPUT or MQPUT1 call was issued, but the Report field in the message

392 MQSeries Application Programming Reference

 Return codes

descriptor MQMD specifies one of the MQRO_COD_ñ options and the target
queue is an XCF queue. MQRO_COD_ñ options cannot be specified for XCF
queues.

This reason code occurs only on MVS/ESA.

Corrective action: Remove the relevant MQRO_COD_ñ option.

MQRC_CONN_ID_IN_USE
(2160, X'870') Connection identifier already in use.

On an MQCONN call, the connection identifier assigned by MQSeries to the
connection between a CICS or IMS allied address space and the queue
manager conflicts with the connection identifier of another connected CICS or
IMS system. The connection identifier assigned is as follows:

� For CICS, the applid

� For IMS, the IMSID parameter on the IMSCTRL (sysgen) macro, or the
IMSID parameter on the execution parameter (EXEC card in IMS control
region JCL)

� For batch, the job name

� For TSO, the user ID

A conflict arises only if there are two CICS systems, two IMS systems, or one
each of CICS and IMS, having the same connection identifiers. Batch and
TSO connections need not have unique identifiers.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the naming conventions used in different
systems that might connect to MQSeries do not conflict.

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

Connection to the queue manager has been lost. This can occur because the
queue manager has ended. If the call is an MQGET call with the
MQGMO_WAIT option, the wait has been canceled.

If this reason occurs with MQCONN, the queue manager may have been
stopped and restarted, and now be available again. All previous handles are
now invalid, but the application can attempt to reestablish connection by
issuing MQCONN again.

Note that for MQ client applications it is possible that the call did complete
successfully, even though this reason code is returned with a CompCode of
MQCC_FAILED.

Corrective action: Applications can attempt to reestablish connection by
issuing the MQCONN call. It may be necessary to poll until a successful
response is received.

On MVS/ESA, for CICS applications, it is not necessary to issue the
MQCONN call, because CICS applications are connected automatically.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

 Chapter 5. Return codes 393

 Return codes

MQRC_CONNECTION_NOT_AUTHORIZED
(2217, X'8A9') Not authorized for connection.

This reason code arises only for CICS applications. For these, connection to
the queue manager is done by the adapter. If that connection fails because
the CICS subsystem is not authorized to connect to the queue manager, this
reason code is issued whenever an application running under that subsystem
subsequently issues an MQI call.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the subsystem is authorized to connect to the
queue manager.

MQRC_CONNECTION_QUIESCING
(2202, X'89A') Connection quiescing.

This occurs only for CICS and IMS applications.

It is issued if the connection to the queue manager is in quiescing state, and
an application attempts to connect to the queue manager, either with
MQCONN or by attempting to open a queue when no connection is
established.

It is also issued if the connection to the queue manager is in quiescing state,
and an application issues one of the following calls:

� MQOPEN, with MQOO_FAIL_IF_QUIESCING included in the Options
parameter

� MQGET, with MQGMO_FAIL_IF_QUIESCING included in the Options
field of the GetMsgOpts parameter

� MQPUT or MQPUT1, with MQPMO_FAIL_IF_QUIESCING included in the
Options field of the PutMsgOpts parameter

This reason code occurs only on MVS/ESA.

Corrective action: The application should tidy up and terminate.

MQRC_CONNECTION_STOPPING
(2203, X'89B') Connection shutting down.

This is issued only for CICS and IMS applications, if any call is issued when
the connection to the queue manager is shutting down. If the call is an
MQGET call with the MQGMO_WAIT option, the wait has been canceled. No
more message-queuing calls can be issued.

Note that the MQRC_CONNECTION_BROKEN reason may be returned
instead if, as a result of system scheduling factors, the queue manager shuts
down before the call completes.

This reason code occurs only on MVS/ESA.

Corrective action: The application should tidy up and terminate.

Applications should ensure that any uncommitted updates are backed out.
Any unit of work that is coordinated by the queue manager is backed out
automatically.

MQRC_CONTEXT_HANDLE_ERROR
(2097, X'831') Queue handle referred to does not save context.

On an MQPUT or MQPUT1 call, MQPMO_PASS_IDENTITY_CONTEXT or
MQPMO_PASS_ALL_CONTEXT was specified, but the handle specified in

394 MQSeries Application Programming Reference

 Return codes

the Context field of the PutMsgOpts parameter is either not a valid queue
handle, or it is a valid queue handle but the queue was not opened with
MQOO_SAVE_ALL_CONTEXT.

Corrective action: Specify MQOO_SAVE_ALL_CONTEXT when the queue
referred to is opened.

MQRC_CONTEXT_NOT_AVAILABLE
(2098, X'832') Context not available for queue handle referred to.

On an MQPUT or MQPUT1 call, MQPMO_PASS_IDENTITY_CONTEXT or
MQPMO_PASS_ALL_CONTEXT was specified, but the queue handle
specified in the Context field of the PutMsgOpts parameter has no context
associated with it. This arises if no message has yet been successfully
retrieved with the queue handle referred to, or if the last successful MQGET
call was a browse.

This condition does not arise if the message that was last retrieved had no
context associated with it.

On MVS/ESA, if a message is received by a message channel agent which is
putting messages with the authority of the user identifier in the message, this
code is returned in the Feedback field of an exception report if the message
has no context associated with it.

Corrective action: Ensure that a successful nonbrowse get call has been
issued with the queue handle referred to.

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for application buffer.

On an MQGET call, with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the message data expanded during data conversion
and exceeded the size of the buffer provided by the application. However,
the message had already been removed from the queue because prior to
conversion the message data could be accommodated in the application
buffer without truncation.

To avoid data being lost, the message is returned unconverted, with the
CompCode parameter of the MQGET call set to MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

This reason can also occur on the MQXCNVC call, when the TargetBuffer
parameter is too small too accommodate the converted string, and the string
has been truncated to fit in the buffer. The length of valid data returned is
given by the DataLength parameter; in the case of a DBCS string or mixed
SBCS/DBCS string, this length may be less than the length of TargetBuffer.

Corrective action: For the MQGET call, check that the exit is converting the
message data correctly and setting the output length DataLength to the
appropriate value. If it is, the application issuing the MQGET call must
provide a larger buffer for the Buffer parameter.

For the MQXCNVC call, if the string must be converted without truncation,
provide a larger output buffer.

 Chapter 5. Return codes 395

 Return codes

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

DataLength is not valid. The parameter pointer is not valid, or points to
read-only storage. (It is not always possible to detect an invalid parameter
pointer; if not detected, unpredictable results occur.)

This reason can also be returned to an MQ client program on the MQGET,
MQPUT, or MQPUT1 call, if the application message data is longer than the
negotiated maximum message size for the channel.

Corrective action: Correct the parameter.

If the error occurs for an MQ client program, also check that the maximum
message size for the channel is big enough to accommodate the message
being sent; if it is not big enough, increase the maximum message size for
the channel.

MQRC_DBCS_ERROR
(2150, X'866') DBCS string not valid.

On the MQXCNVC call, the SourceCCSID parameter specifies the coded
character-set identifier of a double-byte character set (DBCS), but the
SourceBuffer parameter does not contain a valid DBCS string. This may be
because the string contains characters which are not valid DBCS characters,
or because the string is a mixed SBCS/DBCS string and the shift-out/shift-in
characters are not correctly paired.

Corrective action: Specify a valid string.

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName
attribute in the local definition is blank.

Because there is no transmission queue defined with the same name as the
destination queue manager, the local queue manager has attempted to use
the default transmission queue. However, although there is a queue defined
by the DefXmitQName queue-manager attribute, it is not a local queue.

Corrective Action: Do one of the following:

� Specify a local transmission queue as the value of the XmitQName attribute
in the local definition of the remote queue.

� Define a local transmission queue with a name which is the same as that
of the remote queue manager.

� Specify a local transmission queue as the value of the DefXmitQName
queue-manager attribute.

See the MQSeries Application Programming Guide for more information.

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. Either a local definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either case the XmitQName
attribute in the local definition is blank.

396 MQSeries Application Programming Reference

 Return codes

Because there is no transmission queue defined with the same name as the
destination queue manager, the local queue manager has attempted to use
the default transmission queue. However, the queue defined by the
DefXmitQName queue-manager attribute does not have a Usage attribute of
MQUS_TRANSMISSION.

Corrective Action: Do one of the following:

� Specify a local transmission queue as the value of the XmitQName attribute
in the local definition of the remote queue.

� Define a local transmission queue with a name which is the same as that
of the remote queue manager.

� Specify a different local transmission queue as the value of the
DefXmitQName queue-manager attribute.

� Change the Usage attribute of the DefXmitQName queue to
MQUS_TRANSMISSION.

See the MQSeries Application Programming Guide for more information.

MQRC_DEST_ENV_ERROR
(2263, X'8D7') Destination environment data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the destination environment data of a reference message
header (MQRMH). One of the following is true:

� DestEnvLength is less than zero.

� Destination environment data is not present although DestEnvLength is
greater than zero.

� The range defined by DestEnvOffset and DestEnvLength is not wholly
beyond the fixed fields in the MQRMH structure and within StrucLength
bytes from the start of the structure.

The exit returns this reason in the Feedback field of the MQCXP structure. If
an exception report is requested, it is copied to the Feedback field of the
MQMD associated with the report.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify the destination environment data correctly.

MQRC_DEST_NAME_ERROR
(2264, X'8D8') Destination name data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the destination name data of a reference message header
(MQRMH). One of the following is true:

� DestNameLength is less than zero.

� Destination name data is not present although DestNameLength is greater
than zero.

� The range defined by DestNameOffset and DestNameLength is not wholly
beyond the fixed fields in the MQRMH structure and within StrucLength
bytes from the start of the structure.

 Chapter 5. Return codes 397

 Return codes

The exit returns this reason in the Feedback field of the MQCXP structure. If
an exception report is requested, it is copied to the Feedback field of the
MQMD associated with the report.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify the destination name data correctly.

MQRC_DH_ERROR
(2135, X'857') Distribution header structure not valid.

On an MQPUT or MQPUT1 call, the distribution header structure MQDH in
the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQDH structure. Ensure that
the fields are set correctly.

MQRC_DLH_ERROR
(2141, X'85D') Dead letter header structure not valid.

On an MQPUT or MQPUT1 call, the dead letter header structure MQDLH in
the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQDLH structure. Ensure that
the fields are set correctly.

MQRC_DUPLICATE_RECOV_COORD
(2163, X'873') Recovery coordinator already exists.

On an MQCONN call, a recovery coordinator already exists for the connection
name specified on the connection call issued by the adapter.

A conflict arises only if there are two CICS systems, two IMS systems, or one
each of CICS and IMS, having the same connection identifiers. Batch and
TSO connections need not have unique identifiers.

This reason code occurs only on MVS/ESA.

Corrective action: Ensure that the naming conventions used in different
systems that might connect to MQSeries do not conflict.

MQRC_DYNAMIC_Q_NAME_ERROR
(2011, X'7DB') Name of dynamic queue not valid.

On the MQOPEN call, a model queue is specified in the ObjectName field of
the ObjDesc parameter, but the DynamicQName field is not valid, for one of the
following reasons:

� Characters are present that are not valid for a queue name.

� An asterisk is present beyond the 33rd position (and before any null
character).

� An asterisk is present followed by characters which are not null and not
blank.

Corrective action: Specify a valid name.

398 MQSeries Application Programming Reference

 Return codes

MQRC_ENVIRONMENT_ERROR
(2012, X'7DC') Call not valid in environment.

The call is not valid for the current environment.

� On MVS/ESA, the MQCMIT and MQBACK calls cannot be issued in the
CICS or IMS environment.

| � On OpenVMS, OS/2, Tandem NSK, UNIX systems, and Windows NT,
one of the following applies:

– The application is linked to the wrong libraries (threaded or
nonthreaded).

– An MQBEGIN, MQCMIT, or MQBACK call was issued, but an
external unit-of-work manager is in use or the queue manager does
not support units of work.

– The MQBEGIN call was issued in an MQ client environment.

� On OS/400, this reason code does not occur.

Corrective action: Remove the call from the application.

On MVS/ESA, for a CICS or IMS application, issue the appropriate CICS or
IMS call instead.

MQRC_EXPIRY_ERROR
(2013, X'7DD') Expiry time not valid.

On an MQPUT or MQPUT1 call, the value specified for the Expiry field in the
message descriptor MQMD is not valid.

Corrective action: Specify a value which is greater than zero, or the special
value MQEI_UNLIMITED.

MQRC_FEEDBACK_ERROR
(2014, X'7DE') Feedback code not valid.

On an MQPUT or MQPUT1 call, the value specified for the Feedback field in
the message descriptor MQMD is not valid. The value is outside both the
range defined for system feedback codes and that defined for application
feedback codes.

Corrective action: Specify a value in the range MQFB_SYSTEM_FIRST
through MQFB_SYSTEM_LAST, or MQFB_APPL_FIRST through
MQFB_APPL_LAST.

MQRC_FORMAT_ERROR
(2110, X'83E') Message format not valid.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, one or both of the CodedCharSetId and Encoding fields
in the message differs from the corresponding field in the MsgDesc parameter,
but the message cannot be converted successfully due to an error associated
with the message format. Possible errors include:

� A user-written exit with the name specified by the Format field in the
message cannot be found.

� The format name in the message is MQFMT_NONE.

� The message contains data that is not consistent with the format
definition.

 Chapter 5. Return codes 399

 Return codes

The message is returned unconverted to the application issuing the MQGET
call, the values of the CodedCharSetId and Encoding fields in the MsgDesc
parameter are set to those of the message returned, and the call completes
with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

Corrective action: Check the format name that was specified when the
message was put. If this is not one of the built-in formats, check that a
suitable exit with the same name as the format is available for the queue
manager to load. Verify that the data in the message corresponds to the
format expected by the exit.

MQRC_FUNCTION_ERROR
(2281, X'8E9') Function identifier not valid for service.

The function identifier Function specified on the MQZEP call is not valid for
the service being configured.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Specify an MQZID_ñ value that is valid for the service
being configured. Refer to the description of installable services in the
MQSeries Programmable System Management book to determine which
values are valid.

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQGET calls are currently inhibited for the queue (see the InhibitGet queue
attribute described in “Attributes for all queues” on page 343), or for the
queue to which this queue resolves (see “Attributes for alias queues” on
page 365).

Corrective action: If the system design allows get requests to be inhibited for
short periods, retry the operation later.

MQRC_GMO_ERROR
(2186, X'88A') Get-message options structure not valid.

On an MQGET call, the MQGMO structure is not valid. Either the StrucId
mnemonic eye-catcher is not valid, or the Version is not recognized.

This reason also occurs if:

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the pointer points to read-only storage.

Corrective action: Correct the definition of the MQGMO structure. Ensure that
required input fields are correctly set.

400 MQSeries Application Programming Reference

 Return codes

MQRC_GROUP_ID_ERROR
(2258, X'8D2') Group identifier not valid.

An MQPUT or MQPUT1 call was issued to put a distribution-list message that
is also a message in a group, a message segment, or has segmentation
allowed, but an invalid combination of options and values was specified. All
of the following are true:

� MQPMO_LOGICAL_ORDER is not specified in the Options field in
MQPMO.

� Either there are too few MQPMR records provided by MQPMO, or the
GroupId field is not present in the MQPMR records.

� One or more of the following flags is specified in the MsgFlags field in
MQMD or MQMDE:

 MQMF_SEGMENTATION_ALLOWED
 MQMF_ñ_MSG_IN_GROUP
 MQMF_ñ_SEGMENT

� The GroupId field in MQMD or MQMDE is not MQGI_NONE.

This combination of options and values would result in the same group
identifier being used for all of the destinations in the distribution list; this is not
permitted by the queue manager.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify MQGI_NONE for the GroupId field in MQMD or
MQMDE. Alternatively, if the call is MQPUT specify
MQPMO_LOGICAL_ORDER in the Options field in MQPMO.

MQRC_HANDLE_NOT_AVAILABLE
(2017, X'7E1') No more handles available.

An MQOPEN or MQPUT1 call was issued, but the maximum number of open
| handles allowed for the current task has already been reached. Be aware
| that when a distribution list is specified on the MQOPEN or MQPUT1 call,
| each queue in the distribution list uses one handle.

On MVS/ESA, “task” means a CICS task, an MVS task, or an IMS-dependent
region.

Corrective action: Check whether the application is issuing MQOPEN calls
| without corresponding MQCLOSE calls. If it is, modify the application to issue
| the MQCLOSE call for each open object as soon as that object is no longer
| needed.

| Also check whether the application is specifying a distribution list containing a
| large number of queues that are consuming all of the available handles. If it
| is, increase the maximum number of handles that the task can use, or reduce
| the size of the distribution list. The maximum number of open handles that a

task can use is given by the MaxHandles queue manager attribute (see
“Attributes for the queue manager” on page 370).

MQRC_HCONFIG_ERROR
(2280, X'8E8') Configuration handle not valid.

The configuration handle Hconfig specified on the MQZEP call is not valid.

On MVS/ESA and OS/400, this reason code does not occur.

 Chapter 5. Return codes 401

 Return codes

Corrective action: Specify the configuration handle that was provided to the
service configuration function on the component initialization call. See the
MQSeries Programmable System Management book for details of this call.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

The connection handle Hconn is not valid. This reason also occurs if the
parameter pointer is not valid, or (for the MQCONN call) points to read-only
storage. (It is not always possible to detect an invalid parameter pointer; if
not detected, unpredictable results occur.)

Corrective action: Ensure that a successful MQCONN call is performed for the
queue manager, and that an MQDISC call has not already been performed for
it. Ensure that the handle is being used within its valid scope (see the
MQCONN call described in “MQCONN – Connect queue manager” on
page 261).

On MVS/ESA, also check that the application has been linked with the correct
stub; this is CSQCSTUB for CICS applications, CSQBSTUB for batch
applications, and CSQQSTUB for IMS applications. Also, the stub used must
not belong to a release of MQSeries which is more recent than the release on
which the application will run.

MQRC_HEADER_ERROR
(2142, X'85E') MQ header structure not valid.

The MQPUT or MQPUT1 call was used to put a message containing an MQ
header structure, but the header structure is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQ header structure. Ensure
that the fields are set correctly.

MQRC_HOBJ_ERROR
(2019, X'7E3') Object handle not valid.

The object handle Hobj is not valid. This reason also occurs if the parameter
pointer is not valid, or (for the MQOPEN call) points to read-only storage. (It
is not always possible to detect an invalid parameter pointer; if not detected,
unpredictable results occur.)

Corrective action: Ensure that a successful MQOPEN call is performed for this
object, and that an MQCLOSE call has not already been performed for it. For
MQGET and MQPUT calls, also ensure that the handle represents a queue
object. Ensure that the handle is being used within its valid scope (see the
MQOPEN call described in “MQOPEN – Open object” on page 297).

MQRC_IIH_ERROR
(2148, X'864') IMS information header structure not valid.

On an MQPUT or MQPUT1 call, the IMS information header structure MQIIH
in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQIIH structure. Ensure that
the fields are set correctly.

402 MQSeries Application Programming Reference

 Return codes

MQRC_INCOMPLETE_GROUP
(2241, X'8C1') Message group not complete.

An operation was attempted on a queue using a queue handle that had an
incomplete message group. This reason code can arise in the following
situations:

� On the MQPUT call, when the application attempts to put a message
which is not in a group and specifies MQPMO_LOGICAL_ORDER. The
call fails in this case.

� On the MQPUT call, when the application attempts to put a message
which is not the next one in the group, does not specify
MQPMO_LOGICAL_ORDER, but the previous MQPUT call for the queue
handle did specify MQPMO_LOGICAL_ORDER. The call succeeds with
completion code MQCC_WARNING in this case.

� On the MQGET call, when the application attempts to get a message
which is not the next one in the group, does not specify
MQGMO_LOGICAL_ORDER, but the previous MQGET call for the queue
handle did specify MQGMO_LOGICAL_ORDER. The call succeeds with
completion code MQCC_WARNING in this case.

� On the MQCLOSE call, when the application attempts to close the queue
that has the incomplete message group. The call succeeds with
completion code MQCC_WARNING.

If there is an incomplete logical message as well as an incomplete message
group, reason code MQRC_INCOMPLETE_MSG is returned in preference to
MQRC_INCOMPLETE_GROUP.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: If this reason code is expected, no corrective action is
required. Otherwise, ensure that the MQPUT call for the last message in the
group specifies MQMF_LAST_MSG_IN_GROUP.

MQRC_INCOMPLETE_MSG
(2242, X'8C2') Logical message not complete.

An operation was attempted on a queue using a queue handle that had an
incomplete logical message. This reason code can arise in the following
situations:

� On the MQPUT call, when the application attempts to put a message
which is not a segment and specifies MQPMO_LOGICAL_ORDER. The
call fails in this case.

� On the MQPUT call, when the application attempts to put a message
which is not the next segment, does not specify
MQPMO_LOGICAL_ORDER, but the previous MQPUT call for the queue
handle did specify MQPMO_LOGICAL_ORDER. The call succeeds with
completion code MQCC_WARNING in this case.

� On the MQGET call, when the application attempts to get a message
which is not the next segment, does not specify
MQGMO_LOGICAL_ORDER, but the previous MQGET call for the queue
handle did specify MQGMO_LOGICAL_ORDER. The call succeeds with
completion code MQCC_WARNING in this case.

 Chapter 5. Return codes 403

 Return codes

� On the MQCLOSE call, when the application attempts to close the queue
that has the incomplete logical message. The call succeeds with
completion code MQCC_WARNING.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: If this reason code is expected, no corrective action is
required. Otherwise, ensure that the MQPUT call for the last segment
specifies MQMF_LAST_SEGMENT.

MQRC_INCONSISTENT_BROWSE
(2259, X'8D3') Inconsistent browse specification.

An MQGET call was issued with the MQGMO_BROWSE_NEXT option
specified, but the specification of the MQGMO_LOGICAL_ORDER option for
the call is different from the specification of that option for the previous call for
the queue handle. Either both calls must specify
MQGMO_LOGICAL_ORDER, or neither call must specify
MQGMO_LOGICAL_ORDER.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Add or remove the MQGMO_LOGICAL_ORDER option as
appropriate. Alternatively, to switch between logical order and physical order,
specify the MQGMO_BROWSE_FIRST option to restart the scan from the
beginning of the queue, and either omit or specify
MQGMO_LOGICAL_ORDER as desired.

MQRC_INCONSISTENT_CCSIDS
(2243, X'8C3') Message segments have differing CCSIDs.

An MQGET call was issued specifying the MQGMO_COMPLETE_MSG
option, but the message to be retrieved consists of two or more segments
which have differing values for the CodedCharSetId field in MQMD. This can
arise when the segments take different paths through the network, and some
of those paths have MCA sender conversion enabled. The call succeeds with
a completion code of MQCC_WARNING, but only the first few segments that
have identical character-set identifiers are returned.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Remove the MQGMO_COMPLETE_MSG option from the
MQGET call and retrieve the remaining message segments one by one.

MQRC_INCONSISTENT_ENCODINGS
(2244, X'8C4') Message segments have differing encodings.

An MQGET call was issued specifying the MQGMO_COMPLETE_MSG
option, but the message to be retrieved consists of two or more segments
which have differing values for the Encoding field in MQMD. This can arise
when the segments take different paths through the network, and some of
those paths have MCA sender conversion enabled. The call succeeds with a
completion code of MQCC_WARNING, but only the first few segments that
have identical encodings are returned.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

404 MQSeries Application Programming Reference

 Return codes

Corrective action: Remove the MQGMO_COMPLETE_MSG option from the
MQGET call and retrieve the remaining message segments one by one.

MQRC_INCONSISTENT_PERSISTENCE
(2185, X'889') Inconsistent persistence specification.

The MQPUT call was issued to put a message that has a value for the
Persistence field in MQMD that is different from the previous message put
using that queue handle. This is not permitted when the
MQPMO_LOGICAL_ORDER option is specified and there is already a current
message group or logical message. All messages in a group and all
segments in a logical message must be persistent, or all must be
nonpersistent.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Modify the application to ensure that all of the messages in
the group or logical message are put with the same value for the Persistence
field in MQMD.

MQRC_INCONSISTENT_UOW
(2245, X'8C5') Inconsistent unit-of-work specification.

One of the following applies:

� An MQPUT call was issued to put a message in a group or a segment of
a logical message, but the value specified or defaulted for the
MQPMO_SYNCPOINT option is not consistent with the current group and
segment information retained by the queue manager for the queue
handle.

If the current call specifies MQPMO_LOGICAL_ORDER, the call fails. If
the current call does not specify MQPMO_LOGICAL_ORDER, but the
previous MQPUT call for the queue handle did, the call succeeds with
completion code MQCC_WARNING.

� An MQGET call was issued to remove from the queue a message in a
group or a segment of a logical message, but the value specified or
defaulted for the MQGMO_SYNCPOINT option is not consistent with the
current group and segment information retained by the queue manager
for the queue handle.

If the current call specifies MQGMO_LOGICAL_ORDER, the call fails. If
the current call does not specify MQGMO_LOGICAL_ORDER, but the
previous MQGET call for the queue handle did, the call succeeds with
completion code MQCC_WARNING.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Modify the application to ensure that the same unit-of-work
specification is used for all messages in the group, or all segments of the
logical message.

MQRC_INHIBIT_VALUE_ERROR
(2020, X'7E4') Value for inhibit-get or inhibit-put queue attribute not valid.

On an MQSET call, the value specified for either the MQIA_INHIBIT_GET
attribute or the MQIA_INHIBIT_PUT attribute is not valid.

 Chapter 5. Return codes 405

 Return codes

Corrective action: Specify a valid value. See the InhibitGet or InhibitPut
attribute described in “Attributes for all queues” on page 343.

MQRC_INITIALIZATION_FAILED
(2286, X'8EE') Initialization failed for an undefined reason.

This reason should be returned by an installable service component when the
component is unable to complete initialization successfully.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Correct the error and retry the operation.

MQRC_INT_ATTR_COUNT_ERROR
(2021, X'7E5') Count of integer attributes not valid.

On an MQINQ or MQSET call, the IntAttrCount parameter is negative
(MQINQ or MQSET), or smaller than the number of integer attribute selectors
(MQIA_ñ) specified in the Selectors parameter (MQSET only). This reason
also occurs if the parameter pointer is not valid. (It is not always possible to
detect an invalid parameter pointer; if not detected, unpredictable results
occur.)

Corrective action: Specify a value large enough for all selected integer
attributes.

MQRC_INT_ATTR_COUNT_TOO_SMALL
(2022, X'7E6') Not enough space allowed for integer attributes.

On an MQINQ call, the IntAttrCount parameter is smaller than the number
of integer attribute selectors (MQIA_ñ) specified in the Selectors parameter.

The call completes with MQCC_WARNING, with the IntAttrs array filled in
with as many integer attributes as there is room for.

Corrective action: Specify a large enough value, unless only a subset of the
values is needed.

MQRC_INT_ATTRS_ARRAY_ERROR
(2023, X'7E7') Integer attributes array not valid.

On an MQINQ or MQSET call, the IntAttrs parameter is not valid. The
parameter pointer is not valid (MQINQ and MQSET), or points to read-only
storage or to storage that is not as long as indicated by the IntAttrCount
parameter (MQINQ only). (It is not always possible to detect an invalid
parameter pointer; if not detected, unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_INVALID_MSG_UNDER_CURSOR
(2246, X'8C6') Message under cursor not valid for retrieval.

An MQGET call was issued specifying the MQGMO_COMPLETE_MSG option
with either MQGMO_MSG_UNDER_CURSOR or
MQGMO_BROWSE_MSG_UNDER_CURSOR, but the message that is under
the cursor has an MQMD with an Offset field that is greater than zero.
Because MQGMO_COMPLETE_MSG was specified, the message is not valid
for retrieval.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

406 MQSeries Application Programming Reference

 Return codes

Corrective action: Reposition the browse cursor so that it is located on a
message whose Offset field in MQMD is zero. Alternatively, remove the
MQGMO_COMPLETE_MSG option.

MQRC_MATCH_OPTIONS_ERROR
(2247, X'8C7') Match options not valid.

An MQGET call was issued, but the value of the MatchOptions field in the
GetMsgOpts parameter is not valid. Either an undefined option is specified, or
a defined option which is not valid in the current circumstances is specified.
In the latter case, it means that all of the following are true:

� MQGMO_LOGICAL_ORDER is specified.

� There is a current message group or logical message for the queue
handle.

� Neither of the following options is specified:

 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_MSG_UNDER_CURSOR

� One or more of the MQMO_ñ options is specified.

� The values of the fields in the MsgDesc parameter corresponding to the
MQMO_ñ options specified, differ from the values of those fields in the
MQMD for the message to be returned next.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that only valid options are specified for the field.

MQRC_MAX_CONNS_LIMIT_REACHED
(2025, X'7E9') Maximum number of connections reached.

The MQCONN call was rejected because the maximum number of concurrent
connections has been exceeded.

� On MVS/ESA, connection limits are applicable only to TSO and batch
requests. The limits are determined by the customer using the following
parameters of the CSQ6SYSP macro:

– For TSO, IDFORE
– For batch, IDBACK

For more information, see the MQSeries for MVS/ESA System
Management Guide.

| � On OpenVMS, OS/2, Tandem NSK, UNIX systems, and Windows NT, this
reason code can also occur on the MQOPEN call.

� On OS/400, this reason code does not occur.

Corrective Action: Either increase the size of the appropriate install parameter
value, or reduce the number of concurrent connections.

MQRC_MD_ERROR
(2026, X'7EA') Message descriptor not valid.

MQMD structure is not valid. Either the StrucId mnemonic eye-catcher is not
valid, or the Version is not recognized.

This reason also occurs if:

 Chapter 5. Return codes 407

 Return codes

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the pointer points to read-only storage.

Corrective action: Correct the definition of the message descriptor. Ensure
that required input fields are correctly set.

MQRC_MDE_ERROR
(2248, X'8C8') Message descriptor extension not valid.

The MQMDE structure at the start of the application message data is not
valid, for one of the following reasons:

� The StrucId mnemonic eye-catcher is not MQMDE_STRUC_ID.

� The Version field is less than MQMDE_VERSION_2.

� The StrucLength field is less than MQMDE_LENGTH_2, or (for Version
equal to MQMDE_VERSION_2 only) greater than MQMDE_LENGTH_2.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the message descriptor extension.
Ensure that required input fields are correctly set.

MQRC_MISSING_REPLY_TO_Q
(2027, X'7EB') Missing reply-to queue.

On an MQPUT or MQPUT1 call, the ReplyToQ field in the message descriptor
MQMD is blank, but one or both of the following is true:

� A reply was requested (that is, MQMT_REQUEST was specified in the
MsgType field of the message descriptor).

� A report message was requested in the Report field of the message
descriptor.

Corrective action: Specify the name of the queue to which the reply message
or report message is to be sent.

MQRC_MSG_FLAGS_ERROR
(2249, X'8C9') Message flags not valid.

An MQPUT or MQPUT1 call was issued, but the MsgFlags field in the
message descriptor MQMD contains one or more message flags which are
not recognized by the local queue manager. The message flags that cause
this reason code to be returned depend on the destination of the message;
see Appendix C, “Report options and message flags” on page 489 for more
details.

This reason code can also occur in the Feedback field in the MQMD of a
report message, or in the Reason field in the MQDLH structure of a message
on the dead-letter queue; in both cases it indicates that the destination queue
manager does not support one or more of the message flags specified by the
sender of the message.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Do the following:

408 MQSeries Application Programming Reference

 Return codes

1. Ensure that the MsgFlags field in the message descriptor is initialized with
a value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.

Specify MQMF_NONE if no message flags are needed.

2. Ensure that the message flags specified are ones which are documented
in this book; see the MsgFlags field described in “MQMD – Message
descriptor” on page 98 for valid message flags. Remove any message
flags which are not documented in this book.

3. If multiple message flags are being set by adding the individual message
flags together, ensure that the same message flag is not added twice.

MQRC_MSG_SEQ_NUMBER_ERROR
(2250, X'8CA') Message sequence number not valid.

| An MQGET, MQPUT, or MQPUT1 call was issued, but the value of the
| MsgSeqNumber field in the MQMD or MQMDE structure is less than one or

greater than 999 999 999.

This error can also occur on the MQPUT call if the MsgSeqNumber field would
have become greater than 999 999 999 as a result of the call.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify a value in the range 1 through 999 999 999. Do not
attempt to create a message group containing more than 999 999 999
messages.

MQRC_MSG_TOO_BIG_FOR_CHANNEL
(2218, X'8AA') Message length greater than maximum for channel.

A message was put to a remote queue, but the message is larger than the
maximum message length allowed by the channel. This reason code is
returned in the Feedback field in the message descriptor of a report message.

On MVS/ESA, this return code is issued only if you are not using CICS for
distributed queuing. Otherwise, MQRC_MSG_TOO_BIG_FOR_Q_MGR is
issued.

Corrective action: Check the channel definitions. Increase the maximum
message length that the channel can accept, or break the message into
several smaller messages.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

| An MQPUT or MQPUT1 call was issued to put a message on a queue, but
| the message was too long for the queue and
| MQMF_SEGMENTATION_ALLOWED was not specified in the MsgFlags field
| in MQMD. If segmentation is not allowed, the length of the message cannot
| exceed the lesser of the queue and queue-manager MaxMsgLength attributes.

| This reason code can also occur when MQMF_SEGMENTATION_ALLOWED
| is specified, but the nature of the data present in the message prevents the
| queue manager splitting it into segments that are small enough to place on
| the queue:

| � For a user-defined format, the smallest segment that the queue manager
| can create is 16 bytes.

 Chapter 5. Return codes 409

 Return codes

| � For a built-in format, the smallest segment that the queue manager can
| create depends on the particular format, but is greater than 16 bytes in all
| cases other than MQFMT_STRING (for MQFMT_STRING the minimum
| segment size is 16 bytes).

MQRC_MSG_TOO_BIG_FOR_Q can also occur in the Feedback field in the
message descriptor of a report message; in this case it indicates that the error
was encountered by a message channel agent when it attempted to put the
message on a remote queue.

Corrective action: Check whether the BufferLength parameter is specified
| correctly; if it is, do one of the following:

| � Increase the value of the queue’s MaxMsgLength attribute; the
| queue-manager’s MaxMsgLength attribute may also need increasing.

| � Break the message into several smaller messages.

| � Specify MQMF_SEGMENTATION_ALLOWED in the MsgFlags field in
| MQMD; this will allow the queue manager to break the message into
| segments.

MQRC_MSG_TOO_BIG_FOR_Q_MGR
(2031, X'7EF') Message length greater than maximum for queue manager.

| An MQPUT or MQPUT1 call was issued to put a message on a queue, but
| the message was too long for the queue manager and
| MQMF_SEGMENTATION_ALLOWED was not specified in the MsgFlags field
| in MQMD. If segmentation is not allowed, the length of the message cannot
| exceed the lesser of the queue and queue-manager MaxMsgLength attributes.

| This reason code can also occur when MQMF_SEGMENTATION_ALLOWED
| is specified, but the nature of the data present in the message prevents the
| queue manager splitting it into segments that are small enough for the
| queue-manager limit:

| � For a user-defined format, the smallest segment that the queue manager
| can create is 16 bytes.

| � For a built-in format, the smallest segment that the queue manager can
| create depends on the particular format, but is greater than 16 bytes in all
| cases other than MQFMT_STRING (for MQFMT_STRING the minimum
| segment size is 16 bytes).

MQRC_MSG_TOO_BIG_FOR_Q_MGR can also occur in the Feedback field in
the message descriptor of a report message; in this case it indicates that the
error was encountered by a message channel agent when it attempted to put
the message on a remote queue.

This reason also occurs if a channel, through which the message is to pass,
has restricted the maximum message length to a value that is actually less
than that supported by the queue manager, and the message length is
greater than this value.

On MVS/ESA, this return code is issued only if you are using CICS for
distributed queuing. Otherwise, MQRC_MSG_TOO_BIG_FOR_CHANNEL is
issued.

Corrective action: Check whether the BufferLength parameter is specified
| correctly; if it is, do one of the following:

410 MQSeries Application Programming Reference

 Return codes

| � Increase the value of the queue-manager’s MaxMsgLength attribute; the
| queue’s MaxMsgLength attribute may also need increasing.

| � Break the message into several smaller messages.

| � Specify MQMF_SEGMENTATION_ALLOWED in the MsgFlags field in
| MQMD; this will allow the queue manager to break the message into
| segments.

� Check the channel definitions.

MQRC_MSG_TYPE_ERROR
(2029, X'7ED') Message type in message descriptor not valid.

On an MQPUT or MQPUT1 call, the value specified for the MsgType field in
the message descriptor (MQMD) is not valid.

Corrective action: Specify a valid value. See the MsgType field described in
“MQMD – Message descriptor” on page 98 for details.

MQRC_MULTIPLE_REASONS
(2136, X'858') Multiple reason codes returned.

An MQOPEN, MQPUT or MQPUT1 call was issued to open a distribution list
or put a message to a distribution list, but the result of the call was not the
same for all of the destinations in the list. One of the following applies:

� The call succeeded for some of the destinations but not others. The
completion code is MQCC_WARNING in this case.

� The call failed for all of the destinations, but for differing reasons. The
completion code is MQCC_FAILED in this case.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Examine the MQRR response records to identify the
destinations for which the call failed, and the reason for the failure. Ensure
that sufficient response records are provided by the application on the call to
enable the error(s) to be determined. For the MQPUT1 call, the response
records must be specified using the MQOD structure, and not the MQPMO
structure.

MQRC_NAME_IN_USE
(2201, X'899') Name in use.

An MQOPEN call was issued to create a dynamic queue, but a queue with
the same name as the dynamic queue already exists. The existing queue is
one that is logically deleted, but for which there are still one or more open
handles. For more information, see “MQCLOSE – Close object” on
page 248.

This reason code occurs only on MVS/ESA.

Corrective action: Either ensure that all handles for the previous dynamic
queue are closed, or ensure that the name of the new queue is unique; see
the description for reason code MQRC_OBJECT_ALREADY_EXISTS.

MQRC_NAME_NOT_VALID_FOR_TYPE
(2194, X'892') Object name not valid for object type.

An MQOPEN call was issued to open the queue manager definition, but the
ObjectName field in the ObjDesc parameter is not blank.

 Chapter 5. Return codes 411

 Return codes

Corrective action: Ensure that the ObjectName field is set to blanks.

MQRC_NO_EXTERNAL_PARTICIPANTS
(2121, X'849') No participating resource managers registered.

An MQBEGIN call was issued to start a unit of work coordinated by the queue
manager, but no participating resource managers have been registered with
the queue manager. As a result, only changes to MQ resources can be
coordinated by the queue manager in the unit of work.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: If the application does not require non-MQ resources to
participate in the unit of work, this reason code can be ignored or the
MQBEGIN call removed. Otherwise consult your system support programmer
to determine why the required resource managers have not been registered
with the queue manager; the queue manager’s configuration file may be in
error.

MQRC_NO_MSG_AVAILABLE
(2033, X'7F1') No message available.

An MQGET call was issued, but there is no message on the queue satisfying
the selection criteria specified in MQMD (the MsgId and CorrelId fields), and
in MQGMO (the Options and MatchOptions fields). Either the MQGMO_WAIT
option was not specified, or the time interval specified by the WaitInterval
field in MQGMO has expired. This reason is also returned for an MQGET call
for browse, when the end of the queue has been reached.

Corrective action: If this is an expected condition, no corrective action is
required.

If this is an unexpected condition, check whether the message was put on the
queue successfully, and whether the options controlling the selection criteria
are specified correctly. All of the following can affect the eligibility of a
message for return on the MQGET call:

 MQGMO_LOGICAL_ORDER
 MQGMO_ALL_MSGS_AVAILABLE
 MQGMO_ALL_SEGMENTS_AVAILABLE
 MQGMO_COMPLETE_MSG
 MQMO_MATCH_MSG_ID
 MQMO_MATCH_CORREL_ID
 MQMO_MATCH_GROUP_ID
 MQMO_MATCH_MSG_SEQ_NUMBER
 MQMO_MATCH_OFFSET
 MsgId field
 CorrelId field

Consider waiting longer for the message.

MQRC_NO_MSG_LOCKED
(2209, X'8A1') No message locked.

An MQGET call was issued with the MQGMO_UNLOCK option, but no
message was currently locked.

On MVS/ESA, this reason code does not occur.

412 MQSeries Application Programming Reference

 Return codes

Corrective action: Check that a message was locked by an earlier MQGET
call with the MQGMO_LOCK option for the same handle, and that no
intervening call has caused the message to become unlocked.

MQRC_NO_MSG_UNDER_CURSOR
(2034, X'7F2') Browse cursor not positioned on message.

An MQGET call was issued with either the
MQGMO_MSG_UNDER_CURSOR or the
MQGMO_BROWSE_MSG_UNDER_CURSOR option. However, the browse
cursor is not positioned at a retrievable message. This is caused by one of
the following:

� The cursor is positioned logically before the first message (as it is before
the first MQGET call with a browse option has been successfully
performed), or

� The message the browse cursor was positioned on has been locked or
removed from the queue (probably by some other application) since the
browse operation was performed.

� The message the browse cursor was positioned on has expired.

Corrective action: Check the application logic. This may be an expected
reason if the application design allows multiple servers to compete for
messages after browsing. Consider also using the MQGMO_LOCK option
with the preceding browse MQGET call.

MQRC_NONE
(0, X'000') No reason to report.

The call completed normally. The completion code (CompCode) is MQCC_OK.

Corrective action: None.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

The user is not authorized to perform the operation attempted:

� On an MQCONN call, the user is not authorized to connect to the queue
manager.

On MVS/ESA, for CICS applications,
MQRC_CONNECTION_NOT_AUTHORIZED is issued instead.

� On an MQOPEN or MQPUT1 call, the user is not authorized to open the
object for the option(s) specified.

On MVS/ESA, if the object being opened is a model queue, this reason
also arises if the user is not authorized to create a dynamic queue with
the required name.

� On an MQCLOSE call, the user is not authorized to delete the object,
which is a permanent dynamic queue, and the Hobj parameter specified
on the MQCLOSE call is not the handle returned by the MQOPEN call
that created the queue.

This reason code can also occur in the Feedback field in the message
descriptor of a report message; in this case it indicates that the error was
encountered by a message channel agent when it attempted to put the
message on a remote queue.

 Chapter 5. Return codes 413

 Return codes

Corrective action: Ensure that the correct queue manager or object was
specified, and that appropriate authority exists.

On MVS/ESA, to determine for which object you are not authorized, you can
use the violation messages issued by the External Security Manager.

MQRC_NOT_CONVERTED
(2119, X'847') Application message data not converted.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, an error occurred during conversion of the data in the
message. The message data is returned unconverted, the values of the
CodedCharSetId and Encoding fields in the MsgDesc parameter are set to those
of the message returned, and the call completes with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

This error may also indicate that a parameter to the data-conversion service is
not supported.

Corrective action: Check that the message data is correctly described by the
Format, CodedCharSetId and Encoding parameters that were specified when
the message was put. Also check that these values, and the CodedCharSetId
and Encoding specified in the MsgDesc parameter on the MQGET call, are
supported for queue-manager conversion. If the required conversion is not
supported, conversion must be carried out by the application.

MQRC_NOT_OPEN_FOR_BROWSE
(2036, X'7F4') Queue not open for browse.

An MQGET call was issued with one of the following options:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_MSG_UNDER_CURSOR

but the queue had not been opened for browse.

Corrective action: Specify MQOO_BROWSE when the queue is opened.

MQRC_NOT_OPEN_FOR_INPUT
(2037, X'7F5') Queue not open for input.

An MQGET call was issued to retrieve a message from a queue, but the
queue had not been opened for input.

Corrective action: Specify one of the following when the queue is opened:

 MQOO_INPUT_SHARED
 MQOO_INPUT_EXCLUSIVE
 MQOO_INPUT_AS_Q_DEF

MQRC_NOT_OPEN_FOR_INQUIRE
(2038, X'7F6') Queue not open for inquire.

An MQINQ call was issued to inquire object attributes, but the object had not
been opened for inquire.

414 MQSeries Application Programming Reference

 Return codes

Corrective action: Specify MQOO_INQUIRE when the object is opened.

MQRC_NOT_OPEN_FOR_OUTPUT
(2039, X'7F7') Queue not open for output.

An MQPUT call was issued to put a message on a queue, but the queue had
not been opened for output.

Corrective action: Specify MQOO_OUTPUT when the queue is opened.

MQRC_NOT_OPEN_FOR_PASS_ALL
(2093, X'82D') Queue not open for pass all context.

An MQPUT call was issued with the MQPMO_PASS_ALL_CONTEXT option
specified in the PutMsgOpts parameter, but the queue had not been opened
with the MQOO_PASS_ALL_CONTEXT option.

Corrective action: Specify MQOO_PASS_ALL_CONTEXT (or another option
that implies it) when the queue is opened.

MQRC_NOT_OPEN_FOR_PASS_IDENT
(2094, X'82E') Queue not open for pass identity context.

An MQPUT call was issued with the MQPMO_PASS_IDENTITY_CONTEXT
option specified in the PutMsgOpts parameter, but the queue had not been
opened with the MQOO_PASS_IDENTITY_CONTEXT option.

Corrective action: Specify MQOO_PASS_IDENTITY_CONTEXT (or another
option that implies it) when the queue is opened.

MQRC_NOT_OPEN_FOR_SET
(2040, X'7F8') Queue not open for set.

An MQSET call was issued to set queue attributes, but the queue had not
been opened for set.

Corrective action: Specify MQOO_SET when the object is opened.

MQRC_NOT_OPEN_FOR_SET_ALL
(2095, X'82F') Queue not open for set all context.

An MQPUT call was issued with the MQPMO_SET_ALL_CONTEXT option
specified in the PutMsgOpts parameter, but the queue had not been opened
with the MQOO_SET_ALL_CONTEXT option.

Corrective action: Specify MQOO_SET_ALL_CONTEXT when the queue is
opened.

MQRC_NOT_OPEN_FOR_SET_IDENT
(2096, X'830') Queue not open for set identity context.

An MQPUT call was issued with the MQPMO_SET_IDENTITY_CONTEXT
option specified in the PutMsgOpts parameter, but the queue had not been
opened with the MQOO_SET_IDENTITY_CONTEXT option.

Corrective action: Specify MQOO_SET_IDENTITY_CONTEXT (or another
option that implies it) when the queue is opened.

MQRC_OBJECT_ALREADY_EXISTS
(2100, X'834') Object already exists.

An MQOPEN call was issued to create a dynamic queue, but a queue with
the same name as the dynamic queue already exists.

 Chapter 5. Return codes 415

 Return codes

On MVS/ESA, a rare “race condition” can also give rise to this reason code;
see the description of reason code MQRC_NAME_IN_USE for more details.

Corrective action: If supplying a dynamic queue name in full, ensure that it
obeys the naming conventions for dynamic queues; if it does, either supply a
different name, or delete the existing queue if it is no longer required.
Alternatively, allow the queue manager to generate the name.

If the queue manager is generating the name (either in part or in full), reissue
the MQOPEN call.

MQRC_OBJECT_CHANGED
(2041, X'7F9') Object definition changed since opened.

Since the Hobj handle used on this call was returned by the MQOPEN call,
object definitions that affect this object have been changed. See
“MQOPEN – Open object” on page 297 for more information.

This reason does not occur if the object handle is specified in the Context
field of the PutMsgOpts parameter on the MQPUT or MQPUT1 call.

Corrective action: Issue an MQCLOSE call to return the handle to the system.
It is then usually sufficient to reopen the object and retry the operation.
However, if the object definitions are critical to the application logic, an
MQINQ call can be used after reopening the object, to find out what has
changed.

MQRC_OBJECT_DAMAGED
(2101, X'835') Object damaged.

The object accessed by the call is damaged and cannot be used. For
example, this may be because the definition of the object in main storage is
not consistent, or because it differs from the definition of the object on disk, or
because the definition on disk cannot be read.

The object cannot be used until the problem is corrected. The object can be
deleted, although it may not be possible to delete the associated user space.

On MVS/ESA, this reason code does not occur.

Corrective action: It may be necessary to stop and restart the queue
manager, or to restore the queue-manager data from back-up storage.

| On OpenVMS, OS/2, OS/400, Tandem NSK, and UNIX systems, consult the
FFST record to obtain more detail about the problem.

MQRC_OBJECT_IN_USE
(2042, X'7FA') Object already open with conflicting options.

An MQOPEN call was issued, but the object in question has already been
opened by this or another application with options that conflict with those
specified in the Options parameter. This arises if the request is for shared
input, but the object is already open for exclusive input; it also arises if the
request is for exclusive input, but the object is already open for input (of any
sort).

Note: MCAs for receiver channels may keep the destination queues open
even when messages are not being transmitted; this results in the
queues appearing to be “in use.”

416 MQSeries Application Programming Reference

 Return codes

On MVS/ESA, this reason can also occur for an MQOPEN or MQPUT1 call, if
the object to be opened (which can be a queue, or for MQOPEN a namelist
or process object) is in the process of being deleted.

Corrective action: System design should specify whether an application is to
wait and retry, or take other action.

MQRC_OBJECT_NAME_ERROR
(2152, X'868') Object name not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that is,
the RecsPresent field in MQOD is greater than zero), but the ObjectName field
is neither blank nor the null string.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: If it is intended to open a distribution list, set the ObjectName
field to blanks or the null string. If it is not intended to open a distribution list,
set the RecsPresent field to zero.

MQRC_OBJECT_Q_MGR_NAME_ERROR
(2153, X'869') Object queue-manager name not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that is,
the RecsPresent field in MQOD is greater than zero), but the ObjectQMgrName
field is neither blank nor the null string.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: If it is intended to open a distribution list, set the
ObjectQMgrName field to blanks or the null string. If it is not intended to open a
distribution list, set the RecsPresent field to zero.

MQRC_OBJECT_RECORDS_ERROR
(2155, X'86B') Object records not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that is,
the RecsPresent field in MQOD is greater than zero), but the MQOR object
records are not specified correctly. One of the following applies:

� ObjectRecOffset is zero and ObjectRecPtr is the null pointer or zero.

� ObjectRecOffset is not zero and ObjectRecPtr is neither the null pointer
nor zero.

� ObjectRecPtr is not a valid pointer.

� ObjectRecPtr or ObjectRecOffset points to storage that is not accessible.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that one of ObjectRecOffset and ObjectRecPtr is
zero and the other nonzero. Ensure that the field used points to accessible
storage.

MQRC_OBJECT_TYPE_ERROR
(2043, X'7FB') Object type not valid.

On the MQOPEN or MQPUT1 call, the ObjectType field in the object
descriptor MQOD specifies a value which is not valid. For the MQPUT1 call,
the object type must be MQOT_Q.

 Chapter 5. Return codes 417

 Return codes

Corrective action: Specify a valid object type.

MQRC_OD_ERROR
(2044, X'7FC') Object descriptor structure not valid.

On the MQOPEN or MQPUT1 call, the object descriptor MQOD is not valid.
Either the StrucId mnemonic eye-catcher is not valid, or the Version is not
recognized.

This reason also occurs if:

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the pointer points to read-only storage.

Corrective action: Correct the definition of the object descriptor. Ensure that
required input fields are set correctly.

MQRC_OFFSET_ERROR
(2251, X'8CB') Message segment offset not valid.

An MQPUT or MQPUT1 call was issued, but the value of the Offset field in
the MQMD or MQMDE structure is less than zero or greater than 999 999 999.

This error can also occur on the MQPUT call if the Offset field would have
become greater than 999 999 999 as a result of the call.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify a value in the range 0 through 999 999 999. Do not
attempt to create a message segment which would extend beyond an offset
of 999 999 999.

MQRC_OPEN_FAILED
(2137, X'859') Queue not opened successfully.

An MQPUT call was issued to put a message to a distribution list, but the
message could not be sent to the destination to which this reason code
applies because that destination was not opened successfully by the
MQOPEN call. This reason occurs only in the Reason field of the MQRR
response record.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Examine the MQRR response records specified on the
MQOPEN call to determine the reason that the queue failed to open. Ensure
that sufficient response records are provided by the application on the call to
enable the error(s) to be determined.

MQRC_OPTION_NOT_VALID_FOR_TYPE
(2045, X'7FD') Option not valid for object type.

On an MQOPEN or MQCLOSE call, an option is specified that is not valid for
the type of object or queue being opened or closed. For the MQOPEN call,
this includes both an option that is inappropriate to the object type (for
example, MQOO_OUTPUT for an MQOT_PROCESS object), and one that is
unsupported for the queue type (for example, MQOO_INQUIRE for a remote
queue that has no local definition).

418 MQSeries Application Programming Reference

 Return codes

This reason also occurs on the MQOPEN call if one of the following is true:

� the queue name is resolved through a cell directory, or

� ObjectQMgrName in the object descriptor specifies the name of a local
definition of a remote queue (in order to specify a queue-manager alias),
and the queue named in the RemoteQMgrName attribute of the definition is
the name of the local queue manager,

and the options include one of the following:

 MQOO_INPUT_AS_Q_DEF
 MQOO_INPUT_SHARED
 MQOO_INPUT_EXCLUSIVE
 MQOO_BROWSE
 MQOO_INQUIRE
 MQOO_SET

For the MQCLOSE call, this reason code occurs when the MQCO_DELETE
or MQCO_DELETE_PURGE option was specified, but the queue is not a
dynamic queue.

Corrective action: Specify the correct option; see Table 60 on page 302 for
open options, and Table 59 on page 250 for close options. For the
MQCLOSE call, either correct the option or change the definition type of the
model queue that was used to create the queue.

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

The Options parameter or field contains options which are not valid, or a
combination of options which is not valid.

� For the MQOPEN, MQCLOSE, and MQXCNVC calls, Options is a
separate parameter on the call.

This reason also occurs if the parameter pointer is not valid. (It is not
always possible to detect an invalid parameter pointer; if not detected,
unpredictable results occur.)

� For the MQBEGIN, MQCONNX, MQGET, MQPUT, and MQPUT1 calls,
Options is a field in the relevant options structure (MQBO, MQCNO,
MQGMO, or MQPMO).

Corrective action: Specify valid options. Check the description of the Options
parameter or field to determine which options and combinations of options are
valid. If multiple options are being set by adding the individual options
together, ensure that the same option is not added twice.

MQRC_ORIGINAL_LENGTH_ERROR
(2252, X'8CC') Original length not valid.

An MQPUT or MQPUT1 call was issued to put a report message which is
reporting on a segment, but the OriginalLength field in the MQMD or
MQMDE structure is either:

� Less than one (for a segment which is not the last segment), or
� Less than zero (for a segment which is the last segment)

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

 Chapter 5. Return codes 419

 Return codes

Corrective action: Specify a value which is greater than zero. Zero is valid
only for the last segment.

MQRC_OUTCOME_MIXED
(2123, X'84B') Result of commit or back-out operation is mixed.

The queue manager is acting as the unit-of-work coordinator for a unit of work
that involves other resource managers, but one of the following occurred:

� An MQCMIT or MQDISC call was issued to commit the unit of work, but
one or more of the participating resource managers backed-out the unit of
work instead of committing it. As a result, the outcome of the unit of work
is mixed.

� An MQBACK call was issued to back out a unit of work, but one or more
of the participating resource managers had already committed the unit of
work.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: Examine the queue-manager error logs for messages
relating to the mixed outcome; these messages identify the resource
managers that are affected. Use procedures local to the affected resource
managers to resynchronize the resources.

Note: This reason code does not prevent the application initiating further
units of work.

MQRC_OUTCOME_PENDING
(2124, X'84C') Result of commit operation is pending.

The queue manager is acting as the unit-of-work coordinator for a unit of work
that involves other resource managers, and an MQCMIT or MQDISC call was
issued to commit the unit of work, but one or more of the participating
resource managers has not confirmed that the unit of work was committed
successfully.

The completion of the commit operation will happen at some point in the
future, but there remains the possibility that the outcome will be mixed.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: Use the normal error-reporting mechanisms to determine
whether the outcome was mixed. If it was, take appropriate action to
resynchronize the resources.

Note: This reason code does not prevent the application initiating further
units of work.

MQRC_PAGESET_ERROR
(2193, X'891') Error accessing page set data set.

An error was encountered with the page set while attempting to access it for a
locally defined queue. This could be because the queue is on a page set that
does not exist. A console message is issued that tells you the number of the
page set in error. For example if the error occured in the TEST job, and your
user ID is ABCDEFG, the message is:

CSQIð41I CSQIALLC JOB TEST USER ABCDEFG RECEIVED COMPCODE
MQRC_PAGESET_ERROR ON PAGE SET 27

420 MQSeries Application Programming Reference

 Return codes

If this reason code occurs while attempting to delete a dynamic queue with
MQCLOSE, the dynamic queue has not been deleted.

This reason code occurs only on MVS/ESA.

Corrective action: Check that the storage class for the queue maps to a valid
page set using the DISPLAY Q(xx) STGCLASS, DISPLAY STGCLASS(xx),
and DISPLAY USAGE PSID commands. If you are unable to resolve the
problem, notify the system programmer who should:

� Collect the following diagnostic information:

– A description of the actions that led to the error
– A listing of the application program being run at the time of the error
– Details of the page sets defined for use by MQSeries

� Attempt to re-create the problem, and take a system dump immediately
after the error occurs

� Contact your IBM Support Center

MQRC_PAGESET_FULL
(2192, X'890') Page set data set full.

On an MQOPEN, MQPUT or MQPUT1 call, a page set data set was found to
be full while attempting to open or put a message on a locally defined queue.

This reason code occurs only on MVS/ESA.

Corrective action: Check which queues contain messages and look for any
looping programs that might be unnecessarily filling up queues. Otherwise,
request the system programmer to increase the size of the page set data
sets.

MQRC_PARTICIPANT_NOT_AVAILABLE
(2122, X'84A') Participating resource manager not available.

An MQBEGIN call was issued to start a unit of work coordinated by the queue
manager, but one or more of the participating resource managers that had
been registered with the queue manager is not available. As a result,
changes to those resources cannot be coordinated by the queue manager in
the unit of work.

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: If the application does not require non-MQ resources to
participate in the unit of work, this reason code can be ignored. Otherwise
consult your system support programmer to determine why the required
resource managers are not available. The resource manager may have been
halted temporarily, or there may be an error in the queue manager’s
configuration file.

MQRC_PCF_ERROR
(2149, X'865') PCF structures not valid.

An MQPUT or MQPUT1 call was issued to put a message containing PCF
data, but the length of the message does not equal the sum of the lengths of
the PCF structures present in the message. This can occur for messages
with the following format names:

 MQFMT_ADMIN
 MQFMT_EVENT

 Chapter 5. Return codes 421

 Return codes

 MQFMT_PCF

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that the length of the message specified on the
MQPUT or MQPUT1 call equals the sum of the lengths of the PCF structures
contained within the message data.

MQRC_PERSISTENCE_ERROR
(2047, X'7FF') Persistence not valid.

On an MQPUT or MQPUT1 call, the value specified for the Persistence field
in the message descriptor MQMD is not valid.

Corrective action: Specify one of the following values:

 MQPER_PERSISTENT
 MQPER_NOT_PERSISTENT
 MQPER_PERSISTENCE_AS_Q_DEF

MQRC_PERSISTENT_NOT_ALLOWED
(2048, X'800') Message on a temporary dynamic queue cannot be
persistent.

On an MQPUT or MQPUT1 call, the value specified for the Persistence field
in the message descriptor MQMD specifies MQPER_PERSISTENT, but the
queue on which the message is being placed is a temporary dynamic queue.
Persistent messages cannot be put on temporary queues.

This reason code can also occur in the Feedback field in the message
descriptor of a report message; in this case it indicates that the error was
encountered by a message channel agent when it attempted to put the
message on a remote queue.

Corrective action: Specify MQPER_NOT_PERSISTENT if the message is to
be placed on a temporary dynamic queue. If persistence is required, use a
permanent dynamic queue, or a predefined queue.

Be aware that server applications are recommended to send reply messages
(message type MQMT_REPLY) with the same persistence as the original
request message (message type MQMT_REQUEST). If the request message
is persistent, the reply queue specified in the ReplyToQ field in the message
descriptor MQMD cannot be a temporary dynamic queue; a permanent
dynamic or predefined queue must be used as the reply queue in this
situation.

MQRC_PMO_ERROR
(2173, X'87D') Put-message options structure not valid.

On an MQPUT or MQPUT1 call, the MQPMO structure is not valid. Either the
StrucId mnemonic eye-catcher is not valid, or the Version is not recognized.

This reason also occurs if:

� The parameter pointer is not valid. (It is not always possible to detect an
invalid parameter pointer; if not detected, unpredictable results occur.)

� The queue manager cannot copy the changed structure to application
storage, even though the call is successful. This can occur, for example,
if the pointer points to read-only storage.

422 MQSeries Application Programming Reference

 Return codes

Corrective action: Correct the definition of the MQPMO structure. Ensure that
required input fields are correctly set.

MQRC_PMO_RECORD_FLAGS_ERROR
(2158, X'86E') Put message record flags not valid.

An MQPUT or MQPUT1 call was issued to put a message, but the
PutMsgRecFields field in the MQPMO structure is not valid, for one of the
following reasons:

� The field contains flags which are not valid.

� The message is being put to a distribution list, and put message records
have been provided (that is, RecsPresent is greater than zero, and one of
PutMsgRecOffset or PutMsgRecPtr is nonzero), but PutMsgRecFields has
the value MQPMRF_NONE.

� MQPMRF_ACCOUNTING_TOKEN is specified without either
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that PutMsgRecFields is set with the appropriate
MQPMRF_ñ flags to indicate which fields are present in the put message
records. If MQPMRF_ACCOUNTING_TOKEN is specified, ensure that either
MQPMO_SET_IDENTITY_CONTEXT or MQPMO_SET_ALL_CONTEXT is
also specified. Alternatively, set both PutMsgRecOffset and PutMsgRecPtr to
zero.

MQRC_PRIORITY_ERROR
(2050, X'802') Message priority not valid.

On an MQPUT or MQPUT1 call, the value of the Priority field in the
message descriptor MQMD is not valid.

Corrective action: Specify a value which is zero or greater, or the special
value MQPRI_PRIORITY_AS_Q_DEF.

On MVS/ESA, specify a value in the range 0 through MaxPriority (see
“Attributes for the queue manager” on page 370), or the special value
MQPRI_PRIORITY_AS_Q_DEF.

MQRC_PRIORITY_EXCEEDS_MAXIMUM
(2049, X'801') Message Priority exceeds maximum value supported.

On an MQPUT or MQPUT1 call, the value of the Priority field in the
message descriptor MQMD exceeds the maximum priority supported by the
local queue manager (see the MaxPriority queue-manager attribute
described in “Attributes for the queue manager” on page 370). The message
is accepted by the queue manager, but is placed on the queue at the queue
manager’s maximum priority. The Priority field in the message descriptor
retains the value specified by the application that put the message.

On MVS/ESA, this reason code does not occur.

Corrective action: None required, unless this reason code was not expected
by the application that put the message.

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue (see the

 Chapter 5. Return codes 423

 Return codes

InhibitPut queue attribute described in “Attributes for all queues” on
page 343), or for the queue to which this queue resolves (see “Attributes for
alias queues” on page 365).

This reason code can also occur in the Feedback field in the message
descriptor of a report message; in this case it indicates that the error was
encountered by a message channel agent when it attempted to put the
message on a remote queue.

Corrective action: If the system design allows put requests to be inhibited for
short periods, retry the operation later.

MQRC_PUT_MSG_RECORDS_ERROR
(2159, X'86F') Put message records not valid.

An MQPUT or MQPUT1 call was issued to put a message to a distribution
list, but the MQPMR put message records are not specified correctly. One of
the following applies:

� PutMsgRecOffset is not zero and PutMsgRecPtr is neither the null pointer
nor zero.

� PutMsgRecPtr is not a valid pointer.

� PutMsgRecPtr or PutMsgRecOffset points to storage that is not accessible.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that at least one of PutMsgRecOffset and
PutMsgRecPtr is zero. Ensure that the field used points to accessible storage.

MQRC_Q_ALREADY_EXISTS
(2290, X'8F2') Queue object already exists.

This reason should be returned by the MQZ_INSERT_NAME installable
service component when the queue specified by the QName parameter is
already defined to the name service.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: None. See the MQSeries Programmable System
Management book for details of this installable service.

MQRC_Q_DELETED
(2052, X'804') Queue has been deleted.

An Hobj queue handle specified on a call refers to a dynamic queue that has
been deleted since the queue was opened. (See “MQCLOSE – Close
object” on page 248 for information about the deletion of dynamic queues.)

On MVS/ESA, this can also occur with the MQOPEN and MQPUT1 calls if a
dynamic queue is being opened, but the queue is in a logically-deleted state.
See MQCLOSE for more information about this.

Corrective action: Issue an MQCLOSE call to return the handle and
associated resources to the system (the MQCLOSE call will succeed in this
case). Check the design of the application that caused the error.

MQRC_Q_DEPTH_HIGH
(2224, X'8B0') Queue depth high limit reached or exceeded.

An MQPUT or MQPUT1 call has caused the queue depth to be incremented
to or above the limit specified in the QDepthHighLimit attribute.

424 MQSeries Application Programming Reference

 Return codes

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_Q_DEPTH_LOW
(2225, X'8B1') Queue depth low limit reached or exceeded.

An MQGET call has caused the queue depth to be decremented to or below
the limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of messages.

On an MQPUT or MQPUT1 call, the call failed because the queue is full, that
is, it already contains the maximum number of messages possible (see the
MaxQDepth local-queue attribute described in “Attributes for local queues and
model queues” on page 348).

This reason code can also occur in the Feedback field in the message
descriptor of a report message; in this case it indicates that the error was
encountered by a message channel agent when it attempted to put the
message on a remote queue.

Corrective action: Retry the operation later. Consider increasing the
maximum depth for this queue, or arranging for more instances of the
application to service the queue.

MQRC_Q_MGR_ACTIVE
(2222, X'8AE') Queue manager created.

This condition is detected when a queue manager becomes active.

On MVS/ESA, this event is not generated for the first start of a queue
manager, only on subsequent restarts.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_Q_MGR_NAME_ERROR
(2058, X'80A') Queue manager name not valid or not known.

On an MQCONN call, the value specified for the QMgrName parameter is not
valid. This reason also occurs if the parameter pointer is not valid. (It is not
always possible to detect an invalid parameter pointer; if not detected,
unpredictable results occur.)

On MVS/ESA, for CICS applications, this reason can occur on any call if the
original connect specified an incorrect or unrecognized name.

This reason also occurs if an application attempts to connect to a queue
manager within a group (see the QMgrName parameter of MQCONN), and
either:

� Queue-manager groups are not supported (they are only supported for
MQ client applications), or

� There is no queue-manager group with the specified name.

Corrective action: Use an all-blank name if possible, or verify that the name
used is valid.

 Chapter 5. Return codes 425

 Return codes

MQRC_Q_MGR_NOT_ACTIVE
(2223, X'8AE') Queue manager unavailable.

This condition is detected when a queue manager is requested to stop or
quiesce.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_Q_MGR_NOT_AVAILABLE
(2059, X'80B') Queue manager not available for connection.

On an MQCONN call, the queue manager identified by the QMgrName
parameter is not available for connection at this time.

� On MVS/ESA, for CICS applications, this reason can occur on any call if
the original connect specified a queue manager whose name was
recognized, but which is not available.

� On OS/400, this reason can also be returned by the MQOPEN and
MQPUT1 calls, when MQHC_DEF_HCONN is specified for the Hconn
parameter.

If the connection is from an MQ client application, this reason code can occur
if there is an error with the client-connection or the corresponding
server-connection channel definitions.

On MVS/ESA, this reason code can also occur if the optional MVS/ESA client
attachment feature has not been installed.

This reason also occurs if an application attempts to connect to a queue
manager within a group (see the QMgrName parameter of MQCONN), when
none of the queue managers in the group is available for connection at this
time.

Corrective action: Ensure that the queue manager has been started. If the
connection is from a client application, check the channel definitions.

MQRC_Q_MGR_QUIESCING
(2161, X'871') Queue manager quiescing.

The application attempted to connect to the queue manager, but the queue
manager is in the quiescing state.

On OS/400, and on MVS/ESA for CICS, the application either issued the
MQCONN call, or issued the MQOPEN call when no connection was
established.

This reason code also occurs if the queue manager is in the quiescing state
and an application issues one of the following calls:

� MQOPEN, with MQOO_FAIL_IF_QUIESCING included in the Options
parameter

� MQGET, with MQGMO_FAIL_IF_QUIESCING included in the Options
field of the GetMsgOpts parameter

� MQPUT or MQPUT1, with MQPMO_FAIL_IF_QUIESCING included in the
Options field of the PutMsgOpts parameter

Corrective action: The application should tidy up and stop. If the
MQOO_FAIL_IF_QUIESCING, MQPMO_FAIL_IF_QUIESCING, and
MQGMO_FAIL_IF_QUIESCING options are not used, the application may

426 MQSeries Application Programming Reference

 Return codes

continue working in order to complete and commit the current unit of work; but
it should not start another unit of work.

MQRC_Q_MGR_STOPPING
(2162, X'872') Queue manager shutting down.

A call has been issued when the queue manager is shutting down. If the call
is an MQGET call with the MQGMO_WAIT option, the wait has been
canceled. No more message-queuing calls can be issued.

On MVS/ESA, the MQRC_CONNECTION_BROKEN reason may be returned
instead if, as a result of system scheduling factors, the queue manager shuts
down before the call completes.

Corrective action: The application should tidy up and stop. Applications
should ensure that any uncommitted updates are backed out; any unit of work
that is coordinated by the queue manager is backed out automatically.

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or uncommitted put or
get requests.

An MQCLOSE call was issued for a permanent dynamic queue, with either:

� The MQCO_DELETE option specified, but there are messages still on the
queue, or

� The MQCO_DELETE or MQCO_DELETE_PURGE option specified, but
there are uncommitted get or put calls outstanding against the queue.

See the usage notes pertaining to dynamic queues for the MQCLOSE call for
more information.

This reason code is also returned from a Programmable Command Format
(PCF) command to clear or delete a queue, if the queue contains
uncommitted messages (or committed messages in the case of delete queue
without the purge option).

Corrective action: Check why there might be messages on the queue. Be
aware that the CurrentQDepth local-queue attribute might be zero even though
there are one or more messages on the queue; this can happen if the
messages have been retrieved as part of a unit of work which has not yet
been committed. If the messages can be discarded, try using the MQCLOSE
call with the MQCO_DELETE_PURGE option. Consider retrying the call later.

MQRC_Q_SERVICE_INTERVAL_HIGH
(2226, X'8B2') Queue service interval high.

No successful gets or puts have been detected within an interval which is
greater than the limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

MQRC_Q_SERVICE_INTERVAL_OK
(2227, X'8B3') Queue service interval ok.

A successful get has been detected within an interval which is less than or
equal to the limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is only used to identify the
corresponding event message.

 Chapter 5. Return codes 427

 Return codes

MQRC_Q_SPACE_NOT_AVAILABLE
(2056, X'808') No space available on disk for queue.

An MQPUT or MQPUT1 call was issued, but there is no space available for
the queue on disk or other storage device.

This reason code can also occur in the Feedback field in the message
descriptor of a report message; in this case it indicates that the error was
encountered by a message channel agent when it attempted to put the
message on a remote queue.

On MVS/ESA, this reason code does not occur.

Corrective action: Check whether an application is putting messages in an
infinite loop. If not, make more disk space available for the queue.

On OS/400, the space available for a queue is limited to 320 MB. If this limit
has been reached, consider redesigning the application to reduce the number
or size of messages on a single queue, or start more server instances.

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

One of the following occurred:

� On an MQOPEN call, the ObjectQMgrName field in the object descriptor
MQOD or object record MQOR specifies the name of a local definition of
a remote queue (in order to specify a queue-manager alias), and in that
local definition the RemoteQMgrName attribute is the name of the local
queue manager. However, the ObjectName field in MQOD or MQOR
specifies the name of a model queue on the local queue manager; this is
not allowed. See the MQSeries Application Programming Guide for more
information.

� On an MQPUT1 call, the object descriptor MQOD or object record MQOR
specifies the name of a model queue.

� On a previous MQPUT or MQPUT1 call, the ReplyToQ field in the
message descriptor specified the name of a model queue, but a model
queue cannot be specified as the destination for reply or report
messages. Only the name of a predefined queue, or the name of the
dynamic queue created from the model queue, can be specified as the
destination. In this situation the reason code MQRC_Q_TYPE_ERROR is
returned in the Reason field of the MQDLH structure when the reply
message or report message is placed on the dead-letter queue.

Corrective action: Specify a valid queue.

MQRC_RECS_PRESENT_ERROR
(2154, X'86A') Number of records present not valid.

An MQOPEN or MQPUT1 call was issued, but the call failed for one of the
following reasons:

� RecsPresent in MQOD is less than zero.

� ObjectType in MQOD is not MQOT_Q, and RecsPresent is not zero.
RecsPresent must be zero if the object being opened is not a queue.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

428 MQSeries Application Programming Reference

 Return codes

Corrective action: If it is intended to open a distribution list, set the ObjectType
field to MQOT_Q and RecsPresent to the number of destinations in the list. If
it is not intended to open a distribution list, set the RecsPresent field to zero.

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

On an MQOPEN or MQPUT1 call, one of the following occurred:

� A local definition of a remote queue (or an alias to one) was specified, but
the RemoteQName attribute in the remote queue definition is entirely blank.
Note that this error occurs even if the XmitQName in the definition is not
blank.

� The ObjectQMgrName field in the object descriptor was not blank and not
the name of the local queue manager, but the ObjectName field is blank.

Corrective action: Alter the local definition of the remote queue and supply a
valid remote queue name, or supply a nonblank ObjectName in the object
descriptor, as appropriate.

MQRC_REPORT_OPTIONS_ERROR
(2061, X'80D') Report options in message descriptor not valid.

An MQPUT or MQPUT1 call was issued, but the Report field in the message
descriptor MQMD contains one or more options which are not recognized by
the local queue manager. The options that cause this reason code to be
returned depend on the destination of the message; see Appendix C, “Report
options and message flags” on page 489 for more details.

This reason code can also occur in the Feedback field in the MQMD of a
report message, or in the Reason field in the MQDLH structure of a message
on the dead-letter queue; in both cases it indicates that the destination queue
manager does not support one or more of the report options specified by the
sender of the message.

Corrective action: Do the following:

1. Ensure that the Report field in the message descriptor is initialized with a
value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.

Specify MQRO_NONE if no report options are required.

2. Ensure that the report options specified are ones which are documented
in this book; see the Report field described in “MQMD – Message
descriptor” on page 98 for valid report options. Remove any report
options which are not documented in this book.

3. If multiple report options are being set by adding the individual report
options together, ensure that the same report option is not added twice.

4. Check that conflicting report options are not specified. For example, do
not add both MQRO_EXCEPTION and
MQRO_EXCEPTION_WITH_DATA to the Report field; only one of these
can be specified.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

There are insufficient system resources to complete the call successfully.

On MVS/ESA, this reason code does not occur.

 Chapter 5. Return codes 429

 Return codes

Corrective action: Run the application when the machine is less heavily
loaded.

| On OpenVMS, OS/2, OS/400, Tandem NSK, and UNIX systems, consult the
FFST record to obtain more detail about the problem.

MQRC_RESPONSE_RECORDS_ERROR
(2156, X'86C') Response records not valid.

An MQOPEN or MQPUT1 call was issued to open a distribution list (that is,
the RecsPresent field in MQOD is greater than zero), but the MQRR response
records are not specified correctly. One of the following applies:

� ResponseRecOffset is not zero and ResponseRecPtr is neither the null
pointer nor zero.

� ResponseRecPtr is not a valid pointer.

� ResponseRecPtr or ResponseRecOffset points to storage that is not
accessible.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Ensure that at least one of ResponseRecOffset and
ResponseRecPtr is zero. Ensure that the field used points to accessible
storage.

MQRC_RMH_ERROR
(2220, X'8AC') Reference message header structure not valid.

On an MQPUT or MQPUT1 call, the reference message header structure
MQRMH in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQRMH structure. Ensure that
the fields are set correctly.

MQRC_SECOND_MARK_NOT_ALLOWED
(2062, X'80E') A message is already marked.

The Options field in the MQGMO specifies
MQGMO_MARK_SKIP_BACKOUT, but a message has already been marked
within this unit of work. Only one marked message is allowed within one unit
of work.

This reason code occurs only on MVS/ESA.

Corrective action: Ask for only one message to be marked.

MQRC_SECURITY_ERROR
(2063, X'80F') Security error occurred.

An MQCONN, MQOPEN, MQPUT1, or MQCLOSE call was issued, but it
failed because a security error occurred.

� On MVS/ESA, the security error was returned by the External Security
Manager.

� On OS/400, this reason code is not returned by the MQCONN call.

Corrective Action: Note the error from the security manager, and contact your
system programmer or security administrator.

430 MQSeries Application Programming Reference

 Return codes

On OS/400, the FFST log will contain the error information.

MQRC_SEGMENT_LENGTH_ZERO
(2253, X'8CD') Length of data in message segment is zero.

An MQPUT or MQPUT1 call was issued to put the first or intermediate
segment of a logical message, but the length of the application message data
in the segment (excluding any MQ headers that may be present) is zero. The
length must be at least one for the first or intermediate segment.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Check the application logic to ensure that segments are put
with a length of one or greater. Only the last segment of a logical message is
permitted to have a zero length.

MQRC_SELECTOR_COUNT_ERROR
(2065, X'811') Count of selectors not valid.

On an MQINQ or MQSET call, the SelectorCount parameter specifies a value
that is not valid. This reason also occurs if the parameter pointer is not valid.
(It is not always possible to detect an invalid parameter pointer; if not
detected, unpredictable results occur.)

Corrective action: Specify a value in the range 0 through 256.

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

On an MQINQ or MQSET call, a selector in the Selectors array is either:

� not valid, or

� not applicable to the type of the object whose attributes are being inquired
or set, or

� (MQSET only) not an attribute which can be set.

This reason also occurs if the parameter pointer is not valid. (It is not always
possible to detect an invalid parameter pointer; if not detected, unpredictable
results occur.)

Corrective action: Ensure that the value specified for the selector is valid for
the object type represented by Hobj. For the MQSET call, also ensure that
the selector represents an integer attribute that can be set.

MQRC_SELECTOR_LIMIT_EXCEEDED
(2066, X'812') Count of selectors too big.

On an MQINQ or MQSET call, the SelectorCount parameter specifies a value
that is larger than the maximum supported (256).

Corrective action: Reduce the number of selectors specified on the call; the
valid range is 0 through 256.

MQRC_SELECTOR_NOT_FOR_TYPE
(2068, X'814') Selector not applicable to queue type.

On the MQINQ call, one or more selectors in the Selectors array is not
applicable to the type of the queue whose attributes are being inquired. The
call completes with MQCC_WARNING, with the attribute values for the
inapplicable selectors set as follows:

 Chapter 5. Return codes 431

 Return codes

� For integer attributes, the corresponding elements of IntAttrs are set to
MQIAV_NOT_APPLICABLE.

� For character attributes, the appropriate parts of the CharAttrs string are
set to a character string consisting entirely of asterisks (*).

Corrective action: Verify that the selector specified is the one that was
intended.

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

This reason should be returned by an installable service component when the
component encounters an unexpected error.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Correct the error and retry the operation.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

This reason should be returned by an installable service component when the
requested action cannot be performed because the required underlying
service is not available.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Make the underlying service available.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815') Signal outstanding for this handle.

An MQGET call was issued with either the MQGMO_SET_SIGNAL or
MQGMO_WAIT option, but there is already a signal outstanding for the queue
handle Hobj.

This reason code occurs only in the following environments: MVS/ESA, 32-bit
Windows.

Corrective action: Check the application logic. If it is necessary to set a signal
or wait when there is a signal outstanding for the same queue, a different
object handle must be used.

MQRC_SIGNAL_REQUEST_ACCEPTED
(2070, X'816') No message returned (but signal request accepted).

An MQGET call was issued specifying MQGMO_SET_SIGNAL in the
GetMsgOpts parameter, but no suitable message was available; the call returns
immediately. The application can now wait for the signal to be delivered.

� On MVS/ESA, the application should wait on the Event Control Block
pointed to by the Signal1 field.

� On 32-bit Windows, the application should wait for the signal Windows
message to be delivered.

This reason code occurs only in the following environments: MVS/ESA, 32-bit
Windows.

Corrective action: Wait for the signal; when it is delivered, check the signal to
ensure that a message is now available. If it is, reissue the MQGET call.

On MVS/ESA, wait on the ECB pointed to by the Signal1 field and, when it is
posted, check it to ensure that a message is now available.

432 MQSeries Application Programming Reference

 Return codes

On 32-bit Windows, the application (thread) should continue executing its
message loop.

MQRC_SIGNAL1_ERROR
(2099, X'833') Signal field not valid.

An MQGET call was issued, specifying MQGMO_SET_SIGNAL in the
GetMsgOpts parameter, but the Signal1 field is not valid.

� On MVS/ESA, the address contained in the Signal1 field is not valid, or
points to read-only storage. (It is not always possible to detect an invalid
parameter pointer; if not detected, unpredictable results occur.)

� On 32-bit Windows, the window handle in the Signal1 field is not valid.

This reason code occurs only in the following environments: MVS/ESA, 32-bit
Windows.

Corrective action: Correct the setting of the Signal1 field.

MQRC_SOURCE_BUFFER_ERROR
(2145, X'861') Source buffer parameter not valid.

On the MQXCNVC call, the SourceBuffer parameter pointer is not valid, or
points to storage that cannot be accessed for the entire length specified by
SourceLength. (It is not always possible to detect an invalid parameter
pointer; if not detected, unpredictable results occur.)

Corrective action: Specify a valid buffer.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

The coded character-set identifier from which character data is to be
converted is not valid or not supported.

This can occur on the MQGET call when the MQGMO_CONVERT option is
included in the GetMsgOpts parameter; the coded character-set identifier in
error is the CodedCharSetId field in the message being retrieved. In this case,
the message data is returned unconverted, the values of the CodedCharSetId
and Encoding fields in the MsgDesc parameter are set to those of the message
returned, and the call completes with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

This reason can also occur on the MQXCNVC call; the coded character-set
identifier in error is the SourceCCSID parameter. Either the SourceCCSID
parameter specifies a value which is not valid or not supported, or the
SourceCCSID parameter pointer is not valid. (It is not always possible to detect
an invalid parameter pointer; if not detected, unpredictable results occur.)

Corrective action: Check the character-set identifier that was specified when
the message was put, or that was specified for the SourceCCSID parameter on
the MQXCNVC call. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is not
supported for the specified character set, conversion must be carried out by
the application.

 Chapter 5. Return codes 433

 Return codes

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message not recognized.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the message being retrieved
specifies a decimal encoding that is not recognized. The message data is
returned unconverted, the values of the CodedCharSetId and Encoding fields
in the MsgDesc parameter are set to those of the message returned, and the
call completes with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

Corrective action: Check the decimal encoding that was specified when the
message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is not
supported for the required decimal encoding, conversion must be carried out
by the application.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not recognized.

On an MQGET call, with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the message being retrieved
specifies a floating-point encoding that is not recognized. The message data
is returned unconverted, the values of the CodedCharSetId and Encoding
fields in the MsgDesc parameter are set to those of the message returned,
and the call completes with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted
and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

Corrective action: Check the floating-point encoding that was specified when
the message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is not
supported for the required floating-point encoding, conversion must be carried
out by the application.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

On an MQGET call, with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the message being retrieved
specifies an integer encoding that is not recognized. The message data is
returned unconverted, the values of the CodedCharSetId and Encoding fields
in the MsgDesc parameter are set to those of the message returned, and the
call completes with MQCC_WARNING.

If the message consists of several parts, each of which is described by its
own CodedCharSetId and Encoding fields (for example, a message with format
name MQFMT_DEAD_LETTER_HEADER), some parts may be converted

434 MQSeries Application Programming Reference

 Return codes

and other parts not converted. However, the values returned in the various
CodedCharSetId and Encoding fields always correctly describe the relevant
message data.

This reason code can also occur on the MQXCNVC call, when the Options
parameter contains an unsupported MQDCC_SOURCE_ñ value, or when
MQDCC_SOURCE_ENC_UNDEFINED is specified for a UCS2 code page.

Corrective action: Check the integer encoding that was specified when the
message was put. If this is correct, check that it is one for which
queue-manager conversion is supported. If queue-manager conversion is not
supported for the required integer encoding, conversion must be carried out
by the application.

MQRC_SOURCE_LENGTH_ERROR
(2143, X'85F') Source length parameter not valid.

On the MQXCNVC call, the SourceLength parameter specifies a length that is
less than zero or not consistent with the string’s character set or content (for
example, the character set is a double-byte character set, but the length is not
a multiple of two). This reason also occurs if the SourceLength parameter
pointer is not valid. (It is not always possible to detect an invalid parameter
pointer; if not detected, unpredictable results occur.)

Corrective action: Specify a length that is zero or greater.

MQRC_SRC_ENV_ERROR
(2261, X'8D5') Source environment data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the source environment data of a reference message
header (MQRMH). One of the following is true:

� SrcEnvLength is less than zero.

� Source environment data is not present although SrcEnvLength is greater
than zero.

� The range defined by SrcEnvOffset and SrcEnvLength is not wholly
beyond the fixed fields in the MQRMH structure and within StrucLength
bytes from the start of the structure.

The exit returns this reason in the Feedback field of the MQCXP structure. If
an exception report is requested, it is copied to the Feedback field of the
MQMD associated with the report.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify the source environment data correctly.

MQRC_SRC_NAME_ERROR
(2262, X'8D6') Source name data error.

This reason occurs when a channel exit that processes reference messages
detects an error in the source name data of a reference message header
(MQRMH). One of the following is true:

� SrcNameLength is less than zero.

� Source name data is not present although SrcNameLength is greater than
zero.

 Chapter 5. Return codes 435

 Return codes

� The range defined by SrcNameOffset and SrcNameLength is not wholly
beyond the fixed fields in the MQRMH structure and within StrucLength
bytes from the start of the structure.

The exit returns this reason in the Feedback field of the MQCXP structure. If
an exception report is requested, it is copied to the Feedback field of the
MQMD associated with the report.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Specify the source name data correctly.

MQRC_STORAGE_CLASS_ERROR
(2105, X'839') Storage class error.

The MQPUT or MQPUT1 call was issued, but the storage-class object defined
for the queue does not exist.

This reason code occurs only on MVS/ESA.

Corrective action: Create the storage-class object required by the queue, or
modify the queue definition to use an existing storage class. The name of the
storage-class object used by the queue is given by the StorageClass queue
attribute.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

A call cannot complete because sufficient storage is not available to the
queue manager.

Corrective action: Ensure that active applications are behaving correctly, for
example, that they are not looping. If no problems are found, make more
storage available.

On MVS/ESA, if no application problems are found, ask your systems
programmer to increase the size of the region in which the queue manager
runs.

MQRC_SUPPRESSED_BY_EXIT
(2109, X'83D') Call suppressed by exit program.

On any call other than MQCONN or MQDISC, the API crossing exit
suppressed the call.

This reason code occurs only on MVS/ESA.

Corrective action: Obey the rules for API calls that the exit enforces. To find
out the rules, see the writer of the exit.

MQRC_SYNCPOINT_LIMIT_REACHED
(2024, X'7E8') No more messages can be handled within current unit of
work.

An MQGET, MQPUT, or MQPUT1 call failed because it would have caused
the number of uncommitted messages in the current unit of work to exceed
the limit defined for the queue manager (see the MaxUncommittedMsgs
queue-manager attribute). The number of uncommitted messages is the sum
of the following since the start of the current unit of work:

� Messages put by the application with the MQPMO_SYNCPOINT option

436 MQSeries Application Programming Reference

 Return codes

� Messages retrieved by the application with the MQGMO_SYNCPOINT
option

� Trigger messages and COA report messages generated by the queue
manager for messages put with the MQPMO_SYNCPOINT option

� COD report messages generated by the queue manager for messages
retrieved with the MQGMO_SYNCPOINT option

Corrective action: Check whether the application is looping. If it is not,
consider reducing the complexity of the application. Alternatively, increase
the queue-manager limit for the maximum number of uncommitted messages
within a unit of work:

� On MVS/ESA, the limit for the maximum number of uncommitted
messages can be changed by using the DEFINE MAXSMSGS command.

� On OS/400, the limit for the maximum number of uncommitted messages
can be changed by using the CHGMQM command.

| � On Tandem NSK, the maximum number of I/O operations in a single
| TM/MP transaction has been exceeded. The application should cancel the
| transaction and retry with a smaller number of operations in the UOW.
| See the MQSeries for Tandem NonStop Kernel System Management
| Guide for more details.

MQRC_SYNCPOINT_NOT_AVAILABLE
(2072, X'818') Syncpoint support not available.

MQGMO_SYNCPOINT was specified on an MQGET call, or
MQPMO_SYNCPOINT was specified on an MQPUT or MQPUT1 call, but the
local queue manager was unable to honor the request. If the queue manager
does not support units of work, the SyncPoint queue-manager attribute will
have the value MQSP_NOT_AVAILABLE.

This reason code can also occur on the MQGET, MQPUT, and MQPUT1 calls
when an external unit-of-work coordinator is being used. If that coordinator
requires an explicit call to start the unit of work, but the application has not
issued that call prior to the MQGET, MQPUT, or MQPUT1 call, reason code
MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

� On OS/400, this reason codes means that OS/400 Commitment Control is
not started, or is unavailable for use by the queue manager.

� On MVS/ESA, this reason code does not occur.

Corrective action: Remove the specification of MQGMO_SYNCPOINT or
MQPMO_SYNCPOINT, as appropriate.

On OS/400, if Commitment Control has not been started, start it. If this
reason code occurs after Commitment Control has been started, contact your
systems programmer.

MQRC_TARGET_BUFFER_ERROR
(2146, X'862') Target buffer parameter not valid.

On the MQXCNVC call, the TargetBuffer parameter pointer is not valid, or
points to read-only storage, or to storage that cannot be accessed for the
entire length specified by TargetLength. (It is not always possible to detect
an invalid parameter pointer; if not detected, unpredictable results occur.)

Corrective action: Specify a valid buffer.

 Chapter 5. Return codes 437

 Return codes

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

The coded character-set identifier to which character data which is to be
converted is not valid or not supported.

This can occur on the MQGET call when the MQGMO_CONVERT option is
included in the GetMsgOpts parameter; the coded character-set identifier in
error is the CodedCharSetId field in the MsgDesc parameter. In this case, the
message data is returned unconverted, the values of the CodedCharSetId and
Encoding fields in the MsgDesc parameter are set to those of the message
returned, and the call completes with MQCC_WARNING.

This reason can also occur on the MQXCNVC call; the coded character-set
identifier in error is the TargetCCSID parameter. Either the TargetCCSID
parameter specifies a value which is not valid or not supported, or the
TargetCCSID parameter pointer is not valid. (It is not always possible to detect
an invalid parameter pointer; if not detected, unpredictable results occur.)

Corrective action: Check the character-set identifier that was specified for the
CodedCharSetId field in the MsgDesc parameter on the MQGET call, or that
was specified for the SourceCCSID parameter on the MQXCNVC call. If this is
correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the specified
character set, conversion must be carried out by the application.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the MsgDesc parameter specifies
a decimal encoding that is not recognized. The message data is returned
unconverted, the values of the CodedCharSetId and Encoding fields in the
MsgDesc parameter are set to those of the message returned, and the call
completes with MQCC_WARNING.

Corrective action: Check the decimal encoding that was specified. If this is
correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
decimal encoding, conversion must be carried out by the application.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not recognized.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the MsgDesc parameter specifies
a floating-point encoding that is not recognized. The message data is
returned unconverted, the values of the CodedCharSetId and Encoding fields
in the MsgDesc parameter are set to those of the message returned, and the
call completes with MQCC_WARNING.

Corrective action: Check the floating-point encoding that was specified. If this
is correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
floating-point encoding, conversion must be carried out by the application.

438 MQSeries Application Programming Reference

 Return codes

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

On an MQGET call with the MQGMO_CONVERT option included in the
GetMsgOpts parameter, the Encoding value in the MsgDesc parameter specifies
an integer encoding that is not recognized. The message data is returned
unconverted, the values of the CodedCharSetId and Encoding fields in the
MsgDesc parameter are set to those of the message being retrieved, and the
call completes with MQCC_WARNING.

This reason code can also occur on the MQXCNVC call, when the Options
parameter contains an unsupported MQDCC_TARGET_ñ value, or when
MQDCC_TARGET_ENC_UNDEFINED is specified for a UCS2 code page.

Corrective action: Check the integer encoding that was specified. If this is
correct, check that it is one for which queue-manager conversion is
supported. If queue-manager conversion is not supported for the required
integer encoding, conversion must be carried out by the application.

MQRC_TARGET_LENGTH_ERROR
(2144, X'860') Target length parameter not valid.

On the MQXCNVC call, the TargetLength parameter specifies a length that is
less than zero. This reason also occurs if the TargetLength parameter pointer
is not valid. (It is not always possible to detect an invalid parameter pointer; if
not detected, unpredictable results occur.)

Corrective action: Specify a length that is zero or greater.

MQRC_TERMINATION_FAILED
(2287, X'8FF') Termination failed for an undefined reason.

This reason should be returned by an installable service component when the
component is unable to complete termination successfully.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Correct the error and retry the operation.

MQRC_TM_ERROR
(2265, X'8D9') Trigger message structure not valid.

On an MQPUT or MQPUT1 call, the trigger message structure MQTM in the
message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQTM structure. Ensure that
the fields are set correctly.

MQRC_TMC_ERROR
(2191, X'88F') Character trigger message structure not valid.

On an MQPUT or MQPUT1 call, the character trigger message structure
MQTMC or MQTMC2 in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQTMC or MQTMC2 structure.
Ensure that the fields are set correctly.

 Chapter 5. Return codes 439

 Return codes

MQRC_TRIGGER_CONTROL_ERROR
(2075, X'81B') Value for trigger-control attribute not valid.

On an MQSET call, the value specified for the MQIA_TRIGGER_CONTROL
attribute selector is not valid.

Corrective action: Specify a valid value. See “Attributes for local queues and
model queues” on page 348.

MQRC_TRIGGER_DEPTH_ERROR
(2076, X'81C') Value for trigger-depth attribute not valid.

On an MQSET call, the value specified for the MQIA_TRIGGER_DEPTH
attribute selector is not valid.

Corrective action: Specify a value which is greater than zero. See “Attributes
for local queues and model queues” on page 348.

MQRC_TRIGGER_MSG_PRIORITY_ERR
(2077, X'81D') Value for trigger-message-priority attribute not valid.

On an MQSET call, the value specified for the
MQIA_TRIGGER_MSG_PRIORITY attribute selector is not valid.

Corrective action: Specify a value in the range 0 through the value of
MaxPriority queue-manager attribute. See “Attributes for local queues and
model queues” on page 348.

MQRC_TRIGGER_TYPE_ERROR
(2078, X'81E') Value for trigger-type attribute not valid.

On an MQSET call, the value specified for the MQIA_TRIGGER_TYPE
attribute selector is not valid.

Corrective action: Specify a valid value. See “Attributes for local queues and
model queues” on page 348.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing completed).

On an MQGET call, the message length was too large to fit into the supplied
buffer. The MQGMO_ACCEPT_TRUNCATED_MSG option was specified, so
the call completes. The message is removed from the queue (subject to
unit-of-work considerations), or, if this was a browse operation, the browse
cursor is advanced to this message.

The DataLength parameter is set to the length of the message before
truncation, the Buffer parameter contains as much of the message as fits,
and the MQMD structure is filled in.

Corrective action: None, because the application expected this situation.

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned (processing not completed).

On an MQGET call, the message length was too large to fit into the supplied
buffer. The MQGMO_ACCEPT_TRUNCATED_MSG option was not specified,
so the message has not been removed from the queue. If this was a browse
operation, the browse cursor remains where it was before this call, but if
MQGMO_BROWSE_FIRST was specified, the browse cursor is positioned
logically before the highest-priority message on the queue.

440 MQSeries Application Programming Reference

 Return codes

The DataLength field is set to the length of the message before truncation, the
Buffer parameter contains as much of the message as fits, and the MQMD
structure is filled in.

Corrective action: Supply a buffer that is at least as large as DataLength, or
specify MQGMO_ACCEPT_TRUNCATED_MSG if not all of the message data
is required.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

The call was rejected because an unexpected error occurred.

Corrective Action: Check the application’s parameter list to ensure, for
example, that the correct number of parameters was passed, and that data
pointers and storage keys are valid. If the problem cannot be resolved,
contact your system programmer.

� On MVS/ESA, check whether any information has been displayed on the
console. If this error occurs on an MQCONN call, check that the
subsystem named is an active MQ subsystem. In particular, check that it
is not a DB2 subsystem. If the problem cannot be resolved, rerun the
application with a CSQSNAP DD card (if you have not already got a
dump) and send the resulting dump to IBM.

� On OS/2 and OS/400, consult the FFST record to obtain more detail
about the problem.

| � On OpenVMS, Tandem NSK, and UNIX systems, consult the FDC file to
obtain more detail about the problem.

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

An MQOPEN or MQPUT1 call was issued specifying an alias queue as the
target, but the BaseQName in the alias queue attributes is not recognized as a
queue name.

Corrective action: Correct the queue definitions.

MQRC_UNKNOWN_AUTH_ENTITY
(2293, X'8F5') Authorization entity unknown to service.

This reason should be returned by the authority installable service component
when the name specified by the AuthEntityName parameter is not recognized.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Ensure that the entity is defined.

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

An MQOPEN or MQPUT1 call was issued specifying a remote queue as the
destination. If a local definition of the remote queue was specified, or if a
queue-manager alias is being resolved, the XmitQName attribute in the local
definition is blank.

Because there is no queue defined with the same name as the destination
queue manager, the queue manager has attempted to use the default
transmission queue. However, the name defined by the DefXmitQName
queue-manager attribute is not the name of a locally-defined queue.

 Chapter 5. Return codes 441

 Return codes

Corrective Action: Correct the queue definitions, or the queue-manager
attribute. See the MQSeries Application Programming Guide for more
information.

MQRC_UNKNOWN_ENTITY
(2292, X'8F4') Entity unknown to service.

This reason should be returned by the authority installable service component
when the name specified by the EntityName parameter is not recognized.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Ensure that the entity is defined.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

On an MQOPEN or MQPUT1 call, the ObjectQMgrName field in the object
descriptor MQOD is set to one of the following:

 � Blank

� The name of the local queue manager

� The name of a local definition of a remote queue (a queue-manager alias)
in which the RemoteQMgrName attribute is the name of the local queue
manager

However, the ObjectName field in the object descriptor is not recognized for
the specified object type.

See also MQRC_Q_DELETED.

Corrective action: Specify a valid object name. Ensure that the name is
padded to the right with blanks if necessary. If this is correct, check the
queue definitions.

MQRC_UNKNOWN_OBJECT_Q_MGR
(2086, X'826') Unknown object queue manager.

On an MQOPEN or MQPUT1 call, the ObjectQMgrName field in the object
descriptor MQOD does not satisfy the naming rules for objects. For more
information, see the MQSeries Application Programming Guide.

This reason also occurs if the ObjectType field in the object descriptor has the
value MQOT_Q_MGR, and the ObjectQMgrName field is not blank, but the
name specified is not the name of the local queue manager.

Corrective Action: Specify a valid queue manager name (or all blanks or an
initial null character to refer to the local queue manager). Ensure that the
name is padded to the right with blanks or terminated with a null character if
necessary.

MQRC_UNKNOWN_Q_NAME
(2288, X'8F0') Queue name not found.

This reason should be returned by the MQZ_LOOKUP_NAME installable
service component when the name specified for the QName parameter is not
recognized.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: None. See the MQSeries Programmable System
Management book for details of this call.

442 MQSeries Application Programming Reference

 Return codes

MQRC_UNKNOWN_REF_OBJECT
(2294, X'8F6') Reference object unknown.

This reason should be returned by the MQZ_COPY_ALL_AUTHORITY
installable service component when the name specified by the RefObjectName
parameter is not recognized.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: Ensure that the reference object is defined. See the
MQSeries Programmable System Management book for details of this call.

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

On an MQOPEN or MQPUT1 call, an error occurred with the queue-name
resolution, for one of the following reasons:

� ObjectQMgrName is either blank or the name of the local queue manager,
and ObjectName is the name of a local definition of a remote queue, which
has a blank XmitQName. However, there is no (transmission) queue
defined with the name of RemoteQMgrName, and the DefXmitQName
queue-manager attribute is blank.

� ObjectQMgrName is the name of a queue-manager alias definition (held as
the local definition of a remote queue), which has a blank XmitQName.
However, there is no (transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName queue-manager attribute is blank.

� ObjectQMgrName specified is not:

 – Blank
– The name of the local queue manager
– The name of a local queue
– The name of a queue-manager alias definition (that is, a local

definition of a remote queue with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is blank.

� ObjectQMgrName is blank or is the name of the local queue manager, and
ObjectName is the name of a local definition of a remote queue (or an alias
to one), for which RemoteQMgrName is either blank or is the name of the
local queue manager. Note that this error occurs even if the XmitQName is
not blank.

� ObjectQMgrName is the name of a local definition of a remote queue. In
this context, this should be a queue-manager alias definition, but the
RemoteQName in the definition is not blank.

� ObjectQMgrName is the name of a model queue.

� The queue name is resolved through a cell directory. However, there is
no queue defined with the same name as the remote queue manager
name obtained from the cell directory. Also, the DefXmitQName
queue-manager attribute is blank.

Corrective action: Check the values specified for ObjectQMgrName and
ObjectName. If these are correct, check the queue definitions.

MQRC_UNKNOWN_REPORT_OPTION
(2104, X'838') Report option(s) in message descriptor not recognized.

An MQPUT or MQPUT1 call was issued, but the Report field in the message

 Chapter 5. Return codes 443

 Return codes

descriptor MQMD contains one or more options which are not recognized by
the local queue manager. The options are accepted.

The options that cause this reason code to be returned depend on the
destination of the message; see Appendix C, “Report options and message
flags” on page 489 for more details.

Corrective action: If this reason code is expected, no corrective action is
required.

If this reason code is not expected, do the following:

1. Ensure that the Report field in the message descriptor is initialized with a
value when the message descriptor is declared, or is assigned a value
prior to the MQPUT or MQPUT1 call.

2. Ensure that the report options specified are ones which are documented
in this book; see the Report field described in “MQMD – Message
descriptor” on page 98 for valid report options. Remove any report
options which are not documented in this book.

3. If multiple report options are being set by adding the individual report
options together, ensure that the same report option is not added twice.

4. Check that conflicting report options are not specified. For example, do
not add both MQRO_EXCEPTION and
MQRO_EXCEPTION_WITH_DATA to the Report field; only one of these
can be specified.

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or the ObjectQMgrName in the object descriptor
specifies the name of a local definition of a remote queue (in the latter case
queue-manager aliasing is being used), but the XmitQName attribute of the
definition is not blank and not the name of a locally-defined queue.

Corrective action: Check the values specified for ObjectName and
ObjectQMgrName. If these are correct, check the queue definitions. For more
information on transmission queues, see the MQSeries Application
Programming Guide.

| MQRC_UOW_CANCELED
| (2297, X'8F9') Unit of work (TM/MP transaction) has been cancelled. This
| may have been performed by TM/MP itself (there are some system wide
| TM/MP configuration parameters controlling long running transactions and
| audit trail sizes) or by the application program issuing an
| ABORT_TRANSACTION. All updates performed to MQSeries resources are
| backed out.

MQRC_UOW_IN_PROGRESS
(2128, X'850') Unit of work already started.

An MQBEGIN call was issued to start a unit of work coordinated by the queue
manager, but a unit of work is already in existence for the connection handle
specified. This may be a global unit of work started by a previous MQBEGIN
call, or a unit of work that is local to the queue manager or one of the
cooperating resource managers. No more than one unit of work can exist
concurrently for a connection handle.

444 MQSeries Application Programming Reference

 Return codes

This reason code occurs in the following environments: AIX, HP-UX, OS/2,
Sun Solaris, Windows NT.

Corrective action: Review the application logic to determine why there is a
unit of work already in existence. Move the MQBEGIN call to the appropriate
place in the application.

MQRC_UOW_NOT_AVAILABLE
(2255, X'8CF') Unit of work not available for the queue manager to use.

An MQGET, MQPUT, or MQPUT1 call was issued to get or put a message
outside a unit of work, but the options specified on the call required the queue
manager to process the call within a unit of work. Because there is already a
user-defined unit of work in existence, the queue manager was unable to
create a temporary unit of work for the duration of the call.

This reason occurs in the following circumstances:

� On an MQGET call, when the MQGMO_COMPLETE_MSG option is
specified in MQGMO and the logical message to be retrieved is persistent
and consists of two or more segments.

� On an MQPUT or MQPUT1 call, when the
MQMF_SEGMENTATION_ALLOWED flag is specified in MQMD and the
message requires segmentation.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Issue the MQGET, MQPUT, or MQPUT1 call inside the
user-defined unit of work. Alternatively, for the MQPUT or MQPUT1 call,
reduce the size of the message so that it does not require segmentation by
the queue manager.

| MQRC_UNIT_OF_WORK_NOT_STARTED
| (2232, X'8B8') An attempt has been made to perform an MQPUT or MQGET
| call with the SYNCPOINT option specified (the default), but no TM/MP
| transaction has been started. Ensure a TM/MP transaction is available, or
| issue the MQPUT or MQGET call with the NO_SYNCPOINT option, in which
| case a transaction is started automatically.

MQRC_USER_ID_NOT_AVAILABLE
(2291, X'8F3') Unable to determine the user ID.

This reason should be returned by the MQZ_FIND_USERID installable
service component when the user ID cannot be determined.

On MVS/ESA and OS/400, this reason code does not occur.

Corrective action: None. See the MQSeries Programmable System
Management book for details of this call.

MQRC_WAIT_INTERVAL_ERROR
(2090, X'82A') Wait interval in MQGMO not valid.

On the MQGET call, the value specified for the WaitInterval field in the
GetMsgOpts parameter is not valid.

Corrective action: Specify a value greater than or equal to zero, or the special
value MQWI_UNLIMITED if an indefinite wait is required.

 Chapter 5. Return codes 445

 Return codes

MQRC_WRONG_GMO_VERSION
(2256, X'8D0') Wrong version of MQGMO supplied.

An MQGET call was issued specifying options that required an MQGMO with
a version number not less than MQGMO_VERSION_2, but the MQGMO
supplied did not satisfy this condition.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Modify the program to pass a version-2 MQGMO. Check
the program logic to ensure that the Version field in MQGMO has been set to
MQGMO_VERSION_2. Alternatively, remove the option that requires the
version-2 MQGMO.

MQRC_WRONG_MD_VERSION
(2257, X'8D1') Wrong version of MQMD supplied.

An MQGET, MQPUT, or MQPUT1 call was issued specifying options that
required an MQMD with a version number not less than MQMD_VERSION_2,
but the MQMD supplied did not satisfy this condition.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Modify the program to pass a version-2 MQMD. Check the
program logic to ensure that the Version field in MQMD has been set to
MQMD_VERSION_2. Alternatively, remove the option that requires the
version-2 MQMD.

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager. The ObjectName or ObjectQMgrName field in the object descriptor
specifies the name of a local definition of a remote queue but one of the
following applies to the XmitQName attribute of the definition:

� XmitQName is not blank, but specifies a queue that is not a local queue

� XmitQName is blank, but RemoteQMgrName specifies a queue that is not a
local queue

This reason also occurs if the queue name is resolved through a cell
directory, and the remote queue manager name obtained from the cell
directory is the name of a queue, but this is not a local queue.

Corrective action: Check the values specified for ObjectName and
ObjectQMgrName. If these are correct, check the queue definitions. For more
information on transmission queues, see the MQSeries Application
Programming Guide.

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue
manager, but one of the following occurred:

� ObjectQMgrName specifies the name of a local queue, but it does not have
a Usage attribute of MQUS_TRANSMISSION.

446 MQSeries Application Programming Reference

 Return codes

� The ObjectName or ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue but one of the following
applies to the XmitQName attribute of the definition:

– XmitQName is not blank, but specifies a queue that does not have a
Usage attribute of MQUS_TRANSMISSION

– XmitQName is blank, but RemoteQMgrName specifies a queue that does
not have a Usage attribute of MQUS_TRANSMISSION

� The queue name is resolved through a cell directory, and the remote
queue manager name obtained from the cell directory is the name of a
local queue, but it does not have a Usage attribute of
MQUS_TRANSMISSION.

Corrective action: Check the values specified for ObjectName and
ObjectQMgrName. If these are correct, check the queue definitions. For more
information on transmission queues, see the MQSeries Application
Programming Guide.

MQRC_XQH_ERROR
(2260, X'8D4') Transmission queue header structure not valid.

On an MQPUT or MQPUT1 call, the transmission queue header structure
MQXQH in the message data is not valid.

This reason code occurs in the following environments: AIX, DOS client,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows client, Windows NT.

Corrective action: Correct the definition of the MQXQH structure. Ensure that
the fields are set correctly.

MQRC_XWAIT_CANCELED
(2107, X'83B') MQXWAIT call canceled.

An MQXWAIT call has been canceled because a STOP CHINIT command
has been issued (or the queue manager has been stopped, which causes the
same effect). Refer to the MQSeries Intercommunication book for details of
the MQXWAIT call.

This reason code occurs only on MVS/ESA.

Corrective action: Tidy up and terminate.

MQRC_XWAIT_ERROR
(2108, X'83C') Invocation of MQXWAIT call not valid.

An MQXWAIT call was issued, but the invocation was not valid for one of the
following reasons:

� The wait descriptor MQXWD contains data which is not valid.

� The linkage stack level is not valid.

� The addressing mode is not valid.

� There are too many wait events outstanding.

This reason code occurs only on MVS/ESA.

Corrective action: Obey the rules for using the MQXWAIT call. Refer to the
MQSeries Intercommunication book for details of this call.

 Chapter 5. Return codes 447

 Return codes

448 MQSeries Application Programming Reference

 MQSeries constants

 Chapter 6. MQSeries constants

This chapter specifies the values of all of the named constants that are mentioned
in this book. For other MQI constants, refer to the MQSeries Intercommunication
book and the MQSeries Programmable System Management book.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the form
“MQxxxx_”, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group. The constants are ordered
alphabetically by the prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each
“h” denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “␣”.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQ_ñ (Lengths of character string and byte fields)
See, for example, the CharAttrs parameter described in “MQINQ – Inquire about
object attributes” on page 285 and “MQSET – Set object attributes” on page 333.

| MQ_ABEND_CODE_LENGTH| 4| X'ððððððð4'
MQ_ACCOUNTING_TOKEN_LENGTH 32 X'ðððððð2ð'
MQ_APPL_IDENTITY_DATA_LENGTH 32 X'ðððððð2ð'
MQ_APPL_NAME_LENGTH 28 X'ðððððð1C'
MQ_APPL_ORIGIN_DATA_LENGTH 4 X'ððððððð4'

| MQ_ATTENTION_ID_LENGTH| 4| X'ððððððð4'
MQ_AUTHENTICATOR_LENGTH 8 X'ððððððð8'
MQ_BRIDGE_NAME_LENGTH 24 X'ðððððð18'

| MQ_CANCEL_CODE_LENGTH| 4| X'ððððððð4'
MQ_CHANNEL_DATE_LENGTH 12 X'ðððððððC'
MQ_CHANNEL_DESC_LENGTH 64 X'ðððððð4ð'
MQ_CHANNEL_NAME_LENGTH 2ð X'ðððððð14'
MQ_CHANNEL_TIME_LENGTH 8 X'ððððððð8'
MQ_CONN_NAME_LENGTH 264 X'ððððð1ð8'
MQ_CORREL_ID_LENGTH 24 X'ðððððð18'
MQ_CREATION_DATE_LENGTH 12 X'ðððððððC'
MQ_CREATION_TIME_LENGTH 8 X'ððððððð8'
MQ_EXIT_DATA_LENGTH 32 X'ðððððð2ð'

 Copyright IBM Corp. 1994,1998 449

 MQSeries constants

MQ_EXIT_NAME_LENGTH (environment
specific)

MQ_EXIT_USER_AREA_LENGTH 16 X'ðððððð1ð'
| MQ_FACILITY_LENGTH| 8| X'ððððððð8'
| MQ_FACILITY_LIKE_LENGTH| 4| X'ððððððð4'

MQ_FORMAT_LENGTH 8 X'ððððððð8'
| MQ_FUNCTION_LENGTH| 4| X'ððððððð4'

MQ_GROUP_ID_LENGTH 24 X'ðððððð18'
MQ_LTERM_OVERRIDE_LENGTH 8 X'ððððððð8'
MQ_LUWID_LENGTH 16 X'ðððððð1ð'
MQ_MCA_JOB_NAME_LENGTH 28 X'ðððððð1C'
MQ_MCA_NAME_LENGTH 2ð X'ðððððð14'
MQ_MFS_MAP_NAME_LENGTH 8 X'ððððððð8'
MQ_MODE_NAME_LENGTH 8 X'ððððððð8'
MQ_MSG_HEADER_LENGTH 4ððð X'ðððððFAð'
MQ_MSG_ID_LENGTH 24 X'ðððððð18'
MQ_NAMELIST_DESC_LENGTH 64 X'ðððððð4ð'
MQ_NAMELIST_NAME_LENGTH 48 X'ðððððð3ð'
MQ_OBJECT_INSTANCE_ID_LENGTH 24 X'ðððððð18'
MQ_PASSWORD_LENGTH 12 X'ðððððððC'
MQ_PROCESS_APPL_ID_LENGTH 256 X'ððððð1ðð'
MQ_PROCESS_DESC_LENGTH 64 X'ðððððð4ð'
MQ_PROCESS_ENV_DATA_LENGTH 128 X'ðððððð8ð'
MQ_PROCESS_NAME_LENGTH 48 X'ðððððð3ð'
MQ_PROCESS_USER_DATA_LENGTH 128 X'ðððððð8ð'
MQ_PUT_APPL_NAME_LENGTH 28 X'ðððððð1C'
MQ_PUT_DATE_LENGTH 8 X'ððððððð8'
MQ_PUT_TIME_LENGTH 8 X'ððððððð8'
MQ_Q_DESC_LENGTH 64 X'ðððððð4ð'
MQ_Q_MGR_DESC_LENGTH 64 X'ðððððð4ð'
MQ_Q_MGR_NAME_LENGTH 48 X'ðððððð3ð'
MQ_Q_NAME_LENGTH 48 X'ðððððð3ð'

| MQ_REMOTE_SYS_ID_LENGTH| 4| X'ððððððð4'
MQ_SHORT_CONN_NAME_LENGTH 2ð X'ðððððð14'

| MQ_START_CODE_LENGTH| 4| X'ððððððð4'
MQ_STORAGE_CLASS_LENGTH 8 X'ððððððð8'
MQ_TOTAL_EXIT_DATA_LENGTH 999 X'ððððð3E7'
MQ_TOTAL_EXIT_NAME_LENGTH 999 X'ððððð3E7'
MQ_TP_NAME_LENGTH 64 X'ðððððð4ð'
MQ_TRAN_INSTANCE_ID_LENGTH 16 X'ðððððð1ð'

| MQ_TRANSACTION_ID_LENGTH| 4| X'ððððððð4'
MQ_TRIGGER_DATA_LENGTH 64 X'ðððððð4ð'
MQ_USER_ID_LENGTH 12 X'ðððððððC'

MQACT_ñ (Accounting token)
See the AccountingToken field described in “MQMD – Message descriptor” on
page 98.

For the C programming language, the following is also defined:

MQACT_NONE X'ðð...ðð' (32 nulls)

MQACT_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

450 MQSeries Application Programming Reference

 MQSeries constants

MQAT_ñ (Application type)
See the PutApplType field described in “MQMD – Message descriptor” on page 98,
and the ApplType attribute described in “Attributes for process definitions” on
page 367.

MQAT_UNKNOWN -1 X'FFFFFFFF'
MQAT_NO_CONTEXT ð X'ðððððððð'
MQAT_CICS 1 X'ððððððð1'
MQAT_MVS 2 X'ððððððð2'
MQAT_IMS 3 X'ððððððð3'
MQAT_OS2 4 X'ððððððð4'
MQAT_DOS 5 X'ððððððð5'
MQAT_AIX 6 X'ððððððð6'
MQAT_UNIX 6 X'ððððððð6'
MQAT_QMGR 7 X'ððððððð7'
MQAT_OS400 8 X'ððððððð8'
MQAT_WINDOWS 9 X'ððððððð9'
MQAT_CICS_VSE 1ð X'ðððððððA'
MQAT_WINDOWS_NT 11 X'ðððððððB'
MQAT_VMS 12 X'ðððððððC'
MQAT_GUARDIAN 13 X'ðððððððD'

| MQAT_NSK| 13| X'ðððððððD'
MQAT_VOS 14 X'ðððððððE'
MQAT_IMS_BRIDGE 19 X'ðððððð13'
MQAT_XCF 2ð X'ðððððð14'

| MQAT_CICS_BRIDGE| 21| X'ðððððð15'
MQAT_USER_FIRST 65536 X'ððð1ðððð'
MQAT_USER_LAST 999999999 X'3B9AC9FF'
MQAT_DEFAULT (environment

specific)

MQBO_ñ (Begin options)
See the Options field described in “MQBO – Begin options” on page 19.

MQBO_NONE ð X'ðððððððð'

MQBO_ñ (Begin options structure identifier)
See the StrucId field described in “MQBO – Begin options” on page 19.

For the C programming language, the following is also defined:

MQBO_STRUC_ID 'BO␣␣'

MQBO_STRUC_ID_ARRAY 'B','O','␣','␣'

MQBO_ñ (Begin options version)
See the Version field described in “MQBO – Begin options” on page 19.

MQBO_VERSION_1 1 X'ððððððð1'
MQBO_CURRENT_VERSION 1 X'ððððððð1'

 Chapter 6. MQSeries constants 451

 MQSeries constants

MQCA_ñ (Character attribute selector)
See the Selectors parameter described in “MQINQ – Inquire about object
attributes” on page 285 and “MQSET – Set object attributes” on page 333.

MQCA_FIRST 2ðð1 X'ððððð7D1'
MQCA_APPL_ID 2ðð1 X'ððððð7D1'
MQCA_BASE_Q_NAME 2ðð2 X'ððððð7D2'
MQCA_COMMAND_INPUT_Q_NAME 2ðð3 X'ððððð7D3'
MQCA_CREATION_DATE 2ðð4 X'ððððð7D4'
MQCA_CREATION_TIME 2ðð5 X'ððððð7D5'
MQCA_DEAD_LETTER_Q_NAME 2ðð6 X'ððððð7D6'
MQCA_ENV_DATA 2ðð7 X'ððððð7D7'
MQCA_INITIATION_Q_NAME 2ðð8 X'ððððð7D8'
MQCA_NAMELIST_DESC 2ðð9 X'ððððð7D9'
MQCA_NAMELIST_NAME 2ð1ð X'ððððð7DA'
MQCA_PROCESS_DESC 2ð11 X'ððððð7DB'
MQCA_PROCESS_NAME 2ð12 X'ððððð7DC'
MQCA_Q_DESC 2ð13 X'ððððð7DD'
MQCA_Q_MGR_DESC 2ð14 X'ððððð7DE'
MQCA_Q_MGR_NAME 2ð15 X'ððððð7DF'
MQCA_Q_NAME 2ð16 X'ððððð7Eð'
MQCA_REMOTE_Q_MGR_NAME 2ð17 X'ððððð7E1'
MQCA_REMOTE_Q_NAME 2ð18 X'ððððð7E2'
MQCA_BACKOUT_REQ_Q_NAME 2ð19 X'ððððð7E3'
MQCA_NAMES 2ð2ð X'ððððð7E4'
MQCA_USER_DATA 2ð21 X'ððððð7E5'
MQCA_STORAGE_CLASS 2ð22 X'ððððð7E6'
MQCA_TRIGGER_DATA 2ð23 X'ððððð7E7'
MQCA_XMIT_Q_NAME 2ð24 X'ððððð7E8'
MQCA_DEF_XMIT_Q_NAME 2ð25 X'ððððð7E9'
MQCA_CHANNEL_AUTO_DEF_EXIT 2ð26 X'ððððð7EA'
MQCA_LAST 4ððð X'ðððððFAð'
MQCA_LAST_USED (environment

specific)

MQCC_ñ (Completion code)
See the CompCode parameter.

MQCC_UNKNOWN -1 X'FFFFFFFF'
MQCC_OK ð X'ðððððððð'
MQCC_WARNING 1 X'ððððððð1'
MQCC_FAILED 2 X'ððððððð2'

MQCCSI_ñ (Coded character set identifier)
See the CodedCharSetId field described in “MQMD – Message descriptor” on
page 98.

MQCCSI_EMBEDDED -1 X'FFFFFFFF'
MQCCSI_DEFAULT ð X'ðððððððð'
MQCCSI_Q_MGR ð X'ðððððððð'

452 MQSeries Application Programming Reference

 MQSeries constants

| MQCFUNC_ñ (CICS header function name)
| See the Function field described in “MQCIH – CICS bridge header (MVS/ESA
| only)” on page 21.

| For the C programming language, the following is also defined:

| MQCFUNC_MQCONN| 'CONN'
| MQCFUNC_MQGET| 'GET␣'
| MQCFUNC_MQINQ| 'INQ␣'
| MQCFUNC_MQOPEN| 'OPEN'
| MQCFUNC_MQPUT| 'PUT␣'
| MQCFUNC_MQPUT1| 'PUT1'
| MQCFUNC_NONE| '␣␣␣␣'

| MQCFUNC_MQCONN_ARRAY| 'C','O','N','N'
| MQCFUNC_MQGET_ARRAY| 'G','E','T','␣'
| MQCFUNC_MQINQ_ARRAY| 'I','N','Q','␣'
| MQCFUNC_MQOPEN_ARRAY| 'O','P','E','N'
| MQCFUNC_MQPUT_ARRAY| 'P','U','T','␣'
| MQCFUNC_MQPUT1_ARRAY| 'P','U','T','1'
| MQCFUNC_NONE_ARRAY| '␣','␣','␣','␣'

| MQCGWI_ñ (CICS header get-wait interval)
| See the GetWaitInterval field described in “MQCIH – CICS bridge header
| (MVS/ESA only)” on page 21.

| MQCGWI_DEFAULT| -2| X'FFFFFFFE'

MQCI_ñ (Correlation identifier)
See the CorrelId field described in “MQMD – Message descriptor” on page 98.

For the C programming language, the following is also defined:

MQCI_NONE X'ðð...ðð' (24 nulls)
| MQCI_NEW_SESSION| X'414D51214E45575F534553...'

MQCI_NONE_ARRAY '\ð','\ð',...'\ð','\ð'
| MQCI_NEW_SESSION_ARRAY| '\x41','\x4d','\x51',...

| MQCIH_ñ (CICS header flags)
| See the Flags field described in “MQCIH – CICS bridge header (MVS/ESA only)”
| on page 21.

| MQCIH_NONE| ð| X'ðððððððð'

| MQCIH_ñ (CICS header length)
| See the StrucLength field described in “MQCIH – CICS bridge header (MVS/ESA
| only)” on page 21.

| MQCIH_LENGTH_1| 164| X'ððððððA4'

 Chapter 6. MQSeries constants 453

 MQSeries constants

| MQCIH_ñ (CICS header structure identifier)
| See the StrucId field described in “MQCIH – CICS bridge header (MVS/ESA only)”
| on page 21.

| For the C programming language, the following is also defined:

| MQCIH_STRUC_ID| 'CIH␣'

| MQCIH_STRUC_ID_ARRAY| 'C','I','H','␣'

| MQCIH_ñ (CICS header version)
| See the Version field described in “MQCIH – CICS bridge header (MVS/ESA only)”
| on page 21.

| MQCIH_VERSION_1| 1| X'ððððððð1'
| MQCIH_CURRENT_VERSION| 1| X'ððððððð1'

| MQCLT_ñ (CICS header link type)
| See the LinkType field described in “MQCIH – CICS bridge header (MVS/ESA
| only)” on page 21.

| MQCLT_PROGRAM| 1| X'ððððððð1'

MQCMDL_ñ (Command level)
See the CommandLevel attribute described in “Attributes for the queue manager” on
page 370.

MQCMDL_LEVEL_1 1ðð X'ðððððð64'
MQCMDL_LEVEL_101 1ð1 X'ðððððð65'
MQCMDL_LEVEL_110 11ð X'ðððððð6E'
MQCMDL_LEVEL_114 114 X'ðððððð72'
MQCMDL_LEVEL_120 12ð X'ðððððð78'
MQCMDL_LEVEL_200 2ðð X'ððððððC8'
MQCMDL_LEVEL_201 2ð1 X'ððððððC9'
MQCMDL_LEVEL_220 22ð X'ððððððDC'
MQCMDL_LEVEL_221 221 X'ððððððDD'
MQCMDL_LEVEL_320 32ð X'ððððð14ð'

| MQCMDL_LEVEL_420| 42ð| X'ððððð1A4'
MQCMDL_LEVEL_500 5ðð X'ððððð1F4'

MQCNO_ñ (Connect options)
See the Options field described in “MQCNO – Connect options” on page 35.

MQCNO_STANDARD_BINDING ð X'ðððððððð'
MQCNO_NONE ð X'ðððððððð'
MQCNO_FASTPATH_BINDING 1 X'ððððððð1'

454 MQSeries Application Programming Reference

 MQSeries constants

MQCNO_ñ (Connect options structure identifier)
See the StrucId field described in “MQCNO – Connect options” on page 35.

For the C programming language, the following is also defined:

MQCNO_STRUC_ID 'CNO␣'

MQCNO_STRUC_ID_ARRAY 'C','N','O','␣'

MQCNO_ñ (Connect options version)
See the Version field described in “MQCNO – Connect options” on page 35.

MQCNO_VERSION_1 1 X'ððððððð1'
MQCNO_CURRENT_VERSION 1 X'ððððððð1'

MQCO_ñ (Close options)
See the Options parameter described in “MQCLOSE – Close object” on page 248.

MQCO_NONE ð X'ðððððððð'
MQCO_DELETE 1 X'ððððððð1'
MQCO_DELETE_PURGE 2 X'ððððððð2'

| MQCODL_ñ (CICS header output data length)
| See the OutputDataLength field described in “MQCIH – CICS bridge header
| (MVS/ESA only)” on page 21.

| MQCODL_AS_INPUT| -1| X'FFFFFFFF'

| MQCRC_ñ (CICS header return code)
| See the ReturnCode field described in “MQCIH – CICS bridge header (MVS/ESA
| only)” on page 21.

| MQCRC_OK| ð| X'ðððððððð'
| MQCRC_CICS_EXEC_ERROR| 1| X'ððððððð1'
| MQCRC_MQ_API_ERROR| 2| X'ððððððð2'
| MQCRC_BRIDGE_ERROR| 3| X'ððððððð3'
| MQCRC_BRIDGE_ABEND| 4| X'ððððððð4'
| MQCRC_APPLICATION_ABEND| 5| X'ððððððð5'
| MQCRC_SECURITY_ERROR| 6| X'ððððððð6'
| MQCRC_PROGRAM_NOT_AVAILABLE| 7| X'ððððððð7'
| MQCRC_BRIDGE_TIMEOUT| 8| X'ððððððð8'
| MQCRC_TRANSID_NOT_AVAILABLE| 9| X'ððððððð9'

| MQCUOWC_ñ (CICS header unit-of-work control)
| See the UOWControl field described in “MQCIH – CICS bridge header (MVS/ESA
| only)” on page 21.

| MQCUOWC_MIDDLE| 16| X'ðððððð1ð'
| MQCUOWC_FIRST| 17| X'ðððððð11'
| MQCUOWC_COMMIT| 256| X'ððððð1ðð'
| MQCUOWC_LAST| 272| X'ððððð11ð'

 Chapter 6. MQSeries constants 455

 MQSeries constants

| MQCUOWC_ONLY| 273| X'ððððð111'
| MQCUOWC_BACKOUT| 4352| X'ðððð11ðð'

MQDCC_ñ (Convert-characters masks and factors)
See the Options parameter described in “MQXCNVC – Convert characters” on
page 509.

MQDCC_SOURCE_ENC_MASK 24ð X'ððððððFð'
MQDCC_TARGET_ENC_MASK 384ð X'ðððððFðð'
MQDCC_SOURCE_ENC_FACTOR 16 X'ðððððð1ð'
MQDCC_TARGET_ENC_FACTOR 256 X'ððððð1ðð'

MQDCC_ñ (Convert-characters options)
See the Options parameter described in “MQXCNVC – Convert characters” on
page 509.

MQDCC_SOURCE_ENC_UNDEFINED ð X'ðððððððð'
MQDCC_TARGET_ENC_UNDEFINED ð X'ðððððððð'
MQDCC_NONE ð X'ðððððððð'
MQDCC_DEFAULT_CONVERSION 1 X'ððððððð1'
MQDCC_SOURCE_ENC_NORMAL 16 X'ðððððð1ð'
MQDCC_SOURCE_ENC_REVERSED 32 X'ðððððð2ð'
MQDCC_TARGET_ENC_NORMAL 256 X'ððððð1ðð'
MQDCC_TARGET_ENC_REVERSED 512 X'ððððð2ðð'
MQDCC_SOURCE_ENC_NATIVE (environment

specific)
MQDCC_TARGET_ENC_NATIVE (environment

specific)

MQDH_ñ (Distribution header structure identifier)
See the StrucId field described in “MQDH – Distribution header” on page 39.

For the C programming language, the following is also defined:

MQDH_STRUC_ID 'DH␣␣'

MQDH_STRUC_ID_ARRAY 'D','H','␣','␣'

MQDH_ñ (Distribution header version)
See the Version field described in “MQDH – Distribution header” on page 39.

MQDH_VERSION_1 1 X'ððððððð1'
MQDH_CURRENT_VERSION 1 X'ððððððð1'

MQDHF_ñ (Distribution header flags)
See the Flags field described in “MQDH – Distribution header” on page 39.

MQDHF_NONE ð X'ðððððððð'
MQDHF_NEW_MSG_IDS 1 X'ððððððð1'

456 MQSeries Application Programming Reference

 MQSeries constants

MQDL_ñ (Distribution list support)
See the DistLists attributes described in “Attributes for the queue manager” on
page 370 and “Attributes for local queues and model queues” on page 348.

MQDL_NOT_SUPPORTED ð X'ðððððððð'
MQDL_SUPPORTED 1 X'ððððððð1'

MQDLH_ñ (Dead-letter header structure identifier)
See the StrucId field described in “MQDLH – Dead-letter header” on page 45.

For the C programming language, the following is also defined:

MQDLH_STRUC_ID 'DLH␣'

MQDLH_STRUC_ID_ARRAY 'D','L','H','␣'

MQDLH_ñ (Dead-letter header version)
See the Version field described in “MQDLH – Dead-letter header” on page 45.

MQDLH_VERSION_1 1 X'ððððððð1'
MQDLH_CURRENT_VERSION 1 X'ððððððð1'

MQDXP_ñ (Data-conversion-exit parameter structure identifier)
See the StrucId field described in “MQDXP – Data-conversion exit parameter
structure” on page 502.

For the C programming language, the following is also defined:

MQDXP_STRUC_ID 'DXP␣'

MQDXP_STRUC_ID_ARRAY 'D','X','P','␣'

MQDXP_ñ (Data-conversion-exit parameter structure version)
See the Version field described in “MQDXP – Data-conversion exit parameter
structure” on page 502.

MQDXP_VERSION_1 1 X'ððððððð1'
MQDXP_CURRENT_VERSION 1 X'ððððððð1'

MQEC_ñ (Signal event-control-block completion code)
See the Signal1 field described in “MQGMO – Get-message options” on page 56.

MQEC_MSG_ARRIVED 2 X'ððððððð2'
MQEC_WAIT_INTERVAL_EXPIRED 3 X'ððððððð3'
MQEC_WAIT_CANCELED 4 X'ððððððð4'
MQEC_Q_MGR_QUIESCING 5 X'ððððððð5'
MQEC_CONNECTION_QUIESCING 6 X'ððððððð6'

 Chapter 6. MQSeries constants 457

 MQSeries constants

MQEI_ñ (Expiry interval)
See the Expiry field described in “MQMD – Message descriptor” on page 98.

MQEI_UNLIMITED -1 X'FFFFFFFF'

 MQENC_ñ (Encoding)
See the Encoding field described in “MQMD – Message descriptor” on page 98.

This constant has the following values in the environments indicated:

OS/2, DOS client, Windows client 546
16-bit Windows, 32-bit Windows, Windows NT 546
Micro Focus COBOL on OS/2 and Windows NT 17

| OpenVMS 273
MVS/ESA 785
OS/400 273

| Tandem NSK 273
UNIX systems (AIX, AT&T, HP-UX) 273

MQENC_NATIVE (environment specific)

MQENC_ñ (Encoding masks)
See Appendix B, “Machine encodings” on page 485.

MQENC_INTEGER_MASK 15 X'ðððððððF'
MQENC_DECIMAL_MASK 24ð X'ððððððFð'
MQENC_FLOAT_MASK 384ð X'ðððððFðð'
MQENC_RESERVED_MASK -4ð96 X'FFFFFððð'

MQENC_ñ (Encoding for packed-decimal integers)
See Appendix B, “Machine encodings” on page 485.

MQENC_DECIMAL_UNDEFINED ð X'ðððððððð'
MQENC_DECIMAL_NORMAL 16 X'ðððððð1ð'
MQENC_DECIMAL_REVERSED 32 X'ðððððð2ð'

MQENC_ñ (Encoding for floating-point numbers)
See Appendix B, “Machine encodings” on page 485.

MQENC_FLOAT_UNDEFINED ð X'ðððððððð'
MQENC_FLOAT_IEEE_NORMAL 256 X'ððððð1ðð'
MQENC_FLOAT_IEEE_REVERSED 512 X'ððððð2ðð'
MQENC_FLOAT_S390 768 X'ððððð3ðð'

MQENC_ñ (Encoding for binary integers)
See Appendix B, “Machine encodings” on page 485.

MQENC_INTEGER_UNDEFINED ð X'ðððððððð'
MQENC_INTEGER_NORMAL 1 X'ððððððð1'
MQENC_INTEGER_REVERSED 2 X'ððððððð2'

458 MQSeries Application Programming Reference

 MQSeries constants

MQEVR_ñ (Event reporting)
MQEVR_DISABLED ð X'ðððððððð'
MQEVR_ENABLED 1 X'ððððððð1'

 MQFB_ñ (Feedback)
See the Feedback field described in “MQMD – Message descriptor” on page 98,
and the Reason field described in “MQDLH – Dead-letter header” on page 45; see
also the MQRC_ñ values.

MQFB_NONE ð X'ðððððððð'
MQFB_SYSTEM_FIRST 1 X'ððððððð1'
MQFB_QUIT 256 X'ððððð1ðð'
MQFB_EXPIRATION 258 X'ððððð1ð2'
MQFB_COA 259 X'ððððð1ð3'
MQFB_COD 26ð X'ððððð1ð4'
MQFB_CHANNEL_COMPLETED 262 X'ððððð1ð6'
MQFB_CHANNEL_FAIL_RETRY 263 X'ððððð1ð7'
MQFB_CHANNEL_FAIL 264 X'ððððð1ð8'
MQFB_APPL_CANNOT_BE_STARTED 265 X'ððððð1ð9'
MQFB_TM_ERROR 266 X'ððððð1ðA'
MQFB_APPL_TYPE_ERROR 267 X'ððððð1ðB'
MQFB_STOPPED_BY_MSG_EXIT 268 X'ððððð1ðC'
MQFB_XMIT_Q_MSG_ERROR 271 X'ððððð1ðF'
MQFB_PAN 275 X'ððððð113'
MQFB_NAN 276 X'ððððð114'
MQFB_DATA_LENGTH_ZERO 291 X'ððððð123'
MQFB_DATA_LENGTH_NEGATIVE 292 X'ððððð124'
MQFB_DATA_LENGTH_TOO_BIG 293 X'ððððð125'
MQFB_BUFFER_OVERFLOW 294 X'ððððð126'
MQFB_LENGTH_OFF_BY_ONE 295 X'ððððð127'
MQFB_IIH_ERROR 296 X'ððððð128'
MQFB_NOT_AUTHORIZED_FOR_IMS 298 X'ððððð12A'
MQFB_IMS_ERROR 3ðð X'ððððð12C'
MQFB_IMS_FIRST 3ð1 X'ððððð12D'
MQFB_IMS_LAST 399 X'ððððð18F'

| MQFB_CICS_INTERNAL_ERROR| 4ð1| X'ððððð191'
| MQFB_CICS_NOT_AUTHORIZED| 4ð2| X'ððððð192'
| MQFB_CICS_BRIDGE_FAILURE| 4ð3| X'ððððð193'
| MQFB_CICS_CORREL_ID_ERROR| 4ð4| X'ððððð194'
| MQFB_CICS_CCSID_ERROR| 4ð5| X'ððððð195'
| MQFB_CICS_ENCODING_ERROR| 4ð6| X'ððððð196'
| MQFB_CICS_CIH_ERROR| 4ð7| X'ððððð197'
| MQFB_CICS_UOW_ERROR| 4ð8| X'ððððð198'
| MQFB_CICS_COMMAREA_ERROR| 4ð9| X'ððððð199'
| MQFB_CICS_APPL_NOT_STARTED| 41ð| X'ððððð19A'
| MQFB_CICS_APPL_ABENDED| 411| X'ððððð19B'
| MQFB_CICS_DLQ_ERROR| 412| X'ððððð19C'
| MQFB_CICS_UOW_BACKED_OUT| 413| X'ððððð19D'

MQFB_SYSTEM_LAST 65535 X'ððððFFFF'
MQFB_APPL_FIRST 65536 X'ððð1ðððð'
MQFB_APPL_LAST 999999999 X'3B9AC9FF'

 Chapter 6. MQSeries constants 459

 MQSeries constants

 MQFMT_ñ (Format)
See the Format field described in “MQMD – Message descriptor” on page 98.

For the C programming language, the following are also defined:

MQFMT_NONE '␣␣␣␣␣␣␣␣'
MQFMT_ADMIN 'MQADMIN␣'
MQFMT_CHANNEL_COMPLETED 'MQCHCOM␣'

| MQFMT_CICS| 'MQCICS␣␣'
MQFMT_COMMAND_1 'MQCMD1␣␣'
MQFMT_COMMAND_2 'MQCMD2␣␣'
MQFMT_DEAD_LETTER_HEADER 'MQDEAD␣␣'
MQFMT_DIST_HEADER 'MQHDIST␣'
MQFMT_EVENT 'MQEVENT␣'
MQFMT_IMS 'MQIMS␣␣␣'
MQFMT_IMS_VAR_STRING 'MQIMSVS␣'
MQFMT_MD_EXTENSION 'MQHMDE␣␣'
MQFMT_PCF 'MQPCF␣␣␣'
MQFMT_REF_MSG_HEADER 'MQHREF␣␣'
MQFMT_STRING 'MQSTR␣␣␣'
MQFMT_TRIGGER 'MQTRIG␣␣'
MQFMT_XMIT_Q_HEADER 'MQXMIT␣␣'

MQFMT_NONE_ARRAY '␣','␣','␣','␣','␣','␣','␣','␣'
MQFMT_ADMIN_ARRAY 'M','Q','A','D','M','I','N','␣'
MQFMT_CHANNEL_COMPLETED_ARRAY 'M','Q','C','H','C','O','M','␣'

| MQFMT_CICS_ARRAY| 'M','Q','C','I','C','S','␣','␣'
MQFMT_COMMAND_1_ARRAY 'M','Q','C','M','D','1','␣','␣'
MQFMT_COMMAND_2_ARRAY 'M','Q','C','M','D','2','␣','␣'
MQFMT_DEAD_LETTER_HEADER_ARRAY 'M','Q','D','E','A','D','␣','␣'
MQFMT_DIST_HEADER_ARRAY 'M','Q','H','D','I','S','T','␣'
MQFMT_EVENT_ARRAY 'M','Q','E','V','E','N','T','␣'
MQFMT_IMS_ARRAY 'M','Q','I','M','S','␣','␣','␣'
MQFMT_IMS_VAR_STRING_ARRAY 'M','Q','I','M','S','V','S','␣'
MQFMT_MD_EXTENSION_ARRAY 'M','Q','H','M','D','E','␣','␣'
MQFMT_PCF_ARRAY 'M','Q','P','C','F','␣','␣','␣'
MQFMT_REF_MSG_HEADER_ARRAY 'M','Q','H','R','E','F','␣','␣'
MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'
MQFMT_TRIGGER_ARRAY 'M','Q','T','R','I','G','␣','␣'
MQFMT_XMIT_Q_HEADER_ARRAY 'M','Q','X','M','I','T','␣','␣'

MQGI_ñ (Group identifier)
See the GroupId field described in “MQMD – Message descriptor” on page 98.

For the C programming language, the following is also defined:

MQGI_NONE X'ðð...ðð' (24 nulls)

MQGI_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

460 MQSeries Application Programming Reference

 MQSeries constants

MQGMO_ñ (Get message options)
See the Options field described in “MQGMO – Get-message options” on page 56.

MQGMO_NO_WAIT ð X'ðððððððð'
MQGMO_NONE ð X'ðððððððð'
MQGMO_WAIT 1 X'ððððððð1'
MQGMO_SYNCPOINT 2 X'ððððððð2'
MQGMO_NO_SYNCPOINT 4 X'ððððððð4'
MQGMO_SET_SIGNAL 8 X'ððððððð8'
MQGMO_BROWSE_FIRST 16 X'ðððððð1ð'
MQGMO_BROWSE_NEXT 32 X'ðððððð2ð'
MQGMO_ACCEPT_TRUNCATED_MSG 64 X'ðððððð4ð'
MQGMO_MARK_SKIP_BACKOUT 128 X'ðððððð8ð'
MQGMO_MSG_UNDER_CURSOR 256 X'ððððð1ðð'
MQGMO_LOCK 512 X'ððððð2ðð'
MQGMO_UNLOCK 1ð24 X'ððððð4ðð'
MQGMO_BROWSE_MSG_UNDER_CURSOR 2ð48 X'ððððð8ðð'
MQGMO_SYNCPOINT_IF_PERSISTENT 4ð96 X'ðððð1ððð'
MQGMO_FAIL_IF_QUIESCING 8192 X'ðððð2ððð'
MQGMO_CONVERT 16384 X'ðððð4ððð'
MQGMO_LOGICAL_ORDER 32768 X'ðððð8ððð'
MQGMO_COMPLETE_MSG 65536 X'ððð1ðððð'
MQGMO_ALL_MSGS_AVAILABLE 131ð72 X'ððð2ðððð'
MQGMO_ALL_SEGMENTS_AVAILABLE 262144 X'ððð4ðððð'

MQGMO_ñ (Get message options structure identifier)
See the StrucId field described in “MQGMO – Get-message options” on page 56.

For the C programming language, the following is also defined:

MQGMO_STRUC_ID 'GMO␣'

MQGMO_STRUC_ID_ARRAY 'G','M','O','␣'

MQGMO_ñ (Get message options version)
See the Version field described in “MQGMO – Get-message options” on page 56.

MQGMO_VERSION_1 1 X'ððððððð1'
MQGMO_VERSION_2 2 X'ððððððð2'
MQGMO_CURRENT_VERSION 2 X'ððððððð2'

MQGS_ñ (Group status)
See the GroupStatus field described in “MQGMO – Get-message options” on
page 56.

MQGS_NOT_IN_GROUP '␣'
MQGS_MSG_IN_GROUP 'G'
MQGS_LAST_MSG_IN_GROUP 'L'

 Chapter 6. MQSeries constants 461

 MQSeries constants

MQHC_ñ (Connection handle)
See the Hconn parameter described in “MQCONN – Connect queue manager” on
page 261 and “MQDISC – Disconnect queue manager” on page 269.

MQHC_UNUSABLE_HCONN -1 X'FFFFFFFF'
MQHC_DEF_HCONN ð X'ðððððððð'

MQHO_ñ (Object handle)
See the Hobj parameter described in “MQCLOSE – Close object” on page 248.

MQHO_UNUSABLE_HOBJ -1 X'FFFFFFFF'

MQIA_ñ (Integer attribute selector)
See the Selectors parameter described in “MQINQ – Inquire about object
attributes” on page 285 and “MQSET – Set object attributes” on page 333.

MQIA_FIRST 1 X'ððððððð1'
MQIA_APPL_TYPE 1 X'ððððððð1'
MQIA_CODED_CHAR_SET_ID 2 X'ððððððð2'
MQIA_CURRENT_Q_DEPTH 3 X'ððððððð3'
MQIA_DEF_INPUT_OPEN_OPTION 4 X'ððððððð4'
MQIA_DEF_PERSISTENCE 5 X'ððððððð5'
MQIA_DEF_PRIORITY 6 X'ððððððð6'
MQIA_DEFINITION_TYPE 7 X'ððððððð7'
MQIA_HARDEN_GET_BACKOUT 8 X'ððððððð8'
MQIA_INHIBIT_GET 9 X'ððððððð9'
MQIA_INHIBIT_PUT 1ð X'ðððððððA'
MQIA_MAX_HANDLES 11 X'ðððððððB'
MQIA_USAGE 12 X'ðððððððC'
MQIA_MAX_MSG_LENGTH 13 X'ðððððððD'
MQIA_MAX_PRIORITY 14 X'ðððððððE'
MQIA_MAX_Q_DEPTH 15 X'ðððððððF'
MQIA_MSG_DELIVERY_SEQUENCE 16 X'ðððððð1ð'
MQIA_OPEN_INPUT_COUNT 17 X'ðððððð11'
MQIA_OPEN_OUTPUT_COUNT 18 X'ðððððð12'
MQIA_NAME_COUNT 19 X'ðððððð13'
MQIA_Q_TYPE 2ð X'ðððððð14'
MQIA_RETENTION_INTERVAL 21 X'ðððððð15'
MQIA_BACKOUT_THRESHOLD 22 X'ðððððð16'
MQIA_SHAREABILITY 23 X'ðððððð17'
MQIA_TRIGGER_CONTROL 24 X'ðððððð18'
MQIA_TRIGGER_INTERVAL 25 X'ðððððð19'
MQIA_TRIGGER_MSG_PRIORITY 26 X'ðððððð1A'
MQIA_TRIGGER_TYPE 28 X'ðððððð1C'
MQIA_TRIGGER_DEPTH 29 X'ðððððð1D'
MQIA_SYNCPOINT 3ð X'ðððððð1E'
MQIA_COMMAND_LEVEL 31 X'ðððððð1F'
MQIA_PLATFORM 32 X'ðððððð2ð'
MQIA_MAX_UNCOMMITTED_MSGS 33 X'ðððððð21'
MQIA_DIST_LISTS 34 X'ðððððð22'
MQIA_TIME_SINCE_RESET 35 X'ðððððð23'
MQIA_HIGH_Q_DEPTH 36 X'ðððððð24'

462 MQSeries Application Programming Reference

 MQSeries constants

MQIA_MSG_ENQ_COUNT 37 X'ðððððð25'
MQIA_MSG_DEQ_COUNT 38 X'ðððððð26'
MQIA_Q_DEPTH_HIGH_LIMIT 4ð X'ðððððð28'
MQIA_Q_DEPTH_LOW_LIMIT 41 X'ðððððð29'
MQIA_Q_DEPTH_MAX_EVENT 42 X'ðððððð2A'
MQIA_Q_DEPTH_HIGH_EVENT 43 X'ðððððð2B'
MQIA_Q_DEPTH_LOW_EVENT 44 X'ðððððð2C'
MQIA_SCOPE 45 X'ðððððð2D'
MQIA_Q_SERVICE_INTERVAL_EVENT 46 X'ðððððð2E'
MQIA_AUTHORITY_EVENT 47 X'ðððððð2F'
MQIA_INHIBIT_EVENT 48 X'ðððððð3ð'
MQIA_LOCAL_EVENT 49 X'ðððððð31'
MQIA_REMOTE_EVENT 5ð X'ðððððð32'
MQIA_START_STOP_EVENT 52 X'ðððððð34'
MQIA_PERFORMANCE_EVENT 53 X'ðððððð35'
MQIA_Q_SERVICE_INTERVAL 54 X'ðððððð36'
MQIA_CHANNEL_AUTO_DEF 55 X'ðððððð37'
MQIA_CHANNEL_AUTO_DEF_EVENT 56 X'ðððððð38'
MQIA_INDEX_TYPE 57 X'ðððððð39'
MQIA_LAST 2ððð X'ððððð7Dð'
MQIA_LAST_USED (environment

specific)

MQIAUT_ñ (IMS authenticator)
See the Authenticator field described in “MQIIH – IMS bridge header” on page 91.

For the C programming language, the following is also defined:

MQIAUT_NONE '␣␣␣␣␣␣␣␣'

MQIAUT_NONE_ARRAY '␣','␣','␣','␣','␣','␣','␣','␣'

MQIAV_ñ (Integer attribute value)
See the IntAttrs parameter described in “MQINQ – Inquire about object
attributes” on page 285.

MQIAV_UNDEFINED -2 X'FFFFFFFE'
MQIAV_NOT_APPLICABLE -1 X'FFFFFFFF'

MQICM_ñ (IMS commit mode)
See the CommitMode field described in “MQIIH – IMS bridge header” on page 91.

MQICM_COMMIT_THEN_SEND 'ð'
MQICM_SEND_THEN_COMMIT '1'

MQIIH_ñ (IMS header flags)
See the Flags field described in “MQIIH – IMS bridge header” on page 91.

MQIIH_NONE ð X'ðððððððð'

 Chapter 6. MQSeries constants 463

 MQSeries constants

MQIIH_ñ (IMS header length)
See the StrucLength field described in “MQIIH – IMS bridge header” on page 91.

MQIIH_LENGTH_1 84 X'ðððððð54'

MQIIH_ñ (IMS header structure identifier)
See the StrucId field described in “MQIIH – IMS bridge header” on page 91.

For the C programming language, the following is also defined:

MQIIH_STRUC_ID 'IIH␣'

MQIIH_STRUC_ID_ARRAY 'I','I','H','␣'

MQIIH_ñ (IMS header version)
See the Version field described in “MQIIH – IMS bridge header” on page 91.

MQIIH_VERSION_1 1 X'ððððððð1'
MQIIH_CURRENT_VERSION 1 X'ððððððð1'

MQISS_ñ (IMS security scope)
See the SecurityScope field described in “MQIIH – IMS bridge header” on page 91.

MQISS_CHECK 'C'
MQISS_FULL 'F'

MQIT_ñ (Index type)
See the IndexType attribute described in “Attributes for local queues and model
queues” on page 348.

MQIT_NONE ð
MQIT_MSG_ID 1
MQIT_CORREL_ID 2

MQITII_ñ (IMS transaction instance identifier)
See the TranInstanceId field described in “MQIIH – IMS bridge header” on
page 91.

For the C programming language, the following is also defined:

MQITII_NONE X'ðð...ðð' (16 nulls)

MQITII_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

MQITS_ñ (IMS transaction state)
See the TranState field described in “MQIIH – IMS bridge header” on page 91.

MQITS_IN_CONVERSATION 'C'
MQITS_NOT_IN_CONVERSATION ' '

464 MQSeries Application Programming Reference

 MQSeries constants

MQMD_ñ (Message descriptor structure identifier)
See the StrucId field described in “MQMD – Message descriptor” on page 98.

For the C programming language, the following is also defined:

MQMD_STRUC_ID 'MD␣␣'

MQMD_STRUC_ID_ARRAY 'M','D','␣','␣'

MQMD_ñ (Message descriptor version)
See the Version field described in “MQMD – Message descriptor” on page 98.

MQMD_VERSION_1 1 X'ððððððð1'
MQMD_VERSION_2 2 X'ððððððð2'
MQMD_CURRENT_VERSION 2 X'ððððððð2'

MQMDE_ñ (Message descriptor extension length)
See the StrucLength field described in “MQMDE – Message descriptor extension”
on page 153.

MQMDE_LENGTH_2 72 X'ðððððð48'

MQMDE_ñ (Message descriptor extension structure identifier)
See the StrucId field described in “MQMDE – Message descriptor extension” on
page 153.

For the C programming language, the following is also defined:

MQMDE_STRUC_ID 'MDE␣'

MQMDE_STRUC_ID_ARRAY 'M','D','E','␣'

MQMDE_ñ (Message descriptor extension version)
See the Version field described in “MQMDE – Message descriptor extension” on
page 153.

MQMDE_VERSION_2 2 X'ððððððð2'
MQMDE_CURRENT_VERSION 2 X'ððððððð2'

MQMDEF_ñ (Message descriptor extension flags)
See the Flags field described in “MQMDE – Message descriptor extension” on
page 153.

MQMDEF_NONE ð X'ðððððððð'

MQMDS_ñ (Message delivery sequence)
See the MsgDeliverySequence attribute described in “Attributes for local queues and
model queues” on page 348.

MQMDS_PRIORITY ð X'ðððððððð'
MQMDS_FIFO 1 X'ððððððð1'

 Chapter 6. MQSeries constants 465

 MQSeries constants

MQMF_ñ (Message flags)
See the MsgFlags field described in “MQMD – Message descriptor” on page 98.

MQMF_SEGMENTATION_INHIBITED ð X'ðððððððð'
MQMF_NONE ð X'ðððððððð'
MQMF_SEGMENTATION_ALLOWED 1 X'ððððððð1'
MQMF_SEGMENT 2 X'ððððððð2'
MQMF_LAST_SEGMENT 4 X'ððððððð4'
MQMF_MSG_IN_GROUP 8 X'ððððððð8'
MQMF_LAST_MSG_IN_GROUP 16 X'ðððððð1ð'

MQMF_ñ (Message-flags masks)
See Appendix C, “Report options and message flags” on page 489.

MQMF_ACCEPT_UNSUP_MASK -1ð48576 X'FFFððððð'
MQMF_ACCEPT_UNSUP_IF_XMIT_MASK 1ð4448ð X'ðððFFððð'
MQMF_REJECT_UNSUP_MASK 4ð95 X'ðððððFFF'

MQMI_ñ (Message identifier)
See the MsgId field described in “MQMD – Message descriptor” on page 98.

For the C programming language, the following is also defined:

MQMI_NONE X'ðð...ðð' (24 nulls)

MQMI_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

MQMO_ñ (Match options)
See the MatchOptions field described in “MQGMO – Get-message options” on
page 56.

MQMO_NONE ð X'ðððððððð'
MQMO_MATCH_MSG_ID 1 X'ððððððð1'
MQMO_MATCH_CORREL_ID 2 X'ððððððð2'
MQMO_MATCH_GROUP_ID 4 X'ððððððð4'
MQMO_MATCH_MSG_SEQ_NUMBER 8 X'ððððððð8'
MQMO_MATCH_OFFSET 16 X'ðððððð1ð'

MQMT_ñ (Message type)
See the MsgType field described in “MQMD – Message descriptor” on page 98.

MQMT_SYSTEM_FIRST 1 X'ððððððð1'
MQMT_REQUEST 1 X'ððððððð1'
MQMT_REPLY 2 X'ððððððð2'
MQMT_REPORT 4 X'ððððððð4'
MQMT_DATAGRAM 8 X'ððððððð8'
MQMT_SYSTEM_LAST 65535 X'ððððFFFF'
MQMT_APPL_FIRST 65536 X'ððð1ðððð'
MQMT_APPL_LAST 999999999 X'3B9AC9FF'

466 MQSeries Application Programming Reference

 MQSeries constants

MQOD_ñ (Object descriptor length)
MQOD_CURRENT_LENGTH (environment

specific)

MQOD_ñ (Object descriptor structure identifier)
See the StrucId field described in “MQOD – Object descriptor” on page 160.

For the C programming language, the following is also defined:

MQOD_STRUC_ID 'OD␣␣'

MQOD_STRUC_ID_ARRAY 'O','D','␣','␣'

MQOD_ñ (Object descriptor version)
See the Version field described in “MQOD – Object descriptor” on page 160.

MQOD_VERSION_1 1 X'ððððððð1'
MQOD_VERSION_2 2 X'ððððððð2'
MQOD_CURRENT_VERSION 2 X'ððððððð2'

MQOII_ñ (Object instance identifier)
See the ObjectInstanceId field described in “MQRMH – Message reference
header” on page 197.

For the C programming language, the following is also defined:

MQOII_NONE X'ðð...ðð' (24 nulls)

MQOII_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

MQOL_ñ (Original length)
See the OriginalLength field described in “MQMD – Message descriptor” on
page 98.

MQOL_UNDEFINED -1 X'FFFFFFFF'

MQOO_ñ (Open options)
See the Options parameter described in “MQOPEN – Open object” on page 297.

MQOO_INPUT_AS_Q_DEF 1 X'ððððððð1'
MQOO_INPUT_SHARED 2 X'ððððððð2'
MQOO_INPUT_EXCLUSIVE 4 X'ððððððð4'
MQOO_BROWSE 8 X'ððððððð8'
MQOO_OUTPUT 16 X'ðððððð1ð'
MQOO_INQUIRE 32 X'ðððððð2ð'
MQOO_SET 64 X'ðððððð4ð'
MQOO_SAVE_ALL_CONTEXT 128 X'ðððððð8ð'
MQOO_PASS_IDENTITY_CONTEXT 256 X'ððððð1ðð'
MQOO_PASS_ALL_CONTEXT 512 X'ððððð2ðð'
MQOO_SET_IDENTITY_CONTEXT 1ð24 X'ððððð4ðð'
MQOO_SET_ALL_CONTEXT 2ð48 X'ððððð8ðð'
MQOO_ALTERNATE_USER_AUTHORITY 4ð96 X'ðððð1ððð'

 Chapter 6. MQSeries constants 467

 MQSeries constants

MQOO_FAIL_IF_QUIESCING 8192 X'ðððð2ððð'

MQOT_ñ (Object type)
See the ObjectType field described in “MQOD – Object descriptor” on page 160.

MQOT_Q 1 X'ððððððð1'
MQOT_NAMELIST 2 X'ððððððð2'
MQOT_PROCESS 3 X'ððððððð3'
MQOT_Q_MGR 5 X'ððððððð5'
MQOT_CHANNEL 6 X'ððððððð6'
MQOT_RESERVED_1 7 X'ððððððð7'

 MQPER_ñ (Persistence)
See the Persistence field described in “MQMD – Message descriptor” on page 98,
and the DefPersistence attribute described in “Attributes for all queues” on
page 343.

MQPER_NOT_PERSISTENT ð X'ðððððððð'
MQPER_PERSISTENT 1 X'ððððððð1'
MQPER_PERSISTENCE_AS_Q_DEF 2 X'ððððððð2'

 MQPL_ñ (Platform)
See the Platform attribute described in “Attributes for the queue manager” on
page 370.

MQPL_MVS 1 X'ððððððð1'
MQPL_OS2 2 X'ððððððð2'
MQPL_AIX 3 X'ððððððð3'
MQPL_UNIX 3 X'ððððððð3'
MQPL_OS400 4 X'ððððððð4'
MQPL_WINDOWS 5 X'ððððððð5'
MQPL_WINDOWS_NT 11 X'ðððððððB'

| MQPL_VMS| 12| X'ðððððððC'
| MQPL_NSK| 13| X'ðððððððD'

MQPMO_ñ (Put message options)
See the Options field described in “MQPMO – Put message options” on page 173.

MQPMO_NONE ð X'ðððððððð'
MQPMO_SYNCPOINT 2 X'ððððððð2'
MQPMO_NO_SYNCPOINT 4 X'ððððððð4'
MQPMO_DEFAULT_CONTEXT 32 X'ðððððð2ð'
MQPMO_NEW_MSG_ID 64 X'ðððððð4ð'
MQPMO_NEW_CORREL_ID 128 X'ðððððð8ð'
MQPMO_PASS_IDENTITY_CONTEXT 256 X'ððððð1ðð'
MQPMO_PASS_ALL_CONTEXT 512 X'ððððð2ðð'
MQPMO_SET_IDENTITY_CONTEXT 1ð24 X'ððððð4ðð'
MQPMO_SET_ALL_CONTEXT 2ð48 X'ððððð8ðð'
MQPMO_ALTERNATE_USER_AUTHORITY 4ð96 X'ðððð1ððð'
MQPMO_FAIL_IF_QUIESCING 8192 X'ðððð2ððð'
MQPMO_NO_CONTEXT 16384 X'ðððð4ððð'
MQPMO_LOGICAL_ORDER 32768 X'ðððð8ððð'

468 MQSeries Application Programming Reference

 MQSeries constants

MQPMO_ñ (Put message options structure length)
MQPMO_CURRENT_LENGTH (environment

specific)

MQPMO_ñ (Put message options structure identifier)
See the StrucId field described in “MQPMO – Put message options” on page 173.

For the C programming language, the following is also defined:

MQPMO_STRUC_ID 'PMO␣'

MQPMO_STRUC_ID_ARRAY 'P','M','O','␣'

MQPMO_ñ (Put message options version)
See the Version field described in “MQPMO – Put message options” on page 173.

MQPMO_VERSION_1 1 X'ððððððð1'
MQPMO_VERSION_2 2 X'ððððððð2'
MQPMO_CURRENT_VERSION 2 X'ððððððð2'

MQPMRF_ñ (Put message record field flags)
See the PutMsgRecFields field described in “MQDH – Distribution header” on
page 39.

MQPMRF_NONE ð X'ðððððððð'
MQPMRF_MSG_ID 1 X'ððððððð1'
MQPMRF_CORREL_ID 2 X'ððððððð2'
MQPMRF_GROUP_ID 4 X'ððððððð4'
MQPMRF_FEEDBACK 8 X'ððððððð8'
MQPMRF_ACCOUNTING_TOKEN 16 X'ðððððð1ð'

 MQPRI_ñ (Priority)
See the Priority field described in “MQMD – Message descriptor” on page 98.

MQPRI_PRIORITY_AS_Q_DEF -1 X'FFFFFFFF'

MQQA_ñ (Inhibit get)
See the InhibitGet attribute described in “Attributes for all queues” on page 343.

MQQA_GET_ALLOWED ð X'ðððððððð'
MQQA_GET_INHIBITED 1 X'ððððððð1'

MQQA_ñ (Inhibit put)
See the InhibitPut attribute described in “Attributes for all queues” on page 343.

MQQA_PUT_ALLOWED ð X'ðððððððð'
MQQA_PUT_INHIBITED 1 X'ððððððð1'

 Chapter 6. MQSeries constants 469

 MQSeries constants

MQQA_ñ (Backout hardening)
See the HardenGetBackout attribute described in “Attributes for local queues and
model queues” on page 348.

MQQA_BACKOUT_NOT_HARDENED ð X'ðððððððð'
MQQA_BACKOUT_HARDENED 1 X'ððððððð1'

MQQA_ñ (Queue shareability)
See the Shareability attribute described in “Attributes for local queues and model
queues” on page 348.

MQQA_NOT_SHAREABLE ð X'ðððððððð'
MQQA_SHAREABLE 1 X'ððððððð1'

MQQDT_ñ (Queue definition type)
See the DefinitionType attribute described in “Attributes for local queues and
model queues” on page 348.

MQQDT_PREDEFINED 1 X'ððððððð1'
MQQDT_PERMANENT_DYNAMIC 2 X'ððððððð2'
MQQDT_TEMPORARY_DYNAMIC 3 X'ððððððð3'

MQQSIE_ñ (Service interval events)
MQQSIE_NONE ð X'ðððððððð'
MQQSIE_HIGH 1 X'ððððððð1'
MQQSIE_OK 2 X'ððððððð2'

MQQT_ñ (Queue type)
See the QType attribute described in “Attributes for all queues” on page 343.

MQQT_LOCAL 1 X'ððððððð1'
MQQT_MODEL 2 X'ððððððð2'
MQQT_ALIAS 3 X'ððððððð3'
MQQT_REMOTE 6 X'ððððððð6'

MQRC_ñ (Reason code)
See Chapter 5, “Return codes” on page 383, and the Feedback field described in
“MQMD – Message descriptor” on page 98. Note: the following list is in numeric
order .

MQRC_NONE ð X'ðððððððð'
MQRC_ALIAS_BASE_Q_TYPE_ERROR 2ðð1 X'ððððð7D1'
MQRC_ALREADY_CONNECTED 2ðð2 X'ððððð7D2'
MQRC_BACKED_OUT 2ðð3 X'ððððð7D3'
MQRC_BUFFER_ERROR 2ðð4 X'ððððð7D4'
MQRC_BUFFER_LENGTH_ERROR 2ðð5 X'ððððð7D5'
MQRC_CHAR_ATTR_LENGTH_ERROR 2ðð6 X'ððððð7D6'
MQRC_CHAR_ATTRS_ERROR 2ðð7 X'ððððð7D7'
MQRC_CHAR_ATTRS_TOO_SHORT 2ðð8 X'ððððð7D8'
MQRC_CONNECTION_BROKEN 2ðð9 X'ððððð7D9'
MQRC_DATA_LENGTH_ERROR 2ð1ð X'ððððð7DA'

470 MQSeries Application Programming Reference

 MQSeries constants

MQRC_DYNAMIC_Q_NAME_ERROR 2ð11 X'ððððð7DB'
MQRC_ENVIRONMENT_ERROR 2ð12 X'ððððð7DC'
MQRC_EXPIRY_ERROR 2ð13 X'ððððð7DD'
MQRC_FEEDBACK_ERROR 2ð14 X'ððððð7DE'
MQRC_GET_INHIBITED 2ð16 X'ððððð7Eð'
MQRC_HANDLE_NOT_AVAILABLE 2ð17 X'ððððð7E1'
MQRC_HCONN_ERROR 2ð18 X'ððððð7E2'
MQRC_HOBJ_ERROR 2ð19 X'ððððð7E3'
MQRC_INHIBIT_VALUE_ERROR 2ð2ð X'ððððð7E4'
MQRC_INT_ATTR_COUNT_ERROR 2ð21 X'ððððð7E5'
MQRC_INT_ATTR_COUNT_TOO_SMALL 2ð22 X'ððððð7E6'
MQRC_INT_ATTRS_ARRAY_ERROR 2ð23 X'ððððð7E7'
MQRC_SYNCPOINT_LIMIT_REACHED 2ð24 X'ððððð7E8'
MQRC_MAX_CONNS_LIMIT_REACHED 2ð25 X'ððððð7E9'
MQRC_MD_ERROR 2ð26 X'ððððð7EA'
MQRC_MISSING_REPLY_TO_Q 2ð27 X'ððððð7EB'
MQRC_MSG_TYPE_ERROR 2ð29 X'ððððð7ED'
MQRC_MSG_TOO_BIG_FOR_Q 2ð3ð X'ððððð7EE'
MQRC_MSG_TOO_BIG_FOR_Q_MGR 2ð31 X'ððððð7EF'
MQRC_NO_MSG_AVAILABLE 2ð33 X'ððððð7F1'
MQRC_NO_MSG_UNDER_CURSOR 2ð34 X'ððððð7F2'
MQRC_NOT_AUTHORIZED 2ð35 X'ððððð7F3'
MQRC_NOT_OPEN_FOR_BROWSE 2ð36 X'ððððð7F4'
MQRC_NOT_OPEN_FOR_INPUT 2ð37 X'ððððð7F5'
MQRC_NOT_OPEN_FOR_INQUIRE 2ð38 X'ððððð7F6'
MQRC_NOT_OPEN_FOR_OUTPUT 2ð39 X'ððððð7F7'
MQRC_NOT_OPEN_FOR_SET 2ð4ð X'ððððð7F8'
MQRC_OBJECT_CHANGED 2ð41 X'ððððð7F9'
MQRC_OBJECT_IN_USE 2ð42 X'ððððð7FA'
MQRC_OBJECT_TYPE_ERROR 2ð43 X'ððððð7FB'
MQRC_OD_ERROR 2ð44 X'ððððð7FC'
MQRC_OPTION_NOT_VALID_FOR_TYPE 2ð45 X'ððððð7FD'
MQRC_OPTIONS_ERROR 2ð46 X'ððððð7FE'
MQRC_PERSISTENCE_ERROR 2ð47 X'ððððð7FF'
MQRC_PERSISTENT_NOT_ALLOWED 2ð48 X'ððððð8ðð'
MQRC_PRIORITY_EXCEEDS_MAXIMUM 2ð49 X'ððððð8ð1'
MQRC_PRIORITY_ERROR 2ð5ð X'ððððð8ð2'
MQRC_PUT_INHIBITED 2ð51 X'ððððð8ð3'
MQRC_Q_DELETED 2ð52 X'ððððð8ð4'
MQRC_Q_FULL 2ð53 X'ððððð8ð5'
MQRC_Q_NOT_EMPTY 2ð55 X'ððððð8ð7'
MQRC_Q_SPACE_NOT_AVAILABLE 2ð56 X'ððððð8ð8'
MQRC_Q_TYPE_ERROR 2ð57 X'ððððð8ð9'
MQRC_Q_MGR_NAME_ERROR 2ð58 X'ððððð8ðA'
MQRC_Q_MGR_NOT_AVAILABLE 2ð59 X'ððððð8ðB'
MQRC_REPORT_OPTIONS_ERROR 2ð61 X'ððððð8ðD'
MQRC_SECOND_MARK_NOT_ALLOWED 2ð62 X'ððððð8ðE'
MQRC_SECURITY_ERROR 2ð63 X'ððððð8ðF'
MQRC_SELECTOR_COUNT_ERROR 2ð65 X'ððððð811'
MQRC_SELECTOR_LIMIT_EXCEEDED 2ð66 X'ððððð812'
MQRC_SELECTOR_ERROR 2ð67 X'ððððð813'
MQRC_SELECTOR_NOT_FOR_TYPE 2ð68 X'ððððð814'
MQRC_SIGNAL_OUTSTANDING 2ð69 X'ððððð815'
MQRC_SIGNAL_REQUEST_ACCEPTED 2ð7ð X'ððððð816'

 Chapter 6. MQSeries constants 471

 MQSeries constants

MQRC_STORAGE_NOT_AVAILABLE 2ð71 X'ððððð817'
MQRC_SYNCPOINT_NOT_AVAILABLE 2ð72 X'ððððð818'
MQRC_TRIGGER_CONTROL_ERROR 2ð75 X'ððððð81B'
MQRC_TRIGGER_DEPTH_ERROR 2ð76 X'ððððð81C'
MQRC_TRIGGER_MSG_PRIORITY_ERR 2ð77 X'ððððð81D'
MQRC_TRIGGER_TYPE_ERROR 2ð78 X'ððððð81E'
MQRC_TRUNCATED_MSG_ACCEPTED 2ð79 X'ððððð81F'
MQRC_TRUNCATED_MSG_FAILED 2ð8ð X'ððððð82ð'
MQRC_UNKNOWN_ALIAS_BASE_Q 2ð82 X'ððððð822'
MQRC_UNKNOWN_OBJECT_NAME 2ð85 X'ððððð825'
MQRC_UNKNOWN_OBJECT_Q_MGR 2ð86 X'ððððð826'
MQRC_UNKNOWN_REMOTE_Q_MGR 2ð87 X'ððððð827'
MQRC_WAIT_INTERVAL_ERROR 2ð9ð X'ððððð82A'
MQRC_XMIT_Q_TYPE_ERROR 2ð91 X'ððððð82B'
MQRC_XMIT_Q_USAGE_ERROR 2ð92 X'ððððð82C'
MQRC_NOT_OPEN_FOR_PASS_ALL 2ð93 X'ððððð82D'
MQRC_NOT_OPEN_FOR_PASS_IDENT 2ð94 X'ððððð82E'
MQRC_NOT_OPEN_FOR_SET_ALL 2ð95 X'ððððð82F'
MQRC_NOT_OPEN_FOR_SET_IDENT 2ð96 X'ððððð83ð'
MQRC_CONTEXT_HANDLE_ERROR 2ð97 X'ððððð831'
MQRC_CONTEXT_NOT_AVAILABLE 2ð98 X'ððððð832'
MQRC_SIGNAL1_ERROR 2ð99 X'ððððð833'
MQRC_OBJECT_ALREADY_EXISTS 21ðð X'ððððð834'
MQRC_OBJECT_DAMAGED 21ð1 X'ððððð835'
MQRC_RESOURCE_PROBLEM 21ð2 X'ððððð836'
MQRC_ANOTHER_Q_MGR_CONNECTED 21ð3 X'ððððð837'
MQRC_UNKNOWN_REPORT_OPTION 21ð4 X'ððððð838'
MQRC_STORAGE_CLASS_ERROR 21ð5 X'ððððð839'
MQRC_COD_NOT_VALID_FOR_XCF_Q 21ð6 X'ððððð83A'
MQRC_XWAIT_CANCELED 21ð7 X'ððððð83B'
MQRC_XWAIT_ERROR 21ð8 X'ððððð83C'
MQRC_SUPPRESSED_BY_EXIT 21ð9 X'ððððð83D'
MQRC_FORMAT_ERROR 211ð X'ððððð83E'
MQRC_SOURCE_CCSID_ERROR 2111 X'ððððð83F'
MQRC_SOURCE_INTEGER_ENC_ERROR 2112 X'ððððð84ð'
MQRC_SOURCE_DECIMAL_ENC_ERROR 2113 X'ððððð841'
MQRC_SOURCE_FLOAT_ENC_ERROR 2114 X'ððððð842'
MQRC_TARGET_CCSID_ERROR 2115 X'ððððð843'
MQRC_TARGET_INTEGER_ENC_ERROR 2116 X'ððððð844'
MQRC_TARGET_DECIMAL_ENC_ERROR 2117 X'ððððð845'
MQRC_TARGET_FLOAT_ENC_ERROR 2118 X'ððððð846'
MQRC_NOT_CONVERTED 2119 X'ððððð847'
MQRC_CONVERTED_MSG_TOO_BIG 212ð X'ððððð848'
MQRC_TRUNCATED 212ð X'ððððð848'
MQRC_NO_EXTERNAL_PARTICIPANTS 2121 X'ððððð849'
MQRC_PARTICIPANT_NOT_AVAILABLE 2122 X'ððððð84A'
MQRC_OUTCOME_MIXED 2123 X'ððððð84B'
MQRC_OUTCOME_PENDING 2124 X'ððððð84C'
MQRC_BRIDGE_STARTED 2125 X'ððððð84D'
MQRC_BRIDGE_STOPPED 2126 X'ððððð84E'
MQRC_ADAPTER_STORAGE_SHORTAGE 2127 X'ððððð84F'
MQRC_UOW_IN_PROGRESS 2128 X'ððððð85ð'
MQRC_ADAPTER_CONN_LOAD_ERROR 2129 X'ððððð851'
MQRC_ADAPTER_SERV_LOAD_ERROR 213ð X'ððððð852'

472 MQSeries Application Programming Reference

 MQSeries constants

MQRC_ADAPTER_DEFS_ERROR 2131 X'ððððð853'
MQRC_ADAPTER_DEFS_LOAD_ERROR 2132 X'ððððð854'
MQRC_ADAPTER_CONV_LOAD_ERROR 2133 X'ððððð855'
MQRC_BO_ERROR 2134 X'ððððð856'
MQRC_DH_ERROR 2135 X'ððððð857'
MQRC_MULTIPLE_REASONS 2136 X'ððððð858'
MQRC_OPEN_FAILED 2137 X'ððððð859'
MQRC_ADAPTER_DISC_LOAD_ERROR 2138 X'ððððð85A'
MQRC_CNO_ERROR 2139 X'ððððð85B'
MQRC_CICS_WAIT_FAILED 214ð X'ððððð85C'
MQRC_DLH_ERROR 2141 X'ððððð85D'
MQRC_HEADER_ERROR 2142 X'ððððð85E'
MQRC_SOURCE_LENGTH_ERROR 2143 X'ððððð85F'
MQRC_TARGET_LENGTH_ERROR 2144 X'ððððð86ð'
MQRC_SOURCE_BUFFER_ERROR 2145 X'ððððð861'
MQRC_TARGET_BUFFER_ERROR 2146 X'ððððð862'
MQRC_IIH_ERROR 2148 X'ððððð864'
MQRC_PCF_ERROR 2149 X'ððððð865'
MQRC_DBCS_ERROR 215ð X'ððððð866'
MQRC_OBJECT_NAME_ERROR 2152 X'ððððð868'
MQRC_OBJECT_Q_MGR_NAME_ERROR 2153 X'ððððð869'
MQRC_RECS_PRESENT_ERROR 2154 X'ððððð86A'
MQRC_OBJECT_RECORDS_ERROR 2155 X'ððððð86B'
MQRC_RESPONSE_RECORDS_ERROR 2156 X'ððððð86C'
MQRC_ASID_MISMATCH 2157 X'ððððð86D'
MQRC_PMO_RECORD_FLAGS_ERROR 2158 X'ððððð86E'
MQRC_PUT_MSG_RECORDS_ERROR 2159 X'ððððð86F'
MQRC_CONN_ID_IN_USE 216ð X'ððððð87ð'
MQRC_Q_MGR_QUIESCING 2161 X'ððððð871'
MQRC_Q_MGR_STOPPING 2162 X'ððððð872'
MQRC_DUPLICATE_RECOV_COORD 2163 X'ððððð873'
MQRC_PMO_ERROR 2173 X'ððððð87D'
MQRC_API_EXIT_LOAD_ERROR 2183 X'ððððð887'
MQRC_REMOTE_Q_NAME_ERROR 2184 X'ððððð888'
MQRC_INCONSISTENT_PERSISTENCE 2185 X'ððððð889'
MQRC_GMO_ERROR 2186 X'ððððð88A'

| MQRC_CICS_BRIDGE_RESTRICTION| 2187| X'ððððð88B'
MQRC_TMC_ERROR 2191 X'ððððð88F'
MQRC_PAGESET_FULL 2192 X'ððððð89ð'
MQRC_PAGESET_ERROR 2193 X'ððððð891'
MQRC_NAME_NOT_VALID_FOR_TYPE 2194 X'ððððð892'
MQRC_UNEXPECTED_ERROR 2195 X'ððððð893'
MQRC_UNKNOWN_XMIT_Q 2196 X'ððððð894'
MQRC_UNKNOWN_DEF_XMIT_Q 2197 X'ððððð895'
MQRC_DEF_XMIT_Q_TYPE_ERROR 2198 X'ððððð896'
MQRC_DEF_XMIT_Q_USAGE_ERROR 2199 X'ððððð897'
MQRC_NAME_IN_USE 22ð1 X'ððððð899'
MQRC_CONNECTION_QUIESCING 22ð2 X'ððððð89A'
MQRC_CONNECTION_STOPPING 22ð3 X'ððððð89B'
MQRC_ADAPTER_NOT_AVAILABLE 22ð4 X'ððððð89C'
MQRC_MSG_ID_ERROR 22ð6 X'ððððð89E'
MQRC_CORREL_ID_ERROR 22ð7 X'ððððð89F'
MQRC_FILE_SYSTEM_ERROR 22ð8 X'ððððð8Að'
MQRC_NO_MSG_LOCKED 22ð9 X'ððððð8A1'

 Chapter 6. MQSeries constants 473

 MQSeries constants

MQRC_FILE_NOT_AUDITED 2216 X'ððððð8A8'
MQRC_CONNECTION_NOT_AUTHORIZED 2217 X'ððððð8A9'
MQRC_MSG_TOO_BIG_FOR_CHANNEL 2218 X'ððððð8AA'
MQRC_CALL_IN_PROGRESS 2219 X'ððððð8AB'
MQRC_RMH_ERROR 222ð X'ððððð8AC'
MQRC_Q_MGR_ACTIVE 2222 X'ððððð8AE'
MQRC_Q_MGR_NOT_ACTIVE 2223 X'ððððð8AF'
MQRC_Q_DEPTH_HIGH 2224 X'ððððð8Bð'
MQRC_Q_DEPTH_LOW 2225 X'ððððð8B1'
MQRC_Q_SERVICE_INTERVAL_HIGH 2226 X'ððððð8B2'
MQRC_Q_SERVICE_INTERVAL_OK 2227 X'ððððð8B3'

| MQRC_UNIT_OF_WORK_NOT_STARTED| 2232| X'ððððð8B8'
MQRC_CHANNEL_AUTO_DEF_OK 2233 X'ððððð8B9'
MQRC_CHANNEL_AUTO_DEF_ERROR 2234 X'ððððð8BA'
MQRC_CFH_ERROR 2235 X'ððððð8BB'
MQRC_CFIL_ERROR 2236 X'ððððð8BC'
MQRC_CFIN_ERROR 2237 X'ððððð8BD'
MQRC_CFSL_ERROR 2238 X'ððððð8BE'
MQRC_CFST_ERROR 2239 X'ððððð8BF'
MQRC_INCOMPLETE_GROUP 2241 X'ððððð8C1'
MQRC_INCOMPLETE_MSG 2242 X'ððððð8C2'
MQRC_INCONSISTENT_CCSIDS 2243 X'ððððð8C3'
MQRC_INCONSISTENT_ENCODINGS 2244 X'ððððð8C4'
MQRC_INCONSISTENT_UOW 2245 X'ððððð8C5'
MQRC_INVALID_MSG_UNDER_CURSOR 2246 X'ððððð8C6'
MQRC_MATCH_OPTIONS_ERROR 2247 X'ððððð8C7'
MQRC_MDE_ERROR 2248 X'ððððð8C8'
MQRC_MSG_FLAGS_ERROR 2249 X'ððððð8C9'
MQRC_MSG_SEQ_NUMBER_ERROR 225ð X'ððððð8CA'
MQRC_OFFSET_ERROR 2251 X'ððððð8CB'
MQRC_ORIGINAL_LENGTH_ERROR 2252 X'ððððð8CC'
MQRC_SEGMENT_LENGTH_ZERO 2253 X'ððððð8CD'
MQRC_UOW_NOT_AVAILABLE 2255 X'ððððð8CF'
MQRC_WRONG_GMO_VERSION 2256 X'ððððð8Dð'
MQRC_WRONG_MD_VERSION 2257 X'ððððð8D1'
MQRC_GROUP_ID_ERROR 2258 X'ððððð8D2'
MQRC_INCONSISTENT_BROWSE 2259 X'ððððð8D3'
MQRC_XQH_ERROR 226ð X'ððððð8D4'
MQRC_SRC_ENV_ERROR 2261 X'ððððð8D5'
MQRC_SRC_NAME_ERROR 2262 X'ððððð8D6'
MQRC_DEST_ENV_ERROR 2263 X'ððððð8D7'
MQRC_DEST_NAME_ERROR 2264 X'ððððð8D8'
MQRC_TM_ERROR 2265 X'ððððð8D9'
MQRC_HCONFIG_ERROR 228ð X'ððððð8E8'
MQRC_FUNCTION_ERROR 2281 X'ððððð8E9'
MQRC_CHANNEL_STARTED 2282 X'ððððð8EA'
MQRC_CHANNEL_STOPPED 2283 X'ððððð8EB'
MQRC_CHANNEL_CONV_ERROR 2284 X'ððððð8EC'
MQRC_SERVICE_NOT_AVAILABLE 2285 X'ððððð8ED'
MQRC_INITIALIZATION_FAILED 2286 X'ððððð8EE'
MQRC_TERMINATION_FAILED 2287 X'ððððð8EF'
MQRC_UNKNOWN_Q_NAME 2288 X'ððððð8Fð'
MQRC_SERVICE_ERROR 2289 X'ððððð8F1'
MQRC_Q_ALREADY_EXISTS 229ð X'ððððð8F2'

474 MQSeries Application Programming Reference

 MQSeries constants

MQRC_USER_ID_NOT_AVAILABLE 2291 X'ððððð8F3'
MQRC_UNKNOWN_ENTITY 2292 X'ððððð8F4'
MQRC_UNKNOWN_AUTH_ENTITY 2293 X'ððððð8F5'
MQRC_UNKNOWN_REF_OBJECT 2294 X'ððððð8F6'
MQRC_CHANNEL_ACTIVATED 2295 X'ððððð8F7'
MQRC_CHANNEL_NOT_ACTIVATED 2296 X'ððððð8F8'

| MQRC_UOW_CANCELLED| 2297| X'ððððð8F9'

MQRMH_ñ (Reference message header structure identifier)
See the StrucId field described in “MQRMH – Message reference header” on
page 197.

For the C programming language, the following is also defined:

MQRMH_STRUC_ID 'RMH␣'

MQRMH_STRUC_ID_ARRAY 'R','M','H','␣'

MQRMH_ñ (Reference message header version)
See the Version field described in “MQRMH – Message reference header” on
page 197.

MQRMH_VERSION_1 1 X'ððððððð1'
MQRMH_CURRENT_VERSION 1 X'ððððððð1'

MQRMHF_ñ (Reference message header flags)
See the Flags field described in “MQRMH – Message reference header” on
page 197.

MQRMHF_NOT_LAST ð X'ðððððððð'
MQRMHF_LAST 1 X'ððððððð1'

MQRO_ñ (Report options)
See the Report field described in “MQMD – Message descriptor” on page 98.

MQRO_NEW_MSG_ID ð X'ðððððððð'
MQRO_COPY_MSG_ID_TO_CORREL_ID ð X'ðððððððð'
MQRO_DEAD_LETTER_Q ð X'ðððððððð'
MQRO_NONE ð X'ðððððððð'
MQRO_PAN 1 X'ððððððð1'
MQRO_NAN 2 X'ððððððð2'
MQRO_PASS_CORREL_ID 64 X'ðððððð4ð'
MQRO_PASS_MSG_ID 128 X'ðððððð8ð'
MQRO_COA 256 X'ððððð1ðð'
MQRO_COA_WITH_DATA 768 X'ððððð3ðð'
MQRO_COA_WITH_FULL_DATA 1792 X'ððððð7ðð'
MQRO_COD 2ð48 X'ððððð8ðð'
MQRO_COD_WITH_DATA 6144 X'ðððð18ðð'
MQRO_COD_WITH_FULL_DATA 14336 X'ðððð38ðð'
MQRO_EXPIRATION 2ð97152 X'ðð2ððððð'
MQRO_EXPIRATION_WITH_DATA 6291456 X'ðð6ððððð'
MQRO_EXPIRATION_WITH_FULL_DATA 1468ðð64 X'ððEððððð'

 Chapter 6. MQSeries constants 475

 MQSeries constants

MQRO_EXCEPTION 16777216 X'ð1ðððððð'
MQRO_EXCEPTION_WITH_DATA 5ð331648 X'ð3ðððððð'
MQRO_EXCEPTION_WITH_FULL_DATA 11744ð512 X'ð7ðððððð'
MQRO_DISCARD_MSG 134217728 X'ð8ðððððð'

MQRO_ñ (Report-options masks)
See Appendix C, “Report options and message flags” on page 489.

MQRO_REJECT_UNSUP_MASK 27ð27ð464 X'1ð1Cðððð'
MQRO_ACCEPT_UNSUP_MASK -27ð532353 X'EFEðððFF'
MQRO_ACCEPT_UNSUP_IF_XMIT_MASK 261888 X'ððð3FFðð'

MQSCO_ñ (Queue scope)
See the Scope attribute described in “Attributes for all queues” on page 343.

MQSCO_Q_MGR 1 X'ððððððð1'
MQSCO_CELL 2 X'ððððððð2'

 MQSEG_ñ (Segmentation)
See the Segmentation field described in “MQGMO – Get-message options” on
page 56.

MQSEG_INHIBITED '␣'
MQSEG_ALLOWED 'A'

 MQSP_ñ (Syncpoint)
See the SyncPoint attribute described in “Attributes for the queue manager” on
page 370.

MQSP_NOT_AVAILABLE ð X'ðððððððð'
MQSP_AVAILABLE 1 X'ððððððð1'

MQSS_ñ (Segment status)
See the SegmentStatus field described in “MQGMO – Get-message options” on
page 56.

MQSS_NOT_A_SEGMENT '␣'
MQSS_LAST_SEGMENT 'L'
MQSS_SEGMENT 'S'

MQTC_ñ (Trigger control)
See the TriggerControl attribute described in “Attributes for local queues and
model queues” on page 348.

MQTC_OFF ð X'ðððððððð'
MQTC_ON 1 X'ððððððð1'

476 MQSeries Application Programming Reference

 MQSeries constants

MQTM_ñ (Trigger message structure identifier)
See the StrucId field described in “MQTM – Trigger message” on page 209.

For the C programming language, the following is also defined:

MQTM_STRUC_ID 'TM␣␣'

MQTM_STRUC_ID_ARRAY 'T','M','␣','␣'

MQTM_ñ (Trigger message version)
See the Version field described in “MQTM – Trigger message” on page 209.

MQTM_VERSION_1 1 X'ððððððð1'
MQTM_CURRENT_VERSION 1 X'ððððððð1'

MQTMC_ñ (Trigger message character format structure identifier)
See the StrucId field described in “MQTMC2 – Trigger message 2 (character
format)” on page 217.

For the C programming language, the following is also defined:

MQTMC_STRUC_ID 'TMC␣'

MQTMC_STRUC_ID_ARRAY 'T','M','C','␣'

MQTMC_ñ (Trigger message character format version)
See the Version field described in “MQTMC2 – Trigger message 2 (character
format)” on page 217.

For the C programming language, the following are also defined:

MQTMC_VERSION_1 '␣␣␣1'
MQTMC_VERSION_2 '␣␣␣2'
MQTMC_CURRENT_VERSION '␣␣␣2'

MQTMC_VERSION_1_ARRAY '␣','␣','␣','1'
MQTMC_VERSION_2_ARRAY '␣','␣','␣','2'
MQTMC_CURRENT_VERSION_ARRAY '␣','␣','␣','2'

MQTT_ñ (Trigger type)
See the TriggerType attribute described in “Attributes for local queues and model
queues” on page 348.

MQTT_NONE ð X'ðððððððð'
MQTT_FIRST 1 X'ððððððð1'
MQTT_EVERY 2 X'ððððððð2'
MQTT_DEPTH 3 X'ððððððð3'

 Chapter 6. MQSeries constants 477

 MQSeries constants

 MQUS_ñ (Usage)
See the Usage attribute described in “Attributes for local queues and model queues”
on page 348.

MQUS_NORMAL ð X'ðððððððð'
MQUS_TRANSMISSION 1 X'ððððððð1'

MQWI_ñ (Wait interval)
See the WaitInterval field described in “MQGMO – Get-message options” on
page 56.

MQWI_UNLIMITED -1 X'FFFFFFFF'

MQXC_ñ (Exit command identifier)
See the ExitCommand field described in “MQXP – Exit parameter block (MVS/ESA
only)” on page 222.

MQXC_MQOPEN 1 X'ððððððð1'
MQXC_MQCLOSE 2 X'ððððððð2'
MQXC_MQGET 3 X'ððððððð3'
MQXC_MQPUT 4 X'ððððððð4'
MQXC_MQPUT1 5 X'ððððððð5'
MQXC_MQINQ 6 X'ððððððð6'
MQXC_MQSET 8 X'ððððððð8'
MQXC_MQBACK 9 X'ððððððð9'
MQXC_MQCMIT 1ð X'ðððððððA'

MQXCC_ñ (Exit response)
See the ExitResponse field described in “MQXP – Exit parameter block (MVS/ESA
only)” on page 222, and the description of the MQCXP structure in the MQSeries
Intercommunication book.

MQXCC_CLOSE_CHANNEL -6 X'FFFFFFFA'
MQXCC_SUPPRESS_EXIT -5 X'FFFFFFFB'
MQXCC_SEND_SEC_MSG -4 X'FFFFFFFC'
MQXCC_SEND_AND_REQUEST_SEC_MSG -3 X'FFFFFFFD'
MQXCC_SKIP_FUNCTION -2 X'FFFFFFFE'
MQXCC_SUPPRESS_FUNCTION -1 X'FFFFFFFF'
MQXCC_OK ð X'ðððððððð'

MQXDR_ñ (Data-conversion-exit response)
See the ExitResponse field described in “MQDXP – Data-conversion exit parameter
structure” on page 502.

MQXDR_OK ð X'ðððððððð'
MQXDR_CONVERSION_FAILED 1 X'ððððððð1'

478 MQSeries Application Programming Reference

 MQSeries constants

MQXP_ñ (Exit parameter block structure identifier)
See the StrucId field described in “MQXP – Exit parameter block (MVS/ESA only)”
on page 222.

For the C programming language, the following is also defined:

MQXP_STRUC_ID 'XP␣␣'

MQXP_STRUC_ID_ARRAY 'X','P','␣','␣'

MQXP_ñ (Exit parameter block version)
See the Version field described in “MQXP – Exit parameter block (MVS/ESA only)”
on page 222.

MQXP_VERSION_1 1 X'ððððððð1'

MQXQH_ñ (Transmission queue header structure identifier)
See the StrucId field described in “MQXQH – Transmission queue header” on
page 227.

For the C programming language, the following is also defined:

MQXQH_STRUC_ID 'XQH␣'

MQXQH_STRUC_ID_ARRAY 'X','Q','H','␣'

MQXQH_ñ (Transmission queue header version)
See the Version field described in “MQXQH – Transmission queue header” on
page 227.

MQXQH_VERSION_1 1 X'ððððððð1'
MQXQH_CURRENT_VERSION 1 X'ððððððð1'

MQXR_ñ (Exit reason)
See the ExitReason field described in “MQXP – Exit parameter block (MVS/ESA
only)” on page 222, and the description of the MQCXP structure in the MQSeries
Intercommunication book.

MQXR_BEFORE 1 X'ððððððð1'
MQXR_AFTER 2 X'ððððððð2'

MQXT_ñ (Exit identifier)
See the ExitId field described in “MQXP – Exit parameter block (MVS/ESA only)”
on page 222, and the description of the MQCXP structure in the MQSeries
Intercommunication book.

MQXT_API_CROSSING_EXIT 1 X'ððððððð1'
MQXT_CHANNEL_SEC_EXIT 11 X'ðððððððB'
MQXT_CHANNEL_MSG_EXIT 12 X'ðððððððC'
MQXT_CHANNEL_SEND_EXIT 13 X'ðððððððD'
MQXT_CHANNEL_RCV_EXIT 14 X'ðððððððE'
MQXT_CHANNEL_MSG_RETRY_EXIT 15 X'ðððððððF'

 Chapter 6. MQSeries constants 479

 MQSeries constants

MQXT_CHANNEL_AUTO_DEF_EXIT 16 X'ðððððð1ð'

MQXUA_ñ (Exit user area)
See the ExitUserArea field described in “MQXP – Exit parameter block (MVS/ESA
only)” on page 222, and the description of the MQCXP structure in the MQSeries
Intercommunication book.

For the C programming language, the following is also defined:

MQXUA_NONE X'ðð...ðð' (16 nulls)

MQXUA_NONE_ARRAY '\ð','\ð',...'\ð','\ð'

480 MQSeries Application Programming Reference

 MQI options

Appendix A. Rules for validating MQI options

This appendix explains the situations that produce an MQRC_OPTIONS_ERROR
reason code from an MQOPEN, MQPUT, MQPUT1, MQGET, or MQCLOSE call.

 MQOPEN
For the options of the MQOPEN call:

� Only valid options are allowed.

� At least one of the following must be specified:

 – MQOO_INPUT_EXCLUSIVE
 – MQOO_INPUT_SHARED
 – MQOO_INPUT_AS_Q_DEF
 – MQOO_BROWSE
 – MQOO_OUTPUT
 – MQOO_INQUIRE
 – MQOO_SET

� Only one of the following is allowed:

 – MQOO_INPUT_EXCLUSIVE
 – MQOO_INPUT_SHARED
 – MQOO_INPUT_AS_Q_DEF

� If MQOO_SAVE_ALL_CONTEXT is specified, one of the MQOO_INPUT_ñ
options must also be specified.

� If one of the MQOO_SET_ñ_CONTEXT or MQOO_PASS_ñ_CONTEXT options
is specified, MQOO_OUTPUT must also be specified.

 MQPUT
For the put-message options:

� Only valid options are allowed.

� The combination of MQPMO_SYNCPOINT and MQPMO_NO_SYNCPOINT is
not allowed.

� Only one of the following is allowed:

 – MQPMO_NO_CONTEXT
 – MQPMO_DEFAULT_CONTEXT
 – MQPMO_PASS_IDENTITY_CONTEXT
 – MQPMO_PASS_ALL_CONTEXT
 – MQPMO_SET_IDENTITY_CONTEXT
 – MQPMO_SET_ALL_CONTEXT

� MQPMO_ALTERNATE_USER_AUTHORITY is not allowed (it is valid only on
the MQPUT1 call).

 Copyright IBM Corp. 1994,1998 481

 MQI options

 MQPUT1
For the put-message options, the rules are the same as for the MQPUT call, except
that MQPMO_ALTERNATE_USER_AUTHORITY is allowed.

 MQGET
For the get-message options:

� Only valid options are allowed.

� Only one of the following is allowed:

 – MQGMO_SYNCPOINT
 – MQGMO_SYNCPOINT_IF_PERSISTENT
 – MQGMO_NO_SYNCPOINT

� Only one of the following is allowed:

 – MQGMO_BROWSE_FIRST
 – MQGMO_BROWSE_NEXT
 – MQGMO_BROWSE_MSG_UNDER_CURSOR
 – MQGMO_MSG_UNDER_CURSOR

� MQGMO_SYNCPOINT is not allowed with any of the following:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_LOCK
 MQGMO_UNLOCK

� MQGMO_SYNCPOINT_IF_PERSISTENT is not allowed with any of the
following:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR
 MQGMO_COMPLETE_MSG
 MQGMO_LOCK
 MQGMO_UNLOCK

� MQGMO_MARK_SKIP_BACKOUT requires MQGMO_SYNCPOINT to be
specified.

� The combination of MQGMO_WAIT and MQGMO_SET_SIGNAL is not allowed.

� If MQGMO_LOCK is specified, one of the following must also be specified:

 MQGMO_BROWSE_FIRST
 MQGMO_BROWSE_NEXT
 MQGMO_BROWSE_MSG_UNDER_CURSOR

� If MQGMO_UNLOCK is specified, only the following are allowed:

 MQGMO_NO_WAIT
 MQGMO_NO_SYNCPOINT

482 MQSeries Application Programming Reference

 MQI options

 MQCLOSE
For the options of the MQCLOSE call:

� Only valid options are allowed.

� The combination of MQCO_DELETE and MQCO_DELETE_PURGE is not
allowed.

 Appendix A. Rules for validating MQI options 483

 MQI options

484 MQSeries Application Programming Reference

 Machine encodings

 Appendix B. Machine encodings

This appendix describes the structure of the Encoding field in the message
descriptor MQMD (see page 118).

The Encoding field is a 32-bit integer that is divided into four separate subfields;
these subfields identify:

� The encoding used for binary integers
� The encoding used for packed-decimal integers
� The encoding used for floating-point numbers

 � Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such
that bit 0 is the most significant bit, and bit 31 the least significant bit. The
following masks are defined:

MQENC_INTEGER_MASK
Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the Encoding field.

MQENC_DECIMAL_MASK
Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the Encoding field.

MQENC_FLOAT_MASK
Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the Encoding field.

MQENC_RESERVED_MASK
Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the Encoding field.

 Binary-integer encoding
The following values are valid for the binary-integer encoding:

MQENC_INTEGER_UNDEFINED
Undefined integer encoding.

Binary integers are represented using an encoding that is undefined.

MQENC_INTEGER_NORMAL
Normal integer encoding.

Binary integers are represented in the conventional way:

� The least significant byte in the number has the highest address of any of
the bytes in the number; the most significant byte has the lowest address

� The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address

 Copyright IBM Corp. 1994,1998 485

 Machine encodings

MQENC_INTEGER_REVERSED
Reversed integer encoding.

Binary integers are represented in the same way as
MQENC_INTEGER_NORMAL, but with the bytes arranged in reverse order.
The bits within each byte are arranged in the same way as
MQENC_INTEGER_NORMAL.

 Packed-decimal-integer encoding
The following values are valid for the packed-decimal-integer encoding:

MQENC_DECIMAL_UNDEFINED
Undefined packed-decimal encoding.

Packed-decimal integers are represented using an encoding that is undefined.

MQENC_DECIMAL_NORMAL
Normal packed-decimal encoding.

Packed-decimal integers are represented in the conventional way:

� Each decimal digit in the printable form of the number is represented in
packed decimal by a single hexadecimal digit in the range X'0' through
X'9'. Each hexadecimal digit occupies four bits, and so each byte in the
packed decimal number represents two decimal digits in the printable
form of the number.

� The least significant byte in the packed-decimal number is the byte which
contains the least significant decimal digit. Within that byte, the most
significant four bits contain the least significant decimal digit, and the least
significant four bits contain the sign. The sign is either X'C' (positive),
X'D' (negative), or X'F' (unsigned).

� The least significant byte in the number has the highest address of any of
the bytes in the number; the most significant byte has the lowest address.

� The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address.

MQENC_DECIMAL_REVERSED
Reversed packed-decimal encoding.

Packed-decimal integers are represented in the same way as
MQENC_DECIMAL_NORMAL, but with the bytes arranged in reverse order.
The bits within each byte are arranged in the same way as
MQENC_DECIMAL_NORMAL.

 Floating-point encoding
The following values are valid for the floating-point encoding:

MQENC_FLOAT_UNDEFINED
Undefined floating-point encoding.

Floating-point numbers are represented using an encoding that is undefined.

MQENC_FLOAT_IEEE_NORMAL
Normal IEEE float encoding.

486 MQSeries Application Programming Reference

 Machine encodings

Floating-point numbers are represented using the standard IEEE5

floating-point format, with the bytes arranged as follows:

� The least significant byte in the mantissa has the highest address of any
of the bytes in the number; the byte containing the exponent has the
lowest address

� The least significant bit in each byte is adjacent to the byte with the next
higher address; the most significant bit in each byte is adjacent to the
byte with the next lower address

Details of the IEEE float encoding may be found in IEEE Standard 754.

MQENC_FLOAT_IEEE_REVERSED
Reversed IEEE float encoding.

Floating-point numbers are represented in the same way as
MQENC_FLOAT_IEEE_NORMAL, but with the bytes arranged in reverse
order. The bits within each byte are arranged in the same way as
MQENC_FLOAT_IEEE_NORMAL.

MQENC_FLOAT_S390
System/390 architecture float encoding.

Floating-point numbers are represented using the standard System/390
floating-point format; this is also used by System/370.

 Constructing encodings
To construct a value for the Encoding field in MQMD, the relevant constants that
describe the required encodings can be:

� Added together, or

� Combined using the bitwise OR operation (if the programming language
supports bit operations)

Whichever method is used, combine only one of the MQENC_INTEGER_ñ
encodings with one of the MQENC_DECIMAL_ñ encodings and one of the
MQENC_FLOAT_ñ encodings.

 Analyzing encodings
The Encoding field contains subfields; because of this, applications that need to
examine the integer, packed decimal, or float encoding should use one of the
techniques described below.

Using bit operations
If the programming language supports bit operations, the following steps should be
performed:

1. Select one of the following values, according to the type of encoding required:

Encoding Value to use
Binary integer MQENC_INTEGER_MASK
Packed-decimal integer MQENC_DECIMAL_MASK

5 The Institute of Electrical and Electronics Engineers

 Appendix B. Machine encodings 487

 Machine encodings

Floating point MQENC_FLOAT_MASK

Call the value A.

2. Combine the Encoding field with A using the bitwise AND operation; call the
result B.

3. B is the encoding required, and can be tested for equality with each of the
values that is valid for that type of encoding.

 Using arithmetic
If the programming language does not support bit operations, the following steps
should be performed using integer arithmetic:

1. Select a value from the following table, according to the encoding required:

Encoding required Value to use
Binary integer 1
Packed-decimal integer 16
Floating point 256

Call the value A.

2. Divide the value of the Encoding field by A; call the result B.

3. Divide B by 16; call the result C.

4. Multiply C by 16 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. E is the encoding required, and can be tested for equality with each of the
values that is valid for that type of encoding.

Summary of machine architecture encodings
Encodings for machine architectures are shown in Table 67.

Table 67. Summary of encodings for machine architectures

Machine
architecture

Binary integer
encoding

Packed-decimal
integer encoding

Floating-point
encoding

AS/400 normal normal IEEE normal

Intel x86 reversed reversed IEEE reversed

PowerPC normal normal IEEE normal

System/390 normal normal System/390

488 MQSeries Application Programming Reference

 Report options

Appendix C. Report options and message flags

This appendix concerns the Report and MsgFlags fields that are part of the
message descriptor MQMD specified on the MQGET, MQPUT, and MQPUT1 calls
(see page 101). The appendix describes:

� The structure of the report field and how the queue manager processes it
� How an application should analyze the report field
� The structure of the message-flags field

Structure of the report field
The Report field is a 32-bit integer that is divided into three separate subfields.
These subfields identify:

� Report options that are rejected if the local queue manager does not recognize
them

� Report options that are always accepted, even if the local queue manager does
not recognize them

� Report options that are accepted only if certain other conditions are satisfied

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. Note that the bits in a subfield
are not necessarily adjacent. The bits are numbered such that bit 0 is the most
significant bit, and bit 31 the least significant bit. The following masks are defined
to identify the subfields:

MQRO_REJECT_UNSUP_MASK
Mask for unsupported report options that are rejected.

This mask identifies the bit positions within the Report field where report
options which are not supported by the local queue manager will cause the
MQPUT or MQPUT1 call to fail with completion code MQCC_FAILED and
reason code MQRC_REPORT_OPTIONS_ERROR.

This subfield occupies bit positions 3, and 11 through 13.

MQRO_ACCEPT_UNSUP_MASK
Mask for unsupported report options that are accepted.

This mask identifies the bit positions within the Report field where report
options which are not supported by the local queue manager will nevertheless
be accepted on the MQPUT or MQPUT1 calls. Completion code
MQCC_WARNING with reason code MQRC_UNKNOWN_REPORT_OPTION
are returned in this case.

This subfield occupies bit positions 0 through 2, 4 through 10, and 24 through
31.

The following report options are included in this subfield:

 MQRO_COPY_MSG_ID_TO_CORREL_ID
 MQRO_DEAD_LETTER_Q
 MQRO_DISCARD_MSG
 MQRO_EXCEPTION
 MQRO_EXCEPTION_WITH_DATA

 Copyright IBM Corp. 1994,1998 489

 Report options

 MQRO_EXCEPTION_WITH_FULL_DATA
 MQRO_EXPIRATION
 MQRO_EXPIRATION_WITH_DATA
 MQRO_EXPIRATION_WITH_FULL_DATA
 MQRO_NAN
 MQRO_NEW_MSG_ID
 MQRO_NONE
 MQRO_PAN
 MQRO_PASS_CORREL_ID
 MQRO_PASS_MSG_ID

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK
Mask for unsupported report options that are accepted only in certain
circumstances.

This mask identifies the bit positions within the Report field where report
options which are not supported by the local queue manager will nevertheless
be accepted on the MQPUT or MQPUT1 calls provided that both of the
following conditions are satisfied:

� The message is destined for a remote queue manager.

� The application is not putting the message directly on a local transmission
queue (that is, the queue identified by the ObjectQMgrName and ObjectName
fields in the object descriptor specified on the MQOPEN or MQPUT1 call
is not a local transmission queue).

Completion code MQCC_WARNING with reason code
MQRC_UNKNOWN_REPORT_OPTION are returned if these conditions are
satisfied, and MQCC_FAILED with reason code
MQRC_REPORT_OPTIONS_ERROR if not.

This subfield occupies bit positions 14 through 23.

The following report options are included in this subfield:

 MQRO_COA
 MQRO_COA_WITH_DATA
 MQRO_COA_WITH_FULL_DATA
 MQRO_COD
 MQRO_COD_WITH_DATA
 MQRO_COD_WITH_FULL_DATA

If there are any options specified in the Report field which the queue manager
does not recognize, the queue manager checks each subfield in turn by using the
bitwise AND operation to combine the Report field with the mask for that subfield.
If the result of that operation is not zero, the completion code and reason codes
described above are returned.

If MQCC_WARNING is returned, it is not defined which reason code is returned if
other warning conditions exist.

The ability to specify and have accepted report options which are not recognized by
the local queue manager is useful when it is desired to send a message with a
report option which will be recognized and processed by a remote queue manager.

490 MQSeries Application Programming Reference

 Report options

Analyzing the report field
The Report field contains subfields; because of this, applications that need to check
whether the sender of the message requested a particular report should use one of
the techniques described below.

Using bit operations
If the programming language supports bit operations, the following steps should be
performed:

1. Select one of the following values, according to the type of report to be
checked:

Report type Value to use
COA MQRO_COA_WITH_FULL_DATA
COD MQRO_COD_WITH_FULL_DATA
Exception MQRO_EXCEPTION_WITH_FULL_DATA
Expiration MQRO_EXPIRATION_WITH_FULL_DATA

Call the value A.

On MVS/ESA, the MQRO_ñ_WITH_DATA values should be used instead of the
MQRO_ñ_WITH_FULL_DATA values.

2. Combine the Report field with A using the bitwise AND operation; call the result
B.

3. Test B for equality with each of the values that is possible for that type of
report.

For example, if A is MQRO_EXCEPTION_WITH_FULL_DATA, test B for
equality with each of the following to determine what was specified by the
sender of the message:

 MQRO_NONE
 MQRO_EXCEPTION
 MQRO_EXCEPTION_WITH_DATA
 MQRO_EXCEPTION_WITH_FULL_DATA

The tests can be performed in whatever order is most convenient for the
application logic.

A similar method can be used to test for the MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID options; select as the value A whichever of these two
constants is appropriate, and then proceed as described above.

 Using arithmetic
If the programming language does not support bit operations, the following steps
should be performed using integer arithmetic:

1. Select one of the following values, according to the type of report to be
checked:

Report type Value to use
COA MQRO_COA
COD MQRO_COD
Exception MQRO_EXCEPTION
Expiration MQRO_EXPIRATION

 Appendix C. Report options and message flags 491

 Report options

Call the value A.

2. Divide the Report field by A; call the result B.

3. Divide B by 8; call the result C.

4. Multiply C by 8 and subtract from B; call the result D.

5. Multiply D by A; call the result E.

6. Test E for equality with each of the values that is possible for that type of
report.

For example, if A is MQRO_EXCEPTION, test E for equality with each of the
following to determine what was specified by the sender of the message:

 MQRO_NONE
 MQRO_EXCEPTION
 MQRO_EXCEPTION_WITH_DATA
 MQRO_EXCEPTION_WITH_FULL_DATA

The tests can be performed in whatever order is most convenient for the
application logic.

The following pseudocode illustrates this technique for exception report messages:

A = MQRO_EXCEPTION
B = Report/A
C = B/8
D = B - C\8
E = D\A

A similar method can be used to test for the MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID options; select as the value A whichever of these two
constants is appropriate, and then proceed as described above, but replacing the
value 8 in the steps above by the value 2.

Structure of the message-flags field
The MsgFlags field is a 32-bit integer that is divided into three separate subfields.
These subfields identify:

� Message flags that are rejected if the local queue manager does not recognize
them

� Message flags that are always accepted, even if the local queue manager does
not recognize them

� Message flags that are accepted only if certain other conditions are satisfied

Note: All subfields in MsgFlags are reserved for use by the queue manager.

Each subfield is identified by a bit mask which has 1-bits in the positions
corresponding to the subfield, and 0-bits elsewhere. The bits are numbered such
that bit 0 is the most significant bit, and bit 31 the least significant bit. The
following masks are defined to identify the subfields:

MQMF_REJECT_UNSUP_MASK
Mask for unsupported message flags that are rejected.

This mask identifies the bit positions within the MsgFlags field where message
flags which are not supported by the local queue manager will cause the

492 MQSeries Application Programming Reference

 Report options

MQPUT or MQPUT1 call to fail with completion code MQCC_FAILED and
reason code MQRC_MSG_FLAGS_ERROR.

This subfield occupies bit positions 20 through 31.

The following message flags are included in this subfield:

 MQMF_LAST_MSG_IN_GROUP
 MQMF_LAST_SEGMENT
 MQMF_MSG_IN_GROUP
 MQMF_SEGMENT
 MQMF_SEGMENTATION_ALLOWED

MQMF_ACCEPT_UNSUP_MASK
Mask for unsupported message flags that are accepted.

This mask identifies the bit positions within the MsgFlags field where message
flags which are not supported by the local queue manager will nevertheless
be accepted on the MQPUT or MQPUT1 calls. The completion code is
MQCC_OK.

This subfield occupies bit positions 0 through 11.

MQMF_ACCEPT_UNSUP_IF_XMIT_MASK
Mask for unsupported message flags that are accepted only in certain
circumstances.

This mask identifies the bit positions within the MsgFlags field where message
flags which are not supported by the local queue manager will nevertheless
be accepted on the MQPUT or MQPUT1 calls provided that both of the
following conditions are satisfied:

� The message is destined for a remote queue manager.

� The application is not putting the message directly on a local transmission
queue (that is, the queue identified by the ObjectQMgrName and ObjectName
fields in the object descriptor specified on the MQOPEN or MQPUT1 call
is not a local transmission queue).

Completion code MQCC_OK is returned if these conditions are satisfied, and
MQCC_FAILED with reason code MQRC_MSG_FLAGS_ERROR if not.

This subfield occupies bit positions 12 through 19.

If there are flags specified in the MsgFlags field that the queue manager does not
recognize, the queue manager checks each subfield in turn by using the bitwise
AND operation to combine the MsgFlags field with the mask for that subfield. If the
result of that operation is not zero, the completion code and reason codes
described above are returned.

 Appendix C. Report options and message flags 493

 Report options

494 MQSeries Application Programming Reference

 Data-conversion � Conversion processing

 Appendix D. Data-conversion

This appendix describes the interface to the data-conversion exit, and the
processing performed by the queue manager when data conversion is required.

The data-conversion exit is invoked as part of the processing of the MQGET call, in
order to convert the application message data to the representation required by the
receiving application. Conversion of the application message data is optional — it
requires the MQGMO_CONVERT option to be specified on the MQGET call.

The following are described:

� The processing performed by the queue manager in response to the
MQGMO_CONVERT option; see “Conversion processing.”

� Processing conventions used by the queue manager when processing a built-in
format; these conventions are recommended for user-written exits too. See
“Processing conventions” on page 497.

� Special considerations for the conversion of report messages; see “Conversion
of report messages” on page 501.

� The parameters passed to the data-conversion exit; see
“MQDATACONVEXIT – Data conversion exit” on page 515.

� A call that can be used from the exit in order to convert character data between
different representations; see “MQXCNVC – Convert characters” on page 509.

� The data-structure parameter which is specific to the exit; see “MQDXP –
Data-conversion exit parameter structure” on page 502.

 Conversion processing
The queue manager performs the following actions if the MQGMO_CONVERT
option is specified on the MQGET call, and there is a message to be returned to
the application:

1. If one or more of the following is true, no conversion is necessary:

� The CodedCharSetId and Encoding values in the control information in the
message are identical to those in the MsgDesc parameter.

� The length of the application message data is zero.

� The length of the Buffer parameter is zero.

In these cases the message is returned without conversion to the application
issuing the MQGET call; the CodedCharSetId and Encoding values in the
MsgDesc parameter are set to the values in the control information in the
message, and the call completes with one of the following combinations of
completion code and reason code:

Completion code Reason code
MQCC_OK MQRC_NONE
MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED
MQCC_WARNING MQRC_TRUNCATED_MSG_FAILED

 Copyright IBM Corp. 1994,1998 495

 Conversion processing

The following steps are performed only if the CodedCharSetId or Encoding value in
the control information in the message differs from that in the MsgDesc parameter,
and there is data to be converted:

2. If the Format field in the control information in the message has the value
MQFMT_NONE, the message is returned unconverted, with completion code
MQCC_WARNING and reason code MQRC_FORMAT_ERROR.

In all other cases conversion processing continues.

3. The message is removed from the queue and placed in a temporary buffer
which is the same size as the Buffer parameter. For browse operations, the
message is copied into the temporary buffer, instead of being removed from the
queue.

4. If the message has to be truncated to fit in the buffer, the following is done:

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the
message is returned unconverted, with completion code MQCC_WARNING
and reason code MQRC_TRUNCATED_MSG_FAILED.

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the
completion code is set to MQCC_WARNING, the reason code is set to
MQRC_TRUNCATED_MSG_ACCEPTED, and conversion processing
continues.

5. If the message can be accommodated in the buffer without truncation, or the
MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the following is
done:

� If the format is a built-in format, the buffer is passed to the
queue-manager’s data-conversion service.

� If the format is not a built-in format, the buffer is passed to a user-written
exit which has the same name as the format. If the exit cannot be found,
the message is returned unconverted, with completion code
MQCC_WARNING and reason code MQRC_FORMAT_ERROR.

If no error occurs, the output from the data-conversion service or from the
user-written exit is the converted message, plus the completion code and
reason code to be returned to the application issuing the MQGET call.

6. If the conversion is successful, the queue manager returns the converted
message to the application. In this case, the completion code and reason code
returned will usually be one of the following combinations:

Completion code Reason code
MQCC_OK MQRC_NONE
MQCC_WARNING MQRC_TRUNCATED_MSG_ACCEPTED

If the conversion fails (for whatever reason), the queue manager returns the
unconverted message to the application, with the CodedCharSetId and Encoding
fields in the MsgDesc parameter set to the values in the control information in
the message, and with completion code MQCC_WARNING. See below for
possible reason codes.

496 MQSeries Application Programming Reference

 Processing conventions

 Processing conventions
When converting a built-in format, the queue manager follows the processing
conventions described below. It is recommended that user-written exits should also
follow these conventions, although this is not enforced by the queue manager. The
built-in formats converted by the queue manager are:

 MQFMT_ADMIN
 MQFMT_COMMAND_1
 MQFMT_COMMAND_2
 MQFMT_DEAD_LETTER_HEADER

| MQFMT_DIST_HEADER
 MQFMT_EVENT
 MQFMT_IMS
 MQFMT_IMS_VAR_STRING
 MQFMT_MD_EXTENSION
 MQFMT_PCF
 MQFMT_REF_MSG_HEADER
 MQFMT_STRING
 MQFMT_TRIGGER
 MQFMT_XMIT_Q_HEADER

1. If the message expands during conversion, and exceeds the size of the Buffer
parameter, the following is done:

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was not specified, the
message is returned unconverted, with completion code MQCC_WARNING
and reason code MQRC_CONVERTED_MSG_TOO_BIG.

� If the MQGMO_ACCEPT_TRUNCATED_MSG option was specified, the
message is truncated, the completion code is set to MQCC_WARNING, the
reason code is set to MQRC_TRUNCATED_MSG_ACCEPTED, and
conversion processing continues.

2. If truncation occurs (either before or during conversion), it is possible for the
number of valid bytes returned in the Buffer parameter to be less than the
length of the buffer.

This can occur, for example, if a 4-byte integer or a DBCS character straddles
the end of the buffer. The incomplete element of information is not converted,
and so those bytes in the returned message do not contain valid information.
This can also occur if a message that was truncated before conversion shrinks
during conversion.

If the number of valid bytes returned is less than the length of the buffer, the
unused bytes at the end of the buffer are set to nulls.

3. If an array or string straddles the end of the buffer, as much of the data as
possible is converted; only the particular array element or DBCS character
which is incomplete is not converted – preceding array elements or characters
are converted.

4. If truncation occurs (either before or during conversion), the length returned for
the DataLength parameter is the length of the unconverted message before
truncation.

5. The data returned to the application is never partially converted; either all of the
data returned is converted, or none of it is. For example, if the integers in the

 Appendix D. Data-conversion 497

 Processing conventions

data can be converted, but the character strings cannot (because the
character-set identifier is not recognized), none of the data is converted.

6. If the CodedCharSetId or Encoding fields in the control information of the
message being retrieved, or in the MsgDesc parameter, specify values which are
undefined or not supported, the queue manager may ignore the error if the
undefined or unsupported value does not need to be used in converting the
message.

For example, if the Encoding field in the message specifies an unsupported
float encoding, but the message contains only integer data, or contains
floating-point data which does not require conversion (because the source and
target float encodings are identical), the error may or may not be diagnosed.

If the error is diagnosed, the message is returned unconverted, with completion
code MQCC_WARNING and one of the MQRC_SOURCE_ñ_ERROR or
MQRC_TARGET_ñ_ERROR reason codes (as appropriate); the
CodedCharSetId and Encoding fields in the MsgDesc parameter are set to the
values in the control information in the message.

If the error is not diagnosed and the conversion completes successfully, the
values returned in the CodedCharSetId and Encoding fields in the MsgDesc
parameter are those specified by the application issuing the MQGET call.

7. In all cases, if the message is returned to the application unconverted the
completion code is set to MQCC_WARNING, and the CodedCharSetId and
Encoding fields in the MsgDesc parameter are set to the values appropriate to
the unconverted data. This is done for MQFMT_NONE also.

The Reason parameter is set to a code that indicates why the conversion could
not be carried out, unless the message also had to be truncated; reason codes
related to truncation take precedence over reason codes related to conversion.
(To determine if a truncated message was converted, check the values
returned in the CodedCharSetId and Encoding fields in the MsgDesc parameter.)

When an error is diagnosed, either a specific reason code is returned, or the
general reason code MQRC_NOT_CONVERTED. The reason code returned
depends on the diagnostic capabilities of the underlying data-conversion
service.

8. If completion code MQCC_WARNING is returned, and more than one reason
code is relevant, the order of precedence is as follows:

a. The following reasons take precedence over all others; only one of the
reasons in this group can arise:

 MQRC_SIGNAL_REQUEST_ACCEPTED
 MQRC_TRUNCATED_MSG_ACCEPTED

b. Next in precedence is the following reason:

 MQRC_FORMAT_ERROR

c. The order of precedence within this final group is not defined:

 MQRC_CONVERTED_MSG_TOO_BIG
 MQRC_NOT_CONVERTED
 MQRC_SOURCE_CCSID_ERROR
 MQRC_SOURCE_DECIMAL_ENC_ERROR
 MQRC_SOURCE_FLOAT_ENC_ERROR
 MQRC_SOURCE_INTEGER_ENC_ERROR

498 MQSeries Application Programming Reference

 Processing conventions

 MQRC_TARGET_CCSID_ERROR
 MQRC_TARGET_DECIMAL_ENC_ERROR
 MQRC_TARGET_FLOAT_ENC_ERROR
 MQRC_TARGET_INTEGER_ENC_ERROR

9. On completion of the MQGET call:

� The following reason code indicates that the message was converted
successfully:

 MQRC_NONE

� The following reason code indicates that the message may have been
converted successfully (check the CodedCharSetId and Encoding fields in
the MsgDesc parameter to find out):

 MQRC_TRUNCATED_MSG_ACCEPTED

� All other reason codes indicate that the message was not converted.

The following processing is specific to the built-in formats; it is not applicable to
user-defined formats:

10. With the exception of the format MQFMT_STRING, none of the built-in formats
can be converted from or to double-byte character sets (DBCS); only
single-byte character sets (SBCS) can be used with these formats.

If DBCS character sets are specified with these formats, the message is
returned unconverted, with completion code MQCC_WARNING and reason
code MQRC_SOURCE_CCSID_ERROR or MQRC_TARGET_CCSID_ERROR,
as appropriate.

11. If the message data for a built-in format is truncated, fields within the message
which contain lengths of strings, or counts of elements or structures, are not
adjusted to reflect the length of the data actually returned to the application; the
values returned for such fields within the message data are the values
applicable to the message prior to truncation.

When processing messages such as a truncated MQFMT_ADMIN message,
care must be taken to ensure that the application does not attempt to access
data beyond the end of the data returned.

12. If the format name is MQFMT_DEAD_LETTER_HEADER, the message data
begins with an MQDLH structure, and this may be followed by zero or more
bytes of application message data. The format, character set, and encoding of
the application message data are defined by the Format, CodedCharSetId, and
Encoding fields in the MQDLH structure at the start of the message. Since the
MQDLH structure and application message data can have different character
sets and encodings, it is possible for one, other, or both of the MQDLH
structure and application message data to require conversion.

The queue manager converts the MQDLH structure first, as necessary. If
conversion is successful, or the MQDLH structure does not require conversion,
the queue manager checks the CodedCharSetId and Encoding fields in the
MQDLH structure to see if conversion of the application message data is
required. If conversion is required, the queue manager invokes the user-written
exit with the name given by the Format field in the MQDLH structure, or
performs the conversion itself (if Format is the name of a built-in format).

 Appendix D. Data-conversion 499

 Processing conventions

If the MQGET call returns a completion code of MQCC_WARNING, and the
reason code is one of those indicating that conversion was not successful, one
of the following applies:

� The MQDLH structure could not be converted. In this case the application
message data will not have been converted either.

� The MQDLH structure was converted, but the application message data
was not.

The application can examine the values returned in the CodedCharSetId and
Encoding fields in the MsgDesc parameter, and those in the MQDLH structure, in
order to determine which of the above applies.

13. If the format name is MQFMT_XMIT_Q_HEADER, the message data begins
with an MQXQH structure, and this may be followed by zero or more bytes of
additional data. This additional data is usually the application message data
(which may be of zero length), but there can also be one or more further MQ
header structures present, at the start of the additional data.

The MQXQH structure must be in the character set and encoding of the queue
manager. The format, character set, and encoding of the data following the
MQXQH structure are given by the Format, CodedCharSetId, and Encoding
fields in the MQMD structure contained within the MQXQH. For each
subsequent MQ header structure present, the Format, CodedCharSetId, and
Encoding fields in the structure describe the data that follows that structure; that
data is either another MQ header structure, or the application message data.

If the MQGMO_CONVERT option is specified for an
MQFMT_XMIT_Q_HEADER message, the application message data and
certain of the MQ header structures are converted, but the data in the MQXQH
structure is not. On return from the MQGET call, therefore:

� The values of the Format, CodedCharSetId, and Encoding fields in the
MsgDesc parameter describe the data in the MQXQH structure, and not the
application message data; the values will therefore not be the same as
those specified by the application that issued the MQGET call.

The effect of this is that an application which repeatedly gets messages
from a transmission queue with the MQGMO_CONVERT option specified
must reset the CodedCharSetId and Encoding fields in the MsgDesc
parameter to the values desired for the application message data, prior to
each MQGET call.

� The values of the Format, CodedCharSetId, and Encoding fields in the last
MQ header structure present describe the application message data. If
there are no other MQ header structures present, the application message
data is described by these fields in the MQMD structure within the MQXQH
structure. If conversion is successful, the values will be the same as those
specified in the MsgDesc parameter by the application that issued the
MQGET call.

If the message is a distribution-list message, the MQXQH structure is followed
by an MQDH structure (plus its arrays of MQOR and MQPMR records), which
in turn may be followed by zero or more further MQ header structures and zero
or more bytes of application message data. Like the MQXQH structure, the
MQDH structure must be in the character set and encoding of the queue
manager, and it is not converted on the MQGET call, even if the
MQGMO_CONVERT option is specified.

500 MQSeries Application Programming Reference

 Report message conversion

The processing of the MQXQH and MQDH structures described above is
primarily intended for use by message channel agents when they get
messages from transmission queues.

Conversion of report messages
A report message can contain varying amounts of application message data,
according to the report options specified by the sender of the original message. In
particular, a report message can contain either:

1. No application message data

2. Some of the application message data from the original message

This occurs when the sender of the original message specifies
MQRO_ñ_WITH_DATA and the message is longer than 100 bytes.

3. All of the application message data from the original message

This occurs when the sender of the original message specifies
MQRO_ñ_WITH_FULL_DATA, or specifies MQRO_ñ_WITH_DATA and the
message is 100 bytes or shorter.

When the queue manager or message channel agent generates a report message,
it copies the format name from the original message into the Format field in the
control information in the report message. The format name in the report message
may therefore imply a length of data which is different from the length actually
present in the report message (cases 1 and 2 above).

If the MQGMO_CONVERT option is specified when the report message is
retrieved:

� For case 1 above, the data-conversion exit will not be invoked (because the
report message will have no data).

� For case 3 above, the format name correctly implies the length of the message
data.

� But for case 2 above, the data-conversion exit will be invoked to convert a
message which is shorter than the length implied by the format name.

In addition, the reason code passed to the exit will usually be MQRC_NONE
(that is, the reason code will not indicate that the message has been
truncated). This happens because the message data was truncated by the
sender of the report message, and not by the receiver’s queue manager in
response to the MQGET call.

Because of these possibilities, the data-conversion exit should not use the format
name to deduce the length of data passed to it; instead the exit should check the
length of data provided, and be prepared to convert less data than the length
implied by the format name. If the data can be converted successfully, completion
code MQCC_OK and reason code MQRC_NONE should be returned by the exit.
The length of the message data to be converted is passed to the exit as the
InBufferLength parameter.

 Appendix D. Data-conversion 501

 MQDXP – Data-conversion exit parameter structure � MQDXP – Strucid field

Product-sensitive programming interface

MQDXP – Data-conversion exit parameter structure
The following table summarizes the fields in the structure.

The MQDXP structure is a parameter that is passed to the data-conversion exit.
See the description of the MQDATACONVEXIT call for details of the data
conversion exit.

Only the DataLength, CompCode, Reason and ExitResponse fields in MQDXP may be
changed by the exit; changes to other fields are ignored. However, the DataLength
field cannot be changed if the message being converted is a segment that contains
only part of a logical message.

When control returns to the queue manager from the exit, the queue manager
checks the values returned in MQDXP. If the values returned are not valid, the
queue manager continues processing as though the exit had returned
MQXDR_CONVERSION_FAILED in ExitResponse; however, the queue manager
ignores the values of the CompCode and Reason fields returned by the exit in this
case, and uses instead the values those fields had on input to the exit. The
following values in MQDXP cause this processing to occur:

� ExitResponse field not MQXDR_OK and not MQXDR_CONVERSION_FAILED
� CompCode field not MQCC_OK and not MQCC_WARNING
� DataLength field less than zero, or DataLength field changed when the message

being converted is a segment that contains only part of a logical message.

Table 68. Fields in MQDXP

Field Description Page

StrucId Structure identifier 502

Version Structure version number 503

AppOptions Application options 503

Encoding Encoding required by application 503

CodedCharSetId Character set required by application 503

DataLength Length in bytes of message data 504

CompCode Completion code 504

Reason Reason code qualifying CompCode 505

ExitResponse Response from exit 506

Hconn Connection handle 507

 Fields
StrucId (MQCHAR4)

Structure identifier.

The value must be:

502 MQSeries Application Programming Reference

 MQDXP – Version field � MQDXP – CodedCharSetId field

MQDXP_STRUC_ID
Identifier for data conversion exit parameter structure.

For the C programming language, the constant
MQDXP_STRUC_ID_ARRAY is also defined; this has the same
value as MQDXP_STRUC_ID, but is an array of characters instead
of a string.

This is an input field to the exit.

Version (MQLONG)
Structure version number.

The value must be:

MQDXP_VERSION_1
Version number for data-conversion exit parameter structure.

The following constant specifies the version number of the current version:

MQDXP_CURRENT_VERSION
Current version of data-conversion exit parameter structure.

Note: When a new version of this structure is introduced, the layout of
the existing part is not changed. The exit should therefore check
that the Version field is equal to or greater than the lowest version
which contains the fields that the exit needs to use.

This is an input field to the exit.

ExitOptions (MQLONG)
Reserved.

This is a reserved field; its value is ð.

AppOptions (MQLONG)
Application options.

This is a copy of the Options field of the MQGMO structure specified by
the application issuing the MQGET call. The exit may need to examine
these to ascertain whether the MQGMO_ACCEPT_TRUNCATED_MSG
option was specified.

This is an input field to the exit.

Encoding (MQLONG)
Encoding required by application.

This is the encoding required by the application issuing the MQGET call;
see the Encoding field in the MQMD structure for more details.

If the conversion is successful, the exit should copy this to the Encoding
field in the message descriptor.

This is an input field to the exit.

CodedCharSetId (MQLONG)
Character set required by application.

This is the coded character-set identifier of the character set required by
the application issuing the MQGET call; see the CodedCharSetId field in
the MQMD structure for more details. If the application specifies the
special value MQCCSI_Q_MGR on the MQGET call, the queue manager

 Appendix D. Data-conversion 503

 MQDXP – DataLength field � MQDXP – CompCode field

changes this to the actual character-set identifier of the character set used
by the queue manager, before invoking the exit.

If the conversion is successful, the exit should copy this to the
CodedCharSetId field in the message descriptor.

This is an input field to the exit.

DataLength (MQLONG)
Length in bytes of message data.

When the exit is invoked, this field contains the original length of the
application message data. If the message was truncated in order to fit into
the buffer provided by the application, the size of the message provided to
the exit will be smaller than the value of DataLength. The size of the
message actually provided to the exit is always given by the
InBufferLength parameter of the exit, irrespective of any truncation that
may have occurred.

Truncation is indicated by the Reason field having the value
MQRC_TRUNCATED_MSG_ACCEPTED on input to the exit.

Most conversions will not need to change this length, but an exit can do so
if necessary; the value set by the exit is returned to the application in the
DataLength parameter of the MQGET call. However, this length cannot be
changed if the message being converted is a segment that contains only
part of a logical message. This is because changing the length would
cause the offsets of later segments in the logical message to be incorrect.

Note that, if the exit wants to change the length of the data, be aware that
the queue manager has already decided whether the message data will fit
into the application’s buffer, based on the length of the unconverted data.
This decision determines whether the message is removed from the queue
(or the browse cursor moved, for a browse request), and is not affected by
any change to the data length caused by the conversion. For this reason
it is recommended that conversion exits do not cause a change in the
length of the application message data.

If character conversion does imply a change of length, a string can be
converted into another string with the same length in bytes, truncating
trailing blanks or padding with blanks as necessary.

The exit is not invoked if the message contains no application message
data; hence DataLength is always greater then zero.

This is an input/output field to the exit.

CompCode (MQLONG)
Completion code.

When the exit is invoked, this contains the completion code that will be
returned to the application that issued the MQGET call, if the exit chooses
to do nothing. It is always MQCC_WARNING, because either the
message was truncated, or the message requires conversion and this has
not yet been done.

On output from the exit, this field contains the completion code to be
returned to the application in the CompCode parameter of the MQGET call;
only MQCC_OK and MQCC_WARNING are valid. See the description of

504 MQSeries Application Programming Reference

 MQDXP – Reason field

the Reason field for recommendations on how the exit should set this field
on output.

This is an input/output field to the exit.

Reason (MQLONG)
Reason code qualifying CompCode.

When the exit is invoked, this contains the reason code that will be
returned to the application that issued the MQGET call, if the exit chooses
to do nothing. Among possible values are
MQRC_TRUNCATED_MSG_ACCEPTED, indicating that the message was
truncated in order fit into the buffer provided by the application, and
MQRC_NOT_CONVERTED, indicating that the message requires
conversion but that this has not yet been done.

On output from the exit, this field contains the reason to be returned to the
application in the Reason parameter of the MQGET call; the following is
recommended:

� If Reason had the value MQRC_TRUNCATED_MSG_ACCEPTED on
input to the exit, the Reason and CompCode fields should not be altered,
irrespective of whether the conversion succeeds or fails.

(If the CompCode field is not MQCC_OK, the application which retrieves
the message can identify a conversion failure by comparing the
returned Encoding and CodedCharSetId values in the message
descriptor with the values requested; in contrast, the application
cannot distinguish a truncated message from a message that just fitted
the buffer. For this reason, MQRC_TRUNCATED_MSG_ACCEPTED
should be returned in preference to any of the reasons that indicate
conversion failure.)

� If Reason had any other value on input to the exit:

– If the conversion succeeds, CompCode should be set to MQCC_OK
and Reason set to MQRC_NONE.

– If the conversion fails, or the message expands and has to be
truncated to fit in the buffer, CompCode should be set to
MQCC_WARNING (or left unchanged), and Reason set to one of
the values listed below, to indicate the nature of the failure.

Note that, if the message after conversion is too big for the buffer,
it should be truncated only if the application that issued the
MQGET call specified the MQGMO_ACCEPT_TRUNCATED_MSG
option:

- If it did specify that option, reason
MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

- If it did not specify that option, the message should be
returned unconverted, with reason code
MQRC_CONVERTED_MSG_TOO_BIG.

The reason codes listed below are recommended for use by the exit to
indicate the reason that conversion failed, but the exit can set other values
from the set of MQRC_ñ codes if deemed appropriate.

Note: If the message cannot be converted successfully, the exit must
return MQXDR_CONVERSION_FAILED in the ExitResponse field,

 Appendix D. Data-conversion 505

 MQDXP – ExitResponse field

in order to cause the queue manager to return the unconverted
message. This is true regardless of the reason code returned in
the Reason field.

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for application buffer.

MQRC_NOT_CONVERTED
(2119, X'847') Application message data not converted.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message not
recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by receiver not
recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by receiver not
recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned (processing
completed).

This is an input/output field to the exit.

ExitResponse (MQLONG)
Response from exit.

This is set by the exit to indicate the success or otherwise of the
conversion. It must be one of the following:

MQXDR_OK
Conversion was successful.

If the exit specifies this value, the queue manager returns the
following to the application which issued the MQGET call:

� The value of the CompCode field on output from the exit

� The value of the Reason field on output from the exit

� The value of the DataLength field on output from the exit

� The contents of the exit’s output buffer OutBuffer; the number of
bytes returned is the lesser of the exit’s OutBufferLength
parameter, and the value of the DataLength field on output from
the exit

� The value of the Encoding field in the exit’s message descriptor
parameter on output from the exit

506 MQSeries Application Programming Reference

 MQDXP – Hconn field � MQDXP – COBOL declaration

� The value of the CodedCharSetId field in the exit’s message
descriptor parameter on output from the exit

MQXDR_CONVERSION_FAILED
Conversion was unsuccessful.

If the exit specifies this value, the queue manager returns the
following to the application which issued the MQGET call:

� The value of the CompCode field on output from the exit

� The value of the Reason field on output from the exit

� The value of the DataLength field on input to the exit

� The contents of the exit’s input buffer InBuffer; the number of
bytes returned is given by the InBufferLength parameter

If the exit has altered InBuffer, the results are undefined.

ExitResponse is an output field from the exit.

Hconn (MQHCONN)
Connection handle.

This is a connection handle which can be used on the MQXCNVC call.
This handle is not necessarily the same as the handle specified by the
application which issued the MQGET call.

C language declaration
typedef struct tagMQDXP {
 MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG ExitOptions; /\ Reserved \/
MQLONG AppOptions; /\ Application options \/
MQLONG Encoding; /\ Encoding required by application \/
MQLONG CodedCharSetId; /\ Coded character-set identifier required

by application \/
MQLONG DataLength; /\ Length in bytes of message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/
MQLONG ExitResponse; /\ Response from exit \/

 MQHCONN Hconn; /\ Connection handle \/
 } MQDXP;

COBOL language declaration
\\ MQDXP structure
 1ð MQDXP.
\\ Structure identifier
 15 MQDXP-STRUCID PIC X(4).
\\ Structure version number

15 MQDXP-VERSION PIC S9(9) BINARY.
\\ Reserved

15 MQDXP-EXITOPTIONS PIC S9(9) BINARY.
\\ Application options

15 MQDXP-APPOPTIONS PIC S9(9) BINARY.
\\ Encoding required by application

15 MQDXP-ENCODING PIC S9(9) BINARY.
\\ Coded character-set identifier required by application

 Appendix D. Data-conversion 507

 MQDXP – S/390 declaration

15 MQDXP-CODEDCHARSETID PIC S9(9) BINARY.
\\ Length in bytes of message data

15 MQDXP-DATALENGTH PIC S9(9) BINARY.
\\ Completion code

15 MQDXP-COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying CompCode

15 MQDXP-REASON PIC S9(9) BINARY.
\\ Response from exit

15 MQDXP-EXITRESPONSE PIC S9(9) BINARY.
\\ Connection handle

15 MQDXP-HCONN PIC S9(9) BINARY.

System/390 assembler-language declaration (MVS/ESA only)
MQDXP DSECT
MQDXP_STRUCID DS CL4 Structure identifier
MQDXP_VERSION DS F Structure version number
MQDXP_EXITOPTIONS DS F Reserved
MQDXP_APPOPTIONS DS F Application options
MQDXP_ENCODING DS F Encoding required by
\ application
MQDXP_CODEDCHARSETID DS F Coded character-set
\ identifier required by
\ application
MQDXP_DATALENGTH DS F Length in bytes of message
\ data
MQDXP_COMPCODE DS F Completion code
MQDXP_REASON DS F Reason code qualifying
\ CompCode
MQDXP_EXITRESPONSE DS F Response from exit
MQDXP_HCONN DS F Connection handle
MQDXP_LENGTH EQU \-MQDXP Length of structure
 ORG MQDXP
MQDXP_AREA DS CL(MQDXP_LENGTH)

508 MQSeries Application Programming Reference

 MQXCNVC – Options parameter

 MQXCNVC – Convert characters
The MQXCNVC call converts characters from one character set to another.

This call is part of the MQSeries Data Conversion Interface (DCI), which is one of
the MQSeries framework interfaces. Note: this call can be used only from a
data-conversion exit.

MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer,
TargetCCSID, TargetLength, TargetBuffer, DataLength,
CompCode, Reason)

 Parameters
Hconn (MQHCONN) – input

Connection handle.

This handle represents the connection to the queue manager. It should
normally be the handle passed to the data-conversion exit in the Hconn
field of the MQDXP structure; this handle is not necessarily the same as
the handle specified by the application which issued the MQGET call.

On OS/400, the following special value can be specified for Hconn:

MQHC_DEF_HCONN
Default connection handle.

Options (MQLONG) – input
Options that control the action of MQXCNVC.

Zero or more of the options described below can be specified. If more
than one is required, the values can be:

� added together (do not add the same constant more than once), or

� combined using the bitwise OR operation (if the programming
language supports bit operations).

Default-conversion option : The following option controls the use of
default character conversion:

MQDCC_DEFAULT_CONVERSION
Default conversion.

This option specifies that default character conversion can be used if
one or both of the character sets specified on the call is not
supported. This allows the queue manager to use an
installation-specified default character set that approximates the
actual character set, when converting the string.

Note: The result of using an approximate character set to convert
the string is that some characters may be converted
incorrectly. This can be avoided by using in the string only
characters which are common to both the actual character
set specified on the call, and the default character set.

 Appendix D. Data-conversion 509

 MQXCNVC – Options parameter

The default character set is specified by means of a
configuration option when the queue manager is installed or
restarted.

If this option is not specified, the queue manager uses only the
specified character sets to convert the string, and the call fails if one
or both of the character sets is not supported.

This option is supported in the following environments: AIX, HP-UX,
OS/2, OS/400, Sun Solaris, Windows NT.

Encoding options : The options described below can be used to specify
the integer encodings of the source and target strings. The relevant
encoding is used only when the corresponding character set identifier
indicates that the representation of the character set in main storage is
dependent on the encoding used for binary integers. This affects only
certain multibyte character sets (for example, UCS2 character sets).

The encoding is ignored if the character set is a single-byte character set
(SBCS), or a multibyte character set whose representation in main storage
is not dependent on the integer encoding.

These encoding options are supported in the following environments: AIX,
HP-UX, OS/2, Sun Solaris, Windows NT.

Only one of the MQDCC_SOURCE_ñ values should be specified,
combined with one of the MQDCC_TARGET_ñ values:

MQDCC_SOURCE_ENC_NATIVE
Source encoding is the default for the environment and programming
language.

MQDCC_SOURCE_ENC_NORMAL
Source encoding is normal.

MQDCC_SOURCE_ENC_REVERSED
Source encoding is reversed.

MQDCC_SOURCE_ENC_UNDEFINED
Source encoding is undefined.

MQDCC_TARGET_ENC_NATIVE
Target encoding is the default for the environment and programming
language.

MQDCC_TARGET_ENC_NORMAL
Target encoding is normal.

MQDCC_TARGET_ENC_REVERSED
Target encoding is reversed.

MQDCC_TARGET_ENC_UNDEFINED
Target encoding is undefined.

The encoding values defined above can be added directly to the Options
field. However, if the source or target encoding is obtained from the
Encoding field in the MQMD or other structure, the following processing
must be done:

1. The integer encoding must be extracted from the Encoding field by
eliminating the float and packed-decimal encodings; see “Analyzing
encodings” on page 487 for details of how to do this.

510 MQSeries Application Programming Reference

 MQXCNVC – TargetCCSID parameter

2. The integer encoding resulting from step 1 must be multiplied by the
appropriate factor before being added to the Options field. These
factors are:

MQDCC_SOURCE_ENC_FACTOR
Factor for source encoding

MQDCC_TARGET_ENC_FACTOR
Factor for target encoding

The following illustrates how this might be coded in the C programming
language:

Options = (MsgDesc.Encoding & MQENC_INTEGER_MASK)
 \ MQDCC_SOURCE_ENC_FACTOR

+ (DataConvExitParms.Encoding & MQENC_INTEGER_MASK)
 \ MQDCC_TARGET_ENC_FACTOR;

If not specified, the encoding options default to undefined
(MQDCC_ñ_ENC_UNDEFINED). In most cases, this does not affect the
successful completion of the MQXCNVC call. However, if the
corresponding character set is a multibyte character set whose
representation is dependent on the encoding (for example, a UCS2
character set), the call fails with reason code
MQRC_SOURCE_INTEGER_ENC_ERROR or
MQRC_TARGET_INTEGER_ENC_ERROR as appropriate.

Default option : If none of the options described above is specified, the
following option can be used:

MQDCC_NONE
No options specified.

MQDCC_NONE is defined to aid program documentation. It is not
intended that this option be used with any other, but as its value is
zero, such use cannot be detected.

SourceCCSID (MQLONG) – input
Coded character set identifier of string before conversion.

This is the coded character set identifier of the input string in
SourceBuffer.

SourceLength (MQLONG) – input
Length of string before conversion.

This is the length in bytes of the input string in SourceBuffer; it must be
zero or greater.

SourceBuffer (MQCHAR×SourceLength) – input
String to be converted.

This is the buffer containing the string to be converted from one character
set to another.

TargetCCSID (MQLONG) – input
Coded character set identifier of string after conversion.

This is the coded character set identifier of the character set to which
SourceBuffer is to be converted.

 Appendix D. Data-conversion 511

 MQXCNVC – Reason parameter

TargetLength (MQLONG) – input
Length of output buffer.

This is the length in bytes of the output buffer TargetBuffer; it must be
zero or greater.

TargetBuffer (MQCHAR×TargetLength) – output
String after conversion.

This is the string after it has been converted to the character set defined
by TargetCCSID. The converted string can be shorter or longer than the
unconverted string.

If TargetBuffer is too small to accommodate the converted string, the
string is truncated to fit and the call completes with MQCC_WARNING and
reason code MQRC_CONVERTED_MSG_TOO_BIG. The string is
truncated in a way that ensures it remains a valid SBCS, DBCS, or mixed
SBCS/DBCS string; this may result in the number of valid bytes returned
in TargetBuffer being less than TargetLength. The DataLength parameter
indicates the number of valid bytes returned.

DataLength (MQLONG) – output
Length of output string.

This is the length of the string returned in the output buffer TargetBuffer.
The converted string can be shorter or longer than the unconverted string.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for application buffer.

If CompCode is MQCC_FAILED:

MQRC_DATA_LENGTH_ERROR
(2010, X'7DA') Data length parameter not valid.

MQRC_DBCS_ERROR
(2150, X'866') DBCS string not valid.

MQRC_HCONN_ERROR
(2018, X'7E2') Connection handle not valid.

512 MQSeries Application Programming Reference

 MQXCNVC – Reason parameter

MQRC_OPTIONS_ERROR
(2046, X'7FE') Options not valid or not consistent.

MQRC_RESOURCE_PROBLEM
(2102, X'836') Insufficient system resources available.

MQRC_SOURCE_BUFFER_ERROR
(2145, X'861') Source buffer parameter not valid.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier not valid.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Source integer encoding not recognized.

MQRC_SOURCE_LENGTH_ERROR
(2143, X'85F') Source length parameter not valid.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_TARGET_BUFFER_ERROR
(2146, X'862') Target buffer parameter not valid.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not valid.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Target integer encoding not recognized.

MQRC_TARGET_LENGTH_ERROR
(2144, X'860') Target length parameter not valid.

MQRC_UNEXPECTED_ERROR
(2195, X'893') Unexpected error occurred.

For more information on these reason codes, see Chapter 5, “Return
codes” on page 383.

 Appendix D. Data-conversion 513

 MQXCNVC – C invocation � MQXCNVC – S/390 assembler invocation

C language invocation
MQXCNVC (Hconn, Options, SourceCCSID, SourceLength, SourceBuffer,

TargetCCSID, TargetLength, TargetBuffer, &DataLength,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG Options; /\ Options that control the action of
 MQXCNVC \/
MQLONG SourceCCSID; /\ Coded character set identifier of string

before conversion \/
MQLONG SourceLength; /\ Length of string before conversion \/
MQCHAR SourceBuffer[n]; /\ String to be converted \/
MQLONG TargetCCSID; /\ Coded character set identifier of string

after conversion \/
MQLONG TargetLength; /\ Length of output buffer \/
MQCHAR TargetBuffer[n]; /\ String after conversion \/
MQLONG DataLength; /\ Length of output string \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

System/390 assembler-language invocation (MVS/ESA only)
 CALL MQXCNVC,(HCONN,OPTIONS,SOURCECCSID,SOURCELENGTH, X
 SOURCEBUFFER,TARGETCCSID,TARGETLENGTH,TARGETBUFFER, X
 DATALENGTH,COMPCODE,REASON)

Declare the parameters as follows:

HCONN DS F Connection handle
OPTIONS DS F Options that control the action
\ of MQXCNVC
SOURCECCSID DS F Coded character set identifier
\ of string before conversion
SOURCELENGTH DS F Length of string before
\ conversion
SOURCEBUFFER DS CL(n) String to be converted
TARGETCCSID DS F Coded character set identifier
\ of string after conversion
TARGETLENGTH DS F Length of output buffer
TARGETBUFFER DS CL(n) String after conversion
DATALENGTH DS F Length of output string
COMPCODE DS F Completion code
REASON DS F Reason code qualifying CompCode

514 MQSeries Application Programming Reference

 MQDATACONVEXIT – InBufferLength parameter

 MQDATACONVEXIT – Data conversion exit
This call definition describes the parameters that are passed to the data-conversion
exit. No entry point called MQDATACONVEXIT is actually provided by the queue
manager (see usage note 11 on page 518).

This definition is part of the MQSeries Data Conversion Interface (DCI), which is
one of the MQSeries framework interfaces.

MQDATACONVEXIT (DataConvExitParms, MsgDesc, InBufferLength,
InBuffer, OutBufferLength, OutBuffer)

 Parameters
DataConvExitParms (MQDXP) – input/output

Data-conversion exit parameter block.

This structure contains information relating to the invocation of the exit.
The exit sets information in this structure to indicate the outcome of the
conversion. See “MQDXP – Data-conversion exit parameter structure” on
page 502 for details of the fields in this structure.

MsgDesc (MQMD) – input/output
Message descriptor.

On input to the exit, this is the message descriptor that would be returned
to the application if no conversion were performed. It therefore contains
the Format, Encoding, and CodedCharSetId of the unconverted message
contained in InBuffer.

Note: The MsgDesc parameter passed to the exit is always the
most-recent version of MQMD supported by the queue manager
which invokes the exit. If the exit is intended to be portable
between different environments, the exit should check the Version
field in MsgDesc to verify that the fields that the exit needs to
access are present in the structure.

In the following environments, the exit is passed a version-2
MQMD: AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT. In
all other environments that support the data conversion exit, the
exit is passed a version-1 MQMD.

On output, the exit should change the Encoding and CodedCharSetId fields
to the values requested by the application, if conversion was successful;
these changes will be reflected back to the application. Any other
changes that the exit makes to the structure are ignored; they are not
reflected back to the application.

InBufferLength (MQLONG) – input
Length in bytes of InBuffer.

This is the length of the input buffer InBuffer, and specifies the number of
bytes to be processed by the exit. InBufferLength is the lesser of the
length of the message data prior to conversion, and the length of the
buffer provided by the application on the MQGET call.

 Appendix D. Data-conversion 515

 MQDATACONVEXIT – Usage notes

The value is always greater than zero.

InBuffer (MQBYTE×InBufferLength) – input
Buffer containing the unconverted message.

This contains the message data prior to conversion. If the exit is unable to
convert the data, the queue manager returns the contents of this buffer to
the application after the exit has completed.

Note: The exit should not alter InBuffer; if this parameter is altered, the
results are undefined.

In the C programming language, this parameter is defined as a
pointer-to-void.

OutBufferLength (MQLONG) – input
Length in bytes of OutBuffer.

This is the length of the output buffer OutBuffer, and is the same as the
length of the buffer provided by the application on the MQGET call.

The value is always greater than zero.

OutBuffer (MQBYTE×OutBufferLength) – output
Buffer containing the converted message.

On output from the exit, if the conversion was successful (as indicated by
the value MQXDR_OK in the ExitResponse field of the DataConvExitParms
parameter), OutBuffer contains the message data to be delivered to the
application, in the requested representation. If the conversion was
unsuccessful, any changes that the exit has made to this buffer are
ignored.

In the C programming language, this parameter is defined as a
pointer-to-void.

 Usage notes
1. A data-conversion exit is a user-written exit which receives control during the

processing of an MQGET call. The function performed by the data-conversion
exit is defined by the provider of the exit; however, the exit must conform to the
rules described here, and in the associated parameter structure MQDXP.

The programming languages that can be used for a data-conversion exit are
determined by the environment.

2. The exit is invoked only if all of the following are true:

� The MQGMO_CONVERT option is specified on the MQGET call

� The Format field in the message descriptor is not MQFMT_NONE

� The message is not already in the required representation; that is, one or
both of the message’s CodedCharSetId and Encoding is different from the
value specified by the application in the message descriptor supplied on the
MQGET call

� The queue manager has not already done the conversion successfully

� The length of the application’s buffer is greater than zero

� The length of the message data is greater than zero

516 MQSeries Application Programming Reference

 MQDATACONVEXIT – Usage notes

� The reason code so far during the MQGET operation is MQRC_NONE or
MQRC_TRUNCATED_MSG_ACCEPTED

3. When an exit is being written, consideration should be given to coding the exit
in a way that will allow it to convert messages that have been truncated.
Truncated messages can arise in the following ways:

� The receiving application provides a buffer that is smaller than the
message, but specifies the MQGMO_ACCEPT_TRUNCATED_MSG option
on the MQGET call.

In this case, the Reason field in the DataConvExitParms parameter on input
to the exit will have the value MQRC_TRUNCATED_MSG_ACCEPTED.

� The sender of the message truncated it before sending it. This can happen
with report messages, for example (see “Conversion of report messages”
on page 501 for more details).

In this case, the Reason field in the DataConvExitParms parameter on input
to the exit will have the value MQRC_NONE (if the receiving application
provided a buffer that was big enough for the message).

Thus the value of the Reason field on input to the exit cannot always be used to
decide whether the message has been truncated.

The distinguishing characteristic of a truncated message is that the length
provided to the exit in the InBufferLength parameter will be less than the
length implied by the format name contained in the Format field in the message
descriptor. The exit should therefore check the value of InBufferLength before
attempting to convert any of the data; the exit should not assume that the full
amount of data implied by the format name has been provided.

If the exit has not been written to convert truncated messages, and
InBufferLength is less than the value expected, the exit should return
MQXDR_CONVERSION_FAILED in the ExitResponse field of the
DataConvExitParms parameter, with the CompCode and Reason fields set to
MQCC_WARNING and MQRC_FORMAT_ERROR respectively.

If the exit has been written to convert truncated messages, the exit should
convert as much of the data as possible (see next usage note), taking care not
to attempt to examine or convert data beyond the end of InBuffer. If the
conversion completes successfully, the exit should leave the Reason field in the
DataConvExitParms parameter unchanged. This has the effect of returning
MQRC_TRUNCATED_MSG_ACCEPTED if the message was truncated by the
receiver’s queue manager, and MQRC_NONE if the message was truncated by
the sender of the message.

It is also possible for a message to expand during conversion, to the point
where it is bigger than OutBuffer. In this case the exit must decide whether to
truncate the message; the AppOptions field in the DataConvExitParms
parameter will indicate whether the receiving application specified the
MQGMO_ACCEPT_TRUNCATED_MSG option.

4. Generally it is recommended that all of the data in the message provided to the
exit in InBuffer is converted, or that none of it is. An exception to this,
however, occurs if the message is truncated, either before conversion or during
conversion; in this case there may be an incomplete item at the end of the
buffer (for example: one byte of a double-byte character, or 3 bytes of a 4-byte
integer). In this situation it is recommended that the incomplete item should be

 Appendix D. Data-conversion 517

 MQDATACONVEXIT – Usage notes

omitted, and unused bytes in OutBuffer set to nulls. However, complete
elements or characters within an array or string should be converted.

5. When an exit is needed for the first time, the queue manager attempts to load
an object that has the same name as the format (apart from environment-
specific extensions). The object loaded must contain the exit that processes
messages with that format name. It is recommended that the exit name, and
the name of the object that contain the exit, should be identical, although not all
environments require this.

6. A new copy of the exit is loaded when an application attempts to retrieve the
first message that uses that Format since the application connected to the
queue manager. For CICS or IMS applications, this means when the CICS or
IMS subsystem connected to the queue manager. A new copy may also be
loaded at other times, if the queue manager has discarded a previously-loaded
copy. For this reason, an exit should not attempt to use static storage to
communicate information from one invocation of the exit to the next – the exit
may be unloaded between the two invocations.

7. If there is a user-supplied exit with the same name as one of the built-in
formats supported by the queue manager, the user-supplied exit does not
replace the built-in conversion routine. The only circumstances in which such
an exit is invoked are:

� If the built-in conversion routine cannot handle conversions to or from either
the CodedCharSetId or Encoding involved, or

� If the built-in conversion routine has failed to convert the data (for example,
because there is a field or character which cannot be converted).

8. The scope of the exit is environment-dependent. Format names should be
chosen so as to minimize the risk of clashes with other formats. It is
recommended that they start with characters that identify the application
defining the format name.

9. The data-conversion exit runs in an environment similar to that of the program
which issued the MQGET call; environment includes address space and user
profile (where applicable). The program could be a message channel agent
sending messages to a destination queue manager that does not support
message conversion. The exit cannot compromise the queue manager’s
integrity, since it does not run in the queue manager’s environment.

10. The only MQI call which can be used by the exit is MQXCNVC; attempting to
use other MQI calls fails with reason code MQRC_CALL_IN_PROGRESS, or
other unpredictable errors.

11. No entry point called MQDATACONVEXIT is actually provided by the queue
manager. However, a typedef is provided for the name MQDATACONVEXIT
in the C programming language, and this can be used to declare the
user-written exit, to ensure that the parameters are correct. The name of the
exit should be the same as the format name (the name contained in the Format
field in MQMD), although this is not required in all environments.

The following example illustrates how the exit that processes the format
MYFORMAT should be declared in the C programming language:

518 MQSeries Application Programming Reference

 MQDATACONVEXIT – Usage notes

#include "cmqc.h"
#include "cmqxc.h"

MQDATACONVEXIT MYFORMAT;

void MQENTRY MYFORMAT(
PMQDXP pDataConvExitParms, /\ Data-conversion exit parameter

 block \/
PMQMD pMsgDesc, /\ Message descriptor \/
MQLONG InBufferLength, /\ Length in bytes of InBuffer \/
PMQVOID pInBuffer, /\ Buffer containing the unconverted

 message \/
MQLONG OutBufferLength, /\ Length in bytes of OutBuffer \/
PMQVOID pOutBuffer) /\ Buffer containing the converted

 message \/
{
/\ C language statements to convert message \/

}

12. On MVS/ESA, if an API-crossing exit is also in force, it is called after the
data-conversion exit.

 Appendix D. Data-conversion 519

 MQDATACONVEXIT – language invocations

 C invocation
exitname (&DataConvExitParms, &MsgDesc, InBufferLength,

InBuffer, OutBufferLength, OutBuffer);

Declare the parameters as follows:

MQDXP DataConvExitParms; /\ Data-conversion exit parameter block \/
MQMD MsgDesc; /\ Message descriptor \/
MQLONG InBufferLength; /\ Length in bytes of InBuffer \/
MQBYTE InBuffer[n]; /\ Buffer containing the uncon-

verted message \/
MQLONG OutBufferLength; /\ Length in bytes of OutBuffer \/
MQBYTE OutBuffer[n]; /\ Buffer containing the converted
 message \/

COBOL invocation (OS/400 only)
CALL 'exitname' USING DATACONVEXITPARMS, MSGDESC,

INBUFFERLENGTH, INBUFFER, OUTBUFFERLENGTH,
 OUTBUFFER.

Declare the parameters as follows:

\\ Data-conversion exit parameter block
 ð1 DATACONVEXITPARMS.
 COPY CMQDXPV.
\\ Message descriptor
 ð1 MSGDESC.
 COPY CMQMDV.
\\ Length in bytes of InBuffer
 ð1 INBUFFERLENGTH PIC S9(9) BINARY.
\\ Buffer containing the unconverted message
 ð1 INBUFFER PIC X(n).
\\ Length in bytes of OutBuffer
 ð1 OUTBUFFERLENGTH PIC S9(9) BINARY.
\\ Buffer containing the converted message
 ð1 OUTBUFFER PIC X(n).

System/390 assembler-language invocation (MVS/ESA only)
CALL EXITNAME,(DATACONVEXITPARMS,MSGDESC,INBUFFERLENGTH,INBUFFER, X

 OUTBUFFERLENGTH,OUTBUFFER)

Declare the parameters as follows:

DATACONVEXITPARMS CMQDXPA Data conversion exit parameter
\ block
MSGDESC CMQMDA Message descriptor
INBUFFERLENGTH DS F Length in bytes of InBuffer
INBUFFER DS CL(n) Buffer containing the
\ unconverted message
OUTBUFFERLENGTH DS F Length in bytes of OutBuffer
OUTBUFFER DS CL(n) Buffer containing the converted
\ message

End of Product-sensitive programming interface

520 MQSeries Application Programming Reference

 Signal notification – Tandem NSK

| Appendix E. Signal notification IPC message (Tandem NSK
| only)

| For backwards compatibility with MQSeries for Tandem NSK, Version 1.5.1, the
| signal mode of message-arrival notification is supported. This type of notification is
| selected by the MQGMO_SET_SIGNAL option in the options field of the Get
| Message Options structure. If MQGMO_SET_SIGNAL is specified, the following
| options are not valid:

| � MQGMO_BROWSE_FIRST
| � MQGMO_BROWSE_NEXT
| � MQGMO_BROWSE_MSG_UNDER_CURSOR
| � MQGMO_MSG_UNDER_CURSOR
| � MQGMO_LOCK
| � MQGMO_UNLOCK
| � MQGMO_WAIT

| If MQGMO_SET_SIGNAL is specified with any of these options, a CompCode of
| MQCC_FAILED and a Reason of MQRC_OPTIONS_ERROR are returned.

| The effects of specifying MQGMO_SET_SIGNAL are as follows:

| � If a message is available when MQGET is issued, it is returned immediately to
| the requesting application.

| � If no message is available when MQGET is issued, a CompCode of
| MQCC_WARNING and a Reason of MQRC_SIGNAL_REQUEST_ACCEPTED
| are returned. When a message becomes available, an Inter-Process
| Communication (IPC) message is sent to the $RECEIVE queue of the process
| that made the MQGET call.

| The format of this IPC message is:

| MsgCode (INT)
| Identifies the message as a notification. The value is TRIGGER_RESPONSE.

| ApplTag (LONG)
| Is the application tag provided in the Signal1 field of MQGMO.

| The Signal1 field of MQGMO is significant only when the signal mode of
| message-arrival notification has been requested. It can be used by an
| application to associate the IPC notification message with a particular MQGET
| request.

| Status (LONG)
| Is the reason Code from MQGET. It can have the following values:

| MQRC_NONE
| A message satisfying the criteria specified in the MQGET call is available on
| the queue.

| MQRC_NO_MSG_AVAILABLE
| The time specified in the WaitInterval field has expired.

| MQRC_CONNECTION_BROKEN
| The queue manager has been stopped.

 Copyright IBM Corp. 1994,1998 521

 Signal notification – Tandem NSK

| MQRC_GET_INHIBITED
| An operator has inhibited the GET operation for the queue.

| MQRC_Q_DELETED
| The queue has been deleted.

| MQRC_Q_MGR_QUIESCING
| The queue manager is quiescing, and the MQGET call was issued with the
| MQGMO_FAIL_IF_QUIESCING option.

| MQRC_Q_MGR_STOPPING
| The queue manager is shutting down.

| Only one signal-notification-mode MQGET call can be outstanding for any queue.
| If an MQGET with signal notification is specified when there is already a
| signal-notification MQGET call outstanding for the same queue, a CompCode of
| MQCC_FAILED and a Reason of MQRC_SIGNAL_OUSTANDING are returned.

| If the signal notification indicates that a message is available (Status is
| MQRC_NONE), the message is not locked by the Queue Manager; therefore, it is
| also available to any other application that shares the queue. It is possible,
| therefore, that the message will not be available by the time the application issues
| an MQGET call to retrieve or browse the message. The signal notification IPC
| message is not part of any unit of work (that is, a Tandem TMF transaction),
| started by either the application or MQSeries.

| If the application calls MQCLOSE for a queue with outstanding signal-notification
| MQGET operations initiated by that application, the outstanding signal notifications
| are cancelled. If an application calls MQDISC, all outstanding signal notifications
| initiated by the application are cancelled.

522 MQSeries Application Programming Reference

 Code page conversion tables

Appendix F. Code page conversion tables

Each of the tables shows the conversion support for the characters used by one
language.

Some of the coded character set identifiers (CCSIDs) are used by many languages,
for example CCSID 819 (ISO8859-1 Western European), and appear in many
tables. Other CCSIDs, for example CCSID 273 (German EBCDIC), appear in only
one table.

The following terms are used in the tables:

ISO Indicates that the CCSID is for an ISO 8859 codeset

pc-A Indicates in the AIX and GIS rows that the CCSID is an IBM
defined CCSID used in AIX, AT&T, and OS/2.

-8 Indicates in the HP-UX rows that the CCSID is for the HP-UX
defined codeset roman8

GIS Indicates MQSeries for AT&T GIS UNIX

NT Indicates MQSeries for Windows NT

Solaris Indicates MQSeries for Sun Solaris

SunOS Indicates MQSeries for SunOS

SINIX, DC/OSx Indicates MQSeries for SINIX and DC/OSx

DEC-OVMS Indicates MQSeries for Digital OpenVMS

Tandem Indicates MQSeries for Tandem NonStop Kernel V2.2

The following codes are used in the tables:

Y Conversion at target supported going to and from source
y No conversion is required because the different MQSeries products are

operating in the same CCSID

The default for data conversion is for the conversion to be performed at the target
(receiving) system.

Where a cell in a table is blank, conversion is not supported by the target product.

If the source product supports the conversion a channel can be set up and data
exchanged by setting the channel attribute DataConversion to YES at the source.
To determine if the source product supports the conversion, read the relevant table
with source and target reversed. If conversion is shown as supported, it is possible
to do conversion in the source product.

Notes:

1. If you have MQSeries for MVS/ESA V1.1.3 and have installed APAR PN73611,
you can change the default CCSID. If you have an earlier release, or have not
applied this APAR, CCSID 500 is always used; this means that you can only
use the multilingual code page (Table 78 on page 534).

2. Conversion for MQSeries client information takes place in the server, so the
server must support conversion from the client CCSID to the server CCSID.

 Copyright IBM Corp. 1994,1998 523

 Code page conversion tables

3. The OS/2 and Solaris rows include information from some country specific
versions. Not all of the conversions shown in the OS/2 and Solaris rows are
supported by all OS/2 and Solaris versions.

For an extended list of CCSIDs, see the Character Data Representation Reference.
See Table 69 for a cross reference between some of the CCSID numbers and
some industry codeset names.

MQSeries for MVS/ESA V1.1.4 or later provides conversions between single byte
CCSIDs in addition to those listed in the language tables. A complete list of
conversions provided is shown in Table 100 on page 561.

MQSeries for OS2 Warp V5 provides conversions between CCSIDs in addition to
those listed in the language tables. A complete list of conversions provided is
shown in “OS/2 conversion support” on page 567.

| Where OS/400 operating system levels are indicated these should be at the
| following PTF levels or later:

| V3R2 SF43993
| V3R6 SF43804
| V3R7 SF38997
| V4R1 SF44021
| V4R2 SF43902

Table 69. Codeset names and
CCSIDs

Codeset
names

CCSIDs

ISO 8859-1 819

ISO 8859-2 912

ISO 8859-5 915

ISO 8859-6 1089

ISO 8859-7 813

ISO 8859-8 916

ISO 8859-9 920

| big5| 950

eucJP 954 5050 33722

eucKR 970

eucTW 964

eucCN 1383

Code page conversion tables
The following tables show the conversion support, between the source and target
systems, for each of the national languages.

524 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

A
IX

,
G

IS
,

N
T

85
0

Y
† Y Y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

O
S

/2
,

G
IS

,
N

T

43
7

Y
† Y y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

37 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

37 37 43
7

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

0.
 C

on
ve

rs
io

n
su

pp
or

t:
U

S
E

N
G

LI
S

H

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 525

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

27
3 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

27
3

27
3

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

1.
 C

on
ve

rs
io

n
su

pp
or

t:
G

E
R

M
A

N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

526 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
††

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y

O
S

/2
,

G
IS

,
N

T

86
5

Y
† Y Y y Y Y Y y Y y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y Y y Y Y Y Y y Y y Y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

††

Y
†† Y y y Y y Y Y Y Y y y y y y

M
V

S
,

O
S

/4
00

27
7 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

27
7

27
7

85
0

86
5

85
0

81
9

81
9

10
51

81
9

85
0

86
5

85
0

86
5

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

2.
 C

on
ve

rs
io

n
su

pp
or

t:
D

A
N

IS
H

an
d

N
O

R
W

E
G

IA
N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 527

 Code page conversion tables

A
pp

le
cl

ie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
††

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y

O
S

/2
,

N
T

86
5

Y
† Y Y Y Y Y Y Y Y Y y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y Y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

††

Y
†† Y y y Y y Y Y Y Y Y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

27
8 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

27
8

27
8

85
0

86
5

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

86
5

81
9

81
9

81
9

81
9

T
ab

le
 7

3
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

F
IN

N
IS

H
an

d
S

W
E

D
IS

H

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

528 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
cl

ie
nt

W
in

do
w

s
cl

ie
nt

H
P

-U
X

Y

O
S

/2
,

N
T

Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

y

G
IS

,
N

T

Y

M
V

S
,

O
S

/4
00

Y

S
ou

rc
e
─5

81
9

T
ab

le
 7

3
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

F
IN

N
IS

H
an

d
S

W
E

D
IS

H

T
ar

ge
t

│ á T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 529

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

28
0 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

28
0

28
0

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

4.
 C

on
ve

rs
io

n
su

pp
or

t:
IT

A
LI

A
N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

530 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

28
4 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

28
4

28
4

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

5.
 C

on
ve

rs
io

n
su

pp
or

t:
S

P
A

N
IS

H

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 531

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

28
5 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

28
5

28
5

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

6.
 C

on
ve

rs
io

n
su

pp
or

t:
U

K
E

N
G

LI
S

H
/

G
A

E
LI

C

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

532 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

29
7 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

29
7

29
7

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

7.
 C

on
ve

rs
io

n
su

pp
or

t:
F

R
E

N
C

H

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 533

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y y y Y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

†† Y y y Y y Y Y Y Y y y y y y

M
V

S
,

O
S

/4
00

50
0 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

G
IS

,
N

T

43
7

Y
† Y Y Y Y
* Y Y Y y Y y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

50
0

50
0

85
0

85
0

81
9

81
9

10
51

81
9

43
7

85
0

43
7

85
0

81
9

81
9

81
9

81
9

81
9

T
ab

le
 7

8.
 C

on
ve

rs
io

n
su

pp
or

t:
M

U
LT

IL
IN

G
U

A
L

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

534 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
cl

ie
nt

12
75

Y
†

|
Y

§

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

|
Y

§

Y
††

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y

O
S

/2
,

G
IS

,
N

T

86
0

Y
† Y Y Y y

Y
††

Y
†† Y Y Y y Y y Y Y Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

85
0

Y
† Y Y y Y y Y Y Y Y y Y y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y Y

††

Y
†† Y y y Y y Y Y Y Y y y y y

M
V

S
,

O
S

/4
00

50
0 y Y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

O
S

/4
00

37 Y
† y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

50
0

37 50
0

85
0

86
0

85
0

81
9

81
9

10
51

81
9

85
0

86
0

85
0

86
0

81
9

81
9

81
9

81
9

T
ab

le
 7

9
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

P
O

R
T

U
G

U
E

S
E

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

 Appendix F. Code page conversion tables 535

 Code page conversion tables

A
pp

le
cl

ie
nt

W
in

do
w

s
cl

ie
nt

H
P

-U
X

Y

O
S

/2
,

G
IS

,
N

T Y

O
S

/2
,

A
IX

,
G

IS
,

N
T

Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

y

M
V

S
,

O
S

/4
00

Y

O
S

/4
00

Y

S
ou

rc
e
─5

81
9

T
ab

le
 7

9
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

P
O

R
T

U
G

U
E

S
E

T
ar

ge
t

│ á T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

536 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
75

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
52

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

H
P

-U
X

10
51

Y
†

|
Y

§

Y
††

Y
†† Y
*

Y
* Y y Y Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

87
1 y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

O
S

/2
,

A
IX

,
N

T

86
1

Y
† Y Y y

Y
††

Y
†† Y Y Y Y y Y Y Y Y

O
S

/2
,

G
IS

,
N

T

85
0

Y
† Y y Y y Y Y Y Y y y Y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

S
un

O
S

,
D

E
C

-O
V

M
S

,
T

an
de

m

81
9

Y
† Y Y

††

Y
†† Y y y Y y Y Y Y y y y y y

S
ou

rc
e
─5

C
C

S
ID

87
1

87
1

85
0

86
1

85
0

81
9

81
9

10
51

81
9

85
0

85
0

86
1

81
9

81
9

81
9

81
9

81
9

T
ab

le
 8

0.
 C

on
ve

rs
io

n
su

pp
or

t:
IC

E
LA

N
D

IC

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

H
P

-U
X

 (
-8

)

G
IS

 (
IS

O
)

G
IS

 (
pc

-A
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

 v
er

si
on

 2
.2

.1
 o

r
la

te
r.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 537

 Code page conversion tables

A
pp

le
 c

lie
nt

R
om

an
ia

n

12
85

Y
††

Y
††

A
pp

le
 c

lie
nt

C
ro

at
ia

n

12
84

Y
††

Y
††

A
pp

le
 c

lie
nt

E
as

te
rn

E
ur

op
ea

n

12
82

Y
†

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
50

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

D
E

C
-O

V
M

S
,

T
an

de
m

91
2

Y
† Y Y

†† y y y Y y y y y

M
V

S
,

O
S

/4
00

87
0 y y Y Y
* Y Y Y Y Y Y Y

O
S

/2
,

N
T

85
2

Y
† Y y Y
* Y Y y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

87
0

87
0

85
2

91
2

91
2

91
2

85
2

91
2

91
2

91
2

91
2

T
ab

le
 8

1.
 C

on
ve

rs
io

n
su

pp
or

t:
E

A
S

T
E

R
N

E
U

R
O

P
E

A
N

La
ng

ua
ge

s

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:
 T

he
 t

yp
ic

al
 la

ng
ua

ge
s

w
hi

ch
 u

se
 t

he
se

 C
C

S
ID

S
 in

cl
ud

e
A

lb
an

ia
n,

 C
ro

at
ia

n,
 C

ze
ch

,
H

un
ga

ria
n,

 P
ol

is
h,

 R
om

an
ia

n,
 S

er
bi

an
,

S
lo

va
ki

an
,

an
d

S
lo

ve
n.

N
ot

e:

*
O

nl
y

on
 A

IX
 V

4.
1

an
d

la
te

r.
†

S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
M

V
S

/E
S

A
 v

er
si

on
 1

.1
.4

 o
r

la
te

r.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

|
§

O
S

/4
00

 V
3R

2,
 V

3R
7,

 V
4R

1
or

 la
te

r.

538 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
cl

ie
nt

12
83

Y
†

|
Y

§

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
51

Y
† Y Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

O
S

/2
,

N
T

11
31

|
Y

§

Y
††

Y
†† y

Y
††

Y
†† y

Y
††

M
V

S
,

O
S

/4
00

10
25 y Y y Y Y Y
†† Y
+ Y Y Y Y Y

†† Y Y Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

D
E

C
-O

V
M

S
,

T
an

de
m

91
5

Y
† Y Y Y Y Y

†† y y y Y Y Y
†† y y y

O
S

/4
00

88
0

Y
† y Y Y

††

Y
††

Y
†† Y
+ Y Y Y Y Y Y Y

O
S

/2
,

N
T

86
6

Y
† Y Y y

Y
†† Y
*

Y
** Y Y y Y Y Y

O
S

/2
,

N
T

85
5

Y
† Y y Y Y

†† Y
+ Y Y y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

10
25

88
0

10
25

85
5

86
6

11
31

91
5

91
5

91
5

85
5

86
6

11
31

91
5

91
5

91
5

T
ab

le
 8

2
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

C
Y

R
IL

LI
C

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/4
00

O
S

/2

O
S

/2

O
S

/2

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

 (
IS

O
)

N
T

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

 Appendix F. Code page conversion tables 539

 Code page conversion tables

A
pp

le
cl

ie
nt

W
in

do
w

s
cl

ie
nt

O
S

/2
,

N
T

M
V

S
,

O
S

/4
00

Y

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

D
E

C
-O

V
M

S
,

T
an

de
m

y

O
S

/4
00

Y

O
S

/2
,

N
T

Y

O
S

/2
,

N
T

Y

S
ou

rc
e
─5

91
5

T
ab

le
 8

2
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

C
Y

R
IL

LI
C

T
ar

ge
t

│ á T
an

de
m

N
ot

e:
 T

he
 t

yp
ic

al
 la

ng
ua

ge
s

w
hi

ch
 u

se
 t

he
se

 C
C

S
ID

S
 in

cl
ud

e
B

ye
lo

ru
ss

ia
 (

B
el

ar
us

),
 B

ul
ga

ria
n,

 M
ac

ed
on

ia
n,

 R
us

si
an

,
an

d
S

er
bi

an
.

N
ot

e:

+
O

nl
y

on
 A

IX
 V

4.
1

an
d

la
te

r.
†

S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
M

V
S

/E
S

A
 v

er
si

on
 1

.1
.4

 o
r

la
te

r.
*

S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
 v

er
si

on
 2

.2
.1

 o
r

la
te

r.
**

S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
H

P
 v

er
si

on
 2

.2
.1

 o
r

la
te

r.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

|
§

O
S

/4
00

 V
3R

2,
 V

3R
7,

 V
4R

1
or

 la
te

r.

540 MQSeries Application Programming Reference

 Code page conversion tables

W
in

do
w

s
cl

ie
nt

12
57

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

M
V

S
,

O
S

/4
00

11
22 y y

Y
††

Y
††

Y
††

Y
††

Y
††

O
S

/2
,

A
IX

,
H

P
-U

X
,

N
T

,
S

ol
ar

is

92
2

Y
†

|
Y

§ y y y y y

S
ou

rc
e
─5

C
C

S
ID

11
22

11
22

92
2

92
2

92
2

92
2

92
2

T
ab

le
 8

3.
 C

on
ve

rs
io

n
su

pp
or

t:
E

S
T

O
N

IA
N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

A
IX

O
S

/2

H
P

-U
X

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

6,
 V

3R
7,

 V
4R

1
or

 la
te

r.

 Appendix F. Code page conversion tables 541

 Code page conversion tables

W
in

do
w

s
cl

ie
nt

12
57

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

M
V

S
,

O
S

/4
00

11
12 y y

Y
††

Y
††

Y
††

Y
††

Y
††

O
S

/2
,

A
IX

,
H

P
-U

X
,

N
T

,
S

ol
ar

is

92
1

Y
†

|
Y

§ y y y y y

S
ou

rc
e
─5

C
C

S
ID

11
12

11
12

92
1

92
1

92
1

92
1

92
1

T
ab

le
 8

4.
 C

on
ve

rs
io

n
su

pp
or

t:
LA

T
V

IA
N

an
d

LI
T

H
U

A
N

IA
N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

6,
 V

3R
7,

 V
4R

1
or

 la
te

r.

542 MQSeries Application Programming Reference

 Code page conversion tables

W
in

do
w

s
cl

ie
nt

12
51

Y
†

Y
††

Y
††

Y
††

Y
††

Y
††

O
S

/2
,

N
T

11
25

|
Y

§ y

Y
††

Y
††

Y
†† y

Y
††

A
IX

,
H

P
-U

X
,

N
T

,
S

ol
ar

is

11
24

Y
†

Y
†† y y y

Y
†† y

M
V

S
,

O
S

/4
00

11
23 y y

Y
††

Y
††

Y
††

Y
††

Y
††

S
ou

rc
e
─5

C
C

S
ID

11
23

11
23

11
25

11
24

11
24

11
24

11
25

11
24

T
ab

le
 8

5.
 C

on
ve

rs
io

n
su

pp
or

t:
U

K
R

A
IN

IA
N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

G
IS

 (
IS

O
)

N
T

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 543

 Code page conversion tables

A
pp

le
 c

lie
nt

12
80

Y
†

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
53

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

M
V

S
,

O
S

/4
00

87
5 y y Y Y Y Y Y Y Y Y Y Y

O
S

/2
,

N
T

86
9

Y
† Y Y y Y Y Y y Y Y Y Y

O
S

/2
,

A
IX

,
H

P
-U

X
,

G
IS

,
S

ol
ar

is
,

D
E

C
-O

V
M

S
,

T
an

de
m

81
3

Y
† Y y Y y y y Y y y y y

S
ou

rc
e
─5

C
C

S
ID

87
5

87
5

81
3

86
9

81
3

81
3#

81
3

86
9

81
3

81
3

81
3

81
3

T
ab

le
 8

6.
 C

on
ve

rs
io

n
su

pp
or

t:
G

R
E

E
K

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

#
O

nl
y

th
e

IS
O

 c
od

es
et

 o
n

H
P

-U
X

 is
 s

up
po

rt
ed

.
T

he
 H

P
-U

X
 p

ro
pr

ie
ta

ry
 g

re
ek

8
co

de
se

t
ha

s
no

 r
eg

is
te

re
d

C
C

S
ID

 a
nd

 is
 n

ot
 s

up
po

rt
ed

.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

544 MQSeries Application Programming Reference

 Code page conversion tables

A
pp

le
 c

lie
nt

12
81

Y
†

|
Y

§

Y
††

Y
††

Y
††

Y
††

Y
††

W
in

do
w

s
cl

ie
nt

12
54

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

M
V

S
,

O
S

/4
00

10
26 y y Y Y Y Y Y Y Y Y

A
IX

,
H

P
-U

X
,

S
ol

ar
is

,
D

E
C

-O
V

M
S

,
T

an
de

m

92
0

Y
† Y Y

†† y y Y y y y y

O
S

/2
,

N
T

85
7

Y
† Y y Y Y y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

10
26

10
26

85
7

92
0

92
0#

85
7

92
0

92
0

92
0

92
0

T
ab

le
 8

7.
 C

on
ve

rs
io

n
su

pp
or

t:
T

U
R

K
IS

H

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

#
O

nl
y

th
e

IS
O

 c
od

es
et

 o
n

H
P

-U
X

 is
 s

up
po

rt
ed

.
T

he
 H

P
-U

X
 p

ro
pr

ie
ta

ry
 t

ur
ki

sh
8

co
de

se
t

ha
s

no
 r

eg
is

te
re

d
C

C
S

ID
 a

nd
 is

 n
ot

 s
up

po
rt

ed
.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 545

 Code page conversion tables

W
in

do
w

s
cl

ie
nt

12
55

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

A
IX

,
H

P
-U

X
,

S
ol

ar
is

,
D

E
C

-O
V

M
S

,
T

an
de

m

91
6

Y
† Y Y

†† Y
+ y y Y y y y y

O
S

/2
,

N
T

86
2

Y
† Y y Y
+

Y
+ Y y Y Y Y Y

A
IX

85
6

Y
†

Y
#

Y
†† y Y
+ Y Y Y Y Y Y

M
V

S
,

O
S

/4
00

42
4 y y Y Y
+

Y
+ Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

42
4

42
4

86
2

85
6

91
6

91
6&

al
lt.

86
2

91
6

91
6

91
6

91
6

T
ab

le
 8

8.
 C

on
ve

rs
io

n
su

pp
or

t:
H

E
B

R
E

W

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

#
O

nl
y

to
/fr

om
 C

C
S

ID
 4

95
2

(a
 v

ar
ia

nt
 o

f
85

6)
.

+
O

nl
y

on
 A

IX
 V

4.
1

an
d

la
te

r.
§

O
nl

y
th

e
IS

O
 c

od
es

et
 o

n
H

P
-U

X
 is

 s
up

po
rt

ed
.

T
he

 H
P

-U
X

 p
ro

pr
ie

ta
ry

 h
eb

re
w

8
co

de
se

t
ha

s
no

 r
eg

is
te

re
d

C
C

S
ID

 a
nd

 is
 n

ot
 s

up
po

rt
ed

.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

546 MQSeries Application Programming Reference

 Code page conversion tables

W
in

do
w

s
cl

ie
nt

12
56

Y
† Y Y

††

Y
††

Y
††

Y
††

Y
††

Y
††

A
IX

,
H

P
-U

X
,

S
ol

ar
is

,
D

E
C

-O
V

M
S

,
T

an
de

m

10
89

Y
†

|
Y

§§

Y
†† Y
y y Y y y y y

A
IX

10
46

Y
† Y Y

†† y Y
Y Y Y Y Y Y

O
S

/2
,

N
T

86
4

Y
† Y y Y
#

Y
Y y Y Y Y Y

M
V

S
,

O
S

/4
00

42
0 y y Y Y
#

Y
Y Y Y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

42
0

42
0

86
4

10
46

10
89

10
89

§

86
4

10
89

10
89

10
89

10
89

T
ab

le
 8

9.
 C

on
ve

rs
io

n
su

pp
or

t:
A

R
A

B
IC

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
IS

O
)

G
IS

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

#
O

nl
y

on
 A

IX
 V

4.
1

an
d

la
te

r.
§

O
nl

y
th

e
IS

O
 c

od
es

et
 o

n
H

P
-U

X
 is

 s
up

po
rt

ed
.

T
he

 H
P

-U
X

 p
ro

pr
ie

ta
ry

 a
ra

bi
c8

 c
od

es
et

 h
as

 n
o

re
gi

st
er

ed
 C

C
S

ID
 a

nd
 is

 n
ot

 s
up

po
rt

ed
.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§§
 O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 547

 Code page conversion tables

O
S

/2

10
98

Y
† Y y y y y y

M
V

S
,

O
S

/4
00

10
97 y y

Y
††

Y
††

Y
††

Y
††

Y
††

S
ou

rc
e
─5

C
C

S
ID

10
97

10
97

10
98

10
98

*

10
98

*

10
98

*

10
98

*

T
ab

le
 9

0.
 C

on
ve

rs
io

n
su

pp
or

t:
F

A
R

S
I

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
T

he
 n

at
iv

e
C

C
S

ID
 f

or
 t

he
se

 p
la

tfo
rm

s
ha

s
no

t
be

en
 s

ta
nd

ar
di

ze
d

an
d

m
ay

 c
ha

ng
e.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.

548 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
H

P
-U

X
,

S
ol

ar
is

,

10
06

Y
†† y y

Y
†† y

M
V

S
,

O
S

/4
00

91
8 y y

Y
††

Y
††

Y
††

Y
††

Y
††

O
S

/2
,

N
T

86
8

Y
†

|
Y

§§ y

Y
††

Y
†† y

Y
††

S
ou

rc
e
─5

C
C

S
ID

91
8

91
8

86
8

10
06

10
06

86
8

10
06

T
ab

le
 9

1.
 C

on
ve

rs
io

n
su

pp
or

t:
U

R
D

U

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§
O

S
/4

00
 V

3R
2,

 V
3R

7,
 V

4R
1

or
 la

te
r.

 Appendix F. Code page conversion tables 549

 Code page conversion tables

O
S

/2

87
4

Y
† Y y y y y y

M
V

S
,

O
S

/4
00

83
8 y y

Y
††

Y
††

Y
††

Y
††

Y
††

S
ou

rc
e
─5

C
C

S
ID

83
8

83
8

87
4

87
4*

87
4*

87
4*

87
4*

T
ab

le
 9

2.
 C

on
ve

rs
io

n
su

pp
or

t:
T

H
A

I

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

H
P

-U
X

G
IS

 (
IS

O
)

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
T

he
 n

at
iv

e
C

C
S

ID
 f

or
 t

he
se

 p
la

tfo
rm

s
ha

s
no

t
be

en
 s

ta
nd

ar
di

ze
d

an
d

m
ay

 c
ha

ng
e.

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.

550 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
S

ol
ar

is

50
50

 3
37

22

Y
††

Y
†† Y y

Y
††

|
y

M
V

S
,

O
S

/4
00

10
27 y y

Y
††

Y
†† Y

O
S

/2

94
2

Y Y y

|
Y

††

|
Y

†† Y

|
Y

††

O
S

/2
,

A
IX

,
N

T

93
2 y Y y Y y

|
Y

††

S
ou

rc
e
─5

C
C

S
ID

10
27

10
27

93
2

94
2

93
2

50
50

33
72

2*

93
2

|
50

50

T
ab

le
 9

3.
 C

on
ve

rs
io

n
su

pp
or

t:
JA

P
A

N
E

S
E

LA
T

IN
S

B
C

S

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
eu

c)

H
P

-U
X

G
IS

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

*
50

50
 a

nd
 3

37
22

 a
re

 C
C

S
ID

s
re

la
te

d
to

 b
as

e
co

de
 p

ag
e

95
4

=
 e

uc
JP

 o
n

A
IX

.
O

n
A

IX
 V

3.
2.

5
M

Q
S

er
ie

s
co

de
s

th
is

 c
od

e
pa

ge
 a

s
C

C
S

ID
 5

05
0

fo
r

co
m

pa
tib

ili
ty

 w
ith

 O
S

/4
00

.
O

n
A

IX
 V

4.
1

th
e

C
C

S
ID

 r
ep

or
te

d
by

 t
he

 o
pe

ra
tin

g
sy

st
em

 is
 3

37
22

.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

 Appendix F. Code page conversion tables 551

 Code page conversion tables

A
IX

,
S

ol
ar

is

50
50

 3
37

22

Y
†† Y y

Y
††

|
y

A
IX

,
N

T

93
2

Y
†† y Y y

|
Y

††

O
S

/2
,

H
P

-U
X

89
7

Y Y y y Y

M
V

S
,

O
S

/4
00

29
0 y y Y Y Y

S
ou

rc
e
─5

C
C

S
ID

29
0

29
0

89
7

93
2

50
50

33
72

2*

89
7

93
2

|
50

50

T
ab

le
 9

4.
 C

on
ve

rs
io

n
su

pp
or

t:
JA

P
A

N
E

S
E

K
A

T
A

K
A

N
A

S
B

C
S

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
eu

c)

H
P

-U
X

 (
ka

na
8)

G
IS

N
T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:
 I

n
ad

di
tio

n
to

 t
he

 a
bo

ve
 c

on
ve

rs
io

ns
,

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r
su

pp
or

ts
 c

on
ve

rs
io

n
fr

om
C

C
S

ID
 8

97
 t

o
C

C
S

ID
s

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

43
7,

 5
00

 8
19

,
85

0,
 1

02
7

an
d

12
52

.

N
ot

e:

*
50

50
 a

nd
 3

37
22

 a
re

 C
C

S
ID

s
re

la
te

d
to

 b
as

e
co

de
 p

ag
e

95
4

=
 e

uc
JP

 o
n

A
IX

.
O

n
A

IX
 V

3.
2.

5
M

Q
S

er
ie

s
co

de
s

th
is

 c
od

e
pa

ge
 a

s
C

C
S

ID
 5

05
0

fo
r

co
m

pa
tib

ili
ty

 w
ith

 O
S

/4
00

.
O

n
A

IX
 V

4.
1

th
e

C
C

S
ID

 r
ep

or
te

d
by

 t
he

 o
pe

ra
tin

g
sy

st
em

 is
 3

37
22

.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

552 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
S

ol
ar

is

50
50

 3
37

22

Y Y
††

Y
†† Y y y Y

|
Y

††

|
Y

††

|
y Y y Y

M
V

S
,

O
S

/4
00

50
35 y y Y Y Y Y Y
**

Y
**

|
Y

|
Y

††

|
Y

†† Y Y Y

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m

95
4

Y
††

Y
†† Y y y Y

|
Y

††

|
Y

††

|
Y

†† Y y Y

N
T

94
3

|
Y

§§

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
y

|
Y

††

O
S

/2

94
2

Y
† Y Y y

|
Y

††

|
Y

††

|
Y

|
Y

††

|
Y

††

O
S

/2
,

A
IX

,
H

P
-U

X
,

D
E

C
-O

V
M

S
,

T
an

de
m

,
N

T

93
2

Y
† Y y Y y Y Y y

|
y

|
Y

††

|
Y

†† y Y y

S
ou

rc
e
─5

C
C

S
ID

50
35

#

50
35

#

93
2

94
2

93
2

50
50

33
72

2*

95
4

93
2

|
93

2#
#

|
94

3#
#

|
50

50

93
2

95
4

93
2

T
ab

le
 9

5
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

JA
P

A
N

E
S

E
K

A
N

JI
/

LA
T

IN
M

IX
E

D

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
IS

O
)

H
P

-U
X

 (
eu

c)

H
P

-U
X

 (
-1

5§
)

G
IS

|
N

T

|
N

T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

D
E

C
-O

V
M

S

T
an

de
m

 Appendix F. Code page conversion tables 553

 Code page conversion tables

A
IX

,
S

ol
ar

is

y

M
V

S
,

O
S

/4
00

Y

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m

y

N
T

O
S

/2
O

S
/2

,
A

IX
,

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m
,

N
T

Y

S
ou

rc
e
─5

95
4

T
ab

le
 9

5
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

JA
P

A
N

E
S

E
K

A
N

JI
/

LA
T

IN
M

IX
E

D

T
ar

ge
t

│ á T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

*
50

50
 a

nd
 3

37
22

 a
re

 C
C

S
ID

s
re

la
te

d
to

 b
as

e
co

de
 p

ag
e

95
4

=
 e

uc
JP

 o
n

A
IX

.
O

n
A

IX
 V

3.
2.

5
M

Q
S

er
ie

s
co

de
s

th
is

 c
od

e
pa

ge
 a

s
C

C
S

ID
 5

05
0

fo
r

co
m

pa
tib

ili
ty

 w
ith

 O
S

/4
00

.
O

n
A

IX
 V

4.
1

th
e

C
C

S
ID

 r
ep

or
te

d
by

 t
he

 o
pe

ra
tin

g
sy

st
em

 is
 3

37
22

.
#

50
35

 is
 a

 C
C

S
ID

 r
el

at
ed

 t
o

co
de

 p
ag

e
93

9.
§

D
ef

in
ed

 b
y

H
P

-U
X

 a
s

ja
pa

n1
5

an
d

S
JI

S
.

N
ot

e
th

at
 a

bo
ut

 7
4

D
B

C
S

 c
ha

ra
ct

er
s

ha
ve

 d
iff

er
en

t
re

pr
es

en
ta

tio
ns

 in
 ja

pa
n1

5
an

d
93

2
so

 m
ay

 n
ot

 b
e

co
nv

er
te

d
co

rr
ec

tly
 if

 t
he

 c
on

ve
rs

io
n

is
 p

er
fo

rm
ed

 o
n

a
no

n-
H

P
-U

X
 s

ys
te

m
.

**
S

up
po

rt
ed

 o
n

H
P

-U
X

 V
10

 o
r

la
te

r.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

|
§§

 O
S

/4
00

 V
3R

2,
 V

3R
6,

 V
3R

7,
 V

4R
1

or
 la

te
r.

|
##

 N
T

 u
se

s
th

e
co

de
 p

ag
e

nu
m

be
r

93
2,

 b
ut

 t
hi

s
is

 b
es

t
re

pr
es

en
te

d
by

 t
he

 C
C

S
ID

 o
f

94
3.

 H
ow

ev
er

 n
ot

 a
ll

pl
at

fo
rm

s
of

 M
Q

S
er

ie
s

su
pp

or
t

th
is

 C
C

S
ID

.

|
O

n
ve

rs
io

ns
 o

f
M

Q
S

er
ie

s
fo

r
N

T
 f

ro
m

 v
er

si
on

 5
,

C
C

S
ID

 9
32

 is
 u

se
d

to
 r

ep
re

se
nt

 c
od

e
pa

ge
 9

32
,

bu
t

a
ch

an
ge

 t
o

fil
e

..
/c
on
v/
ta
bl
e/
cc
si
d.
tb
l

ca
n

be
|

m
ad

e
w

hi
ch

 c
ha

ng
es

 t
he

 C
C

S
ID

 u
se

d
to

 9
43

.

554 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
S

ol
ar

is

50
50

 3
37

22

Y Y
††

Y
†† Y y y Y

|
Y

††

|
Y

††

|
y Y y

M
V

S
,

O
S

/4
00

50
26 y y Y Y Y Y Y
** Y

|
Y

|
Y

††

|
Y Y Y Y

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m

95
4

Y
††

Y
†† Y y y Y

|
Y

††

|
Y

††

|
y Y y Y

N
T

94
3

|
Y

§§

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
y

|
Y

†† Y

O
S

/2

94
2

Y
† Y Y y

|
Y

††

|
Y

††

|
Y

|
Y

††

|
Y

††

O
S

/2
,

A
IX

,
H

P
-U

X
,

D
E

C
-O

V
M

S
,

T
an

de
m

,
N

T

93
2

Y
† Y y Y y Y Y y

|
y

|
Y

††

|
Y y Y y

S
ou

rc
e
─5

C
C

S
ID

50
26

#

50
26

#

93
2

94
2

93
2

50
50

33
72

2*

95
4

93
2

|
93

2#
#

|
94

3#
#

|
50

50

93
2

95
4

93
2

T
ab

le
 9

6
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

JA
P

A
N

E
S

E
K

A
N

JI
/

K
A

T
A

K
A

N
A

M
IX

E
D

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

O
S

/2

A
IX

 (
pc

-A
)

A
IX

 (
eu

c)

H
P

-U
X

 (
eu

c)

H
P

-U
X

 (
-1

5§
)

G
IS

|
N

T

|
N

T

|
S

ol
ar

is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S
(s

jis
)

D
E

C
-O

V
M

S
(e

uc
)

T
an

de
m

 (
sj

is
)

 Appendix F. Code page conversion tables 555

 Code page conversion tables

A
IX

,
S

ol
ar

is

y

M
V

S
,

O
S

/4
00

Y

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m

y

N
T

O
S

/2
O

S
/2

,
A

IX
,

H
P

-U
X

,
D

E
C

-O
V

M
S

,
T

an
de

m
,

N
T

Y

S
ou

rc
e
─5

95
4

T
ab

le
 9

6
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

JA
P

A
N

E
S

E
K

A
N

JI
/

K
A

T
A

K
A

N
A

M
IX

E
D

T
ar

ge
t

│ á T
an

de
m

 (
eu

c)

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

*
50

50
 a

nd
 3

37
22

 a
re

 C
C

S
ID

s
re

la
te

d
to

 b
as

e
co

de
 p

ag
e

95
4

=
 e

uc
JP

 o
n

A
IX

.
O

n
A

IX
 V

3.
2.

5
M

Q
S

er
ie

s
co

de
s

th
is

 c
od

e
pa

ge
 a

s
C

C
S

ID
 5

05
0

fo
r

co
m

pa
tib

ili
ty

 w
ith

 O
S

/4
00

.
O

n
A

IX
 V

4.
1

th
e

C
C

S
ID

 r
ep

or
te

d
by

 t
he

 o
pe

ra
tin

g
sy

st
em

 is
 3

37
22

.
#

50
26

 is
 a

 C
C

S
ID

 r
el

at
ed

 t
o

co
de

 p
ag

e
93

0.
C

C
S

ID
 5

02
6

is
 t

he
 C

C
S

ID
 r

ep
or

te
d

to
 t

he
 u

se
r

on
 O

S
/4

00
 w

he
n

th
e

Ja
pa

ne
se

 K
at

ak
an

a
(D

B
C

S
)

fe
at

ur
e

is
se

le
ct

ed
.

§
D

ef
in

ed
 b

y
H

P
-U

X
 a

s
ja

pa
n1

5
an

d
S

JI
S

.
N

ot
e

th
at

 a
bo

ut
 7

4
D

B
C

S
 c

ha
ra

ct
er

s
ha

ve
 d

iff
er

en
t

re
pr

es
en

ta
tio

ns
 in

 ja
pa

n1
5

an
d

93
2

so
 m

ay
 n

ot
 b

e
co

nv
er

te
d

co
rr

ec
tly

 if
 t

he
 c

on
ve

rs
io

n
is

 p
er

fo
rm

ed
 o

n
a

no
n-

H
P

-U
X

 s
ys

te
m

.
**

S
up

po
rt

ed
 o

n
H

P
-U

X
 V

10
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.
|

§§
 O

S
/4

00
 V

3R
2,

 V
3R

6,
 V

3R
7,

 V
4R

1
or

 la
te

r.
|

##
 N

T
 u

se
s

th
e

co
de

 p
ag

e
nu

m
be

r
93

2,
 b

ut
 t

hi
s

is
 b

es
t

re
pr

es
en

te
d

by
 t

he
 C

C
S

ID
 o

f
94

3.
 H

ow
ev

er
 n

ot
 a

ll
pl

at
fo

rm
s

of
 M

Q
S

er
ie

s
su

pp
or

t
th

is
 C

C
S

ID
.

|
O

n
ve

rs
io

ns
 o

f
M

Q
S

er
ie

s
fo

r
N

T
 f

ro
m

 v
er

si
on

 5
,

C
C

S
ID

 9
32

 is
 u

se
d

to
 r

ep
re

se
nt

 c
od

e
pa

ge
 9

32
,

bu
t

a
ch

an
ge

 t
o

fil
e

..
/c
on
v/
ta
bl
e/
cc
si
d.
tb
l

ca
n

be
|

m
ad

e
w

hi
ch

 c
ha

ng
es

 t
he

 C
C

S
ID

 u
se

d
to

 9
43

.

556 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
H

P
-U

X
,

D
E

C
-O

V
M

S
,

T
an

de
m

,
S

ol
ar

is

97
0

Y Y
†† y y

Y
††

|
y y y

O
S

/2
,

N
T

94
9

Y
† Y y

Y
†† y y

|
Y

†† Y Y

M
V

S
,

O
S

/4
00

93
3 y y Y Y Y Y Y

|
Y

†† Y Y

S
ou

rc
e
─5

C
C

S
ID

93
3

93
3

94
9

97
0

94
9§

97
0§

94
9

|
97

0

97
0

97
0

T
ab

le
 9

7.
 C

on
ve

rs
io

n
su

pp
or

t:
K

O
R

E
A

N

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2

A
IX

 (
eu

c)

H
P

-U
X

 (
-1

5)

H
P

-U
X

 (
eu

c)

G
IS

N
T

|
S

ol
ar

is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

§
O

n
H

P
-U

X
9

94
9

is
 u

se
d,

 b
ut

 o
n

H
P

-U
X

10
 9

70
 is

 u
se

d.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

 Appendix F. Code page conversion tables 557

 Code page conversion tables

|
M

V
S

|
13

88

|
Y

§§

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
Y

††

|
N

T

|
13

86

|
Y

§§

|
Y

††

|
Y

††

|
Y

††

|
y

|
Y

††

A
IX

,
D

E
C

-O
V

M
S

,
T

an
de

m
 S

ol
ar

is

13
83

Y
+

Y
†† y

Y
††

|
Y

††

|
y y y

O
S

/2
,

H
P

-U
X

,
N

T

13
81

Y
† Y y Y
* y y

|
Y

††

|
Y

†† Y Y

M
V

S
,

O
S

/4
00

93
5 y y Y Y
*

Y
** Y

|
Y

|
Y

†† Y Y

S
ou

rc
e
─5

C
C

S
ID

93
5

|
13

88

93
5

13
81

13
83

*

13
81

§

13
81

##

|
13

86
##

|
13

83

13
83

13
83

T
ab

le
 9

8.
 C

on
ve

rs
io

n
su

pp
or

t:
S

IM
P

LI
F

IE
D

C
H

IN
E

S
E

T
ar

ge
t

│ á M
V

S

|
M

V
S

O
S

/4
00

O
S

/2

A
IX

 (
eu

c)

H
P

-U
X

 (
-1

5)

G
IS

N
T

|
N

T

S
ol

ar
is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S

T
an

de
m

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

+
S

up
po

rt
ed

 o
n

O
S

/4
00

 V
3R

7
or

 la
te

r.
*

S
up

po
rt

ed
 o

n
co

un
tr

y
A

IX
 v

er
si

on
 o

nl
y.

§
Is

 c
al

le
d

pr
c1

5
an

d
hp

15
C

N
 o

n
H

P
-U

X
.

**
S

up
po

rt
ed

 o
n

H
P

-U
X

 V
10

 o
r

la
te

r.
|

§§
 O

S
/4

00
 V

3R
2,

 V
3R

6,
 V

3R
7,

 V
4R

1
or

 la
te

r.
|

##
 N

T
 u

se
s

th
e

co
de

 p
ag

e
nu

m
be

r
93

6,
 b

ut
 t

hi
s

is
 b

es
t

re
pr

es
en

te
d

by
 t

he
 C

C
S

ID
 o

f
13

86
.

H
ow

ev
er

 n
ot

 a
ll

pl
at

fo
rm

s
of

 M
Q

S
er

ie
s

su
pp

or
t

th
is

 C
C

S
ID

.

|
O

n
ve

rs
io

ns
 o

f
M

Q
S

er
ie

s
fo

r
N

T
 p

rio
r

to
 v

er
si

on
 5

,
C

C
S

ID
 1

38
1

is
 u

se
d

to
 r

ep
re

se
nt

 c
od

e
pa

ge
 9

36
.

|
O

n
ve

rs
io

ns
 o

f
M

Q
S

er
ie

s
fo

r
N

T
 f

ro
m

 v
er

si
on

 5
,

C
C

S
ID

 1
38

1
is

 u
se

d
to

 r
ep

re
se

nt
 c

od
e

pa
ge

 9
36

,
bu

t
a

ch
an

ge
 t

o
fil

e
..
/c
on
v/
ta
bl
e/
cc
si
d.
tb
l

ca
n

be
|

m
ad

e
w

hi
ch

 c
ha

ng
es

 t
he

 C
C

S
ID

 u
se

d
to

 1
38

6.
††

 S
up

po
rt

ed
 o

n
M

Q
S

er
ie

s
fo

r
A

IX
,

O
S

2
W

ar
p,

 H
P

-U
X

,
S

un
 S

ol
ar

is
,

or
 W

in
do

w
s

N
T

 V
er

si
on

 5
 o

r
la

te
r.

558 MQSeries Application Programming Reference

 Code page conversion tables

A
IX

,
H

P
-U

X
,

D
E

C
-O

V
M

S
,

T
an

de
m

,
S

ol
ar

is

96
4

Y Y
††

Y
††

Y
†† y Y Y
**

Y
** y

Y
††

|
y y Y y

O
S

/2
,

A
IX

,
H

P
-U

X
,

N
T

,
D

E
C

-O
V

M
S

,
T

an
de

m

95
0

Y
† Y Y

††

Y
†† y Y y Y y Y
** y

|
Y

†† Y y Y

O
S

/2

94
8

Y
† Y Y

†† y

Y
††

|
Y

††

|
Y

†† Y

|
Y

†† Y Y Y

O
S

/2
,

H
P

-U
X

93
8

Y
† Y y

Y
††

Y
†† Y Y y Y Y
** Y Y Y Y

M
V

S
,

O
S

/4
00

93
7 y y Y Y Y Y Y Y Y

**

Y
** Y

|
Y

†† Y Y Y

S
ou

rc
e
─5

C
C

S
ID

93
7

93
7

93
8

94
8

95
0

96
4

95
0

93
8

95
0

96
4

95
0

|
96

4

96
4

95
0

96
4

T
ab

le
 9

9
(P

ag
e

1
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

T
R

A
D

IT
IO

N
A

L
C

H
IN

E
S

E

T
ar

ge
t

│ á M
V

S

O
S

/4
00

O
S

/2
 (

P
S

/5
5)

O
S

/2
 (

P
S

/5
5)

O
S

/2
 (

bi
g5

)

A
IX

 (
eu

c)

A
IX

 (
bi

g5
)

H
P

-U
X

 (
-1

5§
)

H
P

-U
X

 (
bi

g5
)

H
P

-U
X

(e
uc

T
W

)

G
IS

N
T

|
S

ol
ar

is

S
un

O
S

S
IN

IX
,

D
C

/O
S

x

D
E

C
-O

V
M

S
(e

uc
)

D
E

C
-O

V
M

S
(b

ig
5)

T
an

de
m

 (
eu

c)

 Appendix F. Code page conversion tables 559

 Code page conversion tables

A
IX

,
H

P
-U

X
,

D
E

C
-O

V
M

S
,

T
an

de
m

,
S

ol
ar

is

Y

O
S

/2
,

A
IX

,
H

P
-U

X
,

N
T

,
D

E
C

-O
V

M
S

,
T

an
de

m

y

O
S

/2

Y

O
S

/2
,

H
P

-U
X

Y

M
V

S
,

O
S

/4
00

Y

S
ou

rc
e
─5

95
0

T
ab

le
 9

9
(P

ag
e

2
of

 2
).

 C
on

ve
rs

io
n

su
pp

or
t:

T
R

A
D

IT
IO

N
A

L
C

H
IN

E
S

E

T
ar

ge
t

│ á T
an

de
m

 (
bi

g5
)

N
ot

e:

†
S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

M
V

S
/E

S
A

 v
er

si
on

 1
.1

.4
 o

r
la

te
r.

§
Is

 c
al

le
d

ro
c1

5
an

d
eu

cT
W

 o
n

H
P

-U
X

.
**

S
up

po
rt

ed
 o

n
H

P
-U

X
 V

10
 o

r
la

te
r.

††
 S

up
po

rt
ed

 o
n

M
Q

S
er

ie
s

fo
r

A
IX

,
O

S
2

W
ar

p,
 H

P
-U

X
,

S
un

 S
ol

ar
is

,
or

 W
in

do
w

s
N

T
 V

er
si

on
 5

 o
r

la
te

r.

560 MQSeries Application Programming Reference

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

25
6,

 2
73

,
27

5,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
36

7,
 4

20
,

42
3,

 4
24

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
-9

05
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
09

7,
 1

10
0,

 1
11

4,
 1

25
2,

 1
27

5

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
20

,
42

3,
 4

24
,

43
7,

 5
00

,
81

9,
 8

33
,

83
6,

 8
38

,
85

0,
 8

52
,

85
7,

 8
60

-8
66

,
86

9-
87

1,
 8

75
,

88
0,

 9
05

,
10

25
-1

02
7,

 1
25

1,
 1

25
2,

 1
27

5

43
7,

 8
50

-8
52

,
85

5-
85

7,
 8

60
-8

65
,

86
9,

 8
74

,
89

9,
 9

15
,

10
98

,
12

51

37
,

25
6,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
-8

57
,

86
0-

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

89
7,

 9
03

,
91

2,
 9

16
,

92
0,

 1
00

9,
 1

02
5-

10
27

,
10

40
-1

04
3,

 1
04

7,
 1

05
1,

 1
08

8,
 1

10
0,

 1
25

2,
 1

27
5

50
0,

 1
04

7

37
,

50
0,

 1
04

7

37
,

25
6,

 2
73

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
10

0,
 1

25
2,

 1
27

5

37
,

25
6,

 2
73

,
27

7,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
10

0,
 1

25
2,

 1
27

5

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
10

0,
 1

25
2,

 1
27

5

10
47

50
0,

 1
04

7

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
10

0,
 1

25
2,

 1
27

5

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
29

0,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0,

 8
52

,
85

5,
 8

57
,

86
0-

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

 8
97

,
90

3,
 9

12
,

91
6,

 9
20

,
10

25
-1

02
7,

 1
04

0-
10

43
,

10
47

,
10

51
,

10
88

,
11

00
,

12
52

,
12

75

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

36
7,

 4
37

,
50

0,
 8

19
,

83
3,

 8
36

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

5,
 8

70
,

87
1,

 8
95

-8
97

,
10

09
,

10
25

-1
02

7,
10

40
-1

04
3,

 1
08

8

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
65

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
10

0,
 1

25
2,

 1
27

5

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
29

0,
 2

97
,

50
0,

 8
33

,
83

6,
 8

71
,

87
5,

 1
00

9,
 1

02
6,

 1
02

7,
 1

04
1,

 1
08

8,
 1

11
5

37
,

25
6,

 4
24

,
43

7,
 5

00
,

81
9,

 8
50

,
85

2,
 8

57
,

86
0-

86
5,

 1
00

8,
 1

04
6,

 1
08

9,
 1

09
8,

 1
25

6

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

43
7,

 5
00

,
81

3,
 8

19
,

83
8,

 8
50

-8
52

,
85

7,
 8

60
-8

65
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
7,

 9
03

,
91

2,
 9

16
,

92
0,

10
09

,
10

25
-1

02
7,

 1
04

1-
10

43
,

12
53

,
12

80

37
,

25
6,

 4
20

,
43

7,
 5

00
,

80
3,

 8
19

,
83

6,
 8

50
,

85
2,

 8
56

,
85

7,
 8

60
-8

65
,

91
6,

 1
25

5

T
ab

le
 1

00
 (

P
ag

e
1

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

37 25
6

25
9

27
3

27
4

27
5

27
7

27
8

28
0

28
1

28
2

28
4

28
5

29
0

29
7

36
7

42
0

42
3

42
4

 Appendix F. Code page conversion tables 561

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 5
00

,
81

3,
 8

19
,

83
3,

 8
36

,
83

8,
 8

50
,

85
2,

 8
55

,
85

7,
 8

60
-8

63
,

86
5,

 8
66

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

90
5,

 9
12

,
91

5,
 9

16
,

92
0,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

05
1,

 1
09

7,
 1

09
8,

 1
25

2,
 1

27
5,

 4
94

6,
 2

87
09

37
,

25
6,

 2
73

-2
75

,
27

7,
 2

78
,

28
0,

 2
82

,
28

4,
 2

85
,

29
0,

 2
97

,
36

7,
 4

20
,

42
3,

 4
24

,
43

7,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0-

85
2,

 8
55

-8
57

,
86

0-
86

6,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

1,
 8

95
,

89
7,

 9
03

-9
05

,
91

2,
 9

15
,

91
6,

 9
20

,
10

04
,

10
09

-1
02

1,
 1

02
3,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
6,

 1
04

7,
 1

05
1,

 1
08

8,
10

89
,

10
97

,
11

00
-1

10
7,

 1
11

4,
 1

11
5,

 1
25

0-
12

56
,

12
75

42
4,

 8
56

,
86

2,
 9

16

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

23
,

43
7,

 5
00

,
81

9,
 8

38
,

85
0,

 8
52

,
85

7,
 8

60
,

86
1,

 8
63

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
16

,
92

0,
 1

02
5-

10
27

,
10

41
-1

04
3,

 1
25

3,
 1

28
0

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 4
20

,
42

3,
 4

24
,

43
7,

 5
00

,
81

3,
 8

33
,

83
6,

 8
38

,
85

0,
 8

52
,

85
7,

 8
60

,
86

1,
 8

63
,

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

 8
97

,
90

3,
 9

12
,

91
6,

 9
20

,
10

25
-1

02
7,

 1
04

1-
10

43
,

10
47

,
10

51
,

10
97

,
10

98
,

11
14

,
12

52
,

12
75

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 3
67

,
43

7,
 5

00
,

81
9,

 8
36

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

5,
 8

70
,

87
1,

 8
91

,
10

09
,

10
25

-1
02

7,
10

40
-1

04
3,

 1
08

8

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 3
67

,
42

4,
 4

37
,

50
0,

 8
19

,
83

3,
 8

50
,

85
2,

 8
55

,
85

7,
 8

70
,

87
1,

 8
75

,
90

3,
 1

00
9,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

08
8,

 1
11

5

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
50

,
85

2,
 8

57
,

86
0-

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

 8
97

,
90

3,
 9

12
,

91
6,

 9
20

,
10

25
-1

02
7,

 1
04

1-
10

43

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
2,

 8
55

-8
57

,
86

0-
86

6,
 8

69
-8

71
,

87
4,

87
5,

 8
80

,
89

7,
 9

03
,

90
5,

 9
12

,
91

5,
 9

16
,

92
0,

 1
02

5-
10

27
,

10
40

-1
04

3,
 1

04
7,

 1
05

1,
 1

08
8,

 1
09

7,
 1

09
8,

 1
10

0,
 1

11
4,

 1
25

2,
 1

27
5,

 4
95

3

25
9,

 4
23

,
50

0,
 8

75

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0,

 8
55

,
85

7,
 8

60
,

86
1,

 8
63

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

90
5,

 9
12

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
0-

10
43

,
10

88
,

10
97

,
12

50
,

12
82

,
28

70
9

37
,

25
9,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 4
37

,
50

0,
 8

33
,

83
6,

 8
50

,
85

2,
 8

57
,

86
6,

 8
70

,
87

1,
 8

80
,

91
2,

 9
15

,
10

25
-1

02
7,

 1
04

0-
10

43
,

10
88

,
12

51
,

12
83

25
9,

 2
73

,
42

4,
 5

00
,

80
3,

 8
50

,
86

2,
 9

16
,

12
55

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0,

 8
52

,
85

5,
 8

60
,

86
1,

 8
63

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

90
5,

 9
12

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
0-

10
43

,
10

88
,

10
97

,
12

54
,

12
81

,
28

70
9

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

8,
 8

50
,

85
2,

 8
57

,
86

1,
 8

63
,

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

 8
97

,
90

3,
 9

05
,

91
2,

 9
16

,
92

0,
 1

02
5-

10
27

,
10

41
-1

04
3,

 1
09

7,
 2

87
09

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

8,
 8

50
,

85
2,

 8
57

,
86

0,
 8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
7,

 9
03

,
90

5,
 9

12
,

91
6,

 9
20

,
10

25
-1

02
7,

 1
04

1-
10

43
,

10
97

,
28

70
9

T
ab

le
 1

00
 (

P
ag

e
2

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

43
7

50
0

80
3

81
3

81
9

83
3

83
6

83
8

85
0

85
1

85
2

85
5

85
6

85
7

86
0

86
1

562 MQSeries Application Programming Reference

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

03
,

83
3,

 8
38

,
85

0,
 8

56
,

87
0,

 8
71

,
87

5,
 8

80
,

90
5,

 9
16

,
10

25
-1

02
7,

 1
09

7,
 1

25
5,

 2
87

09

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

8,
 8

50
,

85
2,

 8
57

,
86

0,
 8

61
,

86
5,

 8
69

-8
71

,
87

4,
 8

75
,

88
0,

 8
97

,
90

3,
 9

05
,

91
2,

 9
16

,
92

0,
 1

02
5-

10
27

,
10

41
-1

04
3,

 1
05

1,
 1

09
7,

 1
25

2,
 1

27
5,

 2
87

09

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 5
00

,
83

3,
 8

38
,

85
0,

 8
70

,
87

1,
 8

75
,

88
0,

 9
05

,
91

8,
 1

00
8,

 1
02

5-
10

27
,

10
46

,
10

89
,

10
97

,
12

56
,

28
70

9

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
0,

 2
97

,
42

0,
 4

23
,

42
4,

 4
37

,
50

0,
 8

19
,

83
3,

 8
38

,
85

0,
 8

60
,

86
3,

 8
70

,
87

1,
 8

75
,

88
0,

 9
05

,
10

25
-1

02
7,

 1
09

7,
 2

87
09

25
6,

 4
37

,
50

0,
 8

50
,

85
5,

 8
70

,
88

0,
 9

15
,

10
25

,
12

51
,

12
83

91
8

37
,

25
6,

 2
59

,
27

3,
 2

77
,

27
8,

 2
80

,
28

4,
 2

85
,

29
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

8,
 8

50
,

85
2,

 8
57

,
86

0,
 8

61
,

86
3,

 8
70

,
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
90

3,
 9

12
,

91
6,

 9
20

,
10

25
-1

02
7,

 1
04

1-
10

43
,

12
53

,
12

54
,

12
80

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
66

,
86

9,
 8

71
,

87
4,

 8
75

,
88

0,
 8

97
,

90
3,

 9
12

,
91

5,
 9

16
,

92
0,

 1
00

9,
 1

02
5-

10
27

,
10

40
-1

04
3,

 1
08

8,
 1

25
0,

 1
28

2

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 3
67

,
42

3,
 4

37
,

50
0,

 8
13

,
81

9,
 8

33
,

83
6,

 8
38

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

5,
 8

69
,

87
0,

 8
74

,
87

5,
 8

80
,

89
7,

 9
03

,
91

2,
 9

16
,

92
0,

 1
00

9,
 1

02
5-

10
27

,
10

40
-1

04
3,

 1
04

7,
 1

05
1,

 1
08

8,
 1

25
2,

 1
27

5

37
,

25
9,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
38

,
85

0,
 8

52
,

85
7,

 8
60

,
86

1,
 8

63
,

86
9-

87
1,

 8
75

,
88

0,
 8

97
,

90
3,

 9
12

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
1-

10
43

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

6,
 8

38
,

85
0-

85
2,

 8
57

,
86

0-
86

5,
 8

69
-8

71
,

87
4,

 8
80

,
89

7,
 9

03
,

91
2,

91
6,

 9
20

,
10

09
,

10
25

-1
02

7,
 1

04
1-

10
43

,
10

47
,

10
88

,
12

53
,

12
80

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
38

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

6,
 8

69
-8

71
,

87
4,

 8
75

,
89

7,
 9

03
,

91
2,

 9
15

,
91

6,
 9

20
,

10
09

,
10

25
-1

02
7,

 1
04

1-
10

43
,

12
51

,
12

83

50
0,

 8
33

,
10

88

29
0,

 5
00

,
10

27
,

10
41

29
0,

 1
02

7,
 1

04
1

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
38

,
85

0,
 8

52
,

85
7,

 8
60

,
86

1,
 8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

90
3,

 9
12

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
1-

10
43

25
9

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

23
,

43
7,

 5
00

,
81

3,
 8

19
,

83
6,

 8
38

,
85

0,
 8

52
,

85
7,

 8
60

,
86

1,
 8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
7,

 9
12

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
1-

10
43

,
11

15

T
ab

le
 1

00
 (

P
ag

e
3

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

86
2

86
3

86
4

86
5

86
6

86
8

86
9

87
0

87
1

87
4

87
5

88
0

89
1

89
5

89
6

89
7

89
9

90
3

 Appendix F. Code page conversion tables 563

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

37
,

50
0,

 1
11

4

37
,

25
6,

 4
37

,
50

0,
 8

50
,

85
2,

 8
57

,
86

0-
86

5,
 9

20
,

10
26

,
12

54
,

12
81

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

23
,

43
7,

 5
00

,
81

3,
 8

19
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

,
86

1,
 8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
7,

 9
03

,
91

6,
 9

20
,

10
25

-1
02

7,
 1

04
1-

10
43

,
12

50
,

12
82

25
9,

 4
37

,
50

0,
 8

50
,

85
5,

 8
66

,
87

0,
 8

80
,

10
25

,
12

51
,

12
83

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

23
,

42
4,

 4
37

,
50

0,
 8

03
,

81
3,

 8
19

,
83

8,
 8

50
,

85
2,

 8
56

,
85

7,
 8

60
-8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
7,

 9
03

,
91

2,
 9

20
,

10
25

-1
02

7,
 1

04
1-

10
43

,
12

55

86
4,

 8
68

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

23
,

43
7,

 5
00

,
81

3,
 8

19
,

83
8,

 8
50

,
85

2,
 8

57
,

86
0,

 8
61

,
86

3,
 8

69
-8

71
,

87
4,

 8
75

,
88

0,
 8

97
,

90
3,

 9
05

,
91

2,
 9

16
,

10
25

,
10

26
,

12
54

,
12

81

50
0

42
0,

 8
64

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
90

,
29

7,
 3

67
,

42
3,

 5
00

,
83

3,
 8

36
,

87
0,

 8
71

,
87

5,
 8

80
,

10
25

,
10

26

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

-8
66

,
86

9-
87

1,
 8

74
,

87
5,

 8
80

,
89

7,
 9

03
,

91
2,

 9
15

,
91

6,
 9

20
,

10
09

,
10

26
,

10
27

,
10

40
-1

04
3,

 1
05

1,
 1

08
8,

 1
25

1,
 1

28
3

T
ab

le
 1

00
 (

P
ag

e
4

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

90
4

90
5

91
2

91
5

91
6

91
8

92
0

10
04

10
08

10
09

10
10

10
11

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

10
23

10
25

564 MQSeries Application Programming Reference

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 3
67

,
42

3,
 4

37
,

50
0,

 8
13

,
81

9,
 8

33
,

83
6,

 8
38

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

5,
 8

69
-8

71
,

87
4,

 8
75

,
88

0,
 8

97
,

90
3,

 9
05

,
91

2,
 9

16
,

92
0,

 1
00

9,
 1

02
5,

 1
02

7,
 1

04
0-

10
43

,
10

47
,

10
88

,
12

54
,

12
81

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

90
,

29
7,

 3
67

,
42

3,
 4

37
,

50
0,

 8
13

,
81

9,
 8

33
,

83
6,

 8
38

,
85

0,
 8

52
,

85
5,

 8
57

,
86

0-
86

5,
 8

69
-8

71
,

87
4,

 8
75

,
88

0,
 8

95
-8

97
,

90
3,

 9
12

,
91

6,
 1

02
5,

 1
02

6,
 1

04
0-

10
43

,
10

47
,

10
88

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

43
7,

 5
00

,
83

3,
 8

36
,

85
0,

 8
52

,
85

5,
 8

57
,

87
0,

 8
71

,
10

25
-1

02
7,

 1
04

1-
10

43
,

10
88

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 4
23

,
43

7,
 5

00
,

81
3,

 8
19

,
83

3,
 8

36
,

83
8,

 8
50

,
85

2,
 8

55
,

85
7,

 8
60

,
86

1,
 8

63
,

86
9-

87
1,

 8
74

,
87

5,
 8

80
,

89
5-

89
7,

 9
03

,
91

2,
 9

16
,

10
25

-1
02

7,
 1

04
0,

 1
04

2,
 1

04
3,

 1
08

8

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0,

 8
52

,
85

5,
 8

57
,

86
0,

 8
61

,
86

3,
 8

69
-8

71
,

87
4,

 8
75

,
88

0,
 8

97
,

90
3,

 9
12

,
91

6,
 1

02
5-

10
27

,
10

40
,

10
41

,
10

43
,

10
88

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

42
3,

 4
37

,
50

0,
 8

13
,

81
9,

 8
33

,
83

6,
 8

38
,

85
0,

 8
52

,
85

5,
 8

57
,

86
0,

 8
61

,
86

3,
 8

69
-8

71
,

87
4,

 8
75

,
88

0,
 8

97
,

90
3,

 9
12

,
91

6,
 1

02
5-

10
27

,
10

40
-1

04
2,

 1
08

8,
 1

11
4

42
0,

 5
00

,
86

4,
 1

08
9,

 1
25

6

37
,

27
3-

27
5,

 2
77

,
27

8,
 2

80
-2

82
,

28
4,

 2
85

,
29

7,
 5

00
,

81
9,

 8
50

,
87

1,
 8

75
,

10
26

,
10

27

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 4

37
,

50
0,

 8
19

,
85

0,
 8

63
,

87
1,

 1
02

5,
 1

09
7,

 1
25

2,
 1

27
5

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

0,
 2

97
,

36
7,

 5
00

,
83

3,
 8

36
,

85
0,

 8
52

,
85

5,
 8

57
,

87
0,

 8
71

,
87

5,
 8

91
,

10
25

-1
02

7,
 1

04
0-

10
43

42
0,

 5
00

,
86

4,
 1

04
6,

 1
25

6

37
,

43
7,

 5
00

,
81

9,
 8

50
,

85
2,

 8
57

,
86

0-
86

5,
 1

05
1,

 1
09

8

25
9,

 4
20

,
43

7,
 8

19
,

85
0,

 1
09

7

37
,

27
3,

 2
77

,
27

8,
 2

80
,

28
4,

 2
85

,
29

7,
 5

00
,

85
0

50
0

50
0

50
0

50
0

50
0

50
0

50
0

37
,

50
0,

 8
19

,
85

0,
 9

04
,

10
43

36
7,

 5
00

,
83

6,
 9

03

T
ab

le
 1

00
 (

P
ag

e
5

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

10
26

10
27

10
40

10
41

10
42

10
43

10
46

10
47

10
51

10
88

10
89

10
97

10
98

11
00

11
01

11
02

11
03

11
04

11
05

11
06

11
07

11
14

11
15

 Appendix F. Code page conversion tables 565

 Code page conversion tables

C
on

ve
rt

s
to

 a
nd

 f
ro

m
 C

C
S

ID
S

50
0,

 8
52

,
87

0,
 9

12
,

12
82

25
6,

 2
59

,
50

0,
 8

55
,

86
6,

 8
80

,
91

5,
 1

02
5,

 1
28

3

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

43
7,

 5
00

,
81

9,
 8

50
,

86
3,

 8
71

,
10

51
,

12
75

42
3,

 5
00

,
81

3,
 8

69
,

87
5,

 1
28

0

50
0,

 8
57

,
86

9,
 9

05
,

92
0,

 1
02

6,
 1

28
1

42
4,

 5
00

,
85

6,
 8

62
,

91
6

42
0,

 5
00

,
86

4,
 1

04
6,

 1
08

9

37
,

25
6,

 2
73

,
27

7,
 2

78
,

28
0,

 2
84

,
28

5,
 2

97
,

43
7,

 5
00

,
81

9,
 8

50
,

86
3,

 8
71

,
10

51
,

12
52

42
3,

 8
13

,
86

9,
 8

75
,

12
53

85
7,

 9
05

,
92

0,
 1

02
6,

 1
25

4

85
2,

 8
70

,
91

2,
 1

25
0

85
5,

 8
66

,
88

0,
 9

15
,

10
25

,
12

51

43
7

85
0

43
7,

 8
52

,
85

7,
 8

60
-8

65

T
ab

le
 1

00
 (

P
ag

e
6

of
 6

).
 M

V
S

/E
S

A
V

1.
1.

4
or

la
te

r
si

ng
le

by
te

C
C

S
ID

co
nv

er
si

on
su

pp
or

t.

C
C

S
ID

12
50

12
51

12
52

12
53

12
54

12
55

12
56

12
75

12
80

12
81

12
82

12
83

49
46

49
53

28
70

9

566 MQSeries Application Programming Reference

 Code page conversion tables

OS/2 conversion support
MQSeries for OS/2 Warp V5 or later supports conversion between any of the
CCSIDS listed below:

037 256 259 273 274 277
278 280 282 284 285 287
290 293 297 300 301 361
363 367 382 383 385 386
387 388 389 391 392 393
394 395 420 423 424 437
500 813 819 829 833 834
835 836 837 838 850 851
852 855 856 857 860 861
862 863 864 865 866 868
869 870 871 874 875 880
891 895 896 897 903 904
905 907 909 910 912 913
914 915 916 918 919 920
921 922 927 930| 932 933
935 938 (1) 937 939 941 942
943 946 947 948 949 950
951 952 954 (2) 955 960 961
963 964 970 971 1004 1006
1008 1009 1010 1011 1012 1013
1014 1015 1016 1017 1018 1019
1025 1026 1027 1028 1038 1040
1041 1042 1043 1046 1047 1050
1051 1088 1089 1092 1097 1098
1112 1114 1115 1116 1117 1118
1119 1122 1123 1124 1200 1208
1250 1251 1252 1253 1254 1255
1256 1257 1275 1276 1277 1350
1380 1381 1382 1383| 1386| 1388
4948 4951 4952 4960 5026 5035
5037 5039 5048 5049 5050 (2) 5067
5142 5478 8612 9030 9056 9066
9145 13488 28709 33722
Notes:

1. – 938 uses 948 for conversion.
2. – 954 and 5050 use 33722 for conversion.

OS/400 conversion support
| A full list of CCSIDs, and conversions supported by OS/400, can be found in the
| appropriate AS/400 publication relating to your operating system.

Unicode conversion support
Some platforms support the conversion of user data to or from Unicode encoding.
The two forms of unicode encoding supported are UCS-2 (CCSIDs 1200 and
13488) and UTF-8 (CCSID 1208).

Note: MQSeries does not support queue manager Unicode CCSIDs so message
header data cannot be encoded in UNICODE.

 Appendix F. Code page conversion tables 567

 Code page conversion tables

MQSeries OS/2 support for Unicode
On MQSeries for OS/2 Warp V5 or later, conversion on OS/2 to and from the
Unicode CCSIDs is supported for all supported CCSIDs. See “OS/2 conversion
support” on page 567

MQSeries AIX support for Unicode
On MQSeries for AIX Version 5 or later, conversion on AIX to and from the
Unicode CCSIDs is supported for the following CCSIDs:

037 273 278 280 284 285
297| 423 437 500 813 819
850 852 856 857 860 861
865 869 875| 880 912 915
916 920 932 933 935 937
938 939 939 942| 943 948
949| 950 954 964 970 1026
1046 1089| 1131 1200 1208| 1250

| 1251 | 1253 | 1254 | 1280 | 1281 | 1282
| 1283 | 1284 | 1285 1381 1383| 1386
| 1388 5026 5035 5050 13488 33722

MQSeries HP-UX support for Unicode
On MQSeries for HP-UX Version 5 or later, conversion on HP to, and from, the
Unicode CCSIDs is supported for the following CCSIDs:

813 819 874 912 915 916
920 932 938 950 954 964
970 1051 1089 1200 1381 5050
13488 33722

Note: HP-UX does not support conversion into or from UTF-8.

568 MQSeries Application Programming Reference

 Code page conversion tables

| MQSeries NT and Solaris support for Unicode
| On MQSeries for Windows NT Version 5 or later, and MQSeries for Solaris 5 or
| later, conversion to, and from, the Unicode CCSIDs is supported for the following

CCSIDs:

037 277 278 280 284 285
290 297 300 301 420 424
437 500 813 819 833 835
836 837 838 850 852 855
856 857 860 861 862 863
864 865 866 868 869 870
871 874 875 880 891 897
903 904 912 915 916 918
920 921 922 927 928 930
931 (1) 932 (2) 933 935 937 938 (3)
939 941 942 943 947 948
949 950 951 954 (4) 964 970
1006 1025 1026 1027 1040 1041
1042 1043 1046 1047 1051 1088
1089 1097 1098 1112 1114 1115
1122 1123 1124 1200 1208 1250
1251 1252 1253 1254 1255 1256
1257 1275 1280 1281 1282 1283
1380 1381 1383| 1386 | 1388 5050
13488 33722 (4)
Notes:

1. – 931 uses 939 for conversion.
2. – 932 uses 942 for conversion.
3. – 938 uses 948 for conversion.
4. – 954 and 33722 use 5050 for conversion.

OS/400 support for Unicode
| OS/400 supports a special variant of UNICODE with CCSID 61952 from Version
| 3.1 onwards. Version 3.7 and later versions also support UNICODE CCSID 13488.

 Appendix F. Code page conversion tables 569

 Code page conversion tables

570 MQSeries Application Programming Reference

 Notices

 Appendix G. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Laboratories, Hursley Park, Winchester, Hampshire, England SO21
2JN. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

Programming interface information
This book is intended to help you to write application programs provided by
MQSeries products.

This book documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by MQSeries.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
these products. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.

 Copyright IBM Corp. 1994,1998 571

 Notices

Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AD/Cycle AIX/6000 AS/400
BookManager CICS CICS for MVS/ESA
COBOL/370 Common User Access DB2
IBM Micro Focus MQSeries
MVS/ESA OS/2 OS/400
SAA System/370 System/390
VSE/ESA

572 MQSeries Application Programming Reference

 abend reason code � authorization service

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
MVS/ESA. A complete list of MQSeries for MVS/ESA
abend reason codes and their explanations is contained
in the MQSeries for MVS/ESA Messages and Codes
manual.

active log . See recovery log.

adapter . An interface between MQSeries for MVS/ESA
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

add-in task . A function provided by MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT that coordinates the passing
of data between a Lotus Notes application and an
MQSeries application.

address space . The area of virtual storage available
for a particular job.

address space identifier (ASID) . A unique,
system-assigned identifier for an address space.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alert monitor . In MQSeries for MVS/ESA, a
component of the CICS adapter that handles
unscheduled events occurring as a result of connection
requests to MQSeries for MVS/ESA.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

allied address space . See ally.

ally . An MVS address space that is connected to
MQSeries for MVS/ESA.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

application environment . The software facilities that
are accessible by an application program. On the MVS
platform, CICS and IMS are examples of application
environments.

application log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

archive log . See recovery log.

ASID. Address space identifier.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks . Security checks that are
performed when a user tries to open an MQSeries
object.

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

 Copyright IBM Corp. 1994,1998 573

 authorized program analysis report (APAR) � command prefix (CPF)

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS) . A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for MVS/ESA

� A wrap-around inventory of all recent MQSeries for
MVS/ESA activity

The BSDS is required if the MQSeries for MVS/ESA
subsystem has to be restarted.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS. Bootstrap data set.

buffer pool . An area of main storage used for
MQSeries for MVS/ESA queues, messages, and object
definitions. See also page set.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue

to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

command prefix (CPF) . In MQSeries for MVS/ESA, a
character string that identifies the queue manager to
which MQSeries for MVS/ESA commands are directed,

574 MQSeries Application Programming Reference

 command processor � dual logging

and from which MQSeries for MVS/ESA operator
messages are received.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI) . A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL) . In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

controlled shutdown . See quiesced shutdown.

CPF. Command prefix.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection . A pending event that is
activated when a CICS subsystem tries to connect to
MQSeries for MVS/ESA before MQSeries for MVS/ESA
has been started.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging . A method of recording MQSeries for
MVS/ESA activity, where each change is recorded on
two data sets, so that if a restart is necessary and one

 Glossary of terms and abbreviations 575

 dual mode � get

data set is unreadable, the other can be used. Contrast
with single logging.

dual mode . See dual logging.

dump analysis and elimination (DAE) . An MVS
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
environment . See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See application log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE) . An
MVS macro that provides recovery capability and gives
control to the specified exit routine for processing,
diagnosing an abend, or specifying a retry address.

external security manager (ESM) . A security product
that is invoked by the MVS System Authorization
Facility. RACF is an example of an ESM.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

forced shutdown . A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for MVS/ESA, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR) . An MVS
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC) . An
MQSeries for MVS/ESA component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF) . An MVS service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

576 MQSeries Application Programming Reference

 global trace � log

global trace . An MQSeries for MVS/ESA trace option
where the trace data comes from the entire MQSeries
for MVS/ESA subsystem.

GTF. Generalized Trace Facility.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

in-doubt unit of recovery . In MQSeries for MVS/ESA,
the status of a unit of recovery for which a syncpoint
has been requested but not yet performed.

.ini file . See configuration file.

initialization input data sets . Data sets used by
MQSeries for MVS/ESA when it starts up.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS) . A
component of MVS that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages.

 Glossary of terms and abbreviations 577

 log control file � MQSeries commands (MQSC)

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

M
machine check interrupt . An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

mail-in database . A Lotus Notes database for sole
use by the add-in task. It holds the request from a
Lotus Notes application before the request is passed to
the MQSeries application.

MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

578 MQSeries Application Programming Reference

 namelist � point of recovery

N
namelist . An MQSeries for MVS/ESA object that
contains a list of queue names.

name service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system being
used. Externally, the queue manager name remains
unchanged.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading . In MQSeries for MVS/ESA, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

output log-buffer . In MQSeries for MVS/ESA, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
page set . A VSAM data set used when MQSeries for
MVS/ESA moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

point of recovery . In MQSeries for MVS/ESA, the
term used to describe a set of backup copies of
MQSeries for MVS/ESA page sets and the
corresponding log data sets required to recover these
page sets. These backup copies provide a potential

 Glossary of terms and abbreviations 579

 preemptive shutdown � relative byte address (RBA)

restart point in the event of page set loss (for example,
page set I/O error).

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log . In MQSeries for MVS/ESA, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
MVS/ESA writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM) . A program
that handles all normal and abnormal termination of
tasks by passing control to a recovery routine
associated with the terminating function.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA) . The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

580 MQSeries Application Programming Reference

 remote queue � server channel

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program.

RESLEVEL . In MQSeries for MVS/ESA, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for MVS/ESA.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for MVS/ESA, examples of resources are
buffer pools, page sets, log data sets, queues, and
messages.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

RTM. Recovery termination manager.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages

 Glossary of terms and abbreviations 581

 server connection channel type � SYS1.LOGREC

from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

session ID . In MQSeries for MVS/ESA, the
CICS-unique identifier that defines the communication
link to be used by a message channel agent when
moving messages from a transmission queue to a link.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling . In MQSeries for MVS/ESA and MQSeries
for Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging . A method of recording MQSeries for
MVS/ESA activity where each change is recorded on
one data set only. Contrast with dual logging.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class . In MQSeries for MVS/ESA, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem . In MVS, a group of modules that provides
function that is dependent on MVS. For example,
MQSeries for MVS/ESA is an MVS subsystem.

supervisor call (SVC) . An MVS instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile . In MQSeries for MVS/ESA, a RACF
profile used when MQSeries starts up or when a refresh
security command is issued. Each switch profile that
MQSeries detects turns off checking for the specified
resource.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF) . An MVS facility
through which MQSeries for MVS/ESA communicates
with an external security manager such as RACF.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA) . Data
recorded in a SYS1.LOGREC entry, which describes a
program or hardware error.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

582 MQSeries Application Programming Reference

 TACL � utility

T
| TACL . Tandem Advanced Command Language.

target library high-level qualifier (thlqual) . High-level
qualifier for MVS/ESA target data set names.

task control block (TCB) . An MVS control block used
to communicate information about tasks within an
address space that are connected to an MVS
subsystem such as MQSeries for MVS/ESA or CICS.

task switching . The overlapping of I/O operations and
processing between several tasks. In MQSeries for
MVS/ESA, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

termination notification . A pending event that is
activated when a CICS subsystem successfully
connects to MQSeries for MVS/ESA.

thlqual . Target library high-level qualifier.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) . In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

 Glossary of terms and abbreviations 583

584 MQSeries Application Programming Reference

 Index

 Index

A
AbendCode field 27
AccountingToken field

MQMD structure 133
MQPMR structure 196

ADSDescriptor field 26
alias queue 365
aliasing

queue manager 364
reply queue 364

AlternateUserId field 163
ApplId

attribute, process-definition attributes 367
field

MQTM structure 212
MQTMC2 structure 218

ApplIdentityData field 134
ApplOriginData field 139
ApplType

attribute, process-definition attributes 368
field

MQTM structure 212
MQTMC2 structure 218

AppOptions field 503
Arabic language support 547
AttentionId field 28
attributes

alias queue 365
common to all queues 343
local queue 348
namelist 366
process definition 367
queue manager 370
remote queue, local definition of 363

Authenticator field 27, 93
AuthorityEvent attribute 371

B
BackoutCount field 129
BackoutRequeueQName attribute 349
BackoutThreshold attribute 349
BaseQName attribute 365
begin options structure 19
BeginOptions parameter 244
bibliography xiv
BookManager xviii
Buffer parameter

declaring 239
MQGET call 274
MQPUT call 314

Buffer parameter (continued)
MQPUT1 call 325

BufferLength parameter
MQGET call 274
MQPUT call 313
MQPUT1 call 324

built-in formats 120

C
C programming language

data types 9
functions 9
header files 8
initial values for dynamic structures 11
initial values for structures 10
manipulating binary strings 10
manipulating character strings 10
notational conventions 11
parameters with undefined data types 9
use from C++ 11
using calls 238
using data types 8

calls
conventions used 237
detailed description

MQBACK 240
MQBEGIN 244
MQCLOSE 248
MQCMIT 256
MQCONN 261
MQCONNX 267
MQDATACONVEXIT 515
MQDISC 269
MQGET 273
MQINQ 285
MQOPEN 297
MQPUT 313
MQPUT1 324
MQSET 333
MQSYNC 340
MQXCNVC 509

CancelCode field 28
CCSID language support tables 523
ChannelAutoDef attribute 371
ChannelAutoDefEvent attribute 371
ChannelAutoDefExit attribute 371
CharAttrLength parameter

MQINQ call 291
MQSET call 335

CharAttrs parameter
MQINQ call 291

 Copyright IBM Corp. 1994,1998 585

 Index

CharAttrs parameter (continued)
MQSET call 335

Chinese language support 558, 559
COBOL programming language

COPY files 12
named constants 14
notational conventions 14
pointer data type 13
structures 13
using data types 12

code-page conversions 523
coded character set identifier 372
CodedCharSetId

attribute, queue-manager attributes 372
field

MQCIH structure 23
MQDH 41
MQDLH structure 49
MQDXP structure 503
MQIIH structure 92
MQMD structure 118
MQMDE structure 156
MQRMH structure 199

CommandInputQName attribute 372
CommandLevel attribute 373
CommitAbort parameter 340
CommitMode field 94
CompCode field 24

MQDXP structure 504
MQRR structure 207

CompCode parameter
MQBACK call 240
MQBEGIN call 244
MQCLOSE call 250
MQCMIT call 256
MQCONN call 263
MQCONNX call 267
MQDISC call 269
MQGET call 275
MQINQ call 291
MQOPEN call 303
MQPUT call 315
MQPUT1 call 325
MQSET call 335
MQSYNC call 340
MQXCNVC call 512

completion code 383
connect options structure 35
ConnectOpts parameter 267
constants, values of 449—480

accounting token (MQACT_ñ) 450
application type (MQAT_ñ) 451
backout hardening (MQQA_ñ) 470
begin options (MQBO_ñ) 451
begin options structure identifier (MQBO_ñ) 451
begin options version (MQBO_ñ) 451

constants, values of (continued)
character attribute selectors (MQCA_ñ) 452
CICS bridge return code (MQCRC_ñ) 455
CICS function name (MQCFUNC_ñ) 453
CICS header flags (MQCIH_ñ) 453
CICS header get-wait interval (MQCGWI_ñ) 453
CICS header length (MQCIH_ñ) 453
CICS header link type (MQCLT_ñ) 454
CICS header output data length (MQCODL_ñ) 455
CICS header structure identifier (MQCIH_ñ) 454
CICS header unit-of-work control

(MQCUOWC_ñ) 455
CICS header version (MQCIH_ñ) 454
close options (MQCO_ñ) 455
coded character set identifier (MQCCSI_ñ) 452
command level (MQCMDL_ñ) 454
completion codes (MQCC_ñ) 452
connect options (MQCNO_ñ) 454
connect options structure identifier

(MQCNO_ñ) 455
connect options version (MQCNO_ñ) 455
connection handle (MQHC_ñ) 462
convert-characters masks and factors

(MQDCC_ñ) 456
convert-characters options (MQDCC_ñ) 456
correlation identifier (MQCI_ñ) 453
data-conversion-exit parameter structure identifier

(MQDXP_ñ) 457
data-conversion-exit parameter structure version

(MQDXP_ñ) 457
data-conversion-exit response (MQXDR_ñ) 478
dead-letter header structure identifier

(MQDLH_ñ) 457
dead-letter header version (MQDLH_ñ) 457
distribution header flags (MQDHF_ñ) 456
distribution header structure identifier

(MQDH_ñ) 456
distribution header version (MQDH_ñ) 456
distribution list support (MQDL_ñ) 457
encoding (MQENC_ñ) 458
encoding for binary integers (MQENC_ñ) 458
encoding for floating-point numbers

(MQENC_ñ) 458
encoding for packed-decimal integers

(MQENC_ñ) 458
encoding masks (MQENC_ñ) 458
event reporting (MQEVR_ñ) 459
event reporting (MQQSIE_ñ) 470
exit command identifier (MQXC_ñ) 478
exit identifier (MQXT_ñ) 479
exit parameter block structure identifier

(MQXP_ñ) 479
exit parameter block version (MQXP_ñ) 479
exit reason (MQXR_ñ) 479
exit response (MQXCC_ñ) 478
exit user area (MQXUA_ñ) 480

586 MQSeries Application Programming Reference

 Index

constants, values of (continued)
expiry interval (MQEI_ñ) 458
feedback (MQFB_ñ) 459
format (MQFMT_ñ) 460
get message options (MQGMO_ñ) 461
get message options structure identifier

(MQGMO_ñ) 461
get message options version (MQGMO_ñ) 461
group identifier (MQGI_ñ) 460
group status (MQGS_ñ) 461
IMS authenticator (MQIAUT_ñ) 463
IMS commit mode (MQICM_ñ) 463
IMS header flags (MQIIH_ñ) 463
IMS header length (MQIIH_ñ) 464
IMS header structure identifier (MQIIH_ñ) 464
IMS header version (MQIIH_ñ) 464
IMS security scope (MQISS_ñ) 464
IMS transaction instance identifier (MQITII_ñ) 464
IMS transaction state (MQITS_ñ) 464
Index type (MQIT_ñ) 464
inhibit get (MQQA_ñ) 469
inhibit put (MQQA_ñ) 469
integer attribute selectors (MQIA_ñ) 462
integer attribute value (MQIAV_ñ) 463
lengths of character string and byte fields

(MQ_ñ) 449
match options (MQMO_ñ) 466
message delivery sequence (MQMDS_ñ) 465
message descriptor extension flags

(MQMDEF_ñ) 465
message descriptor extension length

(MQMDE_ñ) 465
message descriptor extension structure identifier

(MQMDE_ñ) 465
message descriptor extension version

(MQMDE_ñ) 465
message descriptor structure identifier

(MQMD_ñ) 465
message descriptor version (MQMD_ñ) 465
message flags (MQMF_ñ) 466
message identifier (MQMI_ñ) 466
message type (MQMT_ñ) 466
message-flags masks (MQMF_ñ) 466
object descriptor length (MQOD_ñ) 467
object descriptor structure identifier (MQOD_ñ) 467
object descriptor version (MQOD_ñ) 467
object handle (MQHO_ñ) 462
object instance identifier (MQOII_ñ) 467
object type (MQOT_ñ) 468
open options (MQOO_ñ) 467
original length (MQOL_ñ) 467
persistence (MQPER_ñ) 468
platform (MQPL_ñ) 468
priority (MQPRI_ñ) 469
put message options (MQPMO_ñ) 468
put message options length (MQPMO_ñ) 469

constants, values of (continued)
put message options structure identifier

(MQPMO_ñ) 469
put message options version (MQPMO_ñ) 469
put message record field flags (MQPMRF_ñ) 469
queue definition type (MQQDT_ñ) 470
queue shareability (MQQA_ñ) 470
queue type (MQQT_ñ) 470
reason codes (MQRC_ñ) 470
reference message header flags (MQRMHF_ñ) 475
reference message header structure identifier

(MQRMH_ñ) 475
reference message header version

(MQRMH_ñ) 475
report options (MQRO_ñ) 475
report-options masks (MQRO_ñ) 476
scope (MQSCO_ñ) 476
segment status (MQSS_ñ) 476
segmentation (MQSEG_ñ) 476
signal event-control-block completion codes

(MQEC_ñ) 457
syncpoint (MQSP_ñ) 476
transmission queue header structure identifier 479
transmission queue header version

(MQXQH_ñ) 479
trigger controls (MQTC_ñ) 476
trigger message (character format) structure identifier

(MQTMC_ñ) 477
trigger message (character format) version

(MQTMC_ñ) 477
trigger message structure identifier (MQTM_ñ) 477
trigger message version (MQTM_ñ) 477
trigger type (MQTT_ñ) 477
undelivered-message header structure identifier

(MQDLH_ñ) 457
undelivered-message header version

(MQDLH_ñ) 457
usage (MQUS_ñ) 478
wait interval (MQWI_ñ) 478

Context field 184
ConversationalTask field 26
conversion of report messages 501
conversion processing conventions 495
conversions, code-page 523
COPY files – COBOL programming language 12
CorrelId field

MQMD structure 128
MQPMR structure 195

CreationDate attribute 349
CreationTime attribute 349
CurrentQDepth attribute 350
Cyrillic support 539

 Index 587

 Index

D
Danish language support 527
data conversion

processing conventions 495
data conversion processing 495
data types – C programming language 9
data types, conventions used 1, 7
data types, detailed description

elementary
assembler language 5
C programming language 3
COBOL programming language 3
MQBYTE 1
MQBYTEn 1
MQCHAR 2
MQCHARn 2
MQHCONN 2
MQHOBJ 2
MQLONG 3
overview 1
PL/I language 4
TAL programming language 5

structure
MQBO 19
MQCIH 21
MQCNO 35
MQDH structure 39
MQDLH 45
MQDXP 502
MQGMO 56
MQIIH 91
MQMD 98
MQMDE 153
MQOD 160
MQOR 171
MQPMO 173
MQPMR 194
MQRMH 197
MQRR 207
MQTM 209
MQTMC 217
MQTMC2 217
MQXP 222
MQXQH 227
overview of 7, 18

DataConvExitParms parameter 515
DataLength

field, MQDXP structure 504
parameter, MQGET call 274

DataLogicalLength field 202
DataLogicalOffset field 203
DataLogicalOffset2 field 203
dead-letter header structure 45
DeadLetterQName attribute 374

DefinitionType attribute 350
DefInputOpenOption attribute 351
DefPersistence attribute 344
DefPriority attribute 344
DefXmitQName attribute 375
DestEnvLength field 201
DestEnvOffset field 201
DestNameLength field 202
DestNameOffset field 202
DestQMgrName field 49
DestQName field 48
DistLists attribute 351, 375
distribution header structure 39
distribution lists 351, 375
dynamic queue 297
DynamicQName field 163

E
Eastern European languages support 538
Encoding field

MQCIH structure 23
MQDH structure 41
MQDLH structure 49
MQDXP structure 503
MQIIH structure 92
MQMD structure 118
MQMDE structure 156
MQRMH structure 199
using 485

EnvData
attribute process-definition attributes 368
field

MQTM structure 213
MQTMC2 structure 218

environment variable – MQ_CONNECT_TYPE 37
Estonian language support 541
exit parameter block 222
ExitCommand field 224
ExitId field 223
ExitOptions field 503
ExitParmCount field 224
ExitReason field 223
ExitResponse field

MQDXP structure 506
MQXP structure 223

ExitUserArea field 224
Expiry field 113

F
Facility field 26
FacilityKeepTime field 26
FacilityLike field 28
Farsi support 548

588 MQSeries Application Programming Reference

 Index

Feedback field
MQMD structure 115
MQPMR structure 195

Finnish language support 528
Flags field

MQCIH structure 23
MQDH 41
MQIIH structure 93
MQMDE structure 157
MQRMH structure 199

fonts in this book x
Format field

MQCIH structure 23
MQDH 41
MQDLH structure 49
MQIIH structure 92
MQMD structure 119
MQMDE structure 156
MQRMH structure 199

formats built-in 120
French language support 533
Function field 26
functions – C programming language 9

G
Gaelic language support 532
German language support 526
get-message options structure 56
GetMsgOpts parameter 274
GetWaitInterval field 25
glossary 573
Greek language support 544
GroupId field

MQMD structure 139
MQMDE structure 157
MQPMR structure 195

GroupStatus field 86

H
handle scope 263, 303
Handles 376
HardenGetBackout attribute 352
Hconn field 507
Hconn parameter

MQBACK call 240
MQBEGIN call 244
MQCLOSE call 248
MQCMIT call 256
MQCONN call 262
MQCONNX call 267
MQDISC call 269
MQGET call 273
MQINQ call 285
MQOPEN call 297

Hconn parameter (continued)
MQPUT call 313
MQPUT1 call 324
MQSET call 333
MQXCNVC call 509
scope 263

header files – C programming language 8
Hebrew language support 546
Hobj parameter

MQCLOSE call 248
MQGET call 273
MQINQ call 285
MQOPEN call 303
MQPUT call 313
MQSET call 333
scope 303

HTML (Hypertext Markup Language) xviii
Hypertext Markup Language (HTML) xviii

I
Icelandic language support 537
InBuffer parameter 516
InBufferLength parameter 515
INCLUDE files – PL/I programming language 15
IndexType attribute 353
Information Presentation Facility (IPF) xix
InhibitEvent attribute 376
InhibitGet attribute 345
InhibitPut attribute 345
initial values for dynamic structures – C programming

language 11
initial values for structures – C programming

language 10
InitiationQName attribute 354
IntAttrCount parameter

MQINQ call 291
MQSET call 334

IntAttrs parameter
MQINQ call 291
MQSET call 335

InvalidDestCount field
MQOD structure 164
MQPMO structure 185

IPF (Information Presentation Facility) xix
Italian language support 530

J
Japanese language support 555

K
Kanji language support 555
Katakana language support 555

 Index 589

 Index

KnownDestCount field 164, 184
Korean language support 557

L
language compilers xi
Latvian language support 542
LinkType field 25
Lithuanian language support 542
LocalEvent attribute 376
LTermOverride field 93

M
Macros 16
manipulating binary strings – C programming

language 10
manipulating character strings – C programming

language 10
MatchOptions field 84
MaxHandles attribute 376
MaxMsgLength attribute

local-queue attributes 354
queue-manager attributes 377

MaxPriority attribute 377
MaxQDepth attribute 355
MaxUncommittedMsgs attribute 377
message descriptor extension structure 153
message descriptor structure 98
message order 278
MFSMapName field 93
MQ_ñ values 449
MQ_CONNECT_TYPE environment variable 37
MQACT_ñ values 134, 450
MQAT_ñ values 134

ApplType field
MQTM structure 212
process-definition attributes 368

values of constants 451
MQBACK 240
MQBEGIN 244
MQBO 19
MQBO_ñ values 19, 451
MQBO_DEFAULT 20
MQBYTE 1
MQBYTEn 1
MQCA_ñ values 286, 452
MQCC_ñ values 383, 452
MQCCSI_ñ values 119, 452
MQCFUNC_ñ values 453
MQCGWI_ñ values 453
MQCHAR 2
MQCHARn 2
MQCI_ñ values 129, 453
MQCIH 21

MQCIH_ñ values 22, 453, 454
MQCIH_DEFAULT 30
MQCLOSE 248
MQCLT_ñ values 454
MQCMDL_ñ values 373, 454
MQCMIT 256
MQCNO 35
MQCNO_ñ values 35, 454, 455
MQCNO_DEFAULT 37
MQCO_ñ values 248, 455
MQCODL_ñ values 455
MQCONN 261
MQCONNX 267
MQCRC_ñ values 455
MQCUOWC_ñ values 455
MQDATACONVEXIT 515
MQDCC_ñ values 456
MQDH 39
MQDH_ñ values 40, 456
MQDH_DEFAULT 43
MQDHF_ñ values 456
MQDISC 269
MQDL_ñ values 457
MQDLH 45
MQDLH_ñ values 47, 457
MQDLH_DEFAULT 52
MQDXP 502
MQDXP_ñ values 457, 502
MQEC_ñ values 83, 457
MQEI_ñ values 115, 458
MQENC_ñ values 118, 458
MQEVR_ñ values 357, 358, 359, 371, 376, 378, 380,

459
MQFB_ñ values 48, 115, 459
MQFMT_ñ values 460
MQGET 273
MQGI_ñ values 140, 460
MQGMO 56
MQGMO_ñ values 56, 58, 461
MQGMO_DEFAULT 88
MQGS_ñ values 461
MQHC_ñ values 462
MQHCONN 2
MQHO_ñ values 462
MQHOBJ 2
MQIA_ñ values 286, 334, 462
MQIAUT_ñ values 463
MQIAV_ñ values 291, 463
MQICM_ñ values 463
MQIIH 91
MQIIH_ñ values 92, 463, 464
MQIIH_DEFAULT 95
MQINQ 285
MQISS_ñ values 464
MQIT_ñ values 464

590 MQSeries Application Programming Reference

 Index

MQITII_ñ values 464
MQITS_ñ values 464
MQLONG 3
MQMD 98
MQMD_ñ values 100, 465
MQMD_DEFAULT 148
MQMDE 153
MQMDE_ñ values 156, 465
MQMDE_DEFAULT 158
MQMDEF_ñ values 465
MQMDS_ñ values 355, 465
MQMF_ñ values 142, 466
MQMI_ñ values 128, 466
MQMO_ñ values 466
MQMT_ñ values 112, 466
MQOD 160
MQOD_ñ values 161, 467
MQOD_DEFAULT 168
MQOII_ñ values 200, 467
MQOL_ñ values 147, 467
MQOO_ñ values 298, 351, 467
MQOPEN 297
MQOR 171
MQOR_DEFAULT 172
MQOT_ñ values 161, 468
MQPER_ñ values 125, 344, 468
MQPL_ñ values 378, 468
MQPMO 173
MQPMO_ñ values 174, 175, 468, 469
MQPMO_DEFAULT 190
MQPMR 194
MQPMRF_ñ values 469
MQPRI_ñ values 124, 469
MQPUT 313
MQPUT1 324
MQQA_ñ values 345, 360, 469, 470
MQQDT_ñ values 350, 470
MQQSIE_ñ values 359, 470
MQQT_ñ values 346, 365, 470
MQRC_ñ values 117, 384, 470
MQRMH 197
MQRMH_ñ values 198, 475
MQRMH_DEFAULT 204
MQRMHF_ñ values 199, 475
MQRO_ñ values 101, 475, 476
MQRR 207
MQRR_DEFAULT 207
MQSCO_ñ values 476
MQSEG_ñ values 476
MQSeries publications xiv
MQSET 333
MQSP_ñ values 380, 476
MQSS_ñ values 476
MQSYNC 340
MQTC_ñ values 361, 476

MQTM 209
MQTM_ñ values 210, 477
MQTM_DEFAULT 214
MQTMC 217
MQTMC_ñ values 477
MQTMC2 217
MQTMC2_DEFAULT 219
MQTT_ñ values 362, 477
MQUS_ñ values 363, 478
MQWI_ñ values 82, 478
MQXC_ñ values 224, 478
MQXCC_ñ values 223, 478
MQXCNVC 509
MQXDR_ñ values 478
MQXP 222
MQXP_ñ values 222, 479
MQXQH 227
MQXQH_ñ values 230, 479
MQXQH_DEFAULT 231
MQXR_ñ values 223, 479
MQXT_ñ values 223, 479
MQXUA_ñ values 225, 480
MsgDeliverySequence attribute 355
MsgDesc field 231
MsgDesc parameter

MQDATACONVEXIT call 515
MQGET call 273
MQPUT call 313
MQPUT1 call 324

MsgFlags field
MQMD structure 142
MQMDE structure 157

MsgId field
MQMD structure 126
MQPMR structure 194

MsgSeqNumber field
MQMD structure 141
MQMDE structure 157

MsgType field 112
Multilingual language support 534

N
NameCount attribute 366
named constants – COBOL programming language 14
namelist attributes 366
NamelistDesc attribute 366
NamelistName attribute 366
Names attribute 367
NextTransactionId field 28
Norwegian language support 527
notational conventions

C programming language 11
COBOL programming language 14
PL/I programming language 16
S/390 assembler programming language 18

 Index 591

 Index

O
ObjDesc parameter

MQOPEN call 297
MQPUT1 call 324

object descriptor structure 160
object record structure 171
ObjectInstanceId field 200
ObjectName field

MQOD structure 162
MQOR structure 171

ObjectQMgrName field
MQOD structure 162
MQOR structure 171

ObjectRecOffset field
MQDH structure 42
MQOD structure 165

ObjectRecPtr field 166
ObjectType field

MQOD structure 161
MQRMH structure 200

Offset field
MQMD structure 141
MQMDE structure 157

OpenInputCount attribute 356
OpenOutputCount attribute 356
Options field

MQBO structure 19
MQCNO structure 35
MQGMO structure 57
MQPMO structure 174

Options parameter
MQCLOSE call 248
MQOPEN call 297
MQXCNVC call 509

ordering of messages 278
OriginalLength field

MQMD structure 147
MQMDE structure 157

OutBuffer parameter 516
OutBufferLength parameter 516
OutputDataLength field 25

P
parameters with undefined data types – C programming

language 9
PerformanceEvent attribute 378
persistence 344
Persistence field 125
PL/I programming language

INCLUDE files 15
notational conventions 16
structures 15

Platform attribute 378

PMQVOID 239
pointer data type – COBOL programming language 13
Portuguese language support 535
PostScript format xviii
Priority field 124
process definition attributes 367
ProcessDesc attribute 369
processing conventions 495
ProcessName

attribute
local-queue attributes 357
process-definition attributes 369

field
MQTM structure 211
MQTMC2 structure 218

publications
MQSeries xiv
related. xix

put message record structure 194
put-message options structure 173
PutApplName field

MQDLH structure 50
MQMD structure 136

PutApplType field
MQDLH structure 50
MQMD structure 134

PutDate field
MQDLH structure 50
MQMD structure 137

PutMsgOpts parameter
MQPUT call 313
MQPUT1 call 324

PutMsgRecFields field
MQDH structure 42
MQPMO structure 186

PutMsgRecOffset field
MQDH structure 42
MQPMO structure 187

PutMsgRecPtr field 189
PutTime field

MQDLH structure 51
MQMD structure 138

Q
QDepthHighEvent attribute 357
QDepthHighLimit attribute 357
QDepthLowEvent attribute 358
QDepthLowLimit attribute 358
QDepthMaxEvent attribute 358
QDesc attribute 346
QMgrDesc attribute 379
QMgrName

attribute, queue-manager attributes 379
field, MQTMC2 structure 219

592 MQSeries Application Programming Reference

 Index

QMgrName parameter
MQCONN call 261
MQCONNX call 267

QName
attribute, attributes common to all queues 346
field

MQTM structure 211
MQTMC2 structure 218

QServiceInterval attribute 359
QServiceIntervalEvent attribute 359
QType attribute 346
queue attributes

alias 365
common to all queues 343
local 348
local definition of remote 363
model 348

queue manager attributes 370
queue-manager aliasing 364
queue, dynamic 297

R
reason codes

alphabetic list 383
numeric list 470

Reason field 24
MQDLH structure 47
MQDXP structure 505
MQRR structure 207

Reason parameter
MQBACK call 240
MQBEGIN call 244
MQCLOSE call 250
MQCMIT call 256
MQCONN call 263
MQCONNX call 267
MQDISC call 270
MQGET call 275
MQINQ call 292
MQOPEN call 303
MQPUT call 315
MQPUT1 call 325
MQSET call 335
MQSYNC call 340
MQXCNVC call 512

RecsPresent field
MQDH structure 42
MQOD structure 164
MQPMO structure 186

reference message header structure 197
RemoteEvent attribute 380
RemoteQMgrName

attribute, remote-queue (local definition)
attributes 364

field, MQXQH structure 230

RemoteQName
attribute, remote-queue (local definition)

attributes 364
field, MQXQH structure 230

RemoteSysId field 27
RemoteTransId field 27
reply queue aliasing 364
ReplyToFormat field 93

MQCIH structure 27
ReplyToQ field 130
ReplyToQMgr field 131
Report field

MQMD structure 101
using 489

report message conversion 501
Reserved field

MQIIH structure 95
MQXP structure 224

Reserved1 field 87
MQCIH structure 27

Reserved2 field
MQCIH structure 28

Reserved3 field
MQCIH structure 28

ResolvedQMgrName field 185
ResolvedQName field

MQGMO structure 84
MQPMO structure 185

response record structure 207
ResponseRecOffset field

MQOD structure 165
MQPMO structure 188

ResponseRecPtr field
MQOD structure 166
MQPMO structure 189

RetentionInterval attribute 360
return codes 383
ReturnCode field 23

S
Scope attribute 346
scope, handles 263, 303
SecurityScope field 94
Segmentation field 87
SegmentStatus field 87
SelectorCount parameter

MQINQ call 285
MQSET call 333

Selectors parameter
MQINQ call 285
MQSET call 333

Shareability attribute 360
signal notification message 521
Signal1 field 82

 Index 593

 Index

Signal2 field 83
softcopy books xviii
SourceBuffer parameter 511
SourceCCSID parameter 511
SourceLength parameter 511
Spanish language support 531
SrcEnvLength field 200
SrcEnvOffset field 200
SrcNameLength field 201
SrcNameOffset field 201
StartCode field 28
StartStopEvent attribute 380
StorageClass attribute 360
StrucId field

MQBO structure 19
MQCIH structure 22
MQCNO structure 35
MQDH structure 40
MQDLH structure 47
MQDXP structure 502
MQGMO structure 56
MQIIH structure 92
MQMD structure 100
MQMDE structure 156
MQOD structure 161
MQPMO structure 174
MQRMH structure 198
MQTM structure 210
MQTMC2 structure 218
MQXP structure 222
MQXQH structure 230

StrucLength field
MQCIH structure 22
MQDH structure 40
MQIIH structure 92
MQMDE structure 156
MQRMH structure 199

structures – COBOL programming language 13
structures – PL/I programming language 15
supported language compilers xi
Swedish language support 528
syncpoint 380
SyncPoint attribute 380
System/390 assembler programming language

notational conventions 18
using data types 16

T
TargetBuffer parameter 512
TargetCCSID parameter 511
TargetLength parameter 512
TaskEndStatus field 26
terminology x
terminology used in this book 573

Thai support 550
Timeout field 184
TranInstanceId field 94
TransactionId field 27
TransId parameter 340
transmission queue header structure 227
TranState field 94
trigger message structure 209
TriggerControl attribute 361
TriggerData

attribute, local-queue attributes 361
field

MQTM structure 211
MQTMC2 structure 218

TriggerDepth attribute 361
triggering 361
TriggerInterval attribute 380
TriggerMsgPriority attribute 362
TriggerType attribute 362
trusted application. 36
Turkish language support 545
type styles in this book x

U
UCS-2 567
UK English language support 532
Ukrainian language support 543
Uncommitted messages 377
Unicode 567
UnknownDestCount field

MQOD structure 164
MQPMO structure 185

UOWControl field 24
Urdu support 549
US English language support 525
Usage attribute 363
use from C++ 11
UserData

attribute process-definition attributes 369
field

MQTM structure 213
MQTMC2 structure 219

UserIdentifier field 131
UTF-8 567

V
Version field

MQBO structure 19
MQCIH structure 22
MQCNO structure 35
MQDH structure 40
MQDLH structure 47
MQDXP structure 503
MQGMO structure 57

594 MQSeries Application Programming Reference

 Index

Version field (continued)
MQIIH structure 92
MQMD structure 100
MQMDE structure 156
MQOD structure 161
MQPMO structure 174
MQRMH structure 198
MQTM structure 210
MQTMC2 structure 218
MQXP structure 222
MQXQH structure 230

W
WaitInterval field 82
Windows Help xix
Windows products xi

X
XmitQName attribute, remote-queue (local definition)

attributes 365

 Index 595

Sending your comments to IBM
MQSeries

Application Programming Reference

SC33-1673-04

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries

Application Programming Reference

SC33-1673-04
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries

MQSeries Application Programming Reference SC33-1673-04

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1673-ð4

S
pine inform

ation:

I
B

M
M

Q
Series

A
pplication P

rogram
m

ing R
eference

