

MQSeries IBM

Application Programming Guide

 SC33-0807-09

MQSeries IBM

Application Programming Guide

 SC33-0807-09

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix J, “Notices” on
page 567.

Tenth edition (January 1999)

This edition applies to the following products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2

| � MQSeries for HP-UX V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for OS/2 Warp V5.1

� MQSeries for SINIX and DC/OSx V2.2
| � MQSeries for Sun Solaris V5.1

� MQSeries for Tandem NonStop Kernel V2.2
| � MQSeries for VSE/ESA V2.1

� MQSeries for Windows V2.0
| � MQSeries for Windows V2.1
| � MQSeries for Windows NT V5.1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xv
Who this book is for . xvi
What you need to know to understand this book xvi
How to use this book . xvi

Appearance of text in this book . xvii
Terms used in this book . xvii

MQSeries publications . xviii
MQSeries cross-platform publications . xviii
MQSeries platform-specific publications . xxi
MQSeries Level 1 product publications . xxii
Softcopy books . xxii

MQSeries information available on the Internet xxiv
Related publications . xxiv

CICS . xxiv
IMS . xxv
MVS/ESA . xxv
Design . xxv
C . xxv
C++ . xxv
COBOL . xxv

| LDAP . xxvi

Summary of Changes . xxvii
Changes for this edition (SC33-0807-09) . xxvii

| MQSeries for OS/390 V2.1 . xxvii
| MQSeries V5.1 . xxviii
| MQSeries for VSE/ESA V2.1 . xxxi
| MQSeries for AS/400 V4R2M1 . xxxii
| Changes for the ninth edition (SC33-0807-08) xxxii
| Changes for the eighth edition (SC33-0807-07) xxxii

Part 1. Designing applications that use MQSeries . 1

Chapter 1. Introduction to message queuing 3
What is message queuing? . 3
What is a message? . 4
What is a message queue? . 4
What is a queue manager? . 5

| What is a cluster? . 6
What is an MQSeries client? . 6
Main features of message queuing . 7
Benefits of message queuing to the application designer and developer 10
What can you do with MQSeries products? . 10

| Chapter 2. Overview of application design 13
Planning . 13
Using MQSeries objects . 14
Designing your messages . 15
MQSeries techniques . 16

 Copyright IBM Corp. 1993,1999 iii

 Contents

Application programming . 18
Testing MQSeries applications . 21

Chapter 3. MQSeries messages . 23
| Message descriptor . 23

Types of message . 24
| Format of message control information and message data 29

Message priorities . 32
Message groups . 33
Message persistence . 34
Selecting messages from queues . 35
Messages that fail to be delivered . 35
Messages that are backed out . 35
Reply-to queue and queue manager . 36
Message context . 37

Chapter 4. MQSeries objects . 39
Queue managers . 39
Queues . 40
Namelists . 48

| Process definitions . 49
Channels . 49
Storage classes . 49
Rules for naming MQSeries objects . 49

Chapter 5. Handling program errors . 53
Locally determined errors . 53
Using report messages for problem determination 55
Remotely determined errors . 56

Part 2. Writing an MQSeries application . 61

| Chapter 6. Introducing the Message Queue Interface 65
| What is in the MQI? . 65

Parameters common to all the calls . 73
Specifying buffers . 74
Programming language considerations . 75

| OS/390 batch considerations . 84
UNIX signal handling on MQSeries Version 5 products 85

Chapter 7. Connecting and disconnecting a queue manager 89
Connecting to a queue manager using the MQCONN call 90
Connecting to a queue manager using the MQCONNX call 92
Disconnecting programs from a queue manager using MQDISC 94

Chapter 8. Opening and closing objects . 97
Opening objects using the MQOPEN call . 98
Creating dynamic queues . 104
Opening remote queues . 105
Closing objects using the MQCLOSE call . 105

Chapter 9. Putting messages on a queue 107
Putting messages on a local queue using the MQPUT call 107

iv MQSeries Application Programming Guide

 Contents

Putting messages on a remote queue . 112
Controlling context information . 113
Putting one message on a queue using the MQPUT1 call 114
Distribution lists . 116
Some cases where the put calls fail . 121

Chapter 10. Getting messages from a queue 123
Getting messages from a queue using the MQGET call 123
The order in which messages are retrieved from a queue 128
Getting a particular message . 137
Type of index . 139
Handling large messages . 140
Waiting for messages . 146
Signaling . 147
Skipping backout . 150
Application data conversion . 152
Browsing messages on a queue . 154
Browsing messages in logical order . 156
Some cases where the MQGET call fails . 159

| Chapter 11. Writing data-conversion exits 161
Invoking the data-conversion exit . 161
Writing a data-conversion exit program . 163
Writing a data-conversion exit program for MQSeries for AS/400 167
Writing a data-conversion exit for MQSeries for OS/2 Warp 168
Writing a data-conversion exit program for MQSeries for OS/390 170
Writing a data-conversion exit for MQSeries for Tandem NSK 171
Writing a data-conversion exit for MQSeries on UNIX systems and Digital

OpenVMS . 172
Writing a data-conversion exit for MQSeries for Windows NT 177

Chapter 12. Inquiring about and setting object attributes 179
Inquiring about the attributes of an object . 180
Some cases where the MQINQ call fails . 181
Setting queue attributes . 182

Chapter 13. Committing and backing out units of work 183
Syncpoint considerations in MQSeries applications 184

| Syncpoints in MQSeries for OS/390 applications 185
Syncpoints in MQSeries for AS/400 applications 188
Syncpoints in CICS for AS/400 applications 189
Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries

for Digital OpenVMS, and MQSeries on UNIX systems 189
Syncpoints in MQSeries for Tandem NSK applications 194
General XA support . 195

Chapter 14. Starting MQSeries applications using triggers 197
What is triggering? . 197
Prerequisites for triggering . 202
Conditions for a trigger event . 204
Controlling trigger events . 208
Designing an application that uses triggered queues 210
Trigger monitors . 212
Properties of trigger messages . 215

 Contents v

 Contents

When triggering does not work . 217

| Chapter 15. Using and writing applications on MQSeries for OS/390 . . 219
| Environment-dependent MQSeries for OS/390 functions 219
| Program debugging facilities . 220
| Syncpoint support . 220
| Recovery support . 220
| The MQSeries for OS/390 interface with the application environment 221
| Writing OS/390 OpenEdition applications . 224

The API-crossing exit for OS/390 . 225
| Writing MQSeries-CICS bridge applications 230

Writing MQSeries-IMS bridge applications . 239
Writing IMS applications using MQSeries . 245

| MQSeries Workflow . 249

| Chapter 16. Object-oriented programming with MQSeries 251
| What is in the MQSeries Object Model? . 251
| Programming language considerations . 253

Part 3. Building an MQSeries application . 255

Chapter 17. Building your application on AIX 259
Preparing C programs . 259
Preparing COBOL programs . 260
Preparing PL/I programs . 261
Preparing CICS programs . 261

Chapter 18. Building your application on AS/400 265
Preparing C programs . 265
Preparing COBOL programs . 265
Preparing RPG programs . 266
AS/400 programming considerations . 266

Chapter 19. Building your application on AT&T GIS UNIX 267
Preparing C programs . 267

Chapter 20. Building your application on Digital OpenVMS 269
Preparing C programs . 269
Preparing COBOL programs . 270

Chapter 21. Building your application on HP-UX 271
Preparing C programs . 271
Preparing COBOL programs . 272
Preparing CICS programs . 273

| Chapter 22. Building your application on OS/390 275
Preparing your program to run . 275
Dynamically calling the MQSeries stub . 279
Debugging your programs . 284

Chapter 23. Building your application on OS/2 Warp 289
Preparing C programs . 289
Preparing COBOL programs . 291

vi MQSeries Application Programming Guide

 Contents

Preparing PL/I programs . 292

Chapter 24. Building your application on SINIX or DC/OSx 293
Preparing C programs . 293
Preparing COBOL programs . 294
Preparing CICS programs . 295
Linking libraries . 296

Chapter 25. Building your application on Sun Solaris 297
Preparing C programs . 297
Preparing COBOL programs . 298
Preparing CICS programs . 299

Chapter 26. Building your application on Tandem NSK 301
Unit of work (transaction) management . 301
Compiling and binding applications . 303
Running applications . 303

| Chapter 27. Building your application on VSE/ESA 305
| Linking library . 305
| Using the batch interface . 305
| Preparing C programs . 305
| Preparing COBOL programs . 305
| Preparing PL/I programs . 305

Chapter 28. Building your application on Windows 307
Linking libraries . 307

| Preparing Visual Basic programs . 307

Chapter 29. Building your application on Windows NT 309
Preparing C programs . 309
Preparing COBOL programs . 311
Preparing PL/I programs . 313

| Preparing Visual Basic programs . 313

| Chapter 30. Using lightweight directory access protocol services with
| MQSeries for Windows NT . 315
| What is a directory service? . 315
| What is LDAP? . 315
| Using LDAP with MQSeries . 316
| LDAP sample program . 317

Part 4. Sample MQSeries programs . 323

| Chapter 31. Sample programs (all platforms except OS/390) 327
Features demonstrated in the sample programs 327
Preparing and running the sample programs 336
The Put sample programs . 342
The Distribution List sample program . 345
The Browse sample programs . 346
The Browser sample program . 347
The Get sample programs . 349
The Reference Message sample programs . 351

 Contents vii

 Contents

The Request sample programs . 359
The Inquire sample programs . 366
The Set sample programs . 367
The Echo sample programs . 369
The Data-Conversion sample program . 370
The Triggering sample programs . 371
Running the samples using remote queues . 373
Database coordination samples . 373
The CICS transaction sample . 379

| TUXEDO samples . 379
Encina sample program . 390
Dead-letter queue handler sample . 391

| The Connect sample program . 391

Chapter 32. Sample programs for MQSeries for OS/390 395
Features demonstrated in the sample applications 395
Preparing and running sample applications for the batch environment 399
Preparing sample applications for the TSO environment 401

| Preparing the sample applications for the CICS environment 403
Preparing the sample application for the IMS environment 407
The Put samples . 408
The Get samples . 411
The Browse sample . 414
The Print Message sample . 416
The Queue Attributes sample . 420
The Mail Manager sample . 421
The Credit Check sample . 430
The Message Handler sample . 443

Part 5. Appendixes . 449

Appendix A. Language compilers and assemblers 453

Appendix B. MQI names in RPG . 457

Appendix C. C language examples . 487
Connecting to a queue manager . 488
Disconnecting from a queue manager . 488
Creating a dynamic queue . 489
Opening an existing queue . 489
Closing a queue . 490
Putting a message using MQPUT . 490
Putting a message using MQPUT1 . 491
Getting a message . 492
Getting a message using the wait option . 492
Getting a message using signaling . 493
Inquiring about the attributes of an object . 494
Setting the attributes of a queue . 495

Appendix D. COBOL examples . 497
Connecting to a queue manager . 498
Disconnecting from a queue manager . 498
Creating a dynamic queue . 499

viii MQSeries Application Programming Guide

 Contents

Opening an existing queue . 500
Closing a queue . 501
Putting a message using MQPUT . 501
Putting a message using MQPUT1 . 502
Getting a message . 503
Getting a message using the wait option . 504
Getting a message using signaling . 505
Inquiring about the attributes of an object . 506
Setting the attributes of a queue . 507

Appendix E. System/390 assembler-language examples 509
Connecting to a queue manager . 510
Disconnecting from a queue manager . 510
Creating a dynamic queue . 511
Opening an existing queue . 512
Closing a queue . 512
Putting a message using MQPUT . 513
Putting a message using MQPUT1 . 513
Getting a message . 514
Getting a message using the wait option . 515
Getting a message using signaling . 516
Inquiring about and setting the attributes of a queue 517

Appendix F. PL/I examples . 519
Connecting to a queue manager . 520
Disconnecting from a queue manager . 520
Creating a dynamic queue . 521
Opening an existing queue . 521
Closing a queue . 522
Putting a message using MQPUT . 522
Putting a message using MQPUT1 . 523
Getting a message . 524
Getting a message using the wait option . 525
Getting a message using signaling . 526
Inquiring about the attributes of an object . 527
Setting the attributes of a queue . 528

Appendix G. MQSeries data definition files 529
C language include files . 530

| Visual Basic module files . 531
COBOL copy files . 532
System/390 assembler-language macros . 535
PL/I include files . 536

Appendix H. List of MQSeries products . 537
Level 1 products . 537
Level 2 products . 537

Appendix I. MQSeries platforms - functional comparisons 539
What is included here . 539
Syncpoint . 540
Triggering . 544
Input . 547
Message properties and protocols . 551

 Contents ix

 Figures

Threading . 555
Security . 556
Object types . 560
Administration . 562
Programming languages . 564
Connection . 566

Appendix J. Notices . 567
Programming interface information . 569
Trademarks . 570

Part 6. Glossary and Index . 571

Glossary of terms and abbreviations . 573

Index . 585

 Figures

1. Message queuing compared with traditional communication 8
2. Representation of a message . 23
3. Group of logical messages . 33
4. Segmented messages . 34
5. How distribution lists work . 117
6. Opening a distribution list in C . 119
7. Opening a distribution list in COBOL . 119
8. Putting a message to a distribution list in C 120
9. Putting a message to a distribution list in COBOL 121

10. Logical order on a queue . 130
11. Physical order on a queue . 131
12. Skipping backout using MQGMO_MARK_SKIP_BACKOUT 151

| 13. Sample JCL used to invoke the CSQUCVX utility 165
14. Flow of application and trigger messages 199
15. Relationship of queues within triggering 201

| 16. Setting of key fields for a single CICS user program in a unit of work, or
| non-conversational 3270 transaction . 235
| 17. Setting of key fields for many CICS user programs in a unit of work . . 236
| 18. Setting of key fields: MQSeries - conversational 3270 transaction . . . 237
| 19. User program abends (only program in the unit of work) 238
| 20. Fragments of JCL to link-edit the object module in the batch
| environment, using single-phase commit 276
| 21. Fragments of JCL to link-edit the object module in the batch
| environment, using two-phase commit 276

22. Fragments of JCL to link-edit the object module in the CICS environment 278
23. Fragments of JCL to link-edit the object module in the IMS environment 279
24. Dynamic linking using COBOL in the batch environment 280
25. Dynamic linking using COBOL in the CICS environment 281
26. Dynamic linking using COBOL in the IMS environment 281
27. Dynamic linking using assembler language in the batch environment . 282

x MQSeries Application Programming Guide

 Figures

28. Dynamic linking using assembler language in the CICS environment . 282
29. Dynamic linking using assembler language in the IMS environment . . 282
30. Dynamic linking using C language in the batch environment 282
31. Dynamic linking using C language in the CICS environment 283
32. Dynamic linking using C language in the IMS environment 283
33. Dynamic linking using PL/I in the batch environment 283
34. Dynamic linking using PL/I in the IMS environment 284
35. Running the reference message samples 353
36. Request and Inquire samples using triggering 362
37. Sample Client/Server (Echo) program flowchart 365
38. The database coordination samples . 374
39. Example of ubbstxcx.cfg file for UNIX systems 385
40. Example of ubbstxcn.cfg file for Windows NT 387
41. Sample TUXEDO makefile for MQSeries for Windows NT 388
42. How TUXEDO samples work together 389
43. Example of a report from the Print Message sample application 417
44. Programs and panels for the TSO versions of the Mail Manager 425

| 45. Programs and panels for the CICS version of the Mail Manager 426
| 46. Example of a panel showing a list of waiting messages 428
| 47. Example of a panel showing the contents of a message 428
| 48. Immediate Inquiry panel for the Credit Check sample application 431

49. Programs and queues for the Credit Check sample application (COBOL
programs only) . 433

| 50. Initial screen for Message Handler sample 444
| 51. Message list screen for Message Handler sample 444
| 52. Chosen message is displayed . 445

53. Using the MQCONN call (C language) 488
54. Using the MQDISC call (C language) . 488
55. Using the MQOPEN call to create a dynamic queue (C language) . . . 489
56. Using the MQOPEN call to open an existing queue (C language) . . . 489
57. Using the MQCLOSE call (C language) 490
58. Using the MQPUT call (C language) . 490
59. Using the MQPUT1 call (C language) . 491
60. Using the MQGET call (C language) . 492
61. Using the MQGET call with the wait option (C language) 492
62. Using the MQGET call with signaling (C language) 493
63. Using the MQINQ call (C language) . 494
64. Using the MQSET call (C language) . 495
65. Using the MQCONN call (COBOL) . 498
66. Using the MQDISC call (COBOL) . 498
67. Using the MQOPEN call to create a dynamic queue (COBOL) 499
68. Using the MQOPEN call to open an existing queue (COBOL) 500
69. Using the MQCLOSE call (COBOL) . 501
70. Using the MQPUT call (COBOL) . 501
71. Using the MQPUT1 call (COBOL) . 502
72. Using the MQGET call (COBOL) . 503
73. Using the MQGET call with the wait option (COBOL) 504
74. Using the MQGET call with signaling (COBOL) 505
75. Using the MQINQ call (COBOL) . 506
76. Using the MQSET call (COBOL) . 507
77. Using the MQCONN call (Assembler language) 510
78. Using the MQDISC call (Assembler language) 510
79. Using the MQOPEN call to create a dynamic queue (Assembler

language) . 511

 Figures xi

 Tables

80. Using the MQOPEN call to open an existing queue (Assembler
language) . 512

81. Using the MQCLOSE call (Assembler language) 512
82. Using the MQPUT call (Assembler language) 513
83. Using the MQPUT1 call (Assembler language) 513
84. Using the MQGET call (Assembler language) 514
85. Using the MQGET call with the wait option (Assembler language) . . . 515
86. Using the MQGET call with signaling (Assembler language) 516
87. Using the MQINQ and MQSET calls (Assembler language) 517
88. Using the MQCONN call (PL/I) . 520
89. Using the MQDISC call (PL/I) . 520
90. Using the MQOPEN call to create a dynamic queue (PL/I) 521
91. Using the MQOPEN call to open an existing queue (PL/I) 521
92. Using the MQCLOSE call (PL/I) . 522
93. Using the MQPUT call (PL/I) . 522
94. Using the MQPUT1 call (PL/I) . 523
95. Using the MQGET call (PL/I) . 524
96. Using the MQGET call with the wait option (PL/I) 525
97. Using the MQGET call with signaling (PL/I) 526
98. Using the MQINQ call (PL/I) . 527
99. Using the MQSET call (PL/I) . 528

 Tables

| 1. Visual Basic equivalents of the C elementary data types 69
2. Environment variable . 94

| 3. Resolving queue names when using MQOPEN 100
4. How queue attributes and options of the MQOPEN call affect access to

queues . 103
5. Using message and correlation identifiers 138

| 6. Using the group identifier . 138
7. Skeleton source files . 164
8. Linking MQSeries for OS/2 Warp with CICS Version 3 applications . . 193
9. Essential Code for CICS applications . 195

| 10. OS/390 environmental features . 219
11. Mapping MQSeries messages to IMS transaction types 241
12. Essential Code for CICS applications (AIX) 261
13. Essential Code for CICS applications (HP-UX) 273
14. Call names for dynamic linking . 280
15. CICS adapter trace entries . 285
16. Essential Code for CICS applications (SINIX) 295
17. Essential Code for CICS applications (Sun Solaris) 299
18. MQSeries on UNIX and Digital OpenVMS sample programs

demonstrating use of the MQI . 328
19. MQSeries for OS/2 Warp and Windows NT sample programs

demonstrating use of the MQI . 330
20. MQSeries for AIX, OS/2 Warp, and Windows NT sample programs

demonstrating use of the MQI . 331
| 21. MQSeries for Windows NT sample programs demonstrating use of the
| MQI . 332

xii MQSeries Application Programming Guide

 Tables

22. MQSeries for AS/400 sample programs demonstrating use of the MQI 333
23. MQSeries for Tandem NSK C and COBOL sample programs

demonstrating use of the MQI . 334
24. MQSeries for Tandem NSK TAL sample programs demonstrating use of

the MQI . 334
| 25. MQSeries for VSE/ESA COBOL sample programs demonstrating use of
| the MQI . 335

26. Where to find the samples for MQSeries on UNIX systems 336
27. Where to find the samples for MQSeries for Digital OpenVMS 337
28. Where to find the samples for MQSeries for OS/2 Warp and MQSeries

for Windows NT . 338
29. Client/server sample program details . 365
30. Source for the distributed queuing exit samples 399
31. Source for the data conversion exit samples (Assembler language only) 399
32. Source and JCL for the Put and Get samples 400
33. Source and JCL for the Browse sample 401
34. Source for the Print Message sample (C language only) 401
35. Source and JCL for the Mail Manager (TSO) sample 402
36. Source for the Message Handler sample 403
37. Source and JCL for the Put and Get samples 404
38. Source for the Queue Attributes sample 405
39. Source and JCL for the Mail Manager (CICS) sample (COBOL only) . 405
40. Source and JCL for the Credit Check CICS sample 406
41. Source and JCL for the Credit Check IMS sample (C only) 408
42. Language compilers and assemblers . 453
43. Names of calls . 457
44. Names of call parameters . 457
45. Data types . 458
46. Names of fields in structures . 458
47. Names of constants . 466
48. C include files for MQSeries . 530

| 49. Visual Basic module files for MQSeries for Windows V2.0 531
| 50. Visual Basic module files for MQSeries for Windows V2.1 531
| 51. Visual Basic module files for MQSeries for Windows NT V5.1 531

52. COBOL copy files . 533
53. System/390 assembler-language macros 535
54. PL/I include files . 536
55. MQSeries products, Level 1 . 537

| 56. MQSeries products, Level 2 . 537
57. Syncpoint support - function summary 540
58. Triggering support - function summary 544
59. Input features - function summary . 547
60. Message properties - function summary 551

| 61. Threading - function summary . 555
62. Security - function summary . 556

| 63. Object types - function summary . 560
64. Administration - function summary . 562
65. Programming languages supported - function summary 564

| 66. Default connection to a queue manager - function summary 566

 Tables xiii

 Tables

xiv MQSeries Application Programming Guide

 About this book

About this book

This book introduces the concepts of messages and queues, and shows you how
to design and write applications that use the services that MQSeries provides.

The IBM MQSeries Level 2 products comprise:

� MQSeries for AIX
� MQSeries for AS/400

(formerly known as MQSeries for OS/400)
| � MQSeries for AT&T GIS UNIX1

| � MQSeries for Digital OpenVMS
| � MQSeries for HP-UX
| � MQSeries for OS/390
| (formerly known as MQSeries for MVS/ESA)

� MQSeries for OS/2 Warp
| � MQSeries for SINIX and DC/OSx
| � MQSeries for Sun Solaris

� MQSeries for Tandem NonStop Kernel
| � MQSeries for VSE/ESA

� MQSeries for Windows
� MQSeries for Windows NT

They are referred to in this book collectively as MQSeries. They provide
application programming services that allow a new style of programming. This style
enables you to write applications in which the constituent programs communicate
with each other using message queues.

| For a full description of the MQSeries programming interface, see the MQSeries
| Application Programming Reference manual for your platform. The manuals are:

| � MQSeries Application Programming Reference manual, SC33-1673
| � MQSeries for AS/400 Application Programming Reference (RPG), SC33-1957

| For information on the use of C++, see the MQSeries Using C++ book.

For information on the MQSeries Level 1 products, see the books listed in
| “MQSeries Level 1 product publications” on page xxii. For a functional comparison
| of Level 1 and Level 2 MQSeries products, see the MQSeries Planning Guide.

In this book, references to “MQSeries on UNIX systems” include:

| IBM MQSeries for AIX Version 5.1
IBM MQSeries for AT&T GIS UNIX Version 2.2

| IBM MQSeries for HP-UX Version 5.1
IBM MQSeries for SINIX and DC/OSx Version 2.2

| IBM MQSeries for Sun Solaris Version 5.1

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

 Copyright IBM Corp. 1993,1999 xv

 About this book

The term “MQSeries Version 5 products” applies to the following MQSeries
products:

| IBM MQSeries for AIX Version 5.1
| IBM MQSeries for HP-UX Version 5.1
| IBM MQSeries for OS/2 Warp Version 5.1
| IBM MQSeries for Sun Solaris Version 5.1
| IBM MQSeries for Windows NT Version 5.1

| IBM ships sample programs with IBM MQSeries which are explained in Part 4,
| “Sample MQSeries programs” on page 323. You may find it useful to refer to

these.

Who this book is for
This book is for the designers of applications that use message queuing
techniques, and for the programmers who have to implement those designs.

What you need to know to understand this book
| To write message queuing applications using MQSeries, you need to know how to
| write programs in at least one of the programming languages that MQSeries
| supports. Appendix A, “Language compilers and assemblers” on page 453
| contains details of supported compilers and assemblers listed by MQSeries
| platform.

If the applications you are writing will run within a CICS or IMS system, you
must also be familiar with CICS or IMS, and their application programming
interfaces.

To understand this book, you do not need to have written message queuing
programs before.

How to use this book
This book contains guidance information to help you design an application, and
procedural information to help you to write an application.

The book is divided into five parts:

Part 1, “Designing applications that use MQSeries” on page 1
Introduces the message queuing style of application design, describes
MQSeries messages and queues, and shows how to design a message
queuing application.

Part 2, “Writing an MQSeries application” on page 61
Describes how to use the IBM Message Queue Interface (MQI) to write
the programs that comprise a message queuing application. The
chapters guide you through the coding of each MQI call, showing you
what information to supply as input and what returns to expect. These
chapters first describe simple uses of the MQI calls, then go on to
describe how to use all the features of each call.

Read Part 1, “Designing applications that use MQSeries” on page 1 to
understand the concepts involved when designing MQSeries

xvi MQSeries Application Programming Guide

 About this book

applications. The second part is self-contained: use an individual
chapter when you are performing the task described in it.

Part 3, “Building an MQSeries application” on page 255
Explains how to build your MQSeries application on each platform.

Part 4, “Sample MQSeries programs” on page 323
Lists and explains how the sample programs work, for all platforms.

Part 5, “Appendixes” on page 449
Contains examples of how to use the MQI calls in each of the
programming languages supported by MQSeries.

Appearance of text in this book
This book uses the following type style:

CompCode Example of the name of a parameter of a call, or the attribute
of an object

Terms used in this book
| In the body of this book, the following shortened names are used for these products
| and qualifier:

CICS
| CICS for AS/400, CICS for MVS/ESA, CICS for VSE/ESA, CICS Transaction
| Server for OS/2, CICS Transaction Server for OS/390, TXSeries for AIX,
| TXSeries for HP-UX, TXSeries for Sun Solaris, and TXSeries for Windows NT
| products.

IMS
The IMS/ESA product.

MQSeries
| MQSeries for AIX, MQSeries for AS/400, MQSeries for AT&T GIS UNIX,
| MQSeries for Digital OpenVMS, MQSeries for HP-UX, MQSeries for OS/2
| Warp, MQSeries for OS/390, MQSeries for SINIX and DC/OSx, MQSeries for
| Sun Solaris, MQSeries for Tandem NSK, MQSeries for VSE/ESA, MQSeries
| for Windows, and MQSeries for Windows NT.

MQSeries on UNIX systems
MQSeries for AIX, MQSeries for AT&T GIS UNIX, MQSeries for HP-UX,

| MQSeries for SINIX and DC/OSx, and MQSeries for Sun Solaris.

| OS/390
| The OS/390 System Product.

| thlqual
| The high-level qualifier of the installation library on OS/390.

 About this book xvii

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2

| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1

� MQSeries for SINIX and DC/OSx V2.2
| � MQSeries for Sun Solaris V5.1

� MQSeries for Tandem NonStop Kernel V2.2
| � MQSeries for VSE/ESA V2.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

| � MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xxii. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

xviii MQSeries Application Programming Guide

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as

| security, recovery and restart, transactional support, problem determination, and the
| dead-letter queue handler. It also includes the syntax of the MQSeries control

commands.

This book applies to the following MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book xix

 MQSeries publications

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1

| � Windows 95 and Windows 98

| MQSeries Using Java
| MQSeries Using Java, SC34-5456, provides both guidance and reference
| information for users of the MQSeries Bindings for Java and the MQSeries Client
| for Java. MQSeries Java is supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| MQSeries Administration Interface Programming Guide and Reference
| The MQSeries Administration Interface Programming Guide and Reference,
| SC34-5390, provides information for users of the MQAI. The MQAI is a
| programming interface that simplifies the way in which applications manipulate
| Programmable Command Format (PCF) messages and their associated data
| structures.

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

| MQSeries Queue Manager Clusters
| MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
| explains the concepts and terminology and shows how you can benefit by taking
| advantage of clustering. It details changes to the MQI, and summarizes the syntax
| of new and changed MQSeries commands. It shows a number of examples of
| tasks you can perform to set up and maintain clusters of queue managers.

xx MQSeries Application Programming Guide

 MQSeries publications

| This book applies to the following MQSeries products only:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for OS/390 V2.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

| MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

| MQSeries for Digital UNIX

| MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
| GC34-5483

MQSeries for HP-UX

| MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

| MQSeries for OS/2 Warp

| MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

| MQSeries for OS/390

| MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
| GC34-5377

| MQSeries for OS/390 Version 2 Release 1 Program Directory

| MQSeries for OS/390 Version 2 Release 1 System Management Guide,
| SC34-5374

| MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

| MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
| GC34-5376

MQSeries link for R/3

| MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

 About this book xxi

 MQSeries publications

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris

| MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

| MQSeries for VSE/ESA

| MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
| GC34-5365

| MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
| GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

| MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
| MQSeries for Windows NT Using the Component Object Model Interface,
| SC34-5387
| MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

xxii MQSeries Application Programming Guide

 MQSeries publications

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1 (compiled HTML)
| � MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

| Portable Document Format (PDF)
| PDF files can be viewed and printed using the Adobe Acrobat Reader.

| If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
| information about the platforms on which the Acrobat Reader is supported, visit the
| Adobe Systems Inc. Web site at:

| http://www.adobe.com/

| PDF versions of relevant MQSeries books are supplied with these MQSeries
| products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1
| � MQSeries link for R/3 V1.2

| PDF versions of all current MQSeries books are also available from the MQSeries
| product family Web site at:

| http://www.software.ibm.com/ts/mqseries/

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

 About this book xxiii

 MQSeries on the Internet � Related publications

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

 Related publications
This section describes the documentation available for some related products and
issues mentioned in this book.

 CICS
| For information about those aspects of CICS Transaction Server for OS/390 that
| this book refers to, see the following books:

CICS Application Programming Reference, SC33-1688
CICS Customization Guide, SC33-1683
CICS-Supplied Transactions, SC33-1686
CICS System Definition Guide, SC33-1682

| For information about those aspects of CICS for MVS/ESA Version 4.1 that this
| book refers to, see the following books:

| CICS for MVS/ESA V4.1 Application Programming Reference, SC33-1170
| CICS for MVS/ESA V4.1 Customization Guide, SC33-1165
| CICS for MVS/ESA V4.1 CICS-Supplied Transactions, SC33-1168
| CICS for MVS/ESA V4.1 System Definition Guide, SC33-1164

| For information about CICS programming on other platforms, see the following
| books:

CICS on Open Systems Application Programming Guide, SC33-1568-00
CICS for OS/2 V2.0.1 Application Programming, SC33-0883
Transaction Server for OS/2 Warp, V4 Application Programming, SC33-1585
CICS for AS/400 Application Programming Guide, SC33-1386
CICS for Windows NT V2.0 Application Programming, SC33-1425
Transaction Server for Windows NT, V4 Application Programming Guide,
SC33-1888

xxiv MQSeries Application Programming Guide

 Related publications

 IMS
For information about those aspects of IMS that this book refers to, see the
following books:

IMS/ESA Version 4 Application Programming: DL/I Calls, SC26-3062
IMS/ESA Version 4 Application Programming: Design Guide, SC26-3066
IMS/ESA Version 5 Application Programming: Database Manager, SC26-8015
IMS/ESA Version 5 Application Programming: Design Guide, SC26-8016
IMS/ESA Version 5 Application Programming: Transaction Manager,
SC26-8017

| IMS/ESA Version 5 Open Transaction Manager Access Guide, SC26-8026

 MVS/ESA
For information about those aspects of MVS/ESA that this book refers to, see the
following book:

MVS/ESA Application Development Guide: Assembler Language Programs,
GC28-1644

 Design
For information on how to design panel-driven application interfaces, see the
following book:

Systems Application Architecture, Common User Access: Basic Interface
Design Guide, SC26-4583

 C
For information about C programming, see the following books:

Guide to Tools for Programming in C, U6296-J-Z145-2-7600
SNI Programmer, U6401-J-Z145-3-7600

| OS/390 C/C++ Programming Guide, SC09-2362

 C++
For information about C++ programming, see the following books:

| C Set++ for AIX: User’s Guide, SC09-1968
VisualAge C++ for OS/2 User’s Guide, S25H-6961
VisualAge C++ for OS/2 Programming Guide, S25H-6958
VisualAge for C++ for Windows User’s Guide, S33H-5031
VisualAge for C++ for Windows Programming Guide, S33H 5032
VisualAge for C++ for AS/400 : C++ User’s Guide, SC09-2416

| OS/390 C/C++ Programming Guide, SC09-2362

 COBOL
For information about COBOL programming that this book refers to, see the
following books:

COBOL V3.2 SINIX pocket guide, U21709-J-Z145-2-7600
IBM COBOL Set for AIX Programming Guide, SC26-8423
IBM COBOL for MVS and VM, IBM VisualAge for COBOL for OS/2, IBM
COBOL Set for AIX Language Reference, SC26-4769

 About this book xxv

 Related publications

| LDAP
| For information about LDAP, see the following redbook:

| Understanding LDAP, SG24-4986

xxvi MQSeries Application Programming Guide

 Summary of changes

Summary of Changes

Changes for this edition are marked with the | character in the left-hand margin.

Changes for this edition (SC33-0807-09)
| This edition of MQSeries Application Programming Guide applies to these new
| versions and releases of MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for AS/400 V4R2M1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for VSE/ESA V2.1
| � MQSeries for Windows NT V5.1

| Major new function supplied with each of these MQSeries products is summarized
| here.

| MQSeries for OS/390 V2.1
| MQSeries for OS/390 V2.1 is a new product for the OS/390 platform that offers
| functional enhancements over MQSeries for MVS/ESA V1.2. Those functional
| enhancements specific to MQSeries for OS/390 are summarized here. As a
| general rule, other function described in this book as supported by MQSeries for
| OS/390 is also supported by MQSeries for MVS/ESA V1.2.

| MQSeries queue manager clusters
| MQSeries queue managers can be connected to form a cluster of queue
| managers. Within a cluster, queue managers can make the queues they host
| available to every other queue manager. Any queue manager can send a
| message to any other queue manager in the same cluster without the need for
| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| � Fewer system administration tasks
| � Increased availability
| � Workload balancing

| Clusters are supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

| OS/390 Automatic Restart Manager (ARM)
| If an MQSeries queue manager or channel initiator fails, the OS/390 Automatic
| Restart Manager (ARM) can restart it automatically on the same OS/390 image.

 Copyright IBM Corp. 1993,1999 xxvii

 Summary of changes

| If the OS/390 image itself fails, ARM can restart that image’s subsystems and
| applications automatically on another OS/390 image in the sysplex, provided that
| the LU 6.2 communication protocol is being used. By removing the need for
| operator intervention, OS/390 ARM improves the availability of your MQSeries
| subsystems.

| OS/390 Resource Recovery Services (RRS)
| MQSeries Batch and TSO applications can participate in two-phase commit
| protocols with other RRS-enabled products, such as DB2, coordinated by the
| OS/390 RRS facility.

| MQSeries Workflow
| MQSeries Workflow allows applications on various network clients to perform
| business functions through System/390 by driving one or more CICS, IMS, or
| MQSeries applications. This is achieved through format, rule, and table
| definition, rather than through application programming.

| Support for C ++
| MQSeries for OS/390 V2.1 applications can be written in C++.

| Euro support
| MQSeries supports new and changed code pages that use the euro currency
| symbol. Details of code pages that include the euro symbol are provided in the
| MQSeries Application Programming Reference book.

| MQSeries V5.1
| The MQSeries Version 5 Release 1 products are:

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for OS/2 Warp V5.1
| MQSeries for Sun Solaris V5.1
| MQSeries for Windows NT V5.1

| The following new function is provided in all of the V5.1 products:

| MQSeries queue manager clusters
| MQSeries queue managers can be connected to form a cluster of queue
| managers. Within a cluster, queue managers can make the queues they host
| available to every other queue manager. Any queue manager can send a
| message to any other queue manager in the same cluster without the need for
| explicit channel definitions, remote queue definitions, or transmission queues for
| each destination. The main benefits of MQSeries clusters are:

| � Fewer system administration tasks
| � Increased availability
| � Workload balancing

| Clusters are supported by these MQSeries products:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| See the book MQSeries Queue Manager Clusters, SC34-5349, for a complete
| description of this function.

xxviii MQSeries Application Programming Guide

 Summary of changes

| MQSeries Administration Interface (MQAI)
| The MQSeries Administration Interface is an MQSeries programming interface
| that simplifies manipulation of MQSeries PCF messages for administrative tasks.
| It is described in a new book, MQSeries Administration Interface Programming
| Guide and Reference, SC34-5390.

| Support for Windows 98 clients
| A Windows 98 client can connect to any MQSeries V5.1 server.

| Message queue size
| A message queue can be up to 2 GB.

| Controlled, synchronous shutdown of a queue manager
| A new option has been added to the endmqm command to allow controlled,
| synchronous shutdown of a queue manager.

| Java support
| The MQSeries Client for Java and MQSeries Bindings for Java are provided with
| all MQSeries V5.1 products. The client, bindings, and common files have been
| packaged into .jar files for ease of installation.

| Euro support
| MQSeries supports new and changed code pages that use the euro currency
| symbol. Details of code pages that include the euro symbol are provided in the
| MQSeries Application Programming Reference book.

| Conversion of the EBCDIC new-line character
| You can control the conversion of EBCDIC new-line characters to ensure that
| data transmitted from EBCDIC systems to ASCII systems and back to EBCDIC is
| unaltered by the ASCII conversion.

| Client connections by way of MQCONNX
| A client application can specify the definition of the client-connection channel at
| run time in the MQCNO structure of the MQCONNX call.

| Additional new function in MQSeries for AIX V5.1
| � The UDP transport protocol is supported.
| � Sybase databases can participate in global units of work.
| � Multithreaded channels are supported.

| Additional new function in MQSeries for HP-UX V5.1
| � MQSeries for HP-UX V5.1 runs on both HP-UX V10.20 and HP-UX V11.0.
| � Multithreaded channels are supported.
| � Both HP-UX kernel threads and DCE threads are supported.

| Additional new function in MQSeries for OS/2 Warp V5.1
| OS/2 high memory support is provided.

| Additional new function in MQSeries for Sun Solaris V5.1
| � MQSeries for Sun Solaris V5.1 runs on both Sun Solaris V2.6 and Sun Solaris
| 7.

| � Sybase databases can participate in global units of work.

| � Multithreaded channels are supported.

 Summary of Changes xxix

 Summary of changes

| Additional new function in MQSeries for Windows NT V5.1
| MQSeries for Windows NT V5.1 is part of the IBM Enterprise Suite for Windows
| NT. New function in this release includes:

| � Close integration with Microsoft Windows NT Version 4.0, including
| exploitation of extra function provided by additional Microsoft offerings. The
| main highlights are:

| – Graphical tools and applications for managing, controlling, and exploring
| MQSeries:

| - MQSeries Explorer—a snap-in for the Microsoft management console
| (MMC) that allows you to query, change, and create the local, remote,
| and cluster objects across an MQSeries network.

| - MQSeries Services—an MMC snap-in that controls the operation of
| MQSeries components, either locally or remotely within the Windows
| NT domain. It monitors the operation of MQSeries servers and
| provides extensive error detection and recovery functions.

| - MQSeries API Exerciser—a graphical application for exploring the
| messaging and queuing programming functions that MQSeries
| provides. It can also be used in conjunction with the MQSeries
| Explorer to gain a deeper understanding of the effects of MQSeries
| operations on objects and messages.

| - MQSeries Postcard—a sample application that can be used to verify an
| MQSeries installation, for either local or remote messaging.

| – Support for the following features of Windows NT has been added:

| - Windows NT performance monitor—used to access and display
| MQSeries information, such as the current depth of a queue and the
| rate at which message data is put onto and taken off queues.

| - ActiveDirectory—programmable access to MQSeries objects is
| available through the Active Directory Service Interfaces (ADSI).

| - Windows NT user IDs—previous MQSeries restrictions on the validity of
| Windows NT user IDs have been removed. All valid Windows NT user
| IDs are now valid identifiers for MQSeries operations. MQSeries uses
| the associated Windows NT Security Identifier (SID) and the Security
| Account Manager (SAM). The SID allows the MQSeries Object
| Authority Manager (OAM) to identify the specific user for an
| authorization request.

| - Windows NT registry—now used to hold all configuration and related
| data. The contents of any configuration (.INI) files from previous
| MQSeries installations of MQSeries for Windows NT products are
| migrated into the registry; the .INI files are then deleted.

| - A set of Component Object Model (COM) classes, which allow ActiveX
| applications to access the MQSeries Message Queue Interface (MQI)
| and the MQSeries Administration Interface (MQAI).

| – An online Quick Tour of the product concepts and functions.

| – An online Information Center that gives you quick access to task help
| information, reference information, and Web-based online books and home
| pages.

xxx MQSeries Application Programming Guide

 Summary of changes

| – Simplified installation of MQSeries for Windows NT, with default options
| and automatic configuration.

| � Support for web-based administration of an MQSeries network, which provides
| a simplified way of using the MQSC commands and scripts and allows you to
| create powerful macros for standard administration tasks.

| � Support for MQSeries LotusScript Extension (MQLSX), which allows Lotus
| Notes applications that are written in LotusScript to communicate with
| applications that run in non-Notes environments.

| � Support for Microsoft Visual Basic for Windows Version 5.0.

| � Performance improvements over the MQSeries for Windows NT Version 5.0
| product.

| � Information and examples on how MQSeries applications can interface with and
| exploit the lightweight directory access protocol (LDAP) directories.

| � Support for Sybase participation in global units of work.

| MQSeries for VSE/ESA V2.1
| MQSeries for VSE/ESA joins the MQSeries Level 2 products. New function in
| Version 2 Release 1 of MQSeries for VSE/ESA includes:

| � Transmission Control Protocol/Internet Protocol (TCP/IP) is supported.

| � MQSeries clients can connect to the MQSeries for VSE/ESA server using the
| TCP/IP protocol. (Note, however, that there is no MQSeries for VSE/ESA
| client.)

| � Messages may be up to 4 MB in size.

| � A user-selected, coded character set ID (CCSID) can be specified for all
| messages written locally.

| � Messages sent to remote, non-VSE/ESA systems can be flagged as
| nonpersistent.

| � Confirmation-on-delivery (COD) and confirmation-on-arrival (COA) messages
| are supported.

| � A message priority, in the range 0 through 9, can be specified on MQPUT and
| MQPUT1 calls.

| � Automated reorganization of queue storage is supported.

| � Messages can be sent and received in batches of a user-specified size.

| � Support has been added for the C and PL/I application-programming
| languages. Copy books, macros, and include files are provided for each
| language.

| � Messages can be retrieved from queues by message identifier (MsgID) and
| correlation identifier (CorrelId).

| � Message Channel Agents (MCAs) record more diagnostic information in the
| SYSTEM.LOG when communications failures occur.

 Summary of Changes xxxi

 Summary of changes

| MQSeries for AS/400 V4R2M1
| New function in MQSeries for AS/400 V4R2M1 includes:

| � Support for the MQSeries dead-letter queue handler
| � Improvements to installation and migration procedures

| Changes for the ninth edition (SC33-0807-08)
Changes for edition number SC33-0807-08 include:

� A new release of:

– MQSeries for AS/400 V4R2

� Inclusion of a new MQSeries product:

– MQSeries for Tandem NonStop Kernel V2.2

| Changes for the eighth edition (SC33-0807-07)
Changes for edition number SC33-0807-07 include:

� New releases of the following MQSeries products:

– MQSeries for AIX V5.0
– MQSeries for HP-UX V5.0
– MQSeries for OS/2 Warp V5.0
– MQSeries for Sun Solaris V5.0
– MQSeries for Windows NT V5.0
– MQSeries for OS/400 V3R7
– MQSeries for MVS/ESA V1.2

� Inclusion of new MQSeries products:

– MQSeries for Digital OpenVMS V2.2
– MQSeries for Windows V2.0
– MQSeries for Windows V2.1

� Support of programming languages:

 – C++
– PL/I on MQSeries for AIX, OS/2 Warp, and Windows NT

 � New function:

 – Distribution lists
– Handling large messages
– External resource managers
– Report options for application acknowledgement
– Indexed queues (MQSeries for OS/390 only)

� Enhancement of existing function:

– Change in triggering rules
– Lotus Notes link with AIX
– Support for Encina by MQSeries on Windows NT
– Support for signaling on MQSeries for Windows V2.1

xxxii MQSeries Application Programming Guide

Part 1. Designing applications that use MQSeries

Chapter 1. Introduction to message queuing 3
What is message queuing? . 3
What is a message? . 4

Message descriptor . 4
Message channel agent . 4

What is a message queue? . 4
What is a queue manager? . 5

| What is a cluster? . 6
What is an MQSeries client? . 6
Main features of message queuing . 7

MQSeries clients and servers . 10
Benefits of message queuing to the application designer and developer 10
What can you do with MQSeries products? . 10

MQSeries for OS/390 . 10
| MQSeries for non-OS/390 platforms . 12

| Chapter 2. Overview of application design 13
Planning . 13
Using MQSeries objects . 14
Designing your messages . 15
MQSeries techniques . 16

Waiting for messages . 16
Correlating replies . 16
Setting and using context information . 16
Starting MQSeries programs automatically 17
Generating MQSeries reports . 17

| Clusters and message affinities . 17
Application programming . 18

Call interface . 18
Design for performance - hints and tips . 18
Programming platforms . 19
Applications for more than one platform . 21

Testing MQSeries applications . 21

Chapter 3. MQSeries messages . 23
| Message descriptor . 23

Types of message . 24
Datagrams . 24
Request messages . 24
Reply messages . 25
Report messages . 25
Reports and segmented messages . 27

| Format of message control information and message data 29
Format of message control information . 30
Format of message data . 30
Application data conversion . 31

Message priorities . 32
Message groups . 33
Message persistence . 34
Selecting messages from queues . 35

 Copyright IBM Corp. 1993,1999 1

Messages that fail to be delivered . 35
Messages that are backed out . 35
Reply-to queue and queue manager . 36
Message context . 37

Identity context . 37
Origin context . 38

Chapter 4. MQSeries objects . 39
Queue managers . 39

Attributes of queue managers . 39
| Queue managers and workload management 40

Queues . 40
Types of queue . 41
Attributes of queues . 43
Remote queues . 43
Alias queues . 44
Model queues . 45
Dynamic queues . 45
Transmission queues . 47
Initiation queues . 47
Dead-letter (undelivered-message) queues 48
System command queues . 48
System default queues . 48

Namelists . 48
| Process definitions . 49

Channels . 49
Storage classes . 49
Rules for naming MQSeries objects . 49

Queue names . 50
Process definition and namelist names . 51
Channel names . 51
Reserved object names . 51

Chapter 5. Handling program errors . 53
Locally determined errors . 53

Failure of an MQI call . 53
System interruptions . 54
Messages containing incorrect data . 55

Using report messages for problem determination 55
Remotely determined errors . 56

Problems delivering a message . 57
Using the dead-letter (undelivered-message) queue 57

2 MQSeries Application Programming Guide

 Introduction � Definition of terms

Chapter 1. Introduction to message queuing

The MQSeries products enable programs to communicate with one another across
a network of unlike components – processors, operating systems, subsystems and
communication protocols – using a consistent application programming interface.

| Applications designed and written using this interface are known as message
| queuing applications, as they use the messaging and queuing style:

| Messaging Programs communicate by sending each other data in messages
| rather than calling each other directly.

| Queuing Messages are placed on queues in storage, allowing programs to
| run independently of each other, at different speeds and times, in
| different locations, and without having a logical connection
| between them.

What is message queuing?
Message queuing has been used in data processing for many years. It is most
commonly used today in electronic mail. Without queuing, sending an electronic
message over long distances requires every node on the route to be available for
forwarding messages, and the addressees to be logged on and conscious of the
fact that you are trying to send them a message. In a queuing system, messages
are stored at intermediate nodes until the system is ready to forward them. At their
final destination they are stored in an electronic mailbox until the addressee is
ready to read them.

Even so, many complex business transactions are processed today without
queuing. In a large network, the system might be maintaining many thousands of
connections in a ready-to-use state. If one part of the system suffers a problem,
many parts of the system become unusable.

You can think of message queuing as being electronic mail for programs. In a
message queuing environment, each program from the set that makes up an
application suite is designed to perform a well-defined, self-contained function in
response to a specific request. To communicate with another program, a program
must put a message on a predefined queue. The other program retrieves the
message from the queue, and processes the requests and information contained in
the message. So message queuing is a style of program-to-program
communication.

Queuing is the mechanism by which messages are held until an application is
ready to process them. Queuing allows you to:

� Communicate between programs (which may each be running in different
environments) without having to write the communication code.

� Select the order in which a program processes messages.

� Balance loads on a system by arranging for more than one program to service
a queue when the number of messages exceeds a threshold.

� Increase the availability of your applications by arranging for an alternative
system to service the queues if your primary system is unavailable.

 Copyright IBM Corp. 1993,1999 3

 Definition of terms

What is a message?
In message queuing, a message is simply a collection of data sent by one program
and intended for another program.

MQSeries defines four types of message:

Datagram A simple message for which no reply is expected
Request A message for which a reply is expected
Reply A reply to a request message
Report A message that describes an event such as the occurrence of an

error

See “Types of message” on page 24 for more information about these messages.

 Message descriptor
An MQSeries message consists of control information and application data. The
control information is defined in a message descriptor structure (MQMD) and
contains such things as:

� The type of the message
� An identifier for the message
� The priority for delivery of the message

The structure and content of the application data is determined by the participating
programs, not by MQSeries.

Message channel agent
A message channel agent moves messages from one queue manager to another.
References are made to them in this book when dealing with report messages and

| you will need to consider them when designing your application. See “Writing your
| own message channel agents” and Chapter 35, “Channel-exit programs” in the
| MQSeries Intercommunication book for more information.

What is a message queue?
| A message queue, known simply as a queue, is a named destination to which
| messages can be sent. Messages accumulate on queues until they are retrieved

by programs that service those queues.

Queues reside in, and are managed by, a queue manager (see “What is a queue
manager?” on page 5). The physical nature of a queue depends on the operating
system on which the queue manager is running. A queue can either be a volatile
buffer area in the memory of a computer, or a data set on a permanent storage
device (such as a disk). The physical management of queues is the responsibility
of the queue manager and is not made apparent to the participating application
programs.

Programs access queues only through the external services of the queue manager.
They can open a queue, put messages on it, get messages from it, and close the
queue. They can also set, and inquire about, the attributes of queues.

4 MQSeries Application Programming Guide

 Definition of terms

What is a queue manager?
A queue manager is a system program that provides queuing services to
applications. It provides an application programming interface so that programs
can put messages on, and get messages from, queues. A queue manager
provides additional functions so that administrators can create new queues, alter
the properties of existing queues, and control the operation of the queue manager.

For MQSeries message queuing services to be available on a system, there must
be a queue manager running:

| � On OS/390, OS/2, Windows NT, Digital OpenVMS, and UNIX systems, you can
| have more than one queue manager running on a single system (for example,
| to separate a test system from a “live” system). To an application, each queue
| manager is identified by a connection handle (Hconn).

| � On the AS/400, VSE/ESA, and Windows platforms, you can have only one
| queue manager running on a single system. Hconn is still used, but only to

give compatibility with other MQSeries platforms.

Many different applications can make use of the queue manager’s services at the
same time and these applications can be entirely unrelated. For a program to use
the services of a queue manager, it must establish a connection to that queue
manager.

For applications to be able to send messages to applications that are connected to
other queue managers, the queue managers must be able to communicate among
themselves. MQSeries implements a store-and-forward protocol to ensure the safe
delivery of messages between such applications.

 Chapter 1. Introduction to message queuing 5

 Definition of terms

| What is a cluster?
| A cluster is a network of queue managers that are logically associated in some
| way. Clustering is available to queue managers on the following platforms:

| � MQSeries for AIX V5.1
| � MQSeries for HP-UX V5.1
| � MQSeries for OS/2 Warp V5.1
| � MQSeries for OS/390 V2.1
| � MQSeries for Sun Solaris V5.1
| � MQSeries for Windows NT V5.1

| In a traditional MQSeries network using distributed queuing, every queue manager
| is independent. If one queue manager needs to send messages to another it must
| have defined a transmission queue, a channel to the remote queue manager, and a
| remote queue definition for every queue to which it wants to send messages.

| If you group queue managers in a cluster, the queue managers can make the
| queues that they host available to every other queue manager in the cluster. Then,
| assuming you have the necessary network infrastructure in place, any queue
| manager can send a message to any other queue manager in the same cluster
| without the need for explicit channel definitions, remote queue definitions, or
| transmission queues.

| There are two quite different reasons for using clusters: to reduce system
| administration and to improve availability and workload balancing.

| As soon as you establish even the smallest cluster you will benefit from simplified
| system administration. Queue managers that are part of a cluster need fewer
| definitions and so the risk of making an error in your definitions is reduced.

| For details of workload balancing see “Queue managers and workload
| management” on page 40 and Chapter 5, “Using clusters for workload
| management” in the MQSeries Queue Manager Clusters book.

| For details of all aspects of clustering, see the MQSeries Queue Manager Clusters
| book, SC34-5349.

What is an MQSeries client?
An MQSeries client is an independently installable component of an MQSeries
product. It allows you to run MQSeries applications, by means of a
communications protocol, to interact with one or more MQI servers on other
platforms and to connect to their queue managers.

| For full details on how to install the MQSeries client component and use the
| environment, see Chapter 3, “Installing MQSeries client components from Version
| 5.1 products” or Chapter 4, “Installing MQSeries clients with non-Version 5
| products” in the MQSeries Clients book.

6 MQSeries Application Programming Guide

Main features of message queuing
The main features of applications that use message queuing techniques are:

� There are no direct connections between programs.
| � Communication between programs can be time-independent.

� Work can be carried out by small, self-contained programs.
� Communication can be driven by events.
� Applications can assign a priority to a message.

 � Security.
 � Syncpoint support.
 � Recovery support.

No direct connections between programs
Message queuing is a technique for indirect program-to-program
communication. It can be used within any application where programs
communicate with each other. Communication occurs by one program putting
messages on a queue (owned by a queue manager) and another program
getting the messages from the queue.

Programs can get messages that were put on a queue by other programs. The
other programs can be connected to the same queue manager as the receiving
program, or to another queue manager. This other queue manager might be on
another system, a different computer system, or even within a different business
or enterprise.

There are no physical connections between programs that communicate using
message queues. A program sends messages to a queue owned by a queue
manager, and another program retrieves messages from the queue (see
Figure 1 on page 8).

 Chapter 1. Introduction to message queuing 7

P r o g r a m A P r o g r a m B

T r a d i t io n a l c o m m u n ic a t io n b e t w e e n p r o g r a m s

C o m m s c o d e C o m m s c o d e

N e t w o r k in g s o f t w a r e

P r o g r a m BP r o g r a m A

M Q S e r ie s

C o m m s c o d e

(Q u e u e M a n a g e r)

C o m m u n ic a t io n b y m e s s a g e q u e u in g

N e t w o r k in g s o f t w a r e

Figure 1. Message queuing compared with traditional communication

As with electronic mail, the individual messages that may be part of a
transaction, travel through a network on a store-and-forward basis. If a link
between nodes fails, the message is kept until the link is restored, or the
operator or program redirects the message.

The mechanism by which a message moves from queue to queue is hidden
from the programs. Therefore the programs are simpler.

Time-independent communication
Programs requesting others to do work do not have to wait for the reply to a
request. They can do other work, and process the reply either when it arrives
or at a later time. When writing a messaging application, you need not know (or
be concerned) when a program sends a message, or when the target is able to
receive the message. The message is not lost; it is retained by the queue
manager until the target is ready to process it. The message stays on the
queue until it is removed by a program.

8 MQSeries Application Programming Guide

Small programs
Message queuing allows you to exploit the advantages of using small,
self-contained programs. Instead of a single, large program performing all the
parts of a job sequentially, you can spread the job over several smaller,
independent programs. The requesting program sends messages to each of
the separate programs, asking them to perform their function; when each
program is complete, the results are sent back as one or more messages.

Event-driven processing
Programs can be controlled according to the state of queues. For example, you
can arrange for a program to start as soon as a message arrives on a queue, or
you can specify that the program does not start until there are, for example, 10
messages above a certain priority on the queue, or 10 messages of any priority
on the queue.

Message priority
A program can assign a priority to a message when it puts the message on a
queue. This determines the position in the queue at which the new message is
added.

Programs can get messages from a queue either in the order in which the
messages appear in the queue, or by getting a specific message. (A program
may want to get a specific message if it is looking for the reply to a request it
sent earlier.)

Security
Authorization checks are carried out on each resource, using the tables that are
set up and maintained by the MQSeries administrator.

� RACF or other external security managers may be used within MQSeries
for OS/390.

� Native OS/400 is used within MQSeries for AS/400.

� There is no authorization checking within MQSeries for OS/2 Warp;
however, an interface is provided to enable you to build and install your
own.

| � Within MQSeries on UNIX systems, Digital OpenVMS, Tandem NonStop
| Kernel, and Windows NT, a security manager, the Object Authority Manager
| (OAM), is provided as an installable service. By default, the OAM is active.

| � On VSE/ESA, security is provided by CICS.

Syncpoint support
The synchronization of the start and end of units of work is fully supported as an
option on each MQGET/MQPUT, allowing the results of the call to be committed
or rolled back. Syncpoint support operates either internally or externally to
MQSeries depending on the form of syncpoint coordination selected for the
application.

Recovery support
| For recovery to be possible, all persistent MQSeries updates are logged.

Hence, in the event that recovery is necessary, all persistent messages will be
restored, all in-flight transactions will be rolled back and any syncpoint commit
and backouts will be handled in the normal way of the syncpoint manager in
control. For more information on persistent messages, see “Message
persistence” on page 34.

 Chapter 1. Introduction to message queuing 9

 Benefits of message queuing � Uses of MQSeries

MQSeries clients and servers
A server application will not have to be changed to be able to support additional
MQSeries clients on new platforms.

Similarly, the MQSeries client will, without change, be able to function with
additional types of server.

Benefits of message queuing to the application designer and
developer

Some of the benefits of message queuing are:

� You can design applications using small programs that you can share between
many applications.

� You can quickly build new applications by reusing these building blocks.

� Applications written to use message queuing techniques are not affected by
changes in the way queue managers work.

� You do not need to use any communication protocols. The queue manager
deals with all aspects of communication for you.

� Programs that receive messages need not be running at the time messages
are sent to them. The messages are retained on queues.

Designers can reduce the cost of their applications because development is faster,
fewer developers are needed, and demands on programming skill are lower than
those for applications that do not use message queuing.

What can you do with MQSeries products?
MQSeries products are queue managers and application enablers. They support
the IBM Message Queue Interface (MQI) through which programs can put
messages on a queue and get messages from a queue.

MQSeries for OS/390
With MQSeries for OS/390 you can write applications that:

� Use message queuing within CICS or IMS.

� Send messages between batch, CICS, and IMS applications, selecting the
most appropriate environment for each function.

� Send messages to applications that run on other MQSeries platforms.

� Process several messages together as a single unit of work that can be
committed or backed out.

� Send messages to and interact with IMS applications by means of the IMS
bridge.

| � Participate in units of work coordinated by RRS.

| See Appendix A, “Language compilers and assemblers” on page 453 for details of
| the supported programming languages.

10 MQSeries Application Programming Guide

 Uses of MQSeries

Each environment within OS/390 has its own characteristics, advantages, and
disadvantages. The advantage of MQSeries for OS/390 is that applications are not
tied to any one environment, but can be distributed to take advantage of the
benefits of each environment. For example, you can develop end-user interfaces
using TSO or CICS, you can run processing-intensive modules in OS/390 batch,
and you can run database applications in IMS or CICS. In all cases, the various
parts of the application can communicate using messages and queues.

Designers of MQSeries applications must be aware of the differences and
limitations imposed by these environments. For example:

� MQSeries provides facilities that allow intercommunication between queue
managers (this is known as distributed queuing).

� Methods of committing and backing out changes differ between the batch and
CICS environments.

� MQSeries for OS/390 provides support in the IMS environment for online
message processing programs (MPPs), interactive fast path programs (IFPs),
and batch message processing programs (BMPs). If you are writing batch DL/I
programs, follow the guidance given in this book for OS/390 batch programs.

� Although multiple instances of MQSeries for OS/390 can exist on a single
OS/390 system, a CICS region can connect to only one queue manager at a
time. However, more than one CICS region can be connected to the same
queue manager. In the IMS and OS/390 batch environments, programs can
connect to more than one queue manager.

The differences between the supported environments, and their limitations, are
discussed further in Chapter 15, “Using and writing applications on MQSeries for
OS/390” on page 219.

 Chapter 1. Introduction to message queuing 11

 Uses of MQSeries

| MQSeries for non-OS/390 platforms
| With MQSeries for non-OS/390 platforms you can write applications that:

� Send messages to other applications running under the same operating
systems. The applications can be on either the same or another system.

� Send messages to applications that run on other MQSeries platforms.

| � Use message queuing from within CICS Transaction Server for OS/2, CICS for
| AS/400, TXSeries for AIX, TXSeries for HP-UX, CICS for Siemens Nixdorf
| SINIX, TXSeries for Sun Solaris, and TXSeries for Windows NT, DOS, and
| Windows 3.1 applications.

� Use message queuing from within Encina for AIX, HP-UX, SINIX, Sun Solaris,
and Windows NT.

| � Use message queuing from within Sybase for AIX, Sun Solaris, and Windows
| NT.

| � Use message queuing from within Tuxedo for AIX, AT&T, HP-UX, SINIX and
| DC/OSx, Sun Solaris, and Windows NT.

� Process several messages together as a single unit of work that can be
committed or backed out.

� Run from a full MQSeries environment, or run from an MQSeries client
environment on the following platforms:

 – Digital OpenVMS
 – DOS
 – OS/2
 – UNIX systems
 – VM/ESA
 – Windows NT
 – Windows 3.1

| – Windows 95 and Windows 98

| See Appendix A, “Language compilers and assemblers” on page 453 for details of
| the supported programming languages.

12 MQSeries Application Programming Guide

 Application design � Planning your design

| Chapter 2. Overview of application design

This chapter discusses how to design MQSeries applications. It introduces:

� The decisions you should take during the design process
� The features that MQSeries provides for you to work with
� The programming techniques that you should consider
� The Message Queue Interface (MQI)

These subjects are discussed in greater detail in the remaining chapters of this
book.

 Planning
When you have decided how your applications are able to take advantage of the
platforms and environments available to you, you need to decide how to use the
features offered by MQSeries. Some of the key aspects are:

What types of queue should you use?
Do you want to create a queue each time you need one, or do you want
to use queues that have already been set up? Do you want to delete a
queue when you have finished using it, or is it going to be used again?
Do you want to use alias queues for application independence? To see
what types of queues are supported, refer to “Queues” on page 40.

What types of message should you use?
You may want to use datagrams for simple messages, but request
messages (for which you expect replies) for other situations. You may
want to assign different priorities to some of your messages.

How can you control your MQSeries programs?
You may want to start some programs automatically or make programs
wait until a particular message arrives on a queue, (using the MQSeries
triggering feature, see Chapter 14, “Starting MQSeries applications

| using triggers” on page 197). Alternatively, you may want to start up
| another instance of an application when the messages on a queue are
| not getting processed fast enough (using the MQSeries instrumentation
| events feature as described in Chapter 1, “Using instrumentation events
| to monitor queue managers” in the MQSeries Programmable System
| Management book).

Will your application run on an MQSeries client?
The full MQI is supported in the client environment and this enables
almost any MQSeries application to be relinked to run on an MQSeries
client. Link the application on the MQSeries client to the MQIC library,
rather than to the MQI library. The exceptions are:

� An application that needs syncpoint coordination with other resource
managers.

| � Get(signal) on OS/390 is not supported.

Note: An application running on an MQSeries client may connect to
more than one queue manager concurrently, or use a queue manager
name with an asterisk (*) on an MQCONN or MQCONNX call. The
application will have to be changed if you want to link to the queue

 Copyright IBM Corp. 1993,1999 13

 Using MQSeries objects

manager libraries instead of the client libraries, as this function will not
be available.

| See the MQSeries Clients book for more information.

How can you secure your data and maintain its integrity?
You can use the context information that is passed with a message to
test that the message has been sent from an acceptable source. You
can use the syncpointing facilities provided by MQSeries or your
operating system to ensure that your data remains consistent with other
resources (see Chapter 13, “Committing and backing out units of work”
on page 183 for further details). You can use the persistence feature of
MQSeries messages to assure the delivery of important messages.

How should you handle exceptions and errors?
You need to consider how to process messages that cannot be
delivered, and how to resolve error situations that are reported to you by
the queue manager. For some reports, you must set report options on
MQPUT.

The remainder of this chapter introduces the features and techniques that
MQSeries provides to help you answer questions like these.

Using MQSeries objects
The MQI uses the following types of object:

 � Queue managers
 � Queues

| � Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
 � Process definitions
 � Channels

| � Storage classes (OS/390 only)

These objects are discussed in Chapter 4, “MQSeries objects” on page 39.

Each object is identified by an object descriptor (MQOD), which you use when you
write MQSeries programs. However, with the exception of dynamic queues, these
objects must be defined to the queue manager before you can work with them.

| You define objects using:

| � The PCF commands described in Chapter 7, “Using Programmable Command
| Formats” in the MQSeries Programmable System Management book (not on
| OS/390 or VSE/ESA)

| � The MQSC commands described in Chapter 2, “The MQSeries commands” in
| the MQSeries Command Reference manual (not on VSE/ESA)

| � The MQSeries for OS/390 operations and control panels, described in the
| MQSeries for OS/390 System Management Guide

| � The MQSeries Explorer or MQSeries Web Administration (Windows NT only)

| � The MQSeries Master Terminal (MQMT) transaction (VSE/ESA only)

| You can also display or alter the attributes of objects, or delete the objects.

14 MQSeries Application Programming Guide

 Message design

Alternatively, for sequences of MQSeries for OS/390 commands that you use
regularly, you can write administration programs that create messages containing
commands and that put these messages on the system-command input queue.
The queue manager processes the messages on this queue in the same way that it
processes commands entered from the command line or from the operations and
control panels. This technique is described in the MQSeries for OS/390 System
Management Guide, and demonstrated in the Mail Manager sample application
delivered with MQSeries for OS/390. For a description of this sample, see
Chapter 32, “Sample programs for MQSeries for OS/390” on page 395.

For sequences of MQSeries for AS/400 commands you use regularly, you can write
CL programs that contain the commands, as demonstrated in the CL sample
program (AMQSDEF4) delivered with MQSeries for AS/400. For a description of
this sample, see the MQSeries for AS/400 Administration Guide.

For sequences of MQSeries commands on OS/2, Windows NT, and UNIX systems,
you can use the MQSC facility to run a series of commands held in a file. For
information on how to use this facility, see the MQSeries Command Reference
manual.

Designing your messages
You create a message when you use an MQI call to put the message on a queue.
As input to the call, you supply some control information in a message descriptor
(MQMD) and the data that you want to send to another program. But at the design
stage, you need to consider the following questions, because they affect the way
you create your messages:

What type of message should I use?
Are you designing a simple application in which you can send a message, then
take no further action? Or are you asking for a reply to a question? If you are
asking a question, you may include in the message descriptor the name of the
queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This implies
that you set a timeout period for the reply to answer your request, and if you do
not receive the reply within that period, it is treated as an error.

Or would you prefer to work asynchronously, so that your processes do not
have to depend upon the occurrence of specific events, such as common timing
signals?

Another consideration is whether you have all your messages inside a unit of
work.

Should I assign different priorities to some of the messages I create?
You can assign a priority value to each message, and define the queue so that
it maintains its messages in order of their priority. If you do this, when another
program retrieves a message from the queue, it always gets the message with
the highest priority. If the queue does not maintain its messages in priority
order, a program that retrieves messages from the queue will retrieve them in
the order in which they were added to the queue.

Programs can also select a message using the identifier that the queue
manager assigned when the message was put on the queue. Alternatively, you
can generate your own identifiers for each of your messages.

 Chapter 2. Overview of application design 15

 MQSeries techniques

Will my messages be discarded when the queue manager restarts?
The queue manager preserves all persistent messages, recovering them when
necessary from the MQSeries log files, when it is restarted. Nonpersistent
messages and temporary dynamic queues are not preserved. Any messages
that you do not want discarded must be defined as persistent at the time they
are created. When writing an application for MQSeries for OS/2 Warp,
MQSeries for Windows NT, or MQSeries on UNIX systems, make sure that you
know how your system has been set up in respect of log file allocation to reduce
the risk of designing an application that will run to the log file limits.

Do I want to give information about myself to the recipient of my messages?
Normally, the queue manager sets the user ID, but suitably authorized
applications can also set this field, so that you can include your own user ID
and other information that the receiving program can use for accounting or
security purposes.

 MQSeries techniques
For a simple MQSeries application, you need to decide which MQSeries objects to
use in your application, and which types of message you want to use. For a more
advanced application, you may want to use some of the techniques introduced in
the following sections.

Waiting for messages
A program that is serving a queue can await messages by:

� Making periodic calls on the queue to see whether a message has arrived
(polling).

� Waiting until either a message arrives, or a specified time interval expires (see
“Waiting for messages” on page 146).

� Setting a signal so that the program is informed when a message arrives
(MQSeries for OS/390 and MQSeries for Windows V2.1 only). For information
about this, see “Signaling” on page 147.

 Correlating replies
In MQSeries applications, when a program receives a message that asks it to do
some work, the program usually sends one or more reply messages to the
requester. To help the requester to associate these replies with its original request,
an application can set a correlation identifier field in the descriptor of each
message. Programs should copy the message identifier of the request message
into the correlation identifier field of their reply messages.

Setting and using context information
Context information is used for associating messages with the user who generated
them, and for identifying the application that generated the message. Such
information is useful for security, accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the
queue manager associates default context information with your message.

For more information on using and setting context information, see “Message
context” on page 37.

16 MQSeries Application Programming Guide

 MQSeries techniques

Starting MQSeries programs automatically
MQSeries triggering enables a program to be started automatically when messages
arrive on a queue. You can set trigger conditions on a queue so that a program is
started to process that queue:

� Every time a message arrives on the queue
� When the first message arrives on the queue
� When the number of messages on the queue reaches a predefined number

For more information on triggering, see Chapter 14, “Starting MQSeries
applications using triggers” on page 197.

| Note: Triggering is just one way of starting a program automatically. For
example, you can start a program automatically on a timer using non-MQSeries
facilities.

Generating MQSeries reports
You can request the following reports within an application:

 � Exception reports
 � Expiry reports
� Confirm-on-arrival (COA) reports
� Confirm-on-delivery (COD) reports
� Positive action notification (PAN) reports
� Negative action notification (NAN) reports

These are described in “Report messages” on page 25.

| Clusters and message affinities
| Before starting to use clusters with multiple definitions for the same queue, you
| must examine your applications to see whether there are any that require an
| exchange of related messages. Within a cluster, a message may be routed to any
| queue manager that hosts an instance of the appropriate queue. Therefore, the
| logic of applications with message affinities may be upset.

| For example, you may have two applications that rely on a series of messages
| flowing between them in the form of questions and answers. It may be important
| that all the questions are sent to the same queue manager and that all the answers
| are sent back to the other queue manager. In this situation, it is important that the
| workload management routine does not send the messages to any queue manager
| that just happens to host an instance of the appropriate queue.

| You should attempt, where possible, to remove the affinities. Removing message
| affinities improves the availability and scaleability of applications.

| For more information see “Programming considerations” in the MQSeries Queue
| Manager Clusters book.

 Chapter 2. Overview of application design 17

 Message Queue Interface

 Application programming
| MQSeries supports the IBM Message Queue Interface (MQI). The MQI includes a

set of calls with which you can send and receive messages, and manipulate
MQSeries objects.

 Call interface
The MQI calls allow you to:

� Connect programs to, and disconnect programs from, a queue manager

� Open and close objects (such as queues, queue managers, namelists, and
processes)

� Put messages on queues

� Receive messages from a queue, or browse them (leaving them on the queue)

� Inquire about the attributes (or properties) of MQSeries objects, and set some
of the attributes of queues

� Commit and back out changes made within a unit of work, in environments
where there is no natural syncpoint support, for example, OS/2 and UNIX
systems

� Coordinate queue manager updates and updates made by other resource
managers

The MQI provides structures (groups of fields) with which you supply input to, and
get output from, the calls. It also provides a large set of named constants to help
you supply options in the parameters of the calls. The definitions of the calls,
structures, and named constants are supplied in data definition files for each of the
supported programming languages. Also, default values are set within the MQI
calls.

Design for performance - hints and tips
Here are a few ideas to help you design efficient applications:

� Design your application so that processing goes on in parallel with a user’s
thinking time:

– Display a panel and allow the user to start typing while the application is
still initializing.

– Don’t be afraid to get the data you need in parallel from different servers.

� Keep connections and queues open if you are going to reuse them instead of
repeatedly opening and closing, connecting and disconnecting.

Note: However, a server application which is putting only one message should
use MQPUT1.

� Keep your messages within a unit of work, so that they can be committed or
backed out simultaneously.

� Use the nonpersistent option for messages that do not need to be recoverable.

18 MQSeries Application Programming Guide

 Message Queue Interface

 Programming platforms
MQSeries for OS/390

| MQSeries for OS/390 operates under OS/390 Version 2.4 and subsequent
| compatible releases. You can run MQSeries for OS/390 programs in the CICS
| Transaction Server for OS/390, CICS for MVS/ESA, IMS/ESA, and OS/390
| environments. See Appendix A, “Language compilers and assemblers” on
| page 453 for details of the programming languages supported by MQSeries for
| OS/390.

UNIX systems
| MQSeries for AIX operates under AIX Version 4.2, Version 4.3.x, and
| subsequent compatible releases. You can run MQSeries for AIX programs from
| within CICS for AIX, TXSeries for AIX, Encina for AIX, and Tuxedo for AIX.
| Applications using threads are supported by MQSeries for AIX.

MQSeries for AT&T GIS UNIX operates under AT&T GIS UNIX Version 3 2 and
subsequent compatible releases. You can run MQSeries for AT&T GIS UNIX
programs from within Tuxedo for AT&T.

| MQSeries for Digital OpenVMS operates under VMS Version 6.2 and VMS
| Version 7.1.

| MQSeries for HP-UX operates under HP-UX Version 10.20 and Version 11.0.
| You can run MQSeries for HP-UX programs from within TXSeries, Encina, and
| Tuxedo for HP-UX. Applications using threads are supported by MQSeries for
| HP-UX.

MQSeries for SINIX and DC/OSx operates under SINIX and DC/OSx Version
2.1 and subsequent compatible releases. You can run MQSeries for SINIX and
DC/OSx programs from within CICS for Siemens Nixdorf SINIX, and Tuxedo for
SINIX and DC/OSx. You can also run MQSeries for SINIX programs from
within Encina for SINIX.

| MQSeries for Sun Solaris operates under Sun Solaris Version 2.6 (with patches
| 105210-13 and 105568-10), Version 7, and subsequent compatible releases.
| You can run MQSeries for Sun Solaris programs from within CICS, TXSeries,
| Encina, and Tuxedo for Sun Solaris. Applications using threads are supported
| by MQSeries for Sun Solaris.

| See Appendix A, “Language compilers and assemblers” on page 453 for details
| of the programming languages supported by MQSeries on UNIX systems.

MQSeries for AS/400
MQSeries for AS/400 operates under OS/400 Version 4 Release 2 and
subsequent compatible releases. You can run MQSeries for AS/400 programs

| in the CICS for AS/400 environment. See Appendix A, “Language compilers
| and assemblers” on page 453 for details of the programming languages
| supported by MQSeries for AS/400.

MQSeries for OS/2 Warp
| MQSeries for OS/2 Warp operates under OS/2 Warp Version 4.0, OS/2 Warp
| Server V4.0, OS/2 Warp Server Advanced SMP feature, OS/2 Workspace
| On-Demand, OS/2 e-business Server, and subsequent compatible releases.
| You can run MQSeries for OS/2 Warp programs in the CICS and CICS
| Transaction Server environment. See Appendix A, “Language compilers and

2 This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

 Chapter 2. Overview of application design 19

 Message Queue Interface

| assemblers” on page 453 for details of the programming languages supported
| by MQSeries for OS/2 Warp.

MQSeries for Tandem NonStop Kernel
MQSeries for Tandem NonStop Kernel V2.2 operates under Tandem NSK
operating system version D3x, D4x, or G02 with TMF and PATHWAY, and

| subsequent compatible releases. See Appendix A, “Language compilers and
| assemblers” on page 453 for details of the programming languages supported
| by MQSeries for Tandem NonStop Kernel.

| MQSeries for VSE/ESA
| MQSeries for VSE/ESA V2.1 operates under VSE/ESA V2.3 and subsequent
| compatible releases, with CICS for VSE/ESA V2.3. See Appendix A,
| “Language compilers and assemblers” on page 453 for details of the
| programming languages supported by MQSeries for VSE/ESA.

| MQSeries for Windows
| MQSeries for Windows V2.0 operates under Windows Version 3.1, Windows 95,
| and the WIN-OS/2 environment within OS/2. MQSeries for Windows V2.1
| operates under Windows 95, Windows 98, and Windows NT V4. See
| Appendix A, “Language compilers and assemblers” on page 453 for details of
| the programming languages supported by MQSeries for Windows.

| MQSeries for Windows NT
| MQSeries for Windows NT operates under Windows NT Version 4.0 (service
| pack 4) and subsequent compatible releases. You can run MQSeries for
| Windows NT programs from within CICS, TXSeries, Encina, and Tuxedo for
| Windows NT. See Appendix A, “Language compilers and assemblers” on
| page 453 for details of the programming languages supported by MQSeries for
| Windows NT.

20 MQSeries Application Programming Guide

 Testing

Applications for more than one platform
Will your application run on more than one platform? Do you have a strategy to
move to a different platform from the one you use today? If the answer to either of
these questions is “yes,” you need to make sure that you code your programs for
platform independence.

| If you are using C, make sure that you code in ANSI standard C. Use a standard
| C library function rather than an equivalent platform-specific function even if the
| platform-specific function is faster or more efficient. The exception is when
| efficiency in the code is paramount, when you should code for both situations using
| #ifdef. For example:

#ifdef _OS2
OS/2 specific code

#else
 generic code
#endif

| When the time comes to move the code to another platform, you can now search
| the source for #ifdef with the platform specific identifiers, in this example _OS2, and
| add or change code as necessary.

| It is worth considering keeping portable code in separate source files from the
| platform-specific code, and using a simple naming convention to split the
| categories.

Testing MQSeries applications
The application development environment for MQSeries programs is no different
from that for any other application, so you can use the same development tools as
well as the MQSeries trace facilities. This is most noticeable on OS/2 and UNIX
systems where there is a wide selection.

| When testing CICS applications with MQSeries for OS/390, you can use the CICS
| Execution Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI
| call as well as calls to all CICS services. Also, in the CICS environment, you can
| write an API-crossing exit program to provide diagnostic information before and
| after every MQI call. For information on how to do this, see Chapter 15, “Using
| and writing applications on MQSeries for OS/390” on page 219.

When testing AS/400 applications, you can use the Extended Program Model
Debugger. To start this, use the STRDBG command.

 Chapter 2. Overview of application design 21

 Testing

22 MQSeries Application Programming Guide

 Messages � Message descriptor

 Chapter 3. MQSeries messages

An MQSeries message consists of two parts:

 � Message descriptor
 � Application data

Figure 2 represents a message and shows how it is logically divided into message
data and application data.

Message ID Control information . . . Name Account name

Message descriptor Application data
(MQMD)

Amount requested . . .

Figure 2. Representation of a message

| The application data carried in an MQSeries message is not changed by a queue
| manager unless data conversion is carried out on it. Also, MQSeries does not put
| any restrictions on the content of this data. The length of the data in each
| message cannot exceed the value of the MaxMsgLength attribute of both the queue
| and queue manager. In MQSeries for AIX, MQSeries for HP-UX, MQSeries for
| OS/2 Warp, MQSeries for Sun Solaris, and MQSeries for Windows NT, the
| MaxMsgLength defaults to 100 MB (104 857 600 bytes). In MQSeries for AS/400,
| MQSeries for AT&T GIS UNIX, MQSeries for Digital OpenVMS, MQSeries for
| OS/390, MQSeries for SINIX and DC/OSx, MQSeries for Tandem NonStop Kernel,
| MQSeries for VSE/ESA, 16-bit Windows, and 32-bit Windows, the MaxMsgLength
| defaults to 4 MB (4 194 304 bytes). However, you should make your messages
| slightly shorter than the value of the MaxMsgLength attribute in some circumstances
| (see “The data in your message” on page 111 for more information).

You create a message when you use the MQPUT or MQPUT1 MQI call. As input
to these calls, you supply the control information (such as the priority of the
message, and the name of a reply queue) and your data. These calls put the

| message on a queue. See “MQPUT - Put message” and “MQPUT1 - Put one
| message” in the MQSeries Application Programming Reference manual for more
| information on these calls.

| Message descriptor
You can access message control information using the MQMD structure, which

| defines the message descriptor. For a full description of the MQMD structure, see
| “MQMD - Message descriptor” in the MQSeries Application Programming
| Reference manual.

 Copyright IBM Corp. 1993,1999 23

 Types of message

Note for RPG programmers

The names of MQI calls, call parameters, data types, fields of structures, and
constants are shown in this book with long names. When writing RPG
programs, use the equivalent names given in Appendix B, “MQI names in RPG”
on page 457.

| See “Message context” on page 37 for a description of how to use the fields within
| the MQMD that contain information about the origin of the message.

Additional information for grouping and segmenting messages (see “Message
groups” on page 33) is provided in Version 2 of the Message Descriptor (or the

| MQMDE). This is the same as the Version 1 Message Descriptor but has
| additional fields as described in “MQMDE - Message descriptor extension” in the
| MQSeries Application Programming Reference manual.

Types of message
There are four types of message defined by MQSeries:

 � Datagram
 � Request
 � Reply
 � Report

Applications can use the first three types of messages to pass information between
themselves. The fourth type, report, is for applications and queue managers to use
to report information about events such as the occurrence of an error.

Each type of message is identified by an MQMT_ñ value. You can also define your
| own types of message. For the range of values you can use, see the description of
| the MsgType field in “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual.

 Datagrams
You should use a datagram when you do not require a reply from the application
that receives the message (that is, gets the message from the queue).

An example of an application that could use datagrams is one that displays flight
information in an airport lounge. A message could contain the data for a whole
screen of flight information. Such an application is unlikely to request an
acknowledgement for a message because it probably does not matter if a message
is not delivered. The application will send an update message after a short period
of time.

 Request messages
You should use a request message when you want a reply from the application that
receives the message.

An example of an application that could use request messages is one that displays
the balance of a checking account. The request message could contain the
number of the account, and the reply message would contain the account balance.

24 MQSeries Application Programming Guide

 Types of message

If you want to link your reply message with your request message, there are two
options:

� You can give your application the responsibility of ensuring that it puts
information into the reply message that relates to the request message.

� You can use the report field in the message descriptor of your request
message to specify the content of the MsgId and CorrelId fields of the reply
message:

– You can request that either the MsgId or the CorrelId of the original
message is to be copied into the CorrelId field of the reply message (the
default action is to copy MsgId).

– You can request that either a new MsgId is generated for the reply
message, or that the MsgId of the original message is to be copied into the
MsgId field of the reply message (the default action is to generate a new
message identifier).

 Reply messages
You should use a reply message when you reply to another message.

When you create a reply message, you should respect any options that were set in
| the message descriptor of the message to which you are replying. Report options
| specify the content of the message identifier (MsgId) and correlation identifier
| (CorrelId) fields. These fields allow the application that receives the reply to

correlate the reply with its original request.

 Report messages
Report messages inform applications about events such as the occurrence of an
error when processing a message. They can be generated by:

� A queue manager,

� A message channel agent (for example, if they cannot deliver the message),

or

� An application (for example, if it cannot use the data in the message).

Note that report messages can be generated at any time, and they may arrive on a
queue when your application is not expecting them.

Types of report message
When you put a message on a queue, you can select to receive:

� An exception report message. This is sent in response to a message that had
the exceptions flag set. It is generated by the message channel agent (MCA)
or the application.

| � An expiry report message. This indicates that an application attempted to
| retrieve a message that had reached its expiry threshold; the message is
| marked to be discarded. This type of report is generated by the queue
| manager.

� A confirmation of arrival (COA) report message. This indicates that the
message has reached its target queue. It is generated by the queue manager.

 Chapter 3. MQSeries messages 25

 Types of message

� A confirmation of delivery (COD) report message. This indicates that the
message has been retrieved by a receiving application. It is generated by the
queue manager.

� A positive action notification (PAN) report message. This indicates that a
request has been successfully serviced (that is, the action requested in the
message has been performed successfully). This type of report is generated
by the application.

� A negative action notification (NAN) report message. This indicates that a
request has not been successfully serviced (that is, the action requested in the
message has not been performed successfully). This type of report is
generated by the application.

Note: Each type of report message is about this message, containing the original
message, the first 100 bytes of data in the original message, or no data from the
original message.

You may request more than one type of report message when you put a message
on a queue. If you select the delivery confirmation report message and the
exception report message options, in the event that the message fails to be
delivered, you will receive an exception report message. However, if you select
only the delivery confirmation report message option and the message fails to be
delivered, you will not get an exception report message.

The report messages you request, when the criteria for generating a particular
message are met, are the only ones you will receive.

Report message options
You have the option to discard a message after an exception has arisen. If you
select the discard option, and have requested an exception report message, the
report message goes to the ReplyToQ and ReplyToQMgr, and the original message
is discarded.

Note: A benefit of this is you can reduce the number of messages going to the
dead-letter queue. However, it does mean that your application, unless it sends
only datagram messages, has to deal with returned messages.

When an exception report message is generated, it inherits the persistence of the
original message.

If a report message cannot be delivered (if the queue is full, for instance), the
report message will be placed on the dead-letter queue.

If you wish to receive a report message, you must specify the name of your reply-to
queue in the ReplyToQ field; otherwise the MQPUT or MQPUT1 of your original
message will fail with MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message
to specify the content of the MsgId and CorrelId fields of any report messages that
are created for the message:

� You can request that either the MsgId or the CorrelId of the original message
is to be copied into the CorrelId field of the report message (the default action
is to copy the message identifier)

26 MQSeries Application Programming Guide

 Types of message

� You can request that either a new MsgId is generated for the report message,
or that the MsgId of the original message is to be copied into the MsgId field of
the report message (the default action is to generate a new message identifier)

When generating a report about a message, server applications should test to see
if any of these options have been set.

| For more information on how to use report messages, see the description of the
| Report field in “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual.

To indicate the nature of the report, queue managers use a range of feedback
codes. They put these codes in the Feedback field of the message descriptor of a
report message. Queue managers can also return MQI reason codes in the
Feedback field. MQSeries defines a range of feedback codes for applications to
use.

| For more information on feedback and reason codes, see the description of the
| Feedback field in “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual.

An example of a program that could use a feedback code is one that monitors the
work loads of other programs serving a queue. If there is more than one instance
of a program serving a queue, and the number of messages arriving on the queue
no longer justifies this, such a program could send a report message (with the
feedback code MQFB_QUIT) to one of the serving programs to indicate that the
program should terminate its activity. (A monitoring program could use the MQINQ
call to find out how many programs are serving a queue.)

Reports and segmented messages
| Segmented messages are supported on MQSeries Version 5 products and the
| MQSeries for AS/400 product only.

If a message is segmented (see “Message segmentation” on page 141 for a
description of this) and you ask for reports to be generated, you may receive more
reports than you would have done had the message not been segmented.

 MQSeries-generated reports
If you segment your messages or allow the queue manager to do so, there is only
one case in which you can expect to receive a single report for the entire message.
This is when you have requested only COD reports, and you have specified
MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports;
usually one for each segment.

Note: If you segment your messages, and you need only the first 100 bytes of the
original message data to be returned, you must change the setting of the report
options to ask for reports with no data for segments that have an offset of 100 or
more. If you do not do this, and you leave the setting so that each segment
requests 100 bytes of data, and you retrieve the report messages with a single
MQGET specifying MQGMO_COMPLETE_MSG, the reports assemble into a large
message containing 100 bytes of read data at each appropriate offset. If this
happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

 Chapter 3. MQSeries messages 27

 Types of message

 Application-generated reports
If your application generates reports, you should always copy the MQSeries
headers that are present at the start of the original message data to the report
message data. Then add none, 100 bytes, or all of the original message data (or
whatever other amount you would normally include) to the report message data.

You can recognize the MQSeries headers that must be copied by looking at the
successive Format names, starting with the MQMD and continuing through any
headers present. The following Format names indicate these MQSeries headers:

 � MQMDE
 � MQDLH
 � MQXQH
 � MQIIH
 � MQH*

MQH* means any name starting with the characters MQH.

| The Format name occurs at specific positions for MQDLH and MQXQH, but for the
| other MQSeries headers it occurs at the same position. The length of the header is

contained in a field that also occurs at the same position for MQMDE, MQIMS and
all MQH* headers.

If you are using a Version 1 of the MQMD, and you are reporting on a segment, or
a message in a group, or a message for which segmentation is allowed, the report

| data must start with an MQMDE. You should set the OriginalLength field to the
| length of the original message data excluding the lengths of any MQSeries
| headers that you find.

Retrieval of reports
If you ask for COA or COD reports, you can ask for them to be reassembled for
you with MQGMO_COMPLETE_MSG. An MQGET with
MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to
represent one complete original message. This is true even if the report messages
themselves do not contain the complete original data; the OriginalLength field in
each report message gives the length of original data represented by that report
message, even if the data itself is not present.

This technique can be used even if there are several different report types present
on the queue (for example, both COA and COD), because an MQGET with
MQGMO_COMPLETE_MSG reassembles report messages only if they have the
same Feedback code. Note, however, that you cannot normally use the technique
for exception reports, since in general these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has
arrived. However, in most circumstances you need to cater for the possibility that
some segments arrive while others may generate an exception (or expiry, if you
have allowed this). You cannot use MQGMO_COMPLETE_MSG in this case
because in general you may get different Feedback codes for different segments
and, as noted above, you may get more than one report for a given segment. You
can, however, use MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you may need to retrieve reports as they arrive, and build up a
picture in your application of what happened to the original message. You can use

28 MQSeries Application Programming Guide

 Message format

the GroupId field in the report message to correlate reports with the GroupId of the
original message, and the Feedback field to identify the type of each report
message. The way in which you do this depends on your application requirements.

One approach is as follows:

� Ask for COD reports and exception reports.

� After a specific time, check whether a complete set of COD reports has been
received using MQGMO_COMPLETE_MSG. If so, your application knows that
the entire message has been processed.

� If not, and exception reports relating to this message are present, the problem
should be handled just as for unsegmented messages, though provision must
also be made for ‘orphan’ segments to be cleaned up at some point.

� If there are segments for which there are no reports of any kind, the original
segments (or the reports) may be waiting for a channel to be reconnected, or
the network might be overloaded at some point. If no exception reports at all
have been received (or if you think that the ones you have may be temporary
only), you may decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with
unsegmented messages, except that you must also consider the possibility of
‘orphan’ segments which have to be cleaned up.

If the original message is not critical (for example, if it is a query, or a message that
can be repeated later), set an expiry time to ensure that orphan segments are
removed.

Back-level queue managers
When a report is generated by a queue manager that supports segmentation, but is
received on a queue manager that does not support segmentation, the MQMDE
structure (which identifies the Offset and OriginalLength represented by the
report) is always included in the report data, in addition to zero, 100 bytes, or all of
the original data in the message.

However, if a segment of a message passes through a queue manager that does
not support segmentation, you should be aware that if a report is generated there,
the MQMDE structure in the original message will be treated purely as data. It will
not therefore be included in the report data if zero bytes of the original data have
been requested. Without the MQMDE, the report message may not be useful.

You should therefore request at least 100 bytes of data in reports if there is a
possibility that the message might travel through a back-level queue manager.

| Format of message control information and message data
The queue manager is only interested in the format of the control information within
a message, whereas applications that handle the message are interested in the
format of both the control information and the data.

 Chapter 3. MQSeries messages 29

 Message format

Format of message control information
Control information in the character-string fields of the message descriptor must be
in the character set used by the queue manager. The CodedCharSetId attribute of
the queue manager object defines this character set. Control information must be
in this character set because when applications pass messages from one queue
manager to another, message channel agents that transmit the messages use the
value of this attribute to determine what data conversion they must perform.

Format of message data
You can specify any of the following:

� The format of the application data
� The character set of the character data
� The format of numeric data

To do this, use these fields:

Format
This indicates to the receiver of a message the format of the application data in
the message.

When the queue manager creates a message, in some circumstances it uses
the Format field to identify the format of that message. For example, when a
queue manager cannot deliver a message, it puts the message on a dead-letter
(undelivered-message) queue. It adds a header (containing more control
information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning
| “MQ”, for example MQFMT_STRING. If these do not meet your needs, you
| must define your own formats (user-defined formats), but you should not use
| names beginning with “MQ” for these.

| When you create and use your own formats, you must write a data-conversion
| exit to support a program getting the message using MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to
set this character set to that of the queue manager, you can set this field to the
constant MQCCSI_Q_MGR.

When you get a message from a queue, you should compare the value of the
CodedCharSetId field with the value that your application is expecting. If the two
values differ, you may need to convert any character data in the message or
use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary
integers, packed-decimal integers, and floating point numbers. It is usually
encoded according to the particular machine on which the queue manager is
running.

When you put a message on a queue, you should normally specify the constant
MQENC_NATIVE in the Encoding field. This means that the encoding of your
message data is the same as that of the machine on which your application is
running.

When you get a message from a queue, you should compare the value of the
Encoding field in the message descriptor with the value of the constant

30 MQSeries Application Programming Guide

 Message format

MQENC_NATIVE on your machine. If the two values differ, you may need to
convert any numeric data in the message or use a data-conversion message
exit if one is available.

Application data conversion
Application data may need to be converted to the character set and the encoding
required by another application where different platforms are concerned. It may be
converted at the sending queue manager, or at the receiving queue manager. If
the library of built-in formats does not meet your needs, you must define your own.
The type of conversion depends on the message format which is specified in the
format field of the message descriptor, MQMD.

Conversion at the sending queue manager
You must set the CONVERT channel attribute to YES if you need the sending
message channel agent (MCA) to convert the application data.

The conversion is performed at the sending queue manager for certain built-in
formats and for user-defined formats if a suitable user exit is supplied.

Built-in formats: These include:

� Messages that are all characters (using the format name MQFMT_STRING)

� MQSeries defined messages, for example Programmable Command Formats

MQSeries uses Programmable Command Format messages for administration
messages and events (the format name used is MQFMT_ADMIN in this case).
You can use the same format (using the format name MQFMT_PCF) for your
own messages, and take advantage of the built-in data conversion.

Note: Messages with MQFMT_NONE specified are not converted.

| The queue manager built-in formats all have names beginning with MQFMT. They
| are listed and described in “MQMD - Message descriptor” in the MQSeries
| Application Programming Reference manual under the Format field of the Message
| descriptor (MQMD).

Application-defined formats: For user-defined formats, application data
conversion must be performed by a data-conversion exit program (for more
information, see Chapter 11, “Writing data-conversion exits” on page 161). In a
client-server environment, the exit is loaded at the server and conversion takes
place there.

Conversion at the receiving queue manager
Application message data may be converted by the receiving queue manager for
the built-in formats and user-defined formats. The conversion is performed during
the processing of an MQGET call if the MQGMO_CONVERT option is specified.

| For details, see “MQGMO - Get-message options” in the MQSeries Application
| Programming Reference manual.

 Chapter 3. MQSeries messages 31

 Message priorities

Coded character sets
MQSeries products support the coded character sets that are provided by the
underlying operating system.

When you create a queue manager, the queue manager coded character set ID
(CCSID) used is based on that of the underlying environment. If this is a mixed
code page, MQSeries uses the SBCS part of the mixed code page as the queue
manager CCSID.

For general data conversion, if the underlying operating system supports DBCS
code pages then MQSeries is able to use it.

See the documentation for your operating system for details of the coded character
sets that it supports.

You need to consider application data conversion, format names, and user exits
| when writing applications that span multiple platforms. For details of the MQGET
| call, the Convert characters call, the MQGMO_CONVERT option, and the built-in
| formats, see “MQGET - Get message,” “MQXCNVC - Convert characters,”
| “MQGMO - Get-message options,” and “MQMD - Message descriptor” in the
| MQSeries Application Programming Reference manual. See Chapter 11, “Writing

data-conversion exits” on page 161 for information about invoking and writing
data-conversion exits.

 Message priorities
You set the priority of a message (in the Priority field of the MQMD structure)
when you put the message on a queue. You can set a numeric value for the
priority, or you can let the message take the default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on
the queue are stored in FIFO (first in, first out) sequence, or in FIFO within priority
sequence. If this attribute is set to MQMDS_PRIORITY, messages are enqueued
with the priority specified in the Priority field of their message descriptors; but if it
is set to MQMDS_FIFO, messages are enqueued with the default priority of the
queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages
being put on that queue. This value is set when the queue is created, but it can be
changed afterwards. Alias queues, and local definitions of remote queues, may
have different default priorities from the base queues to which they resolve. If there
is more than one queue definition in the resolution path (see “Name resolution” on
page 99), the default priority is taken from the value (at the time of the put
operation) of the DefPriority attribute of the queue specified in the open
command.

| The value of the MaxPriority attribute of the queue manager is the maximum
| priority that you can assign to a message processed by that queue manager. You

cannot change the value of this attribute. In MQSeries, the attribute has the value
9; you can create messages having priorities between 0 (the lowest) and 9 (the
highest).

32 MQSeries Application Programming Guide

 Message groups

 Message groups
| Message groups are supported on MQSeries Version 5 products and MQSeries for
| AS/400 only.

Messages can occur within groups. This allows ordering of messages (see “Logical
and physical ordering” on page 129), and segmentation of large messages (see
“Message segmentation” on page 141) within the same group.

The hierarchy within a group is as follows:

Group
This is the highest level in the hierarchy and is identified by a GroupId. It
consists of one or more messages that contain the same GroupId. These
messages can be stored anywhere on the queue.

| Note: The term “message” is used here to denote one item on a queue, such
| as would be returned by a single MQGET that does not specify
| MQGMO_COMPLETE_MSG.

Figure 3 shows a group of logical messages:

Group

LOGMSG2LOGMSG1 LOGMSG3

Figure 3. Group of logical messages

Logical message
Logical messages within a group are identified by the GroupId and MsgSeqNumber
fields. The MsgSeqNumber starts at 1 for the first message within a group, and if
a message is not in a group, the value of the field is 1.

Logical messages within a group can be used to:

� Ensure ordering (if this is not guaranteed under the circumstances in which
the message is transmitted).

� Allow applications to group together similar messages (for example, those
that must all be processed by the same server instance).

Each message within a group consists of one physical message, unless it is
split into segments. Each message is logically a separate message, and only
the GroupId and MsgSeqNumber fields in the MQMD need bear any relationship to
other messages in the group. Other fields in the MQMD are independent; some
may be identical for all messages in the group whereas others may be different.
For example, messages in a group may have different format names, CCSIDs,
encodings, and so on.

Segment
Segments are used to handle messages that are too large for either the putting
or getting application or the queue manager (including intervening queue
managers through which the message passes). For more information about
this, see “Message segmentation” on page 141.

A segment of a message is identified by the GroupId, MsgSeqNumber, and Offset
fields. The Offset field starts at zero for the first segment within a message.

 Chapter 3. MQSeries messages 33

 Message persistence

Each segment consists of one physical message that may or may not belong to
a group (4 shows an example of messages within a group). A segment is
logically part of a single message, so only the MsgId, Offset, and SegmentFlag
fields in the MQMD should differ between separate segments of the same
message.

Figure 4 shows a group of logical messages, some of which are segmented:

Group

LOGMSG2LOGMSG1 LOGMSG3

SEG1 SEG3SEG2SEG1 SEG2

Figure 4. Segmented messages

For a description of logical and physical messages, see “Logical and physical
ordering” on page 129. For further information about segmenting messages, see
“Message segmentation” on page 141.

 Message persistence
Persistent messages are written out to logs and queue data files. If a queue
manager is restarted after a failure, it recovers these persistent messages as
necessary from the logged data. Messages that are not persistent are discarded if
a queue manager stops, whether the stoppage is as a result of an operator
command or because of the failure of some part of your system.

When you create a message, if you initialize the message descriptor (MQMD) using
the defaults, the persistence for the message will be taken from the DefPersistence
attribute of the queue specified in the MQOPEN command. Alternatively, you may
set the persistence of the message using the Persistence field of the MQMD
structure to define the message as persistent or not persistent.

The performance of your application is affected when you use persistent messages;
the extent of the effect depends on the performance characteristics of the
machine’s I/O subsystem and how you use the syncpoint options on each platform:

� A persistent message, outside the current unit of work, is written to disk on
every put and get operation. See Chapter 13, “Committing and backing out
units of work” on page 183.

| � In MQSeries on UNIX systems, MQSeries for Digital OpenVMS, MQSeries for
| OS/390, MQSeries for OS/2 Warp, MQSeries for VSE/ESA, and MQSeries for
| Windows NT, a persistent message within the current unit of work is logged
| only when the unit of work is committed (and the unit of work could contain
| many queue operations).

Nonpersistent messages can be used for fast messaging if retrieved outside
| syncpoint. See “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual and “Fast, nonpersistent messages” in the
| MQSeries Intercommunication book for further information about fast messages.

34 MQSeries Application Programming Guide

 Message selection � Message backout

Selecting messages from queues
To get a particular message from a queue, you need to use the MsgId and
CorrelId fields of the message descriptor. If you specify Version 2 of the MQMD,
the GroupId can also be used. (See “Getting a particular message” on page 137.)

The message identifier is usually generated by the queue manager when the
message is put on a queue. The queue manager tries to ensure that message
identifiers are unique. However, an MQSeries application can specify a particular
value for the message identifier.

You can use the correlation identifier in any way you like. However, an intended
use of this field is for applications to copy the message identifier of a request
message into the CorrelId field of a reply message.

The group identifier is usually generated by the queue manager when the first
message of a group is put onto a queue. The MsgSeqNumber field identifies the
position of the message within the group and the Offset field identifies the
segments within the message.

Where more than one message meets the combined selection criteria, the
MsgDeliverySequence attribute of the queue determines whether messages are
selected in FIFO (first in, first out) or priority order. When messages have equal
priority, they are selected in FIFO order. For more information, see “The order in
which messages are retrieved from a queue” on page 128.

For an example of an application that uses correlation identifiers, see “The Credit
Check sample” on page 430.

Messages that fail to be delivered
When a queue manager is unable to put a message on a queue, you have various
options. You can:

� Attempt to put the message on the queue again.
� Request that the message is returned to the sender.
� Put the message on the dead-letter queue.

See Chapter 5, “Handling program errors” on page 53 for more information.

Messages that are backed out
When processing messages from a queue under the control of a unit of work, the
unit of work could consist of one or more messages. If a backout occurs, the
messages which were retrieved from the queue are reinstated on the queue, and
they can be processed again in another unit of work. If the processing of a
particular message is causing the problem, the unit of work is backed out again.
This could cause a processing loop. Messages which were put to a queue are
removed from the queue.

An application can detect messages that are caught up in such a loop by testing
the BackoutCount field of MQMD. The application can either correct the situation,
or issue a warning to an operator.

 Chapter 3. MQSeries messages 35

 Message response

| In MQSeries for OS/390, to ensure that the back-out count survives restarts of the
| queue manager, set the HardenGetBackout attribute to
| MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has to restart, it
| does not maintain an accurate back-out count for each message. Setting the

attribute this way adds the penalty of extra processing.

| In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT,
| MQSeries for Digital OpenVMS, and MQSeries on UNIX systems, the back-out
| count always survives restarts of the queue manager. Any change to the
| HardenGetBackout attribute is ignored.

| Note: In MQSeries for VSE/ESA, the BackoutCount field is reserved and so
| cannot be used as described here.

For more information on committing and backing out messages, see Chapter 13,
“Committing and backing out units of work” on page 183.

Reply-to queue and queue manager
There are occasions when you may receive messages in response to a message
you send:

� A reply message in response to a request message

� A report message about an unexpected event or expiry

| � A report message about a COA (Confirmation Of Arrival) or a COD
| (Confirmation Of Delivery) event

| � A report message about a PAN (Positive Action Notification) or a NAN
| (Negative Action Notification) event

Using the MQMD structure, specify the name of the queue to which you want reply
and report messages sent, in the ReplyToQ field. Specify the name of the queue
manager that owns the reply-to queue in the ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of
the following fields in the message descriptor on the queue:

ReplyToQ
If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set to
the name of the remote queue; otherwise this field is not changed.

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is set to
the name of the queue manager that owns the remote queue; otherwise the
ReplyToQMgr field is set to the name of the queue manager to which your
application is connected.

Note: You can request that a queue manager makes more than one attempt to
deliver a message, and you can request that the message is discarded if it fails. If
the message, after failing to be delivered, is not to be discarded, the remote queue
manager puts the message on its dead-letter (undelivered-message) queue (see
“Using the dead-letter (undelivered-message) queue” on page 57).

36 MQSeries Application Programming Guide

 Message context

 Message context
Message context information allows the application that retrieves the message to
find out about the originator of the message. The retrieving application may want
to:

� Check that the sending application has the correct level of authority

� Perform some accounting function so that it can charge the sending application
for any work it has to perform

� Keep an audit trail of all the messages it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can
specify that the queue manager is to add some default context information to the
message descriptor. Applications that have the appropriate level of authority can
add extra context information. For more information on how to specify context
information, see “Controlling context information” on page 113.

All context information is stored in the eight context fields of the message
descriptor. The type of information falls into two categories: identity and origin
context information.

 Identity context
Identity context information identifies the user of the application that first put the
message on a queue:

� The queue manager fills the UserIdentifier field with a name that identifies
the user—the way that the queue manager can do this depends on the
environment in which the application is running.

� The queue manager fills the AccountingToken field with a token or number that
it determined from the application that put the message.

� Applications can use the ApplIdentityData field for any extra information that
they want to include about the user (for example, an encrypted password).

Suitably authorized applications may set the above fields.

| A Windows NT security identifier (SID) is stored in the AccountingToken field when
| a message is created under MQSeries for Windows NT. The SID can be used to
| supplement the UserIdentifier field and to establish the credentials of a user.

| For information on how the queue manager fills the UserIdentifier and
| AccountingToken fields, see the descriptions of these fields in “MQMD - Message
| descriptor” in the MQSeries Application Programming Reference manual.

Applications that pass messages from one queue manager to another should also
pass on the identity context information so that other applications know the identity
of the originator of the message.

 Chapter 3. MQSeries messages 37

 Message context

 Origin context
Origin context information describes the application that put the message on the
queue on which the message is currently stored. The message descriptor
contains the following fields for origin context information:

PutApplType The type of application that put the message (for example, a
CICS transaction).

PutApplName The name of the application that put the message (for
example, the name of a job or transaction).

PutDate The date on which the message was put on the queue.

PutTime The time at which the message was put on the queue.

ApplOriginData Any extra information that an application may want to include
about the origin of the message. For example, it could be
set by suitably authorized applications to indicate whether the
identity data is trusted.

Origin context information is usually supplied by the queue manager. Greenwich
| Mean Time (GMT) is used for the PutDate and PutTime fields. See the descriptions
| of these fields in “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual.

Within MQSeries for OS/2 Warp only, the TZ environment variable is used to
calculate the GMT PutDate and PutTime of a message.

An application with enough authority can provide its own context. This allows
accounting information to be preserved when a single user has a different user ID
on each of the systems that process a message they have originated.

38 MQSeries Application Programming Guide

 Objects � Queue managers

 Chapter 4. MQSeries objects

| The MQSeries objects are:

 � Queue managers
 � Queues

| � Namelists (MQSeries for OS/390 and MQSeries Version 5.1 products only)
 � Process definitions
 � Channels
� Storage classes (MQSeries for OS/390 only)

Queue managers define the properties (known as attributes) of these objects. The
values of these attributes affect the way in which these objects are processed by
MQSeries. From your applications, you use the Message Queue Interface (MQI) to
control these objects. Each object is identified by an object descriptor (MQOD)
when addressed from a program.

| When you use MQSeries commands to define, alter, or delete objects, for example,
| the queue manager checks that you have the required level of authority to perform
| these operations. Similarly, when an application uses the MQOPEN call to open an
| object, the queue manager checks that the application has the required level of
| authority before it allows access to that object. The checks are made on the name
| of the object being opened.

 Queue managers
A queue manager supplies an application with MQSeries services. A program must
have a connection to a queue manager before it can use the services of that queue
manager. A program can make this connection explicitly (using the MQCONN call),
or the connection might be made implicitly (this depends on the platform and the
environment in which the program is running).

Queues belong to queue managers, but programs can send messages to queues
that belong to any queue manager.

Attributes of queue managers
Associated with each queue manager is a set of attributes (or properties) that
define its characteristics. Some of the attributes of a queue manager are fixed
when it is created; you can change others using the MQSeries commands. You
can inquire about the values of all the attributes using the MQINQ call.

| The fixed attributes include:

� The name of the queue manager

� The platform on which the queue manager runs (for example, AS/400)

� The level of system control commands that the queue manager supports

� The maximum priority that you can assign to messages processed by the
queue manager

� The name of the queue to which programs can send MQSeries commands

 Copyright IBM Corp. 1993,1999 39

 Queues

| � The identifier of the character set the queue manager uses for character strings
| when it processes MQI calls (this can be changed in OS/390 using the system
| parameters)

� The maximum length of messages the queue manager can process

| � Whether the queue manager supports syncpointing when programs put and get
| messages

| The changeable attributes include:

� A text description of the queue manager

� The time interval that the queue manager uses to restrict the number of trigger
messages

� The name of the queue manager’s dead-letter (undelivered-message) queue
(useful if this queue is full, but is already set to the maximum size allowed, as it
allows the queue manager to start using a different one)

� The name of the queue manager’s default transmission queue

� The maximum number of open handles for any one connection

� The enabling and disabling of various categories of event reporting

� The maximum number of uncommitted messages within a unit of work

| For a full description of all the attributes, see “Attributes for the queue manager” in
| the MQSeries Application Programming Reference manual.

| Queue managers and workload management
| You can set up a cluster of queue managers that has more than one definition for
| the same queue (for example, the queue managers in the cluster could be clones
| of each other). Messages for a particular queue can be handled by any queue
| manager which hosts an instance of the queue. A workload-management algorithm
| decides which queue manager handles the message and so spreads the workload
| between your queue managers. See Chapter 5, “Using clusters for workload
| management” in the MQSeries Queue Manager Clusters book for further
| information.

 Queues
An MQSeries queue is a named object on which applications can put messages,
and from which applications can get messages. Messages are stored on a queue,
so if the putting application is expecting a reply to its message, it is free to do other
work while waiting for that reply. Applications access a queue by using the
Message Queue Interface (MQI), described in Chapter 6, “Introducing the Message
Queue Interface” on page 65.

Before a message can be put on a queue, the queue must have already been
created. A queue is owned by a queue manager, and that queue manager can
own many queues. However, each queue must have a name that is unique within
that queue manager.

A queue is maintained through a queue manager. Queues are managed physically
by their queue managers but this is transparent to an application program.

40 MQSeries Application Programming Guide

 Queues

| To create a queue you can use MQSeries commands (MQSC), PCF commands, or
| platform-specific interfaces such as the MQSeries for OS/390 operations and
| control panels.

| With MQSeries for AS/400, MQSeries for OS/390, MQSeries for OS/2 Warp,
| MQSeries for Digital OpenVMS, and MQSeries on UNIX systems, you can also
| create local queues “dynamically” from your application for temporary jobs, such as
| reply-to queues (which are not needed after an application ends). For more

information, see “Dynamic queues” on page 45.

Before using a queue, you must open the queue, specifying what you want to do
with it. For example, you can open a queue:

� For browsing messages only (not retrieving them)

� For retrieving messages (and either sharing the access with other programs, or
with exclusive access)

� For putting messages on the queue

� For inquiring about the attributes of the queue

� For setting the attributes of the queue

| For a complete list of the options you can specify when you open a queue, see the
| description of the MQOPEN call in “MQOPEN - Open object” in the MQSeries
| Application Programming Reference manual.

Types of queue
The types of queue that MQSeries supports for applications to use are:

Local and remote queues
A queue is known to a program as local if it is owned by the queue manager to
which the program is connected; the queue is known as remote if it is owned by
a different queue manager. The important difference between these two types
of queue is that you can get messages only from local queues. (You can put
messages on both types of queue.)

The queue definition object, created when you define a local queue, will hold the
definition information of the queue as well as the physical messages put on the

| queue. The queue definition object, created when you ‘define’ a remote queue,
| will only hold the information necessary for the local queue manager to be able
| to locate the queue to which you want your message to go. This object is

known as the local definition of a remote queue. All the attributes of the remote
queue are held by the queue manager that owns it, because it is a local queue
to that queue manager.

Alias queues
To your program, an alias queue appears to be a queue, but it is really an
MQSeries object that you can use to access another queue. This means that
more than one program can work with the same queue, accessing it using
different names.

Model and dynamic queues
A model queue is a template of a queue definition used only when you want to
create a dynamic local queue.

You can create a local queue dynamically from an MQSeries program, naming
the model queue you wish to use as the template for the queue attributes. You

 Chapter 4. MQSeries objects 41

 Queues

may now, if you wish, change some attributes of the new queue. However, you
cannot change the DefinitionType. If, for example, you require a permanent
queue, you must select a model queue with the definition type set to permanent.
Some conversational applications could make use of dynamic queues to hold
replies to their queries because they probably would not need to maintain these
queues after they have processed the replies.

| Cluster queues
| A cluster queue is a queue that is hosted by a cluster queue manager and
| made available to other queue managers in the cluster.

| The cluster queue manager makes a local queue definition for the queue
| specifying the name of the cluster that the queue is to be available in. This
| definition has the effect of advertising the queue to the other queue managers in
| the cluster. The other queue managers in the cluster can put messages to a
| cluster queue without needing a corresponding remote-queue definition. A
| cluster queue can be advertised in more than one cluster. See “What is a
| cluster?” on page 6 and the MQSeries Queue Manager Clusters book for
| further information.

Types of local queue
Each queue manager can have some local queues that it uses for special
purposes:

Transmission queues
A transmission queue is a local queue which holds messages destined for a
remote queue. The messages are forwarded to their destination queue by
MQSeries when a communication program and link are available.

Initiation queues
An initiation queue is a local queue on which the queue manager puts a
message for the purpose of automatically starting an application when certain
conditions (such as more than 10 messages arriving, for example) are met on a
local queue.

Dead-letter (undelivered-message) queue
The dead-letter queue is a local queue on which the queue manager and
applications put messages they cannot deliver. You should plan to process any
messages that arrive on this queue.

System command queue
The system command queue is a queue to which suitably authorized
applications can send MQSeries commands.

System default queues
When you create a queue (other than a dynamic queue), MQSeries uses the
queue definitions stored in the system default queues.

Channel queues
Channel queues are used for distributed queue management.

Event queues
Event queues hold event messages. These messages are reported by the
queue manager or a channel.

These special queues are described in greater detail in the following sections.

42 MQSeries Application Programming Guide

 Queues

Attributes of queues
Some of the attributes of a queue are specified when the queue is defined, and
may not be changed afterwards (for example, the type of the queue). Other
attributes of queues can be grouped into those that can be changed:

� By the queue manager during the processing of the queue (for example, the
current depth of a queue)

� Only by commands (for example, the text description of the queue)

� By applications, using the MQSET call (for example, whether or not put
operations are allowed on the queue)

You can find the values of all the attributes using the MQINQ call.

The attributes that are common to more than one type of queue are:

QName
Name of the queue

QType
Type of the queue

QDesc
Text description of the queue

InhibitGet
Whether or not programs are allowed to get messages from the queue
(although you can never get messages from remote queues)

InhibitPut
Whether or not programs are allowed to put messages on the queue

DefPriority
Default priority for messages put on the queue

DefPersistence
Default persistence for messages put on the queue

| Scope (not supported on AS/400, VSE/ESA, or OS/390)
Controls whether an entry for this queue also exists in a cell directory

| For a full description of these attributes, see “Attributes for all queues” in the
| MQSeries Application Programming Reference manual.

 Remote queues
To a program, a queue is remote if it is owned by a different queue manager to the
one to which the program is connected. Where a communication link has been
established, it is possible for a program to send a message to a remote queue. A
program can never get a message from a remote queue.

When opening a remote queue, to identify the queue you must specify either:

� The name of the local definition that defines the remote queue.

| To create a local definition of a remote queue use the DEFINE QREMOTE
| command; in MQSeries for AS/400, alternatively use the CRTMQMQ command;
| in MQSeries for Tandem NSK, you can use the MQM screen-based interface;
| in MQSeries for VSE/ESA, you can use the MQMT transaction.

 Chapter 4. MQSeries objects 43

 Queues

| From the viewpoint of an application, this is the same as opening a local
| queue. An application does not need to know if a queue is local or remote.

� The name of the remote queue manager and the name of the queue as it is
known to that remote queue manager.

Local definitions of remote queues have three attributes in addition to the common
attributes described in “Attributes of queues” on page 43. These are RemoteQName
(the name that the queue’s owning queue manager knows it by), RemoteQMgrName
(the name of the owning queue manager), and XmitQName (the name of the local
transmission queue that is used when forwarding messages to other queue

| managers). For a fuller description of these attributes, see “Attributes for local
| definitions of remote queues” in the MQSeries Application Programming Reference
| manual.

If you use the MQINQ call against the local definition of a remote queue, the queue
manager returns the attributes of the local definition only, that is the remote queue
name, the remote queue manager name and the transmission queue name, not the
attributes of the matching local queue in the remote system.

See also “Transmission queues” on page 47.

 Alias queues
An alias queue is an MQSeries object that you can use to access another queue.
The queue resulting from the resolution of an alias name (known as the base
queue) can be either a local queue or the local definition of a remote queue. It can
also be either a predefined queue or a dynamic queue, as supported by the
platform.

Note: An alias cannot resolve to another alias.

An example of the use of alias queues is for a system administrator to give different
access authorities to the base queue name (that is, the queue to which the alias
resolves) and to the alias queue name. This would mean that a program or user
could be authorized to use the alias queue, but not the base queue.

Alternatively, authorization can be set to inhibit put operations for the alias name,
but allow them for the base queue.

In some applications, the use of alias queues means that system administrators
can easily change the definition of an alias queue object without having to get the
application changed.

MQSeries makes authorization checks against the alias name when programs try to
use that name. It does not check that the program is authorized to access the
name to which the alias resolves. A program can therefore be authorized to
access an alias queue name, but not the resolved queue name.

In addition to the general queue attributes described in “Attributes of queues” on
page 43, alias queues have a BaseQName attribute. This is the name of the base

| queue to which the alias name resolves. For a fuller description of this attribute,
| see “Attributes for alias queues” in the MQSeries Application Programming
| Reference manual.

44 MQSeries Application Programming Guide

 Queues

The InhibitGet and InhibitPut attributes (see “Attributes of queues” on page 43)
of alias queues belong to the alias name. For example, if the alias-queue name
ALIAS1 resolves to the base-queue name BASE, inhibitions on ALIAS1 affect
ALIAS1 only and BASE is not inhibited. However, inhibitions on BASE also affect
ALIAS1.

The DefPriority and DefPersistence attributes also belong to the alias name. So,
for example, you can assign different default priorities to different aliases of the
same base queue. Also, you can change these priorities without having to change
the applications that use the aliases.

 Model queues
A model queue is a template of a queue definition, that you use when creating a
dynamic queue. You specify the name of a model queue in the object descriptor
(MQOD) of your MQOPEN call. Using the attributes of the model queue, the queue
manager dynamically creates a local queue for you.

You can specify a name (in full) for the dynamic queue, or the stem of a name (for
example, ABC) and let the queue manager add a unique part to this, or you can let
the queue manager assign a complete unique name for you. If the queue manager
assigns the name, it puts it in the MQOD structure.

You can not issue an MQPUT1 call directly to a model queue, however, once a
model queue has been opened, you can issue an MQPUT1 to the dynamic queue.

| The attributes of a model queue are a subset of those of a local queue. For a fuller
| description, see “Attributes for local queues and model queues” in the MQSeries
| Application Programming Reference manual.

 Dynamic queues
When an application program issues an MQOPEN call to open a model queue, the
queue manager dynamically creates an instance of a local queue with the same
attributes as the model queue. Depending on the value of the DefinitionType field
of the model queue, the queue manager creates either a temporary or permanent
dynamic queue (See “Creating dynamic queues” on page 104).

Properties of temporary dynamic queues
Temporary dynamic queues have the following properties:

� They hold nonpersistent messages only.

� They are non-recoverable.

� They are deleted when the queue manager is started

� They are deleted when the application that issued the MQOPEN call which
resulted in the creation of the queue closes the queue or terminates.

– If there are any committed messages on the queue, they will be deleted.

– If there are any uncommitted MQGET, MQPUT, or MQPUT1 calls
outstanding against the queue at this time, the queue is marked as being
logically deleted, and is only physically deleted (after these calls have been
committed) as part of close processing, or when the application terminates.

 Chapter 4. MQSeries objects 45

 Queues

– If the queue happens to be in use at this time (by the creating, or another
application), the queue is marked as being logically deleted, and is only
physically deleted when closed by the last application using the queue.

– Attempts to access a logically deleted queue (other than to close it) fail with
reason code MQRC_Q_DELETED.

– MQCO_NONE, MQCO_DELETE and MQCO_DELETE_PURGE are all
treated as MQCO_NONE when specified on an MQCLOSE call for the
corresponding MQOPEN call that created the queue.

Properties of permanent dynamic queues
Permanent dynamic queues have the following properties:

� They hold persistent or nonpersistent messages.

� They are recoverable in the event of system failures.

� They are deleted when an application (not necessarily the one that issued the
MQOPEN call which resulted in the creation of the queue) successfully closes
the queue using the MQCO_DELETE, or the MQCO_DELETE_PURGE option.

– A close request with the MQCO_DELETE option fails if there are any
messages (committed or uncommitted) still on the queue. A close request
with the MQCO_DELETE_PURGE option succeeds even if there are
committed messages on the queue (the messages being deleted as part of
the close), but fails if there are any uncommitted MQGET, MQPUT, or
MQPUT1 calls outstanding against the queue.

– If the delete request is successful, but the queue happens to be in use (by
the creating, or another application), the queue is marked as being logically
deleted and is only physically deleted when closed by the last application
using the queue.

� They are not deleted if closed by an application (other than the one that issued
the MQOPEN call which resulted in the creation of the queue) which is not
authorized to delete the queue. Authorization checks are performed against
the user identifier (or alternate user identifier if
MQOO_ALTERNATE_USER_AUTHORITY was specified) which was used to
validate the corresponding MQOPEN call.

� They can be deleted in the same way as a normal queue.

Uses of dynamic queues
You can use dynamic queues for:

� Applications that do not require queues to be retained after the application has
terminated.

� Applications that require replies to messages to be processed by another
application can dynamically create a reply-to queue by opening a model queue.
For example, a client application could:

1. Create a dynamic queue.

2. Supply its name in the ReplyToQ field of the message descriptor structure of
the request message.

3. Place the request on a queue being processed by a server.

46 MQSeries Application Programming Guide

 Queues

The server could then place the reply message on the reply-to queue. Finally, the
client could process the reply, and close the reply-to queue with the delete option.

Recommendations for uses of dynamic queues
You should consider the following points when using dynamic queues:

� In a client-server model, each client should create and use its own dynamic
reply-to queue. If a dynamic reply-to queue is shared between more than one
client, the deletion of the reply-to queue may be delayed because there is
uncommitted activity outstanding against the queue, or because the queue is in
use by another client. Additionally, the queue might be marked as being
logically deleted, and hence inaccessible for subsequent API requests (other
than MQCLOSE).

� If your application environment requires that dynamic queues must be shared
between applications, you should ensure that the queue is only closed (with the
delete option) when all activity against the queue has been committed. This
should be by the last user preferably. This ensures that deletion of the queue
is not delayed, and should minimize the period that the queue is inaccessible
because it has been marked as being logically deleted.

 Transmission queues
When an application sends a message to a remote queue, the local queue
manager stores the message in a special local queue, called a transmission queue.

A message channel agent (channel program) will be associated with the
transmission queue and the remote queue manager, and it is this that deals with
the transmitting of the message. When the message has been transmitted, it is
deleted from the transmission queue.

The message may have to pass through many queue managers (or nodes) on its
journey to its final destination. There must be a transmission queue defined at
each queue manager along the route, each holding messages waiting to be
transmitted to the next node. There can be several transmission queues defined at
a particular queue manager. A given transmission queue holds messages whose
next destination is the same queue manager, although the messages may have
different eventual destinations. There may also be several transmission queues for
the same remote queue manager, with each one being used for a different type of
service, for example.

The queue manager must know the attributes of an application if that application is
to start automatically. (For information about this, see Chapter 14, “Starting
MQSeries applications using triggers” on page 197.) These attributes are defined
in the transmission queue definition (for triggered channels) or the process
definition object (see “Process definitions” on page 49).

 Initiation queues
An initiation queue is a local queue on which the queue manager puts a trigger
message when a trigger event occurs on an application queue. A trigger event is
an event (for example, more than 10 messages arriving) that an application
designer intends the queue manager to use as a cue, or trigger, to start a program
that will process the queue. For more information on how triggering works, see
Chapter 14, “Starting MQSeries applications using triggers” on page 197.

 Chapter 4. MQSeries objects 47

 Namelists

Dead-letter (undelivered-message) queues
A dead-letter (undelivered-message) queue is a local queue on which the queue
manager puts messages it cannot deliver.

When the queue manager puts a message on the dead-letter queue, it adds a
header to the message. This includes such information as the intended destination
of the original message, the reason the queue manager put the message on the
dead-letter queue, and the date and time it did this.

Applications can also use the queue for messages they cannot deliver. For more
information, see “Using the dead-letter (undelivered-message) queue” on page 57.

System command queues
| System command queues are not supported on MQSeries for VSE/ESA.

These queues receive the PCF, MQSC, and CL commands, as supported on your
platform, in readiness for the queue manager to action them. In MQSeries for
OS/390 the queue is known as the SYSTEM.COMMAND.INPUT.QUEUE and
accepts MQSC commands. On other platforms it is known as the
SYSTEM.ADMIN.COMMAND.QUEUE and the commands accepted vary by

| platform. See “PCF command messages” in the MQSeries Programmable System
| Management book for details.

System default queues
The system default queues contain the initial definitions of the queues for your
system. When you create a new queue, the queue manager copies the definition
from the appropriate system default queue.

 Namelists
| Namelists are supported on MQSeries for OS/390 and MQSeries Version 5.1
| products only.

A namelist is an MQSeries object that contains a list of queue names. The queues
in the list can be of any type and the list can contain queues of more than one
type.

| You can define and modify namelists using only the commands or operations and
| control panels of MQSeries for OS/390 or the MQSC of MQSeries Version 5.1
| products.

Programs can use the MQI to find out which queues are included in these
namelists. The organization of the namelists is the responsibility of the application
designer and system administrator.

| For a full description of the attributes of namelists, see “Attributes for namelists” in
| the MQSeries Application Programming Reference manual.

48 MQSeries Application Programming Guide

 Process definitions � Naming objects

| Process definitions
| Note: Process definition objects are not supported on VSE/ESA.

| To allow an application to be started without the need for operator intervention
| (described in Chapter 14, “Starting MQSeries applications using triggers” on
| page 197), the attributes of the application must be known to the queue manager.

These attributes are defined in a process definition object.

The ProcessName attribute is fixed when the object is created; you can change the
others using the MQSeries commands or the MQSeries for OS/390 operations and
control panels. You can inquire about the values of all the attributes using the
MQINQ call.

| For a full description of the attributes of process definitions, see “Attributes for
| process definitions” in the MQSeries Application Programming Reference manual.

 Channels
A channel is a communication link used by distributed applications. There are two
categories of channel in MQSeries:

� Message channels, which are unidirectional, and transfer messages from one
queue manager to another.

� MQI channels, which are bidirectional, and transfer MQI calls from an
MQSeries client to a queue manager, and responses from a queue manager to
an MQSeries client.

These need to be considered when designing your application, but a program will
| be unaware of MQSeries channel objects. For more information, see “Message
| channels” in the MQSeries Intercommunication book and “What is a channel?” in
| the MQSeries Clients book.

 Storage classes
Storage classes are supported on MQSeries for OS/390 only.

A storage class maps one or more queues to a page set. This means that
messages for that queue are stored (subject to buffering) on that page set.

For further information about storage classes, see the MQSeries for OS/390
System Management Guide.

Rules for naming MQSeries objects
An MQSeries queue, process definition, namelist, and channel can all have the
same name. However, an MQSeries object cannot have the same name as any
other object of the same type. Names in MQSeries are case sensitive.

The character set that can be used for naming all MQSeries objects is as follows:

 � Uppercase A–Z

 Chapter 4. MQSeries objects 49

 Naming objects

| � Lowercase a–z (but there are restrictions on the use of lowercase letters for
| OS/390 console support)

On systems using EBCDIC Katakana you cannot use lowercase characters.

 � Numerics 0–9

 � Period (.)

� Forward slash (/)

 � Underscore (_)

� Percent sign (%)

Notes:

1. Leading or embedded blanks are not allowed.

2. You should also avoid using names with leading or trailing underscores,
because they cannot be handled by the MQSeries for OS/390 operations and
control panels.

3. Any name that is less than the full field length can be padded to the right with
blanks. All short names that are returned by the queue manager are always
padded to the right with blanks.

4. Any structure to the names (for example, the use of the period or underscore)
is not significant to the queue manager.

5. On AS/400 systems lowercase a-z, forward slash (/), and percent (%) are
special characters. If you use any of these characters in a name, the name
must be enclosed in quotation marks. Lowercase a-z characters are changed
to uppercase if the name is not enclosed in quotation marks.

 Queue names
The name of a queue has two parts:

� The name of a queue manager
� The local name of the queue as it is known to that queue manager

Each part of the queue name is 48 characters long.

To refer to a local queue, you can omit the name of the queue manager (by
replacing it with blank characters or using a leading null character). However, all
queue names returned to a program by MQSeries contain the name of the queue
manager.

To refer to a remote queue, a program must include the name of the queue
manager in the full queue name, or there must be a local definition of the remote
queue.

Note that when an application uses a queue name, that name can be either the
name of a local queue (or an alias to one) or the name of a local definition of a
remote queue, but the application does not need to know which, unless it needs to
get a message from the queue (when the queue must be local). When the
application opens the queue object, the MQOPEN call performs a name resolution
function to determine on which queue to perform subsequent operations. The
significance of this is that the application has no built-in dependency on particular
queues being defined at particular locations in a network of queue managers.

50 MQSeries Application Programming Guide

 Naming objects

Therefore, if a system administrator relocates queues in the network, and changes
their definitions, the applications that use those queues do not need to be changed.

Process definition and namelist names
Process definitions and namelists can have names up to 48 characters long.

 Channel names
| Channels can have names up to 20 characters long. See “Message channels” in
| the MQSeries Intercommunication book for further information on channels.

Reserved object names
Names that start with SYSTEM. are reserved for objects defined by the queue
manager.

 Chapter 4. MQSeries objects 51

 Naming objects

52 MQSeries Application Programming Guide

 Handling errors � Locally determined errors

Chapter 5. Handling program errors

Your application may encounter errors associated with its MQI calls either when it
makes a call or when its message is delivered to its final destination:

� Whenever possible, the queue manager returns any errors as soon as an MQI
call is made. These are locally determined errors.

� When sending messages to a remote queue, errors may not be apparent when
the MQI call is made. In this case, the queue manager that identifies the errors
reports them by sending another message to the originating program. These
are remotely determined errors.

This chapter gives advice on how to handle both types of error.

Locally determined errors
The three most common causes of errors that the queue manager can report
immediately are:

� Failure of an MQI call; for example, because a queue is full

� An interruption to the running of some part of the system on which your
application is dependent; for example, the queue manager

� Messages containing data that cannot be processed successfully

Failure of an MQI call
The queue manager can report immediately any errors in the coding of an MQI call.
It does this using a set of predefined return codes. These are divided into
completion codes and reason codes.

To show whether or not a call is successful, the queue manager returns a
completion code when the call completes. There are three completion codes,
indicating success, partial completion, and failure of the call. The queue manager
also returns a reason code which indicates the reason for the partial completion or
the failure of the call.

| The completion and reason codes for each call are listed with the description of
| that call in the MQSeries Application Programming Reference manual. You will
| also find further information (including some ideas for corrective action) for each
| completion and reason code, in Chapter 5, “Return codes” in the MQSeries
| Application Programming Reference manual. You should design your programs to

handle all the return codes that could arise from each call.

 Copyright IBM Corp. 1993,1999 53

 Locally determined errors

 System interruptions
Your application may be unaware of any interruption if the queue manager to which
it is connected has to recover from a system failure. However, you must design
your application to ensure that your data is not lost if such an interruption occurs.

The methods you can use to make sure that your data remains consistent depends
on the platform on which your queue manager is running:

OS/390
| In the CICS and IMS environments, you can make MQPUT and MQGET
| calls within units of work that are managed by CICS or IMS. In the
| batch environment, you can make MQPUT and MQGET calls in the
| same way, but you must declare syncpoints by using the MQSeries for
| OS/390 MQCMIT and MQBACK calls (see Chapter 13, “Committing and
| backing out units of work” on page 183), or you can use the OS/390
| Transaction Management and Recoverable Resource Manager Services
| (RRS) to provide two-phase syncpoint support. RRS allows you to
| update both MQSeries and other RRS-enabled product resources, such
| as DB2 stored procedure resources, within a single logical unit of
| work. For information on RRS syncpoint support see “Transaction
| management and recoverable resource manager services” on page 187.

AS/400
You can make your MQPUT and MQGET calls within units of work that
are managed by OS/400 commitment control.

Digital OpenVMS, DOS, OS/2, UNIX systems, Windows NT, and Windows 3.1
In these environments, you can make your MQPUT and MQGET calls in
the normal way, but you must declare syncpoints by using the MQCMIT
and MQBACK calls (see Chapter 13, “Committing and backing out units
of work” on page 183). In the CICS environment, MQCMIT and
MQBACK commands are disabled as you can make your MQPUT and
MQGET calls within units of work that are managed by CICS.

Tandem NSK
You can make your MQPUT and MQGET calls within units of work that
are managed by Tandem’s TM/MP product.

| VSE/ESA
| CICS controls the unit of work in the VSE/ESA environment. If the
| system fails and is restarted, the logical unit of work rollback occurs
| automatically.

| You should also use persistent messages for carrying all data you cannot afford to
| lose. Persistent messages are reinstated on queues if the queue manager has to
| recover from a failure. With MQSeries on UNIX systems, MQSeries for OS/2 Warp,
| and MQSeries for Windows NT, note that an MQGET or MQPUT call within your
| application will fail at the point of filling up all the log files, with the message
| MQRC_RESOURCE_PROBLEM. For more information on log files, see “Making
| sure that messages are not lost (logging)” in the MQSeries System Administration
| Guide for MQSeries for AIX, HP-UX, OS/2, Sun Solaris, and Windows NT; for other
| platforms, see the appropriate System Management Guide.

If the queue manager is stopped by an operator while an application is running, the
quiesce option is normally used. The queue manager enters a quiescing state in
which applications can continue to do work, but they should terminate as soon as it

54 MQSeries Application Programming Guide

 Report messages for error handling

is convenient. Small, quick applications can probably ignore the quiescing state
and continue until they terminate as normal. Longer running applications, or ones
that wait for messages to arrive, should use the fail if quiescing option when they
use the MQCONN, MQPUT, MQPUT1, and MQGET calls. These options mean
that the calls fail when the queue manager quiesces, but the application may still
have time to terminate cleanly by issuing calls that ignore the quiescing state.
Such applications could also commit, or back out, changes they have made, and
then terminate.

If the queue manager is forced to stop (that is, stop without quiescing), applications
will receive the MQRC_CONNECTION_BROKEN reason code when they make
MQI calls. At this point you must exit the application or, alternatively, on MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, you
can issue an MQDISC call.

Messages containing incorrect data
When you use units of work in your application, if a program cannot successfully
process a message that it retrieves from a queue, the MQGET call is backed out.
The queue manager maintains a count (in the BackoutCount field of the message
descriptor) of the number of times this happens. It maintains this count in the
descriptor of each message that is affected. This count can provide valuable
information about the efficiency of an application. Messages whose backout counts
are increasing over time are being repeatedly rejected—you should design your
application so that it analyzes the reasons for this and handles such messages
accordingly.

In MQSeries for OS/390, to make the backout count survive restarts of the queue
manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED;
otherwise, if the queue manager has to restart, it does not maintain an accurate
backout count for each message. Setting the attribute this way adds the penalty of
extra processing.

In MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for Windows NT, and
MQSeries on UNIX systems, the backout count always survives restarts of the
queue manager.

Also, in MQSeries for OS/390, when you remove messages from a queue within a
unit of work, you can mark one message so that it is not made available again if
the unit of work is backed out by the application . The marked message is treated
as if it has been retrieved under a new unit of work. You mark the message that is
to skip backout using the MQGMO_MARK_SKIP_BACKOUT option (in the
MQGMO structure) when you use the MQGET call. See “Skipping backout” on
page 150 for more information about this technique.

| Note: In MQSeries for VSE/ESA, BackoutCount is a reserved field. It cannot be
| used as described in this section.

Using report messages for problem determination
The remote queue manager cannot report errors such as failing to put a message
on a queue when you make your MQI call, but it can send you a report message to
say how it has processed your message.

 Chapter 5. Handling program errors 55

 Remotely determined errors

Within your application you can create (MQPUT) report messages as well as select
the option to receive them (in which case they will be sent by either another
application or by a queue manager).

Creating report messages
Report messages provide a mechanism for an application to inform another
application that it is unable to deal with the message that was sent. However, the
Report field must initially be analyzed to determine whether or not the application
that sent the message is interested in being informed of any problems. Having
determined that a report message is required, you have to decide:

� Whether you want to include all the original message (not an option on
OS/390), just the first 100 bytes of data, or none of the original message.

� What to do with the original message. You can discard it or let it go to the
dead-letter queue.

� Whether the contents of the MsgId and CorrelId fields are needed as well.

Use the Feedback field to indicate the reason for the report message being
| generated. Put your report messages on an application’s reply-to queue. Refer to
| “MQMD - Message descriptor” in the MQSeries Application Programming
| Reference manual for further information.

Requesting and receiving (MQGET) report messages
When you send a message to another application, you will not be informed of any
problems unless you complete the Report field to indicate the feedback you require.

| The options available to you are in “MQMD - Message descriptor” in the MQSeries
| Application Programming Reference manual.

Queue managers always put report messages on an application’s reply-to queue
and it is recommended that your own applications do the same. When you use the
report message facility you must specify the name of your reply-to queue in the
message descriptor of your message; otherwise, the MQPUT call fails.

Your application should contain procedures that monitor your reply-to queue and
process any messages that arrive on it. Remember that a report message can
contain all the original message, the first 100 bytes of the original message, or
none of the original message.

The queue manager sets the Feedback field of the report message to indicate the
reason for the error; for example, the target queue does not exist. Your programs
should do the same.

For more information on report messages, see “Report messages” on page 25.

Remotely determined errors
When you send messages to a remote queue, even when the local queue manager
has processed your MQI call without finding an error, other factors can influence
how your message is handled by a remote queue manager. For example, the
queue you are targeting may be full, or may not even exist. If your message has to
be handled by other intermediate queue managers on the route to the target queue,
any of these could find an error.

56 MQSeries Application Programming Guide

 Remotely determined errors

Problems delivering a message
When an MQPUT call fails, you have the choice of attempting to put the message
on the queue again, returning it to the sender, or putting it on the dead-letter
queue.

Each option has its own merits, but you may not want to retry putting a message if
the reason that the MQPUT failed was because the destination queue was full. In
this instance, putting it on the dead-letter queue allows you to deliver it to the
correct destination queue later on.

Retry message delivery
Before the message is put on a dead-letter queue, a remote queue manager
attempts to put the message on the queue again if the attributes MsgRetryCount
and MsgRetryInterval have been set for the channel, or if there is a retry exit
program for it to use (the name of which is held in the channel attribute
MsgRetryExitId field).

If the MsgRetryExitId field is blank, the values in the attributes MsgRetryCount and
MsgRetryInterval are used.

| If the MsgRetryExitId field is not blank, the exit program of this name runs. For
| more information on using your own exit programs, see Chapter 35, “Channel-exit
| programs” in the MQSeries Intercommunication book.

Return message to sender
You return a message to the sender by requesting a report message to be
generated to include all of the original message. See “Report messages” on
page 25 for details on report message options.

Using the dead-letter (undelivered-message) queue
When a queue manager cannot deliver a message, it attempts to put the message
on its dead-letter queue. This queue should be defined when the queue manager
is installed.

Your programs can use the dead-letter queue in the same way that the queue
manager uses it. You can find the name of the dead-letter queue by opening the
queue manager object (using the MQCONN call) and inquiring about the
DeadLetterQName attribute (using the MQINQ call).

| When the queue manager puts a message on this queue, it adds a header to the
| message, the format of which is described by the dead-letter header (MQDLH)
| structure, in “MQDLH - Dead-letter header” in the MQSeries Application
| Programming Reference manual. This header includes the name of the target

queue and the reason the message was put on the dead-letter queue. It must be
removed and the problem must be resolved before the message is put on the
intended queue. Also, the queue manager changes the Format field of the
message descriptor (MQMD) to indicate that the message contains an MQDLH
structure.

 Chapter 5. Handling program errors 57

 Remotely determined errors

 MQDLH structure

You are recommended to add an MQDLH structure to all messages that you
put on the dead-letter queue; however, if you intend to use the dead-letter
handler provided by certain MQSeries products, you must add an MQDLH
structure to your messages.

The addition of the header to a message may make the message too long for the
dead-letter queue, so you should always make sure that your messages are shorter
than the maximum size allowed for the dead-letter queue, by at least the value of
the MQ_MSG_HEADER_LENGTH constant. The maximum size of messages
allowed on a queue is determined by the value of the MaxMsgLength attribute of the
queue. For the dead-letter queue, you should make sure that this attribute is set to
the maximum allowed by the queue manager. If your application cannot deliver a
message, and the message is too long to be put on the dead-letter queue, follow
the advice given in the description of the MQDLH structure.

You need to ensure that the dead-letter queue is monitored, and that any
| messages arriving on it get processed. A dead-letter queue handler is provided by
| MQSeries on all platforms except OS/390 and VSE/ESA. It runs as a batch utility

and can be used to perform various actions on selected messages on the
dead-letter queue. If you have a queue manager on one of the platforms that does
not provide a dead-letter queue handler, you will need to provide your own. The

| program could be triggered, or run at regular intervals. For further details, see
| Chapter 12, “The MQSeries dead-letter queue handler” in the MQSeries System
| Administration Guide for MQSeries for AIX, HP-UX, OS/2, Sun Solaris, and
| Windows NT; for other platforms, see the appropriate System Administration Guide.

If data conversion is necessary, the queue manager converts the header
information when you use the MQGMO_CONVERT option on the MQGET call. If
the process putting the message is an MCA, the header is followed by all the text
of the original message.

You should be aware that messages put on the dead-letter queue may be
truncated if they are too long for this queue. A possible indication of this situation
is the messages on the dead-letter queue being the same length as the value of
the MaxMsgLength attribute of the queue.

Dead-letter queue processing
General-use programming interface

Dead-letter queue processing is dependent on local system requirements, but you
should consider the following when you draw up the specification:

� The message can be identified as having a dead-letter queue header because
the value of the format field in the MQMD, is
MQFMT_DEAD_LETTER_HEADER.

| � In MQSeries for OS/390 using CICS, if an MCA puts this message to the
| dead-letter queue, the PutApplType field is MQAT_CICS, and the PutApplName
| field is the ApplId of the CICS system followed by the transaction name of the
| MCA.

58 MQSeries Application Programming Guide

 Remotely determined errors

� The reason for the message to be routed to the dead-letter queue is contained
in the Reason field of the dead-letter queue header.

� The dead-letter queue header contains details of the destination queue name
and queue manager name.

� The dead-letter queue header contains fields that have to be reinstated in the
message descriptor before the message is put to the destination queue. These
are:

 1. Encoding
 2. CodedCharSetId
 3. Format

� The message descriptor is the same as PUT by the original application, except
for the three fields shown above.

Your dead-letter queue application should do one or more of the following:

� Examine the Reason field. A message may have been put by an MCA for the
following reasons:

– The message was longer than the maximum message size for the channel

| The reason will be MQRC_MSG_TOO_BIG_FOR_CHANNEL (or
| MQRC_MSG_TOO_BIG_FOR_Q_MGR if you are using CICS for
| distributed queuing on MQSeries for OS/390)

– The message could not be put to its destination queue

The reason will be any MQRC_* reason code that can be returned by an
MQPUT operation

– A user exit has requested this action

The reason code will be that supplied by the user exit, or the default
MQRC_SUPPRESSED_BY_EXIT

� Try to forward the message to its intended destination, where this is possible.

� Retain the message for a certain length of time before discarding when the
reason for the diversion is determined, but not immediately correctable.

� Give instructions to administrators for the correction of problems where these
have been determined.

� Discard messages that are corrupted or otherwise not processible.

There are two ways that you deal with the messages you have recovered from the
dead-letter queue:

1. If the message is for a local queue, you should:

� Carry out any code translations required to extract the application data
� Carry out code conversions on that data if this is a local function
� Put the resulting message on the local queue with all the detail of the

message descriptor restored

2. If the message is for a remote queue, put the message on the queue.

End of General-use programming interface

 Chapter 5. Handling program errors 59

 Remotely determined errors

| For information on how undelivered messages are handled in a distributed queuing
| environment, see “What happens when a message cannot be delivered?” in the
| MQSeries Intercommunication book.

60 MQSeries Application Programming Guide

Part 2. Writing an MQSeries application

| Chapter 6. Introducing the Message Queue Interface 65
| What is in the MQI? . 65

Calls . 66
Syncpoint calls . 67
Data conversion . 68
Structures . 68
Elementary data types . 68
MQSeries data definitions . 69
MQSeries stub programs and library files . 69

Parameters common to all the calls . 73
Using connection and object handles . 74
Understanding return codes . 74

Specifying buffers . 74
Programming language considerations . 75

Coding in C . 76
Coding in COBOL . 78
Coding in System/390 assembler language 79
Specifying the form of a structure . 81
Coding in RPG . 82
Coding in PL/I . 83
Coding in TAL . 84

| OS/390 batch considerations . 84
UNIX signal handling on MQSeries Version 5 products 85

| Unthreaded applications . 86
| Threaded applications . 86
| Fastpath (trusted) applications . 87
| MQI function calls within signal handlers . 87
| Signals during MQI calls . 88
| User exits and installable services . 88

Chapter 7. Connecting and disconnecting a queue manager 89
Connecting to a queue manager using the MQCONN call 90

Scope of MQCONN . 91
Connecting to a queue manager using the MQCONNX call 92

MQCNO_STANDARD_BINDING . 92
MQCNO_FASTPATH_BINDING . 92
Restrictions . 93
Environment variable . 94

Disconnecting programs from a queue manager using MQDISC 94
Authority checking . 95

Chapter 8. Opening and closing objects . 97
Opening objects using the MQOPEN call . 98

Scope of an object handle . 98
Identifying objects (the MQOD structure) . 99
Name resolution . 99
Using the options of the MQOPEN call . 101

Creating dynamic queues . 104
Opening remote queues . 105
Closing objects using the MQCLOSE call . 105

 Copyright IBM Corp. 1993,1999 61

Chapter 9. Putting messages on a queue 107
Putting messages on a local queue using the MQPUT call 107

Specifying handles . 108
Defining messages using the MQMD structure 108
Specifying options using the MQPMO structure 108
The data in your message . 111

Putting messages on a remote queue . 112
Controlling context information . 113

Passing identity context . 113
Passing all context . 114
Setting identity context . 114
Setting all context . 114

Putting one message on a queue using the MQPUT1 call 114
Distribution lists . 116

Opening distribution lists . 116
Putting messages to a distribution list . 119

Some cases where the put calls fail . 121

Chapter 10. Getting messages from a queue 123
Getting messages from a queue using the MQGET call 123

Specifying connection handles . 124
Describing messages using the MQMD structure and the MQGET call . . 124
Specifying MQGET options using the MQGMO structure 125
Specifying the size of the buffer area . 127

The order in which messages are retrieved from a queue 128
Priority . 128
Logical and physical ordering . 129

Getting a particular message . 137
Type of index . 139
Handling large messages . 140

Increasing the maximum message length 140
Message segmentation . 141
Reference messages . 144

Waiting for messages . 146
Signaling . 147

To set a signal . 147
When the message arrives . 148

Skipping backout . 150
Application data conversion . 152

| Conversion of EBCDIC newline characters 153
Browsing messages on a queue . 154

The browse cursor . 154
Browsing messages when message length unknown 155
Removing a message you have browsed 156

Browsing messages in logical order . 156
Some cases where the MQGET call fails . 159

| Chapter 11. Writing data-conversion exits 161
Invoking the data-conversion exit . 161

| Data conversion on OS/390 . 162
Writing a data-conversion exit program . 163

Skeleton source file . 164
Convert characters call . 164
Utility for creating conversion-exit code . 164

62 MQSeries Application Programming Guide

Valid syntax . 166
Writing a data-conversion exit program for MQSeries for AS/400 167
Writing a data-conversion exit for MQSeries for OS/2 Warp 168
Writing a data-conversion exit program for MQSeries for OS/390 170
Writing a data-conversion exit for MQSeries for Tandem NSK 171

Reusing data-conversion exit programs . 172
Writing a data-conversion exit for MQSeries on UNIX systems and Digital

OpenVMS . 172
UNIX environment . 174
Compiling data-conversion exits on Digital OpenVMS 174
Compiling data-conversion exits on UNIX 175

Writing a data-conversion exit for MQSeries for Windows NT 177

Chapter 12. Inquiring about and setting object attributes 179
Inquiring about the attributes of an object . 180
Some cases where the MQINQ call fails . 181
Setting queue attributes . 182

Chapter 13. Committing and backing out units of work 183
Syncpoint considerations in MQSeries applications 184

| Syncpoints in MQSeries for OS/390 applications 185
| Syncpoints in CICS Transaction Server for OS/390 and CICS for MVS/ESA
| applications . 185
| Syncpoints in IMS applications . 186
| Syncpoints in OS/390 batch applications 186

Syncpoints in MQSeries for AS/400 applications 188
Syncpoints in CICS for AS/400 applications 189
Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries

for Digital OpenVMS, and MQSeries on UNIX systems 189
Local units of work . 189
Global units of work . 190
Interfaces to external syncpoint managers 192

Syncpoints in MQSeries for Tandem NSK applications 194
General XA support . 195

Chapter 14. Starting MQSeries applications using triggers 197
What is triggering? . 197
Prerequisites for triggering . 202
Conditions for a trigger event . 204
Controlling trigger events . 208

Example of the use of trigger type EVERY 209
Example of the use of trigger type FIRST 209
Example of the use of trigger type DEPTH 209
Special case of trigger type FIRST . 210

Designing an application that uses triggered queues 210
Trigger messages and units of work . 210
Getting messages from a triggered queue 211

Trigger monitors . 212
MQSeries for OS/390 trigger monitors . 212
MQSeries for AS/400 trigger monitors . 213
MQSeries for OS/2 Warp, Digital OpenVMS, Tandem NSK, UNIX systems,

and Windows NT trigger monitors . 213
Properties of trigger messages . 215

Persistence and priority of trigger messages 215

 Part 2. Writing an MQSeries application 63

Queue manager restart and trigger messages 215
Trigger messages and changes to object attributes 216
Format of trigger messages . 216

When triggering does not work . 217
How CKTI detects errors . 217
How CSQQTRMN detects errors . 217
How RUNMQTRM detects errors . 218

| Chapter 15. Using and writing applications on MQSeries for OS/390 . . 219
| Environment-dependent MQSeries for OS/390 functions 219
| Program debugging facilities . 220
| Syncpoint support . 220
| Recovery support . 220
| The MQSeries for OS/390 interface with the application environment 221

The batch adapter . 221
| RRS batch adapter . 221

The CICS adapter . 222
The IMS adapter . 224

| Writing OS/390 OpenEdition applications . 224
The API-crossing exit for OS/390 . 225

Using the API-crossing exit . 226
Writing your own exit program . 227
The sample API-crossing exit program, CSQCAPX 229

| Writing MQSeries-CICS bridge applications 230
| Structure of the MQSeries message . 231
| Handling a unit of work . 233
| Programming considerations for running 3270 transactions 234
| Examples . 234

Writing MQSeries-IMS bridge applications . 239
How the MQSeries-IMS bridge deals with messages 239
Writing your program . 243

Writing IMS applications using MQSeries . 245
Syncpoints in IMS applications . 245
MQI calls in IMS applications . 246

| MQSeries Workflow . 249

| Chapter 16. Object-oriented programming with MQSeries 251
| What is in the MQSeries Object Model? . 251
| Classes . 251
| Object references . 252
| Return codes . 252
| Programming language considerations . 253
| Coding in C++ . 253
| Coding in Java . 253
| Coding in LotusScript . 253
| Coding in ActiveX . 253

64 MQSeries Application Programming Guide

 Programming interface � MQI

| Chapter 6. Introducing the Message Queue Interface

This chapter introduces the features of the Message Queue Interface (MQI).

The remaining chapters in this part of the book describe how to use these features.
| Detailed descriptions of the calls, structures, data types, return codes, and
| constants are given in the MQSeries Application Programming Reference manual.

| What is in the MQI?
The Message Queue Interface comprises the following:

� Calls through which programs can access the queue manager and its facilities

� Structures that programs use to pass data to, and get data from, the queue
manager

� Elementary data types for passing data to, and getting data from, the queue
manager

MQSeries for OS/390 also supplies:

| � Two extra calls through which OS/390 batch programs can commit and back
| out changes.

� Data definition files (sometimes known as copy files, macros, include files, and
header files) that define the values of constants supplied with MQSeries for
OS/390.

� Stub programs to link-edit to your applications.

| � A suite of sample programs that demonstrate how to use the MQI on the
| OS/390 platform. For further information about these samples, see

Chapter 32, “Sample programs for MQSeries for OS/390” on page 395.

MQSeries for AS/400 also supplies:

� Data definition files (sometimes known as copy files, macros, include files, and
header files) that define the values of constants supplied with MQSeries for
AS/400.

� A stub program to link-edit to your C/400 applications.

� A suite of sample programs that demonstrate how to use the MQI on the
AS/400 platform. For further information about these samples, see Chapter 31,
“Sample programs (all platforms except OS/390)” on page 327.

MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries for Digital
OpenVMS, and MQSeries on UNIX systems also supply:

� Calls through which MQSeries for OS/2 Warp and MQSeries on UNIX systems
programs can commit and back out changes.

� Include files that define the values of constants supplied on these platforms.

� Library files to link your applications.

� A suite of sample programs that demonstrate how to use the MQI on these
platforms.

 Copyright IBM Corp. 1993,1999 65

 MQI

� Sample source and executable code for bindings to external transaction
managers.

MQSeries for Tandem NSK also supplies:

� Include files that define the values of constants supplied with MQSeries for
Tandem NSK.

� Library files to link your applications.

� A suite of sample programs that demonstrate how to use the MQI on the
Tandem NSK platform.

| MQSeries for VSE/ESA also supplies:

| � Include files that define the values of constants supplied with MQSeries for
| VSE/ESA.

| � A suite of sample programs that demonstrate how to use the MQI on the
| VSE/ESA platform.

MQSeries for Windows provides a subset of the MQI. For more information, see
the following:

� MQSeries for Windows V2.0 User’s Guide.
� MQSeries for Windows V2.1 User’s Guide.

 Calls
The calls in the MQI can be grouped as follows:

MQCONN, MQCONNX, and MQDISC
| Use these calls to connect a program to (with or without options), and
| disconnect a program from, a queue manager. If you write CICS
| programs for MQSeries for OS/390, OS/400, or VSE/ESA, you do not
| need to use these calls. However, you are recommended to use them if
| you want your application to be portable to other platforms.

MQOPEN and MQCLOSE
Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1
Use these calls to put a message on a queue.

MQGET Use this call to browse messages on a queue, or to remove messages
from a queue.

MQINQ Use this call to inquire about the attributes of an object.

MQSET Use this call to set some of the attributes of a queue. You cannot set
the attributes of other types of object.

MQBEGIN, MQCMIT, and MQBACK
Use these calls to start and commit a global unit of work (where
coordination is performed by MQSeries) and indicate to the queue
manager that all messages put or retrieved as part of a unit of work
since the last syncpoint are to be backed out.

| The MQI calls are described fully in Chapter 3, “Call descriptions” in the MQSeries
| Application Programming Reference manual.

66 MQSeries Application Programming Guide

 MQI

 Syncpoint calls
Syncpoint calls are available as follows:

MQSeries for OS/390 calls
| MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these calls
| in OS/390 batch programs to tell the queue manager that all the MQGET and
| MQPUT operations since the last syncpoint are to be made permanent (committed)
| or are to be backed out. To commit and back out changes in other environments:

CICS Use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

IMS Use the IMS syncpoint facilities, such as the GU (get unique) to
the IOPCB, CHKP (checkpoint), and ROLB (rollback) calls.

| RRS Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as
| appropriate. (See “Transaction management and recoverable
| resource manager services” on page 187.)

| Note: SRRCMIT and SRRBACK are ‘native’ RRS commands,
| they are not MQI calls.

| For backward compatibility, the CSQBCMT and CSQBBAK calls are available as
| synonyms for MQCMIT and MQBACK. These are described fully in “MQBACK -
| Back out changes” and “MQCMIT - Commit changes” in the MQSeries Application
| Programming Reference manual.

 OS/400 calls
Use the OS/400 COMMIT and ROLLBACK commands, or any other commands or
calls that initiate the OS/400 commitment control facilities (for example, EXEC CICS
SYNCPOINT).

MQSeries for Tandem NSK calls
The default SYNCPOINT option for the MQPUT and MQGET calls is SYNCPOINT,
rather than NO_SYNCPOINT. To use the default (SYNCPOINT) option for
MQPUT, MQGET and MQPUT1 operations, the application must have an active
TM/MP Transaction that defines the unit of work to be committed.

| MQSeries for VSE/ESA calls
| Use CICS commands such as EXEC CICS SYNCPOINT and EXEC CICS
| SYNCPOINT ROLLBACK. The batch interface and server support the MQCMIT
| and MQBACK calls which are translated into the CICS commands EXEC CICS
| SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK respectively. Use these
| calls in programs to tell the queue manager that all the MQGET and MQPUT
| operations since the last syncpoint are to be made permanent (committed) or are to
| be backed out.

MQSeries calls on other platforms
The following products provide the MQCMIT and MQBACK calls:

� MQSeries for OS/2 Warp
� MQSeries for Windows
� MQSeries for Windows NT
� MQSeries for Digital OpenVMS
� MQSeries on UNIX systems

 Chapter 6. Introducing the Message Queue Interface 67

 MQI

| Use syncpoint calls in programs to tell the queue manager that all the MQGET and
| MQPUT operations since the last syncpoint are to be made permanent (committed)
| or are to be backed out. To commit and back out changes in the CICS
| environment, use commands such as EXEC CICS SYNCPOINT and EXEC CICS
| SYNCPOINT ROLLBACK.

 Data conversion
The MQXCNVC - convert characters call is used only from a data-conversion exit.
This call converts message character data from one character set to another.

| See “MQXCNVC - Convert characters” in the MQSeries Application Programming
| Reference manual for the syntax used with the MQXCNVC call, and Chapter 11,
| “Writing data-conversion exits” on page 161 for guidance on writing and invoking
| data conversion exits.

 Structures
| Structures, used with the MQI calls listed in “Calls” on page 66, are supplied in
| data definition files for each of the supported programming languages. MQSeries

for OS/390 and MQSeries for AS/400 supply files that contain constants for you to
use when filling in some of the fields of these structures. For more information on
these, see “MQSeries data definitions” on page 69.

| All the structures are described fully in Chapter 2, “Data type descriptions -
| structures” in the MQSeries Application Programming Reference manual.

Elementary data types
| For the C language, the MQI provides the following elementary data types or
| unstructured fields:

| These data types are described fully in Chapter 1, “Data type descriptions -
| elementary” in the MQSeries Application Programming Reference manual.

| Table 1 on page 69 shows the Visual Basic equivalents of the C elementary data
| types.

| MQBYTE| A single byte of data
| MQBYTEn| A string of 16, 24, 32, 40, or 64 bytes
| MQCHAR| One single-byte character
| MQCHARn| A string of 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256 single-byte
| characters
| MQHCONN| A connection handle (this data is 32 bits long)
| MQHOBJ| An object handle (this data is 32 bits long)
| MQLONG| A 32-bit signed binary integer
| PMQLONG| A pointer to data of type MQLONG

68 MQSeries Application Programming Guide

 MQI

For COBOL, assembler, PL/I, or RPG, use the equivalent declarations shown in the
same manuals.

| Table 1. Visual Basic equivalents of the C elementary data types

| C data type| Visual Basic data type

| MQBYTE| String * 1

| MQBYTEn| String * n

| MQCHAR| String * 1

| MQCHARn| String * n

| MQHCONN| Long

| MQHOBJ| Long

| MQLONG| Long

| PMQLONG| No equivalent

MQSeries data definitions
| MQSeries for OS/390 supplies data definitions in the form of COBOL copy files,
| assembler-language macros, a single PL/I include file, a single C language include
| file, and C++ language include files.

| MQSeries for AS/400 supplies data definitions in the form of COBOL copy files,
| RPG copy files, C language include files, and C++ language include files.

| MQSeries for VSE/ESA supplies data definitions in the form of a C language
| include file, COBOL copy files, and PL/I include files.

The data definition files supplied with MQSeries contain:

� Definitions of all the MQSeries constants and return codes
� Definitions of the MQSeries structures and data types
� Constant definitions for initializing the structures
� Function prototypes for each of the calls (for PL/I and the C language only)

For a full description of MQSeries data definition files, see Appendix G, “MQSeries
data definition files” on page 529.

MQSeries stub programs and library files
The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and library files when you
build an executable application, see Part 3, “Building an MQSeries application” on

| page 255. For information about linking to C++ library files, see the MQSeries
| Using C++ book.

MQSeries for OS/390
Before you can run an MQSeries for OS/390 program, you must link-edit it to the
stub program supplied with MQSeries for OS/390 for the environment in which you
are running the application. The stub program provides the first stage of the
processing of your calls into requests that MQSeries for OS/390 can process.

 Chapter 6. Introducing the Message Queue Interface 69

 MQI

MQSeries for OS/390 supplies the following stub programs:

| Note: If you use the CSQBRSTB stub program you must link-edit with ATRSCSS
| from SYS1.CSSLIB. (SYS1.CSSLIB is also known as the “Callable Services
| Library”.) For more information about RRS see “Transaction management and
| recoverable resource manager services” on page 187.

Alternatively, you can dynamically call the stub from within your program. This
technique is described in “Dynamically calling the MQSeries stub” on page 279.

In IMS, you may also need to use a special language interface module that is
supplied by MQSeries.

| CSQBSTUB| Stub program for OS/390 batch programs
| CSQBRRSI| Stub program for OS/390 batch programs using RRS by way of the
| MQI
| CSQBRSTB| Stub program for OS/390 batch programs using RRS directly

CSQCSTUB Stub program for CICS programs
CSQQSTUB Stub program for IMS programs
CSQXSTUB Stub program for distributed queuing non-CICS exits
CSQASTUB Stub program for data-conversion exits

MQSeries for AS/400
In MQSeries for AS/400, you must bind your ILE C/400 programs and RPG/400
static calls to the supplied AMQZSTUB service program.

| If you are using MQSeries for AS/400 you can write your applications in C++. To
| see how to link your C++ applications, and for full details of all aspects of using
| C++, see the book MQSeries Using C++.

MQSeries for OS/2 Warp
In MQSeries for OS/2 Warp, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in addition
to those provided by the operating system:

MQM.LIB Server for 32-bit C
MQIC.LIB Client for C
MQMXA.LIB Static XA interface for C
MQMCICS.LIB CICS for OS/2 V2 exits for C

| MQMCICS3.LIB| CICS Transaction Server for OS/2, V4 exits
MQMZF.LIB Installable services exits for C
MQICCB16.LIB Client for 16-bit Micro Focus COBOL
MQMCB16.LIB Server for 16-bit Micro Focus COBOL

| MQMCBB.LIB| Server for 32-bit IBM VisualAge COBOL
MQMCB32.LIB Server for 32-bit Micro Focus COBOL

| MQICCBB.LIB| Client for 32-bit IBM VisualAge COBOL
MQICCB32.LIB Client for 32-bit Micro Focus COBOL
IMQ*.LIB Server for C++

MQSeries for Windows
In MQSeries for Windows, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in addition
to those provided by the operating system:

MQM16.LIB Server for 16-bit C
MQM.LIB Server for 32-bit C

70 MQSeries Application Programming Guide

 MQI

MQSeries for Windows NT
| In MQSeries for Windows NT, you must link your program to the MQI library files
| supplied for the environment in which you are running your application, in addition
| to those provided by the operating system:

MQM.LIB Server for 32-bit C
MQIC.LIB Client for 16-bit C
MQIC32.LIB Client for 32-bit C
MQMXA.LIB Static XA interface for C
MQMCICS.LIB CICS for Windows NT V2 exits for C

| MQMCICS4.LIB| TXSeries for Windows NT, V4 exits for C
MQMZF.LIB Installable services exits for C
MQMCBB.LIB Server for 32-bit IBM COBOL
MQMCB32 Server for 32-bit Micro Focus COBOL
MQICCBB.LIB Client for 32-bit IBM COBOL
MQICCB32 Client for 32-bit Micro Focus COBOL
IMQ*.LIB Server for C++
MQMENC.LIB Dynamic XA interface in C for Encina
MQMTUX.LIB Dynamic XA interface in C for Tuxedo

MQSeries for AIX
In MQSeries for AIX, you must link your program to the MQI library files supplied
for the environment in which you are running your application, in addition to those
provided by the operating system.

In a non-threaded application:

In a threaded application:

libmqm.a Server for C
libmqic.a Client for C
libmqmzf.a Installable service exits for C
libmqmxa.a XA interface for C
libmqmcbrt.o MQSeries run-time library for Micro Focus COBOL support
libmqmcb.a Server for COBOL
libmqicb.a Client for COBOL
libimq*.a Client for C++

libmqm_r.a Server for C
libmqmzf_r.a Installable service exits for C
libmqmxa_r.a XA interface for C
libimq*_r.a Client for C++
libmqmxa_r.a For Encina

| MQSeries for AT&T GIS UNIX
| In MQSeries for AT&T GIS UNIX, you must link your program to the MQI library
| files supplied for the environment in which you are running your application, in
| addition to those provided by the operating system.

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C

 Chapter 6. Introducing the Message Queue Interface 71

 MQI

MQSeries for Digital OpenVMS
In MQSeries for Digital OpenVMS, you must link your program to the MQI library
files supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

mqm.exe Server for C
mqic.exe Client for C
mqmzf.exe Installable service exits for C
mqmxa.exe XA interface for C
mqcbrt.exe MQSeries COBOL run-time
mqmcb.exe Server for COBOL
mqicb.exe Client for COBOL

MQSeries for HP-UX
In MQSeries for HP-UX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in addition
to those provided by the operating system.

In a non-threaded application:

In a threaded application:

libmqm.sl Server for C
libmqic.sl Client for C
libmqmzf.sl Installable service exits for C
libmqmxa.sl XA interface for C
libmqmcbrt.o MQSeries run-time library for Micro Focus COBOL support
libmqmcb.sl Server for COBOL
libmqicb.sl Client for COBOL

libmqm_r.sl Server for C
libmqmzf_r.sl Installable service exits for C
libmqmxa_r.sl XA interface for C

MQSeries for SINIX and DC/OSx
In MQSeries for SINIX and DC/OSx, you must link your program to the MQI library
files supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application:

In a threaded application:

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
libmqmcbrt.o MQSeries COBOL run-time
libmqmcb.so Server for COBOL
libmqicb.so Client for COBOL

libmqm_r.so For C
libmqmcs_r.so For C
libmqmcics_r.so For CICS
libmqmxa_r.a For XA interface in C

72 MQSeries Application Programming Guide

 MQI common parameters

DOS and Windows 3.1 clients
In DOS and Windows 3.1, you must link your program to the MQIC.LIB library file
(or imq*vw.lib for C++), followed by the protocol libraries, indicating the protocol you
do and do not want.

mqicn.lib NetBIOS required
mqicdn.lib NetBIOS not required
mqict.lib TCP/IP required
mqicdt.lib TCP/IP not required

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
imq*.so C++

MQSeries for Sun Solaris
In MQSeries for Sun Solaris, you must link your program to the MQI library files
supplied for the environment in which you are running your application in addition to
those provided by the operating system.

libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C
imq*.so C++

| MQSeries for VSE/ESA
| In MQSeries for VSE/ESA you must link your program to the install sublibrary
| PRD2.MQSERIES (this is its default name). This sublibrary contains all the
| required object decks.

MQSeries for Tandem NSK
In MQSeries for Tandem NSK, you must link your program to the MQI library files
supplied for the environment in which you are running your application in addition to
those provided by the operating system.

mqmlibc For C, nonnative
mqmlibt For TAL or COBOL, nonnative
mqmlibnc For native C
mqmlibnt For native TAL or COBOL

Parameters common to all the calls
There are two types of parameter common to all the calls: handles and return
codes.

 Chapter 6. Introducing the Message Queue Interface 73

 Buffers

Using connection and object handles
For a program to communicate with a queue manager, the program must have a
unique identifier by which it knows that queue manager. This identifier is called a
connection handle. For CICS and OS/400 programs, the connection handle is
always zero. For all other platforms or styles of programs, the connection handle is
returned by the MQCONN or MQCONNX call when the program connects to the
queue manager. Programs pass the connection handle as an input parameter
when they use the other calls.

For a program to work with an MQSeries object, the program must have a unique
identifier by which it knows that object. This identifier is called an object handle.
The handle is returned by the MQOPEN call when the program opens the object to
work with it. Programs pass the object handle as an input parameter when they
use subsequent MQPUT, MQGET, MQINQ, MQSET, or MQCLOSE calls.

Understanding return codes
A completion code and a reason code are returned as output parameters by each
call. These are known collectively as return codes.

To show whether or not a call is successful, each call returns a completion code
when the call is complete. The completion code is usually either MQCC_OK or
MQCC_FAILED, showing success and failure, respectively. Some calls can return
an intermediate state, MQCC_WARNING, indicating partial success.

Each call also returns a reason code that shows the reason for the failure, or partial
success, of the call. There are many reason codes, covering such circumstances
as a queue being full, get operations not being allowed for a queue, and a
particular queue not being defined for the queue manager. Programs can use the
reason code to decide how to proceed. For example, they could prompt the user of
the program to make changes to his input data, then make the call again, or they
could return an error message to the user.

When the completion code is MQCC_OK, the reason code is always
MQRC_NONE.

The completion and reason codes for each call are listed with the description of
that call in the MQSeries Application Programming Reference

| You will also find further information (including some ideas for corrective action) for
| each completion and reason code, in Chapter 5, “Return codes” in the MQSeries
| Application Programming Reference manual.

 Specifying buffers
The queue manager refers to buffers only if they are required. If you do not require
a buffer on a call or the buffer is zero in length, you can use a null pointer to a
buffer.

Always use datalength when specifying the size of the buffer you require.

When you use a buffer to hold the output from a call (for example, to hold the
message data for an MQGET call, or the values of attributes queried by the MQINQ
call), the queue manager attempts to return a reason code if the buffer you specify

74 MQSeries Application Programming Guide

 Programming language considerations

is not valid or is in read-only storage. However, it may not be able to return a
reason code in some situations.

Programming language considerations
MQSeries provides support for the following programming languages:

 � C.

| � C++ (MQSeries for AIX, AS/400, HP-UX, OS/2, OS/390, Sun Solaris, and
| Windows NT only). See the MQSeries Using C++ book for information about
| coding MQSeries programs in C++.

| � Visual Basic (MQSeries for Windows and Windows NT only). See the
| MQSeries for Windows Version 2.0 User’s Guide and the MQSeries for
| Windows Version 2.1 User’s Guide for information about coding MQSeries
| programs in Visual Basic.

 � COBOL.

� Assembler language (MQSeries for OS/390 only).

� RPG (MQSeries for AS/400 only).

| � PL/I (MQSeries for OS/390, AIX, OS/2 Warp, VSE/ESA, and Windows NT
| only).

� TAL (MQSeries for Tandem NSK only).

| The call interface, and how you can code the calls in each of these languages, is
| described in Chapter 3, “Call descriptions” in the MQSeries Application
| Programming Reference manual.

MQSeries provides data definition files to assist you with the writing of your
applications. For a full description, see Appendix G, “MQSeries data definition
files” on page 529.

If you can choose which language to code your programs in, you should consider
the maximum length of the messages that your programs will process. If your
programs will process only messages of a known maximum length, you can code
them in any of the supported programming languages. But if you do not know the
maximum length of the messages the programs will have to process, the language
you choose will depend on whether you are writing a CICS, IMS, or batch
application:

IMS and batch
Code the programs in C, PL/I, or assembler language to use the facilities these
languages offer for obtaining and releasing arbitrary amounts of memory.
Alternatively, you could code your programs in COBOL, but use assembler
language, PL/I, or C subroutines to get and release storage.

CICS
| Code the programs in any language supported by CICS. The EXEC CICS
| interface provides the calls for managing memory, if necessary.

 Chapter 6. Introducing the Message Queue Interface 75

 Programming language considerations

Coding in C
See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that you can use to process your C programs.

Note the information in the following sections when coding MQSeries programs in
C.

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; for all other parameters, the address of the parameter is passed
by value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can
be specified as the parameter on the function invocation, in place of the address of
the parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the function; in C terminology, this means
that all functions return void.

The attributes of the function are defined by the MQENTRY macro variable; the
value of this macro variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has
an undefined data type, namely the Buffer parameter. This parameter is used to
send and receive the application’s message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is
valid to declare the parameters in this way, but it is usually more convenient to
declare them as the particular structure that describes the layout of the data in the
message. The function parameter is declared as a pointer-to-void, and so the
address of any sort of data can be specified as the parameter on the function
invocation.

 Data types
All data types are defined by means of the typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter “P”
to denote a pointer. The attributes of the pointer are defined by the MQPOINTER
macro variable; the value of this macro variable depends on the environment. The
following illustrates how pointer data types are declared:

#define MQPOINTER /\ depends on environment \/
...
typedef MQLONG MQPOINTER PMQLONG; /\ pointer to MQLONG \/
typedef MQMD MQPOINTER PMQMD; /\ pointer to MQMD \/

76 MQSeries Application Programming Guide

 Programming language considerations

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types. Whenever
you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or
memset:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /\ set "MsgId" field to nulls \/
MQMI_NONE, /\ ...using named constant \/

 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /\ set "CorrelId" field to nulls \/
ðxðð, /\ ...using a different method \/

 sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp because these
do not work correctly with data declared as MQBYTE24.

Manipulating character strings
When the queue manager returns character data to the application, the queue
manager always pads the character data with blanks to the defined length of the
field. The queue manager does not return null-terminated strings, but you can use
them in your input. Therefore, when copying, comparing, or concatenating such
strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null
(strcpy, strcmp, and strcat). Also, do not use the function strlen to determine the
length of the string; use instead the sizeof function to determine the length of the
field.

Initial values for structures
The include file <cmqc.h> defines various macro variables that may be used to
provide initial values for the structures when instances of those structures are
declared. These macro variables have names of the form MQxxx_DEFAULT,
where MQxxx represents the name of the structure. Use them like this:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for
example, for the StrucId fields or for the Format field in MQMD). For each of the
valid values, two macro variables are provided:

� One macro variable defines the value as a string whose length, excluding the
implied null, matches exactly the defined length of the field. For example, (the
symbol ␣ represents a blank character):

#define MQMD_STRUC_ID "MD␣␣"
#define MQFMT_STRING "MQSTR␣␣␣"

Use this form with the memcpy and memcmp functions.

� The other macro variable defines the value as an array of char; the name of
this macro variable is the name of the string form suffixed with “_ARRAY”.

 Chapter 6. Introducing the Message Queue Interface 77

 Programming language considerations

For example:

#define MQMD_STRUC_ID_ARRAY 'M','D','␣','␣'
#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro
variable.

Initial values for dynamic structures
When a variable number of instances of a structure are required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT
macro variable to initialize the structure. This instance becomes the “model” for
other instances:

MQMD ModelMsgDesc = {MQMD_DEFAULT};
/\ declare model instance \/

The static or auto keywords can be coded on the declaration in order to give
the model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of
the structure:

PMQMD InstancePtr;
InstancePtr = malloc(sizeof(MQMD));

/\ get storage for dynamic instance \/

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(InstancePtr,&ModelMsgDesc,sizeof(MQMD));
/\ initialize dynamic instance \/

Use from C ++
For the C++ programming language, the header files contain the following additional
statements that are included only when a C++ compiler is used:

#ifdef __cplusplus
extern "C" {

#endif

/\ rest of header file \/

#ifdef __cplusplus
 }
#endif

Coding in COBOL
See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that you can use to process your COBOL programs.

Note the information in the following sections when coding MQSeries programs in
COBOL.

78 MQSeries Application Programming Guide

 Programming language considerations

 Named constants
In this book, the names of constants are shown containing the underscore
character (_) as part of the name. In COBOL, you must use the hyphen character
(-) in place of the underscore.

Constants that have character-string values use the single quotation mark character
(') as the string delimiter. To make the compiler accept this character, use the
compiler option APOST.

The copy file CMQV contains declarations of the named constants as level-10
items. To use the constants, declare the level-01 item explicitly, then use the
COPY statement to copy in the declarations of the constants:

 WORKING-STORAGE SECTION.
 ð1 MQM-CONSTANTS.
 COPY CMQV.

However, this method causes the constants to occupy storage in the program even
if they are not referred to. If the constants are included in many separate programs
within the same run unit, multiple copies of the constants will exist—this may result
in a significant amount of main storage being used. You can avoid this situation by
adding the GLOBAL clause to the level-01 declaration:

\ Declare a global structure to hold the constants
 ð1 MQM-CONSTANTS GLOBAL.
 COPY CMQV.

This causes storage to be allocated for only one set of constants within the run
unit; the constants, however, can be referred to by any program within the run unit,
not just the program that contains the level-01 declaration.

Coding in System/390 assembler language
| System/390 assembler is supported on OS/390 only.

See Appendix A, “Language compilers and assemblers” on page 453 for the
assemblers that you can use to process your assembler-language programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in assembler language.

 Names
In this book, the names of parameters in the descriptions of calls, and the names of
fields in the descriptions of structures are shown in mixed case. In the
assembler-language macros supplied with MQSeries, all names are in uppercase.

Using the MQI calls
The MQI is a call interface, so assembler-language programs must observe the OS
linkage convention. In particular, before they issue an MQI call,
assembler-language programs must point register R13 at a save area of at least 18
full words. This save area is to provide storage for the called program. It stores
the registers of the caller before their contents are destroyed, and restores the
contents of the caller’s registers on return.

 Chapter 6. Introducing the Message Queue Interface 79

 Programming language considerations

Note: This is of particular importance for CICS assembler-language programs that
use the DFHEIENT macro to set up their dynamic storage, but that choose to
override the default DATAREG from R13 to other registers. When the CICS
Resource Manager Interface receives control from the stub, it saves the current
contents of the registers at the address to which R13 is pointing. Failing to reserve
a proper save area for this purpose gives unpredictable results, and will probably
cause an abend in CICS.

 Declaring constants
Most constants are declared as equates in macro CMQA. However, the following
constants cannot be defined as equates, and these are not included when you call
the macro using default options:

 MQACT_NONE
 MQCI_NONE
 MQFMT_NONE
 MQFMT_ADMIN
 MQFMT_COMMAND_1
 MQFMT_COMMAND_2
 MQFMT_DEAD_LETTER_HEADER
 MQFMT_EVENT
 MQFMT_IMS
 MQFMT_IMS_VAR_STRING
 MQFMT_PCF
 MQFMT_STRING
 MQFMT_TRIGGER
 MQFMT_XMIT_Q_HEADER
 MQMI_NONE

To include them, add the keyword EQUONLY=NO when you call the macro.

CMQA is protected against multiple declaration, so you can include it many times.
However, the keyword EQUONLY takes effect only the first time the macro is
included.

Specifying the name of a structure
To allow more than one instance of a structure to be declared, the macro that
generates the structure prefixes the name of each field with a user-specifiable
string and an underscore character (_). Specify the string when you invoke the
macro. If you do not specify a string, the macro uses the name of the structure to
construct the prefix:

\ Declare two object descriptors
CMQODA Prefix used="MQOD_" (the default)

MY_MQOD CMQODA Prefix used="MY_MQOD_"

| The structure declarations in Chapter 2, “Data type descriptions - structures” in the
| MQSeries Application Programming Reference manual show the default prefix.

80 MQSeries Application Programming Guide

 Programming language considerations

Specifying the form of a structure
The macros can generate structure declarations in one of two forms, controlled by
the DSECT parameter:

DSECT=YES An assembler-language DSECT instruction is used to start a new data
section; the structure definition immediately follows the DSECT
statement. No storage is allocated, so no initialization is possible. The
label on the macro invocation is used as the name of the data section; if
no label is specified, the name of the structure is used.

DSECT=NO Assembler-language DC instructions are used to define the structure at
the current position in the routine. The fields are initialized with values,
which you can specify by coding the relevant parameters on the macro
invocation. Fields for which no values are specified on the macro
invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Controlling the listing
You can control the appearance of the structure declaration in the
assembler-language listing by means of the LIST parameter:

LIST=YES The structure declaration appears in the assembler-language listing.
LIST=NO The structure declaration does not appear in the assembler-language

listing. This is assumed if the LIST parameter is not specified.

Specifying initial values for fields
You can specify the value to be used to initialize a field in a structure by coding the
name of that field (without the prefix) as a parameter on the macro invocation,
accompanied by the value required.

For example, to declare a message descriptor structure with the MsgType field
initialized with MQMT_REQUEST, and the ReplyToQ field initialized with the string
MY_REPLY_TO_QUEUE, you could use the following code:

MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
 REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (or equate) as a value on the macro invocation,
you must use the CMQA macro to define the named constant. You must not
enclose in single quotation marks (‘ ’) values that are character strings.

Writing reenterable programs
MQSeries uses its structures for both input and output. If you want your program
to remain reenterable, you should:

1. Define working storage versions of the structures as DSECTs, or define the
structures inline within an already-defined DSECT. Then copy the DSECT to
storage that is obtained using:

| � For batch and TSO programs, the STORAGE or GETMAIN OS/390
| assembler macros

� For CICS, the working storage DSECT (DFHEISTG) or the EXEC CICS
GETMAIN command

To correctly initialize these working storage structures, copy a constant version
of the corresponding structure to the working storage version.

 Chapter 6. Introducing the Message Queue Interface 81

 Programming language considerations

Note: The MQMD and MQXQH structures are each more than 256 bytes long.
To copy these structures to storage, you will have to use the MVCL assembler
instruction.

2. Reserve space in storage by using the LIST form (MF=L) of the CALL macro.
When you use the CALL macro to make an MQI call, use the EXECUTE form
(MF=E) of the macro, using the storage reserved earlier, as shown in the
example under “Using CEDF.” For more examples of how to do this, see the
assembler language sample programs as shipped with MQSeries.

Use the assembler language RENT option to help you determine if your program is
reenterable.

For information on writing reenterable programs, see the MVS/ESA Application
Development Guide: Assembler Language Programs, GC28-1644.

 Using CEDF
If you want to use the CICS-supplied transaction, CEDF (CICS Execution
Diagnostic Facility) to help you to debug your program, you must add the ,VL
keyword to each CALL statement, for example:

 CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

The above example is reenterable assembler-language code where PARMAREA is an
area in the working storage you specified.

Coding in RPG
| RPG is supported on OS/400 only.

See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that you can use to process your RPG programs.

Note the following when coding MQSeries for AS/400 programs in RPG:

� In this book, the MQI calls are described using their individual names. In RPG,
you must make all calls to the single name QMQM, and specify the particular
function you require by coding an additional parameter that precedes the
normal parameters for that call. The names you use for this additional
parameter are shown in Appendix B, “MQI names in RPG” on page 457.

� The structure declarations supplied with MQSeries for AS/400 do not contain
DS statements. This allows you to declare either a single data structure or a
multiple-occurrence data structure. To do the latter, use the DS statement
followed by the /COPY statement to copy in the remainder of the declaration.
For example:

I\..1....:....2....:....3....:....4....:....5....:....6....:....7
I\ Declare an MQMD data structure with 5 occurrences
IMYMD DS 5
I/COPY CMQMDR

� The buffer field, as declared in the AMQ1GET4 sample program, has a
maximum size limit of 256 bytes. This limit can be increased to:

– 9999 bytes by declaring buffer as a structure
– 32 KB if buffer is declared as a physical file

82 MQSeries Application Programming Guide

 Programming language considerations

This is explained in the MQSeries for AS/400 Application Programming
Reference (RPG) manual for the MQPUT, MQPUT1, and MQGET calls.

In this book, the parameters of calls, the names of data types, the fields of
structures, and the names of constants are described using their long names. In
RPG, these names are abbreviated to six or fewer uppercase characters. For
example, the field MsgType becomes MDMT in RPG. The short RPG names for these
names are shown in Appendix B, “MQI names in RPG” on page 457.

Coding in PL/I
| PL/I is supported on AIX, OS/390, OS/2 Warp, VSE/ESA, and Windows NT only.

See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that you can use to process your PL/I programs.

Note the information in the following sections when coding MQSeries for OS/390
programs in PL/I.

 Structures
Structures are declared with the BASED attribute, and so do not occupy any
storage unless the program declares one or more instances of a structure.

An instance of a structure can be declared by using the like attribute, for example:

dcl my_mqmd like MQMD; /\ one instance \/
dcl my_other_mqmd like MQMD; /\ another one \/

The structure fields are declared with the INITIAL attribute; when the like attribute
is used to declare an instance of a structure, that instance inherits the initial values
defined for that structure. Thus it is necessary to set only those fields where the
value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and
constants can be coded in lowercase, uppercase, or mixed case.

 Named constants
The named constants are declared as macro variables; as a result, named
constants which are not referenced by the program do not occupy any storage in
the compiled procedure. However, the compiler option which causes the source to
be processed by the macro preprocessor must be specified when the program is
compiled.

All of the macro variables are character variables, even the ones which represent
numeric values. Although this may seem counter intuitive, it does not result in any
data-type conflict after the macro variables have been substituted by the macro
processor, for example:

%dcl MQMD_STRUC_ID char;
%MQMD_STRUC_ID = '''MD ''';

%dcl MQMD_VERSION_1 char;
%MQMD_VERSION_1 = '1';

 Chapter 6. Introducing the Message Queue Interface 83

 OS/390 batch considerations

Coding in TAL
| TAL is supported on Tandem NonStop Kernel only.

See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that you can use to process your TAL programs.

Note the following when coding MQSeries for Tandem NSK programs in TAL:

� The MQI library (bound into the application process) does not open $RECEIVE
and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

� The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

| OS/390 batch considerations
| OS/390 batch programs that call the MQI can be in either supervisor or problem
| state. However, they must meet the following conditions:

� They must be in task mode, not service request block (SRB) mode.

� They must be in Primary address space control (ASC) mode (not Access
Register ASC mode).

� They must not be in cross-memory mode. The primary address space number
(ASN) must be equal to the secondary ASN and the home ASN.

| � No OS/390 locks can be held.

� There can be no function recovery routines (FRRs) on the FRR stack.

� Any program status word (PSW) key can be in force for the MQCONN call
(provided the key is compatible with using storage that is in the TCB key), but
subsequent calls that use the connection handle returned by MQCONN:

– Must have the same PSW key that was used on the MQCONN call

– Must have parameters accessible (for write, where appropriate) under the
same PSW key

– Must be issued under the same task (TCB), but not in any subtask of the
task

� They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit
addressing mode is in force, parameter addresses must be interpreted as valid
31-bit addresses.

If any of these conditions is not met, a program check may occur. In some cases
the call will fail and a reason code will be returned.

84 MQSeries Application Programming Guide

 UNIX signal handling

UNIX signal handling on MQSeries Version 5 products
| In general, UNIX systems have moved from a nonthreaded (process) environment
| to a multithreaded environment. In the nonthreaded environment, some functions
| could be implemented only by using signals, though most applications did not need
| to be aware of signals and signal handling. In the multithreaded environment,
| thread-based primitives support some of the functions that used to be implemented
| in the nonthreaded environments using signals. In many instances, signals and
| signal handling, although supported, do not fit well into the multithreaded
| environment and various restrictions exist. This can be particularly problematic
| when you are integrating application code with different middleware libraries
| (running as part of the application) in a multithreaded environment where each is
| trying to handle signals. The traditional approach of saving and restoring signal
| handlers (defined per process), which worked when there was only one thread of
| execution within a process, does not work in a multithreaded environment: many
| threads of execution could be trying to save and restore a process-wide resource,
| with unpredictable results.

| For a standard application MQSeries supports both nonthreaded and threaded
| application environments on AIX and HP-UX.

| All MQSeries applications in the Sun Solaris environment are threaded. MQSeries
| for Sun Solaris V2.2 supported only single-threaded applications (though there was
| no way to enforce this) and, because there was only one thread of execution, was
| able to make use of the traditional signal handling functions. In MQSeries for Sun
| Solaris V5.0, and subsequent releases, true multithreaded applications are
| supported and so the signal behavior has changed.

| The library libmqm is provided for migration of nonthreaded applications from
| Version 2 of MQSeries for AIX or MQSeries for HP-UX to Version 5. The goal of
| this library is to maintain the Version 2 behavior (including signals) for nonthreaded
| applications. Within an application in this environment there is only one thread of
| execution, which means that signal handlers can be saved and restored safely
| across MQSeries API calls (as can any middleware library that is part of the
| application). Therefore, if you have an application suite on V2 of MQSeries for AIX
| or MQSeries for HP-UX that uses signals, and you do not want to move to the
| threaded environment, the suite should run unchanged on V5 using the
| nonthreaded library, libmqm.

| The library libmqm_r is provided for threaded applications on MQSeries for AIX or
| MQSeries for HP-UX. However, the behavior, particularly for signals, is different:

| � As in the nonthreaded environment, MQSeries still establishes signal handlers
| for synchronous terminating signals (SIGBUS, SIGFPE, SIGSEGV).

| � MQSeries must run some clean-up code during abnormal termination. This is
| achieved by setting up a sigwait thread to handle terminating, asynchronous
| signals. While this approach is suitable for an application that does not handle
| signals, it can cause problems when the signals being trapped on the
| MQSeries sigwait thread overlap with signals that an application wishes to
| intercept.

| � Even in the threaded environment MQSeries needs a signal for its internal
| processing. As was stated earlier, use of signals in a threaded environment
| may cause problems when you are integrating a middleware stack. (With many
| threads all independently trying to handle signals, saving and restoring signal

 Chapter 6. Introducing the Message Queue Interface 85

 UNIX signal handling

| handlers, results are unpredictable.) MQSeries must use one signal:
| SIGALRM.

| Note: Some system functions may use signals internally (for example,
| SIGALRM in a nonthreaded environment). For a particular operating system,
| some of these functions may have thread-safe equivalents or it may be stated
| that they are not multithread safe. Any non-thread-safe operating system call
| should be replaced if moving to a multithreaded environment.

| Unthreaded applications
| Each MQI function sets up its own signal handler for the signals:

| SIGALRM
| SIGBUS
| SIGFPE
| SIGSEGV

| Users’ handlers for these are replaced for the duration of the MQI function call.
| Other signals can be caught in the normal way by user-written handlers. If you do
| not install a handler, the default actions (for example, ignore, core dump, or exit)
| are left in place.

| Note: On Sun Solaris all applications are threaded even if they use a single
| thread.

| Threaded applications
| A thread is considered to be connected to MQSeries from MQCONN (or
| MQCONNX) until MQDISC.

| Synchronous signals
| Synchronous signals arise in a specific thread. UNIX safely allows the setting up of
| a signal handler for such signals for the whole process. However, MQSeries sets
| up its own handler for the following signals, in the application process, while any
| thread is connected to MQSeries:

| SIGBUS
| SIGFPE
| SIGSEGV

| If you are writing multithreaded applications, you should note that there is only one
| process-wide signal handler for each signal. MQSeries alters this signal handler
| when the application is connected to MQSeries. If one of these signals occurs
| while not on a thread connected to MQSeries, MQSeries attempts to call the signal
| handler that was in effect at the time of the first MQSeries connection within the
| process. Application threads must not establish signal handlers for these signals
| while there is any possibility that another thread of the same process is also
| connected to MQSeries.

| Asynchronous signals
| Asynchronous signals arise outside the whole process. UNIX does not guarantee
| predictable behavior for handling asynchronous signals, in certain situations, when
| running multithreaded. MQSeries must perform clean-up of thread and process
| resources as part of the termination from these asynchronous signals:

| SIGCHLD

86 MQSeries Application Programming Guide

 UNIX signal handling

| SIGHUP
| SIGINT
| SIGQUIT
| SIGTERM

| MQSeries establishes a sigwait thread in the application process to intercept these
| signals.

| These signals must not be used by the application when running multithreaded and
| when any thread is within an MQSeries connection. These signals should not be
| unmasked within any application thread; be aware of the default status of the signal
| mask for threads that do not make MQSeries calls.

| MQSeries use of SIGALRM
| For communication purposes MQSeries needs a signal for its internal use. This
| signal should not be used by the application while any thread is within an MQSeries
| connection.

| Threaded client applications - additional considerations
| MQSeries handles the following signals during I/O to a server. These signals are
| defined by the communications stack. The application should not establish a signal
| handler for these signals while a thread of the process is making an MQSeries call:

| SIGPIPE (for TCP/IP)
| SIGUSR1 (for LU 6.2)

| Fastpath (trusted) applications
| Fastpath applications run in the same process as MQSeries and so are running in
| the multithreaded environment. In this environment the application should not use
| any signals or timer interrupts. If a Fastpath application intercepts such an event,
| the queue manager must be stopped and restarted, or it may be left in an
| undefined state. For a full list of the restrictions for Fastpath applications under
| MQCONNX see “Connecting to a queue manager using the MQCONNX call” on
| page 92.

| MQI function calls within signal handlers
| While you are in a signal handler, you cannot call an MQI function. If you call an
| MQI function, while another MQI function is active, MQRC_CALL_IN_PROGRESS
| is returned. If you call an MQI function, while no other MQI function is active, it is
| likely to fail because of the operating system restrictions on which calls can be
| issued from within a handler.

| In the case of C++ destructor methods, which may be called automatically during
| program exit, you may not be able to stop the MQI functions from being called.
| Therefore, ignore any errors about MQRC_CALL_IN_PROGRESS. If a signal
| handler calls exit(), MQSeries backs out uncommitted messages in syncpoint as
| normal and closes any open queues.

 Chapter 6. Introducing the Message Queue Interface 87

 UNIX signal handling

| Signals during MQI calls
| MQI functions do not return the code EINTR or any equivalent to application
| programs. If a signal occurs during an MQI call, and the handler calls ‘return’, the
| call continues to run as if the signal had not happened. In particular, MQGET
| cannot be interrupted by a signal to return control immediately to the application. If
| you want to break out of an MQGET, set the queue to GET_DISABLED;
| alternatively, use a loop around a call to MQGET with a finite time expiry
| (MQGMO_WAIT with gmo.WaitInterval set), and use your signal handler (in a
| nonthreaded environment) or equivalent function in a threaded environment to set a
| flag which breaks the loop.

| User exits and installable services
| User exits and installable services that run as part of an MQSeries process (that is,
| in a multithreaded environment) have the same restrictions as for Fastpath
| applications. They should be considered as permanently connected to MQSeries
| and so not use signals or non-threadsafe operating system calls.

88 MQSeries Application Programming Guide

 Connecting and disconnecting

Chapter 7. Connecting and disconnecting a queue manager

To use MQSeries programming services, a program must have a connection to a
queue manager. The way this connection is made depends on the platform and
the environment in which the program is operating:

| OS/390 batch, MQSeries on UNIX systems, MQSeries for Digital OpenVMS,
| MQSeries for OS/2 Warp, MQSeries for Tandem NSK, MQSeries for
| Windows, and MQSeries for Windows NT

Programs that run in these environments can use the MQCONN MQI
call to connect to, and the MQDISC call to disconnect from, a queue
manager. Alternatively, MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT can use the MQCONNX
call. This chapter describes how writers of such programs should use
these calls.

IMS The IMS control region is connected to one or more queue managers
when it starts. This connection is controlled by IMS commands. (For
information on how to control the IMS adapter of MQSeries for OS/390,
see the MQSeries for OS/390 System Management Guide.) However,
writers of message queuing IMS programs must use the MQCONN MQI
call to specify the queue manager to which they want to connect. They
can use the MQDISC call to disconnect from that queue manager. This
chapter describes how writers of such programs should use these calls.
Before the IMS adapter processes a message for another user following
a Get Unique call from the IOPCB, or one implied by a checkpoint call,
the adapter ensures that the application closes handles and disconnects
from the queue manager.

| CICS Transaction Server for OS/390 and CICS for MVS/ESA
| CICS programs do not need to do any work to connect to a queue
| manager because the CICS system itself is connected. This connection
| is usually made automatically at initialization, but you can also use the
| CKQC transaction, which is supplied with MQSeries for OS/390. CKQC
| is discussed in the MQSeries for OS/390 System Management Guide.

| Note: CICS programs can also use the MQI connect and disconnect
| calls (MQCONN and MQDISC). You may want to do this so that you
| can port these applications to non-CICS environments with a minimum
| of recoding. Be warned, though, that these calls always complete
| successfully in a CICS environment. This means that the return code
| may not reflect the true state of the connection to the queue manager.

| TXSeries for Windows NT and Open Systems
These programs do not need to do any work to connect to a queue
manager because the CICS system itself is connected. Therefore, only
one connection at a time is supported. CICS applications must issue an
MQCONN call to obtain a connection handle, and should issue an
MQDISC call before they exit.

AS/400 The connection to a queue manager can be made explicitly using the
MQCONN call, or it can be made implicitly in the first successful
MQOPEN or MQPUT1 call. If you want to use your application on other
platforms as well as AS/400, it is a good idea to use the MQCONN call.
If you do use the MQCONN call, you must also use the MQDISC call.

 Copyright IBM Corp. 1993,1999 89

 Using MQCONN

The performance of your application is better if you connect and
disconnect (either explicitly or implicitly) as infrequently as possible.

If you use the MQPUT1 call and rely on an implicit connection, your
application is implicitly disconnected when the call completes. When an
application connects implicitly using an MQOPEN call, it is disconnected
implicitly when it issues the last MQCLOSE call.

| MQSeries for VSE/ESA
| In your VSE/ESA application, make an explicit call to MQCONN to
| establish a connection to the VSE/ESA queue manager. Ensure that
| your application issues an MQDISC call to disconnect. The
| performance of your application is better if you connect and disconnect
| as infrequently as possible.

Connecting to a queue manager using the MQCONN call
| In general, you can connect either to a specific queue manager, or to the default
| queue manager:

| � For MQSeries for OS/390, in the batch environment, the default queue
| manager is specified in the CSQBDEFV module.

| � For MQSeries for OS/2 Warp, MQSeries for Digital OpenVMS, MQSeries for
| Tandem NSK, and MQSeries on UNIX systems, the default queue manager is
| specified in the mqs.ini file.

| � For MQSeries for Windows NT, the default queue manager is specified in the
| registry.

| � MQSeries for Windows allows only one queue manager to run at a time; it uses
| the running queue manager as its default.

| � MQSeries for VSE/ESA allows only one queue manager to run at a time; its
| name is specified in the Global System Definition of the System Management
| Facility (SMF). Your application can specify the name or use the default value.

| The queue manager you connect to must be local to the task. This means that it
| must belong to the same system as the MQSeries application.

On AS/400, there can be only one queue manager on the same system as an
application.

In the IMS environment, the queue manager must be connected to the IMS control
region and to the dependent region that the program uses. The default queue
manager is specified in the CSQQDEFV module when MQSeries for OS/390 is
installed.

| With the CICS on Open Systems environment, and TXSeries for Windows NT and
| AIX, the queue manager must be defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name
consisting entirely of blanks or starting with a null (X'00') character.

Within MQSeries on UNIX systems, an application must be authorized for it to
| successfully connect to a queue manager. For more information, see Chapter 10,
| “Protecting MQSeries objects” in the MQSeries System Administration Guide for

90 MQSeries Application Programming Guide

 Using MQCONN

| MQSeries for AIX, HP-UX, and Sun Solaris; for other platforms, see the appropriate
| System Management Guide.

The output from MQCONN is:

� A connection handle
� A completion code
� A reason code

You will need to use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue
manager, the connection handle that is returned is the same as the one that was
returned when the application first connected. So the application probably should
not issue the MQDISC call in this situation because the calling application will
expect to remain connected.

The scope of the connection handle is the same as that for the object handle (see
“Opening objects using the MQOPEN call” on page 98).

| Descriptions of the parameters are given in the description of the MQCONN call in
| “MQCONN - Connect queue manager” in the MQSeries Application Programming
| Reference manual.

The MQCONN call fails if the queue manager is in a quiescing state when you
issue the call, or if the queue manager is shutting down.

Scope of MQCONN
Within MQSeries on UNIX systems, MQSeries for Digital OpenVMS, MQSeries for
OS/2 Warp, MQSeries for Windows, and MQSeries for Windows NT, the scope of
an MQCONN call is the thread that issued it. That is, the connection handle
returned from an MQCONN call is valid only within the thread which issued the call.
Only one call may be made at any one time using the handle. If it is used from a
different thread, it will be rejected as invalid. If you have multiple threads in your
application that each wish to use MQSeries calls, then they must each individually
issue MQCONN.

Each thread can connect to a different queue manager on OS/2 and Windows NT,
but not on UNIX.

If your application is running as a client, it may connect to more than one queue
manager within a thread. This does not apply if your application is not running as a
client.

OS/2 has a limit of 4095 active threads in a system. However, the default is 64.
This value may be controlled by the THREADS=xxxx parameter in CONFIG.SYS.
Limitations on the number of concurrent MQCONN calls that can be made within a
system are dependent on this value, although other factors to consider are disk
space availability for the swapper.dat file and shared memory availability.

On MQSeries for Windows, the scope of an MQCONN call is the application
process.

 Chapter 7. Connecting and disconnecting a queue manager 91

| On MQSeries for VSE/ESA, there is a maximum of 1000 concurrently-connected
| tasks. The connection handle is unique to the ID of the transaction that is
| executing and only valid for the duration of that transaction.

Connecting to a queue manager using the MQCONNX call
| MQCONNX is not supported on AS/400, Digital OpenVMS, OS/390, Tandem
| NonStop Kernel, and VSE/ESA.

The MQCONNX call is similar to the MQCONN call, but includes options to control
the way that the call actually works.

As input to MQCONNX, you must supply a queue manager name. The output from
MQCONNX is:

� A connection handle
� A completion code
� A reason code

You will need to use the connection handle on subsequent MQI calls.

| A description of all of the parameters of MQCONNX is given in “MQCONNX -
| Connect queue manager (extended)” in the MQSeries Application Programming
| Reference manual. The Options field allows you to set STANDARD_BINDING or

FASTPATH_BINDING:

 MQCNO_STANDARD_BINDING
By default, MQCONNX (like MQCONN) implies two threads where the MQSeries
application and the local queue manager agent run in separate processes. The
MQSeries application performs the MQSeries operation and the local queue
manager agent performs the application operation. This is defined by the
MQCNO_STANDARD_BINDING option on the MQCONNX call.

Note: This default maintains the integrity of the queue manager (that is, it makes
the queue manager immune to errant programs), but impairs the performance of
the MQI calls.

 MQCNO_FASTPATH_BINDING
Trusted applications imply that the MQSeries application and the local queue
manager agent become the same process. Since the agent process no longer
needs to use an interface to access the queue manager, these applications
become an extension of the queue manager. This is defined by the
MQCNO_FASTPATH_BINDING option on the MQCONNX call.

You need to link trusted applications to the threaded MQSeries libraries. For
instructions on how to set up an MQSeries application to run as trusted, see
“MQCNO - Connect options” in the MQSeries Application Programming Reference
manual.

Note: This option compromises the integrity of the queue manager as there
is no protection from overwriting its storage. This also applies if the
application contains errors which can be exposed to messages and other
data in the queue manager too. These issues must be considered before
using this option.

92 MQSeries Application Programming Guide

 Restrictions
The following restrictions apply to trusted applications:

� On MQSeries on UNIX systems, it is necessary to use mqm as the effective
userID and groupID for all MQI calls. You may change these IDs before
making a non-MQI call requiring authentication (for example, opening a file),
but you must change it back to mqm before making the next MQI call.

� On MQSeries on UNIX systems, trusted applications must run in threaded
processes but only one thread can be connected at a time.

� On MQSeries for OS/2 Warp and MQSeries for Windows NT, a thread within a
trusted application cannot connect to a queue manager while another thread in
the same process is connected to a different queue manager.

� You must explicitly disconnect trusted applications from the queue manager.

� You must stop trusted applications before ending the queue manager with the
endmqm command.

� You must not use asynchronous signals and timer interrupts (such as sigkill)
with MQCNO_FASTPATH_BINDING.

� On MQSeries for AIX, trusted applications cannot be compiled using the PL/I
programming language.

� On MQSeries for AIX, there are restrictions on the use of shared memory
segments:

MQSeries uses a single “shmat()” command to connect to shared memory
resources. However, on AIX, one process cannot attach to more than 10
memory segments.

MQSeries uses two additional shared memory segments for trusted
applications, reducing the amount of shared storage available. Therefore, it is
important that your applications do not connect to too many shared segments,
causing a failure in the application code.

Here is a breakdown of the memory segments:

This also implies that trusted applications cannot use the maxdata binder option
to specify a greater user data area: this conflicts with the queue manager use

Segment Use

0 Reserved for AIX
1 Reserved for AIX
2 Stack and heap
3 CICS MQSeries (trusted applications only)
4 DB2 and DT/6000
5
6
7 MQSeries (trusted applications only)
8 MQSeries
9 CICS
A CICS
B CICS
C DB2
D Reserved for AIX
E Reserved for AIX
F Reserved for AIX

 Chapter 7. Connecting and disconnecting a queue manager 93

 Using MQDISC

of shared memory within the application process as it causes the program data
to be placed in shared memory segment 3.

 Environment variable
On MQSeries for OS/2 Warp, MQSeries for Windows NT, and MQSeries on UNIX
systems, the environment variable, MQ_CONNECT_TYPE, can be used in
combination with the type of binding specified in the Options field. This
environment variable allows you to execute the application with the
STANDARD_BINDING if any problems occur with the FASTPATH_BINDING. If the
environment variable is specified, it should have the value FASTPATH or
STANDARD to select the type of binding required. However, the FASTPATH
binding is used only if the connect option is appropriately specified as shown in
Table 2:

So, to run a trusted application, either:

1. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and
the FASTPATH environment variable,

or
2. Specify the MQCNO_FASTPATH_BINDING option on the MQCONNX call and

leave the environment variable undefined.

If neither MQCNO_STANDARD_BINDING nor MQCNO_FASTPATH_BINDING is
specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Table 2. Environment variable

MQCONNX Environment variable Result

STANDARD UNDEFINED STANDARD

FASTPATH UNDEFINED FASTPATH

STANDARD STANDARD STANDARD

FASTPATH STANDARD STANDARD

STANDARD FASTPATH STANDARD

FASTPATH FASTPATH FASTPATH

Disconnecting programs from a queue manager using MQDISC
When a program that has connected to a queue manager using the MQCONN call
has finished all interaction with the queue manager, it must break the connection
using the MQDISC call.

However, in MQSeries for AS/400, if the connection was made implicitly, the
| MQDISC call is optional. Also, on CICS Transaction Server for OS/390
| applications, the call is optional.

After MQDISC is called, the connection handle (Hconn) is no longer valid, and you
cannot issue any further MQI calls until you call MQCONN again. MQDISC does
an implicit MQCLOSE for any objects that are still open using this handle.

In MQSeries for AS/400, when you sign off from the operating system, an implicit
MQDISC call is made.

94 MQSeries Application Programming Guide

 Using MQDISC

As input to the MQDISC call, you must supply the connection handle (Hconn) that
was returned by MQCONN when you connected to the queue manager.

The output from this call is a completion code and a reason code, with the
connection handle set to the value MQHC_UNUSABLE_HCONN.

| On MQSeries for VSE/ESA, if your application does not issue the MQDISC call
| explicitly, the MQSeries for VSE/ESA housekeeping routine issues the MQDISC call
| on its behalf and unwanted messages appear in the SYSTEM.LOG queue.

| Descriptions of the parameters are given in the description of the MQDISC call in
| “MQDISC - Disconnect queue manager” in the MQSeries Application Programming
| Reference manual.

 Authority checking
The MQCLOSE and MQDISC calls usually perform no authority checking. In the
normal course of events a job which has the authority to open or connect to an
MQSeries object will close or disconnect from that object. Even if the authority of a
job that has connected to, or opened an MQSeries object is revoked, the
MQCLOSE and MQDISC calls are accepted.

 Chapter 7. Connecting and disconnecting a queue manager 95

 Using MQDISC

96 MQSeries Application Programming Guide

 Opening and closing

Chapter 8. Opening and closing objects

To perform any of the following operations, you must first open the relevant
MQSeries object:

� Put messages on a queue
� Get (browse or retrieve) messages from a queue
� Set the attributes of an object
� Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify
what you want to do with the object. The only exception is if you want to put a
single message on a queue, then close the queue immediately. In this case, you
can bypass the “opening” stage by using the MQPUT1 call (see “Putting one
message on a queue using the MQPUT1 call” on page 114).

Before you open an object using the MQOPEN call, you must connect your
program to a queue manager. This is explained in detail, for all environments, in
Chapter 7, “Connecting and disconnecting a queue manager” on page 89.

There are four types of MQSeries object that can be opened:

 � Queue
| � Namelist (MQSeries for OS/390 and MQSeries Version 5.1 products only)

 � Process definition
 � Queue manager

You open all of these objects in a similar way using the MQOPEN call. For more
information about MQSeries objects, see Chapter 4, “MQSeries objects” on
page 39.

You can open the same object more than once, and each time you get a new
object handle. You might want to browse messages on a queue using one handle,
and remove messages from the same queue using another handle. This saves
using up resources to close and reopen the same object. You can also open a
queue for browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them
using MQCLOSE. See “Distribution lists” on page 116 for information about how to
do this.

When you attempt to open an object, the queue manager checks that you are
authorized to open that object for the options you specify in the MQOPEN call.

Objects are closed automatically when a program disconnects from the queue
manager. In the IMS environment, disconnection is forced when a program starts
processing for a new user following a GU (get unique) IMS call. On the AS/400
platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the
MQCLOSE call to do this.

 Copyright IBM Corp. 1993,1999 97

 Using MQOPEN

The remaining sections of this chapter describe how to:

� Open objects using the MQOPEN call

� Create dynamic queues using model queues (MQSeries for AS/400, MQSeries
for OS/390, MQSeries for OS/2 Warp, MQSeries for Tandem NSK, MQSeries
for Windows NT, and MQSeries on UNIX systems only)

� Open remote queues

� Close objects using the MQCLOSE call

Opening objects using the MQOPEN call
As input to the MQOPEN call, you must supply:

� A connection handle. For CICS and AS/400 applications, you can specify the
constant MQHC_DEF_HCONN (which has the value zero), or use the
connection handle returned by the MQCONN call. For other programs, always
use the connection handle returned by the MQCONN call.

� A description of the object you want to open, using the object descriptor
structure (MQOD).

� One or more options that control the action of the call.

The output from MQOPEN is:

� An object handle that represents your access to the object. Use this on input
to any subsequent MQI calls.

� A modified object-descriptor structure, if you are creating a dynamic queue (and
it is supported on your platform).

� A completion code.

� A reason code.

| Namelists can be opened only on AIX, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
| and Windows NT.

Scope of an object handle
The scope of an object handle is the same as the scope of a connection handle,
however there are variations between platforms:

CICS
In a CICS program, you can use the handle only within the same CICS task from
which you made the MQOPEN call.

IMS and OS/390 batch
In the IMS and batch environments, you can use the handle within the same
task, but not within any subtasks.

AS/400
In an AS/400 program, you can use the handle only within the same job from
which you made the MQOPEN call.

MQSeries for OS/2 Warp
In the MQSeries for OS/2 Warp environment, you can use the same handle
within the same thread.

98 MQSeries Application Programming Guide

 Using MQOPEN

MQSeries for Windows NT
In the MQSeries for Windows NT environment, you can use the same handle
within the same thread.

MQSeries on UNIX systems
In these environments, you can use the same handle within the same thread.

DOS
In the DOS environment, there are no restrictions on where you can use the
handle.

| MQSeries for VSE/ESA
| In the VSE/ESA environment, you can use the handle only within the same
| application transaction from which you made the MQOPEN call.

Windows 3.1
In the Windows 3.1 environment, you can use the handle in the same Windows
3.1 instance.

| Descriptions of the parameters of the MQOPEN call are given in “MQOPEN - Open
| object” in the MQSeries Application Programming Reference manual.

The following sections describe the information you must supply as input to
MQOPEN.

Identifying objects (the MQOD structure)
Use the MQOD structure to identify the object you want to open. This structure is
an input parameter for the MQOPEN call. (The structure is modified by the queue
manager when you use the MQOPEN call to create a dynamic queue.)

| For full details of the MQOD structure see “MQOD - Object descriptor” in the
| MQSeries Application Programming Reference manual.

For information about using the MQOD structure for distribution lists, see Using the
MQOD structure under “Distribution lists” on page 116.

 Name resolution
| When you open an MQSeries queue, the MQOPEN call performs a name
| resolution function on the queue name you specify. This determines on which
| queue the queue manager performs subsequent operations. This means that when
| you specify the name of an alias queue or a remote queue in your object descriptor
| (MQOD), the call resolves the name either to a local queue or to a transmission
| queue. If a queue is opened for any type of input, browse, or set, it resolves to a
| local queue if there is one, and fails otherwise. It resolves to a nonlocal queue only
| if it is opened for output only, inquire only, or output and inquire only. See Table 3
| on page 100 for an overview of the name resolution process. Note that the name
| you supply in ObjectQMgrName is resolved before that in ObjectName.

Table 3 on page 100 also shows how you can use a local definition of a remote
queue to define an alias for the name of a queue manager. This allows you to
select which transmission queue is used when you put messages on a remote
queue, so you could, for example, use a single transmission queue for messages

| destined for many remote queue managers. This technique is described further in
| Chapter 4, “MQSeries distributed-messaging techniques” in the MQSeries
| Intercommunication book.

 Chapter 8. Opening and closing objects 99

 Using MQOPEN

| Table 3 (Page 1 of 2). Resolving queue names when using MQOPEN

| Input to MQOD| Resolved names

| ObjectQMgrName| ObjectName| ObjectQMgrName| ObjectName| Transmission queue

| Blank or local queue
| manager
| Local queue
| with no
| CLUSTER
| attribute

| Local queue manager| Input
| ObjectName
| Not applicable (local
| queue used)

| Blank queue manager| Local queue
| with
| CLUSTER
| attribute

| Workload management
| selected cluster queue
| manager or specific
| cluster queue manager
| selected on PUT

| Input
| ObjectName
| SYSTEM.CLUSTER.
| TRANSMIT.QUEUE
| and local queue used

| Local queue manager| Local queue
| with
| CLUSTER
| attribute

| Local queue manager| Input
| ObjectName
| Not applicable (local
| queue used)

| Blank or local queue
| manager
| Model queue| Local queue manager| Generated
| name
| Not applicable (local
| queue used)

| Blank or local queue
| manager
| Alias queue
| with or
| without
| CLUSTER
| attribute

| Perform name
| resolution again with
| ObjectQMgrName
| unchanged, and input
| ObjectName set to the
| BaseQName in the alias
| queue definition object.
| May not return to alias
| queues

| Blank or local queue
| manager
| Local
| definition of a
| remote queue
| with or
| without
| CLUSTER
| attribute

| Perform name
| resolution again with
| ObjectQMgrName set to
| RemoteQMgrName, and
| ObjectName set to
| RemoteQName. May not
| return to remote
| queues

| Name of XmitQName
| attribute, if non-blank;
| otherwise
| RemoteQMgrName in the
| remote queue
| definition object

| Blank queue manager| No matching
| local object;
| cluster queue
| found

| Workload management
| selected cluster queue
| manager or specific
| cluster queue manager
| selected on PUT

| Input
| ObjectName
| SYSTEM.CLUSTER.
| TRANSMIT.QUEUE

| Blank or local queue
| manager
| No matching
| local object;
| cluster queue
| not found

| Error, queue
| not found
| Not applicable

| Name of a local
| transmission queue
| (Not resolved)| Input ObjectQMgrName| Input
| ObjectName
| Input ObjectQMgrName

| Queue manager alias
| definition
| (RemoteQMgrName may
| be the local queue
| manager)

| (Not resolved,
| remote
| queue)

| Perform name
| resolution again with
| ObjectQMgrName set to
| RemoteQMgrName. May
| not return to remote
| queues

| Input
| ObjectName
| Name of XmitQName
| attribute, if non-blank;
| otherwise
| RemoteQMgrName in the
| remote queue
| definition object

100 MQSeries Application Programming Guide

 Using MQOPEN

| Table 3 (Page 2 of 2). Resolving queue names when using MQOPEN

| Queue manager is not
| the name of any local
| object; cluster queue
| managers or queue
| manager alias found

| (Not resolved)| ObjectQMgrName or
| specific cluster queue
| manager selected on
| PUT

| Input
| ObjectName
| SYSTEM.CLUSTER.
| TRANSMIT.QUEUE

| Queue manager is not
| the name of any local
| object; no cluster
| objects found

| (Not resolved)| Input ObjectQMgrName| Input
| ObjectName
| DefXmitQName attribute
| of the queue manager3

Notes:

1. BaseQName is the name of the base queue from the definition of the alias queue.

2. RemoteQName is the name of the remote queue from the local definition of the
remote queue.

3. RemoteQMgrName is the name of the remote queue manager from the local
definition of the remote queue.

4. XmitQName is the name of the transmission queue from the local definition of the
remote queue.

Opening an alias queue also opens the base queue to which the alias resolves,
and opening a remote queue also opens the transmission queue. Therefore you
cannot delete either the queue you specify or the queue to which it resolves while
the other one is open.

| The resolved queue name and the resolved queue manager name are stored in the
| ResolvedQName and ResolvedQMgrName fields in the MQOD.

| For more information about name resolution in a distributed queuing environment
| see Appendix C, “Queue name resolution” in the MQSeries Intercommunication
| book.

Using the options of the MQOPEN call
In the Options parameter of the MQOPEN call, you must choose one or more
options to control the access you are given to the object you are opening. With
these options you can:

| � Open a queue and specify that all messages put to that queue must be
| directed to the same instance of it

� Open a queue to allow you to put messages on it

| � Open a queue to allow you to browse messages on it

| � Open a queue to allow you to remove messages from it

� Open an object to allow you to inquire about and set its attributes (but you can
set the attributes of queues only)

� Associate context information with a message

3 where DefXmitQName is supported

 Chapter 8. Opening and closing objects 101

 Using MQOPEN

� Nominate an alternate user identifier to be used for security checks

� Control the call if the queue manager is in a quiescing state

| MQOPEN option for cluster queue
| To specify that all messages MQPUT to a queue are to be routed to the same
| queue manager by the same route use the MQOO_BIND_ON_OPEN option on the
| MQOPEN call. To specify that a destination is to be selected at MQPUT time, that
| is, on a message-by-message basis, use the MQOO_BIND_NOT_FIXED option on
| the MQOPEN call. If you specify neither of these options the default,
| MQOO_BIND_AS_Q_DEF, is used. In this case the binding used for the queue
| handle is taken from the DefBind queue attribute, which can take the value
| MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED. If the queue you open
| is not a cluster queue the MQOO_BIND_* options are ignored. If you specify the
| name of the local queue manager in the MQOD the local instance of the cluster
| queue is selected. If the queue manager name is blank, any instance can be
| selected. See “MQI and clusters” in the MQSeries Queue Manager Clusters book
| for more information.

MQOPEN option for putting messages
To open a queue in order to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages
To open a queue so that you can browse the messages on it, use the MQOPEN
call with the MQOO_BROWSE option. This creates a browse cursor that the
queue manager uses to identify the next message on the queue. For more
information, see “Browsing messages on a queue” on page 154.

Notes:

1. You cannot browse messages on a remote queue. Therefore you cannot open
a remote queue using the MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further
information about distribution lists, see “Distribution lists” on page 116.

MQOPEN options for removing messages
There are three options that control the opening of a queue in order to remove
messages from it. You can use only one of them in any MQOPEN call. These
options define whether your program has exclusive or shared access to the queue.
Exclusive access means that, until you close the queue, only you can remove
messages from it. If another program attempts to open the queue to remove
messages, its MQOPEN call fails. Shared access means that more than one
program can remove messages from the queue.

The most advisable approach is to accept the type of access that was intended for
the queue when the queue was defined. The queue definition involved the setting
of the Shareability and the DefInputOpenOption attributes. To accept this
access, use the MQOO_INPUT_AS_Q_DEF option. Refer to Table 4 to see how
the setting of these attributes affects the type of access you will be given when you
use this option.

102 MQSeries Application Programming Guide

 Using MQOPEN

Alternatively:

� If you know that your application can work successfully even if other programs
can remove messages from the queue at the same time, use the
MQOO_INPUT_SHARED option. Table 4 shows how, in some cases you will
be given exclusive access to the queue, even with this option.

� If you know that your application can work successfully only if other programs
are prevented from removing messages from the queue at the same time, use
the MQOO_INPUT_EXCLUSIVE option.

Notes:

1. You cannot remove messages from a remote queue. Therefore you cannot
open a remote queue using any of the MQOO_INPUT_ñ options.

2. You cannot specify this option when opening a distribution list. For further
information, see “Distribution lists” on page 116.

Table 4. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options

Shareability DefInputOpenOption AS_Q_DEF SHARED EXCLUSIVE

SHAREABLE SHARED shared shared exclusive

SHAREABLE EXCLUSIVE exclusive shared exclusive

NOT_SHAREABLE* SHARED* exclusive exclusive exclusive

NOT_SHAREABLE EXCLUSIVE exclusive exclusive exclusive

Note: * Although you can define a queue to have this combination of attributes, the
default input open option is overridden by the shareability attribute.

MQOPEN options for setting and inquiring about attributes
To open a queue so that you can set its attributes, use the MQOO_SET option.
You cannot set the attributes of any other type of object (see Chapter 12, “Inquiring
about and setting object attributes” on page 179).

To open an object so that you can inquire about its attributes, use the
MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

MQOPEN options relating to message context
If you want to be able to associate context information with a message when you
put it on a queue, you must use one of the message context options when you
open the queue.

The options allow you to differentiate between context information that relates to
the user who originated the message, and that which relates to the application
that originated the message. Also, you can opt to set the context information when
you put the message on the queue, or you can opt to have the context taken
automatically from another queue handle.

For more information about the subject of message context, see “Message context”
on page 37.

 Chapter 8. Opening and closing objects 103

 Creating dynamic queues

MQOPEN option for alternate user authority
This is not supported on MQSeries for Windows.

When you attempt to open an object using the MQOPEN call, the queue manager
checks that you have the authority to open that object. If you are not authorized,
the call fails.

However, server programs may want the queue manager to check the authorization
of the user on whose behalf they are working, rather than the server’s own
authorization. To do this, they must use the
MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and specify
the alternate user ID in the AlternateUserId field of the MQOD structure.
Typically, the server would get the user ID from the context information in the
message it is processing.

MQOPEN option for queue manager quiescing
This is not supported on MQSeries for Windows.

In the CICS environment, if you use the MQOPEN call when the queue manager is
in a quiescing state, the call always fails. In other OS/390 environments, AS/400,
OS/2, Windows NT, and in UNIX systems environments, the call fails when the
queue manager is quiescing only if you use the MQOO_FAIL_IF_QUIESCING
option of the MQOPEN call.

Creating dynamic queues
You should use a dynamic queue for those cases where you do not need the
queue after your application ends. For example, you may want to use a dynamic
queue for your “reply-to” queue. You specify the name of the reply-to queue in the
ReplyToQ field of the MQMD structure when you put a message on a queue (see
“Defining messages using the MQMD structure” on page 108).

To create a dynamic queue, you use a template known as a model queue, together
with the MQOPEN call. You create a model queue using the MQSeries commands
or the operations and control panels. The dynamic queue you create takes the
attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName
field of the MQOD structure. When the call completes, the ObjectName field is set
to the name of the dynamic queue that is created. Also, the ObjectQMgrName field is
set to the name of the local queue manager.

There are three ways to specify the name of the dynamic queue you create:

� Give the full name you want in the DynamicQName field of the MQOD structure.

� Specify a prefix (less than 33 characters) for the name, and allow the queue
manager to generate the rest of the name. This means that the queue
manager generates a unique name, but you still have some control (for
example, you may want each user to use a certain prefix, or you may want to
give a special security classification to queues with a certain prefix in their
name). To use this method, specify an asterisk (ñ) for the last non-blank
character of the DynamicQName field. Do not specify a single asterisk (ñ) for the
dynamic queue name.

104 MQSeries Application Programming Guide

 Opening remote queues � Using MQCLOSE

� Allow the queue manager to generate the full name. To use this method,
specify an asterisk (ñ) in the first character position of the DynamicQName field.

| For more information about these methods, see the description of the DynamicQName
| field in “MQOD - Object descriptor” in the MQSeries Application Programming
| Reference manual.

There is more information on dynamic queues in “Dynamic queues” on page 45.

Opening remote queues
A remote queue is a queue owned by a queue manager other than the one to
which the application is connected.

To open a remote queue, use the MQOPEN call as for a local queue, but there are
two ways you can specify the name of the queue:

1. In the ObjectName field of the MQOD structure, specify the name of the remote
queue as known to the local queue manager.

2. In the ObjectName field of the MQOD structure, specify the name of the remote
queue, as known to the remote queue manager. In the ObjectQMgrName field,
specify either:

� The name of the transmission queue that has the same name as the
remote queue manager.

� The name of an alias queue object that resolves to the transmission queue
that has the same name as the remote queue manager.

This tells the queue manager the destination of the message as well as the
transmission queue it needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure,
specify the name of the remote queue name as known by the remote queue
manager.

In both methods, only local names are validated when you call MQOPEN; the last
check is for the existence of the transmission queue to be used.

These two methods are summarized in Table 3 on page 100.

Closing objects using the MQCLOSE call
To close an object, you use the MQCLOSE call. If the object is a queue, you
should note the following:

� There is no need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with
any messages that may still be on it. This is true even if there are
uncommitted MQGET, MQPUT, or MQPUT1 calls outstanding against the
queue.

� In MQSeries for OS/390, if you have any MQGET requests with an
MQGMO_SET_SIGNAL option outstanding for that queue, they are canceled.

� If you opened the queue using the MQOO_BROWSE option, your browse
cursor is destroyed.

 Chapter 8. Opening and closing objects 105

 Using MQCLOSE

| Namelists can be closed only on AIX, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
| and Windows NT.

In MQSeries for AS/400, if the first MQOPEN call made an implicit connection to
the queue manager, the final MQCLOSE call makes an implicit disconnection.

| In MQSeries for VSE/ESA, ensure that your application issues a matching
| MQCLOSE call for each MQOPEN call. If your application does not issue the
| MQCLOSE call, the MQSeries for VSE/ESA housekeeping routine issues the
| MQCLOSE call on its behalf and unwanted messages appear in the SYSTEM.LOG
| queue.

Closure is unrelated to syncpoint, so you can close queues before or after
syncpoint.

As input to the MQCLOSE call, you must supply:

� A connection handle. Use the same connection handle used to open it, or
alternatively, for CICS and AS/400 applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero).

� The handle of the object you want to close. Get this from the output of the
MQOPEN call.

� MQCO_NONE in the Options field (unless you are closing a permanent
dynamic queue).

� The control option to determine whether the queue manager should delete the
queue even if there are still messages on it (when closing a permanent
dynamic queue).

The output from MQCLOSE is:

� A completion code
� A reason code
� The object handle, reset to the value MQHO_UNUSABLE_HOBJ

| Descriptions of the parameters of the MQCLOSE call are given in “MQCLOSE -
| Close object” in the MQSeries Application Programming Reference manual.

106 MQSeries Application Programming Guide

 Putting messages � MQPUT to local queue

Chapter 9. Putting messages on a queue

Use the MQPUT call to put messages on the queue. You can use MQPUT
repeatedly to put many messages on the same queue, following the initial
MQOPEN call. Call MQCLOSE when you have finished putting all your messages
on the queue.

If you want to put a single message on a queue and close the queue immediately
afterwards, you can use the MQPUT1 call. MQPUT1 performs the same functions
as the following sequence of calls:

 � MQOPEN
 � MQPUT
 � MQCLOSE

Generally however, if you have more than one message to put on the queue, it is
more efficient to use the MQPUT call. This depends on the size of the message
and the platform you are working on.

The sections in this chapter describe how to:

� Put messages on a local queue
� Put messages on a remote queue
� Control context information
� Put a single message on a queue using the MQPUT1 call
� Put a single message to multiple destinations using a single MQPUT call

The final section mentions some cases where put calls might fail.

Putting messages on a local queue using the MQPUT call
As input to the MQPUT call, you must supply:

� A connection handle (HCONN).

� A queue handle (HObj).

� A description of the message you want to put on the queue. This is in the form
of a message descriptor structure (MQMD).

� Control information, in the form of a put-message options structure (MQPMO).

� The length of the data contained within the message (MQLONG).

� The message data itself.

The output from the MQPUT call is

� A reason code (MQLONG)
� A completion code (MQLONG)

 Copyright IBM Corp. 1993,1999 107

 MQPUT to local queue

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generates a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the MQMD
structure), the call inserts the value in the MsgId field before returning this structure
to you. This value must be reset before you issue another MQPUT.

| There is a description of the MQPUT call in “MQPUT - Put message” in the
| MQSeries Application Programming Reference manual.

The following section describe the information you must supply as input to the
MQPUT call.

 Specifying handles
| For the connection handle (Hconn) in CICS on OS/390 and AS/400 applications, you
| can specify the constant MQHC_DEF_HCONN (which has the value zero), or you
| can use the connection handle returned by the MQCONN call. For other
| applications, always use the connection handle returned by the MQCONN call.

Whatever environment you are working in, use the same queue handle (Hobj) that
is returned by the MQOPEN call.

Defining messages using the MQMD structure
The message descriptor structure (MQMD) is an input/output parameter for the
MQPUT and MQPUT1 calls. You use it to define the message you are putting on a
queue.

| If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is
| specified for the message and the queue is a cluster queue the values used will be
| those of the queue the MQPUT resolves to. If that queue is disabled for MQPUT
| the call will fail. See “MQI and clusters” in the MQSeries Queue Manager Clusters
| book for more information.

Note: You must reset the MsgId and CorrelId to null prior to putting a new
message in order to ensure they are unique. The values in these fields are
returned on a successful MQPUT. However, if you set the Version field of the
MQMD structure to 2, you can use the MQMO_MATCH_MSG_ID and
MQMO_MATCH_CORREL_ID flags instead of resetting.

| There is an introduction to the message properties that MQMD describes in
| Chapter 3, “MQSeries messages” on page 23, and there is a description of the
| structure itself in “MQMD - Message descriptor” in the MQSeries Application
| Programming Reference manual.

Specifying options using the MQPMO structure
You use the MQPMO (Put Message Option) structure to pass options to the
MQPUT and MQPUT1 calls.

| The following sections give you help on filling in the fields of this structure. There
| is a description of the structure in “MQPMO - Put message options” in the
| MQSeries Application Programming Reference manual.

108 MQSeries Application Programming Guide

 MQPUT to local queue

The fields of the structure include:

 � StrucId
 � Version
 � Options
 � Context
 � ResolvedQName
 � ResolvedQMgrName

These fields are described below.

StrucId
This identifies the structure as a put-message options structure. This is a
4-character field. Always specify MQPMO_STRUC_ID.

Version
This describes the version number of the structure. The default is
MQPMO_VERSION_1. If you enter MQPMO_VERSION_2, you can use
distribution lists (see “Distribution lists” on page 116). If you enter
MQPMO_CURRENT_VERSION, your application is set always to use the most
recent level.

Options
This controls the following:

� Whether the put operation is included in a unit of work
� How much context information is associated with a message
� Where the context information is taken from
� Whether the call fails if the queue manager is in a quiescing state
� Generation of a new message identifier and correlation identifier
� The order in which messages and segments are put on a queue

If you leave the Options field set to the default value (MQPMO_NONE), the
message you put has default context information associated with it.

Also, the way that the call operates with syncpoints is determined by the
| platform. The syncpoint control default is ‘yes’ in OS/390; for other platforms, it
| is ‘no’.

Context
This states the name of the queue handle that you want context information to
be copied from (if requested in the Options field).

For an introduction to message context, see “Message context” on page 37.
For information about using the MQPMO structure to control the context
information in a message, see “Controlling context information” on page 113.

ResolvedQName
This contains the name (after resolution of any alias name) of the queue that
was opened to receive the message. This is an output field.

ResolvedQMgrName
This contains the name (after resolution of any alias name) of the queue
manager that owns the queue in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see
“Distribution lists” on page 116). If you wish to use this facility, Version 2 of the
MQPMO structure is used.

 Chapter 9. Putting messages on a queue 109

 MQPUT to local queue

This includes the following fields:

Version
This field describes the version number of the structure. For distribution lists,
you are required to specify MQPMO_VERSION_2.

RecsPresent
This field contains the number of Put Message Records (MQPMR) and
Response Records (MQRR) present.

The value you enter can be the same as the number of Object Records
provided at MQOPEN. However, if the value is less than the number of Object
Records provided on the MQOPEN call (or if no Put Message Records are
provided), the values of the queues that are not defined are taken from the
default values provided by the message descriptor. Also, if the value is greater
than the number of Object Records provided, the excess Put Message Records
are ignored.

You are recommended to do one of the following:

� If you want to receive a report or reply from each destination, enter the
same value as appears in the MQOR structure and use MQPMRs
containing MsgId fields. Either initialize these MsgId fields to zeros or specify
MQPMO_NEW_MSG_ID.

When you have put the message to the queue, MsgId values that the queue
manager has created become available in the MQPMRs; you can use these
to identify which destination is associated with each report or reply.

� If you do not want to receive reports or replies, choose one of the following:

1. If you want to identify destinations that fail immediately, you may still
want to enter the same value in the RecsPresent field as appears in the
MQOR structure and provide MQRRs to identify these destinations. Do
not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the
RecsPresent field and do not provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers and
Response Record Offsets must be zero.

| For a full description of Put Message Records (MQPMR) and Response
| Records (MQRR), see “MQPMR - Put message record” and “MQRR - Response
| record” in the MQSeries Application Programming Reference manual.

PutMsgRecFields
This indicates which fields are present in each Put Message Record (MQPMR).
For a list of these fields, see “Using the MQPMR structure” on page 120.

PutMsgRecOffset and PutMsgRecPtr
Pointers (typically in C) and offsets (typically in COBOL) are used to address
the Put Message Records (see “Using the MQPMR structure” on page 120 for
an overview of the MQPMR structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message Record,
or the PutMsgRecOffset field to specify the offset of the first Put Message
Record. This is the offset from the start of the MQPMO. Depending on the
PutMsgRecFields field, enter a nonnull value for either PutMsgRecOffset or
PutMsgRecPtr.

110 MQSeries Application Programming Guide

 MQPUT to local queue

ResponseRecOffset and ResponseRecPtr
You also use pointers and offsets to address the Response Records (see
“Using the MQRR structure” on page 119 for further information about
Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response Record,
or the ResponseRecOffset field to specify the offset of the first Response
Record. This is the offset from the start of the MQPMO structure. Enter a
nonnull value for either ResponseRecOffset or ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list,
ResponseRecPtr must be null or zero and ResponseRecOffset must be zero.

Additional information for putting to a distribution list (see “Distribution lists” on
page 116) is provided in Version 2 of the Put Message Option structure (MQPMR).

| This is described in “MQPMR - Put message record” in the MQSeries Application
| Programming Reference manual.

The data in your message
Give the address of the buffer that contains your data in the Buffer parameter of
the MQPUT call. You can include anything in the data in your messages. The
amount of data in the messages, however, affects the performance of the
application that is processing them.

The maximum size of the data is determined by:

� The MaxMsgLength attribute of the queue manager

� The MaxMsgLength attribute of the queue on which you are putting the message

� The size of any message header added by MQSeries (including the Dead-letter
header, MQDLH and the Distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that
the queue manager can process. This has a default of 4 MB (1 MB=1048576
bytes). To determine the value of this attribute, use the MQINQ call on the queue
manager object. For large messages, you can change this value (not on AS/400).

The MaxMsgLength attribute of a queue determines the maximum size of message
you can put on the queue. If you attempt to put a message with a size larger than
the value of this attribute, your MQPUT call fails. If you are putting a message on
a remote queue, the maximum size of message that you can successfully put is
determined by the MaxMsgLength attribute of the remote queue, of any intermediate
transmission queues that the message is put on along the route to its destination,
and of the channels used.

For an MQPUT operation, the size of the message must be smaller than or equal
to the MaxMsgLength attribute of both the queue and the queue manager. The
values of these attributes are independent, but you are recommended to set the
MaxMsgLength of the queue to a value less than or equal to that of the queue
manager.

MQSeries adds header information to messages in the following circumstances:

� When you put a message on a remote queue, MQSeries adds an MQXQH
structure to the message. This structure includes the name of the destination
queue and its owning queue manager.

 Chapter 9. Putting messages on a queue 111

 MQPUT to remote queue

� If MQSeries cannot deliver a message to a remote queue, it attempts to put the
message on the dead-letter (undelivered-message) queue. It adds an MQDLH
structure to the message. This structure includes the name of the destination
queue and the reason the message was put on the dead-letter
(undelivered-message) queue.

� If you want to send a message to multiple destination queues, MQSeries adds
an MQDH header to the message. This describes the data that is present in a
message, belonging to a distribution list, on a transmission queue. This point
should be considered when choosing an optimum value for the maximum
message length.

| These structures are described in “MQXQH - Transmission queue header,”
| “MQDLH - Dead-letter header,” and “MQDH - Distribution header” in the MQSeries
| Application Programming Reference manual.

If your messages are of the maximum size allowed for these queues, the addition
of these headers means that the put operations fail because the messages are now
too big. To reduce the possibility of the put operations failing:

� Make the size of your messages smaller than the MaxMsgLength attribute of the
transmission and dead-letter (undelivered-message) queues. Allow at least the
value of the MQ_MSG_HEADER_LENGTH constant (more for large distribution
lists).

� Make sure that the MaxMsgLength attribute of the dead-letter
(undelivered-message) queue is set to the same as the MaxMsgLength of the
queue manager that owns the dead-letter queue.

| The attributes for the queue manager and the message queuing constants are
| described in “Attributes for the queue manager,” and Chapter 6, “MQSeries
| constants,” in the MQSeries Application Programming Reference manual.

| For information on how undelivered messages are handled in a distributed queuing
| environment, see “What happens when a message cannot be delivered?” in the
| MQSeries Intercommunication book.

Putting messages on a remote queue
When you want to put a message on a remote queue (that is, a queue owned by a
queue manager other than the one to which your application is connected) rather
than a local queue, the only extra consideration is how you specify the name of the
queue when you open it. This is described in “Opening remote queues” on
page 105. There is no change to how you use the MQPUT or MQPUT1 call for a
local queue.

| For more information on using remote and transmission queues, see the MQSeries
| Intercommunication book.

112 MQSeries Application Programming Guide

 MQPUT context information

Controlling context information
To control context information, you use the Options field in the MQPMO structure.

If you don’t, the queue manager will overwrite context information that may already
be in the message descriptor with the identity and context information it has
generated for your message. This is the same as specifying the
MQPMO_DEFAULT_CONTEXT option. You may want this default context
information when you create a new message (for example, when processing user
input from an inquiry screen).

If you want no context information associated with your message, use the
MQPMO_NO_CONTEXT option.

Passing identity context
In general, programs should pass identity context information from message to
message around an application until the data reaches its final destination.
Programs should change the origin context information each time they change the
data. However, applications that want to change or set any context information
must have the appropriate level of authority. The queue manager checks this
authority when the applications open the queues; they must have authority to use
the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then
puts the changed data into another message (possibly for processing by another
application), the application should pass the identity context information from the
original message to the new message. You can allow the queue manager to
create the origin context information.

To save the context information from the original message, you must use the
MQOO_SAVE_ALL_CONTEXT option when you open the queue for getting the
message. This is in addition to any other options you use with the MQOPEN call.
Note, however, that you cannot save context information if you only browse the
message.

When you create the second message, you must:

� Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in
addition to the MQOO_OUTPUT option).

� In the Context field of the put-message options structure, give the handle of the
queue from which you saved the context information.

� In the Options field of the put-message options structure, specify the
MQPMO_PASS_IDENTITY_CONTEXT option.

 Chapter 9. Putting messages on a queue 113

 Using MQPUT1

Passing all context
If your application gets a message, and puts the message data (unchanged) into
another message, the application should pass both the identity and the origin
context information from the original message to the new message. An example of
an application that might do this is a message mover, which moves messages from
one queue to another.

Follow the same procedure as for passing identity context, except you use the
MQOPEN option MQOO_PASS_ALL_CONTEXT and the put-message option
MQPMO_PASS_ALL_CONTEXT.

Setting identity context
If you want to set the identity context information for a message, leaving the queue
manager to set the origin context information:

� Open the queue using the MQOO_SET_IDENTITY_CONTEXT option.

� Put the message on the queue, specifying the
MQPMO_SET_IDENTITY_CONTEXT option. In the message descriptor,
specify whatever identity context information you require.

Setting all context
If you want to set both the identity and the origin context information for a message:

� Open the queue using the MQOO_SET_ALL_CONTEXT option.

� Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT
option. In the message descriptor, specify whatever identity and origin context
information you require.

Appropriate authority is needed for each type of context setting.

Putting one message on a queue using the MQPUT1 call
Use the MQPUT1 call when you want to close the queue immediately after you
have put a single message on it. For example, a server application is likely to use
the MQPUT1 call when it is sending a reply to each of the different queues.

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT,
followed by MQCLOSE. The only difference in the syntax for the MQPUT and
MQPUT1 calls is that for MQPUT you must specify an object handle, whereas for
MQPUT1 you must specify an object descriptor structure (MQOD) as defined in
MQOPEN (see “Identifying objects (the MQOD structure)” on page 99). This is
because you need to give information to the MQPUT1 call about the queue it has
to open, whereas when you call MQPUT, the queue must already be open.

As input to the MQPUT1 call, you must supply:

� A connection handle.

� A description of the object you want to open. This is in the form of an object
descriptor structure (MQOD).

� A description of the message you want to put on the queue. This is in the form
of a message descriptor structure (MQMD).

114 MQSeries Application Programming Guide

 Using MQPUT1

� Control information in the form of a put-message options structure (MQPMO).

� The length of the data contained within the message (MQLONG).

� The address of the message data.

The output from MQPUT1 is:

� A completion code
� A reason code

If the call completes successfully, it also returns your options structure and your
message descriptor structure. The call modifies your options structure to show the
name of the queue and the queue manager to which the message was sent. If you
request that the queue manager generate a unique value for the identifier of the
message you are putting (by specifying binary zero in the MsgId field of the MQMD
structure), the call inserts the value in the MsgId field before returning this structure
to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a
model queue has been opened, you can issue an MQPUT1 to the dynamic queue.

The six input parameters for MQPUT1 are:

Hconn
This is a connection handle. For CICS and AS/400 applications, you can specify
the constant MQHC_DEF_HCONN (which has the value zero), or use the
connection handle returned by the MQCONN call. For other programs, always
use the connection handle returned by the MQCONN call.

ObjDesc
This is an object descriptor structure (MQOD).

In the ObjectName and ObjectQMgrName fields, give the name of the queue on
which you want to put a message, and the name of the queue manager that
owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot use
model queues.

Use the AlternateUserId field only if you want to nominate an alternate user
identifier that is to be used to test authority to open the queue.

MsgDesc
This is a message descriptor structure (MQMD). As with the MQPUT call, use
this structure to define the message you are putting on the queue.

PutMsgOpts
This is a put-message options structure (MQPMO). Use it as you would for the
MQPUT call (see “Specifying options using the MQPMO structure” on page 108).

When the Options field is set to zero, the queue manager uses your own user ID
when it performs tests for authority to access the queue. Also, the queue
manager ignores any alternate user identifier given in the AlternateUserId field
of the MQOD structure.

BufferLength
This is the length of your message.

Buffer
This is the buffer area that contains the text of your message.

 Chapter 9. Putting messages on a queue 115

 Distribution lists

| When you use clusters, MQPUT1 operates as though MQOO_BIND_NOT_FIXED
| is in effect. Applications must use the resolved fields in the MQPMO structure
| rather than the MQOD structure to determine where the message was sent. See
| “MQI and clusters” in the MQSeries Queue Manager Clusters book for more
| information.

| There is a description of the MQPUT1 call in “MQPUT1 - Put one message” in the
| MQSeries Application Programming Reference manual.

 Distribution lists
These are supported on MQSeries Version 5 products and MQSeries for AS/400.

Distribution lists allow you to put a message to multiple destinations in a single
MQPUT or MQPUT1 call. Multiple queues can be opened using a single MQOPEN
and a message can then be put to each of those queues using a single MQPUT.
Some generic information from the MQI structures used for this process can be
superseded by specific information relating to the individual destinations included in
the distribution list.

When an MQOPEN call is issued, generic information is taken from the Object
Descriptor (MQOD). If you specify MQOD_VERSION_2 in the Version field and a
value greater than zero in the RecsPresent field, the Hobj can be defined as a
handle of a list (of one or more queues) rather than of a queue. In this case,
specific information is given through the object records (MQORs), which give details
of destination (that is, ObjectName and ObjectQMgrName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list
rather than to a single queue.

When a message is put on the queues (MQPUT), generic information is taken from
the Put Message Option structure (MQPMO) and the Message Descriptor (MQMD).
Specific information is given in the form of Put Message Records (MQPMRs).

Response Records (MQRR) can receive a completion code and reason code
specific to each destination queue.

Note: There may be an impact on portability if pointers are used in these
languages on the following platforms:

Language Platform
COBOL AS/400
RPG AS/400

Figure 5 on page 117 shows how distribution lists work:

Opening distribution lists
Use the MQOPEN call to open a distribution list, and use the options of the call to
specify what you want to do with the list.

As input to MQOPEN, you must supply:

� A connection handle (see Chapter 9, “Putting messages on a queue” on
page 107 for a description)

116 MQSeries Application Programming Guide

 Distribution lists

QMgr2

Remote1
queue

Remote2
queue

Empty queue

Remote

S
et

up

QMgr1

Local2
queue

Local1
queueXmit2

Local

1 message transmitted
through channel

Queue containing one message

Remote1 Remote2

MQDH

XmitQ

Local1

Local2

MQOpen

MQORs

QName QMgrName

local1

local2

remote1

remote2

QMgr2

QMgr2

P
ut

to
di

st
rib

ut
io

n
lis

t

Key:

Figure 5. How distribution lists work. This diagram shows that one message is transmitted
through the channel and can be put on more than one remote queue.

� Generic information in the Object Descriptor structure (MQOD)

� The name of each queue you want to open, using the Object Record structure
(MQOR)

The output from MQOPEN is:

� An object handle that represents your access to the distribution list
� A generic completion code
� A generic reason code
� Response Records (optional), containing a completion code and reason for

each destination

Using the MQOD structure
Use the MQOD structure to identify the queues you want to open. To define a
distribution list, you must specify MQOD_VERSION_2 in the Version field, a value
greater than zero in the RecsPresent field, and MQOT_Q in the ObjectType field.

| See “MQOD - Object descriptor” in the MQSeries Application Programming
| Reference manual for a description of all the fields of the MQOD structure.

Using the MQOR structure
An MQOR structure must be provided for each destination. The structure contains
the destination queue and queue manager names. The ObjectName and
ObjectQMgrName fields in the MQOD are not used for distribution lists. There must
be one or more object records. If the ObjectQMgrName is left blank, the local queue

| manager is used. See “MQOR - Object record” in the MQSeries Application
| Programming Reference manual for further information about these fields.

You can specify the destination queues in two ways:

� By using the offset field ObjectRecOffset.

 Chapter 9. Putting messages on a queue 117

 Distribution lists

In this case, the application should declare its own structure containing an
MQOD structure, followed by the array of MQOR records (with as many array
elements as are needed), and set ObjectRecOffset to the offset of the first
element in the array from the start of the MQOD. Care must be taken to
ensure that this offset is correct.

Use of built-in facilities provided by the programming language is
recommended, if these are available in all of the environments in which the
application must run. The following illustrates this technique for the COBOL
programming language:

 ð1 MY-OPEN-DATA.
 ð2 MY-MQOD.
 COPY CMQODV.

ð2 MY-MQOR-TABLE OCCURS 1ðð TIMES.
 COPY CMQORV.

MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, the constant MQOD_CURRENT_LENGTH can be used if the
programming language does not support the necessary built-in facilities in all of
the environments concerned. The following illustrates this technique:

 ð1 MY-MQ-CONSTANTS.
 COPY CMQV.
 ð1 MY-OPEN-DATA.
 ð2 MY-MQOD.
 COPY CMQODV.

ð2 MY-MQOR-TABLE OCCURS 1ðð TIMES.
 COPY CMQORV.

MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this will work correctly only if the MQOD structure and the array of
MQOR records are contiguous; if the compiler inserts skip bytes between the
MQOD and the MQOR array, these must be added to the value stored in
ObjectRecOffset.

Using ObjectRecOffset is recommended for programming languages that do
not support the pointer data type, or that implement the pointer data type in a
way that is not portable to different environments (for example, the COBOL
programming language).

� By using the pointer field ObjectRecPtr.

In this case, the application can declare the array of MQOR structures
separately from the MQOD structure, and set ObjectRecPtr to the address of
the array. The following illustrates this technique for the C programming
language:

MQOD MyMqod;
MQOR MyMqor[1ðð];
MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support
the pointer data type in a way that is portable to different environments (for
example, the C programming language).

Whichever technique is chosen, one of ObjectRecOffset and ObjectRecPtr must
be used; the call fails with reason code MQRC_OBJECT_RECORDS_ERROR if
both are zero, or both are nonzero.

118 MQSeries Application Programming Guide

 Putting messages to a distribution list

Using the MQRR structure
These structures are destination specific as each Response Record contains a
CompCode and Reason field for each queue of a distribution list. You must use this
structure to enable you to distinguish where any problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and
your distribution list contains five destination queues, you will not know which
queues the problems apply to if you do not use this structure. However, if you
have a completion code and reason code for each destination, you can locate the
errors more easily.

| See “MQRR - Response record” in the MQSeries Application Programming
| Reference manual for further information about the MQRR structure.

Figure 6 shows how you can open a distribution list in C:

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

0

n-1

MQOR

0

n-1

Q

Q

Q

QMgr

QMgr

QMgr

MQOD n ptr ptr2

Figure 6. Opening a distribution list in C. The MQOD uses pointers to the MQOR and
MQRR structures.

Figure 7 shows how you can open a distribution list in COBOL:

2 Comp
CodeMQOD n offset offset Q QMgr Q QMgr Comp

Code Reason R

x y

0 x 0 n-1 y

Figure 7. Opening a distribution list in COBOL. The MQOD uses offsets in COBOL.

Using the MQOPEN options
The following options can be specified when opening a distribution list:

 � MQOO_OUTPUT
 � MQOO_FAIL_IF_QUIESCING (optional)
 � MQOO_ALTERNATE_USER_AUTHORITY (optional)
 � MQOO_*_CONTEXT (optional)

See Chapter 8, “Opening and closing objects” on page 97 for a description of
these options.

Putting messages to a distribution list
To put messages to a distribution list, you can use MQPUT or MQPUT1. As input,
you must supply:

� A connection handle (see Chapter 9, “Putting messages on a queue” on
page 107 for a description).

� An object handle. If a distribution list is opened using MQOPEN, the Hobj
allows you only to put to the list.

 Chapter 9. Putting messages on a queue 119

 Putting messages to a distribution list

| � A message descriptor structure (MQMD). See “MQMD - Message descriptor”
| in the MQSeries Application Programming Reference manual for a description
| of this structure.

� Control information in the form of a put-message option structure (MQPMO).
See “Specifying options using the MQPMO structure” on page 108 for
information about filling in the fields of the MQPMO structure.

� Control information in the form of Put Message Records (MQPMR).

� The length of the data contained within the message (MQLONG).

� The message data itself.

The output is:

� A completion code
� A reason code
� Response Records (optional)

Using the MQPMR structure
This structure is optional and gives destination-specific information for some fields
that you may want to identify differently from those already identified in the MQMD.

| For a description of these fields, see “MQMD - Message descriptor” in the
| MQSeries Application Programming Reference manual.

The content of each record depends on the information given in the
PutMsgRecFields field of the MQPMO. For example, in the sample program
AMQSPTL0.C (see “The Distribution List sample program” on page 345 for a
description) showing the use of distribution lists, the sample chooses to provide
values for MsgId and CorrelId in the MQPMR.
This section of the sample program looks like this:

 typedef struct
 {
 MQBYTE24 MsgId;
 MQBYTE24 CorrelId;
 } PutMsgRec;...
 /\\\\\\\\\\\\\\\\\\\\\\
MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a
distribution list. The Put Message Records are provided as an array.

Figure 8 shows how you can put a message to a distribution list in C:

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

MQPMR

e.g. ,MsgId CorrelId

MQPMO ptr ptr2 f n

(depending
on f)

Figure 8. Putting a message to a distribution list in C. The MQPMO uses pointers to the
MQPMR and MQRR structures.

120 MQSeries Application Programming Guide

 Put call failure

Figure 9 on page 121 shows how you can put a message to a distribution list in
COBOL:

MQPMO 2 f n offset1 offset2 MQPMR MQRR
x y

x y

Figure 9. Putting a message to a distribution list in COBOL. The MQPMO uses offsets in
COBOL.

 Using MQPUT1
If you are using MQPUT1, consider the following:

1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or
zero.

2. The Response Records, if required, must be addressed from the MQOD.

Some cases where the put calls fail
If certain attributes of a queue are changed using the FORCE option on a
command during the interval between you issuing an MQOPEN and an MQPUT
call, the MQPUT call fails and returns the MQRC_OBJECT_CHANGED reason
code. The queue manager marks the object handle as being no longer valid. This
also happens if the changes are made while an MQPUT1 call is being processed,

| or if the changes apply to any queue to which the queue name resolves. The
| attributes that affect the handle in this way are listed in the description of the
| MQOPEN call in “MQOPEN - Open object” in the MQSeries Application
| Programming Reference manual. If your call returns the

MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to
put a message again.

If put operations are inhibited for a queue on which you are attempting to put
messages (or any queue to which the queue name resolves), the MQPUT or
MQPUT1 call fails and returns the MQRC_PUT_INHIBITED reason code. You may
be able to put a message successfully if you attempt the call at a later time, if the
design of the application is such that other programs change the attributes of
queues regularly.

Further, if the queue that you are trying to put your message on is full, the MQPUT
or MQPUT1 call fails and returns MQRC_Q_FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT
calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code. In this situation, it is good practice to close the
object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can
occur in a single request. These cannot be handled using only the CompCode and
Reason output fields on MQOPEN and MQPUT.

When distribution lists are used to put messages to multiple destinations, the
Response Records contain the specific CompCode and Reason for each destination.
If you receive a completion code of MQCC_FAILED, no message is put on any
destination queue successfully. If the completion code is MQCC_WARNING, the

 Chapter 9. Putting messages on a queue 121

 Put call failure

message is successfully put on one or more of the destination queues. If you
receive a return code of MQRC_MULTIPLE_REASONS, the reason codes are not
all the same for every destination. Therefore, it is recommended to use the MQRR
structure so that you can determine which queue or queues caused an error and
the reasons for each.

122 MQSeries Application Programming Guide

 Getting messages � Using MQGET

Chapter 10. Getting messages from a queue

You can get messages from a queue in two ways:

1. You can remove a message from the queue so that other programs can no
longer see it.

2. You can copy a message, leaving the original message on the queue. This is
known as browsing. You can easily remove the message once you have
browsed it.

In both cases, you use the MQGET call, but first your application must be
connected to the queue manager, and you must use the MQOPEN call to open the
queue (for input, browse, or both). These operations are described in Chapter 7,
“Connecting and disconnecting a queue manager” on page 89 and Chapter 8,
“Opening and closing objects” on page 97.

When you have opened the queue, you can use the MQGET call repeatedly to
browse or remove messages on the same queue. Call MQCLOSE when you have
finished getting all the messages you want from the queue.

This chapter tells you how to get messages from a queue using the MQGET call,
and includes:

� Information on the MQGET call itself
� The order in which messages are retrieved
� Getting a particular message
� Waiting for messages
� Handling large messages
� Getting notification when a message arrives (signaling)
� Avoiding loops by skipping backout
� Converting messages from different systems

 � Browsing messages
� Why MQGET might fail

Getting messages from a queue using the MQGET call
The MQGET call gets a message from an open local queue. It cannot get a
message from a queue on another system.

As input to the MQGET call, you must supply:

� A connection handle.

� A queue handle.

� A description of the message you want to get from the queue. This is in the
form of a message descriptor (MQMD) structure.

� Control information in the form of a Get Message Options (MQGMO) structure.

� The size of the buffer you have assigned to hold the message (MQLONG).

� The address of the storage in which the message must be put.

The output from MQGET is:

� A reason code

 Copyright IBM Corp. 1993,1999 123

 Using MQGET

� A completion code

� The message in the buffer area you specified, if the call completes successfully

� Your options structure, modified to show the name of the queue from which the
message was retrieved

� Your message descriptor structure, with the contents of the fields modified to
describe the message that was retrieved

� The length of the message (MQLONG)

| There is a description of the MQGET call in “MQGET - Get message” in the
| MQSeries Application Programming Reference manual.

The following sections describe the information you must supply as input to the
MQGET call.

Specifying connection handles
| For CICS on OS/390, VSE/ESA, and AS/400 applications, you can specify the
| constant MQHC_DEF_HCONN (which has the value zero), or use the connection
| handle returned by the MQCONN call. For other applications, always use the

connection handle returned by the MQCONN call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Describing messages using the MQMD structure and the MQGET call
To identify the message you want to get from a queue, use the message descriptor

| structure (MQMD). This is an input/output parameter for the MQGET call. There is
| an introduction to the message properties that MQMD describes in Chapter 3,
| “MQSeries messages” on page 23, and there is a description of the structure itself
| in “MQMD - Message descriptor” in the MQSeries Application Programming
| Reference manual.

If you know which message you want to get from the queue, see “Getting a
particular message” on page 137.

If you do not specify a particular message, MQGET retrieves the first message in
the queue. “The order in which messages are retrieved from a queue” on
page 128 describes how the priority of a message, the MsgDeliverySequence
attribute of the queue, and the MQGMO_LOGICAL_ORDER option determine the
order of the messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through
the messages in the queue), you can set the MsgId and CorrelId fields of
this structure to null after each call. This prevents the the call from filling
these fields with the identifiers of the message that was retrieved, and
therefore having messages with the same identifiers as the previous
message.

However, if you want to group your messages, the GroupId should be the
same for messages in the same group, so that the call will look for a
message having the same identifiers as the previous message in order to
make up the whole group.

124 MQSeries Application Programming Guide

 Using MQGET

Specifying MQGET options using the MQGMO structure
The MQGMO structure is an input/output variable for passing options to the
MQGET call.

The following sections give you help on filling in some of the fields of this structure.
| There is a description of the structure in “MQGMO - Get-message options” in the
| MQSeries Application Programming Reference manual.

StrucId
StrucId is a 4-character field used to identify the structure as a get-message
options structure. Always specify MQGMO_STRUC_ID.

| Version
| Version describes the version number of the structure. MQGMO_VERSION_1
| is the default. If you wish to use the Version 2 fields or retrieve messages in
| logical order, specify MQGMO_VERSION_2. If you wish to use the Version 3
| fields or retrieve messages in logical order, specify MQGMO_VERSION_3.
| MQGMO_CURRENT_VERSION sets your application to use the most recent
| level.

Options
Within your code, you can select the options in any order as each option is
represented by a bit in the Options field.

The Options field controls:

� Whether the MQGET call waits for a message to arrive on the queue before
it completes (see “Waiting for messages” on page 146)

� Whether the get operation is included in a unit of work

� Whether a nonpersistent message is retrieved outside syncpoint, allowing
fast messaging

� In MQSeries for OS/390, whether the message retrieved is marked as
skipping backout (see “Skipping backout” on page 150)

� Whether the message is removed from the queue, or merely browsed

� Whether to select a message by using a browse cursor or by other selection
criteria

� Whether the call succeeds even if the message is longer than your buffer

� In MQSeries for OS/390, whether to allow the call to complete, but set a
signal to indicate that you want to be notified when a message arrives

� Whether the call fails if the queue manager is in a quiescing state

| � On OS/390, whether the call fails if the connection is in a quiescing state

� Whether application message data conversion is required (see “Application
data conversion” on page 152)

� On MQSeries Version 5 products and MQSeries for AS/400, the order in
which messages and segments are retrieved from a queue

� On MQSeries Version 5 products and MQSeries for AS/400, whether
complete, logical messages only are retrievable

� On MQSeries Version 5 products and MQSeries for AS/400, whether
messages in a group can be retrieved only when all messages in the group
are available

 Chapter 10. Getting messages from a queue 125

 Using MQGET

� On MQSeries Version 5 products and MQSeries for AS/400, whether
segments in a logical message can be retrieved only when all segments in
the logical message are available

If you leave the Options field set to the default value (MQGMO_NO_WAIT), the
MQGET call operates this way:

� If there is no message matching your selection criteria on the queue, the
call does not wait for a message to arrive, but completes immediately. Also,
in MQSeries for OS/390, the call does not set a signal requesting
notification when such a message arrives.

� The way that the call operates with syncpoints is determined by the
platform:

� In MQSeries for OS/390, the message retrieved is not marked as skipping
backout.

� The selected message is removed from the queue (not browsed).

� No application message data conversion is required.

� The call fails if the message is longer than your buffer.

WaitInterval
The WaitInterval field specifies the maximum time (in milliseconds) that the
MQGET call waits for a message to arrive on the queue when you use the
MQGMO_WAIT option. If no message arrives within the time specified in
WaitInterval, the call completes and returns a reason code showing that there
was no message that matched your selection criteria on the queue.

In MQSeries for OS/390, if you use the MQGMO_SET_SIGNAL option, the
WaitInterval field specifies the time for which the signal is set.

For more information on these options, see “Waiting for messages” on
page 146 and “Signaling” on page 147.

Signal1
Signal1 is supported on MQSeries for OS/390, MQSeries for Tandem NSK, and
MQSeries for Windows Version 2.1 only.

If you have chosen to use the MQGMO_SET_SIGNAL option to request that
your application is notified when a suitable message arrives, you must specify
the type of signal in the Signal1 field. In MQSeries on all other platforms, the
Signal1 field is reserved and its value is not significant.

For more information, see “Signaling” on page 147.

Platform Under syncpoint control

AS/400 No

UNIX systems No

| OS/390| Yes

OS/2 No

Tandem NSK Yes

| VSE/ESA| Yes

Windows NT No

Windows No

126 MQSeries Application Programming Guide

 Using MQGET

Signal2
On MQSeries for Windows Version 2.1 this specifies an identifier for the signal
message. The Signal2 field is reserved on all other platforms and its value is
not significant.

For more information, see “Signaling” on page 147.

ResolvedQName
ResolvedQName is an output field in which the queue manager returns the name
of the queue (after resolution of any alias) from which the message was
retrieved.

MatchOptions
MatchOptions controls the selection criteria for MQGET.

GroupStatus
GroupStatus indicates whether the message you have retrieved is in a group.

SegmentStatus
SegmentStatus indicates whether the item you have retrieved is a segment of a
logical message.

Segmentation
Segmentation indicates whether segmentation is allowed for the message
retrieved.

| MsgToken
| MsgToken is supported on MQSeries for OS/390 only.

| MsgToken uniquely identifies a message.

| For more information, see “MQSeries Workflow” on page 249.

| ReturnedLength
| ReturnedLength is an output field in which the queue manager returns the length
| of message data returned (in bytes).

Specifying the size of the buffer area
In the BufferLength parameter of the MQGET call, specify the size of the buffer
area you want to use to hold the message data that you retrieve. There are three
ways to decide how big this should be:

1. You may already know what length of messages to expect from this program.
If so, specify a buffer of this size.

However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in
the MQGMO structure if you want the MQGET call to complete even if the
message is too big for the buffer. In this case:

� The buffer is filled with as much of the message as it can hold

� The call returns a warning completion code

� The message is removed from the queue (discarding the remainder of the
message), or the browse cursor is advanced (if you are browsing the
queue)

� The real length of the message is returned in DataLength

Without this option, the call still completes with a warning, but it does not
remove the message from the queue (or advance the browse cursor).

 Chapter 10. Getting messages from a queue 127

 MQGET retrieval sequence

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not
use the MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call
fails (for example, because the buffer is too small), the length of the message
is returned in the DataLength parameter of the call. (The buffer is still filled
with as much of the message as it can hold, but the processing of the call is
not completed.) Store the MsgId of this message, then repeat the MQGET call,
specifying a buffer area of the correct size, and the MsgId you noted from the
first call.

If your program is serving a queue that is also being served by other programs,
one of those other programs may remove the message you want before your
program can issue another MQGET call. Your program could waste time
searching for a message that no longer exists. To avoid this, first browse the
queue until you find the message you want, specifying a BufferLength of zero
and using the MQGMO_ACCEPT_TRUNCATED_MSG option. This positions
the browse cursor under the message you want. You can then retrieve the
message by calling MQGET again, specifying the
MQGMO_MSG_UNDER_CURSOR option. If another program removes the
message between your browse and removal calls, your second MQGET fails
immediately (without searching the whole queue), because there is no message
under your browse cursor.

3. The MaxMsgLength queue attribute determines the maximum length of messages
accepted for that queue and the MaxMsgLength queue manager attribute
determines the maximum length of messages accepted for that queue
manager. If you do not know what length of message to expect, you can
inquire about the MaxMsgLength attribute (using the MQINQ call), then specify a
buffer of this size.

For further information about the MaxMsgLength attribute, see “Increasing the
maximum message length” on page 140.

The order in which messages are retrieved from a queue
You have control over the order in which you retrieve messages from a queue.

| This section looks at the options.

 Priority
A program can assign a priority to a message when it puts the message on a
queue (see “Message priorities” on page 32). Messages of equal priority are
stored in a queue in order of arrival, not the order in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out)
sequence, or in FIFO within priority sequence. This depends on the setting of the
MsgDeliverySequence attribute of the queue. When a message arrives on a queue,
it is inserted immediately following the last message that has the same priority.

Programs can either get the first message from a queue, or they can get a
particular message from a queue, ignoring the priority of those messages. For
example, a program may want to process the reply to a particular message that it
sent earlier. For more information, see “Getting a particular message” on
page 137.

128 MQSeries Application Programming Guide

 MQGET retrieval sequence

If an application puts a sequence of messages on a queue, another application can
retrieve those messages in the same order that they were put, provided:

� The messages all have the same priority

� The messages were all put within the same unit of work, or all put outside a
unit of work

� The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages
being retrieved in a certain order, the applications must either include sequencing
information in the message data, or establish a means of acknowledging receipt of
a message before the next one is sent.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the speed of MQGET operations on the queue. For more information, see “Type of
index” on page 139.

Logical and physical ordering
Logical and physical ordering is supported on MQSeries Version 5 products only.

Messages on queues can occur (within each priority level) in physical or logical
order:

Order Meaning

Physical This is the order in which messages arrive on a queue.

Logical This is when all of the messages and segments within a group
are in their logical sequence, adjacent to each other, in the
position determined by the physical position of the first item
belonging to the group.

For a description of groups, messages, and segments, see “Message groups” on
page 33. These physical and logical orders may differ because:

� Groups can arrive at a destination at similar times from different applications,
therefore losing any distinct physical order.

� Even within a single group, messages may get out of order due to rerouting or
delay of some of the messages in the group.

For example, the logical order might look like Figure 10:

 Chapter 10. Getting messages from a queue 129

 MQGET retrieval sequence

A

Y

Z

B

Y1

Y2

Y3 (last)

Z1

Z2 (last)

Group Message Segment

Y3.1

Y3.2

Figure 10. Logical order on a queue

These messages would appear in the following order on a queue:

1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Y
4. Segment 1 of (last) logical message 3 of group Y
5. (Last) segment 2 of (last) logical message 3 of group Y
6. Logical message 1 of group Z
7. (Last) logical message 2 of group Z
8. Message B (not in a group)

The physical order, however, might be entirely different. As stated on page 129,
the physical position of the first item within each group determines the logical
position of the whole group. For example, if groups Y and Z arrived at similar
times, and message 2 of group Z overtook message 1 of the same group, the
physical order would look like Figure 11:

130 MQSeries Application Programming Guide

 MQGET retrieval sequence

A

Y

Z

Y

Z

B

Y1

Z2 (last)

Y2

Y3 (last)

Z1

Group Message Segment

Y3.1

Y3.2

Figure 11. Physical order on a queue

These messages appear in the following order on the queue:

1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Z
4. Logical message 2 of group Y
5. Segment 1 of (last) logical message 3 of group Y
6. (Last) segment 2 of (last) logical message 3 of group Y
7. Logical message 1 of group Z
8. Message B (not in a group)

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve
messages in logical rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and
MQGMO_LOGICAL_ORDER, subsequent MQGET calls with
MQGMO_BROWSE_NEXT must also specify this option. Conversely, if the
MQGET with MQGMO_BROWSE_FIRST does not specify
MQGMO_LOGICAL_ORDER, neither must the following MQGETs with
MQGMO_BROWSE_NEXT.

The group and segment information that the queue manager retains for MQGET
calls that browse messages on the queue is separate from the group and segment
information that the queue manager retains for MQGET calls that remove

 Chapter 10. Getting messages from a queue 131

 MQGET retrieval sequence

messages from the queue. When MQGMO_BROWSE_FIRST is specified, the
queue manager ignores the group and segment information for browsing, and
scans the queue as though there were no current group and no current logical
message.

Note: Special care is needed if an MQGET call is used to browse beyond the
end of a message group (or logical message not in a group) when
MQGMO_LOGICAL_ORDER is not specified. For example, if the last message in
the group happens to precede the first message in the group on the queue, using
MQGMO_BROWSE_NEXT to browse beyond the end of the group, specifying
MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set to 1 (to find the first
message of the next group) would return again the first message in the group
already browsed. This could happen immediately, or a number of MQGET calls
later (if there are intervening groups).

The possibility of an infinite loop can be avoided by opening the queue twice for
browse:

� Use the first handle to browse only the first message in each group.

� Use the second handle to browse only the messages within a specific group.

� Use the MQMO_* options to move the second browse cursor to the position of
the first browse cursor, before browsing the messages in the group.

� Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

| For further information about this, see “MQGMO - Get-message options” in the
| MQSeries Application Programming Reference manual.

For most applications you will probably choose either logical or physical ordering
when browsing. However, if you want to switch between these modes, remember
that when you first issue a browse with MQGMO_LOGICAL_ORDER, your position
within the logical sequence is established.

If the first item within the group is not present at this time, the group you are in is
not considered to be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group,
even if the first message is removed. Initially though, you can never move into a
group using MQGMO_LOGICAL_ORDER where the first item is not present.

Grouping logical messages
There are two main reasons for using logical messages in a group:

� The messages may need to be processed in the correct order
� Each of the messages in a group may need to be processed in a related way.

In either case, retrieval of the entire group must be carried out by the same getting
application instance.

132 MQSeries Application Programming Guide

 MQGET retrieval sequence

For example, assume that the group consists of four logical messages. The putting
application looks like this:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

 MQCMIT

The getting application chooses not to start processing any group until all of the
messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore
specified for the first message in the group; the option is ignored for subsequent
messages within the group.

Once the first logical message of the group is retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining logical messages
of the group are retrieved in order.

So, the getting application looks like this:

/\ Wait for the first message in a group, or a message not in a group \/
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)

 MQGET
/\ Process each remaining message in the group \/

 ...

 MQCMIT

For further examples of grouping messages, see “Application segmentation of
logical messages” on page 143 and “Putting and getting a group that spans units
of work.”

Putting and getting a group that spans units of work
In the previous case, messages or segments cannot start to leave the node (if its
destination is remote) or start to be retrieved until all of the group has been put and
the unit of work is committed. This may not be what you want if it takes a long
time to put the whole group, or if queue space is limited on the node. To overcome
this, the group can be put in several units of work.

If the group is put within multiple units of work, it is possible for some of the group
to commit even when a failure of the putting application occurs. The application
must therefore save status information, committed with each unit of work, which it
can use after a restart to resume an incomplete group. The simplest place to
record this information is in a STATUS queue. If a complete group has been
successfully put, the STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must
include the Offset.

 Chapter 10. Getting messages from a queue 133

 MQGET retrieval sequence

Here is an example of putting the group in several units of work:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

/\ First UOW \/

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

/\ Next and subsequent UOWs \/
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

/\ Last UOW \/
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT

 MQCMIT

If all the units of work have been committed, the entire group has been put
successfully, and the STATUS queue is empty. If not, the group must be resumed
at the point indicated by the status information. MQPMO_LOGICAL_ORDER
cannot be used for the first put, but can thereafter.

Restart processing looks like this:

MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/\ Proceed to normal processing \/
 ...

 else
/\ Group was terminated prematurely \/
Set GroupId, MsgSeqNumber in MQMD to values from Status message
PMO.Options = MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

/\ Now normal processing is resumed.
Assume this is not the last message \/

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT

From the getting application, you may want to start processing the messages in a
group before the whole group has arrived. This improves response times on the

134 MQSeries Application Programming Guide

 MQGET retrieval sequence

messages within the group, and also means that storage is not required for the
entire group.

For recovery reasons, each message must be retrieved within a unit of work.
However, in order to realize the above benefits, several units of work must be used
for each group of messages.

As with the corresponding putting application, this requires status information to be
recorded somewhere atomically as each unit of work is committed. Again, the
simplest place to record this information is on a STATUS queue. If a complete
group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the
STATUS queue by specifying that each MQPUT to the status queue is a
segment of a message (that is, by setting the MQMF_SEGMENT flag),
instead of putting a complete new message for each unit of work. In the
last unit of work, a final segment is put to the status queue specifying
MQMF_LAST_SEGMENT, and then the status information is cleared with
an MQGET specifying MQGMO_COMPLETE_MSG.

During restart processing, instead of using a single MQGET to get a
possible status message, browse the status queue with
MQGMO_LOGICAL_ORDER until you reach the last segment (that is, until
no further segments are returned). In the first unit of work after restart, also
specify the offset explicitly when putting the status segment.

In the following example, we consider only messages within a group. It is assumed
that the application's buffer is always large enough to hold the entire message,
whether or not the message has been segmented. MQGMO_COMPLETE_MSG is
therefore specified on each MQGET. The same principles apply if segmentation is
involved (in this case, the StatusInfo must include the Offset).

 Chapter 10. Getting messages from a queue 135

 MQGET retrieval sequence

For simplicity, we assume that a maximum of 4 messages should be retrieved
within a single UOW:

msgs = ð /\ Counts messages retrieved within UOW \/
/\ Should be no status message at this point \/

/\ Retrieve remaining messages in the group \/
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/\ Process up to 4 messages in the group \/
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

 | MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

 MQGET
msgs = msgs + 1
/\ Process this message \/

 ...
/\ end while

/\ Have retrieved last message or 4 messages \/
/\ Update status message if not last in group \/
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT
msgs = ð

/\ end while

if (msgs > ð)
/\ Come here if there was only 1 message in the group \/

 MQCMIT

If all of the units of work have been committed, then the entire group has been
retrieved successfully, and the STATUS queue is empty. If not, then the group
must be resumed at the point indicated by the status information.
MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can
thereafter.

136 MQSeries Application Programming Guide

 Getting specific message

Restart processing looks like this:

MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/\ Proceed to normal processing \/
 ...

 else
/\ Group was terminated prematurely \/
/\ The next message on the group must be retrieved by matching

the sequence number and group id with those retrieved from the
status information. \/

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ_NUMBER,

MQMD.GroupId = value from Status message,
MQMD.MsgSeqNumber = value from Status message plus 1

msgs = 1
/\ Process this message \/

 ...

/\ Now normal processing is resumed \/
/\ Retrieve remaining messages in the group \/
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/\ Process up to 4 messages in the group \/
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

 | MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

 MQGET
msgs = msgs + 1
/\ Process this message \/

 ...

/\ Have retrieved last message or 4 messages \/
/\ Update status message if not last in group \/
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

 MQCMIT
msgs = ð

Getting a particular message
To get a particular message from a queue, use the MsgId and CorrelId fields of the
MQMD structure. Note, however, that applications can explicitly set these fields, so
the values you specify may not identify a unique message. Table 5 on page 138
shows which message is retrieved for the possible settings of these fields. These
fields are ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the
GetMsgOpts parameter of the MQGET call.

 Chapter 10. Getting messages from a queue 137

 Getting specific message

In each case, first means the first message that satisfies the selection criteria
(unless MQGMO_BROWSE_NEXT is specified, when it means the next message
in the sequence satisfying the selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and
correlation identifiers (respectively) of the message returned (if any).

| If you set the Version field of the MQMD structure to 2 or 3, you can use the
| GroupId, MsgSeqNumber, and Offset fields. Table 6 shows which message is
| retrieved for the possible settings of these fields.

Table 5. Using message and correlation identifiers

To retrieve ... MsgId CorrelId

First message in the queue MQMI_NONE MQCI_NONE

First message that matches MsgId Nonzero MQCI_NONE

First message that matches CorrelId MQMI_NONE Nonzero

First message that matches both MsgId and
CorrelId

Nonzero Nonzero

| Table 6. Using the group identifier

| To retrieve ...| Match options

| First message in the queue| MQMO_NONE

| First message that matches MsgId| MQMO_MATCH_MSG_ID

| First message that matches CorrelId| MQMO_MATCH_CORREL_ID

| First message that matches GroupId| MQMO_MATCH_GROUP_ID

| First message that matches MsgSeqNumber| MQMO_MATCH_MSG_SEQ_NUMBER

| First message that matches MsgToken| MQMO_MATCH_MSG_TOKEN

| First message that matches Offset| MQMO_MATCH_OFFSET

| Notes:

| 1. MQMO_XXX implies that the XXX field in the MQMD structure is set to the value to
| be matched.

| 2. The MQMO flags can be used in combination. For example,
| MQMO_MATCH_GROUP_ID, MQMO_MATCH_MSG_SEQ_NUMBER, and
| MQMO_MATCH_OFFSET can be used together to give the segment identified by
| the GroupId, MsgSeqNumber, and Offset fields.

| 3. If you specify MQGMO_LOGICAL_ORDER, the message you are trying to retrieve is
| affected because the option depends on state information controlled for the queue
| handle. For information about this, see “Logical and physical ordering” on page 129
| and “MQGMO - Get-message options” in the MQSeries Application Programming
| Reference manual.

| 4. MQMO_MATCH_MSG_TOKEN is used only on queues managed by the OS/390
| workload manager.

| 5. MQSeries for OS/390 does not support MQMO_MATCH_GROUP_ID,
| MQMO_MATCH_MSG_SEQ_NUMBER, or MQMO_MATCH_OFFSET.

138 MQSeries Application Programming Guide

 Index type

| Notes:

| 1. The MQGET call usually retrieves the first message from a queue. If you
| specify a particular message when you use the MQGET call, the queue
| manager has to search the queue until it finds that message. This can affect
| the performance of your application.

| 2. If you are using Version 2 or 3 of the MQMD structure, you can use the
| MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID flags. This
| avoids having to reset the MsgId and CorrelId fields between MQGETs.

On MQSeries for OS/390, the queue attribute, IndexType, can be used to increase
the speed of MQGET operations on the queue. For more information, see “Type of
index.”

Type of index
This is supported on MQSeries for OS/390 only.

The queue attribute, IndexType, specifies the type of index that the queue manager
maintains in order to increase the speed of MQGET operations on the queue.

| You have four options:

| Value Description

| NONE No index is maintained. Use this when messages are retrieved
| sequentially (see “Priority” on page 128).

| MSGID An index of message identifiers is maintained. Use this when
| messages are retrieved using the MsgId field as a selection criterion
| on the MQGET call (see “Getting a particular message” on page 137).

| MSGTOKEN An index of message tokens is maintained. Use this when messages
| are retrieved using the MsgToken field as a selection criterion on the
| MQGET call (see “MQSeries Workflow” on page 249).

| CORRELID An index of correlation identifiers is maintained. Use this when
| messages are retrieved using the CorrelId field as a selection
| criterion on the MQGET call (see “Getting a particular message” on
| page 137).

| Notes:

| 1. If you are indexing using the MSGID option or CORRELID option, set the
| relative MsgId or CorrelId parameters in the MQMD. It is not beneficial to set
| both.

| 2. Indexes are ignored when browsing messages on a queue (see “Browsing
| messages on a queue” on page 154 for more information).

| 3. Avoid queues (indexed by MsgId or CorrelId) containing thousands of
| messages because this affects restart time. (This does not apply to
| nonpersistent messages as they are deleted at restart.)

| 4. MSGTOKEN is used to define queues managed by the OS/390 workload
| manager.

| For a full description of the IndexType attribute, see “Attributes for local queues and
| model queues” in the MQSeries Application Programming Reference manual. For

 Chapter 10. Getting messages from a queue 139

 Handling large messages

| conditions needed to change the IndexType attribute, see “ALTER QLOCAL” in the
| MQSeries Command Reference manual.

Handling large messages
| This is supported on MQSeries Version 5 products and MQSeries for AS/400 only.

Messages can be too large for the application, queue, or queue manager.
MQSeries provides three ways of dealing with large messages:

1. Increase the queue and queue manager MaxMsgLength attributes (not AS/400).

2. Use segmented messages. (Messages can be segmented by either the
application or the queue manager.)

3. Use reference messages.

Each of these approaches is described in the remainder of this section.

Increasing the maximum message length
The MaxMsgLength queue manager attribute defines the maximum length of a
message that can be handled by a queue manager. Similarly, the MaxMsgLength
queue attribute is the maximum length of a message that can be handled by a
queue. The default maximum message length supported depends on the
environment you are working in, as shown under “Message properties and
protocols” on page 551.

If you are handling large messages, you can alter these attributes independently
(not AS/400). The attribute value can be set between 32768 bytes and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications
and channels to ensure that the changes take effect. When these changes are
made, the message length must be less than or equal to both the queue and the
queue manager MaxMsgLength attributes. However, existing messages may be
longer than either attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is
returned. Similarly, if the message is too big for the queue manager,
MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned. However, these return codes
can be avoided by segmenting your messages (see “Message segmentation” on
page 141 for full details of this).

This method of handling large messages is easy and convenient. However,
consider the following factors before using it:

� Uniformity among queue managers is reduced. The maximum size of message
data is determined by the MaxMsgLength for each queue (including transmission
queues) on which the message will be put. This value is often defaulted to the
queue manager’s MaxMsgLength, especially for transmission queues. This
makes it difficult to predict whether a message is too large when it is to travel
to a remote queue manager.

� Usage of system resources is increased. For example, applications need larger
buffers, and on some platforms, there may be increased usage of shared
storage. Note that queue storage should be affected only if actually required
for larger messages.

140 MQSeries Application Programming Guide

 Handling large messages

� Channel batching is affected. A large message still counts as just one
message towards the batch count but needs longer to transmit, thereby
increasing response times for other messages.

 Message segmentation
Increasing the maximum message length as discussed on page 140 has some
negative implications. Also, it could still result in the message being too large for
the queue or queue manager. In these cases, a message can be segmented. For
information about segments, see “Message groups” on page 33.

The next sections look at common uses for segmenting messages. For putting and
destructively getting, it is assumed that the MQPUT or MQGET calls always
operate within a unit of work. It is strongly recommended that this technique is
always used, to reduce the possibility of incomplete groups being present in the
network. Single-phase commit by the queue manager is assumed, but of course
other coordination techniques are equally valid.

Also, in the getting applications, it is assumed that if multiple servers are
processing the same queue, each server executes similar code, so that one server
never fails to find a message or segment that it expects to be there (because it had
specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Segmentation and reassembly by queue manager
This is the simplest scenario, in which one application puts a message to be
retrieved by another. The message may be large: not too large for either the
putting or the getting application to handle in a single buffer, but possibly too large
for the queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to
authorize the queue manager to perform segmentation if necessary,

PMO.Options = (existing options)
MQPUT MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED

and for the getting application to ask the queue manager to reassemble the
message if it has been segmented:

GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
 MQGET

The application buffer must be large enough to contain the reassembled message
(unless the MQGMO_ACCEPT_TRUNCATED_MSG option is included).

If data conversion is necessary, it may have to be done by the getting application
specifying MQGMO_CONVERT. This should be straightforward because the data
conversion exit is presented with the complete message. Attempting to do data
conversion in a sender channel will not be successful if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out the
conversion on incomplete data.

 Chapter 10. Getting messages from a queue 141

 Handling large messages

 Application segmentation
This example shows how to segment a single large message

Application segmentation is used for two main reasons:

1. Queue-manager segmentation alone is not adequate because the message is
too large to be handled in a single buffer by the applications.

2. Data conversion must be performed by sender channels, and the format is
such that the putting application needs to stipulate where the segment
boundaries are to be in order for conversion of an individual segment to be
possible.

However, if data conversion is not an issue, or if the getting application always
uses MQGMO_COMPLETE_MSG, queue-manager segmentation can also be
allowed by specifying MQMF_SEGMENTATION_ALLOWED. In our example, the
application segments the message into four segments:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

 MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset
and the length of each segment. In this case, logical state is not maintained
automatically.

The getting application cannot, or chooses not to, guarantee to have a buffer that
will hold any reassembled message. It must therefore be prepared to process
segments individually.

For messages that are segmented, this application does not want to start
processing one segment until all of the segments that constitute the logical
message are present. MQGMO_ALL_SEGMENTS_AVAILABLE is therefore
specified for the first segment. If you specify MQGMO_LOGICAL_ORDER and
there is a current logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is
ignored.

Once the first segment of a logical message has been retrieved,
MQGMO_LOGICAL_ORDER is used to ensure that the remaining segments of the
logical message are retrieved in order.

No consideration is given to messages within different groups. If such messages
do occur, they are processed in the order in which the first segment of each
message appears on the queue.

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT

do while (SegmentStatus == MQSS_SEGMENT)
 MQGET

/\ Process each remaining segment of the logical message \/
 ...

 MQCMIT

142 MQSeries Application Programming Guide

 Handling large messages

Application segmentation of logical messages
The messages must be maintained in logical order in a group, and some or all of
them may be so large that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third
message are large, and require segmentation which is performed by the putting
application:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

 MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the
first MQGET. This means that no messages or segments of a group are retrieved
until the entire group is available. When the first physical message of a group has
been retrieved, MQGMO_LOGICAL_ORDER is used to ensure that the segments
and messages of the group are retrieved in order:

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MESSAGES_AVAILABLE | MQGMO_WAIT

do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||
(SegmentStatus != MQGS_LAST_SEGMENT))

 MQGET
/\ Process a segment or complete logical message. Use the GroupStatus

and SegmentStatus information to see what has been returned \/
 ...

 MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

Putting and getting a segmented message that spans units of
work
You can put and get a segmented message that spans a unit of work in a similar
way to “Putting and getting a group that spans units of work” on page 133.

 Chapter 10. Getting messages from a queue 143

 Handling large messages

 Reference messages
This method allows a large object to be transferred from one node to another
without the need for the object to be stored on MQSeries queues at either the
source or the destination nodes. This is of particular benefit where the data already
exists in another form, for example, for mail applications.

| To do this, you need to specify a message exit at both ends of a channel. For
| information on how to do this, see Chapter 35, “Channel-exit programs” in the
| MQSeries Intercommunication book.

| MQSeries defines the format of a reference message header (MQRMH). See
| “MQRMH - Message reference header” in the MQSeries Application Programming
| Reference manual for a description of this. This is recognized by means of a

defined format name and may or may not be followed by actual data.

To initiate transfer of a large object, an application can put a message consisting of
a reference message header with no data following it. As this message leaves the
node, the message exit retrieves the object in an appropriate way and appends it to
the reference message. It then returns the message (now larger than before) to
the sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit
sees one of these messages, it creates the object using the object data that was
appended and passes on the reference message without it. The reference
message can now be received by an application and this application knows that the
object (or at least the portion of it represented by this reference message) has been
created at this node.

The maximum amount of object data that a sending message exit can append to
the reference message is limited by the negotiated maximum message length for
the channel. The exit can only return a single message to the MCA for each
message that it is passed, so the putting application can put several messages to
cause one object to be transferred. Each message must identify the logical length
and offset of the object that is to be appended to it. However, in cases where it is
not possible to know the total size of the object or the maximum size allowed by
the channel, the sending message exit can be designed so that the putting
application just puts a single message, and the exit itself puts the next message on
the transmission queue when it has appended as much data as it can to the
message it has been passed.

Before using this method of dealing with large messages, consider the following:

� The MCA and the message exit run under an MQSeries user ID. The message
exit (and therefore, the user ID) needs to access the object to either retrieve it
at the sending end or create it at the receiving end; this may only be feasible in
cases where the object is universally accessible. This raises a security issue.

� If the reference message with bulk data appended to it must travel through
several queue managers before reaching its destination, the bulk data is
present on MQSeries queues at the intervening nodes. However, no special
support or exits need to be provided in these cases.

� Designing your message exit is made difficult if rerouting or dead-letter queuing
is allowed. In these cases, the portions of the object may arrive out of order.

144 MQSeries Application Programming Guide

 Handling large messages

� When a reference message arrives at its destination, the receiving message
exit creates the object. However, this is not synchronized with the MCA’s unit
of work, so if the batch is backed out, another reference message containing
this same portion of the object will arrive in a later batch, and the message exit
may attempt to recreate the same portion of the object. If the object is, for
example, a series of database updates, this might be unacceptable. If so, the
message exit must keep a log of which updates have been applied; this may
require the use of an MQSeries queue.

� Depending on the characteristics of the object type, the message exits and
applications may need to cooperate in maintaining use counts, so that the

| object can be deleted when it is no longer needed. An instance identifier may
| also be required; a field is provided for this in the reference message header
| (see “MQRMH - Message reference header” in the MQSeries Application
| Programming Reference manual).

� If a reference message is put as a distribution list, the object must be
retrievable for each resulting distribution list or individual destination at that
node. You may need to maintain use counts. Also consider the possibility that
a given node may be the final node for some of the destinations in the list, but
an intermediate node for others.

� Bulk data is not normally converted. This is because conversion takes place
before the message exit is invoked. For this reason, conversion should not be
requested on the originating sender channel. If the reference message passes
through an intermediate node, the bulk data is converted when sent from the
intermediate node, if requested.

� Reference messages cannot be segmented.

Using the MQRMH and MQMD structures
| See “MQRMH - Message reference header” and “MQMD - Message descriptor” in
| the MQSeries Application Programming Reference manual for a description of the
| fields in the reference message header and the message descriptor.

In the MQMD structure, the Format field must be set to
MQFMT_REF_MSG_HEADER. The MQHREF format, when requested on
MQGET, is converted automatically by MQSeries along with any bulk data that
follows.

Here is an example of the use of the DataLogicalOffset and DataLogicalLength
fields of the MQRMH:

A putting application might put a reference message with:

� No physical data
� DataLogicalLength = 0 (this message represents the entire object)
� DataLogicalOffset = 0.

Assuming that the object is 70,000 bytes long, the sending message exit sends the
first 40,000 bytes along the channel in a reference message containing:

� 40,000 bytes of physical data following the MQRMH
� DataLogicalLength = 40,000
� DataLogicalOffset = 0 (from the start of the object).

 Chapter 10. Getting messages from a queue 145

 Waiting for messages

It then places another message on the transmission queue containing:

� No physical data

� DataLogicalLength = 0 (to the end of the object). You could specify a value of
30,000 here.

� DataLogicalOffset = 40,000 (starting from this point).

When this message exit is seen by the sending message exit, the remaining 30,000
bytes of data is appended, and the fields are set to:

� 30,000 bytes of physical data following the MQRMH
� DataLogicalLength = 30,000
� DataLogicalOffset = 40,000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference
messages, see Chapter 31, “Sample programs (all platforms except OS/390)” on
page 327.

Waiting for messages
If you want a program to wait until a message arrives on a queue, specify the
MQGMO_WAIT option in the Options field of the MQGMO structure. Use the
WaitInterval field of the MQGMO structure to specify the maximum time (in
milliseconds) that you want an MQGET call to wait for a message to arrive on a
queue.

If the message does not arrive within this time, the MQGET call completes with the
MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED in
the WaitInterval field. However, events outside your control could cause your
program to wait for a long time, so use this constant with caution. IMS applications
should not specify an unlimited wait interval because this would prevent the IMS
system terminating. (When IMS terminates, it requires all dependent regions to
end.) Instead, IMS applications should specify a finite wait interval; then, if the call
completes without retrieving a message after that interval, issue another MQGET
call with the wait option.

In the Windows 3.1 environment, while your application is waiting for an MQGET to
return, MQSeries will still recover Windows messages to allow the application and
the rest of Windows to function normally. You must ensure that your code that
processes Windows program messages does not assume that the MQGET call
returns data to the application immediately. If it attempts to access data that is not
yet available, errors can easily occur. Also, if you attempt to make other MQI calls
while the MQGET call is waiting, MQRC_CALL_IN_PROGRESS is returned to
show that another call is busy.

Note: If more than one program is waiting on the same shared queue to remove
a message, only one program is activated by a message arriving. However, if
more than one program is waiting to browse a message, all the programs can be

| activated. For more information, see the description of the Options field of the
| MQGMO structure in “MQGMO - Get-message options” in the MQSeries
| Application Programming Reference manual.

146 MQSeries Application Programming Guide

 Signaling

If the state of the queue or the queue manager changes before the wait interval
expires, the following actions occur:

� If the queue manager enters the quiescing state, and you used the
MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET
call completes with the MQRC_Q_MGR_QUIESCING reason code. Without
this option, the call remains waiting.

| � On OS/390, if the connection (for a CICS or IMS application) enters the
| quiescing state, and you used the MQGMO_FAIL_IF QUIESCING option, the
| wait is canceled and the MQGET call completes with the
| MQRC_CONN_QUIESCING reason code. Without this option, the call remains
| waiting.

� If the queue manager is forced to stop, or is canceled, the MQGET call
completes with either the MQRC_Q_MGR_STOPPING or the
MQRC_CONNECTION_BROKEN reason code.

� If the attributes of the queue (or a queue to which the queue name resolves)
are changed so that get requests are now inhibited, the wait is canceled and
the MQGET call completes with the MQRC_GET_INHIBITED reason code.

� If the attributes of the queue (or a queue to which the queue name resolves)
are changed in such a way that the FORCE option is required, the wait is
canceled and the MQGET call completes with the MQRC_OBJECT_CHANGED
reason code.

If you want your application to wait on more than one queue, use the signal facility
| of MQSeries for OS/390 (see “Signaling”). For more information about the
| circumstances in which these actions occur, see “MQGMO - Get-message options”
| in the MQSeries Application Programming Reference manual.

 Signaling
Signaling is supported only on MQSeries for OS/390, MQSeries for Tandem NSK,
and MQSeries for Windows Version 2.1.

Signaling is an option on the MQGET call to allow the operating system to notify (or
signal) a program when an expected message arrives on a queue. This is similar
to the “get with wait” function described on page 146 because it allows your
program to continue with other work while waiting for the signal. However, if you
use signaling, you can free the application thread and rely on the operating system
to notify the program when a message arrives.

To set a signal
To set a signal, do the following in the MQGMO structure that you use on your
MQGET call:

1. Set the MQGMO_SET_SIGNAL option in the Options field.

2. Set the maximum life of the signal in the WaitInterval field. This sets the
length of time (in milliseconds) for which you want MQSeries to monitor the
queue. Use the MQWI_UNLIMITED value to specify an unlimited life.

Note: IMS applications should not specify an unlimited wait interval because
this would prevent the IMS system from terminating. (When IMS terminates, it

 Chapter 10. Getting messages from a queue 147

 Signaling

requires all dependent regions to end.) Instead, IMS applications should
examine the state of the ECB at regular intervals (see step 3).

A program can have signals set on several queue handles at the same time:

3. On MQSeries for Tandem NSK, specify an application tag in the Signal1 field.
This can be used by an application to associate the IPC notification message
with a particular MQGET call (see “When the message arrives”).

On MQSeries for Windows Version 2.1, specify the handle of the window to
which you want the signal sent in the Signal1 field.

On MQSeries for OS/390, specify the address of the Event Control Block (ECB)
in the Signal1 field. This notifies you of the result of your signal. The ECB
storage must remain available until the queue is closed.

4. On MQSeries for Windows Version 2.1, specify an identifier for the signal
message in the Signal2 field. This specifies the Windows message that you
receive when a suitable message arrives. Use a RegisterWindow message to
find a suitable identifier.

Note: You cannot use the MQGMO_SET_SIGNAL option in conjunction with the
MQGMO_WAIT option.

When the message arrives
When a suitable message arrives, the following occurs:

� On MQSeries for Tandem NSK An Inter-Process Communication (IPC)
message is sent to the $RECEIVE queue of the process that made the
MQGET call.

� On MQSeries for Windows Version 2.1, MQSeries sends a Windows message
(identified in step 4) to the window you specified in your Signal1 field. It also
puts a completion code in the WPARAM field of the Windows message.

� On MQSeries for OS/390, a completion code is returned to the ECB.

The completion code describes one of the following:

� The message you set the signal for has arrived on the queue. The message is
not reserved for the program that requested a signal, so the program must
issue an MQGET call again to get the message.

Note: Another application could get the message in the time between you
receiving the signal and you issuing another MQGET call.

� The wait interval you set has expired and the message you set the signal for
did not arrive on the queue. MQSeries has canceled the signal.

� The signal has been canceled. This happens, for example, if the queue
manager stops or the attribute of the queue is changed so that MQGET calls
are no longer allowed.

When a suitable message is already on the queue, the MQGET call completes in
the same way as an MQGET call without signaling. Also, if an error is detected
immediately, the call completes and the return codes are set.

When the call is accepted and no message is immediately available, control is
returned to the program so that it can continue with other work. None of the output
fields in the message descriptor are set, but the CompCode and Reason parameters

148 MQSeries Application Programming Guide

 Signaling

are set to MQCC_WARNING and MQRC_SIGNAL_REQUEST_ACCEPTED,
respectively.

| For information on what MQSeries can return to your application when it makes an
| MQGET call using signaling, see “MQGMO - Get-message options” in the
| MQSeries Application Programming Reference manual.

On MQSeries for OS/390, if the program has no other work to do while it is waiting
for the ECB to be posted, it can wait for the ECB using:

� For a CICS Transaction Server for OS/390 program, the EXEC CICS WAIT
EXTERNAL command

� For batch and IMS programs, the OS/390 WAIT macro

If the state of the queue or the queue manager changes while the signal is set (that
is, the ECB has not yet been posted), the following actions occur:

� If the queue manager enters the quiescing state, and you used the
MQGMO_FAIL_IF_QUIESCING option, the signal is canceled. The ECB is
posted with the MQEC_Q_MGR_QUIESCING completion code. Without this
option, the signal remains set.

� If the queue manager is forced to stop, or is canceled, the signal is canceled.
The signal is delivered with the MQEC_WAIT_CANCELED completion code.

� If the attributes of the queue (or a queue to which the queue name resolves)
are changed so that get requests are now inhibited, the signal is canceled.
The signal is delivered with the MQEC_WAIT_CANCELED completion code.

Notes:

1. If more than one program has set a signal on the same shared queue to
remove a message, only one program is activated by a message arriving.
However, if more than one program is waiting to browse a message, all the

| programs can be activated. The rules that the queue manager follows when
| deciding which applications to activate are the same as those for waiting
| applications: for more information, see the description of the Options field of
| the MQGMO structure in the MQSeries Application Programming Reference
| manual.

2. If there is more than one MQGET call waiting for the same message, with a
| mixture of wait and signal options, each waiting call is considered equally. For
| more information, see the description of the Options field of the MQGMO
| structure in “MQGMO - Get-message options” in the MQSeries Application
| Programming Reference manual.

3. Under some conditions, it is possible both for an MQGET call to retrieve a
message and for a signal (resulting from the arrival of the same message) to
be delivered. This means that when your program issues another MQGET call
(because the signal was delivered), there could be no message available. You
should design your program to test for this situation.

| For information about how to set a signal, see the description of the
| MQGMO_SET_SIGNAL option and the Signal1 field in “MQGMO - Get-message
| options” in the MQSeries Application Programming Reference manual.

 Chapter 10. Getting messages from a queue 149

 Skipping backout

 Skipping backout
Skipping backout is supported only on MQSeries for OS/390.

As part of a unit of work, an application program can issue one or more MQGET
calls to get messages from a queue. If the application program detects an error, it
can back out the unit of work. This restores all the resources updated during that
unit of work to the state they were in before the unit of work started, and reinstates
the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued
by the application program. In many cases, this does not cause a problem for the
application program. However, in cases where the error leading to the backout
cannot be circumvented, having the message reinstated on the queue can cause
the application program to enter an ‘MQGET–error–backout’ loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on the
MQGET call. This marks the MQGET request as not being involved in
application-initiated backout; that is, it should not be backed out. Use of this option
means that when a backout occurs, updates to other resources are backed out as
required, but the marked message is treated as if it had been retrieved under a
new unit of work. The application program can then perform exception handling,
such as informing the originator that the message has been discarded, and then
commit the new unit of work, causing the message to be removed from the queue.
If the new unit of work is backed out (for any reason) the message is reinstated on
the queue.

Within a unit of work, there can be only one MQGET request marked as skipping
backout; however, there can be several other messages that are not marked as
skipping backout. Once a message has been marked as skipping backout, any
further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT will fail with reason code
MQRC_SECOND_MARK_NOT_ALLOWED.

Notes:

1. The marked message only skips backout if the unit of work containing it is
terminated by an application request to back it out. If the unit of work is
backed out for any other reason, the message is backed out on to the queue in
the same way that it would be if it was not marked to skip backout.

| 2. Skip backout is not supported within DB2 stored procedures participating in
| units of work controlled by RRS. For example, an MQGET call with the
| MQGMO_MARK_SKIP_BACKOUT option will fail with the reason code
| MQRC_OPTION_ENVIRONMENT_ERROR.

150 MQSeries Application Programming Guide

 Skipping backout

Step 1.
Initial processing, including
MQOPEN of queue specifying
one MQOO INPUT * option

Step 2.
MQGET message, specifying
MQGMO MARK SKIP BACKOUT
and MQGMO SYNCPOINT

Step 9.
Commit (message
removed from queue)

Step 10.
Application requests
backout (message
reinstated on queue)

Step 4.
Commit (message
removed from queue)

Step 5.
Application requests
backout

Step 6.
Updates from Step 3
backed out

Step 7.
Message retrieved at
Step 2 skips backout
and enters new unit
of work

Step 8.
Exception handling

OK?

OK?

Yes No

NoYes

START-OF-UOW2

END-OF-UOW2

START-OF-UOW1

END-OF-UOW1

Step 3.
Other resource updates made
for UOW1

Figure 12. Skipping backout using MQGMO_MARK_SKIP_BACKOUT

Figure 12 illustrates a typical sequence of steps that an application program might
contain when an MQGET request is required to skip backout:

Step 1 Initial processing occurs within the transaction, including an MQOPEN call
to open the queue (specifying one of the MQOO_INPUT_* options in order
to get messages from the queue in Step 2).

Step 2 MQGET is called, with MQGMO_SYNCPOINT and
MQGMO_MARK_SKIP_BACKOUT. MQGMO_SYNCPOINT is required
because MQGET must be within a unit of work for

 Chapter 10. Getting messages from a queue 151

 MQGET data conversion

MQGMO_MARK_SKIP_BACKOUT to be effective. In Figure 12 this unit
of work is referred to as UOW1.

Step 3 Other resource updates are made as part of UOW1. These may include
further MQGET calls (issued without MQGMO_MARK_SKIP_BACKOUT).

Step 4 All updates from Steps 2 and 3 complete as required. The application
program commits the updates and UOW1 ends. The message retrieved in
Step 2 is removed from the queue.

Step 5 Some of the updates from Steps 2 and 3 do not complete as required.
The application program requests that the updates made during these
steps are backed out.

Step 6 The updates made in Step 3 are backed out.

Step 7 The MQGET request made in Step 2 skips backout and becomes part of a
new unit of work, UOW2.

Step 8 UOW2 performs exception handling in response to UOW1 being backed
out. (For example, an MQPUT call to another queue, indicating that a
problem occurred that caused UOW1 to be backed out.)

Step 9 Step 8 completes as required, the application program commits the
activity, and UOW2 ends. As the MQGET request is part of UOW2 (see
Step 7), this commit causes the message to be removed from the queue.

Step 10 Step 8 does not complete as required and the application program backs
out UOW2. Because the get message request is part of UOW2 (see Step
7), it too is backed out and reinstated on the queue. It is now available to
further MQGET calls issued by this or another application program (in the
same way as any other message on the queue).

Application data conversion
When necessary, MCAs convert the message descriptor data into the required
character set and encoding. Either end of the link (that is, the local MCA or the
remote MCA) may do the conversion.

When an application puts messages on a queue, the local queue manager adds
control information to the message descriptors to facilitate the control of the
messages when they are processed by queue managers and MCAs. Depending
on the environment, the message header data fields will be created in the character
set and encoding of the local system.

When you move messages between systems, it is necessary, on some occasions,
to convert the application data into the character set and encoding required by the
receiving system. This can be done either from within application programs on the
receiving system or by the MCAs on the sending system. If data conversion is
supported on the receiving system, it is recommended to use application programs
to convert the application data, rather than depending on the conversion having
already occurred at the sending system.

152 MQSeries Application Programming Guide

 MQGET data conversion

Application data is converted within an application program when the
MQGMO_CONVERT option is specified in the Options field of the MQGMO
structure passed to an MQGET call, and all of the following are true:

� The CodedCharSetId or Encoding fields set in the MQMD structure associated
with the message on the queue differ from the CodedCharSetId or Encoding
fields set in the MQMD structure specified on the MQGET call.

� The Format field in the MQMD structure associated with the message is not
MQFMT_NONE.

� The BufferLength specified on the MQGET call is not zero.

� The message data length is not zero.

� The queue manager supports conversion between the CodedCharSetId and
Encoding fields specified in the MQMD structures associated with the message

| and the MQGET call. See “MQMD - Message descriptor” in the MQSeries
| Application Programming Reference manual for details of the coded character
| set identifiers and machine encodings supported.

� The queue manager supports conversion of the message format. If the Format
field of the MQMD structure associated with the message is one of the built-in
formats, the queue manager is able to convert the message. If the Format is
not one of the built-in formats, you need to write a data-conversion exit to
convert the message.

If the sending MCA is to convert the data, the CONVERT(YES) keyword must be
specified on the definition of each sender or server channel for which conversion is
required. If the data conversion fails, the message is sent to the DLQ at the
sending queue manager and the Feedback field of the MQDLH structure indicates
the reason. If the message cannot be put on the DLQ, the channel will close and
the unconverted message will remain on the transmission queue. Data conversion
within applications rather than at sending MCAs avoids this situation.

As a general rule, data in the message that is described as “character” data by the
built-in format or data-conversion exit is converted from the coded character set
used by the message to that requested, and “numeric” fields are converted to the
encoding requested.

For further details of the conversion processing conventions used when converting
the built-in formats, and for information about writing your own data-conversion

| exits, see Chapter 11, “Writing data-conversion exits” on page 161. See also
| Appendix F, “Code page conversion tables” in the MQSeries Application
| Programming Reference manual for information about the language support tables
| and about the supported machine encodings.

| Conversion of EBCDIC newline characters
| If you need to ensure that the data you send from an EBCDIC platform to an ASCII
| one is identical to the data you receive back again, you must control the conversion
| of EBCDIC newline characters. This can be done using a platform-dependent
| switch that forces MQSeries to use the unmodified conversion tables but you must
| be aware of the inconsistent behavior that may result.

| The problem arises because the EBCDIC newline character is not converted
| consistently across platforms or conversion tables. As a result, if the data is
| displayed on an ASCII platform, the formatting may be incorrect. This would make

 Chapter 10. Getting messages from a queue 153

 Browsing messages

| it difficult, for example, to administer an AS/400 remotely from an ASCII platform
| using RUNMQSC.

| See “The AllQueueManagers stanza” in the MQSeries System Administration book
| for further information about converting EBCDIC-format data to ASCII format.

Browsing messages on a queue
To use the MQGET call to browse the messages on a queue:

1. Call MQOPEN to open the queue for browsing, specifying the
MQOO_BROWSE option.

2. To browse the first message on the queue, call MQGET with the
MQGMO_BROWSE_FIRST option. To find the message you want, you can
call MQGET repeatedly with the MQGMO_BROWSE_NEXT option to step
through many messages.

You must set the MsgId and CorrelId fields of the MQMD structure to null after
each MQGET call in order to see all messages.

3. Call MQCLOSE to close the queue.

The browse cursor
When you open (MQOPEN) a queue for browsing, the call establishes a browse
cursor for use with MQGET calls that use one of the browse options. You can
think of the browse cursor as a logical pointer that is positioned before the first
message on the queue.

You can have more than one browse cursor active (from a single program) by
issuing several MQOPEN requests for the same queue.

When you call MQGET for browsing, use one of the following options in your
MQGMO structure:

MQGMO_BROWSE_FIRST Gets a copy of the first message that satisfies the
conditions specified in your MQMD structure.

MQGMO_BROWSE_NEXT Gets a copy of the next message that satisfies the
conditions specified in your MQMD structure.

In both cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the
first message on the queue. This means that if you make your MQGET call
immediately after your MQOPEN call, you can use the MQGMO_BROWSE_NEXT
option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined by the
MsgDeliverySequence attribute of the queue. (For more information, see “The order
in which messages are retrieved from a queue” on page 128.)

154 MQSeries Application Programming Guide

 Browsing messages

Queues in FIFO (first in, first out) sequence
The first message in a queue in this sequence is the message that has been on the
queue the longest.

Use MQGMO_BROWSE_NEXT to read the messages sequentially in the queue.
You will see any messages put to the queue while you are browsing, as a queue in
this sequence will have messages placed at the end. When the cursor has
recognized that it has reached the end of the queue, the browse cursor will stay
where it is and return with MQRC_NO_MSG_AVAILABLE. You may then either
leave it there waiting for further messages or reset it to the beginning of the queue
with a MQGMO_BROWSE_FIRST call.

Queues in priority sequence
The first message in a queue in this sequence is the message that has been on the
queue the longest and has the highest priority at the time the MQOPEN call is
issued.

Use MQGMO_BROWSE_NEXT to read the messages in the queue.

The browse cursor will point to the next message, working from the priority of the
first message to finish with the message at the lowest priority. It will browse any
messages put to the queue during this time as long as they are of equal or lower
priority to the message identified by the current browse cursor.

Any messages put to the queue of higher priority can only be browsed by:

� Opening the queue for browse again, at which point a new browse cursor is
established

� Using the MQGMO_BROWSE_FIRST option

 Uncommitted messages
| An uncommitted message is never visible to a browse, the browse cursor skips
| past it. Messages within a unit-of-work cannot be browsed until the unit-of-work is
| committed.

Change to queue sequence
If the message delivery sequence is changed from priority to FIFO while there are
messages on the queue, the order of the messages that are already queued is not
changed. Messages added to the queue subsequently take the default priority of
the queue.

Browsing messages when message length unknown
To browse a message when you do not know the size of the message, and you do
not wish to use the MsgId, CorrelId, or GroupId fields to locate the message, you
can use the MQGMO_BROWSE_MSG_UNDER_CURSOR option (not supported
on OS/390):

1. Issue an MQGET with:

� Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option
� The MQGMO_ACCEPT_TRUNCATED_MSG option
� Buffer length zero

 Chapter 10. Getting messages from a queue 155

 Browsing messages in logical order

Note: If another program is likely to get the same message, consider using
the MQGMO_LOCK option as well. MQRC_TRUNCATED_MSG_ACCEPTED
should be returned.

2. Use the returned DataLength to allocate the storage needed.

3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will
not have moved. You can choose either to lock the message using the
MQGMO_LOCK option, or to unlock a locked message using MQGMO_UNLOCK
option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or
MQGMO_BROWSE_NEXT options has been issued successfully since the queue
was opened.

 Restriction

MQGMO_LOCK and MQGMO_UNLOCK are not available on MQSeries for
Tandem NSK and MQSeries for OS/390.

Removing a message you have browsed
You can remove from the queue a message you have already browsed provided
you have opened the queue for removing messages as well as for browsing. (You
must specify one of the MQOO_INPUT_ñ options, as well as the MQOO_BROWSE
option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the
MQGMO structure, specify MQGMO_MSG_UNDER_CURSOR. In this case, the
MQGET call ignores the MsgId, CorrelId, and GroupId fields of the MQMD
structure.

In the time between your browsing and removal steps, another program may have
removed messages from the queue, including the message under your browse
cursor. In this case, your MQGET call returns a reason code to say that the
message is not available.

Browsing messages in logical order
Browsing messages in logical order is supported on MQSeries Version 5 products
and MQSeries for AS/400 only.

“Logical and physical ordering” on page 129 discusses the difference between the
logical and physical order of messages on a queue. This distinction is particularly
important when browsing a queue, because, in general, messages are not being
deleted and browse operations do not necessarily start at the beginning of the
queue. If an application browses through the various messages of one group
(using logical order), it is important that logical order should be followed to reach
the start of the next group, since the last message of one group may occur
physically after the first message of the next group. The
MQGMO_LOGICAL_ORDER option ensures that logical order is followed when
scanning a queue.

156 MQSeries Application Programming Guide

 Browsing messages in logical order

MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE)
needs to be used with care for browse operations. Consider the case of logical
messages with MQGMO_ALL_MSGS_AVAILABLE. The effect of this is that a
logical message is available only if all of the remaining messages in the group are
also present. If they are not, the message is passed over. This can mean that
when the missing messages arrive subsequently, they will not be noticed by a
browse-next operation.

For example, if the following logical messages are present,

Logical message 1 (not last) of group 123
Logical message 1 (not last) of group 456
Logical message 2 (last) of group 456

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first
logical message of group 456 is returned, leaving the browse cursor on this logical
message. If the second (last) message of group 123 now arrives,

Logical message 1 (not last) of group 123
Logical message 2 (last) of group 123
Logical message 1 (not last) of group 456 <=== browse cursor
Logical message 2 (last) of group 456

and the same browse-next function is issued, it will not be noticed that group 123 is
now complete, because the first message of this group is before the browse
cursor.

In some cases (for example, if messages are retrieved destructively when the
group is present in its entirety), it may be acceptable to use
MQGMO_ALL_MSGS_AVAILABLE together with MQGMO_BROWSE_FIRST.
Otherwise, the browse scan must be repeated in order to take note of newly arrived
messages that have been missed; just issuing MQGMO_WAIT together with
MQGMO_BROWSE_NEXT and MQGMO_ALL_MSGS_AVAILABLE does not take
account of them. (This also happens to higher-priority messages that might arrive
after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented
messages; segmented messages follow similar principles.

Browsing messages in groups
In this example, the application browses through each message on the queue, in
logical order.

Messages on the queue may either be grouped or not. For grouped messages, the
application does not want to start processing any group until all of the messages
within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is therefore specified for
the first message in the group; for subsequent messages in the group, this option is
unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be
satisfied if a new group arrives, for the reasons in “Browsing messages in logical
order” on page 156, it will not be satisfied if the browse cursor has already passed
the first logical message in a group, and the remaining messages now arrive.
Nevertheless, waiting for a suitable interval ensures that the application does not
constantly loop while waiting for new messages or segments.

 Chapter 10. Getting messages from a queue 157

 Browsing messages in logical order

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in
logical order. This contrasts with the destructive MQGET example, where because
each group is being removed, MQGMO_LOGICAL_ORDER is not used when
looking for the first (or only) message in a group.

It is assumed that the application's buffer is always large enough to hold the entire
message, whether or not the message has been segmented.
MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:

/\ Browse the first message in a group, or a message not in a group \/
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER, MD.MsgSeqNumber = 1
/\ Examine first or only message \/
...

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET

/\ Examine each remaining message in the group \/
 ...

The above group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Browsing and retrieving destructively
In this example, the application browses each of the logical messages within a
group, before deciding whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However in this case,
having browsed an entire group, we may decide to go back and retrieve it
destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not
used when looking for the first or only message in a group.

The following gives an example of browsing and then retrieving destructively:

158 MQSeries Application Programming Guide

 MQGET failure

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MESSAGES_AVAILABE | MQGMO_WAIT

do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET

/\ Examine each remaining message in the group (or as many as
necessary to decide whether or not to get it destructively) \/

 ...

if (we want to retrieve the group destructively)

if (GroupStatus == ' ')
/\ We retrieved an ungrouped message \/
GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = ð
/\ Process the message \/

 ...

 else
/\ We retrieved one or more messages in a group. The browse cursor \/
/\ will not normally be still on the first in the group, so we have \/
/\ to match on the GroupId and MsgSeqNumber = 1. \/
/\ Another way, which works for both grouped and ungrouped messages,\/
/\ would be to remember the MsgId of the first message when it was \/
/\ browsed, and match on that. \/
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID

 | MQMO_MATCH_MSG_SEQ_NUMBER,
(MQMD.GroupId = value already in the MD)
MQMD.MsgSeqNumber = 1

/\ Process first or only message \/
 ...

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
 | MQGMO_LOGICAL_ORDER

do while (GroupStatus == MQGS_MSG_IN_GROUP)
 MQGET

/\ Process each remaining message in the group \/
 ...

Some cases where the MQGET call fails
If certain attributes of a queue are changed using the FORCE option on a
command between issuing an MQOPEN and an MQGET call, the MQGET call fails
and returns the MQRC_OBJECT_CHANGED reason code. The queue manager
marks the object handle as being no longer valid. This also happens if the

| changes apply to any queue to which the queue name resolves. The attributes that
| affect the handle in this way are listed in the description of the MQOPEN call in
| “MQOPEN - Open object” in the MQSeries Application Programming Reference
| manual. If your call returns the MQRC_OBJECT_CHANGED reason code, close

the queue, reopen it, then try to get a message again.

If get operations are inhibited for a queue from which you are attempting to get
messages (or any queue to which the queue name resolves), the MQGET call fails
and returns the MQRC_GET_INHIBITED reason code. This happens even if you
are using the MQGET call for browsing. You may be able to get a message

 Chapter 10. Getting messages from a queue 159

 MQGET failure

successfully if you attempt the MQGET call at a later time, if the design of the
application is such that other programs change the attributes of queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET
calls using a previously acquired object handle fail and return the
MQRC_Q_DELETED reason code.

160 MQSeries Application Programming Guide

 Data-conversion exits

| Chapter 11. Writing data-conversion exits

| Data-conversion exits are not supported on MQSeries for Windows or VSE/ESA.

The Message Descriptor of a message is created by your application when you do
an MQPUT. As MQSeries needs to be able to understand the contents of the
MQMD regardless of the platform it is created on, it is converted automatically by
the system.

Application data, however, is not converted automatically. If character data is being
exchanged between platforms where the CodedCharSetId and Encoding fields differ,
for example, between ASCII and EBCDIC, it is the responsibility of the application
to arrange for conversion of the message. Application data conversion may be
performed by the queue manager itself or by a user exit program, referred to as a
data-conversion exit. This chapter discusses the data-conversion exit facility that
MQSeries provides.

Control may be passed to the data-conversion exit during an MQGET call. This
avoids converting across different platforms before reaching the final destination.
However, if the final destination is a platform that does not support data conversion
on the MQGET, you must specify CONVERT(YES) on the sender channel that
sends the data to its final destination. This ensures that MQSeries converts the
data during transmission. In this case, your data-conversion exit must reside on
the system where the sender channel is defined.

The MQGET call can be issued directly by an application. Set the CodedCharSetId
field of the MQMD to MQCCSI_DEFAULT to pick up the default CCSID of the
queue manager. This ensures that MQSeries knows the correct target CCSID.

| The conditions required for the data-conversion exit to be called are defined for the
| MQGET call in “MQGET - Get message” in the MQSeries Application Programming
| Reference manual.

| For a description of the parameters that are passed to the data-conversion exit, and
| detailed usage notes, see “MQ_DATA_CONV_EXIT - Data conversion exit” for the
| MQ_DATA_CONV_EXIT call and “MQDXP - Data-conversion exit parameter
| structure” for the MQDXP structure in the MQSeries Application Programming
| Reference manual.

Programs that convert application data between different machine encodings and
CCSIDs must conform to the MQSeries data conversion interface (DCI).

Invoking the data-conversion exit
A data-conversion exit is a user-written exit that receives control during the
processing of an MQGET call. The exit is invoked if the following are true:

� The MQGMO_CONVERT option is specified on the MQGET call.

| � The CodedCharSetId or Encoding fields in the MQMD structure associated with
| the message on the queue differ from the CodedCharSetId or Encoding fields in
| the MQMD structure specified on the MQGET call (see the code page support
| tables in Appendix F, “Code page conversion tables” in the MQSeries
| Application Programming Reference manual).

 Copyright IBM Corp. 1993,1999 161

 Data-conversion exits

� The Format field in the MQMD structure associated with the message is not
MQFMT_NONE (MQFMT_STRING indicates that the message consists entirely
of character data).

� The BufferLength specified on the MQGET call is not zero.

� The message data length is not zero.

� Either the message format is not one that can be handled by one of the built-in
conversion routines, or its format can be handled by one of the built-in
conversion routines but the routine is unable to convert the message itself.
The conversion routines supplied with the product always attempt to convert
the built-in format messages first; user-written routines are called only if these
product-supplied routines fail to convert.

| There are some other conditions, described fully in the usage notes of the
| MQ_DATA_CONV_EXIT call in “MQ_DATA_CONV_EXIT - Data conversion exit” in
| the MQSeries Application Programming Reference manual.

| See “MQGET - Get message” in the MQSeries Application Programming Reference
| manual for details of the MQGET call. Data-conversion exits cannot use MQI calls,

other than MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first
message that uses that Format since the application connected to the queue
manager. A new copy may also be loaded at other times if the queue manager
has discarded a previously-loaded copy.

The data-conversion exit runs in an environment similar to that of the program
which issued the MQGET call. As well as user applications, the program can be an
MCA (message channel agent) sending messages to a destination queue manager
that does not support message conversion. The environment includes address
space and user profile, where applicable. The exit cannot compromise the queue
manager’s integrity, since it does not run in the queue manager’s environment.

In a client-server environment, the exit is loaded at the server, and conversion
takes place there.

| Data conversion on OS/390
| On OS/390, you must also be aware of the following:

| � Exit programs can be written in assembler language only.

| � Exit programs must be reentrant, and capable of running anywhere in storage.

| � Exit programs must restore the environment on exit to that at entry, and must
| free any storage obtained.

| � Exit programs must not WAIT, or issue ESTAEs or SPIEs.

| � Exit programs are normally invoked as if by OS/390 LINK in:

| – Non-authorized problem program state
| – Primary address space control mode
| – Non cross-memory mode
| – Non access-register mode
| – 31 bit addressing mode
| – TCB-PRB mode

162 MQSeries Application Programming Guide

 Data-conversion exits

| � When used by a CICS application, the exit is invoked by EXEC CICS LINK,
| and should conform to the CICS programming conventions. The parameters
| are passed by pointers (addresses) in the CICS communication area
| (COMMAREA).

| Although not recommended, user exit programs can also make use of CICS
| API calls, with the following caution:

| – Do not issue syncpoints, as the results could influence units of work
| declared by the MCA.

| – Do not update any resources controlled by a resource manager other than
| MQSeries for OS/390, including those controlled by CICS Transaction
| Server for OS/390.

| � For distributed queuing without CICS, the exit is loaded from the data set
| referenced by the CSQXLIB DD statement. In other environments, the exit is
| loaded from the same place as application programs.

| � For distributed queuing using CICS, data-conversion exits are not supported.

Writing a data-conversion exit program
| For OS/390, you must write data-conversion exits in assembler language. For

other platforms, it is recommended that you use the C programming language.

To help you create a data-conversion exit program, the following are supplied:

� A skeleton source file

� A convert characters call

� A utility that creates a fragment of code that performs data conversion on data
type structures

| This utility takes C input only. On OS/390, it produces assembler code.

These are described in subsequent sections.

For the procedure for writing the programs see:

� “Writing a data-conversion exit program for MQSeries for AS/400” on page 167
� “Writing a data-conversion exit for MQSeries for OS/2 Warp” on page 168
� “Writing a data-conversion exit program for MQSeries for OS/390” on page 170
� “Writing a data-conversion exit for MQSeries for Tandem NSK” on page 171
� “Writing a data-conversion exit for MQSeries on UNIX systems and Digital

OpenVMS” on page 172
� “Writing a data-conversion exit for MQSeries for Windows NT” on page 177

 Chapter 11. Writing data-conversion exits 163

 Data-conversion exits

Skeleton source file
These can be used as your starting point when writing a data-conversion exit
program. The files supplied are listed in Table 7:

Table 7. Skeleton source files

Platform File

| AIX| amqsvfc0.c

AS/400 QMQMSAMP/QCSRC(AMQSVFC4)

| AT&T GIS UNIX| amqsvfcx.c

Digital OpenVMS AMQSVFCX.C

| HP-UX| amqsvfc0.c

| OS/2| AMQSVFC0.C

| OS/390| CSQ4BAX8 (1)
| CSQ4BAX9 (2)
| CSQ4CAX9 (3)

| SINIX and DC/OSx| amqsvfcx.c

| Sun Solaris| amqsvfc0.c

Tandem NSK amqsvfcn

| Windows NT| amqsvfc0.c

Notes:

1. Illustrates the MQXCVNC call.
2. A wrapper for the code fragments generated by the utility for use in all environments

except CICS.
3. A wrapper for the code fragments generated by the utility for use in the CICS

environment.

Convert characters call
The MQXCNVC (Convert characters) call may be used from within a
data-conversion exit program to convert character message data from one
character set to another. For certain multibyte character sets (for example, UCS2
character sets), the appropriate options must be used.

No other MQI calls can be made from within the exit; an attempt to make such a
call fails with reason code MQRC_CALL_IN_PROGRESS.

| See “MQXCNVC - Convert characters” in the MQSeries Application Programming
| Reference manual for further information on the MQXCNVC call and appropriate
| options.

Utility for creating conversion-exit code
The commands for creating conversion-exit code are:

AS/400
CVTMQMDTA (Convert MQSeries Data Type)

OS/2, Digital OpenVMS, Tandem NSK, Windows NT, and UNIX systems
crtmqcvx (Create MQSeries conversion-exit)

OS/390
CSQUCVX

164 MQSeries Application Programming Guide

 Data-conversion exits

| The command for your platform produces a fragment of code that performs data
| conversion on data type structures, for use in your data-conversion exit program.
| The command takes a file containing one or more C language structure definitions.
| On OS/390, it then generates a data set containing assembler code fragments and
| conversion functions. On other platforms, it generates a file with a C function to
| convert each structure definition. The utility requires access to the LE/370 run-time
| library SCEERUN.

Invoking the CSQUCVX utility on OS/390
| Figure 13 shows an example of the JCL used to invoke the CSQUCVX utility.

| //CVX EXEC PGM=CSQUCVX
| //STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE
| // DD DISP=SHR,DSN=thlqual.SCSQLOAD
| // DD DISP=SHR,DSN=le37ðqual.SCEERUN
| //SYSPRINT DD SYSOUT=\
| //CSQUINP DD DISP=SHR,DSN=MY.MQSERIES.FORMATS(MSG1)
| //CSQUOUT DD DISP=OLD,DSN=MY.MQSERIES.EXITS(MSG1)

| Figure 13. Sample JCL used to invoke the CSQUCVX utility

Data definition statements
The CSQUCVX utility requires DD statements with the following DDnames:

SYSPRINT
This specifies a data set or print spool class for reports and error
messages.

CSQUINP
This specifies the sequential data set containing the definitions of the data
structures to be converted.

CSQUOUT
This specifies the sequential data set where the conversion code
fragments are to be written. The logical record length (LRECL) must be
80 and the record format (RECFM) must be FB.

Error messages in OS/2, Windows NT, and UNIX systems
The crtmqcvx command returns messages in the range AMQ7953 through
AMQ7970. For other platforms, see the appropriate System Management Guide for
your platform.

There are two main types of error:

� Major errors, such as syntax errors, when processing cannot continue.

A message is displayed on the screen giving the line number of the error in the
input file. The output file may have been partially created.

� Other errors when a message is displayed stating that a problem has been
found but parsing of the structure can continue.

The output file has been created and contains error information on the
problems that have occurred. This error information is prefixed by #error so
that the code produced will not be accepted by any compiler without
intervention to rectify the problems.

 Chapter 11. Writing data-conversion exits 165

 Data-conversion exits

 Valid syntax
Your input file for the utility must conform to the C language syntax. If you are
unfamiliar with C, refer to “Example of valid syntax for the input data set.”

In addition, you must be aware of the following rules:

� typedef is recognized only before the struct keyword.

� A structure tag is required on your structure declarations.

� Empty square brackets [] may be used to denote a variable length array or
string at the end of a message.

� Multidimensional arrays and arrays of strings are not supported.

� The following additional data types are recognized:

 MQBYTE
 MQCHAR
 MQSHORT
 MQLONG

MQCHAR fields are code page converted, but MQBYTE is left untouched. If
the encoding is different, MQSHORT and MQLONG are converted accordingly.

� The following should not be used:

 float
 double
 pointers
 bit-fields

This is because the utility for creating conversion-exit code does not provide
the facility to convert these data types. To overcome this, you can write your
own routines and call them from the exit.

Other points to note:

� Do not use sequence numbers in the input data set.

� If there are fields for which you want to provide your own conversion routines,
declare them as MQBYTE, and then replace the generated CMQXCFBA
macros with your own conversion code.

Example of valid syntax for the input data set
struct TEST { MQLONG SERIAL_NUMBER;

 MQCHAR ID[5];
 MQSHORT VERSION;
 MQBYTE CODE[4];
 MQLONG DIMENSIONS[3];
 MQCHAR NAME[24];
 } ;

166 MQSeries Application Programming Guide

 Data-conversion exits

This corresponds to the following declarations in the other programming languages:

 COBOL

 1ð TEST.
15 SERIAL-NUMBER PIC S9(9) BINARY.

 15 ID PIC X(5).
15 VERSION PIC S9(4) BINARY.

\ CODE IS NOT TO BE CONVERTED
 15 CODE PIC X(4).

15 DIMENSIONS PIC S9(9) BINARY OCCURS 3 TIMES.
 15 NAME PIC X(24).

System/390 assembler: Supported on OS/390 only

TEST EQU \
SERIAL_NUMBER DS F
ID DS CL5
VERSION DS H
CODE DS XL4
DIMENSIONS DS 3F
NAME DS CL24

PL/I: Supported on AIX, OS/390, OS/2 Warp, and Windows NT only

 DCL 1 TEST,
 2 SERIAL_NUMBER FIXED BIN(31),
 2 ID CHAR(5),
 2 VERSION FIXED BIN(15),

2 CODE CHAR(4), /\ not to be converted \/
 2 DIMENSIONS(3) FIXED BIN(31),
 2 NAME CHAR(24);

Writing a data-conversion exit program for MQSeries for AS/400
Follow these steps:

| 1. Name your message format. The name must fit in the Format field of the
| MQMD. The Format name should not have leading embedded blanks, and
| trailing blanks are ignored. The object’s name must have no more than eight
| non-blank characters, because the Format is only eight characters long.
| Remember to use this name each time you send a message (our example uses
| the name Format).

2. Create a structure to represent your message. See “Valid syntax” on page 166
for an example.

3. Run this structure through the CVTMQMDTA command to create a code
fragment for your data-conversion exit.

The functions generated by the CVTMQMDTA command use macros that are
shipped in the file QMQM/H(AMQSVMHA). These macros are written
assuming that all structures are packed; they should be amended if this is not
the case.

4. Take a copy of the supplied skeleton source file,
QMQMSAMP/QCSRC(AMQSVFC4) and rename it. (Our example uses the
name EXIT_MOD.)

 Chapter 11. Writing data-conversion exits 167

 Data-conversion exits

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:

/\ Insert the functions produced by the data-conversion exit \/

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

/\ Insert calls to the code fragments to convert the format’s \/

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function.
If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

/\ Insert the function prototypes for the functions produced by \/

Here, insert the function prototype statements for the functions added in
step 5a above.

If the message contains character data, the generated code will call
MQXCNVC; this can be resolved by binding the service programs AMQVSTUB
and AMQZSTUB.

6. Compile the source module, EXIT_MOD, using the CRTCMOD command.

7. Create/link the program:

 CRTPGM PGM(library/Format) +
 MODULE(library/EXIT_MOD) +
 BNDSRVPGM(QMQM/AMQVSTUB) +
 BNDSRVPGM(QMQM/AMQZSTUB) +
 ACTGRP(QMQM) +
 USRPRF(\USER)

8. Place the output in the library list for the MQSeries job. It is recommended
that, for production, data-conversion exit programs be stored in QSYS.

Notes:

1. If CVTMQMDTA uses packed structures, all MQSeries applications must use
the _Packed qualifier.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

4. The exit program should be compiled with the user profile compiler option set to
*USER, so that the exit runs with the authority of the user.

Writing a data-conversion exit for MQSeries for OS/2 Warp
Follow these steps:

| 1. Name your message format. The name must fit in the Format field of the
| MQMD. The Format name should not have leading blanks. Trailing blanks are
| ignored. The object’s name must have no more than eight non-blank
| characters, because the Format is only eight characters long.

168 MQSeries Application Programming Guide

 Data-conversion exits

| A .DEF file called AMQSVFC2.DEF is also supplied in the samples directory,
| <drive:\directory>\MQM\TOOLS\C\SAMPLES. Take a copy of this file and
| rename it, for example, to MYFORMAT.DEF. Make sure that the name of the
| DLL being created and the name specified in MYFORMAT.DEF are the same.
| Overwrite the name FORMAT1 in MYFORMAT.DEF with the new format name.

| Remember to use this name each time you send a message.

2. Create a structure to represent your message. See “Valid syntax” on page 166
for an example.

3. Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.

The functions generated by the CRTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

| 4. Take a copy of the supplied skeleton source file, AMQSVFC0.C, renaming it to
| the name of your message format that you decided on in step 1 (that is,
| MYFORMAT.C in this example).

| AMQSVFC0.C is in <drive:\directory>\MQM\TOOLS\C\SAMPLES (where
| <drive:\directory> was specified at installation).

| The skeleton includes a sample header file AMQSVMHA.H in the same
| directory. Make sure that your include path points to this directory to pick up
| this file.

| The AMQSVMHA.H file contains macros that are used by the code generated
| by the CRTMQCVX command. If the structure to be converted contains
| character data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:

/\ Insert the functions produced by the data-conversion exit \/

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

/\ Insert calls to the code fragments to convert the format’s \/

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function.
If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

/\ Insert the function prototypes for the functions produced by \/

Here, insert the function prototype statements for the functions added in
step 5a above.

6. Resolve this call by linking the routine with the library MQMVX.LIB, in the
directory <drive:\directory>\MQM\TOOLS\LIB.

 Chapter 11. Writing data-conversion exits 169

 Data-conversion exits

7. Create the following command file:

 icc /Ge- \
 /I<drive:\directory>\mqm\tools\c\include MYFORMAT.C \
 <drive:\directory>\mqm\tools\lib\mqm.lib MYFORMAT.DEF \
 <drive:\directory>\mqm\tools\lib\mqmvx.lib

where <drive:\directory> is specified at installation.

Issue the command file to compile your exit as a DLL file.

8. Place the output in the \mqm\exits subdirectory. The path used to look for the
data-conversion exits is given in the qm.ini file as DefaultExitPath. This path is
set for each queue manager and the exit will only be looked for in that path or
paths.

Notes:

1. If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

Writing a data-conversion exit program for MQSeries for OS/390
Follow these steps:

1. Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or
CSQ4CAX9 (for CICS) as your starting point.

2. Run the CSQUCVX utility.

3. Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX9 to
incorporate the routines generated by the CSQUCVX utility, in the order that
the structures occur in the message you want to convert.

4. The utility assumes that the data structures are not packed, that the implied
alignment of the data is honored, and that the structures start on a full-word
boundary, with bytes being skipped as required (as between ID and VERSION
in the “Example of valid syntax for the input data set” on page 166). If the
structures are packed, you will need to omit the CMQXCALA macros that are
generated. You are therefore strongly recommended to declare your structures
in such a way that all fields are named and no bytes are skipped; in the
“Example of valid syntax for the input data set” on page 166, you would add a
field “MQBYTE DUMMY;” between ID and VERSION.

5. The supplied exit returns an error if the input buffer is shorter than the message
format to be converted. Although the exit converts as many complete fields as
possible, the error causes an unconverted message to be returned to the
application. If you want to allow short input buffers to be converted as far as
possible, including partial fields, change the TRUNC= value on the CSQXCDFA
macro to YES: no error is returned, so the application receives a converted
message. The application is responsible for handling the truncation.

6. Add any other special processing code that you need.

7. Rename the program to your data format name.

170 MQSeries Application Programming Guide

 Data-conversion exits

8. Compile and link-edit your program like a batch application program (unless it is
for use with CICS applications). The macros in the code generated by the
utility are in the library, thlqual .SCSQMACS.

If the message contains character data, the generated code will call
MQXCNVC. If your exit uses this call, link-edit it with the exit stub program
CSQASTUB. The stub is language-independent and environment-independent.
Alternatively, you can load the stub dynamically using the dynamic call name
CSQXCNVC. See “Dynamically calling the MQSeries stub” on page 279 for
more information.

Place the link-edited module in your application load library, and in a data set
that is referenced by the CSQXLIB DD statement of your task procedure
started by your channel initiator.

9. If the exit is for use by CICS applications, compile and link-edit it like a CICS
application program, including CSQASTUB if required. Place it in your CICS
application program library. Define the program to CICS in the usual way,
specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 run-time libraries are needed for running the
CSQUCVX utility (see step 2 on page 170), they are not needed for link-editing or
running the data-conversion exit itself (see steps 8 and 9).

See “Writing MQSeries-IMS bridge applications” on page 239 for information about
data conversion within the MQSeries-IMS bridge.

Writing a data-conversion exit for MQSeries for Tandem NSK
Dynamically bound libraries are not supported by MQSeries for Tandem NSK.
Data conversion exits (and channel exits) are implemented by including statically
bound stub functions in the MQSeries libraries and executables that can be
replaced using the REPLACE bind option.

A data conversion exit must be called DATACONVEXIT (see sample AMQSVFCN),
and can be bound into the chosen executable (or library) using the TACL macro
BEXITE.

Note: This procedure modifies the target executable; you are recommended to
make a back-up copy of the target executable or library before using the macro.

Exit functions, once compiled, must be bound directly into the target executable or
library to be accessible by MQSeries. The following TACL macro is used for this
purpose:

BEXITE Usage: BEXITE target-executable-or-library
source-exit-file-or-library

For example, to bind the sample data conversion exit into the sample MQSGETA,
follow these steps:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).

2. Compile the get application (CSAMP AMQSGET0).

3. Bind the get application (BSAMP AMQSGET).

4. Bind the exit function into the get application (BEXITE AMQSGET
AMQSVFCO).

 Chapter 11. Writing data-conversion exits 171

 Data-conversion exits

Alternatively, if all applications are to have this data conversion exit, the following
steps would create both a user library and an application with the exit bound in:

1. Compile the exit function DATACONVEXIT (CSAMP AMQSVFCN).

2. Compile the get application (CSAMP AMQSGET0).

3. Bind the exit function into the user library (BEXITE ZMQSLIB.MQMLIBC
AMQSVFCO).

4. Bind the get application with the modified library (BSAMP AMQSGET).

If the data conversion exit is to be used by channels processing within MQSeries, it
must also be bound into the caller executable by the system administrator. For
example:

BEXITE ZMQSEXE.MQMCACAL AMQSVFCO

Use the TACL macro BDCXALL to bind the data conversion exit into all required
MQSeries processes. For example:

BDCXALL source-exit-file-or-library

Reusing data-conversion exit programs
In other MQSeries Version 2 products, a data-conversion exit is required for each
application-defined format to be supported. The data-conversion exit programs are
named according to the Format value (from MQMD) of the message to be
converted. The format for which conversion is being requested can be determined
from the Format field of the MsgDesc parameter. The appropriate data-conversion
exit program can therefore be invoked from MQDATACONVEXIT(). The
parameters supplied to MQDATACONVEXIT() can be supplied to the invoked
data-conversion function.

Writing a data-conversion exit for MQSeries on UNIX systems and
Digital OpenVMS

For SINIX and DC/OSx, data-conversion exits must not use DCE.

Follow these steps:

| 1. Name your message format. The name must fit in the Format field of the
| MQMD, and be in uppercase, for example, MYFORMAT. The Format name
| should not have leading blanks. Trailing blanks are ignored. The object’s
| name must have no more than eight non-blank characters because the Format
| is only eight characters long. Remember to use this name each time you send
| a message.

2. Create a structure to represent your message. See “Valid syntax” on page 166
for an example.

3. Run this structure through the crtmqcvx command to create a code fragment
for your data-conversion exit.

The functions generated by the crtmqcvx command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

| 4. Take a copy of the supplied skeleton source file renaming it to the name of
| your message format that you decided on in step 1 (that is, MYFORMAT.C).

172 MQSeries Application Programming Guide

 Data-conversion exits

| Note: On MQSeries for AIX, HP-UX, and Sun Solaris the skeleton source file
| is called amqsvfc0.c. On MQSeries for Digital OpenVMS, AT&T GIS UNIX, and
| SINIX and DC/OSx the skeleton source file is called amqsvfcx.c.

| The skeleton includes a sample header file amqsvmha.h in the directory
| /usr/mqm/inc (on AIX) or /opt/mqm/inc (on other UNIX systems). Make sure
| that your include path points to this directory to pick up this file.

| The amqsvmha.h file contains macros that are used by the code generated by
| the crtmqcvx command. If the structure to be converted contains character
| data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:

/\ Insert the functions produced by the data-conversion exit \/

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

/\ Insert calls to the code fragments to convert the format’s \/

This is followed by a commented-out call to the function ConverttagSTRUCT.

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function.
If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

/\ Insert the function prototypes for the functions produced by \/

Here, insert the function prototype statements for the functions added in
step 5a above.

| 6. Resolve this call by linking the routine with the library libmqm. For threaded
| programs, the routine must be linked with the library libmqm_r (AIX and HP-UX
| only).

7. Compile your exit as a shared library, using MQStart as the entry point. To do
this, see “Compiling data-conversion exits on UNIX” on page 175, or
“Compiling data-conversion exits on Digital OpenVMS” on page 174.

8. Place the output in the default system directory, /var/mqm/exits, to ensure that
it can be loaded when required. The path used to look for the data-conversion
exits is given in the qm.ini file. This path can be set for each queue manager
and the exit is only looked for in that path or paths.

Notes:

1. If crtmqcvx uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

 Chapter 11. Writing data-conversion exits 173

 Data-conversion exits

 UNIX environment
There are two environments to consider: non threaded and threaded.

 Non-threaded environment
The loadable object must have its name in upper case, for example MYFORMAT.
The libmqm library should be used to resolve the calls to MQXCNVC.

 Threaded environment
In addition to creating the data-conversion exit for the basic environment, another is
required in the threaded environment. This loadable object must be followed by _r
(on AIX and HP-UX) and _d (on Sun Solaris) to indicate that it is a DCE-threaded
version. The libmqm_r library (on AIX and HP-UX) and the lmqmcs_d library (on
Sun Solaris) should be used to resolve the calls to MQXCNVC. Note that both
loadable objects (non-threaded and threaded) are required for a threading
environment.

Note: If the data-conversion exits are in a mixed non-threaded and threaded
environment, the calling environment is detected and the appropriate object loaded.
The shared object should be placed in /var/mqm/exits to ensure it can be loaded
when required.

Compiling data-conversion exits on Digital OpenVMS
The names of the routines which are called by the data-conversion exit must be
made universal.

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE:[SYSLIB]MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

The contents of MYFORMAT.OPT vary depending on which platform you are
working on.

On Alpha:

 SYS$SHARE:MQM/SHAREABLE
 SYS$SHARE:MQMCS/SHAREABLE
 SYMBOL_VECTOR=(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM/SHAREABLE
 SYS$SHARE:MQMCS/SHAREABLE
 UNIVERSAL=MQSTART

If you are using threaded applications linked with the pthread library, you must also
build a second copy of the data-conversion exit with the thread options and
libraries:

$ CC /INCLUDE_DIRECTORY=MQS_INCLUDE AMQSVFCX.C
$ LINK /SYS$SHARE:[SYSLIB]MYFORMAT AMQSVFCX.OBJ,MYFORMAT/OPTIONS

Again, the contents of MYFORMAT.OPT vary depending on which platform you are
working on.

174 MQSeries Application Programming Guide

 Data-conversion exits

On Alpha:

 SYS$SHARE:MQM_R/SHAREABLE
 SYS$SHARE:MQMCS_R/SHAREABLE
 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
 SYMBOL_VECTOR-(MQSTART=PROCEDURE)

On VAX:

 SYS$SHARE:MQM_R/SHAREABLE
 SYS$SHARE:MQMCS_R/SHAREABLE
 SYS$SHARE:CMA$OPEN_RTL.EXE/SHAREABLE
 UNIVERSAL=MQSTART

Compiling data-conversion exits on UNIX
The following sections give examples of how to compile a data conversion exit on
the UNIX platforms.

On all platforms, the entry point to the module is MQStart.

| On AIX 4.2
| $ cc -c -I/usr/mqm/inc MYFORMAT.C
| $ ld MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -lmqm -lc
| $ cp MYFORMAT /var/mqm/exits

| If you are using threaded application linked with the pthreads library, you must build
| a second copy of the conversion exit with the thread options and libraries.

| $ cc_r -c -I/usr/mqm/inc MYFORMAT.C
| $ ld MYFORMAT.o -e MQStart -o MYFORMAT_r -bM:SRE -H512 \
| -T512 -lmqm_r -lpthreads -lc_r
| $ cp MYFORMAT_r /var/mqm/exits

| On AIX 4.3
| $ cc -c -I/usr/mqm/inc MYFORMAT.C
| $ ld MYFORMAT.o -e MQStart -o MYFORMAT -bM:SRE -H512 -T512 -lmqm -lc
| $ cp MYFORMAT /var/mqm/exits

| You must build conversion exits for the threaded environment using the draft 7
| Posix threads interface rather than the draft 10 interface which is the AIX 4.3
| default.

| $ xlc_r7 -c -I/usr/mqm/inc MYFORMAT.C
| $ ld MYFORMAT.o -eMQStart -o MYFORMAT_r -bm:SRE -H512 -T512 \
| -lmqm_r -lpthreads_compat -lpthreads -lc_r
| $ cp MYFORMAT_r /var/mqm/exits

| On AT&T GIS UNIX
| $ cc -c -K PIC -I/opt/mqm/inc MYFORMAT.C
| $ ld -G MYFORMAT.O -o MYFORMAT
| $ cp MYFORMAT /opt/mqm/lib

 Chapter 11. Writing data-conversion exits 175

 Data-conversion exits

 On HP-UX
| $ CC -c -Aa +z -I/opt/mqm/inc MYFORMAT.C
| $ ld -b MYFORMAT.o -o MYFORMAT -L /opt/mqm/lib -lmqm +IMQStart
| $ cp MYFORMAT /var/mqm/exits

If you are using threaded applications linked with the pthreads library, you must
build a second copy of the conversion exit with the thread options and libraries.

| $ CC -c -Aa +z -I/opt/mqm/inc -D_REENTRANT MYFORMAT.C
| $ ld -b MYFORMAT.o -o MYFORMAT_r -L /opt/mqm/lib \
| -lmqm_r -lcma -lc_r +IMQStart
| $ cp MYFORMAT_r /var/mqm/exits

 On SINIX
| $ cc -c -K PIC -I/opt/mqm/inc -lmproc -lext MYFORMAT.C
| $ ld -G MYFORMAT.O -o MYFORMAT
| $ cp MYFORMAT /opt/mqm/lib

 On DC/OSx
| $ cc -c -K PIC -I/opt/mqm/inc -liconv -lmproc -lext MYFORMAT.C
| $ ld -G MYFORMAT.O -o MYFORMAT
| $ cp MYFORMAT /opt/mqm/lib

On Sun Solaris
If your application uses no threading calls or Posix V10 threading calls:

| cc -c -KPIC -I/opt/mqm/inc MYFORMAT.C
|
| ld -G /opt/SUNWspro/SC4.ð/lib/crt1.o
| /opt/SUNWspro/SC4.ð/lib/crti.o
| /opt/SUNWspro/SC4.ð/lib/crtn.o
| /opt/SUNWspro/SC4.ð/lib/values-xt.o
| MYFORMAT.o -o MYFORMAT -lmqm -lthread -lsocket -lc -lnsl -ldl
|
| cp MYFORMAT /var/mqm/exits

If your application requires DCE threading (for example, if it is a CICS application):

| cc -c -KPIC -I/opt/mqm/inc MYFORMAT.C
|
| ld -G /opt/SUNWspro/SC4.ð/lib/crt1.o
| /opt/SUNWspro/SC4.ð/lib/crti.o
| /opt/SUNWspro/SC4.ð/lib/crtn.o
| /opt/SUNWspro/SC4.ð/lib/values-xt.o
| MYFORMAT.o -o MYFORMAT_d -ldce -lnsl -lthread -lm -lsocket
| -lmqmcs_d -lmqm -lc -ldl
|
| cp MYFORMAT /var/mqm/exits

Note: The SC4.ð directory name varies depending on the release of compiler.

If you want to run applications using both the Posix V10-threaded and the
DCE-threaded variants on a single queue manager:

1. Build a Posix V10 type of data-conversion exit. Name it MYFORMAT and
place it in the appropriate exit directory.

2. Build a DCE-threaded type of data-conversion exit. Name it MYFORMAT_d
and place it in the appropriate exit directory.

176 MQSeries Application Programming Guide

 Data-conversion exits

Two object files are generated; one of which loads the MYFORMAT
data-conversion exit, and the other of which loads the MYFORMAT_d
data-conversion exit.

Writing a data-conversion exit for MQSeries for Windows NT
Follow these steps:

| 1. Name your message format. The name must fit in the Format field of the
| MQMD. The Format name should not have leading blanks. Trailing blanks are
| ignored. The object’s name must have no more than eight non-blank
| characters, because the Format is only eight characters long.

| A .DEF file called amqsvfcn.def is also supplied in the samples directory,
| <drive:\directory>\Program Files\MQSeries\Tools\C\Samples. Take a copy of
| this file and rename it, for example, to MYFORMAT.DEF. Make sure that the
| name of the DLL being created and the name specified in MYFORMAT.DEF
| are the same. Overwrite the name FORMAT1 in MYFORMAT.DEF with the
| new format name.

| Remember to use this name each time you send a message.

2. Create a structure to represent your message. See “Valid syntax” on page 166
for an example.

3. Run this structure through the CRTMQCVX command to create a code
fragment for your data-conversion exit.

The functions generated by the CVTMQCVX command use macros which are
written assuming that all structures are packed; they should be amended if this
is not the case.

| 4. Take a copy of the supplied skeleton source file, amqsvfc0.c, renaming it to the
| name of your message format that you decided on in step 1 (that is,
| MYFORMAT).

| amqsvfc0.c is in <drive:\directory>\Program Files\MQSeries\Tools\C\Samples
| (where <drive:\directory> was specified at installation).

| The skeleton includes a sample header file amqsvmha.h in the same directory.
| Make sure that your include path points to this directory to pick up this file.

| The amqsvmha.h file contains macros that are used by the code generated by
| the CRTMQCVX command. If the structure to be converted contains character
| data, then these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as
described:

a. Towards the bottom of the source file, a comment box starts with:

/\ Insert the functions produced by the data-conversion exit \/

Here, insert the code fragment generated in step 3.

b. Near the middle of the source file, a comment box starts with:

/\ Insert calls to the code fragments to convert the format’s \/

This is followed by a commented-out call to the function ConverttagSTRUCT.

 Chapter 11. Writing data-conversion exits 177

 Data-conversion exits

Change the name of the function to the name of the function you added in
step 5a above. Remove the comment characters to activate the function.
If there are several functions, create calls for each of them.

c. Near the top of the source file, a comment box starts with:

/\ Insert the function prototypes for the functions produced by \/

Here, insert the function prototype statements for the functions added in
step 5a above.

| 6. Resolve this call by linking the routine with the library MQMVX.LIB, in the
| directory <drive:\directory>\Program Files\MQSeries\Tools\Lib.

7. Create the following command file:

cl -I <drive:\directory>\Program Files\MQSeries\Tools\C\Include -Tp \
MYFORMAT.C -LD -DEFAULTLIB \

 <drive:\directory>\Program Files\MQSeries\Tools\Lib\mqm.lib \
 <drive:\directory>\Program Files\MQSeries\Tools\Lib\mqmvx.lib \
 MYFORMAT.DEF

where <drive:\directory> is specified at installation,

Issue the command file to compile your exit as a DLL file.

| 8. Place the output in the
| C:\WINNT\Profiles\All Users\Application Data\MQSeries\EXITS subdirectory.
| The path used to look for the data-conversion exits is given in the registry.
| This path can be set for each queue manager and the exit is only looked for in
| that path or paths.

Notes:

1. If CVTMQCVX uses packed structures, all MQSeries applications must be
compiled in this way.

2. Data-conversion exit programs must be re-entrant.

3. MQXCNVC is the only MQI call that may be issued from a data-conversion
exit.

178 MQSeries Application Programming Guide

 Object attributes

Chapter 12. Inquiring about and setting object attributes

Attributes are the properties that define the characteristics of an MQSeries object.
| They affect the way that an object is processed by a queue manager. The
| attributes of each type of MQSeries object are described in detail in Chapter 4,
| “Attributes of MQSeries objects” in the MQSeries Application Programming
| Reference manual.

Some attributes are set when the object is defined, and can be changed only by
using the MQSeries commands; an example of such an attribute is the default
priority for messages put on a queue. Other attributes are affected by the
operation of the queue manager and may change over time; an example is the
current depth of a queue.

You can inquire about the current values of all these attributes using the MQINQ
call. The MQI also provides an MQSET call with which you can change some
queue attributes. You cannot use the MQI calls to change the attributes of any
other type of object; instead you must use:

For MQSeries for OS/390
The ALTER operator commands (or the DEFINE commands with the
REPLACE option), which are described in the MQSeries Command Reference.

For MQSeries for AS/400
The CHGMQMx CL commands, which are described in the MQSeries for
AS/400 Administration Guide, or you can use the MQSC facility.

| For MQSeries for Tandem NSK
| The MQM screen-based interface, which is described in the MQSeries for
| Tandem NonStop Kernel System Management Guide, or you can use the
| MQSC facility.

| For MQSeries for VSE/ESA
| The panel interface, which is described in the MQSeries for VSE/ESA System
| Management Guide.

| For MQSeries for all other platforms
| The MQSC facility, described in Chapter 2, “The MQSeries commands” in the
| MQSeries Command Reference.

Note: The names of the attributes of objects are shown in this book in the form
that you use them with the MQINQ and MQSET calls. When you use MQSeries
commands to define, alter, or display the attributes, you must identify the attributes
using the keywords shown in the descriptions of the commands in the above books.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those
attributes you want to inquire about or set. There is a selector for each attribute
you can work with. The selector name has a prefix, determined by the nature of
the attribute:

MQCA_ These selectors refer to attributes that contain character data (for
example, the name of a queue).

 Copyright IBM Corp. 1993,1999 179

 Using MQINQ

MQIA_ These selectors refer to attributes that contain either numeric values
(such as CurrentQueueDepth, the number of messages on a queue) or a
constant value (such as SyncPoint, whether or not the queue manager
supports syncpoints).

Before you use the MQINQ or MQSET calls your application must be connected to
the queue manager, and you must use the MQOPEN call to open the object for
setting or inquiring about attributes. These operations are described in Chapter 7,
“Connecting and disconnecting a queue manager” on page 89 and Chapter 8,
“Opening and closing objects” on page 97.

Inquiring about the attributes of an object
Use the MQINQ call to inquire about the attributes of any type of MQSeries object.

As input to this call, you must supply:

� A connection handle.

� An object handle.

� The number of selectors.

� An array of attribute selectors, each selector having the form MQCA_ñ or
MQIA_ñ. Each selector represents an attribute whose value you want to
inquire about, and each selector must be valid for the type of object that the
object handle represents. You can specify selectors in any order.

� The number of integer attributes that you are inquiring about. Specify zero if
you are not inquiring about integer attributes.

� The length of the character attributes buffer in CharAttrLength. This must be at
least the sum of the lengths required to hold each character attribute string.
Specify zero if you are not inquiring about character attributes.

The output from MQINQ is:

� A set of integer attribute values copied into the array. The number of values is
determined by IntAttrCount. If either IntAttrCount or SelectorCount is zero,
this parameter is not used.

� The buffer in which character attributes are returned. The length of the buffer
is given by the CharAttrLength parameter. If either CharAttrLength or
SelectorCount is zero, this parameter is not used.

� A completion code. If the completion code gives a warning, this means that the
call completed only partially. In this case, you should examine the reason
code.

� A reason code. There are three partial-completion situations:

– The selector does not apply to the queue type
– There is not enough space allowed for integer attributes
– There is not enough space allowed for character attributes

If more than one of these situations arise, the first one that applies is returned.

| Namelists can be inquired only on AIX, HP-UX, OS/2 Warp, OS/390, Sun Solaris,
| and Windows NT.

180 MQSeries Application Programming Guide

 MQINQ failure

| If you open a queue for output or inquire and it resolves to a non-local cluster
| queue you can only inquire the queue name, queue type, and common attributes.
| The values of the common attributes are those of the chosen queue if
| MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary one of
| the possible cluster queues if either MQOO_BIND_NOT_FIXED was used or
| MQOO_BIND_AS_Q_DEF was used and the DefBind queue attribute was
| MQBND_BIND_NOT_FIXED. See “MQI and clusters” in the MQSeries Queue
| Manager Clusters book for more information.

Note: The values returned by the call are a snapshot of the selected attributes.
The attributes can change before your program acts on the returned values.

| There is a description of the MQINQ call in “MQINQ - Inquire about object
| attributes” in the MQSeries Application Programming Reference manual.

Some cases where the MQINQ call fails
If you open an alias to inquire about its attributes, you are returned the attributes of
the alias queue (the MQSeries object used to access another queue) only, not
those of the base queue. However, the definition of the base queue to which the
alias resolves is also opened by the queue manager, and if another program
changes the usage of the base queue in the interval between your MQOPEN and
MQINQ calls, your MQINQ call fails and returns the MQRC_OBJECT_CHANGED
reason code. The call also fails if the attributes of the alias queue object are
changed.

Similarly, when you open a remote queue to inquire about its attributes, you are
returned the attributes of the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue about
whose attributes you are inquiring, the MQINQ call completes with a warning and
sets the output as follows:

� For integer attributes, the corresponding elements of IntAttrs are set to
MQIAV_NOT_APPLICABLE.

� For character attributes, the corresponding portions of the CharAttrs string are
set to asterisks.

If you specify one or more selectors that are not valid for the type of object about
whose attributes you are inquiring, the MQINQ call fails and returns the
MQRC_SELECTOR_ERROR reason code.

It is not possible to call MQINQ to look at a model queue. You will have to use
either the MQSC facility or use the commands available on your platform.

 Chapter 12. Inquiring about and setting object attributes 181

 Using MQSET

Setting queue attributes
You can set only the following queue attributes using the MQSET call:

� InhibitGet (but not for remote queues)
 � DistList
 � InhibitPut
 � TriggerControl
 � TriggerType
 � TriggerDepth
 � TriggerMsgPriority
 � TriggerData

The MQSET call has the same parameters as the MQINQ call. However for
MQSET, all parameters except the completion code and reason code are input
parameters. There are no partial-completion situations.

| Note: You cannot use the MQI to set the attributes of MQSeries objects other
| than locally-defined queues.

| There is a description of the MQSET call in “MQSET - Set object attributes” in the
| MQSeries Application Programming Reference manual.

182 MQSeries Application Programming Guide

 Commit and back out

Chapter 13. Committing and backing out units of work

| This chapter describes how to commit and back out any recoverable get and put
| operations that have occurred in a unit of work. The following terms, described
| below, are used in this topic:

 � Commit
 � Back out
 � Syncpoint coordination
 � Syncpoint
� Unit of work

 � Single-phase commit
 � Two-phase commit

If you are familiar with these transaction processing terms, you can skip to
“Syncpoint considerations in MQSeries applications” on page 184.

Commit and back out
When a program puts a message on a queue within a unit of work, that
message is made visible to other programs only when the program
commits the unit of work. To commit a unit of work, all updates must be
successful to preserve data integrity. If the program detects an error
and decides that the put operation should not be made permanent, it
can back out the unit of work. When a program performs a back out,
MQSeries restores the message on the queue. The way in which the
program performs the commit and back out operations depends on the
environment in which the program is running.

Similarly, when a program gets a message from a queue within a unit of
work, that message remains on the queue until the program commits the
unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when
the program commits the unit of work. If the program backs out the unit
of work, MQSeries restores the queue to the state it was in before the
program performed the get operation.

Changes to queue attributes (either by the MQSET call or by
commands) are not affected by the committing or backing out of units of
work.

Syncpoint coordination, syncpoint, unit of work
Syncpoint coordination is the process by which units of work are either
committed or backed out with data integrity.

| The decision to commit or back out the changes is taken, in the simplest
| case, at the end of a transaction. However, it can be more useful for an
| application to synchronize data changes at other logical points within a
| transaction. These logical points are called syncpoints (or
| synchronization points) and the period of processing a set of updates
| between two syncpoints is called a unit of work. Several MQGET calls
| and MQPUT calls can be part of a single unit of work.

Single-phase commit
A single-phase commit process is one in which a program can commit
updates to a queue without coordinating its changes with other resource
managers.

 Copyright IBM Corp. 1993,1999 183

 Syncpointing and MQSeries

Two-phase commit
A two-phase commit process is one in which updates that a program
has made to MQSeries queues can be coordinated with updates to
other resources (for example, databases under the control of DB2).
Under such a process, updates to all resources are committed or
backed out together.

To help handle units of work, MQSeries provides the BackoutCount
attribute. This is incremented each time a message, within a unit of
work, is backed out. If the message repeatedly causes the unit of work
to abend, the value of the BackoutCount finally exceeds that of the
BackoutThreshold. This value is set when the queue is defined. In this
situation, the application can choose to remove the message from the
unit of work and put it onto another queue, as defined in
BackoutRequeueQName. When the message is moved, the unit of work
can commit.

Syncpoint considerations in MQSeries applications
Two-phase commit is supported under:

� MQSeries for AIX
� MQSeries for HP-UX
� MQSeries for OS/2 Warp
� MQSeries for Sun Solaris
� MQSeries for Tandem NSK
� MQSeries for Windows NT
� CICS for MVS/ESA 4.1
� CICS Transaction Server for OS/390
� CICS on Open Systems

| � TXSeries for Windows NT
 � IMS/ESA
� OS/390 batch with RRS
� Other external coordinators using the X/Open XA interface

Single-phase commit is supported under:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for OS/2 Warp
� MQSeries for Tandem NSK
� MQSeries on UNIX systems

| � MQSeries for VSE/ESA
� MQSeries for Windows
� MQSeries for Windows NT
� CICS for OS/2
� CICS for Windows NT V2.0

 � OS/390 batch

Note: For further details on external interfaces see “Interfaces to external
syncpoint managers” on page 192, and the XA documentation X/Open CAE
Specifications Distributed Transaction Processing: The XA Specification.

| Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can participate in
| two-phase commit, coordinated with other recoverable resources. This means that

184 MQSeries Application Programming Guide

 Syncpointing and MQSeries for OS/390 � Syncpointing and CICS

| the queuing functions provided by MQSeries can be brought within the scope of a
| unit of work, managed by the transaction manager.

| Samples shipped with MQSeries show MQSeries coordinating XA-compliant
| databases. For further information about these samples, see Chapter 31, “Sample
| programs (all platforms except OS/390)” on page 327.

In your MQSeries application, you can specify on every put and get call whether
you want the call to be under syncpoint control. To make a put operation operate
under syncpoint control, use the MQPMO_SYNCPOINT value in the Options field
of the MQPMO structure when you call MQPUT. For a get operation, use the
MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you

| do not explicitly choose an option, the default action depends on the platform. The
| syncpoint control default on OS/390 and Tandem NSK is ‘yes’; for all other
| platforms, it is ‘no’.

If a program issues the MQDISC call while there are uncommitted requests, an
implicit syncpoint occurs. If the program ends abnormally, an implicit backout

| occurs. On OS/390, an implicit syncpoint occurs if the program ends normally
| without first calling MQDISC.

| For MQSeries for OS/390 programs, you can use the
| MQGMO_MARK_SKIP_BACKOUT option to specify that a message should not be
| backed out if backout occurs (in order to avoid an ‘MQGET-error-backout’ loop).
| For information about using this option, see “Skipping backout” on page 150.

| For information on committing and backing out units of work in MQSeries for
| VSE/ESA, see the MQSeries for VSE/ESA V2R1 System Management Guide.

| Syncpoints in MQSeries for OS/390 applications
| This section explains how to use syncpoints in transaction manager (CICS and
| IMS) and batch applications.

| Syncpoints in CICS Transaction Server for OS/390 and CICS for
| MVS/ESA applications
| In a CICS application you establish a syncpoint by using the EXEC CICS
| SYNCPOINT command. To back out all changes to the previous syncpoint, you
| can use the EXEC CICS SYNCPOINT ROLLBACK command. For more
| information, see the CICS Application Programming Reference manual.

If other recoverable resources are also involved in the unit of work, the queue
manager (in conjunction with the CICS syncpoint manager) participates in a
two-phase commit protocol; otherwise, the queue manager performs a single-phase
commit process.

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the
application closes down normally, any open queues are closed and an implicit
commit occurs. If the application closes down abnormally, any open queues are
closed and an implicit backout occurs.

 Chapter 13. Committing and backing out units of work 185

 Syncpointing and IMS � Syncpointing and batch

| Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU
(get unique) to the IOPCB and CHKP (checkpoint). To back out all changes since
the previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following books:

� IMS/ESA Version 4 Application Programming: DL/I Calls
� IMS/ESA Version 4 Application Programming: Design Guide
� IMS/ESA Version 5 Application Programming: Database Manager
� IMS/ESA Version 5 Application Programming: Design Guide

The queue manager (in conjunction with the IMS syncpoint manager) participates in
a two-phase commit protocol if other recoverable resources are also involved in the
unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a
nonmessage batch-oriented BMP). This is because a different user could initiate
the next unit of work and MQSeries security checking is performed when the
MQCONN and MQOPEN calls are made, not when the MQPUT or MQGET calls
are made. The handles are closed at the beginning of the MQI call following the
IMS call which initiated the syncpoint.

If you have not installed IMS APAR PN83757, handles are also closed after a
ROLB call unless you are running IMS Version 3 or are running a nonmessage
BMP.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open
queues are closed but no implicit syncpoint is taken. If the application closes down
normally, any open queues are closed and an implicit commit occurs. If the
application closes down abnormally, any open queues are closed and an implicit
backout occurs.

| Syncpoints in OS/390 batch applications
| For batch applications, you can use the MQSeries syncpoint management calls:
| MQCMIT and MQBACK. For backward compatibility, CSQBCMT and CSQBBAK

are available as synonyms.

| Note: If you need to commit or back out updates to resources managed by
| different resource managers, such as MQSeries and DB2, within a single unit of
| work you should use RRS. For further information see “Transaction management
| and recoverable resource manager services” on page 187.

| Committing changes using the MQCMIT call
As input, you must supply the connection handle (Hconn), which is returned by the
MQCONN call.

The output from MQCMIT is a completion code and a reason code. The call
completes with a warning if the syncpoint was completed but the queue manager
backed out the put and get operations since the previous syncpoint.

Successful completion of the MQCMIT call indicates to the queue manager that the
application has reached a syncpoint and that all put and get operations made since
the previous syncpoint are to be made permanent.

186 MQSeries Application Programming Guide

 Recoverable resource manager services � DB2 stored procedures

| There is a description of the MQCMIT call in “MQCMIT - Commit changes” in the
| MQSeries Application Programming Reference manual.

| Backing out changes using the MQBACK call
As input, you must supply a connection handle (Hconn). Use the handle that is
returned by the MQCONN call.

The output from MQBACK is a completion code and a reason code.

It indicates to the queue manager that the application has reached a syncpoint and
that all gets and puts that have been made since the last syncpoint are to be
backed out.

| There is a description of the MQBACK call in “MQBACK - Back out changes” in the
| MQSeries Application Programming Reference manual.

| Transaction management and recoverable resource manager
| services
| Transaction management and recoverable resource manager services (RRS) is an
| OS/390 facility to provide two-phase syncpoint support across participating resource
| managers. An application can update recoverable resources managed by various
| OS/390 resource managers such as MQSeries and DB2, and then commit or back
| out these updates as a single unit of work. RRS provides the necessary
| unit-of-work status logging during normal execution, coordinates the syncpoint
| processing, and provides appropriate unit-of-work status information during
| subsystem restart.

| MQSeries for OS/390 RRS participant support enables MQSeries applications in
| the batch, TSO, and DB2 stored procedure environments to update both MQSeries
| and non-MQSeries resources (for example, DB2) within a single logical unit of
| work.

| Your MQSeries application can use either MQCMIT and MQBACK or the equivalent
| RRS calls, SRRCMIT and SRRBACK. See “RRS batch adapter” on page 221 for
| more information.

| RRS availability: If RRS is not active on your OS/390 system, any MQSeries call
| issued from a program linked with either RRS stub (CSQBRSTB or CSQBRRSI)
| returns MQRC_ENVIRONMENT_ERROR.

| DB2 stored procedures: If you use DB2 stored procedures with RRS you must
| be aware of the following guidelines:

| � DB2 stored procedures that use RRS must be WLM-managed.

| � If a DB2-managed stored procedure contains MQSeries calls, and it is linked
| with either RRS stub (CSQBRSTB or CSQBRRSI), the MQCONN call returns
| MQRC_ENVIRONMENT_ERROR.

| � If a WLM-managed stored procedure contains MQSeries calls, and is linked
| with a non-RRS stub, the MQCONN call returns
| MQRC_ENVIRONMENT_ERROR, unless it is the first MQSeries call executed
| since the stored procedure address space started.

| � If your DB2 stored procedure contains MQSeries calls and is linked with a
| non-RRS stub, MQSeries resources updated in that stored procedure are not

 Chapter 13. Committing and backing out units of work 187

 Syncpointing

| committed until the stored procedure address space ends, or until a
| subsequent stored procedure does an MQCMIT (using an MQSeries
| Batch/TSO stub).

| � Multiple copies of the same stored procedure can execute concurrently in the
| same address space. You should ensure that your program is coded in a
| reentrant manner if you want DB2 to use a single copy of your stored
| procedure. Otherwise you may receive MQRC_HCONN_ERROR on any
| MQSeries call in your program.

| � You must not code MQCMIT or MQBACK in a WLM-managed DB2 stored
| procedure.

| � All programs must be designed to run in Language Environment (LE).

Syncpoints in MQSeries for AS/400 applications
To start the AS/400 commitment control facilities, use the STRCMTCTL command.

Note: The default value of Commitment definition scope is *ACTGRP. This must
be defined as *JOB for MQSeries for AS/400.

All MQSeries for AS/400 code runs in a single, named activation group: QMQM.

If you call MQPUT, MQPUT1 or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, when MQSeries for AS/400 is not registered as an API
commitment resource inside your commitment definition, MQSeries for AS/400 adds
itself to the definition. This is typically the first such call in a job. While there are
any API commitment resources registered under a particular commitment definition,
you cannot end commitment control for that definition.

MQSeries for AS/400 removes its registration, as an API commitment resource,
when you disconnect from the queue manager, provided there are no pending MQI
operations in the current unit of work. The precise mechanism used depends on
how you connected to the queue manager:

� If you connected to the queue manager explicitly, using the CCTMQM
command, you must issue the DSCMQM command to disconnect from the
queue manager.

� If you connected to the queue manager explicitly, using the MQCONN call, you
must issue an MQDISC call to disconnect from the queue manager.

� If you connected to the queue manager implicitly, by opening an object using
the MQOPEN call without a previous MQCONN call, you must use the
MQCLOSE call for each of the opened objects, to disconnect from the queue
manager.

If you disconnect from the queue manager while there are pending MQPUT,
MQPUT1 or MQGET operations in the current unit of work, MQSeries for AS/400
remains registered as an API commitment resource in order that it is notified of the
next commit or rollback. When the next syncpoint is reached, MQSeries for AS/400
commits or rolls back the changes as required.

If you attempt to issue an ENDCMTCTL command for that commitment definition,
message CPF8355 is issued, indicating that pending changes were active. This
message also appears in the job log when the job ends. In order to avoid this
situation, ensure that you commit or rollback all pending MQSeries for AS/400

188 MQSeries Application Programming Guide

 Syncpointing

operations, and that you disconnect from the queue manager. Thus, using
commands COMMIT or ROLLBACK and DSCMQM before command
ENDCMTCTL, should enable end-commitment-control to complete successfully.

To commit or rollback (otherwise backout) your unit of work, use one of the
programming languages that supports the commitment control:

� CL commands: COMMIT and ROLLBACK
� ILE C Programming Functions: _Rcommit and _Rrollback

Syncpoints in CICS for AS/400 applications
MQSeries for AS/400 participates in CICS for AS/400 units of work. You can use
the MQI within a CICS for AS/400 application to put and get messages inside the
current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that
includes the MQSeries for AS/400 operations. To back out all changes up to the
previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or
MQGMO_SYNCPOINT, option set in a CICS for AS/400 application, you cannot log
off CICS for AS/400 until MQSeries for AS/400 has removed its registration as an
API commitment resource. Therefore, you should commit or back out any pending
put or get operations before you disconnect from the queue manager. This will
allow you to log off CICS for AS/400.

Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT,
MQSeries for Digital OpenVMS, and MQSeries on UNIX systems

Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the
MQSeries queue manager. Here syncpoint coordination is provided by the queue
manager itself using a single-phase commit procedure.

| A global unit of work is one in which resources belonging to other resource
| managers, such as XA-compliant databases, are also updated. For full integrity, a
| two-phase commit procedure must be used. MQSeries can either coordinate such
| units of work itself or it can be coordinated by another XA-compliant transaction
| manager such as IBM CICS. CICS for OS/2, CICS Transaction Server for OS/2,
| and TXSeries for Windows NT all provide a single-phase commit procedure in
| which MQSeries can participate.

Local units of work
Units of work that involve only the queue manager are called local units of work.
Syncpoint coordination is provided by the queue manager itself (internal
coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1
requests specifying the appropriate syncpoint option. The unit of work is committed
using MQCMIT or rolled back using MQBACK. However, the unit of work also

 Chapter 13. Committing and backing out units of work 189

 Syncpointing

ends when the connection between the application and the queue manager is
broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of work
is still active, the unit of work is committed. If, however, the application terminates
without disconnecting, the unit of work is rolled back as the application is deemed
to have terminated abnormally.

Global units of work
Use global units of work when you also need to include updates to resources
belonging to other resource managers. Here the coordination may be internal or
external to the queue manager:

Internal syncpoint coordination
Queue manager coordination of global units of work is supported only on MQSeries

| Version 5 products. It is not supported in an MQSeries client environment.

Here, the coordination is performed by MQSeries. To start a global unit of work,
the application issues the MQBEGIN call. This allows the queue manager to
coordinate its own updates in addition to those made by other resource managers.

As input to the MQBEGIN call, you must supply the connection handle (Hconn),
which is returned by the MQCONN call. This represents the connection to the
MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying
the appropriate ‘syncpoint’ option. This means that MQBEGIN can be used to
initiate a global unit of work that updates local resources, resources belonging to
other resource managers, or both. Updates made to resources belonging to other
resource managers are made using the API of that resource manager. However, it
is not possible to use the MQI to update queues that belong to other queue
managers. MQCMIT or MQBACK must be issued before starting further units of
work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase
| commit of all the resource managers involved in the unit of work. A two-phase
| commit process is used whereby resource managers (for example, XA-compliant
| database managers such as DB2, Oracle, and Sybase) are firstly all asked to
| prepare to commit. Only if all are prepared are they asked to commit. If any

resource manager signals that it cannot commit, each is asked to back out instead.
Alternatively, MQBACK can be used to roll back the updates of all the resource
managers.

If an application disconnects (MQDISC) while a global unit of work is still active, the
unit of work is committed. If, however, the application terminates without
disconnecting, the unit of work is rolled back as the application is deemed to have
terminated abnormally.

The output from MQBEGIN is a completion code and a reason code.

When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included.

190 MQSeries Application Programming Guide

 Syncpointing

However, the call starts a unit of work but completes with a warning if:

� There are no participating resource managers (that is, no resource managers
have been configured with the queue manager)

or

� One or more resource managers are not available.

In these cases, the unit of work can include updates to only those resource
managers that were available when the unit of work was started.

If one of the resource managers is unable to commit its updates, all of the resource
managers are instructed to roll back their updates, and MQCMIT completes with a
warning. In unusual circumstances (typically, operator intervention), an MQCMIT
call may fail if some resource managers commit their updates but others roll them
back; the work is deemed to have completed with a ‘mixed’ outcome. Such
occurrences are diagnosed in the error log of the queue manager so remedial
action may be taken.

An MQCMIT of a global unit of work succeeds if all of the resource managers
involved commit their updates.

| For a description of the MQBEGIN call, see “MQBEGIN - Begin unit of work” in the
| MQSeries Application Programming Reference manual.

External syncpoint coordination
This is when a syncpoint coordinator other than MQSeries has been selected, for
example CICS, Encina, or Tuxedo. In this situation, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries on UNIX systems register their interest
in the outcome of the unit of work with the syncpoint coordinator in order that they
can commit or roll back any uncommitted get or put operations as required. The
external syncpoint coordinator determines whether one- or two-phase commitment
protocols are provided.

You can also use the Transaction Monitor supplied with the Version 5 products for
external syncpoint coordination. You cannot use a transaction monitor with a client
application.

When an external coordinator is used (that is, when you are in XA mode),
MQCMIT, MQBACK, and MQBEGIN may not be issued. Calls to these functions
fail with the reason code MQRC_ENVIRONMENT_ERROR.

The way in which an externally coordinated unit of work is started is dependent on
the interface provided by the syncpoint coordinator. There may or may not be an
explicit call required. If an explicit call is required, and you issue an MQPUT call
specifying the MQPMO_SYNCPOINT option when a unit of work is not started, the
completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

The scope of the unit of work is determined by the syncpoint coordinator. The
state of the connection between the application and the queue manager affects the
success or failure of MQI calls that an application issues, not the state of the unit of
work. It is, for example, possible for an application to disconnect and reconnect to
a queue manager during an active unit of work and perform further MQGET and
MQPUT operations inside the same unit of work (a pending disconnect).

 Chapter 13. Committing and backing out units of work 191

 Syncpointing

Interfaces to external syncpoint managers
MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows
NT support coordination of transactions by external syncpoint managers which
utilize the X/Open XA interface. This support is available only on server
configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require
that each XA resource manager supplies its name. This is the string called name in
the XA switch structure. The resource manager for MQSeries on UNIX systems is
named “MQSeries_XA_RMI”. For further details on XA interfaces refer to XA
documentation X/Open CAE Specifications Distributed Transaction Processing: The
XA Specification.

In an XA configuration, MQSeries on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT fulfil the role of an XA Resource Manager. An XA
syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers.
This is how it works for a statically-registered resource manager:

1. An application notifies the syncpoint coordinator that it wishes to start a
transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows
of, to notify them of the current transaction.

3. The application issues a call (for example MQGET in syncpoint) to the resource
manager that is associated with the current transaction.

4. The application requests that the syncpoint coordinator either commit or roll
back the transaction.

5. The syncpoint coordinator issues a call to each resource manager using
two-phase commit protocols to complete the transaction as requested.

XA requires each Resource Manager to provide a structure called an XA Switch.
This structure declares the capabilities of the Resource Manager, and the functions
that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch Static XA resource management

MQRMIXASwitchDynamic Dynamic XA resource management

The structure is found in the following libraries:

mqmxa.lib OS/2 and Windows NT XA library for Static resource
management

mqmenc.lib AIX, HP-UX, Sun Solaris, and Windows NT Encina XA
library for Dynamic resource management

libmqmxa.a UNIX systems XA library (non-threaded) for both Static
and Dynamic resource management

libmqmxa_r.a UNIX systems XA library (threaded) for both Static and
Dynamic resource management

The method that must be used to link them to an XA syncpoint coordinator is
defined by the coordinator, and you will need to consult the documentation provided

192 MQSeries Application Programming Guide

 Syncpointing

by that coordinator to determine how to enable MQSeries to cooperate with your
XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint
coordinator should be the name of the queue manager that is to be administered.
This takes the same form as the queue manager name passed to MQCONN, and
may be blank if the default queue manager is to be used.

 Restrictions

� On OS/2, all functions declared in the XA switch are declared as _System
functions.

� On Windows NT, all functions declared in the XA switch are declared as
_cdecl functions.

� Only one queue manager may be administered by an external syncpoint
coordinator at a time. This is due to the fact that the coordinator has an
effective connection to each queue manager, and is therefore subject to the
rule that only one connection is allowed at a time.

| � All applications that are run using the syncpoint coordinator can connect
| only to the queue manager that is administered by the coordinator because
| they are already effectively connected to that queue manager. They must
| issue MQCONN to obtain a connection handle and must issue MQDISC
| before they exit. Alternatively, they can use the CICS user exit 15 for CICS
| for OS/2 V2 and V3, and CICS for Windows NT V2, or the exit UE014015
| for TXSeries for Windows NT V4 and CICS on Open Systems.

The features not implemented are:

 � Association migration
 � Asynchronous calls

| Because CICS Transaction Server V4 is 32-bit, changes are required to the source
| of CICS user exits. The supplied samples have been updated to work with CICS
| Transaction Server V4 as shown in Table 8.

| For CICS Transaction Server V4, the supplied user exits faaex315.dll and
| faaex317.dll should be renamed to the standard names faaexp15.dll and
| faaexp17.dll.

Table 8. Linking MQSeries for OS/2 Warp with CICS Version 3 applications

User exit CICS V2
source

CICS V2 dll TS V4 source TS V4 dll

exit 15 amqzsc52.c faaexp15.dll amqzsc53.c faaex315.dll

exit 17 amqzsc72.c faaexp17.dll amqzsc73.c faaex317.dll

 Chapter 13. Committing and backing out units of work 193

 Syncpointing and Tandem NSK

Syncpoints in MQSeries for Tandem NSK applications
When using MQSeries for Tandem NSK transaction management is performed
under the control of the Tandem TM/MP product, rather than by MQSeries itself.

The effects of this difference are:

� The default SYNCPOINT option for the MQPUT and MQGET calls is
SYNCPOINT, rather than NO_SYNCPOINT.

� To use the default (SYNCPOINT) option for MQPUT, MQGET, and MQPUT1
operations, the application must have an active TM/MP Transaction that defines
the unit of work to be committed. An application initiates a TM/MP transaction
by calling the BEGINTRANSACTION() function. All MQPUT, MQPUT1, and
MQGET operations performed by the application while this transaction is active
are within the same unit of work (transaction). Any other database operations
performed by the application are also within this UOW. Note that there are
system-imposed limits on the number and size of messages that can be written
and deleted within a single TM/MP transaction. When the application has
completed the UOW, the TM/MP transaction is ended (the UOW is committed)
using the ENDTRANSACTION() function. If any error is encountered, the
application can cancel the TM/MP transaction (backout the UOW) using the
ABORTTRANSACTION() function. Consequently, the standard Version 2
functions MQCMIT() and MQBACK() are not supported on this product. If they
are called, an error is returned.

� If an application uses the NO_SYNCPOINT option for MQPUT, MQGET, and
MQPUT1 operations, MQSeries starts a TM/MP transaction itself, performs the
queuing operation, and commits the transaction before returning to the
application. Each operation is therefore performed in its own UOW and, once
complete, cannot be backed out by the application using TM/MP.

� A TM/MP transaction does not need to be active for MQI calls other than
MQGET, MQPUT, and MQPUT1.

� Because TM/MP can cause previously performed MQGET, MQPUT, and
MQPUT1 operations to be backed out without notification, the current
queue-depth and input-and-output-open counts of queues can become
inaccurate. The cleanqm control command runs in the background to correct
such inaccuracies, and each MQOPEN call corrects the value of these
attributes on a queue if necessary. However, applications should be coded to
be resilient to inaccuracies in these quantities, especially in an environment that
may involve backed-out transactions.

� The back-out count attribute cannot be maintained in the same way as on
standard Version 2 implementations. Also, the harden backout count attribute
is not used.

� The MQRC_SYNCPOINT_LIMIT_REACHED reason code is used by MQSeries
for Tandem NSK V2.2 to inform an application that the system-imposed limit on
the number of I/O operations within a single TM/MP transaction has been
reached. If the application specified the SYNCPOINT option, it should cancel
the transaction (back out the UOW) and retry with a smaller number of
operations in that UOW.

� The MQRC_UOW_CANCELED reason code informs the application that the
UOW (TM/MP transaction) has been canceled, either by the system itself

194 MQSeries Application Programming Guide

 General XA support

(TM/MP imposes some system-wide resource-usage thresholds that will cause
this), by user action, or by the initiator of the transaction itself.

General XA support
This is not supported on Digital OpenVMS or Tandem NSK

An XA switch load module is provided to enable you to link CICS with MQSeries on
UNIX systems. Additionally, sample source code files are provided to enable you
to develop the XA switches for other transaction messages. The names of the
switch load modules provided are:

Table 9. Essential Code for CICS applications

Description C (source) C (exec) - add one of the following to your
XAD.Stanza

| XA initialization
| routine
| amqzscix.c| amqzsc - CICS for AIX Version 2.1,
| amqzsc - TXSeries for AIX, Version 4.2,
| amqzsc - TXSeries for HP-UX, Version 4.2,
| amqzsc - CICS for Siemens Nixdorf SINIX Version 2.2,
| amqzsc - TXSeries for Sun Solaris, Version 4.2,

| amqzscin.c| mqmc4swi - TXSeries for Windows NT, Version 4.2

 Chapter 13. Committing and backing out units of work 195

 General XA support

196 MQSeries Application Programming Guide

 Triggering

Chapter 14. Starting MQSeries applications using triggers

Triggering is not supported on MQSeries for Windows.

Some MQSeries applications that serve queues run continuously, so they are
always available to retrieve messages that arrive on the queues. However, this
may not be desirable when the number of messages arriving on the queues is
unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

MQSeries provides a facility that enables an application to be started automatically
when there are messages available to retrieve. This facility is known as triggering.

This chapter describes:

� What triggering is
� The prerequisites for using triggering
� The conditions that must exist for a trigger event to occur
� How to control trigger events
� How to design an application that uses triggered queues
� The properties of trigger messages
� What happens when triggering does not work

| For information about triggering channels see “Triggering channels” in the
| MQSeries Intercommunication book.

What is triggering?
The queue manager defines certain conditions as constituting “trigger events”. If
triggering is enabled for a queue and a trigger event occurs, the queue manager
sends a trigger message to a queue called an initiation queue. The presence of
the trigger message on the initiation queue indicates that a trigger event has
occurred.

Trigger messages generated by the queue manager are not persistent. This has
the effect of reducing logging (thereby improving performance), and minimizing
duplicates during restart, so improving restart time.

The program which processes the initiation queue is called a trigger-monitor
application, and its function is to read the trigger message and take appropriate
action, based on the information contained in the trigger message. Normally this
action would be to start some other application to process the queue which caused
the trigger message to be generated. From the point of view of the queue
manager, there is nothing special about the trigger-monitor application—it is simply
another application that reads messages from a queue (the initiation queue).

If triggering is enabled for a queue, you have the option to create a
process-definition object associated with it. This object contains information about
the application that processes the message which caused the trigger event. If the
process definition object is created, the queue manager extracts this information
and places it in the trigger message, for use by the trigger-monitor application. The
name of the process definition associated with a queue is given by the ProcessName

 Copyright IBM Corp. 1993,1999 197

 Triggering

local-queue attribute. Each queue can specify a different process definition, or
several queues can share the same process definition.

On MQSeries Version 5 products, and MQSeries for AS/400 in the case of
triggering a channel, you do not need to create a process definition object; the
transmission queue definition is used instead. When a trigger event occurs, the
transmission queue definition contains information about the application that
processes the message which caused the event. Again, when the queue manager
generates the trigger message, it extracts this information and places it in the
trigger message.

| On MQSeries for VSE/ESA, a trigger event is defined to activate the MQSeries
| trigger API Handler, that is, the MQ02 CICS Transaction. The trigger API handler
| executes a CICS LINK to the application program or a CICS START to the
| application transaction depending on whether you defined a program name or a
| transaction name in the queue definition. For more information, see the MQSeries
| for VSE/ESA V2R1 System Management Guide.

Support in an MQSeries client environment

Triggering is supported by MQSeries clients in the UNIX systems, Digital
OpenVMS, OS/2, Windows 3.1, Windows 95, and Windows NT environments.
An application running in a client environment is the same as one running in a
full MQSeries environment, only you link it with the client libraries. However the
trigger monitor and the application to be started must both be in the same
environment as one another.

Triggering involves:

Application queue
An application queue is a local queue, which, when it has triggering set on and
when the conditions are met, requires that trigger messages are written.

Process Definition
An application queue can have a process definition object associated with it that
holds details of the application that will get messages from the application
queue. (See “Process definitions” on page 49 for a list of attributes.)

On MQSeries Version 5 products, the process definition object is optional in the
case of triggering channels.

Transmission queue
The transmission queue holds the name of the channel to be triggered. This
can replace the process definition for triggering channels, but is used only when
a process definition is not created.

Trigger event
A trigger event is an event that causes a trigger message to be generated by
the queue manager. This is usually a message arriving on an application
queue, but it can also occur at other times (see “Conditions for a trigger event”
on page 204). MQSeries has a range of options to allow you to control the
conditions that cause a trigger event (see “Controlling trigger events” on
page 208).

Trigger message
The queue manager creates a trigger message when it recognizes a trigger
event (see “Conditions for a trigger event” on page 204). It copies into the

198 MQSeries Application Programming Guide

 Triggering

trigger message information about the application to be started. This
information comes from the application queue and the process definition object
associated with the application queue. Trigger messages have a fixed format
(see “Format of trigger messages” on page 216).

Initiation queue
An initiation queue is a local queue on which the queue manager puts trigger
messages. A queue manager can own more than one initiation queue, and
each one is associated with one or more application queues.

Trigger monitor
A trigger monitor is a continuously-running program that serves one or more
initiation queues. When a trigger message arrives on an initiation queue, the
trigger monitor retrieves the message. The trigger monitor uses the information
in the trigger message. It issues a command to start the application that is to
retrieve the messages arriving on the application queue, passing it information
contained in the trigger message header, which includes the name of the
application queue. (For more information, see “Trigger monitors” on page 212.)

To understand how triggering works, consider Figure 14, which is an example of
trigger type FIRST, (MQTT_FIRST).

Process

Application
Queue

application
message

tr igger
message

Initiation
Queue

APPLICATION

APPLICATION APPLICATION

TRIGGER
MONITOR

B

A

QUEUE MANAGER

trigger
event

tr igger
message

start
command

Local System
Local or Remote

System

application
message

Figure 14. Flow of application and trigger messages

 Chapter 14. Starting MQSeries applications using triggers 199

 Triggering

In Figure 14 on page 199, the sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts
a message on the application queue. Note that no application has this queue
open for input. However, this fact is relevant only to trigger type FIRST and
DEPTH.

2. The queue manager checks to see if the conditions are met under which it has
to generate a trigger event. They are, and a trigger event is generated,
passing on information held within the associated process definition object.

3. The queue manager creates a trigger message and puts it on the initiation
queue associated with this application queue, but only if an application (trigger
monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.

5. The trigger monitor issues a command to start program B (the server
application).

6. Application B opens the application queue and retrieves the message.

Notes:

1. If the application queue is open for input, by any program, and has triggering
set for FIRST or DEPTH, no trigger event will occur - it’s not needed.

2. If the initiation queue is not open for input, the queue manager will not generate
any trigger messages, it will wait until an application opens the initiation queue
for input.

3. Only use type FIRST or DEPTH when using triggering for channels.

So far, the relationship between the queues within triggering has been only on a
one to one basis. Consider Figure 15 on page 201.

200 MQSeries Application Programming Guide

 Triggering

Local or Remote

System
Local System

Process

Initiation

Queue

APPLICATION

TRIGGER

MONITOR

QUEUE MANAGER

Process

APPLICATION

APPLICATION

APPLICATION

APPLICATION

APPLICATION

A

B

C

X

Y

1

2

Application

Queue 1

Application

Queue 2

tr igger
message

tr igger
message

application
message

application
message

APPLICATION

APPLICATION

K

L

application
messages

start
command

start
command

tr igger
event

tr igger
event

Figure 15. Relationship of queues within triggering

An application queue has a process definition object associated with it that holds
details of the application that will process the message. The queue manager
places the information in the trigger message, so only one initiation queue is
necessary. The trigger monitor extracts this information from the trigger message
and starts the relevant application to deal with the message on each application
queue.

On MQSeries Version 5 products, in the case of triggering a channel, the process
definition object is optional. The transmission queue definition can determine the
channel to be triggered.

 Chapter 14. Starting MQSeries applications using triggers 201

 Triggering prerequisites

Prerequisites for triggering
Before your application can take advantage of triggering, follow the steps below:

 1. Either:

a. Create an initiation queue for your application queue. For example:

DEFINE QLOCAL (initiation.queue) REPLACE +
 LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +

DESCR ('initiation queue description')

or

b. Determine the name of a local queue that already exists and can be used
by your application, and specify its name in the InitiationQName field of the
application queue.

You can think of this task as associating the initiation queue with the
application queue. A queue manager can own more than one initiation
queue—you may want some of your application queues to be served by
different programs, in which case you could use one initiation queue for each
serving program, although you do not have to. Here is an example of how to
create an application queue:

DEFINE QLOCAL (application.queue) REPLACE +
 LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +

DESCR (‘appl queue description’) +
 INITQ (‘initiation.queue’) +
 PROCESS (‘process.name’) +
 TRIGGER +
 TRIGTYPE (FIRST)

2. If you are triggering an application, create a process definition object to contain
information relating to the application that is to serve your application queue.
For example:

DEFINE PROCESS (process.name) +
 REPLACE +

DESCR ('process description') +
APPLTYPE ('CICS') +
APPLICID ('CKSG') +

 USERDATA ('EXAMPLE.CHANNEL')

Here is an extract from an MQSeries for AS/400 CL program that creates a
process definition object:

202 MQSeries Application Programming Guide

 Triggering prerequisites

 /\ Queue used by AMQSINQA \/
 CRTMQMQ QNAME('SYSTEM.SAMPLE.INQ') +
 QTYPE(\LCL) REPLACE(\YES) +
 +

TEXT('queue for AMQSINQA') +
 SHARE(\YES) /\ Shareable \/+

DFTMSGPST(\YES)/\ Persistent messages OK \/+
 +

TRGENBL(\YES) /\ Trigger control on \/+
TRGTYPE(\FIRST)/\ Trigger on first message\/+

 PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
 INITQNAME('SYSTEM.SAMPLE.TRIGGER')

 /\ Process definition \/
 CRTMQMPRC PRCNAME('SYSTEM.SAMPLE.INQPROCESS') +
 REPLACE(\YES) +
 +

TEXT('trigger process for AMQSINQA') +
ENVDATA('JOBPTY(3)') /\ Submit parameter \/+
APPID('AMQSINQA') /\ Program name \/

When the queue manager creates a trigger message, it copies information from
the attributes of the process definition object into the trigger message. This
step is optional in the case of triggering channels.

| 3. If you are triggering a channel on a release other than MQSeries Version 5
| products, MQSeries for AS/400, or MQSeries for VSE/ESA you need to create
| a process definition. Create a transmission queue definition and specify the
| ProcessName attribute as blanks. The TrigData attribute can contain the name
| of the channel to be triggered or it can be left blank. When the queue manager
| creates a trigger message, it copies information from the TrigData attribute of
| the transmission queue definition into the trigger message.

4. If you have created a process definition object, associate your application
queue with the application that is to serve that queue by naming the process
definition object in the ProcessName attribute of the queue.

Platform To create a process definition object

UNIX systems,
Digital OpenVMS,
OS/2, Windows NT

Use DEFINE PROCESS or use
SYSTEM.DEFAULT.PROCESS and modify using
ALTER PROCESS

OS/390 Use DEFINE PROCESS (see sample code in step
2), or use the operations and control panels.

OS/400 Use a CL program like the extract from AMQSDEF4
in step 2.

Platform Use commands

UNIX systems,
Digital OpenVMS,
OS/2, Windows NT

ALTER QLOCAL

OS/390 ALTER QLOCAL

AS/400 CHGMQMQ

 Chapter 14. Starting MQSeries applications using triggers 203

 Trigger events

5. Start instances of the trigger monitors (or trigger servers in MQSeries for
AS/400) that are to serve the initiation queues you have defined. See “Trigger
monitors” on page 212 for more information.

If you wish to be aware of any undelivered trigger messages, make sure your
queue manager has a dead-letter (undelivered-message) queue defined. Specify
the name of the queue in the DeadLetterQName queue manager field.

You can then set the trigger conditions you require, using the attributes of the
queue object that defines your application queue. For more information on this,
see “Controlling trigger events” on page 208.

Conditions for a trigger event
The queue manager creates a trigger message when the following conditions are
satisfied:

1. A message is put on a queue.

2. The message has a priority greater than or equal to the threshold trigger
priority of the queue. This priority is set in the TriggerMsgPriority local queue
attribute—if it is set to zero, any message qualifies.

3. The number of messages on the queue with priority greater than or equal to
TriggerMsgPriority was previously, depending on TriggerType:

� Zero (for trigger type MQTT_FIRST)
� Any number (for trigger type MQTT_EVERY)
� TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Note: The queue manager counts both committed and uncommitted
messages when it assesses whether the conditions for a trigger event exist.
Consequently an application may be started when there are no messages for it
to retrieve because the messages on the queue have not been committed. In
this situation, you are strongly recommended to consider using the wait option,
and relating the WaitInterval to the number of messages in the unit of work.

4. For triggering of type FIRST or DEPTH, no program has the application queue
open for removing messages (that is, the OpenInputCount local queue attribute
is zero).

5. On MQSeries for OS/390, if the application queue is one with a Usage attribute
of MQUS_NORMAL, get requests for it are not inhibited (that is, the InhibitGet

| queue attribute is MQQA_GET_ALLOWED). Also, on MQSeries for
| non-OS/390 platforms, if the application queue is one with a Usage attribute of
| MQUS_XMITQ, get requests for it are not inhibited.

 6. Either:

� The ProcessName local queue attribute for the queue is not blank, and the
process definition object identified by that attribute has been created.

or

� The ProcessName local queue attribute for the queue is all blank, but the
queue is a transmission queue. In this case, the trigger message contains
attributes with the following values:

 ProcessName: blanks
TriggerData: trigger data

204 MQSeries Application Programming Guide

 Trigger events

 ApplType: MQAT_UNKNOWN
 ApplId: blanks
 EnvData: blanks
 UserData: blanks

Note: As the process definition is optional, the TriggerData attribute may also
contain the name of the channel to be started. This option is available only on
MQSeries for AS/400, OS/2, HP-UX, AIX, Sun Solaris, and Windows NT.

7. An initiation queue has been created, and has been specified in the
InitiationQName local queue attribute. Also:

� Get requests are not inhibited for the initiation queue (that is, the
InhibitGet queue attribute is MQQA_GET_ALLOWED).

� Put requests must not be inhibited for the initiation queue (that is, the
InhibitPut queue attribute must be MQQA_PUT_ALLOWED).

� The Usage attribute of the initiation queue must be MQUS_NORMAL.

� In environments where dynamic queues are supported, the initiation queue
must not be a dynamic queue that has been marked as logically deleted.

8. A trigger monitor currently has the initiation queue open for removing messages
(that is, the OpenInputCount local queue attribute is greater than zero).

9. The trigger control (TriggerControl local queue attribute) for the application
queue is set to MQTC_ON. To do this, set the trigger attribute when you
define your queue, or use the ALTER QLOCAL command.

10. The trigger type (TriggerType local queue attribute) is not MQTT_NONE.

If all of the above required conditions are met, and the message that caused
the trigger condition is put as part of a unit of work, the trigger message does
not become available for retrieval by the trigger monitor application until the unit
of work completes, whether the unit of work is committed or backed out.

11. A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST
or MQTT_DEPTH, and the queue:

� Was not previously empty (MQTT_FIRST)

or

� Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions 2 through 10 (excluding 3) are satisfied, if in the case of
MQTT_FIRST a sufficient interval (TriggerInterval queue-manager attribute)
has elapsed since the last trigger message was written for this queue.

This is to allow for a queue server that ends before processing all of the
messages on the queue. The purpose of the trigger interval is to reduce the
number of duplicate trigger messages that are generated.

| Note: If you stop and restart the queue manager, the TriggerInterval “timer”
| is reset. There is a small window during which it is possible to produce two
| trigger messages. The window exists when the queue’s trigger attribute is set
| to enabled at the same time as a message arrives and the queue was not
| previously empty (MQTT_FIRST) or had TriggerDepth or more messages
| (MQTT_DEPTH).

 Chapter 14. Starting MQSeries applications using triggers 205

 Trigger events

12. The only application serving a queue issues an MQCLOSE call, for a
TriggerType of MQTT_FIRST or MQTT_DEPTH, and there is at least:

 � One (MQTT_FIRST)

or

 � TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 204), and
conditions 6 through 10 on page 205 are also satisfied.

This is to allow for a queue server that issues an MQGET call, finds the queue
empty, and so ends; however, in the interval between the MQGET and the
MQCLOSE calls, one or more messages arrive.

Notes:

a. If the program serving the application queue does not want to retrieve all
the messages, this can cause a closed loop. Each time the program
closes the queue, the queue manager creates another trigger message
which causes the trigger monitor to start the server program again.

b. If the program serving the application queue backs out its get request (or if
the program abends) before it closes the queue, the same happens.

c. To prevent such a loop occurring, you could use the BackoutCount field of
MQMD to detect messages that are repeatedly backed out. For more
information, see “Messages that are backed out” on page 35.

13. The following conditions are satisfied using MQSET or a command:

 a.

� TriggerControl is changed to MQTC_ON

or

� TriggerControl is already MQTC_ON and the value of either
TriggerType, TriggerMsgPriority, or TriggerDepth (if relevant) is
changed,

and there is at least:

� One (MQTT_FIRST or MQTT_EVERY)

or

 � TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 204), and
conditions 4 through 10 on page 205 (excluding 8) are also satisfied.

This is to allow for an application or operator changing the triggering
criteria, when the conditions for a trigger to occur are already satisfied.

b. The InhibitPut queue attribute of an initiation queue changes from
MQQA_PUT_INHIBITED to MQQA_PUT_ALLOWED, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY)

or

 � TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 204) on any of the
queues for which this is the initiation queue, and conditions 4 through 10 on

206 MQSeries Application Programming Guide

 Trigger events

page 205 are also satisfied. (One trigger message is generated for each
such queue satisfying the conditions.)

This is to allow for trigger messages not being generated because of the
MQQA_PUT_INHIBITED condition on the initiation queue, but this condition
now having been changed.

c. The InhibitGet queue attribute of an application queue changes from
MQQA_GET_INHIBITED to MQQA_GET_ALLOWED, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY)

or

 � TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 204) on the queue, and
conditions 4 through 10 on page 205, excluding 5, are also satisfied.

This allows applications to be triggered only when they are able to retrieve
messages from the application queue.

d. A trigger-monitor application issues an MQOPEN call for input from an
initiation queue, and there is at least:

� One (MQTT_FIRST or MQTT_EVERY)

or

 � TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 204) on any of the
application queues for which this is the initiation queue, and conditions 4
through 10 on page 205 (excluding 8) are also satisfied, and no other
application has the initiation queue open for input (one trigger message is
generated for each such queue satisfying the conditions).

This is to allow for messages arriving on queues while the trigger monitor is
not running, and for the queue manager restarting and trigger messages
(which are nonpersistent) being lost.

Note: From step 12 (where trigger messages are generated as a result of
some event other than a message arriving on the application queue), the
trigger message is not put as part of a unit of work. Also, if the
TriggerType is MQTT_EVERY, and if there are one or more messages on
the application queue, only one trigger message is generated.

14. MSGDLVSQ is set correctly.

If you set MSGDLVSQ=FIFO, messages are delivered to the queue in a First In
First Out basis. The priority of the message is ignored and the default priority
of the queue is assigned to the message. If TriggerMsgPriority is set to a
higher value than the default priority of the queue, no messages are triggered.
If TriggerMsgPriority is set equal to or lower than the default priority of the
queue, triggering occurs for type FIRST, EVERY, and DEPTH. For information
about these types, see the description of the TriggerType field under
“Controlling trigger events” on page 208.

If you set MSGDLVSQ=PRIORITY and the message priority is equal to or
greater than the TriggerMsgPriority field, messages only count towards a
trigger event. In this case, again triggering occurs for type FIRST, EVERY, and
DEPTH.

 Chapter 14. Starting MQSeries applications using triggers 207

 Trigger events

As an example, if you put 100 messages of lower priority than the
TriggerMsgPriority, the effective queue depth for triggering purposes is still
zero. If you then put another message on the queue, but this time the priority
is greater than or equal to the TriggerMsgPriority, the effective queue depth
increases from zero to one and the condition for TriggerType FIRST is
satisfied.

Controlling trigger events
You control trigger events using some of the attributes that define your application
queue. You can enable and disable triggering, and you can select the number or

| priority of the messages that count toward a trigger event. There is a full
| description of these attributes in “Attributes for local queues and model queues” in
| the MQSeries Application Programming Reference manual.

The relevant attributes are:

TriggerControl
Use this attribute to enable and disable triggering for an application
queue.

TriggerMsgPriority
The minimum priority that a message must have for it to count toward a
trigger event. If a message of priority less than TriggerMsgPriority
arrives on the application queue, the queue manager ignores the
message when it determines whether to create a trigger message. If
TriggerMsgPriority is set to zero, all messages count toward a trigger
event.

TriggerType
In addition to the trigger type NONE (which disables triggering just like
setting the TriggerControl to OFF), you can use the following trigger
types to set the sensitivity of a queue to trigger events:

EVERY A trigger event occurs every time a message arrives on the
application queue. Use this type of trigger if you want a
serving program to process only one message, then end.

FIRST A trigger event occurs only when the number of messages
on the application queue changes from zero to one. Use this
type of trigger if you want a serving program to start when
the first message arrives on a queue, continue until there are
no more messages to process, then end. Also see “Special
case of trigger type FIRST” on page 210.

DEPTH A trigger event occurs only when the number of messages
on the application queue reaches the value of the
TriggerDepth attribute. A typical use of this type of triggering
is for starting a program when all the replies to a set of
requests are received.

208 MQSeries Application Programming Guide

 Trigger events

Triggering by depth

With triggering by depth, the queue manager disables
triggering (using the TriggerControl attribute) after it
creates a trigger message. Your application must
reenable triggering itself (by using the MQSET call) after
this has happened.

The action of disabling triggering is not under syncpoint
control, so triggering cannot be reenabled simply by backing
out a unit of work. If a program backs out a put request that
caused a trigger event, or if the program abends, you must
reenable triggering by using the MQSET call or the ALTER
QLOCAL command.

TriggerDepth
The number of messages on a queue that causes a trigger event when
using triggering by depth.

The conditions that must be satisfied for a queue manager to create a trigger
message are described in “Conditions for a trigger event” on page 204.

Example of the use of trigger type EVERY
Consider an application that generates requests for motor insurance. The
application might send request messages to a number of insurance companies,
specifying the same reply-to queue each time. It could set a trigger of type EVERY
on this reply-to queue so that each time a reply arrives, the reply could trigger an
instance of the server to process the reply.

Example of the use of trigger type FIRST
Consider an organization with a number of branch offices that each transmit details
of the day’s business to the head office. They all do this at the same time, at the
end of the working day, and at the head office there is an application that
processes the details from all the branch offices. The first message to arrive at the
head office could cause a trigger event which starts this application. This
application would continue processing until there are no more messages on its
queue.

Example of the use of trigger type DEPTH
Consider a travel agency application that creates a single request to confirm a flight
reservation, to confirm a reservation for a hotel room, to rent a car, and to order
some travelers’ checks. The application could separate these items into four
request messages, sending each to a separate destination. It could set a trigger of
type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is
restarted only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue
before the last of the four replies, the requesting application is triggered early. To
avoid this, when DEPTH triggering is being used to collect multiple replies to a
request, you should always use a new reply-to queue for each request.

 Chapter 14. Starting MQSeries applications using triggers 209

 Using triggered queues

Special case of trigger type FIRST
With trigger type FIRST, if there is already a message on the application queue
when another message arrives, the queue manager does not usually create
another trigger message. However, the application serving the queue might not
actually open the queue (for example, the application might end, possibly because
of a system problem). If an incorrect application name has been put into the
process definition object, the application serving the queue will not pick up any of
the messages. In these situations, if another message arrives on the application
queue, there is no server running to process this message (and any other
messages on the queue).

To deal with this, the queue manager creates another trigger message if another
message arrives on the application queue, but only if a predefined time interval has
elapsed since the queue manager created the last trigger message for that queue.
This time interval is defined in the queue manager attribute TriggerInterval. Its
default value is 999 999 999 milliseconds.

You should consider the following points when deciding on a value for the trigger
interval to be used in your application:

� If TriggerInterval is set to a low value, trigger type FIRST might behave like
trigger type EVERY (this depends on the rate that messages are being put onto
the application queue, which in turn may depend on other system activity).
This is because, if the trigger interval is very small, another trigger message is
generated each time a message is put onto the application queue, even though
the trigger type is FIRST, not EVERY. (Trigger type FIRST with a trigger
interval of zero is equivalent to trigger type EVERY.)

� If a unit of work is backed out (see “Trigger messages and units of work”) and
the trigger interval has been set to a high value (or the default value), one
trigger message is generated when the unit of work is backed out. However, if
you have set the trigger interval to a low value or to zero (causing trigger type
FIRST to behave like trigger type EVERY) many trigger messages can be
generated. If the unit of work is backed out, all the trigger messages are still
made available. The number of trigger messages generated depends on the
trigger interval, the maximum number being reached when trigger interval has
been set to zero.

Designing an application that uses triggered queues
You have seen how to set up, and control, triggering for your applications. Here
are some tips you should consider when you design your application.

Trigger messages and units of work
Trigger messages created because of trigger events that are not part of a unit of
work are put on the initiation queue, outside any unit of work, with no dependence
on any other messages, and are available for retrieval by the trigger monitor
immediately.

Trigger messages created because of trigger events that are part of a unit of work
are put on the initiation queue as part of the same unit of work. Trigger monitors
cannot retrieve these trigger messages until the unit of work completes. This
applies whether the unit of work is committed or backed out.

210 MQSeries Application Programming Guide

 Using triggered queues

If the queue manager fails to put a trigger message on an initiation queue, it will be
put on the dead-letter (undelivered-message) queue.

Note: The queue manager counts both committed and uncommitted messages
when it assesses whether the conditions for a trigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available
even if the unit of work is backed out so that a trigger message is always available
when the required conditions are met. For example, consider a put request within
a unit of work for a queue that is triggered with trigger type FIRST. This causes
the queue manager to create a trigger message. If another put request occurs,
from another unit of work, this does not cause another trigger event because the
number of messages on the application queue has now changed from one to two,
which does not satisfy the conditions for a trigger event. Now if the first unit of
work is backed out, but the second is committed, a trigger message is still created.

However, this does mean that trigger messages are sometimes created when the
conditions for a trigger event are not satisfied. Applications that use triggering
must always be prepared to handle this situation. It is recommended that you use
the wait option with the MQGET call, setting the WaitInterval to a suitable value.

Getting messages from a triggered queue
When you design applications that use triggering, you must be aware that there
may be a delay between a program being started by a trigger monitor, and other
messages becoming available on the application queue. This can happen when
the message that causes the trigger event is committed before the others.

To allow time for messages to arrive, always use the wait option when you use the
MQGET call to remove messages from a queue for which trigger conditions are set.
The WaitInterval should be sufficient to allow for the longest reasonable time
between a message being put and that put call being committed. If the message is
arriving from a remote queue manager, this time is affected by:

� The number of messages that are put before being committed
� The speed and availability of the communication link
� The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait
option, consider the same example we used when describing units of work. This
was a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This event causes the queue manager to create a trigger message. If
another put request occurs, from another unit of work, this does not cause another
trigger event because the number of messages on the application queue has not
changed from zero to one. Now if the first unit of work is backed out, but the
second is committed, a trigger message is still created. So the trigger message is
created at the time the first unit of work is backed out. If there is a significant delay
before the second message is committed, the triggered application may need to
wait for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are
eventually committed. Suppose that the TriggerDepth queue attribute has the
value 2. When two messages arrive on the queue, the second causes a trigger
message to be created. However, if the second message is the first to be
committed, it is at that time the trigger message becomes available. The trigger
monitor starts the server program, but the program can retrieve only the second

 Chapter 14. Starting MQSeries applications using triggers 211

 Trigger monitors

message until the first one is committed. So the program may need to wait for the
first message to be made available.

You should design your application so that it terminates if no messages are
available for retrieval when your wait interval expires. If one or more messages
arrive subsequently, you should rely on your application being retriggered to
process them. This method prevents applications being idle, and unnecessarily
using resources.

 Trigger monitors
To a queue manager, a trigger monitor is like any other application that serves a
queue. However, a trigger monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger
message arrives on an initiation queue, the trigger monitor retrieves that message.
It uses information in the message to issue a command to start the application that
is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program it is starting so
that the program can perform the right actions on the right application queue.

A channel initiator is an example of a special type of trigger monitor for message
channel agents. In this situation however, you must use either trigger type FIRST
or DEPTH.

MQSeries for OS/390 trigger monitors
| The following trigger monitor is provided for CICS Transaction Server for OS/390
| and CICS for MVS/ESA:

CKTI You need to start one instance of CKTI for each initiation queue
(see the MQSeries for OS/390 System Management Guide for
information on how to do this). CKTI passes the MQTM structure
of the trigger message to the program it starts by EXEC CICS
START TRANSID. The started program gets this information by
using the EXEC CICS RETRIEVE command. A program can use
the EXEC CICS RETRIEVE command with the RTRANSID option
to determine how the program was started; if the value returned is
CKTI, the program was started by MQSeries for OS/390. For an
example of how to use CKTI, see the source code supplied for
module CSQ4CVB2 in the Credit Check sample application
supplied with MQSeries for OS/390. See “The Credit Check
sample” on page 430 for a full description.

The following trigger monitor is provided for IMS/ESA:

CSQQTRMN You need to start one instance of CSQQTRMN for each initiation
queue (see the MQSeries for OS/390 System Management Guide
for information on how to do this). CSQQTRMN passes the
MQTMC2 structure of the trigger message to the programs it
starts.

212 MQSeries Application Programming Guide

 Trigger monitors

MQSeries for AS/400 trigger monitors
The following are provided:

AMQSTRG4 This is a trigger monitor that submits an OS/400 job for the
process that is to be started, but this means there is a processing
overhead associated with each trigger message.

AMQSERV4 This is a trigger server. For each trigger message, this server runs
the command for the process in its own job, and can call CICS
transactions.

Both the trigger monitor and the trigger server pass an MQTMC structure to the
| programs they start. For a description of this structure, see “MQTMC2 - Trigger
| message 2 (character format)” in the MQSeries Application Programming
| Reference manual. Both of these samples are delivered in both source and

executable forms.

MQSeries for OS/2 Warp, Digital OpenVMS, Tandem NSK, UNIX
systems, and Windows NT trigger monitors

The following trigger monitors are provided for the server environment:

amqstrg0 This is a sample trigger monitor that provides a subset of the
function provided by runmqtrm . See Chapter 31, “Sample
programs (all platforms except OS/390)” on page 327 for more
information on amqstrg0.

runmqtrm runmqtrm [-m QMgrName] [-q InitQ] is the command. The default
is SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue
manager. It calls programs for the appropriate trigger messages.
This trigger monitor supports the default application type.

The command string passed by the trigger monitor to the operating
system is built as follows:

1. The ApplId from the relevant PROCESS definition (if created)

2. The MQTMC2 structure, enclosed in quotation marks

3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run - as it would be
entered on the command line.

The parameter passed is the MQTMC2 character structure. A
command string is invoked which has this string, exactly as
provided, in ‘quotation marks’, in order that the system command
will accept it as one parameter.

The trigger monitor will not look to see if there is another message
on the initiation queue until the completion of the application it has
just started. If the application has a lot of processing to do, this
may mean that the trigger monitor cannot keep up with the number
of trigger messages arriving. You have two options:

� Have more trigger monitors running

� Run the started applications in the background

If you choose to have more trigger monitors running you have
control over the maximum number of applications that can run at

 Chapter 14. Starting MQSeries applications using triggers 213

 Trigger monitors

any one time. If you choose to run applications in the background,
there is no restriction imposed by MQSeries on the number of
applications that can run.

To run the started application in the background under OS/2, or
Windows NT, within the ApplId field you must prefix the name of
your application with a START command. For example:

START AMQSECHA /B

To run the started application in the background on UNIX systems,
you must put an ‘&’ at the end of the EnvData of the PROCESS
definition.

The following trigger monitors are provided for the MQSeries client:

runmqtmc This is the same as runmqtrm except that it links with the
MQSeries client libraries.

 For CICS:
The following trigger monitor is provided for CICS:

amqltmc0 The CICS Trigger monitor works in the same fashion as the
standard trigger monitor, runmqtrm , but you run it in a different
way and it triggers CICS transactions.

| It is supplied as a CICS program and you must define it with a
| 4-character transaction name. Enter the 4-character name to start
| the trigger monitor. It uses the default queue manager (as named
| in the qm.ini file or, on MQSeries for Windows NT, the registry),
| and the SYSTEM.CICS.INITIATION.QUEUE.

If you want to use a different queue manager or queue, you must
build the trigger monitor the MQTMC2 structure: this requires you
to write a program using the EXEC CICS START call, because the
structure is too long to add as a parameter. Then, pass the
MQTMC2 structure as data to the START request for the trigger
monitor.

When you use the MQTMC2 structure, you only need to supply the
StrucId, Version, QName, and QMgrName parameters to the trigger
monitor as it does not reference any other fields.

Messages are read from the initiation queue and used to start
CICS transactions, using EXEC CICS START, assuming the
APPL_TYPE in the trigger message is MQAT_CICS. The reading
of messages from the initiation queue is performed under CICS
syncpoint control.

Messages are generated when the monitor has started and
stopped as well as when an error occurs. These messages are
sent to the CSMT transient data queue.

Here are the available versions and appropriate use of the trigger
monitor:

Version Use

amqltmc0 CICS for OS/2 Version 2

CICS for Windows NT Version 2

214 MQSeries Application Programming Guide

 Trigger message properties

| TXSeries for AIX, Version 4

| amqltmc3 CICS Transaction Server for OS/2, Version 4

| amqltmc4 TXSeries for Windows NT, Version 4

If you need a trigger monitor for other environments, you need to write a program
that can process the trigger messages that the queue manager puts on the
initiation queues. Such a program should:

1. Use the MQGET call to wait for a message to arrive on the initiation queue.

2. Examine the fields of the MQTM structure of the trigger message to find the
name of the application to start and the environment in which it runs.

| 3. Issue an environment-specific start command. For example, in OS/390 batch,
| submit a job to the internal reader.

4. Convert the MQTM structure to the MQTMC2 structure if required.

5. Pass either the MQTMC2 or MQTM structure to the started application. This
may contain user data.

6. Associate with your application queue the application that is to serve that
queue. You do this by naming the process definition object (if created) in the
ProcessName attribute of the queue.

Use DEFINE QLOCAL or ALTER QLOCAL. On AS/400 you can also use
CRTMQMQ or CHGMQMQ.

| For more information on the trigger monitor interface, see “MQTM - Trigger
| message” and “MQTMC2 - Trigger message 2 (character format)” in the MQSeries
| Application Programming Reference manual.

Properties of trigger messages
The following sections describe some other properties of trigger messages.

Persistence and priority of trigger messages
Trigger messages are not persistent as there is no requirement for them to be so.
The conditions for generating triggering events are persistent, hence trigger
messages will be generated whenever these conditions are met. In the event that
a trigger message is lost, the continued existence of the application message on
the application queue will guarantee that the queue manager will generate a trigger
message as soon as all the conditions are met.

If a unit of work is rolled-back, any trigger messages it generated will always be
delivered.

Trigger messages take the default priority of the initiation queue.

Queue manager restart and trigger messages
Following the restart of a queue manager, when an initiation queue is next opened
for input, a trigger message may be put to this initiation queue if an application
queue associated with it has messages on it, and is defined for triggering.

 Chapter 14. Starting MQSeries applications using triggers 215

 Trigger message properties

Trigger messages and changes to object attributes
Trigger messages are created according to the values of the trigger attributes in
force at the time of the trigger event. If the trigger message is not made available
to a trigger monitor until later (because the message that caused it to be generated
was put within a unit of work), any changes to the trigger attributes in the meantime
have no effect on the trigger message. In particular, disabling triggering does not
prevent a trigger message being made available once it has been created. Also,
the application queue may no longer exist at the time the trigger message is made
available.

Format of trigger messages
The format of a trigger message is defined by the MQTM structure. This has the
following fields, which the queue manager fills when it creates the trigger message,
using information in the object definitions of the application queue and of the
process associated with that queue:

StrucId The structure identifier.

Version The version of the structure.

QName The name of the application queue on which the trigger event
occurred. When the queue manager creates a trigger message, it fills
this field using the QName attribute of the application queue.

ProcessName The name of the process definition object that is associated with the
application queue. When the queue manager creates a trigger
message, it fills this field using the ProcessName attribute of the
application queue.

TriggerData A free-format field for use by the trigger monitor. When the queue
manager creates a trigger message, it fills this field using the
TriggerData attribute of the application queue.

ApplType The type of the application that the trigger monitor is to start. When
the queue manager creates a trigger message, it fills this field using
the ApplType attribute of the process definition object identified in
ProcessName.

ApplId A character string that identifies the application that the trigger monitor
is to start. When the queue manager creates a trigger message, it
fills this field using the ApplId attribute of the process definition object
identified in ProcessName. When you use an MQSeries for
OS/390-supplied trigger monitor (CKTI or CSQQTRMN) the ApplId
attribute of the process definition object is a CICS or IMS transaction
identifier.

EnvData A character field containing environment-related data for use by the
trigger monitor. When the queue manager creates a trigger message,
it fills this field using the EnvData attribute of the process definition
object identified in ProcessName. The MQSeries for OS/390-supplied
trigger monitors (CKTI or CSQQTRMN) do not use this field, but other
trigger monitors may choose to use it.

UserData A character field containing user data for use by the trigger monitor.
When the queue manager creates a trigger message, it fills this field
using the UserData attribute of the process definition object identified
in ProcessName.

216 MQSeries Application Programming Guide

 Triggering failure

| There is a full description of the trigger monitor structures in “MQTM - Trigger
| message” and “MQTMC2 - Trigger message 2 (character format)” in the MQSeries
| Application Programming Reference manual.

When triggering does not work
A program is not triggered if the trigger monitor cannot start the program or the
queue manager cannot deliver the trigger message.

If a trigger message is created but cannot be put on the initiation queue (for
example, because the queue is full or the length of the trigger message is greater
than the maximum message length specified for the initiation queue), the trigger
message is put instead on the dead-letter (undelivered-message) queue.

| If the put operation to the dead-letter queue cannot complete successfully, the
| trigger message is discarded and a warning message is sent to the console
| (OS/390) or to the system operator (AS/400), or put on the error log. Note that
| putting these messages to the dead-letter (undelivered-message) queue does not
| cause trigger events for the DLQ on OS/400.

Putting the trigger message on the dead-letter queue may generate a trigger
message for that queue. This second trigger message is discarded if it adds a
message to the dead-letter queue.

If the program is triggered successfully but abends before it gets the message from
the queue, use a trace utility (for example, CICS AUXTRACE if the program is
running under CICS) to find out the cause of the failure.

How CKTI detects errors
If the CKTI trigger monitor in MQSeries for OS/390 detects an error in the structure
of a trigger message, or if it cannot start a program, it puts the trigger message on
the dead-letter (undelivered-message) queue. CKTI adds a dead-letter header
structure (MQDLH) to the trigger message. It uses a feedback code in the Reason
field of this structure to explain why it put the message on the dead-letter
(undelivered-message) queue.

An instance of CKTI stops serving an initiation queue if it attempts to get a trigger
message from the queue and finds that the attributes of the queue have changed
since it last accessed that queue. The attributes could have been changed by
another program, or by an operator using the commands or operations and control
panels of MQSeries. CKTI produces an error message, which includes a reason
code, explaining the action it has taken.

How CSQQTRMN detects errors
If the CSQQTRMN trigger monitor in MQSeries for OS/390 detects an error in the
structure of a trigger message, or if it cannot start a program, it puts the trigger
message on the dead-letter (undelivered-message) queue and sends a diagnostic
message to a user specified LTERM (the default is MASTER). CSQQTRMN adds
a dead-letter header structure (MQDLH) to the trigger message. It uses a feedback
code in the Reason field of this structure to explain why it put the message on the
dead-letter (undelivered-message) queue. If any other errors are detected,
CSQQTRMN sends a diagnostic message to the specified LTERM, and then
terminates.

 Chapter 14. Starting MQSeries applications using triggers 217

 Triggering failure

How RUNMQTRM detects errors
If the RUNMQTRM trigger monitor in MQSeries for OS/2 Warp and MQSeries on
UNIX systems detects an error in either the:

� Structure of a trigger message
� Application type is unsupported

or it either:

� Cannot start a program
� Detects a data-conversion error

it puts the trigger message on the dead-letter (undelivered-message) queue, having
added a dead-letter header structure (MQDLH) to the message. It uses a feedback
code in the Reason field of this structure to explain why it put the message on the
dead-letter (undelivered-message) queue.

218 MQSeries Application Programming Guide

 OS/390 applications � OS/390 environment

| Chapter 15. Using and writing applications on MQSeries for
| OS/390

MQSeries for OS/390 applications can be made up from programs that run in many
different environments. This means they can take advantage of the facilities
available in more than one environment. This chapter explains the MQSeries
facilities available to programs running in each of the supported environments.

| Environment-dependent MQSeries for OS/390 functions
The main differences to be considered between MQSeries functions in the
environments in which MQSeries for OS/390 runs are:

� MQSeries for OS/390 supplies the following trigger monitors:

– CKTI for use in the CICS environment
– CSQQTRMN for use in the IMS environment

You must write your own module to start applications in other environments.

| � Syncpointing using two-phase commit is supported in the CICS and IMS
| environments. It is also supported in the OS/390 batch environment using
| transaction management and recoverable resource manager services (RRS).
| Single-phase commit is supported in the OS/390 environment by MQSeries
| itself.

� For the batch and IMS environments, the MQI provides calls to connect
programs to, and to disconnect them from, a queue manager. Programs can
connect to more than one queue manager.

� A CICS system can connect to only one queue manager. This can be made to
happen when CICS is initiated if the subsystem name is defined in the CICS
system startup job. The MQI connect and disconnect calls are tolerated, but
have no effect, in the CICS environment.

� The API-crossing exit allows a program to intervene in the processing of all
MQI calls. This exit is available in the CICS environment only.

| � In CICS on multiprocessor systems, some performance advantage is gained
| because MQI calls can be executed under multiple OS/390 TCBs. For more
| information, see the MQSeries for OS/390 System Management Guide.

These features are summarized in Table 10.

| Table 10. OS/390 environmental features

| CICS| IMS| Batch/TSO

| Trigger monitor supplied| Yes| Yes| No

| Two-phase commit| Yes| Yes| Yes

| Single-phase commit| Yes| No| Yes

| Connect/disconnect MQI calls| Tolerated| Yes| Yes

| API-crossing exit| Yes| No| No

| Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

 Copyright IBM Corp. 1993,1999 219

 OS/390 program debugging � OS/390 recovery support

| Program debugging facilities
MQSeries for OS/390 provides a trace facility that you can use to debug your
programs in all environments. Additionally, in the CICS environment you can use:

� The CICS Execution Diagnostic Facility (CEDF)
� The CICS Trace Control Transaction (CETR)
� The MQSeries for OS/390 API-crossing exit

| On the OS/390 platform, you can use any available interactive debugging tool that
| is supported by the programming language you are using.

All these tools are discussed further in the MQSeries for OS/390 System
Management Guide.

| Syncpoint support
The synchronization of the start and end of units of work is necessary in a
transaction processing environment so that transaction processing can be used
safely. This is fully supported by MQSeries for OS/390 in the CICS and IMS
environments. Full support means cooperation between resource managers so that
units of work can be committed or backed out in unison, under control of CICS or
IMS. Examples of resource managers are DB2, CICS File Control, IMS, and
MQSeries for OS/390.

| OS/390 batch applications can use MQSeries for OS/390 calls to give a
| single-phase commit facility. This means that an application-defined set of queue

operations can be committed, or backed out, without reference to other resource
managers.

| Two-phase commit is also supported in the OS/390 batch environment using
| transaction management and recoverable resource manager services (RRS). For
| further information see “Transaction management and recoverable resource
| manager services” on page 187.

| Recovery support
If the connection between a queue manager and a CICS or IMS system is broken
during a transaction, some units of work may not be backed out successfully.
However, these units of work are resolved by the queue manager (under the
control of the syncpoint manager) when its connection with the CICS or IMS system
is reestablished.

220 MQSeries Application Programming Guide

 OS/390 interfaces � RRS batch adapter

| The MQSeries for OS/390 interface with the application environment
To allow applications running in different environments to send and receive
messages through a message queuing network, MQSeries for OS/390 provides an
adapter for each of the environments it supports. These adapters are the interface
between the application programs and an MQSeries for OS/390 subsystem. They
allow the programs to use the MQI.

The batch adapter
The batch adapter provides access to MQSeries for OS/390 resources for
programs running in:

� Task (TCB) mode
� Problem or Supervisor state
� Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and MQSeries for OS/390 are at the
task level. The adapter provides a single connection thread from an application
task control block (TCB) to MQSeries for OS/390.

The adapter supports a single-phase commit protocol for changes made to
resources owned by MQSeries for OS/390; it does not support multiphase-commit
protocols.

| RRS batch adapter
| The transaction management and recoverable resource manager services (RRS)
| adapter:

| � Uses OS/390 RRS for commit control.

| � Supports simultaneous connections to multiple MQSeries subsystems running
| on a single OS/390 instance from a single task.

| � Provides OS/390-wide coordinated commitment control (using OS/390 RRS) for
| recoverable resources accessed by way of OS/390 RRS compliant recoverable
| managers for:

| – Applications that connect to MQSeries using the RRS batch adapter.

| – DB2 stored procedures executing in a DB2 stored procedures address
| space that is managed by an OS/390 workload manager (WLM).

| � Supports the ability to switch an MQSeries batch thread between TCBs.

| MQSeries for OS/390 V2.1 provides two RRS batch adapters:

| CSQBRSTB
| This adapter requires you to change any MQCMIT and MQBACK statements in
| your MQSeries application to SRRCMIT and SRRBACK respectively. (If you
| code MQCMIT or MQBACK in an application linked with CSQBRSTB, you will
| receive MQRC_ENVIRONMENT_ERROR.)

| CSQBRRSI
| This adapter allows your MQSeries application to use either MQCMIT and
| MQBACK or SRRCMIT and SRRBACK.

 Chapter 15. Using and writing applications on MQSeries for OS/390 221

 Migration

| Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes
| AMODE(31) RMODE(ANY). If your application loads either stub below the 16 MB
| line, you must first relink the stub with RMODE(24).

| Migration
| It is possible to migrate existing Batch/TSO MQSeries applications to exploit RRS
| coordination with few or no changes. If you link-edit your MQSeries application
| with the CSQBRRSI adapter, MQCMIT and MQBACK syncpoint your unit of work
| across MQSeries and all other RRS-enabled resource managers. If you link-edit
| your MQSeries application with the CSQBRSTB adapter you must change MQCMIT
| and MQBACK to SRRCMIT and SRRBACK respectively. The latter approach may
| be preferable as it clearly indicates that the syncpoint is not restricted to MQSeries
| resources only.

The CICS adapter
A CICS system can have only one connection to an MQSeries for OS/390 queue
manager, and this connection is managed by the MQSeries for OS/390 CICS
adapter. The CICS adapter provides access to MQSeries for OS/390 resources for
CICS programs. In addition to providing access to the MQI calls, the adapter
provides:

� A trigger monitor (or task initiator) program that can start programs
automatically when certain trigger conditions on a queue are met. For more
information, see Chapter 14, “Starting MQSeries applications using triggers” on
page 197.

� An API-crossing exit that can be invoked before and after each MQI call. For
more information, see “The API-crossing exit for OS/390” on page 225.

� A trace facility to help you when debugging programs.

| � Facilities that allow the MQI calls to be executed under multiple OS/390 TCBs.
| For more information, see the MQSeries for OS/390 System Management
| Guide.

The adapter supports a two-phase commit protocol for changes made to resources
owned by MQSeries for OS/390, with CICS acting as the syncpoint coordinator.

The CICS adapter also supplies facilities (for use by system programmers and
administrators) for managing the CICS-MQSeries for OS/390 connection, and for
collecting task and connection statistics. These facilities are described in the
MQSeries for OS/390 System Management Guide.

| Adapter trace points
| Application programmers can use trace points related to the MQI calls—for
| example, CSQCGMGD (GET Message Data)—for debugging CICS application
| programs. System programmers can use trace points related to system events,
| such as recovery and task switching, for diagnosing system-related problems. For
| full details of trace points in the CICS adapter, see the MQSeries for OS/390
| Problem Determination Guide.

| Some trace data addresses are passed by applications. If the address of the trace
| data is in the private storage area of the CICS region, the contents of the area are
| traced when necessary. For example, this would be done for the trace entries
| CSQCGMGD (GET Message Data) or CSQCPMGD (PUT Message Data). If the

222 MQSeries Application Programming Guide

 Migration

| address is not in the private storage area, message CSQC416I is written to the
| CICS trace—this contains the address in error.

| Abends
| This section describes some of the things you must consider with regard to CICS
| AEY9 and QLOP abends. For information about all other abends, see the
| MQSeries for OS/390 Messages and Codes manual.

| CICS AEY9 abends: A transaction does not abend with a CICS AEY9 code if it
| issues an MQI call before the adapter is enabled. Instead, it receives return code
| MQCC_FAILED and reason code MQRC_ADAPTER_NOT_AVAILABLE.

| For more information about CICS AEY9 abends, see the CICS Messages and
| Codes manual.

| QLOP abends: Tasks abend with the abend code QLOP if a second MQI call is
| made after a call has been returned with completion code MQCC_FAILED and one
| of these reason codes:

| MQRC_CONNECTION_BROKEN
| MQRC_Q_MGR_NAME_ERROR
| MQRC_Q_MGR_NOT_AVAILABLE
| MQRC_Q_MGR_STOPPING
| MQRC_CONNECTION_STOPPING
| MQRC_CONNECTION_NOT_AUTHORIZED

| This runaway mechanism can be activated only after the adapter has been enabled
| once. Before the adapter has been enabled, such a task will loop with reason code
| set to MQRC_ADAPTER_NOT_AVAILABLE. To avoid this, ensure that your
| applications respond to the above reason codes either by terminating abnormally or
| by issuing an EXEC CICS SYNCPOINT ROLLBACK and terminating normally.

| If the application does not terminate at this point, it might not issue any further
| MQSeries calls even if the connection between MQSeries and CICS is
| re-established. Once MQSeries is reconnected to CICS, new transactions can use
| MQI calls as before.

| Using the CICS Execution Diagnostic Facility
| You can use the CICS execution diagnostic facility (CEDF) to monitor applications
| that use the CICS adapter. For details of how to use CEDF, see the CICS
| Application Programming Guide.

| CEDF uses standard formatting to display MQI calls.

| � Before the MQI call is executed:

| – CEDF displays the addresses of the call parameters
| – You can use the Working Storage key to verify or modify their contents
| – You can skip the call by overtyping the command with NOOP

| � After the call has completed:

| – The results are returned in the program’s storage
| – The return code and reason code are displayed in the call parameter list
| – You can modify them before returning to the application program

 Chapter 15. Using and writing applications on MQSeries for OS/390 223

 OS/390 OpenEdition

| See the MQSeries for OS/390 Problem Determination Guide for examples of the
| output produced by this facility.

The IMS adapter
The IMS adapter provides access to MQSeries for OS/390 resources for

� On-line message processing programs (MPPs)
� Interactive Fast Path programs (IFPs)
� Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and
problem state; they must not be in cross-memory mode or access-register mode.

The adapter provides a connection thread from an application task control block
(TCB) to MQSeries. The adapter supports a two-phase commit protocol for
changes made to resources owned by MQSeries for OS/390, with IMS acting as
the syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs
automatically when certain trigger conditions on a queue are met. For more
information, see Chapter 14, “Starting MQSeries applications using triggers” on
page 197.

| If you are writing batch DL/I programs, follow the guidance given in this book for
| OS/390 batch programs.

| Writing OS/390 OpenEdition applications
The batch adapter supports queue manager connections from Batch and TSO
address spaces:

If we consider a Batch address space, the adapter supports connections from
multiple TCBs within that address space as follows:

� Each TCB can connect to multiple queue managers using the MQCONN call
(but a TCB can only have one instance of a connection to a particular queue
manager at any one time).

� Multiple TCBs can connect to the same queue manager (but the queue
manager handle returned on any MQCONN call is bound to the issuing TCB
and cannot be used by any other TCB).

| OS/390 OpenEdition supports two types of pthread_create call:

| 1. Heavyweight threads, run one per TCB, that are ATTACHed and DETACHed at
| thread start and end by OS/390.

| 2. Mediumweight threads, run one per TCB, but the TCB can be one of a pool of
| long-running TCBs. The onus is on the application to perform all necessary
| application clean up, since, if it is connected to a server, the default thread
| termination that may be provided by the server at Task (TCB) termination, will
| not always be driven.

Lightweight threads are not supported. (If an application creates permanent
threads which do their own dispatching of work requests, then the application is
responsible for cleaning up any resources before starting the next work request.)

224 MQSeries Application Programming Guide

 API-crossing exit

| MQSeries for OS/390 supports OS/390 OpenEdition threads by way of the Batch
| Adapter as follows:

1. Heavyweight threads are fully supported as Batch connections.

Each thread runs in its own TCB which is ATTACHed and DETACHed at
thread start and end. Should the thread end before issuing an MQDISC call,
then MQSeries for OS/390 performs its standard task clean up which includes
committing any outstanding unit of work if the thread terminated normally, or
backing it out if the thread terminated abnormally.

2. Mediumweight threads are fully supported but if the TCB is going to be reused
by another thread, then the application must ensure that an MQDISC call,
preceded by either MQCMIT or MQBACK, is issued prior to the next thread
start. This implies that if the application has established a Program Interrupt
Handler, and the application then abends, then the Interrupt Handler should
issue MQCMIT and MQDISC calls before reusing the TCB for another thread.

Again, lightweight threads are not supported.

Note: Threading models do not support access to common MQSeries resources
from multiple threads.

The API-crossing exit for OS/390

Product-sensitive programming interface

An exit is a point in IBM-supplied code where you can run your own code.
MQSeries for OS/390 provides an API-crossing exit that you can use to intercept
calls to the MQI, and to monitor or modify the function of the MQI calls. This
section describes how to use the API-crossing exit, and describes the sample exit
program that is supplied with MQSeries for OS/390.

 Note

The API-crossing exit is invoked only by the CICS adapter of MQSeries for
OS/390. The exit program runs in the CICS address space.

 Chapter 15. Using and writing applications on MQSeries for OS/390 225

 API-crossing exit

Using the API-crossing exit
You could use the API-crossing exit to:

� Operate additional security checks by examining the contents of each message
before and after each MQI call

� Replace the queue name supplied in the message with another queue name

� Cancel the call and either issue a return code of 0 to simulate a successful call,
or another value to indicate that the call was not performed

� Monitor the use of MQI calls in an application

 � Gather statistics

� Modify input parameters on specific calls

� Modify the results of specific calls

Defining the exit program
Before the exit can be used, an exit program load module must be available when
the CICS adapter connects to MQSeries for OS/390. The exit program is a CICS
program that must be named CSQCAPX and reside in a library in the DFHRPL
concatenation. CSQCAPX must be defined in the CICS system definition file
(CSD), and the program must be enabled.

When CSQCAPX is loaded, a confirmation message is written to the CKQC
adapter control panel or to the console. If the program cannot be loaded, a
diagnostic message is displayed.

How the exit is invoked
When enabled, the API-crossing exit is invoked:

� By all applications that use the CICS adapter of MQSeries for OS/390

� For the following MQI calls:

 – MQCLOSE
 – MQGET
 – MQINQ
 – MQOPEN
 – MQPUT
 – MQPUT1
 – MQSET

� Every time one of these MQI calls is made

� Both before and after a call

This means that using the API-crossing exit degrades the performance of MQSeries
for OS/390, so plan your use of it carefully.

The exit program can be invoked once before a call is executed, and once after
the call is executed. On the before type of exit call, the exit program can modify
any of the parameters on the MQI call, suppress the call completely, or allow the
call to be processed. If the call is processed, the exit is invoked again after the call
has completed.

Note: The exit program is not recursive. Any MQI calls made inside the exit do
not invoke the exit program for a second time.

226 MQSeries Application Programming Guide

 API-crossing exit

Communicating with the exit program
After it has been invoked, the exit program is passed a parameter list in the CICS
communication area pointed to by a field called DFHEICAP. The CICS Exec
Interface Block field EIBCALEN shows the length of this area. The structure of this
communication area is defined in the CMQXPA assembler-language macro that is
supplied with MQSeries for OS/390 :

\
MQXP_COPYPLIST DSECT

DS ðD Force doubleword alignment
MQXP_PXPB DS AL4 Pointer to exit parameter block
MQXP_PCOPYPARM DS 11AL4 Copy of original plist
\
 ORG MQXP_PCOPYPARM
MQXP_PCOPYPARM1 DS AL4 Copy of 1st parameter
MQXP_PCOPYPARM2 DS AL4 Copy of 2nd parameter
MQXP_PCOPYPARM3 DS AL4 Copy of 3rd parameter
MQXP_PCOPYPARM4 DS AL4 Copy of 4th parameter
MQXP_PCOPYPARM5 DS AL4 Copy of 5th parameter
MQXP_PCOPYPARM6 DS AL4 Copy of 6th parameter
MQXP_PCOPYPARM7 DS AL4 Copy of 7th parameter
MQXP_PCOPYPARM8 DS AL4 Copy of 8th parameter
MQXP_PCOPYPARM9 DS AL4 Copy of 9th parameter
MQXP_PCOPYPARM1ð DS AL4 Copy of 1ðth parameter
MQXP_PCOPYPARM11 DS AL4 Copy of 11th parameter
\
MQXP_COPYPLIST_LENGTH EQU \-MQXP_PXPB
 ORG MQXP_PXPB
MQXP_COPYPLIST_AREA DS CL(MQXP_COPYPLIST_LENGTH)
\

Field MQXP_PXPB points to the exit parameter block, MQXP.

Field MQXP_PCOPYPARM is an array of addresses of the call parameters. For example,
if the application issues an MQI call with parameters P1,P2,or P3, the
communication area contains:

 PXPB,PP1,PP2,PP3

where P denotes a pointer (address) and XPB is the exit parameter block.

Writing your own exit program
You can use the sample API-crossing exit program (CSQCAPX) that is supplied
with MQSeries for OS/390 as a framework for your own program. This is described
on page 229.

When writing an exit program, to find the name of an MQI call issued by an
application, examine the ExitCommand field of the MQXP structure. To find the
number of parameters on the call, examine the ExitParmCount field. You can use
the 16-byte ExitUserArea field to store the address of any dynamic storage that the
application obtains. This field is retained across invocations of the exit and has the
same life time as a CICS task.

 Chapter 15. Using and writing applications on MQSeries for OS/390 227

 API-crossing exit

Your exit program can suppress execution of an MQI call by returning
MQXCC_SUPPRESS_FUNCTION or MQXCC_SKIP_FUNCTION in the ExitResponse
field. To allow the call to be executed (and the exit program to be reinvoked after
the call has completed), your exit program must return MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the
completion and reason codes set by the call.

 Usage notes
Here are some general points you should bear in mind when writing your exit
program:

� For performance reasons, you should write your program in assembler
language. If you write it in any of the other languages supported by MQSeries
for OS/390, you must provide your own data definition file.

� Link-edit your program as AMODE(31) and RMODE(ANY).

� To define the exit parameter block to your program, use the
assembler-language macro, CMQXPA.

� If you are using the CICS Transaction Server for OS/390 storage protection
feature, your program must run in CICS execution key. That is, you must
specify EXECKEY(CICS) when defining both your exit program and any
programs to which it passes control. For information about CICS exit programs
and the CICS storage protection facility, see the CICS Customization Guide.

� Your program can use all the APIs (for example, IMS, DB2, and CICS) that a
CICS task-related user exit program can use. It can also use any of the MQI
calls except MQCONN and MQDISC. However, any MQI calls within the exit
program do not invoke the exit program a second time.

� Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT
ROLLBACK commands. However, these commands commit or roll back all the
updates done by the task up to the point that the exit was used, and so their
use is not recommended.

� Your program must end by issuing an EXEC CICS RETURN command. It must
not transfer control with an XCTL command.

� Exits are written as extensions to the MQSeries for OS/390 code. You must
take great care that your exit does not disrupt any MQSeries for OS/390
programs or transactions that use the MQI. These are usually indicated with a
prefix of “CSQ” or “CK”.

� If CSQCAPX is defined to CICS, the CICS system will attempt to load the exit
program when CICS connects to MQSeries for OS/390. If this attempt is
successful, message CSQC301I is sent to the CKQC panel or to the system
console. If the load is unsuccessful (for example, if the load module does not
exist in any of the libraries in the DFHRPL concatenation), message CSQC315 is
sent to the CKQC panel or to the system console.

� Because the parameters in the communication area are addresses, the exit
program must be defined as local to the CICS system (that is, not as a remote
program).

228 MQSeries Application Programming Guide

 API-crossing exit

The sample API-crossing exit program, CSQCAPX
The sample exit program is supplied as an assembler-language program. The
source file (CSQCAPX) is supplied in the library thlqual .SCSQASMS (where
thlqual is the high-level qualifier used by your installation). This source file
includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use
when writing your own exit programs.

The sample shows how to:

� Set up the exit parameter block

� Address the call and exit parameter blocks

� Determine for which MQI call the exit is being invoked

� Determine whether the exit is being invoked before or after processing of the
MQI call

� Put a message on a CICS temporary storage queue

� Use the macro DFHEIENT for dynamic storage acquisition to maintain
reentrancy

� Use DFHEIBLK for the CICS exec interface control block

� Trap error conditions

� Return control to the caller

Design of the sample exit program
The sample exit program writes messages to a CICS temporary storage queue
(CSQ1EXIT) to show the operation of the exit. The messages show whether the exit
is being invoked before or after the MQI call. If the exit is invoked after the call, the
message contains the completion code and reason code returned by the call. The
sample uses named constants from the CMQXPA macro to check on the type of
entry (that is, before or after the call).

The sample does not perform any monitoring function, but simply places
time-stamped messages into a CICS queue indicating the type of call it is
processing. This provides an indication of the performance of the MQI, as well as
the proper functioning of the exit program.

Note: The sample exit program issues six EXEC CICS calls for each MQI call that
is made while the program is running. If you use this exit program, MQSeries for
OS/390 performance is degraded.

Preparing and using the sample exit
The sample exit is supplied in source form only.

| � For CICS Transaction Server for OS/390 and CICS for MVS/ESA, when you
| update the CICS system definition (CSD) data set, the definitions you need are
| in the member thlqual .SCSQPROC(CSQ4B100).

 Chapter 15. Using and writing applications on MQSeries for OS/390 229

 Writing CICS bridge applications

Note: The definitions use a suffix of MQ. If this suffix is already used in your
enterprise, this must be changed before the assembly stage.

If you use the default CICS program definitions supplied, the exit program
CSQCAPX is installed in a disabled state. This is because using the exit program
can produce a significant reduction in performance.

To activate the API-crossing exit temporarily:

1. Issue the command CEMT S PROGRAM(CSQCAPX) ENABLED from the CICS
master terminal.

2. Run the CKQC transaction, and use option 3 in the Connection pull-down to
alter the status of the API-crossing exit to ‘Enabled’.

If you want to run MQSeries for OS/390 with the API-crossing exit permanently
enabled, do one of the following:

� For CICS Transaction Server for OS/390 and CICS for MVS/ESA do one of the
following:

– Alter the CSQCAPX definition in member CSQ4B100, changing
STATUS(DISABLED) to STATUS(ENABLED). You can update the CICS CSD
definition using the CICS-supplied batch program DFHCSDUP.

– Alter the CSQCAPX definition in the CSQCAT1 group by changing the
status from DISABLED to ENABLED.

In both cases you must reinstall the group. You can do this by cold-starting your
CICS system or by using the CICS CEDA transaction to reinstall the group while
CICS is running.

Note: Using CEDA may cause an error if any of the entries in the group are
currently in use.

End of Product-sensitive programming interface

| Writing MQSeries-CICS bridge applications
| The CICS bridge is accessed by putting an MQSeries message on the request
| queue. The message can originate from any application running in an MQSeries
| environment, but it must be forwarded to a request queue on MQSeries for OS/390,
| defined for the sole use of the CICS bridge.

| Within your request message you include the name of the user program or
| transaction that is to be run, and whether or not a response is needed. A response
| message can be put on a local or remote queue. One or more request messages
| make up a unit of work. The key attributes in a message used to identify and
| subsequently control a unit of work are MsgId and CorrelId in the MQSeries
| message descriptor (MQMD) and the UOWControl in the MQCIH header.

| If your message originates from an application running in an MQSeries environment
| other than OS/390, you will need the appropriate header files and copybooks on
| that platform. These are shipped as part of SupportPac MA1E, and are available
| from the MQSeries product family Web site at:

| http://www.software.ibm.com/ts/mqseries/

230 MQSeries Application Programming Guide

 Writing CICS bridge applications

| The files you need are:

| � \include\cmqcbc.h – C header
| � \include\cmqcihl.cbc – COBOL copybook
| � \include\cmqcihv.cbc – COBOL copybook
| � \include\cmqcbv.cbc – COBOL copybook

| Structure of the MQSeries message
| The structure a DPL bridge message must take is:

| 1. MQMD (MQSeries message descriptor).

| 2. MQCIH (CICS bridge header). This is optional; see “Using the MQCIH header”
| on page 232 for more information about when the MQCIH header is
| mandatory.

| 3. Program name (8-character name of the CICS program to be started by the
| CICS bridge task).

| 4. Your own data (COMMAREA).

| The structure a 3270 bridge message must take is:

| 1. MQMD (MQSeries message descriptor).

| 2. MQCIH (CICS bridge header).

| 3. BRMQ vectors. These contain any data required to run the application. For
| information about these vectors, see the CICS Internet and External Interface
| Guide.

| The reply message has the same structure, although the BRMQ vectors are
| different.

| MQMD attributes
| The message identifier (MsgId) and correlation identifier (CorrelId) attributes are
| used by the CICS bridge to identify a unit of work. The first request message must
| have a unique MsgId (unique to the request queue for a unit of work) and a
| CorrelId of MQCI_NEW_SESSION. It is important that each request within a unit
| of work, after the first message, has the same CorrelId and that this CorrelId is
| the same as the MsgId of the first request message.

| When sending a response, the CICS bridge:

| � Sets the MsgId field, in every message, to the value in the MsgId of the first
| message in a unit of work.

| � Sets the CorrelId field to the value in the MsgId of the message it has just
| taken off the queue.

| The setting of MsgId and CorrelId is shown in Figure 17 on page 236.

| When the message includes an MQCIH header, you must set the Format field in
| the MQMD to MQFMT_CICS. If you do not set it to this value, the CICS bridge
| assumes the message does not include the MQCIH header, hence expects the first
| 8 bytes of the Userdata to contain the name of the program to be run.

| It is important that you specify a reply-to queue (ReplyToQ) if you want response
| messages from the CICS bridge.

 Chapter 15. Using and writing applications on MQSeries for OS/390 231

 Writing CICS bridge applications

| When returning messages to the reply-to queue, the CICS bridge sets the MsgType
| field (in the MQMD) to MQMT_REQUEST until it is the last message in a unit of
| work, when it is set to MQMT_REPLY.

| Attention

| MQMT_REQUEST messages from the CICS bridge refer to the results of
| intermediate processing within a unit of work which could be backed out after
| the message is sent.

| Using the MQCIH header
| The MQCIH is required if you want to do one of the following:

| � Run a 3270 transaction

| � Run the bridge with AUTH=VERIFY_*

| � Include more than one program within a single unit of work

| It is not required if you want to run a single DPL program where AUTH is set to
| LOCAL or IDENTIFY.

| Messages returned from the CICS bridge
| The CICS bridge puts response messages to the reply-to queue specified in the
| MQMD of the request message. All replies within a unit of work will go to the first
| reply-to queue specified in a request message for that unit of work, even if
| subsequent request messages within the unit of work specify different reply-to
| queues. If a message does not specify a reply-to queue, no reply message is sent
| unless a previous request message within the unit of work specified a reply-to
| queue. Reply messages are not sent for any messages within a unit of work that
| occur before the first message that specifies a reply-to queue name.

| The response message contains the following:

| � For normal responses to DPL requests:

| – An MQCIH (if one was present in the request message)
| – The program name
| – The return COMMAREA

| � For error responses to DPL requests:

| – An MQCIH (even if one was not present in the request message)
| – Error text

| � For responses to 3270 requests:

| – An MQCIH
| – Zero or more BRMQ vectors

| As error replies sent by the monitor always have a CorrelId set from the MsgId
| from the first request message, when your application gets a response message it
| should issue an MQGET by MsgId call, and check the CorrelId where the order is
| important, to ensure you pick up the correct message.

232 MQSeries Application Programming Guide

 Handling a unit of work

| Error handling by the CICS bridge
| Errors detected by the CICS bridge task cause the bridge to:

| � Back out the unit of work.

| � Copy the request message(s) to the dead-letter queue.

| � Send an error reply message back to the client if a reply-to queue is specified.

| � Write a CSQC7nn message to the CICS CSMT transient data queue or issue a
| transaction abend. Where it is possible to put a message on the reply-to
| queue, the message will contain this abend code.

| Any further request messages in the same unit of work are removed from the
| request queue and copied to the dead-letter queue, either during error processing
| for this unit of work or at the next initialization of the monitor; no further error reply
| messages are generated.

| Unexpected messages are removed from the request queue during monitor
| initialization and put on the dead-letter queue passing all context. No error reply
| messages are generated.

| If the sending of a reply message fails, the CICS bridge puts the reply on the
| dead-letter queue passing identity context from the CICS bridge request queue. A
| unit of work is not backed out if the reply message is successfully put on the
| dead-letter queue. Failure to put a reply message on the dead-letter queue is
| treated as a request error, and the unit of work is backed out.

| If the CICS bridge fails to put a request message on the dead-letter queue, the
| CICS bridge task abends and leaves the CICS bridge monitor to process the error.
| If the monitor fails to copy the request to the dead-letter queue, the monitor
| abends.

| Failure to put an error reply is ignored by the CICS bridge; the request message
| has already been copied to the dead-letter queue and the unit of work has been
| backed out by MQSeries.

| CICS bridge specific abend codes are described in MQSeries for OS/390
| Messages and Codes.

| Handling a unit of work
| You can request the bridge to run a single transaction or program, by setting
| UOWControl=MQCUOWC_ONLY in the request message, or allowing it to default.

| To run multiple user programs within a unit of work, set
| UOWControl=MQCUOWC_FIRST in the first request, MQCUOWC_MIDDLE in any
| intermediate requests and MQCUOWC_LAST in the last request. Your application
| can send multiple request messages within a unit of work before receiving any
| response messages. At any time after the first message you can terminate the unit
| of work by sending an MQCUOWC_COMMIT or MQCUOWC_BACKOUT message.

| A transaction can split itself into multiple units of work by issuing EXEC CICS
| SYNCPOINT, but you cannot group transactions into a single unit of work. Set
| UOWControl=MQCUOWC_ONLY in the first request message. Messages supplying
| additional data to the transaction should be set to MQCUOWC_CONTINUE, with an
| appropriate CancelCode if you want to terminate the transaction.

 Chapter 15. Using and writing applications on MQSeries for OS/390 233

 Considerations for 3270 transactions � Examples

| A unit of work must only use one request queue.

| Programming considerations for running 3270 transactions
| This section describes the MQSeries specific aspects of programming for 3270
| transactions. See the CICS Internet and External Interfaces Guide for a description
| of the programming interface.

| If the MQSeries application is on a platform other than OS/390, it will be necessary
| for the BRMQ vectors to be translated between the CCSID and encoding used on
| OS/390 and that used on the local platform. This causes a problem for the bridge
| because the BMS application data structure (ADS) consists of binary values that
| are not fullword values. To overcome this problem, the CICS bridge exit
| (CSQCBE00) converts its various ADSs into long formats which are fullword values.
| The MQSeries application can use either the normal variables or the long formats
| as appropriate. BMS vectors can be converted to the long format, but 3270 data
| stream vectors cannot.

| The BRMQ BMS vectors contain the application data structure (ADS). The format
| of the ADS can be determined in one of two ways:

| 1. Using the BMS copybooks

| If the long form of the ADS is required, it will be necessary to generate a
| special version of the BMS copybook. This is done by adding the parameter
| DSECT=ADSL to the DFHMSD statement on the BMS map. The copybook
| can then be used in exactly the same way as a normal copybook, except that
| the fields are fullwords. Currently, only the C headers are supported.

| 2. Using the application data structure descriptors (ADSDs)

| If application data structures are referred to using ADSDs, note that there are
| two forms of ADS variables in the DFHBRMQx copybook:

| � BRMQ_ADSI_* and BRMQ_ADSO_* refer to the ADS contents in the
| normal form of the ADS

| � BRMQ_ADSLI_* and BRMQ_ADSLO_* refer to the ADS contents in the
| long form of the ADS

| The following MQCIH values must be set when using cross platform conversion:

| � Format must be set to “CSQCBDCI”

| � Adsdescriptor must be set to:

| MQCADSD_SEND+MQCADSD_RECV+MQCADSD_MSGFORMAT

| Examples
| The following examples show the setting of key fields in different scenarios, and
| what happens in the event of a failure.

| In Figure 16 on page 235, running one user program or transaction, the MsgId of
| the request message is set by the queue manager (to M1), and subsequently
| copied to the CorrelId in the reply message.

234 MQSeries Application Programming Guide

 Examples

MQSeries application MQSeries - CICS bridge

MQPUT

MQGET

In your application:
MQGET MsgId=M1

MsgId=MQMI_NONE
CorrelId=MQCI_NEW_SESSION
UOWControl=MQCUOWC_ONLY
Request message

MsgId=M1 (MsgId from request message)
CorrelId=M1 (MsgId from request message)
Reply message

M
Q

S
e
ri

e
s

n
e
tw

o
rk

| Figure 16. Setting of key fields for a single CICS user program in a unit of work, or non-conversational 3270
| transaction

 Chapter 15. Using and writing applications on MQSeries for OS/390 235

 Examples

| In Figure 17, running more than one user program, the MsgId of the request
| message is set by the queue manager (to M1), and subsequently copied to the
| CorrelId.

MQSeries application MQSeries - CICS bridge

MQPUT

MQPUT

MQPUT

MQGET

MQGET

In your application:
MQGET MsgId=M1

In your application:
MQGET MsgId=M1

In your application:
MQGET MsgId=M1

MQGET

Request message 1
UOWControl=MQCUOWC_FIRST
CorrelId=MQCI_NEW_SESSION
MsgId=MQMI_NONE

Request message 2
UOWControl=MQCUOWC_MIDDLE
CorrelId=M1
MsgId=MQMI_NONE

Reply message
MsgId=M1 (MsgId from request message 1)
CorrelId=M3 (MsgId from request message 3)

Request message 3
UOWControl=MQCUOWC_LAST
CorrelId=M1
MsgId=MQMI_NONE

Response message
MsgId=M1 (MsgId from request message 1)
CorrelId=M2 (MsgId from request message 2)

Response message
MsgId=M1 (MsgId from request message 1)
CorrelId=M1 (MsgId from request message 1)

M
Q

S
e
ri

e
s

n
e
tw

o
rk

| Figure 17. Setting of key fields for many CICS user programs in a unit of work

236 MQSeries Application Programming Guide

 Examples

| Figure 18 shows a conversational 3270 transaction.

MQSeries application MQSeries - CICS bridge

MQPUT

MQPUT

MQPUT

MQGET

MQGET

In your application:
MQGET MsgId=M1

In your application:
MQGET MsgId=M1

In your application:
MQGET MsgId=M1

MQGET

Request message 1
UOWControl=MQCUOWC_ONLY
ConversationalTask=MQCCT_YES
CorrelId=MQCI_NEW_SESSION
MsgId=MQMI_NONE

Request message 2
UOWControl=MQCUOWC_CONTINUE
CorrelId=M1
MsgId=MQMI_NONE

Reply message
MsgId=M1 (MsgId from request message 1)
CorrelId=M3 (MsgId from request message 3)

Request message 3
UOWControl=MQCUOWC_CONTINUE
CorrelId=M1
MsgId=MQMI_NONE

Response message
MsgId=M1 (MsgId from request message 1)
CorrelId=M2 (MsgId from request message 2)

Response message
MsgId=M1 (MsgId from request message 1)
CorrelId=M1 (MsgId from request message 1)

M
Q

S
e
ri

e
s

n
e
tw

o
rk

Receive Request

Receive Request

Return Request

| Figure 18. Setting of key fields: MQSeries - conversational 3270 transaction

 Chapter 15. Using and writing applications on MQSeries for OS/390 237

 Examples

| The following example shows what happens when an error occurs in a unit of work.

MQSeries application MQSeries - CICS bridge

M
Q

S
e
ri

e
s

n
e
tw

o
rk

EXEC CICS START bridge
EXEC CICS RETRIEVE

EXEC CICS SYNCPOINT
EXEC CICS RETURN

User
program
abends

EXEC CICS SYNCPOINT ROLLBACK

MQGET MsgId(M1)

EXEC CICS LINK Pgmid (P1)

MQGET MsgId(M1)
MQGMO_SYNCPOINT

MQGET BROWSE
WAIT

MQGET MsgId(M1)

WAIT

Monitor task taskBridge

Request message
MQPUT
CorrelId=MQCI_NEW_SESSION
MsgId=M1

Reply Message

Reply message
MQPUT
MQPMO_SYNCPOINT
CorrelId=M1
MsgId=M1

| Figure 19. User program abends (only program in the unit of work)

| In this example:

| � The client application sends a request message to run a CICS program named
| P1.

| The queue manager used by the client receives the message. If the queue is
| not on OS/390, the queue needs to be defined as a remote queue with
| transmission queue. The final destination queue must be on OS/390 in the
| same image as the CICS bridge.

| The monitor task browses the request queue awaiting the arrival of a message:

| � Gets the request message with browse

| � Checks for any problems with the request message

| � Starts a CICS bridge task

| � Continues browsing the request queue

| The CICS bridge task:

| � Gets the request message, under syncpoint control, from the request queue

| � Takes the information in the request message and builds a COMMAREA for
| program P1

238 MQSeries Application Programming Guide

 MQSeries-IMS bridge applications

| � Issues an EXEC CICS LINK call to program P1

| � Waits for program P1 to complete

| When these tasks are complete, the user program abends.

| The CICS bridge task abend handler, CSQCBP10, is driven which:

| � Issues an EXEC CICS SYNCPOINT ROLLBACK which:

| – Backs out all the changes made by P1
| – Reinstates the request message on the request queue

| � Gets the request message a second time, under syncpoint control, from the
| request queue

| � Copies the request to the dead-letter queue

| � Puts an error reply to the reply-to queue

| If the request message includes the name of a reply-to queue:

| � Writes a CSQC7nn message to the CICS transient data queue

| For information on feedback codes, including those specific to the CICS bridge, see
| “MQMD - Message descriptor” in the MQSeries Application Programming
| Reference manual.

Writing MQSeries-IMS bridge applications
This section discusses writing applications to exploit the MQSeries-IMS bridge.
The following topics are discussed:

� “How the MQSeries-IMS bridge deals with messages”
� “Writing your program” on page 243
� “Triggering” on page 245

For information about the MQSeries-IMS bridge, see the MQSeries for OS/390
System Management Guide.

How the MQSeries-IMS bridge deals with messages
When you use the MQSeries-IMS bridge to send messages to an IMS application,
you need to construct your messages in a special format. You must also put your
messages on MQSeries queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system.

| A user does not need to sign on to IMS before sending messages to an IMS
| application. The user ID in the UserIdentifier field of the MQMD structure is used
| for security checking. The level of checking is determined when MQSeries
| connects to IMS, and is described in the security section of the MQSeries for
| OS/390 System Management Guide.

The MQSeries-IMS bridge accepts the following types of message:

| � Messages containing IMS transaction data and an MQIIH structure (described
| in “MQIIH - IMS bridge header” in the MQSeries Application Programming
| Reference manual):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

 Chapter 15. Using and writing applications on MQSeries for OS/390 239

 MQSeries-IMS bridge applications

Notes:

1. The square brackets, [], represent optional multi-segments.

2. The Format field of the MQMD structure must be set to MQFMT_IMS to use
the MQIIH structure.

� Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

MQSeries validates the message data to ensure that the sum of the LL bytes is
equal to the message length after the MQIIH structure (if it is present).

When the MQSeries-IMS bridge gets messages from the OTMA queues, it
processes them as follows:

| � If the message contains IMS transaction data and an MQIIH structure the
| bridge verifies the MQIIH (see “MQIIH - IMS bridge header” in the MQSeries
| Application Programming Reference manual) and puts the message on to the
| appropriate IMS queue. The transaction code is specified in the input
| message. If this is an LTERM, IMS replies with a DFS1288E message. If the
| transaction code represents a command, IMS executes the command.

� If the message contains IMS transaction data, but no MQIIH structure, the IMS
bridge makes the following assumptions:

– The transaction code is in bytes 5 through 12 of the user data
– The transaction is in non-conversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK

The reply message is also built without an MQIIH structure, taking the Format
for the MQMD from the MFSMapName of the IMS output.

| The MQSeries-IMS bridge uses one or two Tpipes for each MQSeries queue:

| � A synchronous Tpipe is used for all messages using Commit mode 0
| (COMMIT_THEN_SEND) (these show with SYN in the status field of the IMS
| /DIS TMEMBER client TPIPE xxxx command)

| � An asynchronous Tpipe is used for all messages using Commit mode 1
| (SEND_THEN_COMMIT)

| The Tpipes are created by MQSeries when they are first used. An asynchronous
| Tpipe exists until IMS is restarted. Synchronous Tpipes exist until IMS is cold
| started.

240 MQSeries Application Programming Guide

 MQSeries-IMS bridge applications

Mapping MQSeries messages to IMS transaction types

Table 11. Mapping MQSeries messages to IMS transaction types

MQSeries message type Commit-then-send (mode 0) -
uses synchronous IMS Tpipes

Send-then-commit (mode 1) -
uses asynchronous IMS Tpipes

Persistent MQSeries messages � Recoverable full function
transactions

� Irrecoverable transactions are
rejected by IMS

 � Fastpath transactions
 � Conversational transactions
� Full function transactions

Nonpersistent MQSeries messages � Irrecoverable full function
transactions

� Recoverable transactions are
rejected by IMS

 � Fastpath transactions
 � Conversational transactions
� Full function transactions

Note: IMS commands cannot use persistent MQSeries messages with commit mode 0. See the IMS/ESA Open
Transaction Manager Access User’s Guide for more information.

If the message cannot be put to the IMS queue
If the message cannot be put to the IMS queue, the following action is taken by
MQSeries:

� If a message cannot be put to the IMS queue because the message is invalid,
the message is put to the dead-letter queue and a message is sent to the
system console.

� If the message is valid, but is rejected by IMS with a sense code of 001A and a
DFS message, MQSeries puts the original message to the dead-letter queue,
and puts the DFS message to the reply-to queue. If MQSeries is unable to put
the DFS message to the reply-to queue, it is put to the dead-letter queue.

� If the negative acknowledgement (NAK) from IMS represents a message error,
an error message is sent to the system console, and the MQSeries message is
put to the dead-letter queue.

| Note: In the circumstances listed above, if MQSeries is unable to put the message
| to the dead-letter queue for any reason, the message is returned to the originating
| MQSeries queue. An error message is sent to the system console, and no further
| messages are sent using the Tpipe associated with that queue until the problem
| with the dead-letter queue has been resolved.

To resend the messages, do one of the following:

1. Stop and restart the Tpipes in IMS corresponding to the queue
2. Alter the queue to GET(DISABLED), and again to GET(ENABLED)
3. Stop and restart the IMS OTMA
4. Stop and restart your MQSeries subsystem

If the NAK received from IMS represents anything else, the MQSeries message is
returned to the originating queue, MQSeries stops processing the queue, and an
error message is sent to the system console.

If an exception report message is required, the bridge puts it to the reply-to queue
with the authority of the originator. If the message cannot be put to the queue, the
report message is put to the dead-letter queue with the authority of the bridge. If it
cannot be put to the DLQ, it is discarded.

 Chapter 15. Using and writing applications on MQSeries for OS/390 241

 MQSeries-IMS bridge applications

| IMS bridge feedback codes
| The IMS bridge feedback codes are in the range 301 through 399. They are
| mapped from the IMS-OTMA sense codes as follows:

| 1. The IMS-OTMA sense code is converted from a hexadecimal number to a
| decimal number.

| 2. 300 is added to the number resulting from the calculation in 1, giving the
| MQSeries Feedback code.

| Refer to the IMS/ESA Open Transaction Manager Access Guide for information
| about IMS-OTMA sense codes.

Reply messages from IMS
Reply messages from IMS are put onto the reply-to queue specified in the original
message. If the message cannot be put onto the reply-to queue, it is put onto the
dead-letter queue using the authority of the bridge. If the message cannot be put
onto the dead-letter queue, a negative acknowledgement is sent to IMS to say that
the message cannot be received. Responsibility for the message is then returned
to IMS. If you are using commit mode 0, messages from that Tpipe are not sent to
the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format
type is specified by the IMS MOD name used when inserting the message.

Using alternate response PCBs: If your IMS application uses alternate response
PCBs, invoking these applications through the MQSeries-IMS bridge will cause the
IMS pre-routing and destination resolution exits to be called. See the MQSeries for
OS/390 System Management Guide for information about these exit programs.

 Message segmentation
IMS transactions may be defined as expecting single- or multi-segment input. The
originating MQSeries application must construct the user input following the MQIIH
structure as one or more LLZZ-data segments. All segments of an IMS message
must be contained in a single MQSeries message sent with a single MQPUT.

The maximum length of any one LLZZ-data segment is defined by IMS/OTMA
(32764 bytes). The total MQSeries message length is the sum of the LL bytes,
plus the length of the MQIIH structure.

All the segments of the reply are contained in a single MQSeries message.

 Data conversion
The MQSeries-IMS bridge converts messages to the coded character set and
encoding of the local queue manager as required, using both built-in formats and
user exit programs. This means that you can send messages to an IMS application
using the MQSeries-IMS bridge from any MQSeries platform.

The conversion (including the calling of any necessary exits) is performed by the
distributed queuing facility when it puts a message to a destination queue that has
XCF information defined for its storage class. Any exits needed must be available
to the distributed queuing facility in the data set referenced by the CSQXLIB DD
statement.

242 MQSeries Application Programming Guide

 MQSeries-IMS bridge applications

Note: Messages arriving through the CICS distributed queuing facility are not
converted.

If there are conversion errors, the message is put to the queue unconverted; this
results eventually in it being treated as an error by the MQSeries-IMS bridge,

| because the bridge cannot recognize the header format. If a conversion error
| occurs, an error message is sent to the OS/390 console.

See Chapter 11, “Writing data-conversion exits” on page 161 for detailed
information about data conversion in general.

Sending messages to the MQSeries-IMS bridge: To ensure that conversion is
performed correctly, you must tell the queue manager what the format of the
message is. If the message has an MQIIH structure, the Format in the MQMD
must be set to the built-in format MQFMT_IMS, and the Format in the MQIIH must
be set to the name of the format that describes your message data. If there is no
MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your
format name (in the MQIIH or MQMD, as appropriate) the built-in format
MQFMT_IMS_VAR_STRING. Otherwise, use your own format name, in which
case you must also provide a data-conversion exit for your format. The exit must
handle the conversion of the LLZZs in your message, in addition to the data itself
(but it does not have to handle any MQIIH at the start of the message).

If you use this format, the MFSMapName passed to IMS is
MQFMT_IMS_VAR_STRING. If your application makes use of MFSMapName, you are
recommended to use messages with the MQFMT_IMS instead.

Receiving messages from the MQSeries-IMS bridge: If an MQIIH structure is
present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure your reply is converted correctly, follow these steps:

� If you have an MQIIH structure on your original message, specify the format
you want for your reply message in the MQIIH ReplytoFormat field of the
original message. This value is placed in the MQIIH Format field of the reply
message.

� If you do not have an MQIIH structure on your original message, specify the
format you want for the reply message as the MFS MOD name in the IMS
application’s ISRT to the IOPCB.

� Specify CONVERT(YES) on the sender channel between your MQSeries for
OS/390 system and your destination MQSeries system.

Writing your program
The coding required to handle IMS transactions through MQSeries is
platform-specific. However, there are several points to be borne in mind when your
application handles IMS screen formatting information.

In IMS, your application can modify certain 3270 screen behavior, for example,
highlighting a field which has had invalid data entered. This type of information is
communicated by adding a two byte attribute field to the IMS message for each
screen field needing to be modified by the program.

 Chapter 15. Using and writing applications on MQSeries for OS/390 243

 MQSeries-IMS bridge applications

Thus, if you are coding an application to mimic a 3270, you need to take account of
these fields when building or receiving messages.

You may need to code information in your program to process:

� Which key is pressed (Enter, PF1....)

� Where the cursor is when the message is passed to your application

� Whether the attribute fields have been set by the IMS application

 – High/normal/zero intensity
 – Color

– Whether IMS is expecting the field back the next time enter is pressed

� Whether the IMS application has used null characters (X'3F') in any fields.

If your IMS message contains only character data (apart from the LLZZ-data
segment), and you are using an MQIIH structure, set the MQMD format to
MQFMT_IMS and the MQIIH format to MQFMT_IMS_VAR_STRING.

If your IMS message contains only character data (apart from the LLZZ-data
segment), and you are not using an MQIIH structure, set the MQMD format to
MQFMT_IMS_VAR_STRING and ensure that your IMS application specifies
MODname MQFMT_IMS_VAR_STRING when replying.

If your IMS message contains binary, packed, or floating point data (apart from the
LLZZ-data segment), you will need to code your own data-conversion routines.
Refer to the IMS/ESA Application Programming: Transaction Manager manual for
information about IMS screen formatting.

Dealing with unsolicited messages from IMS
You need to write pre-routing and destination resolution exits to handle unsolicited
messages from IMS. See the MQSeries for OS/390 System Management Guide
for information about these exit programs.

| Unsolicited messages can create new Tpipes. For example if an existing IMS
| transaction switched to a new LTERM (for example PRINT01) but the
| implementation required that the output be delivered through OTMA; a new Tpipe
| (called PRINT01 in this example) would be created. By default this will be an
| asynchronous Tpipe. If the implementation requires the message to be recoverable
| the destination resolution exit Output flag must be set. See the IMS Customization
| Guide for more information.

Writing MQSeries applications to invoke IMS conversational
transactions
When you write an application which will invoke an IMS conversation, you should
bear the following in mind:

� You must include an MQIIH structure with your application message.

� You must set the CommitMode in MQIIH to MQICM_SEND_THEN_COMMIT.

� To invoke a new conversation, set TranState in MQIIH to
MQITS_NOT_IN_CONVERSATION.

� To invoke second and subsequent steps of a conversation, set TranState to
MQITS_IN_CONVERSATION, and set TranInstanceId to the value of that field
returned in the previous step of the conversation.

244 MQSeries Application Programming Guide

 Writing IMS applications

� There is no easy way in IMS to find the value of a TranInstanceId, should you
lose the original message sent from IMS.

� The application must check the TranState of messages from IMS to check
whether the IMS transaction has terminated the conversation.

� You can use /EXIT to end a conversation. You must also quote the
TranInstanceId, set TranState to MQITS_IN_CONVERSATION, and use the
MQSeries queue on which the conversation is being carried out.

� You cannot use /HOLD or /REL to hold or release a conversation.

� Conversations invoked through the MQSeries-IMS bridge are terminated if IMS
is restarted.

 Triggering
The MQSeries-IMS bridge does not support trigger messages.

If you define an initiation queue that uses a storage class with XCF parameters,
messages put to that queue are rejected when they get to the bridge.

Writing IMS applications using MQSeries
This section discusses the following subjects that you should consider when using
MQSeries in IMS applications:

� “Syncpoints in IMS applications”
� “MQI calls in IMS applications” on page 246

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU (get
unique) to the IOPCB and CHKP (checkpoint). To back out all changes since the
previous checkpoint, you can use the IMS ROLB (rollback) call. For more
information, see the following books:

� IMS/ESA Application Programming: Transaction Manager
� IMS/ESA Application Programming: Design Guide

The queue manager is a participant in a two-phase commit protocol; the IMS
syncpoint manager is the coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a
batch-oriented BMP). This is because a different user could initiate the next unit of
work and MQSeries security checking is performed when the MQCONN and
MQOPEN calls are made, not when the MQPUT or MQGET calls are made.

Handles are also closed after a ROLB call unless you are running IMS Version 3 or
are running a batch-oriented BMP.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open
queues are closed but no implicit syncpoint is taken. If the application closes down
normally, any open queues are closed and an implicit commit occurs. If the
application closes down abnormally, any open queues are closed and an implicit
backout occurs.

 Chapter 15. Using and writing applications on MQSeries for OS/390 245

 Writing IMS applications

MQI calls in IMS applications
This section covers the use of MQI calls in the following types of IMS applications:

 � “Server applications”
� “Enquiry applications” on page 249

 Server applications
Here is an outline of the MQI server application model:

 Initialize/Connect
 .
 Open queue for input shared
 .
 Get message from MQSeries queue
 .
 Do while Get does not fail
 .

If expected message received
Process the message

 Else
Process unexpected message

 End if
 .
 Commit
 .

Get next message from MQSeries queue
 .
 End do
 .
 Close queue/Disconnect
 .
END

Sample program CSQ4ICB3 shows the implementation, in C/370, of a BMP using
this model. The program establishes communication with IMS first, and then with
MQSeries:

main()

 Call InitIMS

If IMS initialization successful
 Call InitMQM

If MQSeries initialization successful
 Call ProcessRequests
 Call EndMQM
 End-if
 End-if

Return

The IMS initialization determines whether the program has been called as a
message-driven or a batch-oriented BMP and controls MQSeries queue manager
connection and queue handles accordingly:

246 MQSeries Application Programming Guide

 Writing IMS applications

InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)

While status code is zero
Call ctdli to get next message from IMS message queue
If message received

 Do nothing
Else if no IOPBC

Set MessageOriented to false
Initialize error message
Build 'Started as batch oriented BMP' message
Call ReportCallError to output the message

 End-if
Else if response is not 'no message available'

Initialize error message
Build 'GU failed' message

Call ReportCallError to output the message
Set return code to error

 End-if
 End-if
 End-while
Else

Initialize error message
Build 'INIT failed' message
Call ReportCallError to output the message
Set return code to error

End-if

Return to calling function

The MQSeries initialization performs queue manager connection opens the queues.
In a Message-driven BMP this is called after each IMS syncpoint is taken; in a
batch-oriented BMP, this is only called during program start-up:

InitMQM

Connect to the queue manager
If connect is successful

Initialize variables for the open call
Open the request queue
If open is not successful

Initialize error message
Build 'open failed' message
Call ReportCallError to output the message
Set return code to error

 End-if
 Else

Initialize error message
Build 'connect failed' message
Call ReportCallError to output the message
Set return code to error

 End-if

Return to calling function

 Chapter 15. Using and writing applications on MQSeries for OS/390 247

 Writing IMS applications

The implementation of the server model in an MPP is influenced by the fact that the
MPP processes a single unit of work per invocation. This is because, when a
syncpoint (GU) is taken, the connection and queue handles are closed and the next
IMS message is delivered. This limitation can be partially overcome by one of the
following:

� Processing many messages within a single unit-of-work

This involves:

– Reading a message
– Processing the required updates
– Putting the reply

in a loop until all messages have been processed or until a set maximum
number of messages has been processed, at which time a syncpoint is taken.

Only certain types of application (for example, a simple database update or
inquiry) can be approached in this way. Although the MQI reply messages can
be put with the authority of the originator of the MQI message being handled,
the security implications of any IMS resource updates need to be addressed
carefully.

� Processing one message per invocation of the MPP and ensuring multiple
scheduling of the MPP to process all available messages.

Use the MQSeries IMS trigger monitor program (CSQQTRMN) to schedule the
MPP transaction when there are messages on the MQSeries queue and no
applications serving it.

If the MPP is started by the trigger monitor the queue manager name and
queue name are be passed to the program, as shown in the following COBOL
code extract:

\ Data definition extract
 ð1 WS-INPUT-MSG.

ð5 IN-LL1 PIC S9(3) COMP.
ð5 IN-ZZ1 PIC S9(3) COMP.

 ð5 WS-STRINGPARM PIC X(1ððð).
 ð1 TRIGGER-MESSAGE.
 COPY CMQTMC2L.
 \

\ Code extract
 GU-IOPCB SECTION.

MOVE SPACES TO WS-STRINGPARM.
CALL 'CBLTDLI' USING GU,

 IOPCB,
 WS-INPUT-MSG.

IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.

\ ELSE handle error
 \

\ Now use the queue manager and queue names passed
 DISPLAY 'MQTMC-QMGRNAME ='

MQTMC-QMGRNAME OF MQTMC '='.
 DISPLAY 'MQTMC-QNAME ='

MQTMC-QNAME OF MQTMC '='.

The server model, which is expected to be a long running task, is better supported
in a batch processing region, although the BMP cannot be triggered using
CSQQTRMN.

248 MQSeries Application Programming Guide

 Workflow

 Enquiry applications
A typical MQSeries application initiating an inquiry or update works as follows:

� Gather data from the user
� Put one or more MQSeries messages
� Get the reply messages (you might have to wait for them)
� Provide a response to the user

Because messages put on to MQSeries queues do not become available to other
MQSeries applications until they are committed, they must either be put out of
syncpoint, or the IMS application must be split into two transactions.

| If the inquiry involves putting a single message, it is acceptable to use the “no
| syncpoint” option; however, if the inquiry is more complex, or resource updates are
| involved, you might get consistency problems if failure occurs and you don’t use
| syncpointing.

To overcome this, IMS MPP transactions using MQI calls could be split using a
program-to-program message switch; see the IMS/ESA Application Programming:
Data Communication manual for information about this. This would allow an inquiry
program to be implemented in an MPP :

 Initialize first program/Connect
 .
 Open queue for output
 .
 Put inquiry to MQSeries queue
 .
 Switch to second MQSeries program, passing necessary data in save
 pack area (this commits the put)
 .
END
 .
 .
 Initialize second program/Connect
 .
 Open queue for input shared
 .
 Get results of inquiry from MQSeries queue
 .
 Return results to originator
 .
END

| MQSeries Workflow
| MQSeries Workflow on OS/390 is a tool which helps companies improve their
| business processes. OS/390 workload manager (WLM) addresses the need for:

| � Managing workload distribution
| � Load balancing
| � Distribution of computing resources to competing workloads

| MQSeries support for OS/390 workload manager introduces a new type of local
| queue: a WLM-managed queue. It is recognized by a new value of the INDXTYPE
| attribute called MSGTOKEN. The initiation queue associated with a WLM-managed

 Chapter 15. Using and writing applications on MQSeries for OS/390 249

 Workflow

| queue should have TRIGTYPE defined as NONE and no ordinary local queues
| should be associated with this initiation queue.

| If an MQSeries Workflow server application has the initiation queue open for input,
| MQSeries updates a WLM worklist as part of commit processing of MQPUTs to the
| WLM-managed queue. The setting of TRIGGER or NOTRIGGER on the
| WLM-managed queue has no effect on the updating of this WLM worklist.

| The PROCESS definition is used to provide the name of the
| application_environment associated with a WLM-managed queue. This is passed
| in the APPLICID attribute. You should ensure that a WLM-managed queue
| uniquely references an associated process and that two processes do not specify
| the same APPLICID value.

| Messages are retrieved from a WLM-managed queue using a unique
| message_token which must be passed to MQGET. To do this, a new
| message_token value (MQGMO_MSGTOKEN) and a new get message match
| option (MQMO_MATCH_MSG_TOKEN) are used.

| There are new MQRC values for MQGET (MQRC_MSG_TOKEN_ERROR) and
| MQPUT (MQRC_MISSING_WIH and MQRC_WIH_ERROR).
| MQRC_MISSING_WIH is returned if a message, MQPUT to a WLM-managed
| queue, does not include the new work information header (MQWIH).
| MQRC_WIH_ERROR is returned if the message data does not conform to an
| MQWIH. MQGET does not remove this header from the message.

| Note: You may experience excessive CPU usage if your OS/390 system is at
| Version 2.5 or earlier and the number of messages on WLM-managed queues
| exceeds 500.

| For further information see IBM MQSeries Workflow:Concepts and Architecture,
| GH12-6285 and IBM MQSeries Workflow for OS/390:Customization and
| Administration, SC33-7030.

250 MQSeries Application Programming Guide

 Object-oriented programming

| Chapter 16. Object-oriented programming with MQSeries

| The preceding chapters have described the procedural Message Queue Interface
| (MQI), which may be used from programming languages such as COBOL, PL/I, C,
| and C++. The MQI comprises calls, structures, and elementary data types to allow
| an application programmer to create MQSeries applications.

| MQSeries provides an alternative way of programming MQSeries applications, that
| can be used from object-oriented programming languages. It is called the
| MQSeries Object Model. Instead of calls and structures, the MQSeries Object
| Model provides classes that provide the same functionality, but which are a more
| natural way of programming in an object-oriented environment.

| What is in the MQSeries Object Model?
| The MQSeries Object Model comprises the following:

| � Classes representing familiar MQSeries concepts such as queue managers,
| queues, and messages.

| � Methods on each class corresponding to MQI calls.

| � Properties on each class corresponding to attributes of MQSeries objects.

| When creating an MQSeries application using the MQSeries Object Model, you
| create instances of these classes in the program. An instance of a class in
| object-oriented programming is called an object. When an object has been
| created, you interact with the object by examining or setting the values of the
| object’s properties (the equivalent of issuing an MQINQ or MQSET call), and by
| making method calls against the object (the equivalent of issuing the other MQI
| calls).

| Classes
| The MQSeries Object Model provides the following base set of classes. Note that
| the actual implementation of the model varies slightly between the different
| supported object-oriented environments.

| MQQueueManager
| An object of the MQQueueManager class represents a connection to a queue
| manager. It has methods to Connect(), Disconnect(), Commit(), and Backout()
| (the equivalent of MQCONN, MQDISC, MQCMIT, and MQBACK). It has
| properties corresponding to the attributes of a queue manager. Note that
| accessing a queue manager attribute property implicitly connects to the queue
| manager if not already connected. Destroying an MQQueueManager object
| implicitly disconnects from the queue manager.

| MQQueue
| An object of the MQQueue class represents a queue. It has methods to Put()
| and Get() messages to and from the queue (the equivalent of MQPUT and
| MQGET). It has properties corresponding to the attributes of a queue. Note
| that accessing a queue attribute property, or issuing a Put() or Get() method
| call, implicitly opens the queue (the equivalent of MQOPEN). Destroying an
| MQQueue object implicitly closes the queue (the equivalent of MQCLOSE).

 Copyright IBM Corp. 1993,1999 251

 Object-oriented programming

| MQMessage
| An object of the MQMessage class represents a message to be put on a
| queue or got from a queue. It comprises a buffer, and encapsulates both
| application data and MQMD. It has properties corresponding to MQMD fields,
| and methods that allow you to write and read user data of different types (for
| example, strings, long integers, short integers, single bytes) to and from the
| buffer.

| MQPutMessageOptions
| An object of the MQPutMessageOptions class represents the MQPMO
| structure. It has properties corresponding to MQPMO fields.

| MQGetMessageOptions
| An object of the MQGetMessageOptions class represents the MQGMO
| structure. It has properties corresponding to MQGMO fields.

| MQProcess
| An object of the MQProcess class represents a process definition (used with
| triggering). It has properties that represent the attributes of a process
| definition.

| MQDistributionList
| MQSeries Version 5 products and MQSeries for AS/400 only. An object of the
| MQDistributionList class represents a distribution list (used to send multiple
| messages with a single MQPUT). It comprises a list of MQDistributionListItem
| objects.

| MQDistributionListItem
| MQSeries Version 5 products and MQSeries for AS/400 only. An object of the
| MQDistributionListItem class represents a single distribution list destination. It
| encapsulates the MQOR, MQRR, and MQPMR structures, and has properties
| corresponding to the fields of these structures.

| Object references
| In an MQSeries program that uses the MQI, MQSeries returns connection handles
| and object handles to the program. These handles must be passed as parameters
| on subsequent MQSeries calls. With the MQSeries Object Model, these handles
| are hidden from the application program. Instead, the creation of an object from a
| class results in an object reference being returned to the application program. It is
| this object reference that is used when making method calls and property accesses
| against the object.

| Return codes
| Issuing a method call or setting a property value results in return codes being set.
| These return codes are a completion code and a reason code, and are themselves
| properties of the object. The values of completion code and reason code are
| exactly the same as those defined for the MQI, with some extra values specific to
| the object-oriented environment.

252 MQSeries Application Programming Guide

 Object-oriented programming

| Programming language considerations
| The MQSeries Object Model is implemented in C++, Java, LotusScript, and
| ActiveX.

| Coding in C ++
| Refer to the MQSeries Using C++ book for information about coding programs
| using the MQSeries Object Model in C++.

| Coding in Java
| Refer to the MQSeries Using Java book for information about coding programs
| using the MQSeries Object Model in Java.

| Coding in LotusScript
| Refer to the MQSeries LotusScript Extension book for information about coding
| programs using the MQSeries Object Model in LotusScript.

| The MQSeries link LotusScript Extension is commonly known as the MQLSX. For
| Windows NT the MQLSX is included as part of MQSeries for Windows NT V5.1.
| For other platforms, or for earlier releases of MQSeries, the MQLSX and its
| documentation may be downloaded from the MQSeries Web site as a SupportPac.

| Coding in ActiveX
| Refer to the MQSeries for Windows NT Using the Component Object Model
| Interface for information about coding programs using the MQSeries Object Model
| in ActiveX.

| The MQSeries ActiveX is commonly known as the MQAX. The MQAX is included
| as part of MQSeries for Windows NT V5.1. For earlier releases of MQSeries for
| Windows NT, the MQAX and its documentation may be downloaded from the
| MQSeries Web site as a SupportPac.

 Chapter 16. Object-oriented programming with MQSeries 253

 Object-oriented programming

254 MQSeries Application Programming Guide

Part 3. Building an MQSeries application

Chapter 17. Building your application on AIX 259
Preparing C programs . 259

Linking libraries . 259
Preparing COBOL programs . 260

Preparing COBOL programs using IBM COBOL SET for AIX 261
Preparing COBOL programs using Micro Focus COBOL 261

Preparing PL/I programs . 261
Preparing CICS programs . 261

CICS on Open Systems support . 262

Chapter 18. Building your application on AS/400 265
Preparing C programs . 265
Preparing COBOL programs . 265
Preparing RPG programs . 266
AS/400 programming considerations . 266

QMQM activation group . 266

Chapter 19. Building your application on AT&T GIS UNIX 267
Preparing C programs . 267

C compiler flags . 267
Linking libraries . 268

Chapter 20. Building your application on Digital OpenVMS 269
Preparing C programs . 269

C compiler version . 269
C compiler flags . 269
Linking libraries . 269

Preparing COBOL programs . 270
COBOL compiler flags . 270
Linking libraries . 270

Chapter 21. Building your application on HP-UX 271
Preparing C programs . 271

Linking libraries . 271
Preparing COBOL programs . 272

Programs to run in the MQSeries client environment 272
Preparing CICS programs . 273

CICS on Open Systems support . 273

| Chapter 22. Building your application on OS/390 275
Preparing your program to run . 275

| Building OS/390 batch applications . 275
Building CICS applications . 277
Building IMS (BMP or MPP) applications 278

Dynamically calling the MQSeries stub . 279
Debugging your programs . 284

Debugging CICS programs . 284
Debugging TSO programs . 287

 Copyright IBM Corp. 1993,1999 255

Chapter 23. Building your application on OS/2 Warp 289
Preparing C programs . 289

Preparing CICS and Transaction Server programs 290
Preparing COBOL programs . 291

Preparing Transaction Server programs . 292
Preparing PL/I programs . 292

Chapter 24. Building your application on SINIX or DC/OSx 293
Preparing C programs . 293

C compiler flags . 293
Preparing COBOL programs . 294

Compiling COBOL programs . 294
Preparing CICS programs . 295

CICS on Open Systems support . 295
CICS sample transaction . 295

Linking libraries . 296

Chapter 25. Building your application on Sun Solaris 297
Preparing C programs . 297

Linking libraries . 298
Preparing COBOL programs . 298
Preparing CICS programs . 299

CICS on Open Systems support . 299

Chapter 26. Building your application on Tandem NSK 301
Unit of work (transaction) management . 301

General design considerations . 301
MQGMO_BROWSE_* with MQGMO_LOCK 301
Triggered applications . 301

Compiling and binding applications . 303
Running applications . 303

| Chapter 27. Building your application on VSE/ESA 305
| Linking library . 305
| Using the batch interface . 305
| Preparing C programs . 305
| Preparing COBOL programs . 305
| Preparing PL/I programs . 305

Chapter 28. Building your application on Windows 307
Linking libraries . 307

| Preparing Visual Basic programs . 307

Chapter 29. Building your application on Windows NT 309
Preparing C programs . 309

Preparing CICS and Transaction Server programs 310
Preparing COBOL programs . 311

Preparing CICS and Transaction Server programs 312
Preparing PL/I programs . 313

| Preparing Visual Basic programs . 313

| Chapter 30. Using lightweight directory access protocol services with
| MQSeries for Windows NT . 315
| What is a directory service? . 315

256 MQSeries Application Programming Guide

| What is LDAP? . 315
| Using LDAP with MQSeries . 316
| LDAP sample program . 317
| Building the sample program . 317
| Configuring the directory . 317
| Configuring the IBM eNetwork LDAP server 318
| Configuring the Netscape directory server 319
| Running the sample program . 320
| Program design . 320

 Part 3. Building an MQSeries application 257

258 MQSeries Application Programming Guide

 Building applications on AIX � Preparing C programs

Chapter 17. Building your application on AIX

The AIX publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for AIX

| applications to run under AIX. C, C++, and COBOL are supported. For information
| about preparing your C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
AIX vary with the programming language your source code is written in. In addition
to coding the MQI calls in your source code, you must add the appropriate
language statements to include the MQSeries for AIX include files for the language
you are using. You should make yourself familiar with the contents of these files.
See Appendix G, “MQSeries data definition files” on page 529 for a full description.

Preparing C programs
| Precompiled C programs are supplied in the /usr/mqm/samp/bin directory. Use the
| ANSI compiler and run the following command:

| $ cc -o <amqsput> <amqsput>.c -lmqm

| where amqsput is a sample program.

If you want to use the programs on a machine which has only the MQSeries client
for AIX installed, recompile the programs to link them with the client library (-lmqic)
instead.

 Linking libraries
You will need the following libraries:

� If your application is running in a DCE client environment you will need to copy
the DCE library, libxdsom.a, on to your machine.

� You need to link your programs with the appropriate library provided by
MQSeries.

In a non-threaded environment you must link to one of the following libraries:

Library file Program/exit type
libmqm.a Server for C
libmqic.a Client for C

In a threaded environment, you must link to one of the following libraries:

Library file Program/exit type
libmqm_r.a Server for C
libmqic_r.a Client for C

| For example, to build a simple threaded MQSeries application from a single
| compilation unit on AIX 4.3 run the following command:

| $ xlc_r7 -o myapp myapp.c -lmqm_r

| where myapp is the name of your program.

 Copyright IBM Corp. 1993,1999 259

 Preparing COBOL programs

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable
| services and components” in the MQSeries Programmable System
| Management book for further information), you need to link to the
| libmqmzf.a library in a non-threaded application and to the libmqmzf_r.a
| library in a threaded application.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library in a non-threaded
application and to the libmqmxa_r.a library in a threaded application.

3. You need to link trusted applications to the threaded MQSeries libraries.
However, only one thread in an MQSeries on UNIX systems trusted
application can be connected at a time.

4. To run the sample Encina program, link against the following libraries:

 – libmqmxa_r.a
 – libmqm_r.a

Also, link to the Encina and DCE libraries:

 – libEncServer.a
 – libEncina.a
 – libdce.a

The sample must be compiled and linked using xlc_r4.

5. You must link MQSeries libraries before any other product libraries (in this
case, DCE and Encina). For example:

cc -o put put.c -lmqm_r -ldce

This ensures that any operating system functions that have been redefined
by DCE are also used by MQSeries.

Preparing COBOL programs
You need to link your program with one of the following:

libmqmcb.a Server for COBOL
libmqicb.a Client for COBOL
libmqmcb_r.a Server for COBOL (in a threaded application)

You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler
depending on the program:

� Programs beginning amqi are suitable for the IBM COBOL Set compiler,

� programs beginning amqm are suitable for the Micro Focus COBOL compiler,

and

� programs beginning amqð are suitable for either compiler.

260 MQSeries Application Programming Guide

 Preparing PL/I programs � Preparing CICS programs

Preparing COBOL programs using IBM COBOL SET for AIX
| Sample COBOL programs are supplied with MQSeries. To compile such a
| program, enter:

| cob2 -o amqðputð amqðputð.cbl
| -L/usr/mqm/lib
| -lmqmcb -qLIB
| -I/usr/mqm/inc

| Note: For threaded applications, cob2_r is used with the libmqmcb_r.a library.

Preparing COBOL programs using Micro Focus COBOL
| Set environment variables before compiling your program as follows:

| export COBCPY=/usr/mqm/inc
| export LIB=/usr/mqm/lib;$LIB

To compile a COBOL program using Micro Focus COBOL, enter:

cob -xvP amqðputð.cbl -lmqmcb

See the Micro Focus COBOL documentation for a description of the environment
variables that need to be set up.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

| To prepare a PL/I program:

| 1. Link your program with one of the libraries listed in “Linking libraries” on
| page 259.

| 2. Compile your program:

| pli amqpputð.pli -I/usr/mqm/inc /usr/mqm/lib/libmqm.a

Preparing CICS programs
XA switch modules are provided to enable you to link CICS with MQSeries:

Always link your transactions with the thread safe MQSeries library libmqm_r.a.

Note: On AIX Version 4, the libmqm_r.a library works with both native and DCE
libraries.

Table 12. Essential Code for CICS applications (AIX)

Description C (source) C (exec) - add to your
XAD.Stanza

XA initialization routine amqzscix.c amqzsc21 - CICS for AIX

 Chapter 17. Building your application on AIX 261

 Preparing CICS programs

| Compile the program by typing:

| xlC_r4 /usr/mqm/samp/amqzscix.c -I/usr/lpp/encina/include \
| -e amqzscix -o amqzscix /usr/lpp/cics/lib/regxa_swxa.o \
| -L/usr/lpp/cics/lib -L/usr/lpp/encina/lib -lmqmcics_r -lmqmxa_r -lmqm_r \
| -lcicsrt -lEncina -lEncServer -ldce

| You can find more information about supporting CICS transactions in “Using CICS”
| in the MQSeries System Administration book.

CICS on Open Systems support
MQSeries on UNIX systems support CICS on Open Systems by way of the XA
interface.

You must ensure that CICS COBOL applications are linked to the threaded version
of the library. CICS on Open Systems MQSeries transactions must link with
libmqm_r, except on Sun Solaris, where you must link with lmqmcs_d.

You can run CICS programs using IBM COBOL SET for AIX or Micro Focus
COBOL. The following sections describe the difference between these.

Preparing CICS COBOL programs using IBM COBOL SET for AIX
| To use IBM COBOL, follow these steps:

| 1. Export the following environment variable:

| export LDFLAGS="-qLIB -bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp \
| -I/usr/mqm/inc -I/usr/lpp/cics/include \
| -e _iwz_cobol_main \
| -L/usr/lib/dce -lmqmcb_r -ldcelibc_r -ldcepthreads"

| where LIB is a compiler directive.

| 2. Translate, compile, and link the program by typing:

| cicstcl -l IBMCOB <yourprog>.ccp

Preparing CICS COBOL programs using Micro Focus COBOL
| To use Micro Focus COBOL, follow these steps:

| 1. Add the MQSeries COBOL run-time library module to the run-time library using
| the following command:

| cicsmkcobol -L/usr/lib/dce -L/usr/mqm/lib \
| /usr/mqm/lib/ libmqmcbrt.ð -lmqm_r

| This creates the Micro Focus COBOL language method file and enables the
| CICS run-time COBOL library to call MQSeries on UNIX systems.

| Note: cicsmkcobol must be run only when one of the following is installed:

| � New version or release of Micro Focus COBOL
| � New version or release of CICS for AIX
| � New version or release of any supported database product (for COBOL
| transactions only)
| � CICS for AIX

| 2. Export the following environment variables:

| COBCPY=/usr/mqm/inc export COBCPY
| LDFLAGS="-L/usr/mqm/lib -lmqm_r" export LDFLAGS

262 MQSeries Application Programming Guide

 Preparing CICS programs

| 3. Translate, compile, and link the program by typing:

| cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS C programs
You build CICS C programs using the standard CICS facilities:

1. Export one of the following environment variables:

| � LDFLAGS = “-L/usr/mqm/lib -lmqm_r” export LDFLAGS
| � USERLIB = “-L/usr/mqm/lib -lmqm_r” export USERLIB

2. Translate, compile, and link the program by typing:

cicstcl -l C amqscicð.ccs

CICS C sample transaction: Sample C source for a CICS MQSeries transaction
is provided by AMQSCIC0.CCS. The transaction reads messages from the
transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue whose name is contained in the
transmission header of the message. Any failures will be sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. The sample MQSC script AMQSCIC0.TST may be
used to create these queues and sample input queues.

 Chapter 17. Building your application on AIX 263

 Preparing CICS programs

264 MQSeries Application Programming Guide

 Building applications on AS/400 � Preparing COBOL programs

Chapter 18. Building your application on AS/400

| The AS/400 publications describe how to build executable applications from the
| programs you write. This chapter describes the additional tasks, and the changes
| to the standard tasks, you must perform when building MQSeries for AS/400
| applications to run on AS/400 systems. COBOL, C, C++, and RPG programming
| languages are supported. For information about preparing your C++ programs, see
| the MQSeries Using C++ book.

The tasks you must perform to create an executable MQSeries for AS/400
application depend on the programming language the source code is written in. In
addition to coding the MQI calls in your source code, you must add the appropriate
language statements to include the MQSeries for AS/400 data definition files for the
language you are using. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
To compile a C program, you can use the OS/400 command, CRTCMOD. Make
sure that the library containing the data definition files (QMQM) is in the library list
when you perform the compilation.

You must then bind the output of the compiler with the service program
AMQZSTUB using the CRTPGM command. An example of the command is:

CRTPGM PGM(pgmname) MODULE(pgmname)
BNDSRVPGM(QMQM/AMQZSTUB)

where pgmname is the name of your program.

Preparing COBOL programs
To compile a COBOL program in the OPM environment, use the OS/400 command,
CRTCBLPGM. To compile an ILE COBOL program, use the OS/400 command,
CRTBNDCBL, or the two commands CRTCBLMOD, and CRTPGM.

See the ILE COBOL/400 Programmer's Guide and ILE COBOL/400 Reference for
further information.

To make the compiler accept the single quotation mark character (') as the string
delimiter in the COBOL copy files, use the compiler option \APOST. Make sure that
the library containing the data definition files (QMQM) is in the library list when you
perform the compilation.

Note: For more information on compiling a CICS application, see the CICS for
AS/400 Application Programming Guide, SC33-1386.

When you run a compiled COBOL MQSeries for AS/400 program, make sure the
library QMQM is in the library list.

 Copyright IBM Corp. 1993,1999 265

 Preparing RPG programs � AS/400 programming

Preparing RPG programs
If you are using MQSeries for AS/400, you can write your applications in RPG. For
more information see “Coding in RPG” on page 82, and refer to the MQSeries for
AS/400 Application Programming Reference (RPG) manual.

AS/400 programming considerations
| In MQSeries for AS/400 V4R2, the system behavior for activation group termination
| was altered. In previous releases, calling an entry point (by function pointer or

bound call) in an activation group which had been terminated would normally cause
| a MCH3402 error. In MQSeries for AS/400 V4R2, and subsequent releases, the
| system terminates the process, unless the activation group was explicitly added to
| the program stack.

If you issue an ENDMQM *IMMED whilst a program is running which is bound to
the AMQZSTUB and/or AMQVSTUB service programs, this change causes the
following behavior:

� If the program has been called from a QCMD prompt your program is
terminated and you are logged off the system.

� If the program has been called from within an MQSeries panel, for example
WRKMQMCHL, the program is terminated but you are not logged off the
system.

QMQM activation group
When creating your program on AS/400, the QMQM activation group should not be
used. The QMQM activation group is for the use of MQSeries only.

266 MQSeries Application Programming Guide

 Building applications on AT&T GIS UNIX � Preparing C programs

Chapter 19. Building your application on AT&T GIS UNIX

| This chapter describes the additional tasks, and the changes to the standard tasks,
| you must perform when building MQSeries for AT&T GIS UNIX applications to run
| under AT&T GIS UNIX4. C and C++ programming languages are supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
| Precompiled C programs are found in the /opt/mqm/samp/bin directory. To build a
| sample from source code, use the C compiler in /bin/cc, for example:

| $ /bin/cc -o <yourprog> <yourprog>.c -lmqm -lmqmcs -lmqmzse \
| -lnet -lnsl -lsocket -ldl

Note: The backslash (\) represents the continuation of the line.

C compiler flags
The order of the libraries specified is important. The following is an example of
how to build the sample program amqsput0:

/bin/cc -o <amqsputð> <amqsputð>.c -lmqic -lmqmcs -lmqmzse \
-lnet -lnsl -lsocket -ldl

This links with the client library -lmqic, so allows you to use the programs on a
machine which has only the MQSeries client for GIS installed.

If you use the other version of the compiler (/usr/ucb/cc), your application may
compile and link successfully. However when you run it, it will fail when it attempts
to connect to the queue manager.

4 This platform has become NCR UNIX SVR4 MP-RAS, R3.0.

 Copyright IBM Corp. 1993,1999 267

 Preparing C programs

 Linking libraries
You need to link your programs with the appropriate library provided by MQSeries.

You must link to one or more of the following libraries:

Library file Program/exit type
libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable services
| and components” in the MQSeries Programmable System Management book
| for further information), you need to link to the libmqmzf.so library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library.

268 MQSeries Application Programming Guide

 Building applications on Digital OpenVMS � Preparing C programs

Chapter 20. Building your application on Digital OpenVMS

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Digital OpenVMS applications to run
under Digital OpenVMS. C and COBOL are supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
This section explains the compiler and libraries you need to prepare your C
programs.

C compiler version
You must use the DEC C compiler. To invoke the compiler, enter:

 $ CC/DECC

This is the default.

C compiler flags
The include files for MQSeries for Digital OpenVMS are located in the
MQS_INCLUDE directory. The following is an example of how to build the sample
program AMQSPUT0:

 $ CC/INCLUDE_DIRECTORY=MQS_INCLUDE AMQSPUTð
$ LINK AMQSPUTð.OBJ,SYS$INPUT/OPTIONS

 SYS$SHARE: MQM/SHAREABLE
Ctrl + Z

 Linking libraries
You need to link your programs with the appropriate library provided by MQSeries.
The libraries are found in SYS$SHARE.

You must link to one or more of the following libraries:

Library file Program/exit type
mqm.exe Server for C
mqic.exe Client for C
mqmzf.exe Installable service exits for C

 Copyright IBM Corp. 1993,1999 269

 Preparing COBOL programs

Preparing COBOL programs
This section explains the compiler and libraries you need to prepare your COBOL
programs.

COBOL compiler flags
You must compile the programs in ANSI mode using the /ANSI switch to the DEC
COBOL compiler. The following is an example of how to build the sample program
AMQ0PUT0:

 $ COBOL/ANSI AMQðPUTð.COB
$ LINK AMQðPUTð.OBJ,SYS$INPUT/OPTIONS

 SYS$SHARE: MQMCB/SHAREABLE
Ctrl + Z

 Linking libraries
You need to link your program with one of the following:

MQMCB.EXE COBOL
MQICB.EXE COBOL MQSeries client

270 MQSeries Application Programming Guide

 Building applications on HP-UX � Preparing C programs

Chapter 21. Building your application on HP-UX

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for HP-UX applications to run under

| HP-UX. C, C++, and COBOL are supported. For information about preparing your
| C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
HP-UX vary with the programming language your source code is written in. In
addition to coding the MQI calls in your source code, you must add the appropriate
language statements to include the MQSeries for HP-UX include files for the
language you are using. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
| Work in your normal environment. Precompiled C programs are supplied in the
| /opt/mqm/samp/bin directory. The following is an example of how to build the
| sample program amqsput0 in a non-threaded environment:

| cc -Aa -D_HPUX_SOURCE -o amqsputð amqsputð.c -lmqm

| The following is an example of how to build the sample program amqsput0 in a
| threaded environment:

| cc -Aa -D_HPUX_SOURCE -o amqsputð amqsputð.c -lmqm_r -lcma

| If you want to use the programs on a machine which has only the MQSeries client
| for HP-UX installed, recompile the programs to link them with the client library
| instead. The following is an example of how to build a non-threaded client:

cc -Aa -D_HPUX_SOURCE -o amqsputð amqsputð.c -lmqic

| The following is an example of how to build a threaded client:

| cc -Aa -D_HPUX_SOURCE -o amqsputð amqsputð.c -lmqic_r

 Linking libraries
The following lists the libraries you will need.

� You need to link your programs with the appropriate library provided by
MQSeries.

| In a non-threaded environment, you must link to one of the following libraries:

Library file Program/exit type
libmqm.sl Server for C
libmqic.sl Client for C

| In a threaded environment, you must link to one of the following libraries:

Library file Program/exit type
libmqm_r.sl Server for C
libmqic_r.sl Client for C

 Copyright IBM Corp. 1993,1999 271

 Preparing COBOL programs

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable
| services and components” in the MQSeries Programmable System
| Management book for further information), you need to link to the
| libmqmzf.sl library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, you need to link to the libmqmxa.a library in a non-threaded
application and to the libmqmxa_r.a library in a threaded application.

3. You must link MQSeries libraries before any other product libraries (in this
case, DCE and Encina). This ensures that any operating system functions
that have been redefined by DCE are also used by MQSeries.

Preparing COBOL programs
| Compile the programs using the Micro Focus compiler. The copy files which
| declare the structures are in /opt/mqm/inc:

| $ export LIB=/usr/mqm/lib;$LIB
| $ export COBCPY=“/opt/mqm/inc”
| $ cob -vxP <amqsput>.cbl -lmqmcb

where amqsput is a sample program.

You must ensure that you have specified adequate run-time stack sizes; 16 KB is
the recommended minimum.

You need to link your program with one of the following:

libmqmcb.sl Server for COBOL
libmqicb.sl Client for COBOL

| amqmcb_r.sl Threaded applications

Programs to run in the MQSeries client environment
If you are using LU 6.2 to connect your MQI client to a server, you must link your
application to libsna.a, part of the SNAplusAPI product. Use the –lV3 and –lstr
options on your compile and link command.

� The –lV3 option gives your program access to the AT&T signaling library (the
SNAPlusAPI uses AT&T signals)

� The –lstr option links your program to the streams component

Note: The –lstr option is not needed on HP–UX Version 10.

| If you are not using LU 6.2, consider linking to libsnastubs.a (in /opt/mqm/lib) to
| fully resolve function names. The need to link to this library varies with how you
| are using the -B flag during the linking stage.

272 MQSeries Application Programming Guide

 Preparing CICS programs

Preparing CICS programs
To build the sample CICS transaction, amqscic0.ccs, run the following command:

$ export USERLIB=“-lmqm_r”
$ cicstcl -l C amqscicð.ccs

An XA switch module is provided to enable you to link CICS with MQSeries:

| You can find more information about supporting CICS transactions in “Using CICS”
| in the MQSeries System Administration book.

Table 13. Essential Code for CICS applications (HP-UX)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc

CICS on Open Systems support
MQSeries on UNIX systems supports CICS on Open Systems by way of the XA
interface.

It is very important to ensure that CICS COBOL applications are linked to the
threaded version of the library. CICS on Open Systems MQSeries transactions
must link with libmqm_r, except on Sun Solaris, where you must link with
lmqmcs_d.

CICS C sample transaction: Sample C source for a CICS MQSeries transaction
is provided by AMQSCIC0.CCS. The transaction reads messages from the
transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue whose name is contained in the
transmission header of the message. Any failures will be sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. The sample MQSC script AMQSCIC0.TST may be
used to create these queues and sample input queues.

 Chapter 21. Building your application on HP-UX 273

 Preparing CICS programs

274 MQSeries Application Programming Guide

 Building applications on OS/390 � Preparing your programs

| Chapter 22. Building your application on OS/390

| The CICS, IMS, and OS/390 publications describe how to build applications that
| run in these environments. This chapter describes the additional tasks, and the
| changes to the standard tasks, you must perform when building MQSeries for
| OS/390 applications for these environments. COBOL, C, C++, Assembler, and PL/I
| programming languages are supported. (For information on building C++
| applications see the MQSeries Using C++ book.)

The tasks you must perform to create an executable MQSeries for OS/390
application depend on both the programming language the program is written in,
and the environment in which the application will run.

In addition to coding the MQI calls in your program, you must add the appropriate
language statements to include the MQSeries for OS/390 data definition file for the
language you are using. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

 Note

| The name thlqual is the high-level qualifier of the installation library on OS/390.

Preparing your program to run
After you have written the program for your MQSeries application, to create an
executable application you have to compile or assemble it, then link-edit the
resulting object code with the stub program that MQSeries for OS/390 supplies for

| each environment it supports. How you prepare your program depends on both the
| environment (batch, CICS, or IMS(BMP or MPP)) in which the application will run,
| and the structure of the data sets on your OS/390 installation. The details are

described in the following sections.

“Dynamically calling the MQSeries stub” on page 279 describes an alternative
method of making MQI calls in your programs so that you do not need to link-edit
an MQSeries stub. This method is not available for all languages and
environments.

| Do not link-edit a higher level of stub program than that of the version of MQSeries
| for OS/390 on which your program is running. For example, a program running on
| MQSeries for MVS/ESA V1.2 must not be link-edited with a stub program supplied
| with MQSeries for OS/390 V2.1.

| Building OS/390 batch applications
| To build an MQSeries for OS/390 application that runs under OS/390 batch, create
| job control language (JCL) that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your
compilation must include SYSLIB statements that make the product data
definition files available to the compiler.

 Copyright IBM Corp. 1993,1999 275

 Preparing your programs

The data definitions are supplied in the following MQSeries for OS/390 libraries:

For COBOL, thlqual .SCSQCOBC
For assembler language, thlqual .SCSQMACS
For C, thlqual .SCSQC370
For PL/I, thlqual .SCSQPLIC

2. For a C application, prelink the object code created in step 1 on page 275.

| 3. Link-edit the object code created in step 1 on page 275 (or step 2 for a C
| application) to produce a load module. When you link-edit the code, you must
| include one of the MQSeries for OS/390 batch stub programs (CSQBSTUB or
| one of the RRS stub programs: CSQBRRSI or CSQBRSTB).

| CSQBSTUB single-phase commit provided by MQSeries for OS/390
| CSQBRRSI two-phase commit provided by RRS using the MQI
| CSQBRSTB two-phase commit provided by RRS directly

| Note: If you use CSQBRSTB then you must also link-edit your application with
| ATRSCSS from SYS1.CSSLIB. Figure 20 and Figure 21 show fragments of
| JCL to do this. The stubs are language-independent and are supplied in library
| thlqual .SCSQLOAD.

4. Store the load module in an application load library.

| .| .| .
| //\
| //\ MQSERIES FOR OS/39ð LIBRARY CONTAINING BATCH STUB
| //\
| //CSQSTUB DD DSN=++HLQ.MQM1ðð++.SCSQLOAD,DISP=SHR
| //\
| .| .| .
| //SYSIN DD \
| INCLUDE CSQSTUB(CSQBSTUB)
| .| .| .
| /\

| Figure 20. Fragments of JCL to link-edit the object module in the batch environment, using
| single-phase commit

| .| .| .
| //\
| //\ MQSERIES FOR OS/39ð LIBRARY CONTAINING BATCH STUB
| //\
| //CSQSTUB DD DSN=++HLQ.MQM1ðð++.SCSQLOAD,DISP=SHR
| //CSSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
| //\
| .| .| .
| //SYSIN DD \
| INCLUDE CSQSTUB(CSQBRSTB)
| INCLUDE CSSLIB(ATRSCSS)
| .| .| .
| /\

| Figure 21. Fragments of JCL to link-edit the object module in the batch environment, using
| two-phase commit

276 MQSeries Application Programming Guide

 Preparing your programs

| To run a batch or RRS program, you must include the libraries thlqual .SCSQAUTH
| and thlqual .SCSQLOAD in the STEPLIB or JOBLIB data set concatenation.

| To run a TSO program, you must include the libraries thlqual .SCSQAUTH and
| thlqual .SCSQLOAD in the STEPLIB used by the TSO session.

| To run an OpenEdition batch program from the OpenEdition shell, add the libraries
| thlqual .SCSQAUTH and thlqual .SCSQLOAD to the STEPLIB specification in your
| $HOME/.profile like this:

| STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQLOAD
| export STEPLIB

Building CICS applications
To build an MQSeries for OS/390 application that runs under CICS, you must:

� Translate the CICS commands in your program into the language in which the
rest of your program is written

� Compile or assemble the output from the translator to produce object code

� Link-edit the object code to create a load module

CICS provides a procedure to execute these steps in sequence for each of the
programming languages it supports.

� For CICS Transaction Server for OS/390, the CICS Transaction Server for
OS/390 System Definition Guide describes how to use these procedures and
the CICS/ESA Application Programming Guide gives more information on the
translation process.

You must include:

� In the SYSLIB statement of the compilation (or assembly) stage, statements
that make the product data definition files available to the compiler. The data
definitions are supplied in the following MQSeries for OS/390 libraries:

For COBOL, thlqual .SCSQCOBC
For assembler language, thlqual .SCSQMACS
For C, thlqual .SCSQC370
For PL/I, thlqual .SCSQPLIC

� In your link-edit JCL, the MQSeries for OS/390 CICS stub program
(CSQCSTUB). Figure 22 on page 278 shows fragments of JCL code to do
this. The stub is language-independent and is supplied in library
thlqual .SCSQLOAD.

When you have completed these steps, store the load module in an application
load library and define the program to CICS in the usual way.

 Chapter 22. Building your application on OS/390 277

 Preparing your programs

...
//\
//\ MQSERIES FOR OS/39ð LIBRARY CONTAINING CICS STUB
//\
//CSQSTUB DD DSN=++HLQ.MQM1ðð++.SCSQLOAD,DISP=SHR
//\
...

//LKED.SYSIN DD \
 INCLUDE CSQSTUB(CSQCSTUB)
...

/\

Figure 22. Fragments of JCL to link-edit the object module in the CICS environment

| Before you run a CICS program, your system administrator must define it to CICS
| as an MQSeries program and transaction: you can then run it in the usual way.

Building IMS (BMP or MPP) applications
If you are building batch DL/I programs, see “Building OS/390 batch applications”
on page 275. To build other applications that run under IMS (either as a BMP or
an MPP), create JCL that performs these tasks:

1. Compile (or assemble) the program to produce object code. The JCL for your
compilation must include SYSLIB statements that make the product data
definition files available to the compiler. The data definitions are supplied in the
following MQSeries for OS/390 libraries:

For COBOL, thlqual .SCSQCOBC
For assembler language, thlqual .SCSQMACS
For C, thlqual .SCSQC370
For PL/I, thlqual .SCSQPLIC

2. For a C application, prelink the object module created in step 1.

3. Link-edit the object code created in step 1 (or step 2 for a C/370 application) to
produce a load module:

| a. Include the IMS language interface module (DFSLI000).

b. Include the MQSeries for OS/390 IMS stub program (CSQQSTUB).
Figure 23 on page 279 shows fragments of JCL to do this. The stub is
language independent and is supplied in library thlqual .SCSQLOAD.

Note: If you are using COBOL, you should select the NODYNAM compiler
option to enable the linkage editor to resolve references to CSQQSTUB
unless you intend to use dynamic linking as described in “Dynamically
calling the MQSeries stub” on page 279.

278 MQSeries Application Programming Guide

 MQSeries stub

4. Store the load module in an application load library.

...
//\
//\ MQSERIES FOR OS/39ð LIBRARY CONTAINING IMS STUB
//\
//CSQSTUB DD DSN=++HLQ.MQM1ðð++.SCSQLOAD,DISP=SHR
//\
...

//LKED.SYSIN DD \
 INCLUDE CSQSTUB(CSQQSTUB)
...

/\

Figure 23. Fragments of JCL to link-edit the object module in the IMS environment

| Before you run an IMS program, your system administrator must define it to IMS as
| an MQSeries program and transaction: you can then run it in the usual way.

Dynamically calling the MQSeries stub
Instead of link-editing the MQSeries stub program with your object code, you can
dynamically call the stub from within your program. You can do this in the batch,

| IMS, and CICS environments. This facility is not supported by programs using PL/I
| in the CICS environment and it is not supported in the RRS environment.

However, this method:

� Increases the complexity of your programs
� Increases the storage required by your programs at execution time
� Reduces the performance of your programs
� Means that you cannot use the same programs in other environments

If you call the stub dynamically, the appropriate stub program and its aliases must
be available at execution time. To ensure this, include the MQSeries for OS/390
data set SCSQLOAD:

For batch and IMS In the STEPLIB concatenation of the JCL
For CICS In the CICS DFHRPL concatenation

| For IMS, you must ensure that the library containing the dynamic stub (built as
| described in the information about installing the IMS adapter in the MQSeries for
| OS/390 System Management Guide) is ahead of the data set SCSQLOAD in the
| STEPLIB concatenation of the region JCL.

 Chapter 22. Building your application on OS/390 279

 MQSeries stub

Use the names shown in Table 14 when you call the stub dynamically. In PL/I,
only declare the call names used in your program.

For examples of how to use this technique, see the following figures:

Batch and COBOL Figure 24
CICS and COBOL Figure 25 on page 281
IMS and COBOL Figure 26 on page 281
Batch and assembler Figure 27 on page 282
CICS and assembler Figure 28 on page 282
IMS and assembler Figure 29 on page 282
Batch and C Figure 30 on page 282
CICS and C Figure 31 on page 283
IMS and C Figure 32 on page 283
Batch and PL/I Figure 33 on page 283
IMS and PL/I Figure 34 on page 284

Table 14. Call names for dynamic linking

MQI call Dynamic call name

| Batch (non-RRS)| CICS| IMS

MQBACK CSQBBACK not supported not supported

MQCMIT CSQBCOMM not supported not supported

MQCLOSE CSQBCLOS CSQCCLOS MQCLOSE

MQCONN CSQBCONN CSQCCONN MQCONN

MQDISC CSQBDISC CSQCDISC MQDISC

MQGET CSQBGET CSQCGET MQGET

MQINQ CSQBINQ CSQCINQ MQINQ

MQOPEN CSQBOPEN CSQCOPEN MQOPEN

MQPUT CSQBPUT CSQCPUT MQPUT

MQPUT1 CSQBPUT1 CSQCPUT1 MQPUT1

MQSET CSQBSET CSQCSET MQSET

...
 WORKING-STORAGE SECTION.
...

ð5 WS-MQOPEN PIC X(8) VALUE 'CSQBOPEN'.
...

 PROCEDURE DIVISION.
...

CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 24. Dynamic linking using COBOL in the batch environment

280 MQSeries Application Programming Guide

 MQSeries stub

...
 WORKING-STORAGE SECTION.
...

ð5 WS-MQOPEN PIC X(8) VALUE 'CSQCOPEN'.
...

 PROCEDURE DIVISION.
...

CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 25. Dynamic linking using COBOL in the CICS environment

...
 WORKING-STORAGE SECTION.
...

ð5 WS-MQOPEN PIC X(8) VALUE 'MQOPEN'.
...

 PROCEDURE DIVISION.
...

CALL WS-MQOPEN WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

\ --- \
 \

\ If the compile option 'DYNAM' is specified
\ then you may code the MQ calls as follows

 \
\ --- \

...
 CALL 'MQOPEN' WS-HCONN
 MQOD
 WS-OPTIONS
 WS-HOBJ
 WS-COMPCODE
 WS-REASON.
...

Figure 26. Dynamic linking using COBOL in the IMS environment

 Chapter 22. Building your application on OS/390 281

 MQSeries stub

...
 LOAD EP=CSQBOPEN
...

 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...

 DELETE EP=CSQBOPEN
...

Figure 27. Dynamic linking using assembler language in the batch environment

...
EXEC CICS LOAD PROGRAM('CSQCOPEN') ENTRY(R15)

...
 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...

EXEC CICS RELEASE PROGRAM('CSQCOPEN')
...

Figure 28. Dynamic linking using assembler language in the CICS environment

...
 LOAD EP=MQOPEN
...

 CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL
...

 DELETE EP=MQOPEN
...

Figure 29. Dynamic linking using assembler language in the IMS environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...

main()
{
CALL_ME \ csqbopen;
...

csqbopen = (CALL_ME \) fetch("CSQBOPEN");
(\csqbopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 30. Dynamic linking using C language in the batch environment

282 MQSeries Application Programming Guide

 MQSeries stub

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...

main()
{
CALL_ME \ csqcopen;
...
EXEC CICS LOAD PROGRAM("CSQCOPEN") ENTRY(csqcopen);

(\csqcopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 31. Dynamic linking using C language in the CICS environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...

main()
{
CALL_ME \ mqopen;
...

mqopen = (CALL_ME \) fetch("MQOPEN");
(\mqopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 32. Dynamic linking using C language in the IMS environment

...
DCL CSQBOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

...
 FETCH CSQBOPEN;

 CALL CSQBOPEN(HQM,
 MQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

 RELEASE CSQBOPEN;

Figure 33. Dynamic linking using PL/I in the batch environment

 Chapter 22. Building your application on OS/390 283

 Debugging programs

...
DCL MQOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

...
 FETCH MQOPEN;

 CALL MQOPEN(HQM,
 MQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

 RELEASE MQOPEN;

Figure 34. Dynamic linking using PL/I in the IMS environment

Debugging your programs
The main aids to debugging MQSeries for OS/390 application programs are the

| reason codes returned by each API call. See Chapter 5, “Return codes” in the
| MQSeries Application Programming Reference manual for a list of these and for
| more information, including suggestions for corrective action.

This chapter also suggests other debugging tools that you may want to use in
particular environments.

Debugging CICS programs
You can use the CICS Execution Diagnostic Facility (CEDF) to test your CICS
programs interactively without having to modify the program or program-preparation

| procedure. For more information about EDF, see the CICS Transaction Server for
| OS/390 CICS Application Programming Guide.

 CICS trace
You will probably also find it helpful to use the CICS Trace Control transaction
(CETR) to control CICS trace activity. For more information about CETR, see the
CICS Transaction Server for OS/390 CICS-Supplied Transactions manual.

To determine whether CICS trace is active, display connection status using the
CKQC panel. This panel also shows the trace number.

To interpret CICS trace entries, see Table 15 on page 285.

The CICS trace entry for these values is APðxxx (where xxx is the trace number
specified when the CICS adapter was enabled). All trace entries except CSQCTEST
are issued by CSQCTRUE. CSQCTEST is issued by CSQCRST and CSQCDSP.

284 MQSeries Application Programming Guide

 Debugging programs

Table 15 (Page 1 of 2). CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCABNT Abnormal termination Before issuing END_THREAD
ABNORMAL to MQSeries. This is
due to the end of the task and
therefore an implicit backout could
be performed by the application. A
ROLLBACK request is included in
the END_THREAD call in this case.

Unit of work information. You can
use this information when finding
out about the status of work. (For
example, it can be verified against
the output produced by the
DISPLAY THREAD command, or
the MQSeries for OS/390 log print
utility.)

CSQCBACK Syncpoint backout Before issuing BACKOUT to
MQSeries for OS/390. This is due
to an explicit backout request from
the application.

Unit of work information.

CSQCCCRC Completion code and
reason code

After unsuccessful return from API
call.

Completion code and reason code.

CSQCCOMM Syncpoint commit Before issuing COMMIT to
MQSeries for OS/390. This can be
due to a single-phase commit
request or the second phase of a
two-phase commit request. The
request is due to a explicit syncpoint
request from the application.

Unit of work information.

CSQCEXER Execute resolve Before issuing
EXECUTE_RESOLVE to MQSeries
for OS/390.

The unit of work information of the
unit of work issuing the
EXECUTE_RESOLVE. This is the
last indoubt unit of work in the
resynchronization process.

CSQCGETW GET wait Before issuing CICS wait. Address of the ECB to be waited
on.

CSQCGMGD GET message data After successful return from
MQGET.

Up to 40 bytes of the message
data.

CSQCGMGH GET message handle Before issuing MQGET to MQSeries
for OS/390.

Object handle.

CSQCGMGI Get message ID After successful return from
MQGET.

Message ID and correlation ID of
the message.

CSQCINDL Indoubt list After successful return from the
second INQUIRE_INDOUBT.

The indoubt units of work list.

CSQCINDO IBM use only

CSQCINDS Indoubt list size After successful return from the first
INQUIRE_INDOUBT and the
indoubt list is not empty.

Length of the list. Divided by 64
gives the number of indoubt units of
work.

CSQCINQH INQ handle Before issuing MQINQ to MQSeries
for OS/390.

Object handle.

CSQCLOSH CLOSE handle Before issuing MQCLOSE to
MQSeries for OS/390.

Object handle.

CSQCLOST Disposition lost During the resynchronization
process, CICS informs the adapter
that it has been cold started so no
disposition information regarding the
unit of work being resynchronized is
available.

Unit of work ID known to CICS for
the unit of work being
resynchronized.

CSQCNIND Disposition not indoubt During the resynchronization
process, CICS informs the adapter
that the unit of work being
resynchronized should not have
been indoubt (that is, perhaps it is
still running).

Unit of work ID known to CICS for
the unit of work being
resynchronized.

 Chapter 22. Building your application on OS/390 285

 Debugging programs

Table 15 (Page 2 of 2). CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCNORT Normal termination Before issuing END_THREAD
NORMAL to MQSeries for OS/390.
This is due to the end of the task
and therefore an implicit syncpoint
commit may be performed by the
application. A COMMIT request is
included in the END_THREAD call
in this case.

Unit of work information.

CSQCOPNH OPEN handle After successful return from
MQOPEN.

Object handle.

CSQCOPNO OPEN object Before issuing MQOPEN to
MQSeries for OS/390.

Object name.

CSQCPMGD PUT message data Before issuing MQPUT to MQSeries
for OS/390.

Up to 40 bytes of the message
data.

CSQCPMGH PUT message handle Before issuing MQPUT to MQSeries
for OS/390.

Object handle.

CSQCPMGI PUT message ID After successful MQPUT from
MQSeries for OS/390.

Message ID and Correlation ID of
the message.

CSQCPREP Syncpoint prepare Before issuing PREPARE to
MQSeries for OS/390 in the first
phase of two-phase commit
processing. This call can also be
issued from the distributed queuing
component as an API call.

Unit of work information.

CSQCP1MD PUTONE message data Before issuing MQPUT1 to
MQSeries for OS/390.

Up to 40 bytes of data of the
message.

CSQCP1MI PUTONE message ID After successful return from
MQPUT1.

Message ID and correlation ID of
the message.

CSQCP1ON PUTONE object name Before issuing MQPUT1 to
MQSeries for OS/390.

Object name.

CSQCRBAK Resolved backout Before issuing
RESOLVE_ROLLBACK to
MQSeries for OS/390.

Unit of work information.

CSQCRCMT Resolved commit Before issuing RESOLVE_COMMIT
to MQSeries for OS/390.

Unit of work information.

CSQCRMIR RMI response Before returning to the CICS RMI
(resource manager interface) from a
specific invocation.

Architected RMI response value.
Its meaning depends of the type of
the invocation. These values are
documented in the CICS
Transaction Server for OS/390
Customization Guide. To determine
the type of invocation, look at
previous trace entries produced by
the CICS RMI component.

CSQCRSYN Resynchronization Before the resynchronization
process starts for the task.

Unit of work ID known to CICS for
the unit of work being
resynchronized.

CSQCSETH SET handle Before issuing MQSET to MQSeries
for OS/390.

Object handle.

CSQCTASE IBM use only

CSQCTEST Trace test Used in EXEC CICS ENTER
TRACE call to verify the trace
number supplied by the user or the
trace status of the connection.

No data.

CSQCDCFF IBM use only

286 MQSeries Application Programming Guide

 Debugging programs

Debugging TSO programs
The following interactive debugging tools are available for TSO programs:

 � TEST tool
� VS COBOL II interactive debugging tool
� INSPECT interactive debugging tool for C and PL/I programs

 Chapter 22. Building your application on OS/390 287

 Debugging programs

288 MQSeries Application Programming Guide

 Building applications on OS/2 Warp � Preparing C programs

Chapter 23. Building your application on OS/2 Warp

The OS/2 publications describe how to build executable applications from the
programs you write. This chapter describes the additional tasks, and the changes
to the standard tasks, you must perform when building MQSeries for OS/2 Warp
applications to run under OS/2 Warp. C, C++, and COBOL programming

| languages are supported. For information about preparing your C++ programs, see
| the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
OS/2 Warp vary with the programming language your source code is written in. In
addition to coding the MQI calls in your source code, you must add the appropriate
language statements to include the MQSeries for OS/2 Warp include files for the
language you are using. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
For DOS and Windows 3.1 only

Applications must be built using the large memory model.

Work in your normal environment; MQSeries for OS/2 Warp requires nothing
special.

� You need to link your programs with the appropriate libraries provided by
MQSeries:

Library file Program/exit type
MQM.LIB server for 32-bit C
MQIC.LIB client for C

The following command gives an example of compiling the sample program
amqsget0:

icc amqsgetð.c /Gm /Gd /B “/pmtype:vio” /Fe“amqsgetð.exe” mqm.lib

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable
| services and components” in the MQSeries Programmable System
| Management book for further information), link to the MQMZF.LIB library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, use the MQRMIXASwitch structure and link to the
MQMXA.LIB library.

| 3. If you are writing a CICS exit for use with CICS for OS/2 Version 2.0.1, link
| to the MQMCICS.LIB library. If you are writing a CICS exit for use with
| CICS Transaction Server for OS/2, Version 4, link to the MQMCICS3.LIB
| library.

� For DOS only: Your application must also be linked with two of the following
libraries, one for each protocol, indicating whether you do or do not require it.

 Copyright IBM Corp. 1993,1999 289

 Preparing C programs

If you require TCP/IP you must also link to SOCKETL from the DOS TCP/IP
product.

Library file Protocol
MQICN.LIB NetBIOS required
MQICDN.LIB NetBIOS not required
MQICT.LIB TCP/IP required
MQICDT.LIB TCP/IP not required

� You must ensure that you have specified adequate run-time stack and heap
sizes:

– You must link a trusted application with more stack than a normal
application. Therefore, a stack size of 200 KB is the recommended
minimum.

– A heap size of 8 KB is the recommended minimum.

� The DLLs must be in the library path (LIBPATH) you have specified.

� If you use lowercase characters whenever possible, you can move from
MQSeries for OS/2 Warp to MQSeries on UNIX systems, where use of
lowercase is necessary.

Preparing CICS and Transaction Server programs
Sample C source for a CICS MQSeries transaction is provided by
AMQSCIC0.CCS. You build it using the standard CICS facilities.

For CICS for OS/2 Version 2:

1. Add the following lines to the CICSENV.CMD file:

UserWrk = ‘c:\mqm\dll’
UserInclude = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Compile using the command:

CICS32TC AMQSCICð.CCS LIBS(MQM)

This is described in the CICS for OS/2 V2.0.1 Application Programming Guide.

| For CICS Transaction Server for OS/2, Version 4:

1. Add the following lines to the CICSENV.CMD file:

UserWrk = ‘c:\mqm\dll’
UserInclude = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Compile using the command:

CICSCTCL AMQSCICð.CCS LIBS(MQM)

This is described in the Transaction Server for OS/2 Warp, V4 Application
Programming Guide.

| You can find more information about supporting CICS transactions in “Using CICS”
| in the MQSeries System Administration book.

290 MQSeries Application Programming Guide

 Preparing COBOL programs

Preparing COBOL programs
To prepare COBOL programs on OS/2, link your programs with one of the following
libraries provided by MQSeries:

Library file Program/exit type
MQMCB16 Server for 16-bit Micro Focus COBOL
MQICCB16 Client for 16-bit Micro Focus COBOL

| MQMCBB Server for 32-bit IBM VisualAge COBOL
MQMCB32 Server for 32-bit Micro Focus COBOL

| MQICCBB Client for 32-bit IBM VisualAge COBOL
| MQICCB32 Client for 32-bit Micro Focus COBOL

| To compile, for example, the sample program amq0put0, using IBM VisualAge
| COBOL:

1. Set the SYSLIB environment variable to include the path to the MQSeries
VisualAge COBOL copybooks:

 set SYSLIB=<drive>:\mqm\tools\cobol\copybook\VAcobol;%SYSLIB%

2. Compile and link the program:

cob2 amqðputð.cbl -qlib <drive>:\mqm\tools\lib\mqmcbb.lib

(for use on the MQSeries server)

cob2 amqðputð.cbl -qlib <drive>:\mqm\tools\lib\mqiccbb.lib

(for use on the MQSeries client)

Note: Although the compiler option CALLINT(SYSTEM) must be used, this is
the default for cob2.

To prepare Micro Focus COBOL programs, follow these steps:

1. Compile your applications with the LITLINK directive.

2. Specify adequate run-time stack sizes. You must link a trusted application with
more stack than a normal application, so a stack size of 200 KB is the
recommended minimum. To do this, use:

 set cobsw=xxxx

3. Link the object file to the run-time system.

Set the LIB environment variable to point to the compiler COBOL libraries.

Link the object file for use on the MQSeries server:

cbllink amqðputð.obj mqmcb32.lib

or

Link the object file for use on the MQSeries client:

cbllink amqðputð.obj mqiccb32.lib

4. Add the MQSeries copybook directory (\mqm\tools\cobol\copybook) to the
cobcpy environment variable.

 set cobcpy=c:\mqm\tools\cobol\copybook;%COBCPY%

 Chapter 23. Building your application on OS/2 Warp 291

 Preparing PL/I programs

Preparing Transaction Server programs
| To prepare CICS Transaction Server for OS/2, V4 programs using IBM VisualAge
| COBOL:

1. Add the following lines to the CICSENV.CMD file:

 UserWrk=‘c:\mqm\dll’
 UserCobol=‘IBM’
 UserCobcopy=‘c:\mqm\tools\cobol\copybook’
 UserCobWork=‘c:\mq-cics\wrk’

Where \mq-cics\wrk is the name of a work directory for output from
CICSTRAN and CICSCOMP commands (see steps 2 and 3).

2. Translate your program:

 CICSTRAN MYPROG.CPP

This translates your program to a .CBL program.

3. Compile your program:

 CICSCOMP MYPROG.CBL

4. Link your program:

CICSLINK MYPROG.OBJ LIBS(MQMCBB)

For further information about this, see the CICS for OS/2 Customization V3.0,
SC33-1581-00 and the Transaction Server for OS/2 Warp, V4 Application
Programming Guide.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

To prepare a PL/I program:

1. Link your program with one of the libraries listed in “Preparing C programs” on
page 289.

2. Ensure that \mqm\tools\pli\include is in your INCLUDE environment variable.

3. Compile your program:

 pli amqpputð.pli
ilink amqpputð.obj mqm.lib

292 MQSeries Application Programming Guide

 Building applications on SINIX or DC/OSx � Preparing C programs

Chapter 24. Building your application on SINIX or DC/OSx

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for SINIX and DC/OSx applications to
run under SINIX or DC/OSx. COBOL and C programming languages are
supported.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
You need to link your programs with the appropriate library provided by MQSeries.

If you are not working in a DCE-threaded environment or using CICS, you must
link to one of the following libraries:

Library file Program/exit type
libmqm.so server for C
libmqic.so client for C

If you are working in a DCE-threaded environment or using CICS, you must link to
the C library, libmqm_r.so.

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable services
| and components” in the MQSeries Programmable System Management book
| for further information), you need to link to the libmqmzf.so library. Installable

services must not use DCE.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, link to the libmqmxa.so library in a non-DCE threaded
environment and to the libmqmxa_r.so library in a DCE threaded environment.

C compiler flags
When you compile dynamic libraries, or shared objects, for use with MQSeries for
SINIX and DC/OSx, you must use the cc command in the final step that creates
the library or object, and not merely the ld command. This is because the cc
command automatically links various initialization data that is needed for proper
dynamic linking and loading.

The order of the libraries specified is important. The following is an example of
how to build the sample program amqsput0 for SINIX:

cc -o amqsputð -lmqm -lmqmcs -lmqmzse -lnsl \
-lsocket -ldl -lmproc -lext amqsputð.c

 Copyright IBM Corp. 1993,1999 293

 Preparing COBOL programs

For DC/OSx Version cd087, include -liconv -lresolv on the above command, as
shown below:

cc -o amqsputð -lmqm -lmqmcs -lmqmzse -lnsl \
-lsocket -ldl -liconv -lresolv -lmproc -lext amqsputð.c

In the same way, for versions preceding cd087 of DC/OSx, include -liconv.

Note: If you are using an additional product such as ENCINA, you need to find the
appropriate header files. You can do this in two ways:

1. Use the -I option to scan the extra include directory, for example:

cc -c -I/opt/encina/include amqsxaex.c

2. Symbolically link the header files into /usr/include, for example:

ln -s /opt/encina/include/\ /usr/include

Preparing COBOL programs
You must compile your COBOL programs using the Micro Focus Cobol compiler for
SINIX with the LITLINK directive.

You must ensure that you have specified adequate run-time stack sizes; 16 KB is
the recommended minimum.

You need to link your program with one of the following:

libmqmcbrt.o MQSeries COBOL run-time
libmqmcb.so server for COBOL
libmqicb.so client for COBOL

Export the following variables:

| COBDIR=/usr/opt/lib/cobol export COBDIR
| COBLIB=$COBDIR/coblib export COBLIB
| COBCPY=/opt/mqm/inc export COBCPY
| LD_LIBRARY_PATH=/opt/lib/cobol/coblib export LD_LIBRARY_PATH

Compiling COBOL programs
To compile a COBOL program like amq0gbr0.cbl on MQSeries for SINIX and
DC/OSx, enter:

$ cob -xU -C warning=2 amqðgbrð.cbl -lmqmcb -lmqm \
-lmqmcs -lmqmzse -lmproc

For DC/OSx Version cd087, include -liconv -lresolv on the above command. In
the same way, for versions preceding cd087 of DC/OSx, include -liconv.

If you want to use the programs on a machine which only has MQSeries client
connections, recompile the programs and link them with the mqicb library instead of
the mqmcb library.

Note: The mqicb and mqmcb libraries must come before the mqm library on the
above command line.

If you have DCE, you can link your COBOL batch programs with either DCE
threaded libraries or non-DCE threaded libraries.

294 MQSeries Application Programming Guide

 Preparing CICS programs

Notes:

1. A single program cannot contain both DCE threaded and non-DCE threaded
modules.

2. Programs running under CICS must always be DCE threaded.

3. DCE threaded libraries are referred to as reentrant.

If you do not choose to use DCE threaded libraries, remove /opt/dcelocal/bin from
your PATH environment variable before calling the COBOL compiler.

If you do choose to use DCE threaded libraries, export the following:

$ export COBLIBLIST=“/opt/lib/cobol/coblib/liblist_r”

Note: COBLIBLIST is used only in the Micro Focus Compiler for SINIX. It is the
same as the Micro Focus Compiler expression LIBLIST.

Preparing CICS programs
An XA switch module is provided to enable you to link CICS with MQSeries:

Always link your transactions with the thread safe MQSeries library libmqm_r.so.

You can find more information about supporting CICS transactions in the MQSeries
for SINIX and DC/OSx System Management Guide.

Table 16. Essential Code for CICS applications (SINIX)

Description C (source) C (exec) - add one of the following
to your XAD.Stanza

XA initialization routine amqzscix.c amqzsc - CICS for Siemens Nixdorf
SINIX V2.2

CICS on Open Systems support
MQSeries for SINIX supports CICS on Open Systems by way of the XA interface.

Note: MQSeries for DC/OSx does not support CICS.

In order to enable the CICS run-time COBOL library to call MQSeries on UNIX
systems, you must add the MQSeries COBOL run-time library module to the
run-time library using the following command:

cicsmkcobol libmqmcbrt.o -lmqm_r

It is important to ensure that the COBOL run-time library and CICS are linked to the
same (DCE) version of the library. All CICS on Open Systems MQSeries
transactions must link with libmqm_r.

CICS sample transaction
Sample C source for a CICS MQSeries transaction is provided by
AMQSCIC0.CCS. You build it using the standard CICS facilities. Compile it using
the following commands.

 Chapter 24. Building your application on SINIX or DC/OSx 295

 Linking libraries

Export the following environment variables:

| export CCFLAGS=“-I/opt/mqm/inc -I/opt/mqm/samp”
| export USERLIB=“-L/opt/mqm/lib -L/opt/cics/lib -lmqm_r -lmqmcs_r”

Unset the lib path.

Then, use the command:

cicstcl -l C amqscicð.ccs

The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places
them onto the local queue whose name is contained in the transmission header of
the message. Any failures will be sent to the queue SYSTEM.SAMPLE.CICS.DLQ.
The sample MQSC script AMQSCIC0.TST may be used to create these queues
and sample input queues.

 Linking libraries
You need to link your programs with the appropriate library provided by MQSeries.

You must link to one or more of the following libraries:

Library file Program/exit type
libmqm.so Server for C
libmqmzse.so For C
libmqic.so Client for C
libmqmcs.so Client for C
libmqmzf.so Installable service exits for C
libmqmxa.a XA interface for C

If you are using an additional product such as ENCINA, you need to find the
run-time libraries. There are three ways (the first two are preferred, especially if the
module is an exit or trigger monitor):

1. Link the libraries into /usr/lib/, for example:

ln -s /opt/encina/lib/\.so /usr/lib

Note: You need to check these symbolic links when you install a newer
version of ENCINA.

2. Set LD_LIBRARY_PATH to include the ENCINA library directory (this is in the
environment when you run the programs), for example:

 LD_LIBRARY_PATH=/opt/encina/lib export LD_LIBRARY_PATH

3. Set LD_RUN_PATH to include /opt/encina/lib when you compile the
programs.

To compile an ENCINA program on SINIX which uses the MQI:

 LD_RUN_PATH=/opt/encina/lib export LD_RUN_PATH
cc -o amqsxaex -I/opt/encina/include amqsxaex.c -lmqm -lmqmcs \
-lmqmcs -lmqmzse -lnsl -lsocket -lencina -ldl -lmproc -lext

For DC/OSx, include -liconv on the above command line.

296 MQSeries Application Programming Guide

 Building applications on Sun Solaris � Preparing C programs

Chapter 25. Building your application on Sun Solaris

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Sun Solaris applications to run under

| Sun Solaris. COBOL, C, and C++ programming languages are supported. For
| information about preparing your C++ programs, see the MQSeries Using C++ book.

In addition to coding the MQI calls in your source code, you must add the
appropriate include files. You should make yourself familiar with the contents of
these files. See Appendix G, “MQSeries data definition files” on page 529 for a full
description.

Preparing C programs
| Precompiled C programs are supplied in the /opt/mqm/samp/bin directory. To build
| a sample from source code, use a supported compiler (see Appendix A, “Language
| compilers and assemblers” on page 453 for more information).

To compile, for example, the sample program amqsput0:

 1. export LIB=/opt/mqm/lib;$LIB

2. Ensure the environment is set to use the correct versions of the compiler
software and man pages:

 export PATH=/opt/SUNWspro/bin:$PATH
 export MANPATH=/opt/SUNWspro/man:/usr/man:$MANPATH
 export LD_LIBRARY_PATH= \
 /opt/SUNWspro/lib:/$OPENWINHOME/lib:$LD_LIBRARY_PATH

3. Compile the program (the order of the libraries specified is important):

| cc -o <amqsputð> <amqsputð>.c -mt -lmqm -lmqmcs -lmqmzse \
| -lsocket -lnsl -ldl

If you wish to compile a DCE application, use the following:

| cc -o <amqsputð> <amqsputð>.c -mt -lmqm -lmqmcs_d -lmqmzse \
| -ldce -lthread -lsocket -lnsl -ldl

| If you use the unsupported compiler /usr/ucb/cc, your application may compile and
| link successfully. However when you run it, it will fail when it attempts to connect
| to the queue manager.

| If you want to use the programs on a machine which has only the MQSeries client
| for Sun Solaris installed, recompile the programs to link them with the client library
| instead:

cc -o <amqsputð> <amqsputð>.c -lmqic -lmqmcs -lsocket

| To build an MQSeries client application that uses DCE, enter:

| cc -o <amqsputð> <amqsputð>.c -mt -lmqic -lmqmcs_d -lmqmzse \
| -ldce -lm -lpthread -lsocket -lc -lnsl -ldl

 Copyright IBM Corp. 1993,1999 297

 Preparing COBOL programs

 Linking libraries
| You must link with the MQSeries libraries that are appropriate for your application
| type:

| Program/exit type Library files
| Server for C libmqm.so, libmqmcs.so, and libmqmzse.so
| Client for C libmqic.so, libmqmcs.so, and libmqmzse.so
| Server for C with DCE libmqm.so, libmqmcs_d.so, and libmqmzse.so
| Client for C with DCE libmqic.so, libmqmcs_d.so, and libmqmzse.so

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable services
| and components” in the MQSeries Programmable System Management book
| for further information), link to the libmqmzf.so library.

2. If you are producing an XA switch load file for external coordination by an
XA-compliant transaction manager such as IBM CICS, Transarc Encina, or
Novell Tuxedo, link to the libmqmxa.a library.

3. To run the sample Encina program, link against the following libraries in
addition to the libraries listed above.

 � libmqmxa.a

Also, link against libmqmcs_d.so instead of libmqmcs.so, in addition to the
Encina and DCE libraries:

 � libEncServer.so
 � libEncina.so
 � libdce.so

Preparing COBOL programs
Before preparing your COBOL programs, you should check with your system
administrator that the COBOL compiler is set up to link with the correct C libraries.
By default, the COBOL compiler Version 3.2 links to 3.0 SPARCompiler C libraries.
For example, to update the compiler to link with SPARCompiler Version 4.0, ensure
that your system administrator has completed the following:

1. Change directory to $COBDIR/coblib:

 cd $COBDIR/coblib

Note: By default, COBDIR is /opt/lib/cobol.

2. Make a backup copy of liblist:

cp liblist liblist.saved

3. Edit the liblist file using a standard UNIX editor like vi:

 vi liblist

4. Change all references from SC3.ð to SC4.ð.

The COBOL compiler is now set up for you to compile COBOL programs.

| Precompiled COBOL programs are supplied in the /opt/mqm/samp/bin directory.
Use the Micro Focus compiler from the directory /opt/bin to build a sample from
source code.

298 MQSeries Application Programming Guide

 Preparing CICS programs

To compile, for example, the sample program amq0put0:

1. Ensure that the environment is set:

 export COBDIR=/opt/lib/cobol
 export PATH=/opt/bin:$PATH
 export LD_LIBRARY_PATH=$COBDIR/coblib:$LD_LIBRARY_PATH

Note: The above assumes that COBOL is installed in the default directories.

2. Define the location of the copybooks which declare the MQI structures:

 export COBCPY="/opt/mqm/inc"

3. Link your program with one of the following libraries when building the
application:

libmqmcb.so Server for COBOL
libmqicb.so Client for COBOL

4. Compile the program:

cob -vxP amqðputð.cbl -lmqmcb -lmqm -lmqmcs -lmqmzse

Preparing CICS programs
XA switch modules are provided to enable you to link CICS with MQSeries:

Always link your transactions with the thread safe MQSeries library libmqm_so.

| You can find more information about supporting CICS transactions in “Using CICS”
| in the MQSeries System Administration book.

Table 17. Essential Code for CICS applications (Sun Solaris)

Description C (source) C (exec) - add one of the
following to your XAD.Stanza

| XA initialization routine| amqzscix.c| amqzsc - TXSeries for Sun Solaris

CICS on Open Systems support
MQSeries on UNIX systems supports CICS on Open Systems by way of the XA
interface.

You must ensure that CICS COBOL applications are linked to the threaded version
of the library. CICS on Open Systems MQSeries transactions must link with
libmqm_r, except on Sun Solaris, where you must link with lmqmcs_d.

Preparing CICS COBOL programs using Micro Focus COBOL
To use Micro Focus COBOL, follow these steps:

| 1. Add the MQSeries COBOL run-time library module to the run-time library using
| the following command:

| cicsmkcobol /opt/mqm/lib/libmqmcbrt.o -lmqmcs_d

| This creates the Micro Focus COBOL language method file and enables the
| CICS run-time COBOL library to call MQSeries on UNIX systems.

| Note: cicsmkcobol must be run only when one of the following is installed:

| New version or release of Micro Focus COBOL

 Chapter 25. Building your application on Sun Solaris 299

 Preparing CICS programs

| New version or release of TXSeries for Sun Solaris
| New version or release of any supported database product (for COBOL
| transactions only)
| TXSeries for Sun Solaris

| 2. Export the following environment variables:

| COBCPY=/opt/mqm/inc export COBCPY
| LDFLAGS="-L/usr/mqm/lib -lmqmcs_d" export LDFLAGS

| 3. Translate, compile, and link the program by typing:

| cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS C programs
You build CICS C programs using the standard CICS facilities:

1. Export one of the following environment variables:

| � LDFLAGS = “-L/opt/mqm/lib -L/opt/cics/lib -lmqmcs_d -lmqm -lmqmzse
| -lsocket -lnsl -ldl”

2. Translate, compile, and link the program by typing:

cicstcl -l C amqscicð.ccs

CICS C sample transaction: Sample C source for a CICS MQSeries transaction
is provided by AMQSCIC0.CCS. The transaction reads messages from the
transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue whose name is contained in the
transmission header of the message. Any failures are sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. The sample MQSC script AMQSCIC0.TST may be
used to create these queues and sample input queues.

300 MQSeries Application Programming Guide

 Building applications on Tandem NSK

Chapter 26. Building your application on Tandem NSK

The sample programs and the sample compilation and binding scripts, provided in
subvolume ZMQSSMPL, illustrate the main features of the MQI in MQSeries for
Tandem NSK, and demonstrate how to compile and bind an application.

| This chapter describes some minor differences between the standard Version 2
| MQI interface, as documented in the MQSeries Application Programming Reference
| manual, and the MQI interface for MQSeries for Tandem NSK.

Unit of work (transaction) management
Transaction management is performed under the control of Tandem’s TM/MP
product, rather than by MQSeries itself. See “Syncpoints in MQSeries for Tandem
NSK applications” on page 194 for details.

General design considerations
Please note that:

� The MQI library (bound into the application process) does not open $RECEIVE
and does not open $TMP (TM/MP transaction pseudo-file) itself, so you may
code your application to use these features.

� The MQI library uses a SERVERCLASS_SEND_() call in initial communication
with the Queue Manager. While connected, it maintains two process file opens
(with the LINKMON process and a Local Queue Manager Agent) and a small
number of disk file opens (fewer than 10).

MQGMO_BROWSE_* with MQGMO_LOCK
As a consequence of the use of TM/MP, MQGMO_BROWSE_* with
MQGMO_LOCK is not supported.

 Triggered applications
Triggered MQSeries applications in the Tandem NSK environment receive user
data through environment variables set up in the TACL process that is running.
This is because there is a limit to the length of the argument list that can be passed
to a Tandem C process.

 Copyright IBM Corp. 1993,1999 301

 Building applications on Tandem NSK

In order to access this information, triggered applications should contain code
similar to the following (see sample amqsinqa for more details):

MQTMC2 \trig; /\ trigger message structure \/
MQTMC2 trigdata; /\ trigger message structure \/

 char \applId;
 char \envData;
 char \usrData;
 char \qmName;

 /\\/
 /\ \/
 /\ Set the program argument into the trigger message \/
 /\ \/
 /\\/

trig = (MQTMC2\)argv[1]; /\ -> trigger message \/

/\ get the environment variables and load the rest of the trigger \/
memcpy(&trigdata, trig, sizeof(trigdata));

 memset(trigdata.ApplId, ' ', sizeof(trigdata.ApplId));
memset(trigdata.EnvData, ' ', sizeof(trigdata.EnvData));
memset(trigdata.UserData, ' ', sizeof(trigdata.UserData));
memset(trigdata.QMgrName, ' ', sizeof(trigdata.QMgrName));

if((applId = getenv("TRIGAPPLID")) != ð)
 {

strncpy(trigdata.ApplId ,applId, strlen(applId));
 }

if ((envData = getenv("TRIGENVDATA")) != ð)
 {

strncpy(trigdata.EnvData , envData, strlen(envData));
 }

if ((usrData = getenv("TRIGUSERDATA")) != ð)
 {

strncpy(trigdata.UserData, usrData, strlen(usrData));
 }

if ((qmName = getenv("TRIGQMGRNAME")) != ð)
 {

strncpy(trigdata.QMgrName, qmName, strlen(qmName));
 }

trig = &trigdata;

302 MQSeries Application Programming Guide

 Compiling applications � Running applications

Compiling and binding applications
The MQSeries for Tandem NSK V2.2 MQI is implemented using the Tandem wide
memory model (the int datatype is 4 bytes) and the Common Run-time
Environment (CRE). Applications must be compatible with this environment in
order to work correctly. Refer to the sample build files for the correct options for
each compiler in order to ensure compatibility.

In particular, TAL and COBOL applications must follow the rules that are required
for compatibility with the CRE, documented in the Tandem manuals relating to the
CRE.

Four versions of the MQI library are delivered with MQSeries for Tandem NSK
V2.2, contained in ZMQSLIB. You must ensure that you use the correct library, as
follows:

mqmlibc for C, nonnative
mqmlibt for TAL or COBOL, nonnative
mqmlibnc for native C
mqmlibnt for native TAL or COBOL

 Running applications
In order to be able to connect to a queue manager, the environment of an
application program must be correctly defined:

� The PARAM MQDEFAULTPREFIX is mandatory in the environment of all
applications.

� If you have chosen an alternative (nondefault) location for your MQSINI file, an
application will not be able to connect to the queue manager if the PARAM
MQMACHINIFILE is not set correctly.

� TAL and COBOL applications must have the PARAM SAVE-ENVIRONMENT
ON defined in their environment, or they will not be able to connect to the
queue manager.

An application may run as either low-pin or high-pin. MQSeries executables
themselves are configured to run as high-pin.

MQSeries applications are supported in the NSK environment only. No support for
OSS applications is provided.

An MQSeries application may run under PATHWAY, from TACL, or as a child
process of another process. Applications can even be added to the queue
manager PATHWAY configuration itself, provided they behave correctly on queue
manager shutdown.

 Chapter 26. Building your application on Tandem NSK 303

 Running applications

304 MQSeries Application Programming Guide

 Building applications on VSE/ESA

| Chapter 27. Building your application on VSE/ESA

| This chapter describes the additional tasks, and the changes to the standard tasks,
| you must perform when building MQSeries for VSE/ESA applications to run under
| MQSeries for VSE/ESA. C, COBOL, and PL/I programming languages are
| supported.

| Linking library
| The object decks required by MQSeries for VSE/ESA applications are held in the
| install sublibrary PRD2.MQSERIES (this is its default name). Reference the
| sublibrary in a LIBDEF statement in the compile JCL:

| // LIBDEF SEARCH=(PRD2.MQSERIES,PRD2.SCEECICS,PRD2.SCEEBASE)

| The MQSeries object code is autolinked into the application.

| Using the batch interface
| If you invoke the MQSeries API from a VSE/ESA batch application, you must
| link-edit a special object module, which intercepts and handles the MQSeries calls,
| with the usercode by specifying:

| INCLUDE MQBIBTCH

| as part of the link-edit JCL.

| Preparing C programs
| You must meet the requirements of the COBOL language interface when you write
| C programs. There are no sample programs provided but an include file,
| equivalent to the COBOL copybooks, is supplied. It is called CMQC.H, and it
| declares everything required.

| Preparing COBOL programs
| Sample programs and copybooks are provided in COBOL for VSE/ESA.

| Preparing PL/I programs
| You must meet the requirements of the COBOL language interface when you write
| PL/I programs. There are no sample programs provided but two include files,
| equivalent to the COBOL copybooks, are supplied:

| CMQEPP.P Declares the MQI calls and structures
| CMQP.P Declares the MQI constants

 Copyright IBM Corp. 1993,1999 305

 Building applications on VSE/ESA

306 MQSeries Application Programming Guide

 Building applications on Windows � Preparing Visual Basic programs

Chapter 28. Building your application on Windows

This chapter describes the additional tasks, and the changes to the standard tasks,
you must perform when building MQSeries for Windows applications to run under
Windows. C and Visual Basic programming languages are supported.

The tasks you must perform to create an executable application using MQSeries for
Windows depend on the language in which your source code is written. In addition
to coding the MQI calls in your source code, you must add the appropriate
language statements to include the MQSeries for Windows data definition files for
the language you are using. You should be aware of the contents of these files.
See Appendix G, “MQSeries data definition files” on page 529 for a full description.

 Linking libraries
You need to link your programs with the appropriate libraries provided by
MQSeries:

Library file Program
MQM.LIB server for 32-bit C
MQM16.LIB server for 16-bit C

| Preparing Visual Basic programs
| To prepare Visual Basic programs on Windows client:

| 1. Create a new project.
| 2. Add the supplied module file, CMQB.BAS, to the project.
| 3. Add other supplied module files if you need them:
| CMQBB.BAS MQAI support.
| CMQCFB.BAS PCF support.
| CMQXB.BAS Channel exits support.

| Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project
| code. This procedure sets up default structures that the MQI calls require.

| Specify that you are creating an MQSeries client, before you compile or run the
| project, by setting the conditional compilation variable MqType to 2 as follows:

| � In a Visual Basic version 4 project:

| 1. Select the Tools menu.
| 2. Select Options.
| 3. Select the Advanced tab in the dialog box.
| 4. In the Conditional Compilation Arguments field, enter this:

| MqType=2

| � In a Visual Basic version 5 project:

| 1. Select the Project menu.
| 2. Select Name Properties (where Name is the name of the current project).
| 3. Select the Make tab in the dialog box.
| 4. In the Conditional Compilation Arguments field, enter this:

| MqType=2

 Copyright IBM Corp. 1993,1999 307

 Preparing Visual Basic programs

308 MQSeries Application Programming Guide

 Building applications on Windows NT � Preparing C programs

Chapter 29. Building your application on Windows NT

The Windows NT publications describe how to build executable applications from
the programs you write. This chapter describes the additional tasks, and the
changes to the standard tasks, you must perform when building MQSeries for

| Windows NT applications to run under Windows NT. ActiveX, C, C++, COBOL,
| PL/I, and Visual Basic programming languages are supported. For information
| about preparing your ActiveX programs, see the MQSeries for Windows NT Using
| the Component Object Model Interface book. For information about preparing your
| C++ programs, see the MQSeries Using C++ book.

The tasks you must perform to create an executable application using MQSeries for
Windows NT vary with the programming language your source code is written in.
In addition to coding the MQI calls in your source code, you must add the
appropriate language statements to include the MQSeries for Windows NT include
files for the language you are using. You should make yourself familiar with the
contents of these files. See Appendix G, “MQSeries data definition files” on
page 529 for a full description.

Preparing C programs
For DOS and Windows 3.1 only

Applications must be built using the large memory model.

Work in your normal environment; MQSeries for Windows NT requires nothing
special.

� You need to link your programs with the appropriate libraries provided by
MQSeries:

Library file Program/exit type
MQM.LIB server for 32-bit C
MQIC32.LIB client for 32-bit C

The following command gives an example of compiling the sample program
amqsget0 (using the Microsoft Visual C++ compiler):

cl amqsgetð.c /link mqm.lib

Notes:

| 1. If you are writing an installable service (see Chapter 11, “Installable
| services and components” in the MQSeries Programmable System
| Management book for further information), you need to link to the
| MQMZF.LIB library.

| 2. If you are producing an XA switch load file for external coordination by an
| XA-compliant transaction manager such as IBM TXSeries, Transarc Encina,
| or Novell Tuxedo, use the MQRMIXASwitch structure and link to the
| MQMXA.LIB library.

3. If you are producing an XA switch load file using the
MQRMIXASwitchDynamic structure, link to the Encina MQMENC.LIB
library.

 Copyright IBM Corp. 1993,1999 309

 Preparing C programs

4. To build the Encina sample, link against the following libraries:

 – MQM.LIB
 – MQMENC.LIB

Also, link against the Encina and DCE libraries:

 – libEncServer.lib
 – libEncina.lib
 – libdce.lib

5. If you are writing a CICS exit, link to the MQMCICS.LIB library.

| 6. If an application is to make changes to environment variables, such as
| MQSERVER, you must link it to the same C run-time libraries as those
| used by MQSeries. Use the ‘-MD’ compile switch to accomplish this.

� For DOS only: Your application must also be linked with two of the following
libraries, one for each protocol, indicating whether you do or do not require it.
If you require TCP/IP you must also link to SOCKETL from the DOS TCP/IP
product.

Library file Protocol
MQICN.LIB NetBIOS required
MQICDN.LIB NetBIOS not required
MQICT.LIB TCP/IP required
MQICDT.LIB TCP/IP not required

� You must ensure that you have specified adequate run-time heap and stack
sizes. A heap size of 8 KB and stack size of 16 KB are the recommended
minimum size.

� The DLLs must be in the path (PATH) you have specified.

� If you use lowercase characters whenever possible, you can move from
MQSeries for Windows NT to MQSeries on UNIX systems, where use of
lowercase is necessary.

Preparing CICS and Transaction Server programs
Sample C source for a CICS MQSeries transaction is provided by
AMQSCIC0.CCS. You build it using the standard CICS facilities:

For CICS for Windows NT V2:

1. Add the following lines to the CICSENV.CMD file:

UserWork = ‘c:\mqm\dll’
UserIncl = ‘c:\mqm\tools\c\include;c:\mqm\tools\c\samples’

If necessary replace c:\mqm with the path on which you installed the sample
code.

2. Edit the CICSCCL.CMD file (found in <drive>:\CNT200\UTIL) and add the
library mqm.lib to the set of libraries.

3. To the LIB environment variable add:

 <drive>:\MQM\TOOLS\LIB

4. To the INCLUDE environment variable add:

 <drive>:\MQM\TOOLS\C\INCLUDE
 <drive>:\CNT2ðð\INCLUDE

310 MQSeries Application Programming Guide

 Preparing COBOL programs

5. Compile using the command:

 CICSCTCL AMQSCICð

This is described in the CICS for Windows NT V2.0 Application Programming
Guide.

| For TXSeries for Windows NT, V4:

| 1. Set the environment variable (enter the following on one line):

| set CICS_IBMC_FLAGS=-IC:\Program Files\MQSeries\Tools\C\Include;
| %CICS_IBMC_FLAGS%

2. Set the USERLIB environment variable:

 set USERLIB=MQM.LIB;%USERLIB%

3. Translate, compile, and link the sample program:

cicstcl -l IBMC amqscicð.ccs

This is described in the Transaction Server for Windows NT Application
Programming Guide (CICS) V4.

| You can find more information about supporting CICS transactions in “Using CICS”
| in the MQSeries System Administration book.

Preparing COBOL programs
To prepare COBOL programs on Windows NT, link your program to one of the
following libraries provided by MQSeries:

Library file Program/exit type
MQMCBB server for 32-bit IBM COBOL
MQMCB32 server for 32-bit Micro Focus COBOL
MQICCBB client for 32-bit IBM COBOL
MQICCB32 client for 32-bit Micro Focus COBOL
MQMCB16 server for 16-bit Micro Focus COBOL
MQICCB16 client for 16-bit Micro Focus COBOL

When you are running a program in the MQI client environment, ensure the
DOSCALLS library appears before any COBOL or MQSeries library.

 Micro Focus

You must relink any existing MQSeries Micro Focus COBOL programs using
either mqmcb3.lib or mqiccb32.lib rather than the mqmcbb and mqiccbb
libraries.

| To compile, for example, the sample program amq0put0, using IBM VisualAge
| COBOL:

| 1. Set the SYSLIB environment variable to include the path to the MQSeries
| VisualAge COBOL copybooks (enter the following on one line):

| set SYSLIB=<drive>:\Program Files\MQSeries\
| Tools\Cobol\Copybook\VAcobol;%SYSLIB%

 Chapter 29. Building your application on Windows NT 311

 Preparing COBOL programs

| 2. Compile and link the program (enter the following examples on one line):

| cob2 amqðputð.cbl -qlib <drive>:\Program Files\MQSeries\
| Tools\Lib\mqmcbb.lib

| (for use on the MQSeries server)

| cob2 amqðputð.cbl -qlib <drive>:\Program Files\MQSeries\
| Tools\Lib\mqiccbb.lib

| (for use on the MQSeries client)

Note: Although the compiler option CALLINT(SYSTEM) must be used, this is
the default for cob2.

To compile, for example, the sample program amq0put0, using Micro Focus
COBOL:

| 1. Set the COBCPY environment variable to point to the MQSeries COBOL
| copybooks (enter the following on one line):

| set COBCPY=<drive>:\Program Files\MQSeries\
| Tools\Cobol\Copybook

2. Compile the program to give you an object file:

cobol amqðputð LITLINK

3. Link the object file to the run-time system.

Set the LIB environment variable to point to the compiler COBOL libraries.

Link the object file for use on the MQSeries server:

cbllink amqðputð.obj mqmcb32.lib

or

Link the object file for use on the MQSeries client:

cbllink amqðputð.obj mqiccb32.lib

Preparing CICS and Transaction Server programs
| To compile and link a TXSeries for Windows NT, V4 program using IBM VisualAge
| COBOL:

| 1. Set the environment variable (enter the following on one line):

| set CICS_IBMCOB_FLAGS=c:\Program Files\MQSeries\Tools\
| Cobol\Copybook\VAcobol;%CICS_IBMCOB_FLAGS%

2. Set the USERLIB environment variable:

 set USERLIB=MQMCBB.LIB

3. Translate, compile, and link your program:

cicstcl -l IBMCOB myprog.ccp

This is described in the Transaction Server for Windows NT, V4 Application
Programming Guide.

To compile and link a CICS for Windows NT V2 program using Micro Focus
COBOL:

� Edit the CICSLINK.CMD file and add the library mqmcbb.lib to the set of
libraries.(This file is called by the CICSTCL.CMD utility.)

312 MQSeries Application Programming Guide

 Preparing PL/I programs � Preparing Visual Basic programs

� Set the COBCPY environment variable:

 set

 cobcpy=<drive>:\mqm\tools\cobol\copybook;<drive>:\cnt2ðð\copybook

� To the LIB environment variable add:

 <drive.>:\mqm\tools\lib

 <drive.>:\cobol32\lib

� Edit the CICSCOMP.CMD file, change LITLINK(2) to LITLINK to enable
link-time, not run-time resolution of the MQI calls.

� Compile using the command:

 CICSTCL MQMXADC

Where MQMXADC.CCP (not actually provided as a sample program) is the
name of the program. This creates a MQMXADC.DLL.

This is described in the CICS for Windows NT V2.0 Application Programming
Guide.

Preparing PL/I programs
Sample PL/I programs are supplied with MQSeries. PL/I include files are also
provided so that the C entry points in the MQSeries libraries can be invoked
directly.

To prepare a PL/I program:

1. Link your program with one of the libraries listed in “Preparing C programs” on
page 309.

2. Ensure that \mqm\tools\pli\include is in your INCLUDE environment variable.

3. Compile your program:

 pli amqpputð.pli
ilink amqpputð.obj mqm.lib

| Preparing Visual Basic programs
| To prepare Visual Basic programs on Windows NT:

| 1. Create a new project.
| 2. Add the supplied module file, CMQB.BAS, to the project.
| 3. Add other supplied module files if you need them:
| CMQBB.BAS MQAI support.
| CMQCFB.BAS PCF support.
| CMQXB.BAS Channel exits support.

| Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project
| code. This procedure sets up default structures that the MQI calls require.

| Specify whether you are creating an MQSeries server or client, before you compile
| or run the project, by setting the conditional compilation variable MqType.

 Chapter 29. Building your application on Windows NT 313

 Preparing Visual Basic programs

| Set MqType to 1 for a server or 2 for a client as follows:

| � In a Visual Basic version 4 project:

| 1. Select the Tools menu.
| 2. Select Options.
| 3. Select the Advanced tab in the dialog box.
| 4. In the Conditional Compilation Arguments field, enter this for a server:

| MqType=1

| or this for a client:

| MqType=2

| � In a Visual Basic version 5 project:

| 1. Select the Project menu.
| 2. Select Name Properties (where Name is the name of the current project).
| 3. Select the Make tab in the dialog box.
| 4. In the Conditional Compilation Arguments field, enter this for a server:

| MqType=1

| or this for a client:

| MqType=2

314 MQSeries Application Programming Guide

 Using LDAP services with MQSeries for Windows NT

| Chapter 30. Using lightweight directory access protocol
| services with MQSeries for Windows NT

| This chapter explains what a directory service is and the part played by a directory
| access protocol (DAP). It also explains how MQSeries applications can use a
| lightweight directory access protocol (LDAP) directory using a sample program as a
| guide.

| Note: The sample program is designed for someone who is already familiar with
| LDAP.

| What is a directory service?
| A directory is a repository of information about objects, which is organized in such a
| way that it is easy to find the information on a specific object. A common example
| is a telephone directory, where information (address and telephone number) is
| stored about people and companies. Another example is an address book for an
| e-mail system, where e-mail addresses, and optionally other information such as
| telephone numbers, are stored for people.

| On computer systems, directories can store information about computer resources,
| such as printers or shared disks. For example you could use a directory to find out
| where the nearest color printer is located. In an MQSeries application a directory
| can be used to provide the association between an application service (such as
| accounts-receivable processing) and the queue to be used for messages requiring
| that service (possibly identified through the queue name and its host queue
| manager name).

| Directories are implemented as client-server systems, where the directory server
| holds all the information and answers requests from clients. The clients could be
| user-interface programs, which provide the information directly to the user, or
| application programs which need to locate resources to complete their work. A
| Directory Service comprises the directory server, administrative programs, and the
| client libraries and programs which are needed to configure, update, and read the
| directory.

| What is LDAP?
| Many directory services exist, such as Novell Directory Services, DCE Cell
| Directory Service, Banyan StreetTalk, Windows NT Directory Services, X.500, and
| the address book services associated with e-mail products. X.500 was proposed
| as a standard for global directory services by the International Standards
| Organization (ISO). It requires an OSI protocol stack for its communications, and
| largely because of this, its use has been restricted to large organizations and
| academic institutions. An X.500 directory server communicates with its clients
| using the Directory Access Protocol (DAP).

| LDAP (Lightweight Directory Access Protocol) was created as a simplified version
| of DAP. It is easier to implement, omits some of the lesser-used features of DAP,
| and runs over TCP/IP. As a result of these changes it is rapidly being adopted as
| the directory access protocol for most purposes, replacing the multitude of
| proprietary protocols previously used. LDAP clients can still access an X.500

 Copyright IBM Corp. 1993,1999 315

 Using LDAP services with MQSeries for Windows NT

| server through a gateway (X.500 still requires the OSI protocol stack), or
| increasingly X.500 implementations typically include native support for LDAP as
| well as DAP access.

| LDAP directories can be distributed and can use replication to enable efficient
| access to their contents.

| For a more complete description of LDAP, please see the IBM Redbook
| Understanding LDAP.

| Using LDAP with MQSeries
| In MQSeries configurations, the information that defines message and transmission
| queues is stored locally. This means that in an MQSeries network the various
| definitions are distributed, with no central directory of this information being
| available for browsing. Remote messaging between MQSeries applications is
| commonly achieved through the use of local definitions of remote queues. The
| application first issues an MQOPEN call using the name specified in the local
| definition of the remote queue. To put the message on the remote queue, the
| application then issues MQPUT, specifying the handle returned from the MQOPEN
| call. The remote queue definition supplies the name of the destination queue, the
| destination queue manager, and optionally, a transmission queue. In this technique
| the application has to know at run-time the name specified in the local queue
| definition.

| A variation on the above avoids the use of local definitions of remote queues. The
| application can specify the full destination queue name, which includes the remote
| queue manager name as part of the MQOPEN. The application therefore has to
| know these two names at run-time. Again the local queue manager must be
| correctly configured with the local queue definition, and with a suitably named (or
| default) transmission queue and an associated channel that delivers to the target.

| In the case where both the source and target queue managers are defined as
| being members of the same cluster, then the transmission queue and channel
| aspects of the above two scenarios can be ignored. If the target transmission
| queue is a cluster queue then a local definition of a remote queue is also not
| required. However, similarly to the previous cases described, the application must
| still know the name of the destination queue.

| A directory service can be used to remove this application dependency on queue
| names (or the combination of queue and queue manager names). The mapping
| between application criteria and MQSeries object names can be held in a directory
| and be updated dynamically, and independently of applications. At run-time the
| MQSeries application wishing to send a message first queries the directory using
| application-based criteria, for example where: service_name = “accounts
| receivable”, retrieves the relevant MQSeries object names, and then uses these
| returned values in the MQOPEN call.

| Another example of the use of a directory is for a company that has many small
| depots or offices, MQSeries clients may be used to send messages to MQSeries
| servers located in the larger offices. The clients need to know the name of the host
| machine, MQI channel, and queue name for each server they send messages to.
| Occasionally it may be necessary to move an MQSeries server to another machine;
| every client that communicates with the server would need to know about the

316 MQSeries Application Programming Guide

 Using LDAP services with MQSeries for Windows NT

| change. An LDAP directory service could be used to store the names of the host
| machines (and the channel and queue names) and the client programs could
| retrieve the information from the directory whenever they want to send a message
| to a server. In this case only the directory needs to be updated if a host name (or
| channel or queue name) changed.

| Multiple destinations for an application message could be stored in a directory, with
| the one chosen being dependent on availability or load-sharing considerations.

| LDAP sample program
| The sample program is designed for someone who is familiar with LDAP and
| probably already uses it. It is intended to show how MQSeries applications can
| use an LDAP directory.

| Building the sample program
| This program has been built and tested only on Windows NT using TCP/IP. As
| well as the general considerations mentioned in “Preparing C programs” on
| page 309 the following points must be observed:

| � This program is designed to run as a client program, so it should be linked with
| the MQIC32.LIB library.

| � As well as the MQSeries header files and libraries, this program must be built
| using LDAP client header files and libraries. These are available from several
| locations, including the IBM eNetwork Web site at:

| http://www.software.ibm.com/enetwork

| For example, using the IBM eNetwork client, the program should be linked with
| the LIBLDAPSTATICE.LIB and LIBLBERSTATICSSL.LIB libraries.

| Configuring the directory
| Before the sample program can be run, an LDAP Directory Server must be
| configured with sample data. The file MQuser.ldif contains some sample data in
| LDIF (LDAP Data Interchange Format). You can edit this file to suit your needs. It
| contains data for a fictitious company called MQuser that has a Transport
| Department comprising three offices. Each of these offices has a machine that
| runs an MQSeries server.

| As a minimum you must edit the three lines that contain the host names of the
| machines running the MQSeries servers - these are lines 18, 27, and 36:

| host: LondonHost
| ...
| host: SydneyHost
| ...
| host: WashingtonHost

| You must change “LondonHost”, “SydneyHost”, and “WashingtonHost” to the
| names of three of your machines which run MQSeries servers. You may also
| change the channel and queue names if you wish (the sample uses names of the
| system defaults). You may also wish to increase or decrease the number of offices
| in the sample data.

 Chapter 30. Using lightweight directory access protocol services with MQSeries for Windows NT 317

 Using LDAP services with MQSeries for Windows NT

| Configuring the IBM eNetwork LDAP server
| Refer to the eNetwork LDAP Directory Administrator’s Guide for information about
| installing the directory. In the chapter “Installing and Configuring Server”, work
| through the sections “Installing Server” and “Basic Server Configuration”. If
| necessary, read through the chapter “Administrator Interface” to familiarize yourself
| with how the interface works.

| In the chapter “Configuring - How Do I”, follow the instructions for starting up the
| administrator, then work through the section “Configure Database” and create a
| default database. Skip the section “Configure replica” and using the section “Work
| with Suffixes”, add a suffix “o=MQuser”.

| Before adding any entries to the database, you must extend the directory schema
| by adding some attribute definitions and an objectclass definition. This is described
| in the eNetwork LDAP Directory Administrator’s Guide in the chapter “Reference
| Information” under the section “Directory Schema”. Two sample files are included
| to help you with this. The file “mq.at.conf” includes the attribute definitions which
| you must add to the file “/etc/slapd.at.conf”. Do this by including the sample file by
| editing slapd.at.conf and adding a line:

| include <pathname>/mq.at.conf

| Alternatively you can edit the file slapd.at.conf and add the contents of the sample
| file directly to it, that is, add the lines:

| # MQ attribute definitions
| attribute mqChannel ces mqChannel 1ððð normal
| attribute mqQueueManager ces mqQueueManager 1ððð normal
| attribute mqQueue ces mqQueue 1ððð normal
| attribute mqPort cis mqPort 64 normal

| Similarly for the objectclass definition, you can either include the sample file by
| editing “etc/slapd.oc.conf” and add the line:

| include <pathname>/mq.oc.conf

| or you can add the contents of the sample file directly to slapd.oc.conf, that is, add
| the lines:

| # MQ object classdefinition
| objectclass mqApplication
| requires
| objectClass,
| cn,
| host,
| mqChannel,
| mqQueue
| allows
| mqQueueManager,
| mqPort,
| description,
| l,
| ou,
| seeAlso

| You can now start the directory server (Administration, Server, Startup) and add the
| sample entries to it. To add the sample entries, go to the Administration, Add

318 MQSeries Application Programming Guide

 Using LDAP services with MQSeries for Windows NT

| Entries page of the administrator, type in the full pathname of the sample file
| “MQuser.ldif” and click the Submit button.

| The directory server is now running and loaded with data suitable for running the
| sample program.

| Configuring the Netscape directory server
| Using the Netscape Server Administration page, click on “Create New Netscape
| Directory Server”. You should now be presented with a form containing
| configuration information. Change the Directory Suffix to “o=MQuser” and add a
| password for the Unrestricted User. You may also, if you wish, change any other
| information to suit your installation. Click on the OK button, and the directory
| should be created successfully. Click on “Return to Server Administration” and
| start the directory server. Click on the directory name to start the Directory Server
| Administration server for the new directory.

| Before adding any entries to the database, you must extend the directory schema
| by adding some attribute definitions and an objectclass definition. Click on the
| “Schema” tab of the Directory Server page. You are now presented with a form
| that allows you to add new attributes. Add the following attributes (the Attribute
| OID can be left blank for all of them):

| Attribute Name Syntax
| -------------- ------
| mqChannel Case Exact String
| mqQueueManager Case Exact String
| mqQueue Case Exact String
| mqPort Integer

| Add a new objectClass by clicking “Create ObjectClass” in the side panel. Enter
| “mqApplication” as the ObjectClass Name, select “applicationProcess” as the parent
| ObjectClass and leave the ObjectClass OID blank. Now add some attributes to the
| objectClass. Select “host”, “mqChannel”, and “mqQueue” as Required Attributes,
| and select “mqQueueManager” and “mqPort” as Allowed attributes. Press the
| “Create New ObjectClass” button to create the objectClass.

| To add the sample data, click on the “Database Management” tab and select “Add
| Entries” from the side panel. You must enter the pathname of the sample data file
| <pathname>\MQuser.ldif, enter the password, and click on the OK button.

| The sample program runs as an unauthorized user, and by default the Netscape
| Directory does not allow unauthorized users to search the directory. You must
| change this by clicking the “Access Control” tab. Enter the password for the
| Unrestricted User and click the OK button to load in the access control entries for
| the directory. These should currently be empty. Press the “New ACI” button to
| create a new access control entry. In the entry box which appears, click on the
| word “Deny” (which is underlined) and in the resultant dialog box, change it to
| “Allow”. Add a name, for example, “MQuser-access”, and click on “choose a suffix”
| to select “o=MQuser”. Enter “o=MQuser” as the target, enter the password for the
| Unrestricted User, and click on the “Submit” button.

| The directory server is now running and loaded with data suitable for running the
| sample program.

 Chapter 30. Using lightweight directory access protocol services with MQSeries for Windows NT 319

 Using LDAP services with MQSeries for Windows NT

| Running the sample program
| You should now have an LDAP Directory Server running and populated with the
| sample data. The data specifies three host machines all of which should be
| running MQSeries servers. You should ensure that the default queue manager is
| running on each machine (unless you changed the sample data to specify a
| different queue manager). You should also start the MQSeries listener program on
| each machine; the sample uses TCP/IP with the default MQSeries port number, so
| you can start the listener with the command:

| runmqlsr -t tcp

| To test the sample, you might also wish to run a program to read the messages
| arriving at each MQSeries server, for example you could use the “amqstrg” sample
| program:

| amqstrg SYSTEM.DEFAULT.LOCAL.QUEUE

| The sample program uses three environment variables, one required and two
| optional. The required variable is LDAP_BASEDN, which specifies the base
| Distinguished Name for the directory search. To work with the sample data, you
| should set this to “ou=Transport, o=MQuser”, for example in a Windows NT
| Command Window type:

| set LDAP_BASEDN=ou=Transport, o=MQuser

| The optional variables are LDAP_HOST and LDAP_VERSION. The LDAP_HOST
| variable specifies the name of the host where the LDAP server is running, it
| defaults to the local host if it is not specified. The LDAP_VERSION variable
| specifies the version of the LDAP protocol to be used, and can be either 2 or 3.
| Most LDAP servers now support version 3 of the protocol; they all support the older
| version 2. This sample works equally well with either version of the protocol, and if
| it is not specified it defaults to version 2.

| You can now run the sample by typing the program name followed by the name of
| the MQSeries application you wish to send messages to, in the case of the sample
| data the application names are “London”, “Sydney”, and “Washington”. For
| example, to send messages to the London application:

| amqsldpc London

| If the program fails to connect to the MQSeries server, an appropriate error
| message will appear. If it connects successfully you can start typing messages,
| each line you type (terminated by <return> or <enter>) is sent as a separate
| message, an empty line ends the program.

| Program design
| The program has two distinct parts: the first part uses the environment variables
| and command line value to query an LDAP directory server; the second part
| establishes the MQSeries connection using the information returned from the
| directory and sends the messages.

| The LDAP calls used in the first part of the program differ slightly depending on
| whether LDAP version 2 or 3 is being used, and they are described in detail by the
| documentation which comes with the LDAP client libraries. This section gives a
| brief description.

320 MQSeries Application Programming Guide

 Using LDAP services with MQSeries for Windows NT

| The first part of the program checks that it has been called correctly and reads the
| environment variables. It then establishes a connection with the LDAP directory
| server at the specified host:

| if (ldapVersion == LDAP_VERSION3)
| {
| if ((ld = ldap_init(ldapHost, LDAP_PORT)) == NULL)
| ...
| }
| else
| {
| if ((ld = ldap_open(ldapHost, LDAP_PORT)) == NULL)
| ...
| }

| When a connection has been established, the program sets some options on the
| server with the “ldap_set_option” call, and then authenticates itself to the server by
| binding to it:

| if (ldapVersion == LDAP_VERSION3)
| {
| if (ldap_simple_bind_s(ld, bindDN, password) != LDAP_SUCCESS)
| ...
| }
| else
| {
| if (ldap_bind_s(ld, bindDN, password, LDAP_AUTH_SIMPLE) !=
| LDAP_SUCCESS)
| ...
| }

| In the sample program “bindDN” and “password” are set to NULL, which means
| that the program authenticates itself as an anonymous user, that is, it does not
| have any special access rights and can access only information which is publicly
| available. In practice most organizations would restrict access to the information
| they store in directories so that only authorized users can access it.

| The first parameter to the bind call “ld” is a handle which is used to identify this
| particular LDAP session throughout the rest of the program. After authenticating,
| the program searches the directory for entries which match the application name:

| rc = ldap_search_s(ld, /\ LDAP Handle \/
| baseDN, /\ base distinguished name \/
| LDAP_SCOPE_ONELEVEL, /\ one-level search \/
| filterPattern, /\ filter search pattern \/
| attrs, /\ attributes required \/
| FALSE, /\ NOT attributes only \/
| &ldapResult); /\ search result \/

| This is a simple synchronous call to the server which returns the results directly.
| There are other types of search which are more appropriate for complex queries or
| when a large number of results is expected. The first parameter to the search is
| the handle “ld” which identifies the session. The second parameter is the base
| distinguished name, which specifies where in the directory the search is to begin,
| and the third parameter is the scope of the search, that is, which entries relative to
| the starting point are searched. These two parameters together define which
| entries in the directory are searched. The next parameter, “filterPattern” specifies
| what we are searching for. The “attrs” parameter lists the attributes which we want

 Chapter 30. Using lightweight directory access protocol services with MQSeries for Windows NT 321

 Using LDAP services with MQSeries for Windows NT

| to get back from the object when we have found it. The next attribute says whether
| we want just the attributes or their values as well, setting this to FALSE means that
| we want the attribute values. The final parameter is used to return the result.

| The result could contain many directory entries, each with the specified attributes
| and their values. We have to extract the values we want from the result. In this
| sample program we only expect one entry to be found, so we only look at the first
| entry in the result:

| ldapEntry = ldap_first_entry(ld, ldapResult);

| This call returns a handle which represents the first entry, and we set up a for loop
| to extract all the attributes from the entry:

| for (attribute = ldap_first_attribute(ld, ldapEntry, &ber);
| attribute != NULL;
| attribute = ldap_next_attribute(ld, ldapEntry, ber))
| {

| For each of these attributes, we extract the values associated with it. Again we
| only expect one value per attribute, so we only use the first value; we determine
| which attribute we have and store the value in the appropriate program variable:

| values = ldap_get_values(ld, ldapEntry, attribute);
| if (values != NULL && values[ð] != NULL)
| {
| if (stricmp(attribute, MQ_HOST_ATTR) == ð)
| {
| mqHost = strdup(values[ð]);
| ...

| Finally we tidy up by freeing memory (ldap_value_free, ldap_memfree,
| ldap_msgfree) and close the session by “unbinding” from the server:

| ldap_unbind(ld);

| We check that we have found all the MQSeries values we need from the directory,
| and if so we call sendMessages() to connect to the MQSeries server and send the
| MQSeries messages.

| The second part of the sample program is the sendMessages() routine which
| contains all of the MQSeries calls. This is modelled on the amqsput0 sample
| program, the differences being that the parameters to the program have been
| extended and MQCONNX is used instead of the MQCONN call.

322 MQSeries Application Programming Guide

Part 4. Sample MQSeries programs

| Chapter 31. Sample programs (all platforms except OS/390) 327
Features demonstrated in the sample programs 327

Samples for Digital OpenVMS and UNIX systems 328
Samples for OS/2 Warp and Windows NT 330
PL/I samples for AIX, OS/2 Warp, and Windows NT 331

| Visual Basic samples for Windows NT . 332
Samples for AS/400 . 333
Samples for Tandem NSK . 334

| Samples for VSE/ESA . 335
Preparing and running the sample programs 336

AS/400 . 336
UNIX systems . 336
Digital OpenVMS . 337
OS/2 and Windows NT . 338
Tandem NSK . 339
Windows . 340
Running the sample programs . 340

The Put sample programs . 342
Running the amqsput and amqsputc samples 342
Running the amqsputw sample . 343
Running the amq0put sample . 344
Running the AMQSPUT4 C sample . 344
Running the AMQ0PUT4 COBOL sample 344
Design of the Put sample program . 345

The Distribution List sample program . 345
Running the Distribution List sample, amqsptl0 345
Design of the Distribution List sample . 345

The Browse sample programs . 346
OS/2, UNIX systems, Digital OpenVMS, and Windows NT 346
AS/400 . 346
Design of the Browse sample program . 347

The Browser sample program . 347
The Get sample programs . 349

Running the amqsget and amqsgetc samples 349
Running the amqsgetw sample . 349
Running the amq0get sample . 350
Running the AMQSGET4 and the AMQ0GET4 samples 350
Design of the Get sample program . 351

The Reference Message sample programs . 351
Notes for AS/400 users . 352
Running the Reference Message samples 352
Design of the Put Reference Message sample (amqsprma.c) 357
Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4) 358
Design of the Get Reference Message sample (amqsgrma.c) 359

The Request sample programs . 359
Running the amqsreq0.c, amqsreq, and amqsreqc samples 360
Running the amq0req0.cbl sample . 360
Running the AMQSREQ4 sample . 360
Running the AMQ0REQ4 sample . 361
Running the Request sample using triggering 361

 Copyright IBM Corp. 1993,1999 323

Design of the Request sample program . 364
The Inquire sample programs . 366

Design of the Inquire sample program . 366
The Set sample programs . 367

Design of the Set sample program . 368
The Echo sample programs . 369

Design of the Echo sample programs . 369
The Data-Conversion sample program . 370

Design of the data-conversion sample . 370
The Triggering sample programs . 371

Running the amqstrg0.c, amqstrg, and amqstrgc samples 371
Running the AMQSTRG4 sample . 371
Design of the triggering sample . 371
Running the AMQSERV4 sample . 372
Design of the trigger server . 372
Ending the triggering sample programs on AS/400 372

Running the samples using remote queues . 373
Database coordination samples . 373

Creating the databases and tables . 375
Preparing, compiling, and linking the samples 376
Running the samples . 377

The CICS transaction sample . 379
| TUXEDO samples . 379

Building the server environment . 379
Server sample program for TUXEDO . 388
Put sample program for TUXEDO . 389
Get sample for TUXEDO . 390

Encina sample program . 390
Building the AMQSXAE0.C sample . 390

Dead-letter queue handler sample . 391
| The Connect sample program . 391
| Running the amqscnxc sample . 392

Chapter 32. Sample programs for MQSeries for OS/390 395
Features demonstrated in the sample applications 395

Put samples . 395
Get samples . 396
Browse sample . 396
Print Message sample . 396
Queue Attributes sample . 397
Mail Manager sample . 397
Credit Check sample . 398
The Message Handler sample . 398
Distributed queuing exit samples . 399
Data-conversion exit samples . 399

Preparing and running sample applications for the batch environment 399
Names of the sample batch applications . 400

Preparing sample applications for the TSO environment 401
Names of the sample TSO applications . 401

| Preparing the sample applications for the CICS environment 403
QLOP abend . 404
Names of the sample CICS applications . 404

Preparing the sample application for the IMS environment 407
Names of the sample IMS application . 408

324 MQSeries Application Programming Guide

The Put samples . 408
Design of the Put sample . 408
The Put samples for the batch environment 409
The Put samples for the CICS environment 410

The Get samples . 411
Design of the Get sample . 411
The Get samples for the CICS environment 413

The Browse sample . 414
Design of the Browse sample . 414
Language-dependent design considerations 416

The Print Message sample . 416
Design of the sample . 418

The Queue Attributes sample . 420
Design of the sample . 420

The Mail Manager sample . 421
Preparing the sample . 422
Running the sample . 422
Design of the sample . 424

The Credit Check sample . 430
Preparing and running the Credit Check sample 430
Design of the sample . 432
Design considerations . 439
The Credit Check sample with multiple queue managers 442
The IMS extension to the Credit Check sample 442

The Message Handler sample . 443
Preparing and running the sample . 443
Using the sample . 444
Design of the sample . 446

 Part 4. Sample MQSeries programs 325

326 MQSeries Application Programming Guide

 MQSeries sample programs � Features demonstrated

| Chapter 31. Sample programs (all platforms except OS/390)

This chapter describes the sample programs delivered with MQSeries, written in C,
COBOL, PL/I, and TAL. The samples demonstrate typical uses of the Message
Queue Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so
some error checking that you may want to include in a production program has
been omitted. However, these samples are suitable for use as a base for your own
message queuing programs.

The source code for all the samples is provided with the product; this source
includes comments that explain the message queuing techniques demonstrated in
the programs.

| DCE sample exit: For information on compiling and linking the DCE sample exit
| (amqsdsc0.c) see “Supplied channel-exit programs using DCE security services” in
| the MQSeries Intercommunication book.

| C++ sample programs: See the MQSeries Using C++ book for a description of the
| sample programs available in C++.

RPG sample programs: See the MQSeries for AS/400 Application Programming
Reference (RPG) manual for a description of the sample programs available in
RPG.

The names of the samples start with the prefix amq, except for TAL programs that
start zmq. The fourth character indicates the programming language, and the
compiler where necessary.

s C language
0 COBOL language on both IBM and Micro Focus compilers
i COBOL language on IBM compilers only
m COBOL language on Micro Focus compilers only
v COBOL language on DEC COBOL V2.3 and subsequent releases
p PL/I language

Features demonstrated in the sample programs
| The following tables show the techniques demonstrated by the MQSeries sample
| programs on all systems except OS/390 (see Chapter 32, “Sample programs for
| MQSeries for OS/390” on page 395). All the samples open and close queues

using the MQOPEN and MQCLOSE calls, so these techniques are not listed
separately in the tables. See the heading that includes the platform you are
interested in:

“Samples for Digital OpenVMS and UNIX systems” on page 328
“Samples for OS/2 Warp and Windows NT” on page 330
“PL/I samples for AIX, OS/2 Warp, and Windows NT” on page 331
“Samples for AS/400” on page 333
“Samples for Tandem NSK” on page 334

 Copyright IBM Corp. 1993,1999 327

 Features demonstrated

Samples for Digital OpenVMS and UNIX systems
Table 18 shows the techniques demonstrated by the sample programs for
MQSeries on UNIX systems and MQSeries for Digital OpenVMS.

Table 18 (Page 1 of 2). MQSeries on UNIX and Digital OpenVMS sample programs demonstrating use of the
MQI

Technique C
(source) (1)

COBOL
(source) (2)

C
(executable)

Client (3)
(executable)

Putting messages using the MQPUT call amqsput0
amqsputw

amq0put0 amqsput amqsputc
amqsputw

Putting a single message using the
MQPUT1 call

amqsinqa
amqsecha

amqminqx
amqmechx
amqiinqx
amqiechx
amqvinqx
amqviechx

amqsinq
amqsech

no sample

Putting messages to a distribution list (4) amqsptl0 no sample amqsptl amqsptlc

Replying to a request message amqsinq0 amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr no sample

Getting messages (wait with a time limit) amqsget0
amqsgetw

amq0get0 amqsget amqsgetc
amqsgetw

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech no sample

Putting reference messages to a queue (4) amqsprma no sample amqsprm amqsprmc

Getting reference messages from a queue (4) amqrgrma no sample amqsgrm amqsgrmc

| Reference message channel exit (4)| amqsqrma
| amqsxrma
| no sample| amqsxrm| no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr no sample

Browsing complete messages amqsbcg0 no sample amqsbcg no sample

Using a shared input queue amqsinq0 amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminqx
amqiinqx
amqvinqx

amqsinq no sample

Using the MQSET call amqsseta amqmsetx
amqisetx
amqvsetx

amqsset no sample

Using a reply-to queue amqsreq0 amq0req0 amqsreq no sample

Requesting message exceptions amqsreq0 amq0req0 amqsreq no sample

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr no sample

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr no sample

Triggering a process amqstrg0 no sample amqstrg amqstrgc

| Using data conversion| (5)| no sample| no sample| no sample

328 MQSeries Application Programming Guide

 Features demonstrated

Table 18 (Page 2 of 2). MQSeries on UNIX and Digital OpenVMS sample programs demonstrating use of the
MQI

Technique C
(source) (1)

COBOL
(source) (2)

C
(executable)

Client (3)
(executable)

MQSeries (coordinating XA-compliant
database managers) accessing a single
database using SQL (4)

amqsxas0.sqc amq0xas0.sqb no sample no sample

MQSeries (coordinating XA-compliant
database managers) accessing two
databases using SQL (4)

amqsxag0.c
amqsxab0.sqc
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

CICS transaction (6) amqscic0.ccs no sample amqscic0 no sample

Encina transaction (4) amqsxae0 no sample amqsxae0 no sample

TUXEDO transaction to put messages (7) amqstxpx no sample no sample no sample

TUXEDO transaction to get messages (7) amqstxgx no sample no sample no sample

Server for TUXEDO (7) amqstxsx no sample no sample no sample

Dead-letter queue handler (8) no sample amqsdlq no sample

From an MQI client, putting a message amqsputw no sample no sample amqsputc
amqsputw

From an MQI client, getting a message amqsgetw no sample no sample amqsgetc
amqsgetw

| Connecting to the queue manager
| using MQCONNX
| amqscnxc| no sample| no sample| amqscnxc

Notes:

1. The executable version of the MQSeries client samples share the same source as the samples that run in a
server environment.

| 2. COBOL is not supported by MQSeries for AT&T GIS UNIX. Compile programs beginning ‘amqm’ with the
| Micro Focus COBOL compiler, beginning ‘amqi’ with the IBM COBOL compiler, and beginning ‘amq0’ with
| either.

3. The executable versions of the MQSeries client samples are not available on MQSeries for HP-UX or
MQSeries for Digital OpenVMS.

4. Supported on MQSeries for AIX, HP-UX, and Sun Solaris only.

| 5. On MQSeries for AIX, HP-UX, and Sun Solaris this program is called amqsvfc0.c. On MQSeries for Digital
| OpenVMS, AT&T GIS UNIX, and SINIX and DC/OSx this program is called amqsvfcx.c.

6. CICS is supported by MQSeries for AIX and MQSeries for HP-UX only.

7. TUXEDO is not supported by MQSeries for Digital OpenVMS, AS/400, and Windows.

8. The source for the dead-letter queue handler is made up of several files and provided in a separate directory.

 Chapter 31. Sample programs (all platforms except OS/390) 329

 Features demonstrated

Samples for OS/2 Warp and Windows NT
Table 19 shows the techniques demonstrated by the sample programs for
MQSeries for OS/2 Warp and Windows NT.

Table 19 (Page 1 of 2). MQSeries for OS/2 Warp and Windows NT sample programs demonstrating use of the
MQI

Technique C
(source)

COBOL
(source)

C
(executable)

Client
(executable)

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc
amqsputw

Putting a single message using the
MQPUT1 call

amqsinqa
amqsecha

amqminq2
amqmech2
amqiinq2
amqiech2

amqsinq
amqsech

amqsinqc
amqsechc

Putting messages to a distribution list amqsptl0 no sample amqsptl amqsptlc

Replying to a request message amqsinq0 amqminq2
amqiinq2

amqsinq amqsinqc

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Getting messages (wait with a time limit) amqsget0
amqsgetw

amq0get0 amqsget amqsgetc
amqsgetw

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech amqsechc

Putting reference messages to a queue amqsprma no sample amqsprm amqsprmc

Getting reference messages from a queue amqsgrma no sample amqsgrm amqsgrmc

| Reference message channel exit| amqsqrma
| amqsxrma
| no sample| amqsxrm| no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinq0 amqminq2
amqiinq2

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using the MQSET call amqsseta amqmset2
amqiset2

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq amqsreqc

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Triggering a process amqstrg0 no sample amqstrg amqstrgc

| Using data conversion| amqsvfc0| no sample| no sample| no sample

CICS transaction amqscic0.ccs no sample amqscic0
(1)

no sample

TUXEDO transaction to put messages
(Windows NT only)

amqstxpx no sample no sample no sample

330 MQSeries Application Programming Guide

 Features demonstrated

Table 19 (Page 2 of 2). MQSeries for OS/2 Warp and Windows NT sample programs demonstrating use of the
MQI

Technique C
(source)

COBOL
(source)

C
(executable)

Client
(executable)

TUXEDO transaction to get messages
(Windows NT only)

amqstxgx no sample no sample no sample

Server for TUXEDO
(Windows NT only)

amqstxsx no sample no sample no sample

Encina transaction amqsxae0 no sample amqsxae0 no sample

Dead-letter queue handler (2) no sample amqsdlq no sample

From an MQSeries client, putting a message amqsputw no sample no sample amqsputc
amqsputw

From an MQSeries client, getting a message amqsgetw no sample no sample amqsgetc
amqsgetw

| Connecting to the queue manager
| using MQCONNX
| amqscnxc| no sample| no sample| amqscnxc

Notes:

| 1. The executable version on OS/2 is for CICS Transaction Server for OS/2, Version 4; the version on Windows
| NT is for TXSeries for Windows NT, Version 4.

2. The source for the dead-letter queue handler is made up of several files and provided in a separate directory.

The following list shows the techniques demonstrated by the MQSeries for
Windows sample programs:

Sample program Technique
AMQSPUTW Putting a message on a specified queue
AMQSGETW Getting a message from a specified queue
AMQSBCGW Browsing a message and its header

For further information about these sample programs, see the following:

� MQSeries for Windows V2.0 User’s Guide.
� MQSeries for Windows V2.1 User’s Guide.

PL/I samples for AIX, OS/2 Warp, and Windows NT
Table 20 shows the techniques demonstrated by the MQSeries for AIX, MQSeries
for OS/2 Warp, and MQSeries for Windows NT sample programs.

Table 20. MQSeries for AIX, OS/2 Warp, and Windows NT sample programs demonstrating use of the MQI

Technique PL/I (source) PL/I (executable)

Putting messages using the MQPUT call amqpput0 no sample

Getting messages (wait with a time limit) amqpget0 no sample

 Chapter 31. Sample programs (all platforms except OS/390) 331

 Features demonstrated

| Visual Basic samples for Windows NT
| Table 21 shows the techniques demonstrated by the MQSeries for Windows NT
| sample programs.

| A project may contain several files. When you open a project within Visual Basic
| the other files will be loaded automatically. No executable programs are provided.

| All the sample projects, except mqtrivc.vbp, are set up to work with the MQSeries
| server. To find out how to change the sample projects to work with the MQSeries
| clients see “Preparing Visual Basic programs” on page 313.

| Table 21. MQSeries for Windows NT sample programs demonstrating use of the MQI

| Technique| Project file name

| Putting messages using the MQPUT call| amqsputb.vbp

| Getting messages using the MQGET call| amqsgetb.vbp

| Browsing a queue using the MQGET call| amqsbcgb.vbp

| Simple MQGET and MQPUT sample (client)| mqtrivc.vbp

| Simple MQGET and MQPUT sample (server)| mqtrivs.vbp

| Putting and getting strings and user-defined structures using MQPUT and MQGET| strings.vbp

| Using PCF structures to start and stop a channel| pcfsamp.vbp

| Creating a queue using the MQAI| amqsaicq.vbp

| Listing a queue manager’s queues using the MQAI| amqsailq.vbp

| Monitoring events using the MQAI| amqsaiem.vbp

332 MQSeries Application Programming Guide

 Features demonstrated

Samples for AS/400
Table 22 shows the techniques demonstrated by the MQSeries for AS/400 sample
programs. Some techniques occur in more than one sample program, but only one
program is listed in the table.

Table 22. MQSeries for AS/400 sample programs demonstrating use of the MQI

Technique C (source) COBOL (source)

Using the MQCONN and MQDISC calls AMQSECHA,
AMQSINQA

AMQ0ECHA,
AMQ0INQA

Implicitly connecting and disconnecting AMQSPUT4 AMQ0PUT4

Putting messages using the MQPUT call AMQSPUT4 AMQ0PUT4

Putting a single message using the MQPUT1 call AMQSINQA,
AMQSECHA

AMQ0INQA,
AMQ0ECHA

Putting messages to a distribution list AMQSPTL0 no sample

Replying to a request message AMQSINQA AMQ0INQA

Getting messages (no wait) AMQSGBR4 AMQ0GBR4

Getting messages (wait with a time limit) AMQSGET4 AMQ0GET4

Getting messages (unlimited wait) AMQSTRG4 no sample

Getting messages (with data conversion) AMQSECHA AMQ0ECHA

Putting reference messages to a queue AMQSPRMA no sample

Getting reference messages from a queue AMQSGRMA no sample

Reference message channel exit| AMQSQRM4,
| AMQSXRM4

no sample

| Message exit| AMQSCMX4| no sample

Browsing first 20 characters of a message AMQSGBR4 AMQ0GBR4

Browsing complete messages AMQSBCG0 no sample

Using a shared input queue AMQSINQA AMQ0INQA

Using an exclusive input queue AMQSREQ4 AMQ0REQ4

Using the MQINQ call AMQSINQA AMQ0INQA

Using the MQSET call AMQSSETA AMQ0SETA

Using a reply-to queue AMQSREQ4 AMQ0REQ4

Requesting message exceptions AMQSREQ4 AMQ0REQ4

Accepting a truncated message AMQSGBR4 AMQ0GBR4

Using a resolved queue name AMQSGBR4 AMQ0GBR4

Triggering a process AMQSTRG4 no sample

Trigger server AMQSERV4 no sample

| Using a trigger server (including CICS transactions)| AMQSERV4| no sample

Using data conversion AMQSVFC4 no sample

In addition to these, the MQSeries for AS/400 sample option includes a sample
data file which can be used as input to the sample programs, AMQSDATA and
sample CL programs that demonstrate administration tasks. The CL samples are
described in the MQSeries for AS/400 Administration Guide. You could use the

 Chapter 31. Sample programs (all platforms except OS/390) 333

 Features demonstrated

sample CL program amqsamp4 to create queues to use with the sample programs
described in this chapter.

Samples for Tandem NSK
The following C and COBOL sample programs are supplied with MQSeries for
Tandem NSK, Version 2.2:

Table 23. MQSeries for Tandem NSK C and COBOL sample programs demonstrating use of the MQI

Description C
(source)

C
(executable)

COBOL85
(source)

COBOL85
(executable)

Putting messages using
the MQPUT call

amqsput0 amqsput amq0put0 amq0put

Putting a single message
using the MQPUT1 call

amqsinqa amqsinq No sample No sample

Getting messages
(no wait)

amqsgbr0 amqsgbr amq0gbr0 amq0gbr

Getting messages
(wait with a time limit)

amqsget0 amqsget amq0get0 amq0get

Getting messages
(unlimited wait)

amqstrg0 amqstrg No sample No sample

Getting messages
(with data conversion)

amqsecha amqsech amq0ech0 amq0ech

Browsing complete messages amqsbcg0 amqsbcg No sample No sample

Use a shared input queue No sample No sample amq0inq0 amq0inq

Using the MQSET call amqsseta amqsset amq0set0 amq0set

Using a reply-to queue amqsreq0 amqsreq amq0req0 amq0req

Using data conversion amqsvfcn No sample No sample No sample

Sample skeleton for channel exit amqsvchn No sample No sample No sample

The following TAL sample programs are supplied with MQSeries for Tandem NSK
Version 2.2:

Table 24. MQSeries for Tandem NSK TAL sample programs demonstrating use of the
MQI

Description TAL
(source)

TAL
(executable)

Read n messages from a queue zmqreadt zmqread

Write n messages of n length to a queue zmqwritt zmqwrit

334 MQSeries Application Programming Guide

 Features demonstrated

| Samples for VSE/ESA
| Table 25 shows the techniques demonstrated by the MQSeries for VSE/ESA
| COBOL sample programs.

| Table 25. MQSeries for VSE/ESA COBOL sample programs demonstrating use of the
| MQI

| Description| COBOL
| (source)
| COBOL
| (executable)

| Transaction that demonstrates MQI calls (1)| TTPTST2.Z| TTPTST2

| Test facility that starts the sample
| transaction TTPTST2 (2)
| TTPTST3.Z| TTPTST3

| Triggered test program that echoes a
| message from a queue to a reply-to queue
| MQPECHO.Z| MQPECHO

| Notes:

| 1. Demonstrates MQGET, MQINQ, MQPUT, MQPUT1, both MQPUT and MQGET,
| MQGET and delete, MQPUT and reply.
| 2. Each TTPTST2 that is started is a task.

 Chapter 31. Sample programs (all platforms except OS/390) 335

 Preparing and running samples

Preparing and running the sample programs
The following sections help you find the samples that you need to run on the
different platforms.

 AS/400
The MQSeries for AS/400 sample programs are provided in library QMQMSAMP as
members of QCSRC, QLBLSRC, QCBLLESRC. Before you can run the samples,
you must compile them as you would any other MQSeries for AS/400 applications.

For more details see Chapter 18, “Building your application on AS/400” on
page 265.

 UNIX systems

The MQSeries on UNIX systems sample files will be in the directories listed in
Table 26 if the defaults were used at installation time. To run the samples, either
use the executable versions supplied or compile the source versions as you would
any other applications, using an ANSI compiler. For information on how to do this,
see “Running the sample programs” on page 340.

Table 26. Where to find the samples for MQSeries on UNIX systems

Content Directory

source files /mqmtop /samp

C source file for
Windows 3.1 sample

/mqmtop /win_client/samp

dead-letter queue
handler source files

/mqmtop /samp/dlq

executable files /mqmtop /samp/bin

Other MQSeries client
executable files

/mqmtop /dos_client/samp/bin
/mqmtop /os2_client/samp/bin
/mqmtop /win_client/samp/bin

| Note: For MQSeries for AIX mqmtop is usr/mqm, for MQSeries for other UNIX
| systems mqmtop is opt/mqm.

336 MQSeries Application Programming Guide

 Preparing and running samples

 Digital OpenVMS

The MQSeries for Digital OpenVMS sample files are in the directories listed in
Table 27 if the defaults were used at installation time. To run the samples, either
use the executable versions supplied or compile the source versions as you would
any other applications, using an ANSI compiler. For information on how to do this,
see “Running the sample programs” on page 340.

Table 27. Where to find the samples for MQSeries for Digital OpenVMS

Content Directory

source files MQS_EXAMPLES

C source file for
Windows 3.1 sample

[.WIN_CLIENT.SAMP]
under MQS_EXAMPLES

dead-letter queue
handler source files

[.DLQ] under MQS_EXAMPLES

executable files [.BIN] under MQS_EXAMPLES

Other MQSeries client
executable files

[.DOS_CLIENT.SAMP.BIN]
under MQS_EXAMPLES
[OS2_CLIENT.SAMP.BIN]
under MQS_EXAMPLES
[WIN_CLIENT.SAMP.BIN]
under MQS_EXAMPLES

 Chapter 31. Sample programs (all platforms except OS/390) 337

 Preparing and running samples

OS/2 and Windows NT

| Note: MQSeries for Windows NT samples are in the directories that begin
| <drive:directory>\Program Files.

| The MQSeries for OS/2 Warp and MQSeries for Windows NT sample files will be in
| the directories listed in Table 28 if the defaults were used at installation time, the
| <drive:directory> will default to <c:>. To run the samples, either use the executable
| versions supplied or compile the source versions as you would any other MQSeries
| for OS/2 Warp or MQSeries for Windows NT applications. For information on how
| to do this, see “Running the sample programs” on page 340.

Table 28. Where to find the samples for MQSeries for OS/2 Warp and MQSeries for
Windows NT

Content Directory

C source code <drive:directory>\MQM\TOOLS\C\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples

Source code for
dead-letter handler
sample

<drive:directory>\MQM\TOOLS\C\SAMPLES\DLQ
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples\DLQ

C source code for
Windows 3.1
sample

<drive:directory>\MQM\WIN

COBOL source
code

<drive:directory>\MQM\TOOLS\COBOL\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\Cobol\Samples

C executable files <drive:directory>\MQM\TOOLS\C\SAMPLES\BIN
<drive:directory>\Program Files\MQSeries\
Tools\C\Samples\Bin

Other MQSeries
client executable
files

<drive:directory>\MQM\DOS
<drive:directory>\MQM\AIX
<drive:directory>\MQM\WIN

Sample MQSC
files

<drive:directory>\MQM\TOOLS\MQSC\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\MQSC\Samples

PL/I source code <drive:directory>\MQM\TOOLS\PLI\SAMPLES
<drive:directory>\Program Files\MQSeries\
Tools\PLI\Samples

| Visual Basic
| Version 4 source
| code

| <drive:directory>\Program Files\MQSeries\
| Tools\Samples\VB\Sampvb4

| Visual Basic
| Version 5 source
| code

| <drive:directory>\Program Files\MQSeries\
| Tools\Samples\VB\Sampvb5

| Note: The Visual Basic samples are not available for OS/2.

338 MQSeries Application Programming Guide

 Preparing and running samples

 Tandem NSK
See the section for the programming language you are using.

Building C sample programs
The subvolume ZMQSSMPL contains the following TACL macro files to be used for
building sample C applications:

CSAMP Usage: CSAMP source-code-file-name

This is a basic macro for compiling a source file using the include
files contained in subvolume ZMQSLIB. For example, to compile
the sample AMQSBCG0, use CSAMP AMQSBCGð. If the compilation is
successful, the macro produces an object file with the last character
of the file name replaced by the letter O; for example, AMQSBCGO.

BSAMP Usage: BSAMP exe-file-name

This is a basic macro used to bind an object file with the user
libraries in ZMQSLIB. For example, to bind the compiled sample
AMQSBCG0, use BSAMP AMQSBCG. The macro produces an
executable file called exe-filenameE; for example, AMQSBCGE.

COMPALL Usage: COMPALL

This TACL macro compiles each of the sample source code files
using the CSAMP macro.

BINDALL Usage: BINDALL

This TACL macro binds each of the sample object files into
executables using the BSAMP macro.

BUILDC Usage: BUILDC

This TACL macro compiles and binds all of the C sample files using
the macros COMPALL and BINDALL.

Building COBOL sample programs
The subvolume ZMQSSMPL contains the following files to be used for building
sample COBOL applications.

CCBSMPLS Usage: CCBSMPLS

This TACL macro compiles each of the COBOL sample source
code files.

BCBSMPLS Usage: BIND /IN BCBSMPLS/

This bind input file binds each of the COBOL sample object files
into executables.

BUILDCOB Usage: BUILDCOB

This TACL macro compiles and binds all of the COBOL sample files
using the macros CCBSMPLS and BCBSMPLS.

 Chapter 31. Sample programs (all platforms except OS/390) 339

 Preparing and running samples

Building TAL sample programs
The subvolume ZMQSSMPL contains the following files to be used for building
sample TAL programs.

CTLSMPLS Usage: CTLSMPLS

This TACL macro compiles each of the TAL sample source code
files.

BTLSMPLS Usage: BIND /IN BTLSMPLS/

This bind input file binds each of the TAL sample object files into
executables.

BUILDCOB Usage: BUILDCOB

This TACL macro compiles and binds all of the TAL sample files
using the macros CTLSMPLS and BTLSMPLS.

 Windows
For information about MQSeries for Windows, see the following:

� MQSeries for Windows V2.0 User’s Guide.
� MQSeries for Windows V2.1 User’s Guide.

Running the sample programs
| Before you can run any of the sample programs, a queue manager must be
| created and the default definitions set up. This is explained in “Creating a queue
| manager” in the MQSeries System Administration book for MQSeries for AIX,
| HP-UX, OS/2, Sun Solaris, and Windows NT; for other platforms, see the
| appropriate System Management Guide.

On all platforms except AS/400
The samples need a set of queues to work with. Either use your own queues or
run the sample MQSC file amqscos0.tst to create a set.

To do this on UNIX systems and Digital OpenVMS, enter:

runmqsc QManagerName <amqscosð.tst >/tmp/sampobj.out

Check the sampobj.out file to ensure that there are no errors.

To do this on OS/2 and Windows NT enter:

runmqsc QManagerName <amqscosð.tst > sampobj.out

Check the sampobj.out file to ensure that there are no errors. This file will be
found in your current directory.

To do this on Tandem NSK enter:

runmqsc -i $SYSTEM.ZMQSSMPL.AMQSCOMA

Check the sampobj.out file to ensure that there are no errors. This file will be
found in your current directory.

The sample applications can now be run. Enter the name of the sample application
followed by any parameters, for example:

amqsput myqueue qmanagername

340 MQSeries Application Programming Guide

 Preparing and running samples

where myqueue is the name of the queue on which the messages are going to be
put, and qmanagername is the queue manager that owns myqueue.

See the description of the individual samples for information on the parameters that
each of them expects.

 On AS/400
You can use your own queues when you run the samples, or you can run the
sample program amqsamp4 to create some sample queues. The source for this
program is shipped in file QCLSRC in library QMQMSAMP. It can be compiled
using the CRTCLPGM command.

To call one of the sample programs using data from member PUT in file
AMQSDATA of library QMQMSAMP, use a command like:

CALL PGM(QMQMSAMP/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

The sample data only applies to the C/400 sample programs.

Length of queue name
For the COBOL sample programs, when you pass queue names as parameters,
you must provide 48 characters, padding with blank characters if necessary.
Anything other than 48 characters causes the program to fail with reason code
2085.

Inquire, Set, and Echo examples
For the Inquire, Set, and Echo examples, the sample definitions cause the C
versions of these samples to be triggered. If you want the COBOL versions you
must change the process definitions:

 SYSTEM.SAMPLE.INQPROCESS

 SYSTEM.SAMPLE.SETPROCESS

 SYSTEM.SAMPLE.ECHOPROCESS

On OS/2, Windows NT, and UNIX do this by editing the amqscos0.tst file and
changing the C executable file names to the COBOL executable file names before
using the runmqsc command above.

On AS/400, you can use the CHGMQMPRC command (described in the MQSeries
for AS/400 Administration Guide), or edit and run AMQSAMP4 with the alternative
definition.

 Chapter 31. Sample programs (all platforms except OS/390) 341

 Put samples

The Put sample programs
The Put sample programs put messages on a queue using the MQPUT call. See
“Features demonstrated in the sample programs” on page 327 for the names of
these programs.

Running the amqsput and amqsputc samples
These programs each take 2 parameters:

1. The name of the target queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsput connects to the default queue
manager and amqsputc connects to the queue manager identified by an
environment variable or the client channel definition file. To run these programs,
enter one of the following:

amqsput myqueue qmanagername

amqsputc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be
put, and qmanagername is the queue manager that owns myqueue.

342 MQSeries Application Programming Guide

 Put samples

Running the amqsputw sample
This program has no visible interface; all messages are put in the output file.

This program takes 4 parameters:

1. The name of the output file (required)
2. The name of the input file (required)
3. The name of the queue manager (required)
4. The name of the target queue (optional)

To run amqsputw from the Windows program manager:

1. Select File and click on Run...

2. On the run dialog, enter into the command line entry field the program name
followed by the parameters.

For example:

amqsputw outfile.out infile.in qmanagername myqueue

where:

outfile.out is used to hold the messages generated when the program runs.

infile.in contains the data to be put onto the target queue. Each line of data
is put as a message. This must be an ASCII file.

qmanagername is the queue manager that owns myqueue.

myqueue is the name of the target queue on which the messages are going to
be put. If you don’t enter a queue name, the default queue for the queue
manager is used.

Here is an example of what you would see in the output file if you supplied a target
queue name:

Sample AMQSPUTW start
Output file “OUTFILE.OUT” opened
Input file “INFILE.IN” opened
Queue Manager name “QMANAGERNAME” will be used
target queue is MYQUEUE
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
Sample AMQSPUTW end

Here is an example of what you would see in the output file if you did not enter a
target queue name (for example, amqsputw outfil2.out c: \infil2.in
qmanagernam2):

Sample AMQSPUTW start
Output file “OUTFIL2.OUT” opened
Input file “C:\INFIL2.IN” opened
Queue Manager name “QMANAGERNAM2” will be used
No parameter for Queue Name. Default Queue Name will be used
target queue is QDEF2.Q
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQPUT OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
Sample AMQSPUTW end

 Chapter 31. Sample programs (all platforms except OS/390) 343

 Put samples

where QDEF2.Q is the name of the default queue for the queue manager.

It is important always to look in the output file to see what has happened as there
is no visible indication of success or failure when you run this program.

Running the amq0put sample
The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:

Please enter the name of the target queue

It takes input from StdIn and adds each line of input to the target queue. A blank
line indicates there is no more data.

Running the AMQSPUT4 C sample
The C program creates messages by reading data from a member of a source file.
You must specify the name of the file as a parameter when you start the program.
The structure of the file must be:

 queue name
text of message 1
text of message 2

...
text of message n

 blank line

A sample of input for the put samples is supplied in library QMQMSAMP file
AMQSDATA member PUT.

Note: Remember that queue names are case sensitive. All the queues created by
the sample file create program AMQSAMP4 have names created in uppercase
characters.

The C program puts messages on the queue named in the first line of the file—you
could use the supplied queue SYSTEM.SAMPLE.LOCAL. The program puts the
text of each of the following lines of the file into separate datagram messages, and
stops when it reads a blank line at the end of the file.

Using the example data file the command is:

CALL PGM(QMQMSAMP/AMQSPUT4) PARM('QMQMSAMP/AMQSDATA(PUT)')

Running the AMQ0PUT4 COBOL sample
The COBOL program creates messages by accepting data from the keyboard. To
start the program, call the program and give the name of your target queue as a
program parameter. The program accepts input from the keyboard into a buffer
and creates a datagram message for each line of text. The program stops when
you enter a blank line at the keyboard.

344 MQSeries Application Programming Guide

 Distribution List sample

Design of the Put sample program
The program uses the MQOPEN call with the MQOO_OUTPUT option to open the
target queue for putting messages. If it cannot open the queue, the program
outputs an error message containing the reason code returned by the MQOPEN
call. To keep the program simple, on this and on subsequent MQI calls, the
program uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the
MQPUT call to create a datagram message containing the text of that line. The
program continues until either it reaches the end of the input or the MQPUT call
fails. If the program reaches the end of the input, it closes the queue using the
MQCLOSE call.

The Distribution List sample program
The Distribution List sample amqsptl0 gives an example of putting a message on
several message queues. It is based on the MQPUT sample, amqsput0.

Running the Distribution List sample, amqsptl0
The Distribution List sample runs in a similar way to the Put samples. It takes the
following parameters:

� The names of the queues
� The names of the queue managers

These values are entered as pairs. For example:

amqsptlð queue1 qmanagername1 queue2 qmanagername2

The queues are opened using MQOPEN and messages are put to the queues
using MQPUT. Reason codes are returned if any of the queue or queue manager
names are not recognized.

Design of the Distribution List sample
Put Message Records (MQPMRs) specify message attributes on a per destination
basis. The sample chooses to provide values for MsgId and CorrelId, and these
override the values specified in the MQMD structure. The PutMsgRecFields field in
the MQPMO structure indicates which fields are present in the MQPMRs:

MQLONG PutMsgRecFields=MQPMRF_MSG_ID + MQPMRF_CORREL_ID;

Next, the sample allocates the response records and object records. The object
records (MQORs) require at least one pair of names and an even number of
names, that is, ObjectName and ObjectQMgrName.

The next stage involves connecting to the queue managers using MQCONN. The
sample attempts to connect to the queue manager associated with the first queue
in the MQOR; if this fails, it goes through the object records in turn. You are
informed if it is not possible to connect to any queue manager and the program
exits.

The target queues are opened using MQOPEN and the message is put to these
queues using MQPUT. Any problems and failures are reported in the response
records (MQRRs).

 Chapter 31. Sample programs (all platforms except OS/390) 345

 Browse sample

Finally, the target queues are closed using MQCLOSE and the program
disconnects from the queue manager using MQDISC. The same response records
are used for each call stating the CompCode and Reason.

The Browse sample programs
The Browse sample programs browse messages on a queue using the MQGET
call. See “Features demonstrated in the sample programs” on page 327 for the
names of these programs.

OS/2, UNIX systems, Digital OpenVMS, and Windows NT
The C version of the program takes 2 parameters

1. The name of the source queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. For example,
enter one of the following:

amqsgbr myqueue qmanagername

amqsgbrc myqueue qmanagername

 amqðgbrð myqueue

where myqueue is the name of the queue that the messages will be viewed from,
and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it will assume that the
default queue manager owns the queue.

The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:

Please enter the name of the target queue

Each program retrieves copies of all the messages on the queue you specify when
you call the program; the messages remain on the queue. You could use the
supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put
some messages on the queue. You could use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The
program continues until it reaches the end of the queue or an MQI call fails.

Only the first 20 characters of each message are displayed, followed by - - -
truncated when this is the case.

 AS/400
Each program retrieves copies of all the messages on the queue you specify when
you call the program; the messages remain on the queue. You could use the
supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put
some messages on the queue. You could use the queue
SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue. The
program continues until it reaches the end of the queue or an MQI call fails.

An example of a command to call the C program is:

CALL PGM(QMQMSAMP/AMQSGBR4) PARM('SYSTEM.SAMPLE.LOCAL')

346 MQSeries Application Programming Guide

 Browser sample

Design of the Browse sample program
The program opens the target queue using the MQOPEN call with the
MQOO_BROWSE option. If it cannot open the queue, the program outputs an
error message containing the reason code returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the
message from the queue, then displays the data contained in the message. The
MQGET call uses these options:

MQGMO_BROWSE_NEXT
After the MQOPEN call, the browse cursor is positioned logically before
the first message in the queue, so this option causes the first message
to be returned when the call is first made.

MQGMO_NO_WAIT
The program does not wait if there are no messages on the queue.

MQGMO_ACCEPT_TRUNCATED_MSG
The MQGET call specifies a buffer of fixed size. If a message is longer
than this buffer, the program displays the truncated message, together
with a warning that the message has been truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call, because the call sets these fields to
the values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues to the end of the queue; at this point the MQGET call
returns the MQRC_NO_MSG_AVAILABLE reason code and the program displays a
warning message. If the MQGET call fails, the program displays an error message
that contains the reason code.

The program then closes the queue using the MQCLOSE call.

The Browser sample program
This sample is not available on AS/400.

The Browser sample program is written as a utility not just to demonstrate a
technique. It reads and outputs both the message descriptor and the message
content fields of all the messages on a queue. See “Features demonstrated in the
sample programs” on page 327 for the names of these programs.

This program takes 2 parameters:

1. The name of the source queue
2. The name of the queue manager

Both input parameters for this program are mandatory. For example, enter one of
the following:

amqsbcg myqueue qmanagername

amqsbcgc myqueue qmanagername

 Chapter 31. Sample programs (all platforms except OS/390) 347

 Browser sample

where myqueue is the name of the queue on which the messages are going to be
browsed, and qmanagername is the queue manager that owns myqueue.

It reads each message from the queue and outputs the following to the stdout:

Formatted message descriptor fields

Message data (dumped in hex and, where possible, character format)

The program is restricted to printing the first 32767 characters of the message, and
will fail with the reason ‘truncated msg’ if a longer message is read.

See the System Management Guide for your platform, for examples of the output
from this utility.

348 MQSeries Application Programming Guide

 Get sample

The Get sample programs
The Get sample programs get messages from a queue using the MQGET call.
See “Features demonstrated in the sample programs” on page 327 for the names
of these programs.

Running the amqsget and amqsgetc samples
These programs each take two parameters:

1. The name of the source queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsget connects to the default queue
manager, and amqsgetc connects to the queue manager identified by an
environment variable or the client channel definition file.

To run these programs, enter one of the following:

amqsget myqueue qmanagername

amqsgetc myqueue qmanagername

| where myqueue is the name of the queue from which the program will get
| messages, and qmanagername is the queue manager that owns myqueue.

If you omit the qmanagername, the programs assume the default, or, in the case of
the MQI client, the queue manager identified by an environment variable or the
client channel definition file.

Running the amqsgetw sample
This program has no visible interface, all messages are put in the output file, not to
stdout.

This program takes 3 parameters:

1. The name of the output file (required)
2. The name of the queue manager (required)
3. The name of the target queue (optional)

To run amqsgetw from the Windows 3.1 program manager:

1. Select File and click on Run...

2. On the run dialog, enter into the command line entry field the program name
followed by the parameters.

 Chapter 31. Sample programs (all platforms except OS/390) 349

 Get sample

For example:

amqsgetw outfile.out qmanagername myqueue

where:

outfile.out is used to hold the messages generated when the program runs.

qmanagername is the queue manager that owns myqueue.

myqueue is the name of the target queue from which the program will get
messages. If you do not enter a queue name, the default queue for the queue
manager is used.

Here is an example of the contents of the output file:

Sample AMQSGETW start
Output file “OUTFILE.OUT” opened
Queue Manager name “QMANAGERNAME” will be used
Queue Name “MYQUEUE” will be used
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 1>
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 2>
MQGET OK - message contents: <AMQSPUTW: Windows Client Test Message 3>
no more messages
Sample AMQSGETW end

It is important always to look in the output file to see what has happened as there
is no visible indication of success or failure when you run this program.

Running the amq0get sample
The COBOL version does not have any parameters. It connects to the default
queue manager and when you run it you are prompted:

Please enter the name of the source queue

Each program removes messages from the queue you specify when you call the
program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the
Put sample program first to put some messages on the queue. You could use the
queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue.
The program continues until the queue is empty or an MQI call fails.

Running the AMQSGET4 and the AMQ0GET4 samples
The Get sample programs get messages from a queue using the MQGET call. The
programs are named:

C language AMQSGET4
COBOL language AMQ0GET4

Each program removes messages from the queue you specify when you call the
program. You could use the supplied queue SYSTEM.SAMPLE.LOCAL; run the
Put sample program first to put some messages on the queue. You could use the
queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the same local queue.
The program continues until the queue is empty or an MQI call fails.

350 MQSeries Application Programming Guide

 Reference message samples

An example of a command to call the C program is:

CALL PGM(QMQMSAMP/AMQSGET4) PARM('SYSTEM.SAMPLE.LOCAL')

Design of the Get sample program
The program opens the target queue using the MQOPEN call with the
MQOO_INPUT_AS_Q_DEF option. If it cannot open the queue, the program
displays an error message containing the reason code returned by the MQOPEN
call.

For each message on the queue, the program uses the MQGET call to remove the
message from the queue, then displays the data contained in the message. The
MQGET call uses the MQGMO_WAIT option, specifying a WaitInterval of 15
seconds, so that the program waits for this period if there is no message on the
queue. If no message arrives before this interval expires, the call fails and returns
the MQRC_NO_MSG_AVAILABLE reason code.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call because the call sets these fields to
the values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this
buffer, the call fails and the program stops.

The program continues until either the MQGET call returns the
MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call
fails, the program displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

The Reference Message sample programs
The reference message samples allow a large object to be transferred from one
node to another (usually on different systems) without the need for the object to be
stored on MQSeries queues at either the source or the destination nodes.

A set of sample programs is provided to demonstrate how reference messages can
be 1) put to a queue, 2) received by message exits, and 3) taken from a queue.
The sample programs use reference messages to move files. If you want to move
other objects such as databases, or if you want to perform security checks, you
must define your own exit, based on our sample, amqsxrm. The following sections
describe the Reference Message sample programs.

| There are four versions of the reference message exit sample program. The one to
| use depends on the platform on which the channel is running. If the sender
| channel is running on:

| MQSeries Version 5 products
| Use amqsxrma at the sending end. Use amqsxrma at the receiving end if
| running under MQSeries Version 5 products or amqsxrm4 if running under
| MQSeries for AS/400.

 Chapter 31. Sample programs (all platforms except OS/390) 351

 Reference message samples

| MQSeries for AS/400
| Use amqsqrm4 at the sending end. Use amqsqrma at the receiving end if
| running under MQSeries Version 5 products or amqsqrm4 if running under
| MQSeries for AS/400.

| MQSeries for Windows (not MQSeries for Windows NT)
| Use amqsqrma at the receiving end if running under MQSeries Version 5
| products or amqsqrm4 if running under MQSeries for AS/400.

| If you use amqsqrma or amqsqrm4 a model queue with the name
| SYSTEM.DEFAULT.MODEL.PERMDYN.QUEUE and queue definition type of
| PERMDYN must exist at the receiving end. You can create this queue using the
| MQSC command:

| def qm(system.default.model.permdyn.queue) deftype(permdyn)

| Note: In the following sections references to amqsxrma also apply to amqsqrma
| and references to AMQSXRM4 also apply to AMQSQRM4.

Notes for AS/400 users
To receive a reference message using the sample message exit, specify a file in
the root file system of IFS or any sub-directory so that a stream file can be created.
The sample message exit on AS/400 creates the file, converts the data to EBCDIC,
and sets the code page to your system code page. You then have the option of
copying this file to the QSYS.LIB file system using the CPYFRMSTMF command.
For example:

CPYFRMSTMF FROMSTMF('JANEP/TEST.TXT')
 TOMBR('qsys.lib.janep.lib/test.fie/test.mbr') MBROPT(\REPLACE)
 CVTDTA(\NONE)

Note that the CPYFRMSTMF command does not create the file, it must be created
before running this command.

If you send a file from QSYS.LIB no changes are required to the samples. For any
other file system ensure that the CCSID specified in the CodedCharSetId field in
the MQRMH structure matches the bulk data you are sending.

When using the integrated file system, create program modules with the
SYSIFCOPT(*IFSIO) option set. If you want to move database or fixed-length
record files, define your own exit based on the supplied sample AMQSXRM4.

Running the Reference Message samples
The reference message samples run as follows:

352 MQSeries Application Programming Guide

 Reference message samples

Putting application, amqsprm Getting application, amqsgrm

ReplyToQ

XMITQ

amqsxrm
exit

Receiving
channel

file data
d:/files/infile.dat

Destination
queue
(DQ)

Receiving
channel

amqsxrm
exit

Sending
channel

file data
e:/files/outfile.dat

QMGR1

Q

QM

XQ RMH

RMH

RMH

RMH

COA

COA

COA

report

Check

existence

of file

RMH + data

RMH

QMGR2QMGR1

QR

Sending
channel

Figure 35. Running the reference message samples

1. Set up the environment to start the listeners, channels, and trigger monitors,
and define your channels and queues.

For the purposes of describing how to set-up the reference message example
this refers to the sending machine as MACHINE1 with a queue manager called
QMGR1 and the receiving machine as MACHINE2 with a queue manager
called QMGR2.

For AS/400 users: On the AS/400 the sample programs must be created, this
can be done by issuing the following commands. You may wish to put the
modules and programs into a different library but for this example they are kept
in QMQMSAMP. It is important to note that the activation group QMQM must
not be used for any exit programs - this activation group is for the use of
MQSeries only.

 Chapter 31. Sample programs (all platforms except OS/390) 353

 Reference message samples

CRTCMOD MODULE(QMQMSAMP/AMQSPRMA) SRCFILE(QMQMSAMP/QCSRC)
CRTPGM PGM(QMQMSAMP/AMQSPRMA) BNDSRVPGM(QMQM/AMQZSTUB)

CRTCMOD MODULE(QMQMSAMP/AMQSGRMA) SRCFILE(QMQMSAMP/QCSRC)
CRTPGM PGM(QMQMSAMP/AMQSGRMA) BNDSRVPGM(QMQM/AMQZSTUB)

CRTCMOD MODULE(QMQMSAMP/AMQSXRM4) SRCFILE(QMQMSAMP/QCSRC)
CRTPGM PGM(QMQMSAMP/AMQSXRM4) BNDSRVPGM(QMQM/AMQZSTUB QMQM/AMQVSTUB)

For all users: The following definitions allow a reference message to be built
to send a file with an object type of FLATFILE from queue manager QMGR1 to
QMGR2 and to recreate the file as defined in the call to AMQSPRM (or
AMQSPRMA on AS/400). The reference message (including the file data) is
sent using channel CHL1 and transmission queue XMITQ and placed on queue
DQ. Exception and COA reports are sent back to QMGR1 using the channel
REPORT and transmission queue QMGR1.

The application that receives the reference message (AMQSGRM or
AMQSGRMA on the AS/400) is triggered using the initiation queue INITQ and
process PROC. You need to ensure the CONNAME fields are set correctly
and the MSGEXIT field reflects your directory structure, depending on machine
type and where the MQSeries product is installed.

The MQSC definitions have used an OS/2 style for defining the exits, if you are
using MQSC on the AS/400 you will need to modify these accordingly. It is
important to note that the message data FLATFILE is case sensitive and the
sample will not work unless it is in uppercase.

On machine MACHINE1, queue manager QMGR1

MQSC syntax:

define chl(chl1) chltype(sdr) trptype(tcp) conname('machine2') xmitq(xmitq)
msgdata(FLATFILE) msgexit('d:\mqm\tools\c\samples\bin\amqsxrm.dll(MsgExit)')

define ql(xmitq) usage(xmitq)

define chl(report) chltype(rcvr) trptype(tcp) replace

define qr(qr) rname(dq) rqmname(qmgr2) xmitq(xmitq) replace

AS/400 command syntax:

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(\SDR) CONNAME(MACHINE2) TMQNAME(XMITQ)
 MSGEXIT(QMQMSAMP/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMQ QNAME(XMITQ) QTYPE(\LCL) USAGE(\TMQ)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(\RCVR)

CRTMQMQ QNAME(QR) QTYPE(\RMT) RMTQNAME(DQ) RMTMQMNAME(QMGR2) TMQNAME(XMITQ)

354 MQSeries Application Programming Guide

 Reference message samples

On machine MACHINE2, queue manager QMGR2

MQSC syntax:

define chl(chl1) chltype(rcvr) trptype(tcp)
msgexit('d:\mqm\tools\c\samples\bin\amqsxrm.dll(MsgExit)')
 msgdata(flatfile)

define chl(report) chltype(sdr) trptype(tcp) conname('MACHINE1')
 xmitq(qmgr1)

define ql(initq)

define ql(qmgr1) usage(xmitq)

define pro(proc) applicid('d:\mqm\tools\c\samples\bin\amqsgrm')

define ql(dq) initq(initq) process(proc) trigger trigtype(first)

AS/400 command syntax:

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(\RCVR) MSGEXIT(QMQMSAMP/AMQSXRM4)
 MSGUSRDATA(FLATFILE)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(\SDR) CONNAME(MQCHINE1) TMQNAME(QMGR1)

CRTMQMQ QNAME(INITQ) QTYPE(\LCL) USAGE(\NORMAL)

CRTMQMQ QNAME(QMGR1) QTYPE(\LCL) USAGE(\TMQ)

CRTMQMPRC PRCNAME(PROC) APPID('QMQMSAMP/AMQSGRMA')

CRTMQMQ QNAME(DQ) QTYPE(\LCL) PRCNAME(PROC) TRGENBL(\YES)
 INITQNAME(INITQ)

| 2. Once the above MQSeries objects have been created:

a. Where applicable to the platform, start the listener for the sending and
receiving queue managers

b. Start the channels CHL1 and REPORT

c. On the receiving queue manager start the trigger monitor for the initiation
queue INITQ

3. Invoke the put reference message sample AMQSPRM (AMQSPRMA on the
AS/400) from the command line using the following parameters:

For example, to use the sample with the objects defined above you would use
the following parameters:

-mQMGR1 -iInput File -oOutput File -qQR -tFLATFILE -w12ð

-m Name of the local queue manager, this defaults to the default queue manager.
-i Name and location of source file.
-o Name and location of destination file.
-q Name of queue.
-g Name of queue manager where the queue, defined in the -q parameter exists. This

defaults to the queue manager specified in the -m parameter.
-t Object type.
-w Wait interval, that is, the waiting time for exception and COA reports from the

receiving queue manager.

 Chapter 31. Sample programs (all platforms except OS/390) 355

 Reference message samples

Increasing the waiting time will allow time for a large file to be sent across a
network before the putting program times out.

amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

AS/400 users: On the AS/400 use the following command:

CALL PGM(QMQMSAMP/AMQSPRMA) PARM('-mQMGR1' '-iLIBRARY/FILEIN'
'-oLIBRARY/FILEOUT' '-qDQ' '-tFLATFILE'

To use the IFS, use the following commands:

CRTCMOD MODULE(QMQMSAMP/AMQSXRM4) SRCFILE(QMQMSAMP/QCSRC) SYSIFCOPT(\IFSIO)
CRTCMOD MODULE(QMQMSAMP/AMQSGRMA) SRCFILE(QMQMSAMP/QCSRC) SYSIFCOPT(\IFSIO)

You may use the root directory, but it is recommended you create one using
the CRTDIR command.

When calling the putting program the output file name will need to reflect the
IFS naming convention, for instance /TEST/FILENAME will create a file called
FILENAME in the directory TEST.

Note: You can use either a forward slash (/) or a dash (-) when specifying
parameters.

For example:

amqsprm /i d:\files\infile.dat /o e:\files\outfile.dat /q QR
/m QMGR1 /w 3ð /t FLATFILE

Note: For UNIX platforms, you must use two slashes (\\) instead of one to
denote the destination file directory. Therefore, the above command looks like
this:

amqsprm -i /files/infile.dat -o e:\\files\\outfile.dat -q QR
-m QMGR1 -w 3ð -t FLATFILE

This demonstrates the following:

� The reference message will be put to queue QR on queue manager
QMGR1.

� The source file and path is d:\files\infile.dat and exists on the system
where the example command is issued.

� If the queue QR is a remote queue, the reference message is sent to
another queue manager, on a different system, where a file is created with
the name and path e:\files\outfile.dat. The contents of this file are the
same as the source file.

� amqsprm waits for 30 seconds for a COA report from the destination queue
manager.

� The object type is flatfile, so the channel used to move messages from
the queue QR must specify this in the MsgData field.

4. When you define your channels, select the message exit at both the sending
and receiving ends to be amqsxrm. This is defined on MQSeries for OS/2
Warp, and Windows NT as follows:

 msgexit(‘<pathname>\amqsxrm.dll(MsgExit)’)

This is defined on MQSeries for AIX, HP-UX, and Sun Solaris as follows:

 msgexit(‘<pathname>/amqsxrm(MsgExit)’)

356 MQSeries Application Programming Guide

 Reference message samples

| If a pathname is specified, the complete name must be specified (with .dll on
| OS/2). If a pathname is not specified, it is assumed that the program is in the
| path specified in the qm.ini file (or, on MQSeries for Windows NT, the path
| specified in the registry). This is explained fully in “Writing and compiling
| channel-exit programs” in the MQSeries Intercommunication book.

5. The channel exit reads the reference message header and finds the file that it
is referring to.

6. It can then choose to segment the file before sending it down the channel
along with the header. On MQSeries for AIX, HP-UX, and Sun Solaris, you
must change the group owner of the target directory to ‘mqm’ so that the
sample message exit can create the file in that directory. Also, change the
permissions of the target directory to allow mqm group members to write to it.
The file data is not stored on the MQSeries queues.

7. When the last segment of the file is processed by the receiving message exit,
the reference message is put to the destination queue specified by amqsprm.
If this queue is triggered (that is, the definition specifies Trigger, InitQ, and
Process queue attributes), the program specified by the PROC parameter of the
destination queue is triggered. The program to be triggered must be defined in
the ApplId field of the Process attribute.

8. When the reference message reaches the destination queue (DQ), a COA
report is sent back to the putting application (amqsprm).

9. The get reference message sample, amqsgrm, gets messages from the queue
specified in the input trigger message and checks the existence of the file.

Design of the Put Reference Message sample (amqsprma.c)
This sample creates a reference message that refers to a file and puts it on a
specified queue:

1. The sample connects to a local queue manager using MQCONN.

2. It then opens (MQOPEN) a model queue which is used to receive report
messages.

3. The sample builds a reference message containing the values required to move
the file, for example, the source and destination file names and the object type.

As an example, the sample shipped with MQSeries builds a reference message
to send the file d:\x\file.in from QMGR1 to QMGR2 and to recreate the file as
d:\y\file.out using the following parameters:

amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

Where QR is a remote queue definition that refers to a target queue on QMGR2.

Note: For UNIX platforms, you must use two slashes (\\) instead of one to
denote the destination file directory. Therefore, the above command looks like
this:

amqsprm -q QR -m QMGR1 -i /x/file.in -o d:\\y\\file.out -t FLATFILE

4. The reference message is put (without any file data) to the queue specified by
the /q parameter. If this is a remote queue, the message is put to the
corresponding transmission queue.

5. The sample waits, for the duration of time specified in the /w parameter (which
defaults to 15 seconds), for COA reports, which, along with exception reports,

 Chapter 31. Sample programs (all platforms except OS/390) 357

 Reference message samples

are sent back to the dynamic queue created on the local queue manager
(QMGR1).

Design of the Reference Message Exit sample (amqsxrma.c,
AMQSXRM4)

This sample recognizes reference messages with an object type that matches the
object type in the message exit user data field of the channel definition. For these
messages, the following happens:

� At the sender or server channel, the specified length of data is copied from the
specified offset of the specified file into the space remaining in the agent buffer
after the reference message. If the end of the file is not reached, the reference
message is put back on the transmission queue after updating the
DataLogicalOffset field.

� At the requester or receiver channel, if the DataLogicalOffset field is zero and
the specified file does not exist, it is created. The data following the reference
message is added to the end of the specified file. If the reference message is
not the last one for the specified file, it is discarded. Otherwise, it is returned to
the channel exit, without the appended data, to be put on the target queue.

For sender and server channels, if the DataLogicalLength field in the input
reference message is zero, the remaining part of the file, from DataLogicalOffset
to the end of the file, is to be sent along the channel. If it is not zero, only the
length specified is sent.

If an error occurs (for example, if the sample is unable to open a file),
MQCXP.ExitResponse is set to MQXCC_SUPPRESS_FUNCTION so that the
message being processed is put to the dead-letter queue instead of continuing to
the destination queue. A feedback code is returned in MQCXP.Feedback and
returned to the application that put the message in the Feedback field of the
message descriptor of a report message. This is because the putting application
requested exception reports by setting MQRO_EXCEPTION in the Report field of
the MQMD.

If the encoding or CodedCharacterSetId (CCSID) of the reference message is
different from that of the queue manager, the reference message is converted to
the local encoding and CCSID. In our sample, amqsprm, the format of the object is
MQFMT_STRING, so amqsxrm converts the object data to the local CCSID at the
receiving end before the data is written to the file.

| The format of the file being transferred should not be specified as
| MQFMT_STRING if the file contains multibyte characters (for example, DBCS or
| Unicode). This is because a multibyte character could be split when the file is
| segmented at the sending end. To transfer and convert such a file, the format
| should be specified as something other than MQFMT_STRING so that the
| reference message exit does not convert it and the file should be converted at the
| receiving end when the transfer is complete.

358 MQSeries Application Programming Guide

 Request samples

Compiling the Reference Message Exit sample
To compile amqsxrma, use the following commands:

 On AIX:

| $cc -d -I/usr/mqm/inc amqsxrma.c
| $ ld -o amqsxrm amqsxrma.o -bE:amqsxrm.exp -H512 -T512 \
| -e MQStart -bM:SRE -lc -ls -lmqm

 On HP-UX:

| $ cc -c -Aa +z -I/opt/mqm/inc amqsxrma.c
| $ ld -b -o amqsxrm amqsxrma.o -z +b : -lmqm -lc

On Sun Solaris:

| $ cc -c -KPIC -I/opt/mqm/inc amqsxrma.c
| $ ld -G -o amqsxrm amqsxrma.o -dy -lmqm -lc -lnsl -ldl

Design of the Get Reference Message sample (amqsgrma.c)
The program logic is as follows:

1. The sample is triggered and extracts the queue and queue manager names
from the input trigger message.

2. It then connects to the specified queue manager using MQCONN and opens
the specified queue using MQOPEN.

3. The sample issues MQGET with a wait interval of 15 seconds within a loop to
get messages from the queue.

4. If a message is a reference message, the sample checks the existence of the
file that has been transferred.

5. It then closes the queue and disconnects from the queue manager.

The Request sample programs
The Request sample programs demonstrate client/server processing. The samples
are the clients that put request messages on a target server queue that is
processed by a server program. They wait for the server program to put a reply
message on a reply-to queue.

The Request samples put a series of request messages on target server queue
using the MQPUT call. These messages specify the local queue,
SYSTEM.SAMPLE.REPLY as the reply-to queue, which can be a local or remote
queue. The programs wait for reply messages, then display them. Replies are
sent only if the target server queue is being processed by a server application, or if
an application is triggered for that purpose (the Inquire, Set, and Echo sample
programs are designed to be triggered). The C sample waits 1 minute (the COBOL
sample waits 5 minutes), for the first reply to arrive (to allow time for a server
application to be triggered), and 15 seconds for subsequent replies, but both
samples can end without getting any replies. See “Features demonstrated in the
sample programs” on page 327 for the names of the Request sample programs.

 Chapter 31. Sample programs (all platforms except OS/390) 359

 Request samples

Running the amqsreq0.c, amqsreq, and amqsreqc samples
The C version of the program takes 2 parameters:

1. The name of the target server queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. For example,
enter one of the following:

amqsreq myqueue qmanagername

amqsreqc myqueue qmanagername

 amqðreqð myqueue

where myqueue is the name of the target server queue, and qmanagername is the
queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it will assume that the
default queue manager owns the queue.

Running the amq0req0.cbl sample
The COBOL version does have any parameters. It connects to the default queue
manager and when you run it you are prompted:

Please enter the name of the target server queue

The program takes its input from StdIn and adds each line to the target server
queue, taking each line of text as the content of a request message. The program
ends when a null line is read.

Running the AMQSREQ4 sample
The C program creates messages by reading data from a member of a source file.
You must specify the name of the file as a parameter when you start the program.
The structure of the file must be:

 queue name
text of message 1
text of message 2

...
text of message n

 blank line

Samples of input for the request samples are supplied in library QMQMSAMP file
AMQSDATA members ECHO, INQ, and SET.

Note: Remember that queue names are case sensitive. All the queues created by
the sample file create program AMQSAMP4 have names created in uppercase
characters.

The C program puts messages on the queue named in the first line of the file—you
could use the supplied queue SYSTEM.SAMPLE.TRIGGER. The program puts the
text of each of the following lines of the file into separate request messages, and
stops when it reads a blank line at the end of the file.

360 MQSeries Application Programming Guide

 Request samples

Running the AMQ0REQ4 sample
The COBOL program creates messages by accepting data from the keyboard. To
start the program, call the program and specify the name of your target queue as a
parameter. The program accepts input from the keyboard into a buffer and creates
a request message for each line of text. The program stops when you enter a
blank line at the keyboard.

Running the Request sample using triggering
If the sample is used with triggering and one of the Inquire, Set, or Echo sample
programs, the line of input must be the queue name of the queue that you want the
triggered program to access.

OS/2, UNIX systems, and Windows NT
To run the samples using triggering:

1. Start the trigger monitor program RUNMQTRM in one session (the initiation
queue SYSTEM.SAMPLE.TRIGGER is available for you to use).

2. Start the amqsreq program in another session.

3. Make sure you have defined a target server queue.

The sample queues available to you to use as the target server queue for the
request sample to put messages are:

� SYSTEM.SAMPLE.INQ - for the Inquire sample program
� SYSTEM.SAMPLE.SET - for the Set sample program
� SYSTEM.SAMPLE.ECHO - for the Echo sample program

These queues have a trigger type of FIRST, so if there are already messages
on the queues before you run the Request sample, server applications are not
triggered by the messages you send.

4. Make sure you have defined a queue for the Inquire, Set or Echo sample
program to use.

This means that the trigger monitor is ready when the request sample sends a
message.

Note: The sample process definitions created using RUNMQSC and the
amqscos0.tst file cause the C samples to be triggered. Change the process
definitions in amqscos0.tst and use RUNMQSC with this updated file if the COBOL
versions are required.

Figure 36 on page 362 demonstrates how the Request and Inquire samples can
be used together.

 Chapter 31. Sample programs (all platforms except OS/390) 361

 Request samples

SYSTEM.

SAMPLE.

INQPROCESS

Process

SYSTEM.

SAMPLE.

INQ

SYSTEM.

SAMPLE.

TRIGGER

APPLICATION

APPLICATION APPLICATION

TRIGGER

MONITOR

INQUIRE

SAMPLE

REQUEST

SAMPLE

QUEUE MANAGER

Local System

Local or Remote

System

SYSTEM.

SAMPLE.

REPLY

amqsreq

amqsinq runmqtrm

MYQUEUE

trigger
messagetr igger

event

start
command

message

message

inquiryreply message
tr igger
message

Figure 36. Request and Inquire samples using triggering

In Figure 36 the Request sample puts messages on to the target server queue,
SYSTEM.SAMPLE.INQ, and the Inquire sample queries the queue, MYQUEUE.
Alternatively, you can use one of the sample queues defined when you ran
amqscos0.tst, or any other queue you have defined, for the Inquire sample.

Note: The numbers in Figure 36 show the sequence of events.

To run the Request and Inquire samples, using triggering:

1. Check that the queues you want to use are defined. Run amqscos0.tst, to
define the sample queues, and define a queue MYQUEUE.

2. Run the trigger monitor command RUNMQTRM:

RUNMQTRM -m qmanagername -q SYSTEM.SAMPLE.TRIGGER

3. Run the request sample

amqsreq SYSTEM.SAMPLE.INQ

Note: The process object defines what is to be triggered. If the client and
server are not running on the same platform, any processes started by
the trigger monitor must define ApplType, otherwise the server takes its

362 MQSeries Application Programming Guide

 Request samples

default definitions (that is, the type of application that is normally
associated with the server machine) and causes a failure.

For example, if the trigger monitor is running on a Windows NT client
and wants to send a request to an OS/2 server, MQAT_WINDOWS_NT
must be defined otherwise OS/2 uses its default definitions (that is,
MQAT_OS2) and the process fails.

| For a list of application types, see “Attributes for process definitions” in
| the MQSeries Application Programming Reference manual.

4. Enter the name of the queue you want the Inquire sample to use:

MYQUEUE

5. Enter a blank line (to end the Request program).

6. The request sample will then display a message, containing the data the
Inquire program obtained from MYQUEUE.

If you wish, you can use more than one queue. In this case, you enter the names
of the other queues at step 4.

For more information on triggering see Chapter 14, “Starting MQSeries applications
using triggers” on page 197.

 AS/400
To try the samples using triggering on AS/400, start the sample trigger server,
AMQSERV4, in one job, then start AMQSREQ4 in another. This means that the
trigger server is ready when the Request sample program sends a message.

Notes:

1. The sample definitions created by AMQSAMP4 cause the C versions of the
samples to be triggered. If you want to trigger the COBOL versions, you must
change the process definitions SYSTEM.SAMPLE.ECHOPROCESS,
SYSTEM.SAMPLE.INQPROCESS and SYSTEM.SAMPLE.SETPROCESS; you
can use the CHGMQMPRC command (described in the MQSeries for AS/400
Administration Guide) to do this, or edit and run your own version of
AMQSAMP4.

2. Source code for AMQSERV4 is supplied for the C language only. However, a
compiled version (that you can use with the COBOL samples) is supplied in
library QMQM.

You could put your request messages on these sample server queues:

� SYSTEM.SAMPLE.ECHO (for the Echo sample programs)
� SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
� SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 37 on
page 365. Using the example data file the command to issue the C program
request to this server is:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(ECHO)')

Note: This sample queue has a trigger type of FIRST, so if there are already
messages on the queue before you run the Request sample, server applications
are not triggered by the messages you send.

 Chapter 31. Sample programs (all platforms except OS/390) 363

 Request samples

If you want to attempt further examples, you can try the following variations:

� Use AMQSTRG4 instead of AMQSERV4 to submit the job instead, but potential
job submission delays could make it less easy to follow what is happening.

� Run the SYSTEM.SAMPLE.INQUIRE and SYSTEM.SAMPLE.SET sample
programs. Using the example data file the commands to issue the C program
requests to these servers are, respectively:

CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(INQ)')
CALL PGM(QMQMSAMP/AMQSREQ4) PARM('QMQMSAMP/AMQSDATA(SET)')

These sample queues also have a trigger type of FIRST.

Design of the Request sample program
The program opens the target server queue so that it can put messages. It uses
the MQOPEN call with the MQOO_OUTPUT option. If it cannot open the queue,
the program displays an error message containing the reason code returned by the
MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so
that it can get reply messages. For this, the program uses the MQOPEN call with
the MQOO_INPUT_EXCLUSIVE option. If it cannot open the queue, the program
displays an error message containing the reason code returned by the MQOPEN
call.

For each line of input, the program then reads the text into a buffer and uses the
MQPUT call to create a request message containing the text of that line. On this
call the program uses the MQRO_EXCEPTION_WITH_DATA report option to
request that any report messages sent about the request message will include the
first 100 bytes of the message data. The program continues until either it reaches
the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the
queue, and displays the data contained in the replies. The MQGET call uses the
MQGMO_WAIT, MQGMO_CONVERT, and MQGMO_ACCEPT_TRUNCATED
options. The WaitInterval is 5 minutes in the COBOL version, and 1 minute in the
C version, for the first reply (to allow time for a server application to be triggered),
and 15 seconds for subsequent replies. The program waits for these periods if
there is no message on the queue. If no message arrives before this interval
expires, the call fails and returns the MQRC_NO_MSG_AVAILABLE reason code.
The call also uses the MQGMO_ACCEPT_TRUNCATED_MSG option, so
messages longer than the declared buffer size are truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of
the MQMD structure after each MQGET call because the call sets these fields to
the values contained in the message it retrieves. Clearing these fields means that
successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues until either the MQGET call returns the
MQRC_NO_MSG_AVAILABLE reason code or the MQGET call fails. If the call
fails, the program displays an error message that contains the reason code.

364 MQSeries Application Programming Guide

 Request samples

The program then closes both the target server queue and the reply-to queue using
the MQCLOSE call. Figure 29 shows the changes to the Echo sample program
that are necessary to run the Inquire and Set sample programs on AS/400.

Note: The details for the Echo sample program are included as a reference.

Table 29. Client/server sample program details

Program name AMQSAMP/
AMQSDATA data
file

SYSTEM/SAMPLE
queue

Program started

Echo ECHO ECHO AMQSECHA

Inquire INQ INQ AMQSINQA

Set SET SET AMQSSETA

Data file

AMQSAMP / AMQSDATA (ECHO)

Program

AMQSREQ4

Display replies

Read queue

Start program

Read

Tr igger message
writ ten to queue

Read reply

SYSTEM.SAMPLE.ECHO

SYSTEM.SAMPLE.TRIGGER

Put to queue

Write reply to queue

SYSTEM.SAMPLE.REPLY

Read queue

Program
AMQSERV4

AMQSECHA

Figure 37. Sample Client/Server (Echo) program flowchart

 Chapter 31. Sample programs (all platforms except OS/390) 365

 Inquire samples

The Inquire sample programs
The Inquire sample programs inquire about some of the attributes of a queue using
the MQINQ call. See “Features demonstrated in the sample programs” on
page 327 for the names of these programs.

These programs are intended to run as triggered programs, so their only input is an
MQTMC2 (trigger message) structure for OS/2, Windows NT, Digital OpenVMS,
and UNIX, and an MQTMC structure for AS/400. These structures contain the
name of a target queue whose attributes are to be inquired. The C version also
uses the queue manager name. The COBOL version uses the default queue
manager.

For the triggering process to work, you must ensure that the Inquire sample
program you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.INQ. To do this, specify the name of the Inquire sample
program you want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.INQPROCESS. For AS/400, you can use the CHGMQMPRC
command described in the MQSeries for AS/400 Administration Guide for this. The
sample queue has a trigger type of FIRST; if there are already messages on the
queue before you run the request sample, the inquire sample is not triggered by the
messages you send.

When you have set the definition correctly:

� For OS/2, UNIX systems, Digital OpenVMS, and Windows NT, start the
runmqtrm program in one session, then start the amqsreq program in another.

� For AS/400, start the AMQSERV4 program in one session, then start the
AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to
follow what is happening.

Use the Request sample programs to send request messages, each containing just
a queue name, to queue SYSTEM.SAMPLE.INQ. For each request message, the
Inquire sample programs send a reply message containing information about the
queue specified in the request message. The replies are sent to the reply-to queue
specified in the request message.

On AS/400, if the sample input file member QMQMSAMP.AMQSDATA(INQ) is
used, the last queue named does not exist, so the sample returns a report
message with a reason code for the failure.

Design of the Inquire sample program
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The
program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with
a wait interval of 5 seconds. The program tests the descriptor of each message to
see if it is a request message; if it is not, the program discards the message and
displays a warning message.

366 MQSeries Application Programming Guide

 Set samples

For each request message removed from the request queue, the program reads
the name of the queue (which we will call the target queue) contained in the data
and opens that queue using the MQOPEN call with the MQOO_INQ option. The
program then uses the MQINQ call to inquire about the values of the InhibitGet,
CurrentQDepth, and OpenInputCount attributes of the target queue.

If the MQINQ call is successful, the program uses the MQPUT1 call to put a reply
message on the reply-to queue. This message contains the values of the 3
attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT1 call
to put a report message on the reply-to queue. In the Feedback field of the
message descriptor of this report message is the reason code returned by either
the MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

The Set sample programs
The Set sample programs inhibit put operations on a queue by using the MQSET
call to change the queue’s InhibitPut attribute. See “Features demonstrated in
the sample programs” on page 327 for the names of these programs.

The programs are intended to run as triggered programs, so their only input is an
MQTMC2 (trigger message) structure that contains the name of a target queue
whose attributes are to be inquired. The C version also uses the queue manager
name. The COBOL version uses the default queue manager.

For the triggering process to work, you must ensure that the Set sample program
you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.SET. To do this, specify the name of the Set sample program
you want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.SETPROCESS. The sample queue has a trigger type of
FIRST; if there are already messages on the queue before you run the Request
sample, the Set sample is not triggered by the messages you send.

When you have set the definition correctly:

� For OS/2, UNIX systems, Digital OpenVMS, and Windows NT, start the
runmqtrm program in one session, then start the amqsreq program in another.

� For AS/400, start the AMQSERV4 program in one session, then start the
AMQSREQ4 program in another. You could use AMQSTRG4 instead of
AMQSERV4, but potential job submission delays could make it less easy to
follow what is happening.

Use the Request sample programs to send request messages, each containing just
a queue name, to queue SYSTEM.SAMPLE.SET. For each request message, the
Set sample programs send a reply message containing a confirmation that put
operations have been inhibited on the specified queue. The replies are sent to the
reply-to queue specified in the request message.

 Chapter 31. Sample programs (all platforms except OS/390) 367

 Set samples

On AS/400, if the sample input file member QMQMSAMP.AMQSDATA(SET) is
used, one queue, SYSTEM.SAMPLE.LOCAL has put inhibited.

Design of the Set sample program
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The
program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with
a wait interval of 5 seconds. The program tests the descriptor of each message to
see if it is a request message; if it is not, the program discards the message and
displays a warning message.

For each request message removed from the request queue, the program reads
the name of the queue (which we will call the target queue) contained in the data
and opens that queue using the MQOPEN call with the MQOO_SET option. The
program then uses the MQSET call to set the value of the InhibitPut attribute of
the target queue to MQQA_PUT_INHIBITED.

If the MQSET call is successful, the program uses the MQPUT1 call to put a reply
message on the reply-to queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT1
call to put a report message on the reply-to queue. In the Feedback field of the
message descriptor of this report message is the reason code returned by either
the MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE
call.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

368 MQSeries Application Programming Guide

 Echo samples

The Echo sample programs
The Echo sample programs echo a message from a message queue to the reply
queue. See “Features demonstrated in the sample programs” on page 327 for the
names of these programs.

The programs are intended to run as triggered programs.

On OS/2, UNIX systems, and Windows NT, their only input is an MQTMC2 (trigger
message) structure that contains the name of a target queue and the queue
manager. The COBOL version uses the default queue manager.

On AS/400, for the triggering process to work, you must ensure that the Echo
sample program you want to use is triggered by messages arriving on queue
SYSTEM.SAMPLE.ECHO. To do this, specify the name of the Echo sample
program you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC
command, described in the MQSeries for AS/400 Administration Guide.) The
sample queue has a trigger type of FIRST, so if there are already messages on the
queue before you run the Request sample, the Echo sample is not triggered by the
messages you send.

When you have set the definition correctly, first start AMQSERV4 in one job, then
start AMQSREQ4 in another. You could use AMQSTRG4 instead of AMQSERV4,
but potential job submission delays could make it less easy to follow what is
happening.

Use the Request sample programs to send messages to queue
SYSTEM.SAMPLE.ECHO. The Echo sample programs send a reply message
containing the data in the request message to the reply-to queue specified in the
request message.

Design of the Echo sample programs
The program opens the queue named in the trigger message structure it was
passed when it started. (For clarity, we will call this the request queue.) The
program uses the MQOPEN call to open this queue for shared input.

The program uses the MQGET call to remove messages from this queue. This call
uses the MQGMO_ACCEPT_TRUNCATED_MSG, MQGMO_CONVERT, and
MQGMO_WAIT options, with a wait interval of 5 seconds. The program tests the
descriptor of each message to see if it is a request message; if it is not, the
program discards the message and displays a warning message.

For each line of input, the program then reads the text into a buffer and uses the
MQPUT1 call to put a request message, containing the text of that line, on to the
reply-to queue.

If the MQGET call fails, the program puts a report message on the reply-to queue,
setting the Feedback field of the message descriptor to the reason code returned by
the MQGET.

When there are no messages remaining on the request queue, the program closes
that queue and disconnects from the queue manager.

 Chapter 31. Sample programs (all platforms except OS/390) 369

 Data-conversion sample

On AS/400, the program can also respond to messages sent to the queue from
platforms other than MQSeries for AS/400, although no sample is supplied for this
situation. To make the ECHO program work, you:

� Write a program, correctly specifying the Format, Encoding, and CCSID
parameters, to send text request messages.

The ECHO program requests the queue manager to perform message data
conversion, if this is needed.

� Specify CONVERT(*YES) on the MQSeries for AS/400 sending channel, if the
program you have written does not provide similar conversion for the reply.

The Data-Conversion sample program
The data-conversion sample program is a skeleton of a data conversion exit
routine. See “Features demonstrated in the sample programs” on page 327 for the
names of these programs.

Design of the data-conversion sample
Each data-conversion exit routine converts a single named message format. This
skeleton is intended as a wrapper for code fragments generated by the
data-conversion exit generation utility program.

The utility produces one code fragment for each data structure; several such
structures make up a format, so several code fragments are added to this skeleton
to produce a routine to do data conversion of the entire format.

The program then checks whether the conversion is a success or failure, and
returns the values required to the caller.

370 MQSeries Application Programming Guide

 Triggering samples

The Triggering sample programs
The function provided in the triggering sample is a subset of that provided in the
trigger monitor in the runmqtrm program. See “Features demonstrated in the
sample programs” on page 327 for the names of these programs.

Running the amqstrg0.c, amqstrg, and amqstrgc samples
The program takes 2 parameters:

1. The name of the initiation queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it will connect to the default one. A sample
initiation queue will have been defined when you ran amqscos0.tst. the name of
that queue is SYSTEM.SAMPLE.TRIGGER, and you can use it when you run this
program.

Note: The function in this sample is a subset of the full triggering function that is
supplied in the runmqtrm program.

Running the AMQSTRG4 sample
This is a trigger monitor for the AS/400 environment. It submits an AS/400 job for
the application to be started, but this means there is a processing overhead
associated with each trigger message.

AMQSTRG4 takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that
you can use when you try the sample programs.

Using the example trigger queue the command to issue is:

CALL PGM(QMQM/AMQSTRG4) PARM('SYSTEM.SAMPLE.TRIGGER')

Design of the triggering sample
The triggering sample program opens the initiation queue using the MQOPEN call
with the MQOO_INPUT_AS_Q_DEF option. It gets messages from the initiation
queue using the MQGET call with the MQGMO_ACCEPT_TRUNCATED_MSG and
MQGMO_WAIT options, specifying an unlimited wait interval. The program clears
the MsgId and CorrelId fields before each MQGET call to get messages in
sequence.

When it has retrieved a message from the initiation queue, the program tests the
message:

� It checks the size of the message to make sure it is the same size as an
MQTM structure.

� It checks the ApplType field to make sure it contains the value MQAT_UNIX.

If either of these tests fail, the program displays a warning.

For valid trigger messages, the triggering sample copies data from these fields:
ApplicId, EnvrData, Version, and ApplType. The last two of these fields are
numeric, so the program creates character replacements to use in an MQTMC2
structure for OS/2, UNIX, and Windows NT, and in an MQTMC structure for
AS/400.

 Chapter 31. Sample programs (all platforms except OS/390) 371

 Triggering samples

The triggering sample issues a start command to the application specified in the
ApplicId field of the trigger message, and passes an MQTMC2 or MQTMC (a
character version of the trigger message) structure. In OS/2, UNIX systems, and
Windows NT, the EnvData field is used as an extension to the invoking command
string. In AS/400, it is used as job submission parameters, for example, the job
priority.

Finally, the program closes the initiation queue.

Running the AMQSERV4 sample
This is a trigger server for the AS/400 environment. For each trigger message, this
server runs the start command in its own job to start the specified application. The
trigger server can call CICS transactions.

AMQSERV4 takes one parameter: the name of the initiation queue it is to serve.
AMQSAMP4 defines a sample initiation queue, SYSTEM.SAMPLE.TRIGGER, that
you can use when you try the sample programs.

Using the example trigger queue the command to issue is:

CALL PGM(QMQM/AMQSERV4) PARM('SYSTEM.SAMPLE.TRIGGER')

Design of the trigger server
The design of the trigger server is similar to that of the trigger monitor, except the
trigger server:

� Allows MQAT_CICS as well as MQAT_OS400 applications

� Calls AS/400 applications in its own job (or uses STRCICSUSR to start CICS
applications) rather than submitting an AS/400 job

� For CICS applications, substitutes the EnvData, for example, to specify the
CICS region, from the trigger message in the STRCICSUSR command

� Opens the initiation queue for shared input, so many trigger servers can run at
the same time

Note: Programs started by AMQSERV4 must not use the MQDISC call because
this will stop the trigger server. If programs started by AMQSERV4 use the
MQCONN call, they will get the MQRC_ALREADY_CONNECTED reason code.

Ending the triggering sample programs on AS/400
A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or
by inhibiting gets from the trigger queue. If the sample trigger queue is used the
command is:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(\NO)

Note: To start triggering again on this queue, you must enter the command:

CHGMQMQ QNAME('SYSTEM.SAMPLE.TRIGGER') GETENBL(\YES)

372 MQSeries Application Programming Guide

 Database coordination samples

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected queue
managers.

Program amqscos0.tst provides a local definition of a remote queue
(SYSTEM.SAMPLE.REMOTE) that uses a remote queue manager named OTHER.
To use this sample definition, change OTHER to the name of the second queue

| manager you want to use. You must also set up a message channel between your
| two queue managers; for information on how to do this, see the MQSeries
| Intercommunication book.

The Request sample programs put their own local queue manager name in the
ReplyToQMgr field of messages they send. The Inquire and Set samples send reply
messages to the queue and message queue manager named in the ReplyToQ and
ReplyToQMgr fields of the request messages they process.

Database coordination samples
Two samples are provided which demonstrate how MQSeries can coordinate both
MQSeries updates and database updates within the same unit of work:

1. AMQSXAS0 (in C) or AMQ0XAS0 (in COBOL), which updates a single
database within an MQSeries unit of work.

2. AMQSXAG0 (in C) or AMQ0XAG0 (in COBOL), AMQSXAB0 (in C) or
AMQ0XAB0 (in COBOL), and AMQSXAF0 (in C) or AMQ0XAF0 (in COBOL),
which together update two databases within an MQSeries unit of work, showing
how multiple databases can be accessed.

These samples are provided to show the use of the MQBEGIN call, mixed SQL
and MQSeries calls, and where and when to connect to a database.

Figure 38 on page 374 shows how the samples provided are used to update
databases.

 Chapter 31. Sample programs (all platforms except OS/390) 373

 Database coordination samples

updates

updates

updates

MQFeeDB database

MQFeeTB table

Account
FeeDue
TranFee

Transactions

MQBankDB database

MQBankT table

Name
Account
Balance

MQBankTB table

Name
Account
Balance

Transactions

AMQSXAS0/
AMQ0XAS0

Single
database
sample

Prepared and
bound with
MQBankDB

database

AMQSXAB0/

Prepared and
bound with
MQBankDB

database

AMQ0XAB0

AMQSXAF0/

Prepared and
bound with
MQFeeDB
database

AMQ0XAF0

AMQSXAG0/
AMQ0XAG0

Multiple
database
sample

Figure 38. The database coordination samples

The programs read a message from a queue (under syncpoint), then, using the
information in the message, obtain the relevant information from the database and
update it. The new status of the database is then printed.

The program logic is as follows:

1. Use name of input queue from program argument

2. Connect to default queue manager (or optionally supplied name in C) using
MQCONN

3. Open queue (using MQOPEN) for input while no failures

4. Start a unit of work using MQBEGIN

5. Get next message (using MQGET) from queue under syncpoint

6. Get information from databases

7. Update information from databases

8. Commit changes using MQCMIT

9. Print updated information (no message available counts as failure, and loop
ends)

10. Close queue using MQCLOSE

11. Disconnect from queue using MQDISC

SQL cursors are used in the samples, so that reads from the databases (that is,
multiple instances) are locked whilst a message is being processed, thus multiple
instances of these programs can be run simultaneously. The cursors are explicitly
opened, but implicitly closed by the MQCMIT call.

374 MQSeries Application Programming Guide

 Database coordination samples

The single database sample (AMQSXAS0 or AMQ0XAS0) has no SQL CONNECT
statements and the connection to the database is implicitly made by MQSeries with
the MQBEGIN call. The multiple database sample (AMQSXAG0 or AMQ0XAG0,
AMQSXAB0 or AMQ0XAB0, and AMQSXAF0 or AMQ0XAF0) has SQL CONNECT
statements, as some database products allow only one active connection. If this is
not the case for your database product, or if you are accessing a single database in
multiple database products, the SQL CONNECT statements can be removed.

The samples are prepared with IBM’s DB2 database product, so they may need
some modification to work with other database products.

The SQL error checking uses routines in UTIL.C and CHECKERR.CBL supplied by
DB2. These must be compiled or replaced before compiling and linking.

Note: If you are using the Micro Focus COBOL source CHECKERR.MFC for SQL
error checking, you must change the program ID to uppercase, that is CHECKERR,
for AMQ0XAS0 to link correctly.

Creating the databases and tables
The databases and tables must be created before the samples can be compiled.
To create the databases, use the normal method for your database product, for
example:

DB2 CREATE DB MQBankDB
DB2 CREATE DB MQFeeDB

Create the tables using SQL statements as follows:

In C:

EXEC SQL CREATE TABLE MQBankT(Name VARCHAR(4ð) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,

PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQBankTB(Name VARCHAR(4ð) NOT NULL,
 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 Transactions INTEGER,

PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQFeeTB(Account INTEGER NOT NULL,
 FeeDue INTEGER NOT NULL,
 TranFee INTEGER NOT NULL,
 Transactions INTEGER,

PRIMARY KEY (Account));

 Chapter 31. Sample programs (all platforms except OS/390) 375

 Database coordination samples

In COBOL:

 EXEC SQL CREATE TABLE
MQBankT(Name VARCHAR(4ð) NOT NULL,

 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,

PRIMARY KEY (Account))
 END-EXEC.

EXEC SQL CREATE TABLE
MQBankTB(Name VARCHAR(4ð) NOT NULL,

 Account INTEGER NOT NULL,
 Balance INTEGER NOT NULL,
 Transactions INTEGER,

PRIMARY KEY (Account))
 END-EXEC.

EXEC SQL CREATE TABLE
 MQFeeTB(Account INTEGER NOT NULL,
 FeeDue INTEGER NOT NULL,
 TranFee INTEGER NOT NULL,
 Transactions INTEGER,

PRIMARY KEY (Account))
 END-EXEC.

Fill in the tables using SQL statements as follows:

EXEC SQL INSERT INTO MQBankT VALUES ('Mr Fred Bloggs',1,ð);
EXEC SQL INSERT INTO MQBankT VALUES ('Mrs S Smith',2,ð);
EXEC SQL INSERT INTO MQBankT VALUES ('Ms Mary Brown',3,ð);
...
EXEC SQL INSERT INTO MQBankTB VALUES ('Mr Fred Bloggs',1,ð,ð);
EXEC SQL INSERT INTO MQBankTB VALUES ('Mrs S Smith',2,ð,ð);
EXEC SQL INSERT INTO MQBankTB VALUES ('Ms Mary Brown',3,ð,ð);
...
EXEC SQL INSERT INTO MQFeeTB VALUES (1,ð,5ð,ð);
EXEC SQL INSERT INTO MQFeeTB VALUES (2,ð,5ð,ð);
EXEC SQL INSERT INTO MQFeeTB VALUES (3,ð,5ð,ð);
...

Note: For COBOL, use the same SQL statements but add END_EXEC at the end of
each line.

Preparing, compiling, and linking the samples
The .SQC files (in C) and .SQB files (in COBOL) must be prepared and bound
against the appropriate database to produce the .C or .CBL files. To do this, use
the normal method for your database product, for example:

In C:

SQLPREP AMQSXASð.SQC MQBankDB
SQLPREP AMQSXABð.SQC MQBankDB
SQLPREP AMQSXAFð.SQC MQFeeDB

376 MQSeries Application Programming Guide

 Database coordination samples

In COBOL:

db2 connect to MQBankDB
db2 prep AMQðXASð.SQB bindfile target ibmcob
db2 bind AMQðXASð.BND
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQðXABð.SQB bindfile target ibmcob
db2 bind AMQðXABð.BND
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQðXAFð.SQB bindfile target ibmcob
db2 bind AMQðXAFð.BND
db2 connect reset

| Compile the files in the normal way to produce the object files. The samples must
| be linked against both your database libraries and the appropriate MQSeries
| libraries. For more information about compiling and linking, see Part 3, “Building
| an MQSeries application” on page 255 and your database documentation.

The following lists extra points to consider when compiling and linking:

� If you are working on HP-UX and wish to access DB2, add the following link
flags:

-E -u allow_unaligned_data_access

� If you are working on AIX and wish to access Oracle, use the xlc_r compiler
and link to libmqm_r.a.

Running the samples
Before the samples can be run, the queue manager must be configured with the

| database product you are using. For information about how to do this, see
| Chapter 14, “Transactional support” in the MQSeries System Administration book.

 C samples
Messages must be in the following format to be read from a queue:

UPDATE Balance change=nnn WHERE Account=nnn

AMQSPUT can be used to put the messages on the queue.

The database coordination samples take two parameters:

1. Queue name (required)
2. Queue manager name (optional)

Assuming that you have created and configured a queue manager for the single
database sample called singDBQM, with a queue called singDBQ, you increment
Mr Fred Bloggs’ account by 50 as follows:

AMQSPUT singDBQ singDBQM

 Then key in the following message:

UPDATE Balance change=5ð WHERE Account=1

 Chapter 31. Sample programs (all platforms except OS/390) 377

 Database coordination samples

You can put multiple messages on the queue.

AMQSXASð singDBQ singDBQM

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have created and configured a queue manager for the
multiple-database sample called multDBQM, with a queue called multDBQ, you
decrement Ms Mary Brown’s account by 75 as follows:

AMQSPUT multDBQ multDBQM

Then key in the following message:

UPDATE Balance change=-75 WHERE Account=3

You can put multiple messages on the queue.

AMQSXAGð multDBQ multDBQM

The updated status of Ms Mary Brown’s account is then printed.

 COBOL samples
Messages must be in the following format to be read from a queue:

UPDATE Balance change=snnnnnnnn WHERE Account=nnnnnnnn

For simplicity, the Balance change must be a signed eight-character number and
the Account must be an eight-character number.

The sample AMQSPUT can be used to put the messages on the queue.

The samples take no parameters and use the default queue manager. It can be
configured to run only one of the samples at any time. Assuming that you have
configured the default queue manager for the single database sample, with a queue
called singDBQ, you increment Mr Fred Bloggs’s account by 50 as follows:

 AMQSPUT singDBQ

Then key in the following message:

UPDATE Balance change=+ðððððð5ð WHERE Account=ððððððð1

You can put multiple messages on the queue.

 AMQðXASð

Type in the name of the queue:

 singDBQ

The updated status of Mr Fred Bloggs’s account is then printed.

Assuming that you have configured the default queue manager for the multiple
database sample, with a queue called multDBQ, you decrement Ms Mary Brown’s
account by 75 as follows:

 AMQSPUT multDBQ

Then key in the following message:

UPDATE Balance change=-ðððððð75 WHERE Account=ððððððð3

You can put multiple messages on the queue.

 AMQðXAGð

378 MQSeries Application Programming Guide

 CICS transaction sample � TUXEDO samples

Type in the name of the queue:

 multDBQ

The updated status of Ms Mary Brown’s account is then printed.

The CICS transaction sample
A sample CICS transaction program is provided, named amqscic0.ccs for source
code and amqscic0 for the executable version. Transactions may be built using the
standard CICS facilities. See Part 3, “Building an MQSeries application” on
page 255 for details on the commands needed for your platform.

The transaction reads messages from the transmission queue
SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue manager and places
them on to the local queue, the name of which is contained in the transmission
header of the message. Any failures will be sent to the queue
SYSTEM.SAMPLE.CICS.DLQ.

Note: A sample MQSC script amqscic0.tst may be used to create these queues
and sample input queues.

| TUXEDO samples
Before running these samples, you must build the server environment.

Building the server environment
It is assumed that you have a working TUXEDO environment.

To build the server environment for MQSeries for AIX:
1. Create a directory (for example, <APPDIR>) in which the server environment is

built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory
for TUXEDO:

| $ export CFLAGS=“-I /usr/mqm/inc -I /<APPDIR> -L /usr/mqm/lib”
| $ export LDOPTS=“-lmqm -lmqmzse -lnet -insl -lsocket -lc -ldl”
| $ export FIELDTBLS=/usr/mqm/samp/amqstxvx.flds
| $ export VIEWFILES=/<APPDIR>/amqstxvx.V
| $ export LIBPATH_PATH=$(TUXDIR)/lib:/usr/mqm/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM

| MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
| /usr/mqm/lib/libmqmxa.a /usr/mqm/lib/libmqm.a

 Chapter 31. Sample programs (all platforms except OS/390) 379

 TUXEDO samples

4. Run the commands:

| $ mkfldhdr /usr/mqm/samp/amqstxvx.flds
| $ viewc /usr/mqm/samp/amqstxvx.v
| $ buildtms -o MQXA -r MQSeries_XA_RMI
| $ buildserver -o MQSERV1 -f /usr/mqm/samp/amqstxsx.c \
| -f /usr/mqm/lib/libmqm.a \
| -r MQSeries_XA_RMI -s MPUT1:MPUT \
| -s MGET1:MGET \
| -v -bshm
| $ buildserver -o MQSERV2 -f /usr/mqm/samp/amqstxsx.c \
| -f /usr/mqm/lib/libmqm.a \
| -r MQSeries_XA_RMI -s MPUT2:MPUT
| -s MGET2:MGET \
| -v -bshm
| $ buildclient -o doputs -f /usr/mqm/samp/amqstxpx.c \
| -f /usr/mqm/lib/libmqm.a
| $ buildclient -o dogets -f /usr/mqm/samp/amqstxgx.c\
| -f /usr/mqm/lib/libmqm.a

5. Edit ubbstxcx.cfg (see Figure 39 on page 385), and add details of the machine
name, working directories, and queue manager as necessary:

| $ tmloadcf -y /usr/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

 8. Start Tuxedo:

$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue
and retrieve them from a queue.

To build the server environment for MQSeries for AT&T GIS
UNIX and MQSeries for Sun Solaris:

1. Create a directory (for example, <APPDIR>) in which the server environment is
built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory
for TUXEDO:

| $ export CFLAGS="-I /<APPDIR>"
| $ export FIELDTBLS=amqstxvx.flds
| $ export VIEWFILES=amqstxvx.V
| $ export SHLIB_PATH=$TUXDIR/lib:/opt/mqm/lib:lib
| $ export LD_LIBRARY_PATH=$(TUXDIR)/lib:/opt/mqm/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM (RM must include
/opt/mqm/lib/libmqmcs and /opt/mqm/lib/libmqmzse).

Note: The \ characters should not be entered into the file; they are line
continuations.

380 MQSeries Application Programming Guide

 TUXEDO samples

| MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
| /opt/mqm/lib/libmqmxa.a /opt/mqm/lib/libmqm.so \
| /opt/tuxedo/lib/libtux.so /opt/mqm/lib/libmqm.so \
| /opt/mqm/lib/libmqmzse.so

4. Run the commands:

| $ mkfldhdr amqstxvx.flds
| $ viewc amqstxvx.v
| $ buildtms -o MQXA -r MQSeries_XA_RMI
| $ buildserver -o MQSERV1 -f amqstxsx.c \
| -f /opt/mqm/lib/libmqm.so \
| -r MQSeries_XA_RMI -s MPUT1:MPUT \
| -s MGET1:MGET \
| -v -bshm
| -l -ldl
| $ buildserver -o MQSERV2 -f amqstxsx.c \
| -f /opt/mqm/lib/libmqm.so \
| -r MQSeries_XA_RMI -s MPUT2:MPUT \
| -s MGET2:MGET \
| -v -bshm
| -l -ldl
| $ buildclient -o doputs -f amqstxpx.c \
| -f /opt/mqm/lib/libmqm.so \
| -f /opt/mqm/lib/mqmzse.so \
| -f /opt/mqm/lib/mqmcs.so
| $ buildclient -o dogets -f amqstxgx.c \
| -f /opt/mqm/lib/libmqm.so
| -f /opt/mqm/lib/mqmzse.so \
| -f /opt/mqm/lib/mqmcs.so

5. Edit ubbstxcx.cfg (see Figure 39 on page 385), and add details of the machine
name, working directories, and Queue Manager as necessary:

 $ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

 8. Start Tuxedo:

$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue
and retrieve them from a queue.

 Chapter 31. Sample programs (all platforms except OS/390) 381

 TUXEDO samples

To build the server environment for MQSeries for HP-UX:
1. Create a directory (for example, <APPDIR>) in which the server environment is

built and execute all commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory
for TUXEDO:

| $ export CFLAGS=“-Aa -D_HPUX_SOURCE”
| $ export LDOPTS=“-lmqm”
| $ export FIELDTBLS=/opt/mqm/samp/amqstxvx.flds
| $ export VIEWFILES=<APPDIR>/amqstxvx.V
| $ export SHLIB_PATH=$SHLIB/lib:/opt/mqm/lib:lib
| $ export LPATH=$TUXDIR/lib:/opt/mqm/lib:lib

3. Add the following to the TUXEDO file udataobj/RM

 MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
 /opt/mqm/lib/libmqmxa.a /opt/mqm/lib/libmqm.sl \
 /opt/tuxedo/lib/libtux.sl

4. Run the commands:

| $ mkfldhdr /opt/mqm/samp/amqstxvx.flds
| $ viewc /opt/mqm/samp/amqstxvx.v
| $ buildtms -o MQXA -r MQSeries_XA_RMI
| $ buildserver -o MQSERV1 -f /opt/mqm/samp/amqstxsx.c \
| -f /opt/mqm/lib/libmqm.sl \
| -r MQSeries_XA_RMI -s MPUT1:MPUT \
| -s MGET1:MGET \
| -v -bshm
| $ buildserver -o MQSERV2 -f /opt/mqm/samp/amqstxsx.c \
| -f /opt/mqm/lib/libmqm.sl \
| -r MQSeries_XA_RMI -s MPUT2:MPUT \
| -s MGET2:MGET \
| -v -bshm
| $ buildclient -o doputs -f /opt/mqm/samp/amqstxpx.c \
| -f /opt/mqm/lib/libmqm.sl
| $ buildclient -o dogets -f /opt/mqm/samp/amqstxgx.c \
| -f /opt/mqm/lib/libmqm.sl

5. Edit ubbstxcx.cfg (see Figure 39 on page 385), and add details of the machine
name, working directories, and Queue Manager as necessary:

| $ tmloadcf -y /opt/mqm/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:

 $tmadmin -c

A prompt then appears. At this prompt, enter:

> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:

 $ strmqm

 8. Start Tuxedo:

$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue
and retrieve them from a queue.

382 MQSeries Application Programming Guide

 TUXEDO samples

| To build the server environment for MQSeries for SINIX and
DC/OSx

1. Export the following environment variables where TUXDIR is the root directory for
TUXEDO:

$ export CFLAGS=“-lmqm -lmqmcs -lmqmzse -lmqmxa \
-lnsl -lsocket -ldl -lmproc -lext”

Note: For DC/OSx, add “-liconv” to the above.

$ export FIELDTBLS=amqstxvx.flds
$ export VIEWFILES=amqstxvx.V
$ export VIEWDIR=The path to the directory where the views

 are held
$ export TUXDIR=The path to the directory where TUXEDO
is installed (/opt/tuxedo).
$ export CFLAGS=“-lmqm -lmqmcs -lmqmzse -lmqmxa \
-lnsl -lsocket -ldl -lmproc -lext”

2. Add the following to the TUXEDO file udataobj/RM

| MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
| /opt/mqm/lib/libmqmxa.so
| /opt/mqm/lib/libmqm.so /opt/mqm/lib/libmqmcs.s

3. Ensure that your LD_LIBRARY_PATH contains the path to the Tuxedo libraries
(/opt/tuxedo/lib), and that it is exported.

4. Ensure that your PATH contains the path to the Tuxedo bin directory
(/opt/tuxedo/bin), and that it is exported.

5. Run the commands:

 $ mkfldhdr amqstxvx.flds
 $ viewc amqstxvx.v

6. Alter the value of the CFLAGS variable:

export CFLAGS=“$CFLAGS -LDuMQRMIXASwitchDynamic -lmqmxa”

7. Run the commands:

| $ buildtms -o MQXA -r MQSeries_XA_RMI
| $ buildserver -o MQSERV1 -f amqstxsx.c \
| -f /opt/mqm/lib/libmqm.so i \
| -r MQSeries_XA_RMI -s MPUT1:MPUT \
| -s MGET1:MGET \
| -v -bshm
| $ buildserver -o MQSERV2 -f amqstxsx.c \
| -f /opt/mqm/lib/libmqm.so \
| -r MQSeries_XA_RMI -s MPUT2:MPUT \
| -s MGET2:MGET \
| -v -bshm
| $ buildclient -o doputs -f amqstxpx.c \
| -f /opt/mqm/lib/libmqm.so
| $ buildclient -o dogets -f amqstxgx.c \
| -f /opt/mqm/lib/libmqm.so

8. Ensure that your NLS_PATH contains the path to the Tuxedo messages
(/opt/tuxedo/locale/C/%N), and that it is exported.

9. Edit ubbstxcx.cfg (see Figure 39 on page 385), and add details of the machine
name, working directories, and Queue Manager as necessary.

 Chapter 31. Sample programs (all platforms except OS/390) 383

 TUXEDO samples

10. Set the environment variable TUXCONFIG to the value specified in the
MACHINES section of the ubbstxcx.cfg file.

11. If you are using the Tuxedo main machine, run the following commands:

 tmadmin -c

At the prompt (>), enter:

crdl -z filename

where filename is the path to the Tuxedo TLOG file.

12. Run the following command:

 $ tmloadcf -y ubbstxcx.cfg

13. Start the queue manager:

 $ strmqm

14. Start Tuxedo:

$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue
and retrieve them from a queue.

| For further information on building the TUXEDO server environment, see the
| README file in the MQSeries sample directory, /opt/mqm/samp.

384 MQSeries Application Programming Guide

 TUXEDO samples

\RESOURCES
IPCKEY <IPCKey>

#Example:
#IPCKEY 123456

MASTER <MachineName>
MAXACCESSERS 2ð
MAXSERVERS 2ð
MAXSERVICES 5ð
MODEL SHM
LDBAL N

\MACHINES
DEFAULT:
 APPDIR=“<WorkDirectory>”
 TUXCONFIG=“<WorkDirectory>/tuxconfig”
 ROOTDIR=“<RootDirectory>”

<MachineName> LMID=<MachineName>
 TLOGDEVICE=“<WorkDirectory>/TLOG1”
 TLOGNAME=TLOG

\GROUPS
GROUP1
 LMID=<MachineName> GRPNO=1
 TMSNAME=MQXA
 OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

\SERVERS
DEFAULT:

CLOPT=“-A -- -m MYQUEUEMANAGER

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

\SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 39. Example of ubbstxcx.cfg file for UNIX systems

Note: Other information that you need to add is identified by <> characters. In
this file, the queue manager name has been changed to MYQUEUEMANAGER:

To build the server environment for MQSeries for Windows NT:
Note: Change the fields identified by <> in the following, to the directory paths:

| <MQMDIR> the directory path specified when MQSeries was installed, for
| example g:\Program Files\MQSeries

<TUXDIR> the directory path specified when TUXEDO was installed, for
example f:\tuxedo

 Chapter 31. Sample programs (all platforms except OS/390) 385

 TUXEDO samples

<APPDIR> the directory path to be used for the sample application, for
example f:\tuxedo\apps\mqapp

To build the server environment and samples:

1. Create an application directory in which to build the sample application, for
example:

 f:\tuxedo\apps\mqapp

2. Copy the following sample files from the MQSeries sample directory to the
application directory:

 amqstxmn.mak
 amqstxen.env
 ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on
your installation.

4. Edit ubbstxcn.cfg (see Figure 40 on page 387) to add details of the machine
name and the Queue Manager that you wish to connect to.

5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm

 MQSeries_XA_RMI;MQRMIXASwitchDynamic;
 <MQMDIR>\tools\lib\mqmtux.lib <MQMDIR>\tools\lib\mqm.lib

where <MQMDIR> is replaced as above. Although shown here as two lines,
the new entry must be one line in the file.

6. Set the following environment variables:

 TUXDIR=<TUXDIR>
 TUXCONFIG=<APPDIR>\tuxconfig
 FIELDTBLS=<MQMDIR>\tools\c\samples\amqstxvx.fld
 LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter
the command:

crdl -z <APPDIR>\TLOG

where <APPDIR> is replaced as above.

| 8. Set the current directory to <APPDIR>, and invoke the sample makefile
| (amqstxmn.mak) as an external project makefile. For example, with Microsoft
| Visual C++ Version 2.0, issue the command:

| msvc amqstxmn.mak

| Select build to build all the sample programs.

386 MQSeries Application Programming Guide

 TUXEDO samples

\RESOURCES
IPCKEY 99999
UID ð
GID ð
MAXACCESSERS 2ð
MAXSERVERS 2ð
MAXSERVICES 5ð
MASTER SITE1
MODEL SHM
LDBAL N

\MACHINES
<MachineName> LMID=SITE1
 TUXDIR=“f:\tuxedo”
 APPDIR=“f:\tuxedo\apps\mqapp;g:\Program Files\MQSeries\bin”
 ENVFILE=“f:\tuxedo\apps\mqapp\amqstxen.env”
 TUXCONFIG=“f:\tuxedo\apps\mqapp\tuxconfig”
 ULOGPFX=“f:\tuxedo\apps\mqapp\ULOG”
 TLOGDEVICE=“f:\tuxedo\apps\mqapp\TLOG”
 TLOGNAME=TLOG
 TYPE=“i386NT”
 UID=ð
 GID=ð

\GROUPS
GROUP1
 LMID=SITE1 GRPNO=1
 TMSNAME=MQXA
 OPENINFO=“MQSeries_XA_RMI:MYQUEUEMANAGER”

\SERVERS
DEFAULT: CLOPT=“-A -- -m MYQUEUEMANAGER”

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

\SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 40. Example of ubbstxcn.cfg file for Windows NT

Note: The directory names and directory paths must be changed to match your
installation. The queue manager name MYQUEUEMANAGER should also be
changed to the name of the queue manager you wish to connect to. Other
information that you need to add is identified by <> characters.

The sample ubbconfig file for MQSeries for Windows NT is listed in Figure 40. It is
supplied as ubbstxcn.cfg in the MQSeries samples directory.

The sample makefile (see Figure 41 on page 388) supplied for MQSeries for
Windows NT is called ubbstxmn.mak, and is held in the MQSeries samples
directory.

 Chapter 31. Sample programs (all platforms except OS/390) 387

 TUXEDO samples

TUXDIR = f:\tuxedo
MQMDIR = g:\Program Files\MQSeries
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f “-I$(MQMINC) -I$(APPDIR)”
DBG = -f “/Zi”

amqstx.exe:
 $(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
 $(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
 $(TUXDIR)\bin\buildtms -o MQXA -r MQSeries_XA_RMI
 $(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT1:MPUT -s MGET1:MGET

 $(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT2:MPUT -s MGET2:MGET

 $(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

 $(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
-f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

 $(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 41. Sample TUXEDO makefile for MQSeries for Windows NT

Server sample program for TUXEDO
This program is designed to run with the Put (amqstxpx.c) and the Get
(amqstxgx.c) sample programs. The sample server program runs automatically
when TUXEDO is started.

Note: You must start your queue manager before you start TUXEDO.

The sample server provides two TUXEDO services, MPUT1 and MGET1.

The MPUT1 service is driven by the PUT sample and uses MQPUT1 in syncpoint
to put a message in a unit of work controlled by TUXEDO. It takes the parameters
QName and Message Text, which are supplied by the PUT sample.

The MGET1 service opens and closes the queue each time it gets a message. It
takes the parameters QName and Message Text, which are supplied by the GET
sample.

Any error messages,reason codes, and status messages are written to the
TUXEDO log file.

388 MQSeries Application Programming Guide

 TUXEDO samples

Local System

Local or Remote

System

(queue used

by samples)

Server Machine
Client Machine

amqstxgx

(GET)

Client Machine

amqstxpx

(PUT)

QUEUE

MANAGER

X A
Interface

TUXEDO Application MQSERIES

MQSERV1

(amqstxsx)

Figure 42. How TUXEDO samples work together

Put sample program for TUXEDO
This sample allows you to put a message on a queue multiple times, in batches,
demonstrating syncpointing using TUXEDO as the resource manager. The sample
server program amqstxsx must be running for the put sample to succeed - the
server sample program makes the connection to the queue manager and uses the
XA interface. To run the sample enter:

� doputs –n queuename –b batchsize –c trancount –t message

For example:

� doputs -n myqueue -b 5 -c 6 -t “Hello World”

This puts 30 messages on to the queue named myqueue, in 6 batches each with 5
messages in them. If there are any problems it will back a batch of messages out,
otherwise it will commit them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason
codes are written to stderr.

 Chapter 31. Sample programs (all platforms except OS/390) 389

 Encina sample

Get sample for TUXEDO
This sample allows you to get messages from a queue in batches. The sample
server program amqstxsx must be running for the put sample to succeed - the
server sample program makes the connection to the queue manager and uses the
XA interface. To run the sample enter:

� dogets –n queuename –b batchsize –c trancount

For example:

� dogets -n myqueue -b 6 -c 4

This takes 24 messages off the queue named myqueue, in 6 batches each with 4
messages in them. If you ran this after the put example, which put 30 messages
on myqueue, you would now have only 6 messages on myqueue. Note that the
number of batches and the batch size can vary between the putting of messages
and the getting of them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason
codes are written to stderr.

Encina sample program
This program puts 10 messages to the queue, backing out the odd numbered
messages and committing the even numbered messages. The message is a
4-byte number.

The queue used by this sample is the SYSTEM.DEFAULT.MODEL.QUEUE, so a
temporary dynamic queue is created each time the program is run. You will need
to run trace to see what happens when the program runs.

Building the AMQSXAE0.C sample
When compiling for a UNIX or OS/2 platform, ensure that the symbolic constant,
WIN32 is not defined. This constant is used in the preprocessor statements for
processing specific to Windows NT:

 #if defined(WIN32)

Compiling and linking on Windows NT
When compiling, specify the following options (in addition to those usually specified
for an MQSeries application) to the C compiler:

-MD -DWIN32 -DDEC_DCE -Gz

The sample contains references to the Encina header files:

 #include <tc/tc.h>
 #include <tmxa/tmxa_status.h>
 #include <tmxa/tmxa.h>

At compile time, also include the parent directory path name containing these files,
using the compiler -I option with a value which names the directory. For example:

 -Ic:\opt\encina\include

390 MQSeries Application Programming Guide

 Dead-letter queue sample � Connect sample program

At link time, the directory path names containing the Encina and DCE library files
must also be specified to the linker, by setting the LIB environment variable. For
example:

 SET LIB=C:\OPT\ENCINA\LIB;C:\OPT\DCE\LIB;%LIB%

When linking, specify the following library files:

 � mqm.lib
 � mqmenc.lib
 � libEncServer.lib
 � libEncina.lib
 � msvcrt.lib
 � pthreads.lib
 � libdce.lib

Compiling and linking on Sun Solaris
Use the following invocation:

cc -I/opt/encina/include -c amqsxaeð.c && cc -mt -o amqsxaeð amqsxaeð.o \
-L/opt/encina/lib -L/opt/mqm/lib -lmqm -lmqmcs_d -lmqmzse -lmqmxa \
-lsocket -lnsl -ldce -lthread -lEncServer -lEncina -lc -lm

Dead-letter queue handler sample
A sample dead-letter queue handler is provided, the name of the executable
version is amqsdlq. If you want a dead-letter queue handler that is different to
RUNMQDLQ, the source of the sample is available for you to use your base.

The sample is similar to the dead-letter handler provided within the product but
trace and error reporting are different. There are two environment variables
available to you:

ODQ_TRACE set to YES or yes to switch tracing on

ODQ_MSG set to the name of the file containing error and information messages.
The file provided is called amqsdlq.msg.

These need to be made known to your environment using either the export or set
commands, depending on your platform; trace is turned off using the unset
command.

You can modify the error message file, amqsdlq.msg, to suit your own
requirements. The sample puts messages out to stdout, not to the MQSeries error
log file.

The System Management Guide for your platform explains how the dead-letter
handler works, and how you run it.

| The Connect sample program
| The Connect sample program allows you to explore the MQCONNX call and its
| options from a client. The sample connects to the queue manager using the
| MQCONNX call, inquires about the name of the queue manager using the MQINQ
| call, and displays it.

 Chapter 31. Sample programs (all platforms except OS/390) 391

 Connect sample program

| Note: The Connect sample program is a client sample. You can compile and run
| it on a server but the function is meaningful only on a client, and only client
| executables are supplied.

| Running the amqscnxc sample
| The command-line syntax of the Connect sample program is:

| amqscnxc [-x ConnName [-c SvrconnChannelName]] [QMgrName]

| The parameters are optional and their order is not important with the exception that
| QMgrName, if it is specified, must come last. The parameters are:

| ConnName The TCP/IP connection name of the server queue
| manager
| SvrconnChannelName The name of the server connection channel
| QMgrName The name of the target queue manager

| If you do not specify the TCP/IP connection name, MQCONNX is issued with the
| ClientConnPtr set to NULL. If you specify the TCP/IP connection name but not the
| server connection channel (the reverse is not allowed) the sample uses the name
| SYSTEM.DEF.SVRCONN. If you do not specify the target queue manager the
| sample connects to whichever queue manager is listening at the given TCP/IP
| connection name.

| Note: If you enter a question mark as the only parameter or if you enter incorrect
| parameters you will see a message explaining how to use the program.

| If you run the sample with no command-line options the contents of the
| MQSERVER environment variable are used to determine the connection
| information. (In this example MQSERVER is set to
| “SYSTEM.DEF.SVRCONN/TCP/machine.site.company.com”.) You see output like
| this:

| Sample AMQSCNXC start
| Connecting to the default queue manager
| with no client connection information specified.
| Connection established to queue manager machine

| Sample AMQSCNXC end

| If you run the sample and provide a TCP/IP connection name and a server
| connection channel name but no target queue manager name, like this:

| amqscnxc -x machine.site.company.com -c SYSTEM.ADMIN.SVRCONN

| the default queue manager name is used and you see output like this:

| Sample AMQSCNXC start
| Connecting to the default queue manager
| using the server connection channel SYSTEM.ADMIN.SVRCONN
| on connection name machine.site.company.com.
| Connection established to queue manager MACHINE

| Sample AMQSCNXC end

| If you run the sample and provide a TCP/IP connection name and a target queue
| manager name, like this:

| amqscnxc -x machine.site.company.com MACHINE

392 MQSeries Application Programming Guide

 Connect sample program

| you see output like this:

| Sample AMQSCNXC start
| Connecting to queue manager MACHINE
| using the server connection channel SYSTEM.DEF.SVRCONN
| on connection name machine.site.company.com.
| Connection established to queue manager MACHINE

| Sample AMQSCNXC end

 Chapter 31. Sample programs (all platforms except OS/390) 393

 Connect sample program

394 MQSeries Application Programming Guide

 OS/390 sample programs � Features demonstrated

Chapter 32. Sample programs for MQSeries for OS/390

This chapter describes the sample applications that are delivered with MQSeries for
OS/390. These samples demonstrate typical uses of the Message Queue Interface
(MQI).

MQSeries for OS/390 also provides a sample API-crossing exit program, described
in the “The API-crossing exit for OS/390” on page 225, and sample
data-conversion exits, described in Chapter 11, “Writing data-conversion exits” on
page 161.

The sample applications are supplied in source form only. The source modules
include pseudocode that describes the program logic. If you want to run the
samples, follow the instructions given in:

� “Preparing and running sample applications for the batch environment” on
page 399

� “Preparing the sample applications for the CICS environment” on page 403

� “Preparing the sample application for the IMS environment” on page 407

| Note: Although some of the sample applications have basic panel-driven
| interfaces, they do not aim to demonstrate how to design the “look and feel” of your
| applications. For more information on how to design panel-driven interfaces for
| nonprogrammable terminals, see the SAA Common User Access: Basic Interface
| Design Guide (SC26-4583) and its addendum (GG22-9508). These provide
| guidelines to help you design applications that are consistent both within the
| application and across other applications.

Features demonstrated in the sample applications
This section summarizes the MQI features demonstrated in each of the sample
applications, shows the programming languages that each sample is written in, and
the environment in which each sample runs. Descriptions of the design of each
sample are given in:

� “The Put samples” on page 408
� “The Get samples” on page 411
� “The Browse sample” on page 414
� “The Print Message sample” on page 416
� “The Queue Attributes sample” on page 420
� “The Mail Manager sample” on page 421
� “The Credit Check sample” on page 430
� “The Message Handler sample” on page 443

 Put samples
The Put samples demonstrate how to put messages on a queue using the MQPUT
call.

The application uses these MQI calls:

 � MQCONN
 � MQOPEN

 Copyright IBM Corp. 1993,1999 395

 Features demonstrated

 � MQPUT
 � MQCLOSE
 � MQDISC

| The program is delivered in COBOL and C, and runs in the batch and CICS
| environment. See Table 32 on page 400 for the batch application and Table 37
| on page 404 for the CICS application.

 Get samples
The Get samples demonstrate how to get messages from a queue using the
MQGET call.

The application uses these MQI calls:

 � MQCONN
 � MQOPEN
 � MQGET
 � MQCLOSE
 � MQDISC

| The program is delivered in COBOL and C, and runs in the batch and CICS
| environment. See Table 32 on page 400 for the batch application and Table 37
| on page 404 for the CICS application.

 Browse sample
The Browse sample demonstrates how to browse a message, print it, then step
through the messages on a queue.

The application uses these MQI calls:

 � MQCONN
 � MQOPEN
� MQGET for browsing messages

 � MQCLOSE
 � MQDISC

The program is delivered in the COBOL, assembler, PL/I, and C languages. The
application runs in the batch environment. See Table 33 on page 401 for the
batch application.

Print Message sample
The Print Message sample demonstrates how to remove a message from a queue
and print the data in the message, together with all the fields of its message
descriptor. By removing comment characters from two lines in the source module,
you can change the program so that it browses, rather than removes, the
messages on a queue. This program can usefully be used for diagnosing problems
with an application that is putting messages on a queue.

The application uses these MQI calls:

 � MQCONN
 � MQOPEN
� MQGET for removing messages from a queue (with an option to browse)

 � MQCLOSE

396 MQSeries Application Programming Guide

 Features demonstrated

 � MQDISC

The program is delivered in the C language. The application runs in the batch
environment. See Table 34 on page 401 for the batch application.

Queue Attributes sample
The Queue Attributes sample demonstrates how to inquire about and set the values
of MQSeries for OS/390 object attributes.

The application uses these MQI calls:

 � MQOPEN
 � MQINQ
 � MQSET
 � MQCLOSE

| The program is delivered in the COBOL, assembler, and C languages. The
| application runs in the CICS environment. See Table 38 on page 405 for the
| CICS application.

Mail Manager sample
The Mail Manager sample demonstrates these techniques:

� Using alias queues
� Using a model queue to create a temporary dynamic queue
� Using reply-to queues

| � Using syncpoints in the CICS and batch environments
� Sending commands to the system-command input queue
� Testing return codes
� Sending messages to remote queue managers, both by using a local definition

of a remote queue and by putting messages directly on a named queue at a
remote queue manager

The application uses these MQI calls:

 � MQCONN
 � MQOPEN
 � MQPUT1
 � MQGET
 � MQINQ
 � MQCMIT
 � MQCLOSE
 � MQDISC

Three versions of the application are provided:

| � A CICS application written in COBOL
� A TSO application written in COBOL
� A TSO application written in C

The TSO applications use the MQSeries for OS/390 batch adapter and include
some ISPF panels.

See Table 35 on page 402 for the TSO application, and Table 39 on page 405 for
the CICS application.

 Chapter 32. Sample programs for MQSeries for OS/390 397

 Features demonstrated

Credit Check sample
The Credit Check sample is a suite of programs that demonstrates these
techniques:

� Developing an application that runs in more than one environment
� Using a model queue to create a temporary dynamic queue
� Using a correlation identifier
� The setting and passing of context information
� Using message priority and persistence
� Starting programs by using triggering
� Using reply-to queues
� Using alias queues
� Using a dead-letter queue
� Using a namelist
� Testing return codes

The application uses these MQI calls:

 � MQOPEN

 � MQPUT

 � MQPUT1

� MQGET for browsing and getting messages, using the wait and signal options,
and for getting a specific message

 � MQINQ

 � MQSET

 � MQCLOSE

| The sample can run as a stand-alone CICS application. However, to demonstrate
| how to design a message queuing application that uses the facilities provided by
| both the CICS and IMS environments, one module is also supplied as an IMS
| batch message processing program.

| The CICS programs are delivered in C and COBOL. The single IMS program is
| delivered in C.

See Table 40 on page 406 for the CICS application, and Table 41 on page 408
for the IMS application.

The Message Handler sample
The Message Handler sample allows you to browse, forward, and delete messages
on a queue.

The application uses these MQI calls:

 � MQCONN
 � MQOPEN
 � MQINQ
 � MQPUT1
 � MQCMIT
 � MQBACK
 � MQGET
 � MQCLOSE

398 MQSeries Application Programming Guide

 Preparing and running samples

 � MQDISC

The program is delivered in C and COBOL programming languages. The
application runs under TSO. See Table 36 on page 403 for the TSO application.

Distributed queuing exit samples
The names of the source programs of the distributed queuing exit samples are
listed in the following table:

Note: The source programs are link-edited with CSQXSTUB.

| See Chapter 35, “Channel-exit programs” in the MQSeries Intercommunication
| book for a description of the distributed queuing exit samples.

Table 30. Source for the distributed queuing exit samples

Member name For language Description Supplied in
library

CSQ4BAX0 Assembler Source program SCSQASMS

CSQ4BCX1 C Source program SCSQC37S

CSQ4BCX2 C Source program SCSQC37S

Data-conversion exit samples
A skeleton is provided for a data-conversion exit routine, and a sample is shipped
with MQSeries illustrating the MQXCNVC call. The names of the source programs
of the data-conversion exit samples are listed in the following table:

Note: The source programs are link-edited with CSQASTUB.

See Chapter 11, “Writing data-conversion exits” on page 161 for more information.

Table 31. Source for the data conversion exit samples (Assembler language only)

Member name Description Supplied in library

CSQ4BAX8 Source program SCSQASMS

CSQ4BAX9 Source program SCSQASMS

CSQ4CAX9 Source program SCSQASMS

Preparing and running sample applications for the batch environment
To prepare a sample application that runs in the batch environment, perform the
same steps that you would when building any batch MQSeries for OS/390
application. These steps are listed in “Building OS/390 batch applications” on
page 275.

Note: The assembler language version of the Browse sample uses data control
blocks (DCBs), so you must link-edit it using RMODE(24).

The library members that you will use are listed in Table 32, Table 33, and
Table 34 on page 401.

 Chapter 32. Sample programs for MQSeries for OS/390 399

 Preparing and running samples

You must edit the run JCL supplied for the samples that you want to use (see
Table 32, Table 33, and Table 34 on page 401).

The PARM statement in the supplied JCL contains a number of parameters that
you need to modify. To run the C sample programs, separate the parameters by
spaces; to run the Assembler, COBOL, and PL/I sample programs, separate them
by commas. For example, if the name of your queue manager is CSQ1 and you
want to run the application with a queue named LOCALQ1, in the COBOL, PL/I,
and assembler-language JCL, your PARM statement should look like this:

 PARM=(CSQ1,LOCALQ1)

In the C language JCL, your PARM statement should look like this:

 PARM=('CSQ1 LOCALQ1')

You are now ready to submit the jobs.

Names of the sample batch applications
The names of the source programs and JCL that are supplied for each of the
sample batch applications are listed in the following tables:

Put and Get samples Table 32
Browse sample Table 33 on page 401
Print message sample Table 34 on page 401

Table 32. Source and JCL for the Put and Get samples

Member name For language Description Supplied in
library

| CSQ4BCJ1| C| Get source
| program
| SCSQC37S

| CSQ4BCK1| C| Put source
| program
| SCSQC37S

| CSQ4BVJ1| COBOL| Get source
| program
| SCSQCOBS

| CSQ4BVK1| COBOL| Put source
| program
| SCSQCOBS

CSQ4BCJR C Sample run JCL SCSQPROC

CSQ4BVJR COBOL Sample run JCL SCSQPROC

400 MQSeries Application Programming Guide

 Preparing and running samples

Table 33. Source and JCL for the Browse sample

Member name For language Description Supplied in
library

CSQ4BVA1 COBOL Source program SCSQCOBS

CSQ4BVAR COBOL Sample run JCL SCSQPROC

CSQ4BAA1 Assembler Source program SCSQASMS

CSQ4BAAR Assembler Sample run JCL SCSQPROC

CSQ4BCA1 C Source program SCSQC37S

CSQ4BCAR C Sample run JCL SCSQPROC

CSQ4BPA1 PL/I Source program SCSQPLIS

CSQ4BPAR PL/I Sample run JCL SCSQPROC

Table 34. Source for the Print Message sample (C language only)

Member name Description Supplied in library

CSQ4BCG1 Source program SCSQC37S

CSQ4BCGR Sample run JCL SCSQPROC

Preparing sample applications for the TSO environment
To prepare a sample application that runs in the TSO environment, perform the
same steps that you would when building any batch MQSeries for OS/390
application—these steps are listed in “Building OS/390 batch applications” on
page 275. The library members you will use are listed in Table 35 on page 402.

| For the Mail Manager sample application, ensure that the queues it uses are
| available on your system. They are defined in the member
| thlqual .SCSQPROC(CSQ4CVD). To ensure that these queues are always
| available, you could add these members to your CSQINP2 initialization input data
| set, or use the CSQUTIL program to load these queue definitions.

Names of the sample TSO applications
The names of the source programs that are supplied for each of the sample TSO
applications are listed in the following tables:

Mail manager sample Table 35 on page 402
Message handler sample Table 36 on page 403

| These samples use ISPF panels. You must therefore include the ISPF stub,
| ISPLINK, when you link-edit the programs.

 Chapter 32. Sample programs for MQSeries for OS/390 401

 Preparing and running samples

Table 35. Source and JCL for the Mail Manager (TSO) sample

Member name For language Description Supplied in
library

CSQ4CVD independent MQSeries for
OS/390 object
definitions

SCSQPROC

CSQ40 independent ISPF messages SCSQMSGE

| CSQ4RVD1| COBOL| CLIST to initiate
| CSQ4TVD1
| SCSQCLST

CSQ4TVD1 COBOL Source program
for Menu program

SCSQCOBS

CSQ4TVD2 COBOL Source program
for Get Mail
program

SCSQCOBS

CSQ4TVD4 COBOL Source program
for Send Mail
program

SCSQCOBS

CSQ4TVD5 COBOL Source program
for Nickname
program

SCSQCOBS

CSQ4VDP1-6 COBOL Panel definitions SCSQPNLA

CSQ4VD0 COBOL Data definition SCSQCOBC

CSQ4VD1 COBOL Data definition SCSQCOBC

CSQ4VD2 COBOL Data definition SCSQCOBC

CSQ4VD4 COBOL Data definition SCSQCOBC

| CSQ4RCD1| C| CLIST to initiate
| CSQ4TCD1
| SCSQCLST

CSQ4TCD1 C Source program
for Menu program

SCSQC37S

CSQ4TCD2 C Source program
for Get Mail
program

SCSQC37S

CSQ4TCD4 C Source program
for Send Mail
program

SCSQC37S

CSQ4TCD5 C Source program
for Nickname
program

SCSQC37S

CSQ4CDP1-6 C Panel definitions SCSQPNLA

CSQ4TC0 C Include file SCSQC370

402 MQSeries Application Programming Guide

 Preparing and running samples

Table 36. Source for the Message Handler sample

Member name For language Description Supplied in
library

CSQ4TCH0 C Data definition SCSQC370

CSQ4TCH1 C Source program SCSQC37S

CSQ4TCH2 C Source program SCSQC37S

CSQ4TCH3 C Source program SCSQC37S

CSQ4RCH1 C and COBOL CLIST to initiate
CSQ4TCH1 or
CSQ4TVH1

SCSQCLST

CSQ4CHP1 C and COBOL Panel definition SCSQPNLA

CSQ4CHP2 C and COBOL Panel definition SCSQPNLA

CSQ4CHP3 C and COBOL Panel definition SCSQPNLA

CSQ4CHP9 C and COBOL Panel definition SCSQPNLA

CSQ4TVH0 COBOL Data definition SCSQCOBC

CSQ4TVH1 COBOL Source program SCSQCOBS

CSQ4TVH2 COBOL Source program SCSQCOBS

CSQ4TVH3 COBOL Source program SCSQCOBS

| Preparing the sample applications for the CICS environment
Before you run the CICS sample programs, you must log on to CICS using a
LOGMODE of 32702. This is because the sample programs have been written to
use a 3270 mode 2 screen.

| To prepare a sample application that runs in the CICS environment, perform the
| following steps:

1. Create the symbolic description map and the physical screen map for the
sample by assembling the BMS screen definition source (supplied in library
thlqual .SCSQMAPS, where thlqual is the high-level qualifier used by your
installation). When you name the maps, use the name of the BMS screen
definition source (not available for Put and Get sample programs), but omit the
last character of that name.

2. Perform the same steps that you would when building any CICS MQSeries for
OS/390 application—these steps are listed in “Building CICS applications” on
page 277. The library members that you will use are listed in Table 37 on
page 404, Table 38 on page 405, Table 39 on page 405, and Table 40 on
page 406.

| 3. Identify the map set, programs, and transaction to CICS by updating the CICS
| system definition (CSD) data set. The definitions you require are in the
| member thlqual .SCSQPROC(CSQ4S100). For guidance on how to do this,
| see the MQSeries for OS/390 System Management Guide.

Note: For the Credit Check sample application, you will get an error message
at this stage if you have not already created the VSAM data set that the
sample uses.

 Chapter 32. Sample programs for MQSeries for OS/390 403

 Preparing and running samples

4. For the Credit Check and Mail Manager sample applications, ensure that the
queues they use are available on your system. For the Credit Check sample,
they are defined in the member thlqual .SCSQPROC(CSQ4CVB) for COBOL,
and thlqual .SCSQPROC(CSQ4CCB) for C. For the Mail Manager sample,
they are defined in the member thlqual .SCSQPROC(CSQ4CVD). To ensure
that these queues are always available, you could add these members to your
CSQINP2 initialization input data set, or use the CSQUTIL program to load
these queue definitions.

For the Queue Attributes sample application, you could use one or more of the
queues that are supplied for the other sample applications. Alternatively, you
could use your own queues. However, note that in the form that it is supplied,
this sample works only with queues that have the characters CSQ4SAMP in the
first eight bytes of their name.

 QLOP abend
When the CICS sample applications supplied with MQSeries for OS/390 use MQI
calls, they do not test for the return codes that indicate that the queue manager is
not available. If the queue manager is not available when you attempt to run one
of the CICS samples, the sample abends with the CICS abend code QLOP. If this
happens, you must connect your queue manager to your CICS system before you
attempt to start the sample application again. For information about starting a
connection, see the MQSeries for OS/390 System Management Guide.

Names of the sample CICS applications
The source and JCL files that are supplied for each of the sample CICS
applications are listed in the following tables:

Put and Get samples Table 37
Queue attributes sample Table 38 on page 405
Mail Manager (CICS) sample Table 39 on page 405
Credit Check (CICS) sample Table 40 on page 406

Table 37. Source and JCL for the Put and Get samples

Member name For language Description Supplied in
library

CSQ4CCK1 C Source program SCSQC37S

CSQ4CCJ1 C Source program SCSQC37S

CSQ4CVJ1 COBOL Source program SCSQCOBS

CSQ4CVK1 COBOL Source program SCSQCOBS

CSQ4S100 independent CICS system
definition data set

SCSQPROC

404 MQSeries Application Programming Guide

 Preparing and running samples

Table 38. Source for the Queue Attributes sample

Member name For language Description Supplied in
library

CSQ4CVC1 COBOL Source program SCSQCOBS

CSQ4VMSG COBOL Message definition SCSQCOBC

CSQ4VCMS COBOL BMS screen
definition

SCSQMAPS

CSQ4CAC1 Assembler Source program SCSQASMS

CSQ4AMSG Assembler Message definition SCSQMACS

CSQ4ACMS Assembler BMS screen
definition

SCSQMAPS

CSQ4CCC1 C Source program SCSQC37S

CSQ4CMSG C Message definition SCSQC370

CSQ4CCMS C BMS screen
definition

SCSQMAPS

CSQ4S100 independent CICS system
definition data set

SCSQPROC

Table 39. Source and JCL for the Mail Manager (CICS) sample (COBOL only)

Member name Description Supplied in library

CSQ4CVD MQSeries for OS/390
object definitions

SCSQPROC

CSQ4CVD1 Source for Menu program SCSQCOBS

CSQ4CVD2 Source for Get Mail
program

SCSQCOBS

CSQ4CVD3 Source for Display
Message program

SCSQCOBS

CSQ4CVD4 Source for Send Mail
program

SCSQCOBS

CSQ4CVD5 Source for Nickname
program

SCSQCOBS

CSQ4VDMS BMS screen definition
source

SCSQMAPS

CSQ4S100 CICS system definition
data set

SCSQPROC

CSQ4VD0 Data definition SCSQCOBC

CSQ4VD3 Data definition SCSQCOBC

CSQ4VD4 Data definition SCSQCOBC

 Chapter 32. Sample programs for MQSeries for OS/390 405

 Preparing and running samples

Table 40. Source and JCL for the Credit Check CICS sample

Member
name

For language Description Supplied in
library

CSQ4CVB independent MQSeries object definitions SCSQPROC

CSQ4CCB independent MQSeries object definitions SCSQPROC

CSQ4CVB1 COBOL Source for user-interface
program

SCSQCOBS

CSQ4CVB2 COBOL Source for credit application
manager

SCSQCOBS

CSQ4CVB3 COBOL Source for checking-account
program

SCSQCOBS

CSQ4CVB4 COBOL Source for distribution program SCSQCOBS

CSQ4CVB5 COBOL Source for agency-query
program

SCSQCOBS

CSQ4CCB1 C Source for user-interface
program

SCSQC37S

CSQ4CCB2 C Source for credit application
manager

SCSQC37S

CSQ4CCB3 C Source for checking-account
program

SCSQC37S

CSQ4CCB4 C Source for distribution program SCSQC37S

CSQ4CCB5 C Source for agency-query
program

SCSQC37S

CSQ4CB0 C Include file SCSQC370

CSQ4CBMS C BMS screen definition source SCSQMAPS

CSQ4VBMS COBOL BMS screen definition source SCSQMAPS

CSQ4VB0 COBOL Data definition SCSQCOBC

CSQ4VB1 COBOL Data definition SCSQCOBC

CSQ4VB2 COBOL Data definition SCSQCOBC

CSQ4VB3 COBOL Data definition SCSQCOBC

CSQ4VB4 COBOL Data definition SCSQCOBC

CSQ4VB5 COBOL Data definition SCSQCOBC

CSQ4VB6 COBOL Data definition SCSQCOBC

CSQ4VB7 COBOL Data definition SCSQCOBC

CSQ4VB8 COBOL Data definition SCSQCOBC

CSQ4BAQ independent Source for VSAM data set SCSQPROC

CSQ4FILE independent JCL to build VSAM data set
used by CSQ4CVB3

SCSQPROC

CSQ4S100 independent CICS system definition data set SCSQPROC

406 MQSeries Application Programming Guide

 Preparing and running samples

Preparing the sample application for the IMS environment
Part of the Credit Check sample application can run in the IMS environment. To
prepare this part of the application to run with the CICS sample you must first
perform the steps described in “Preparing the sample applications for the CICS
environment” on page 403.

Then perform the following steps:

1. Perform the same steps that you would when building any IMS MQSeries for
OS/390 application—these steps are listed in “Building IMS (BMP or MPP)
applications” on page 278. The library members that you will use are listed in
Table 41 on page 408.

2. Identify the application program and database to IMS. Samples are provided
with PSBGEN, DBDGEN, ACB definition, IMSGEN, and IMSDALOC statements
to enable this.

| 3. Load the database CSQ4CA by tailoring and running the sample JCL provided
| for this purpose (CSQ4ILDB). This JCL loads the database with data from the
| file CSQ4BAQ. Update the IMS control region with a DD statement for the
| database CSQ4CA.

4. Start the checking-account program as a batch message processing (BMP)
program by tailoring and running the sample JCL provided for this purpose.
This JCL starts a batch-oriented BMP program. To run the program as a
message-oriented BMP program, remove the comment characters from the line
in the JCL that contains the IN= statement.

 Chapter 32. Sample programs for MQSeries for OS/390 407

 Put samples

Names of the sample IMS application
The source and JCL that are supplied for the Credit Check sample IMS application
are listed in Table 41.

Table 41. Source and JCL for the Credit Check IMS sample (C only)

Member name Description Supplied in library

CSQ4CVB MQSeries object
definitions

SCSQPROC

CSQ4ICB3 Source for
checking-account program

SCSQC37S

CSQ4ICBL Source for loading the
checking-account
database

SCSQC37S

CSQ4CBI Data definition SCSQC370

CSQ4PSBL PSBGEN JCL for
database-load program

SCSQPROC

CSQ4PSB3 PSBGEN JCL for
checking-account program

SCSQPROC

CSQ4DBDS DBDGEN JCL for
database CSQ4CA

SCSQPROC

CSQ4GIMS IMSGEN macro definitions
for CSQ4IVB3 and
CSQ4CA

SCSQPROC

CSQ4ACBG Application control block
(ACB) definition for
CSQ4IVB3

SCSQPROC

CSQ4BAQ Source for database SCSQPROC

CSQ4ILDB Sample run JCL for
database-load job

SCSQPROC

CSQ4ICBR Sample run JCL for
checking-account program

SCSQPROC

CSQ4DYNA IMSDALOC macro
definitions for database

SCSQPROC

The Put samples
The Put sample programs put messages on a queue using the MQPUT call.

The source programs are supplied in C and COBOL in the batch and CICS
environments (see Table 32 on page 400 and Table 37 on page 404).

Design of the Put sample
The flow through the program logic is:

1. Connect to the queue manager using the MQCONN call. If this call fails, print
the completion and reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQCONN call; if you do, it returns DEF_HCONN. You can use the
connection handle MQHC_DEF_HCONN for the MQI calls that follow.

408 MQSeries Application Programming Guide

 Put samples

2. Open the queue using the MQOPEN call with the MQOO_OUTPUT option. On
input to this call, the program uses the connection handle that is returned in
step 1. For the object descriptor structure (MQOD), it uses the default values
for all fields except the queue name field which is passed as a parameter to the
program. If the MQOPEN call fails, print the completion and reason codes and
stop processing.

3. Create a loop within the program issuing MQPUT calls until the required
number of messages are put on the queue. If an MQPUT call fails, the loop is
abandoned early, no further MQPUT calls are attempted, and the completion
and reason codes are returned.

4. Close the queue using the MQCLOSE call with the object handle returned in
step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQDISC call.

The Put samples for the batch environment
To run the samples, you must edit and run the sample JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 399.

The programs take the following parameters in an EXEC PARM, separated by
spaces in C and commas in COBOL:

1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages (up to 4 digits)
4. The padding character to be written in the message (1 character)
5. The number of characters to write in the message (up to 4 digits)
6. The persistence of the message (1 character: ‘P’ for persistent or ‘N’ for

nonpersistent)

If you enter any of the above parameters wrongly, you will receive appropriate error
messages.

Any messages from the samples are written to the SYSPRINT data set.

 Usage notes
� To keep the samples simple, there are some minor functional differences

between language versions. However, these differences are minimized if the
layout of the parameters shown in the sample run JCL, CSQ4BCJR, and
CSQ4BVJR, is used. None of the differences relate to the MQI.

� CSQ4BCK1 allows you to enter more than four digits for the number of
messages sent and the length of the messages.

| � For the two numeric fields, enter any digit between 1 and 9999. The value you
| enter should be a positive number. For example, to put a single message, you
| can enter 1 or 01 or 001 or 0001 as the value. If you enter non-numeric or
| negative values, you may receive an error. For example, if you enter ‘-1’, the

 Chapter 32. Sample programs for MQSeries for OS/390 409

 Put samples

| COBOL program will send a one-byte message, but the C program will receive
| an error.

� For both programs, CSQ4BCK1 and CSQ4BVK1, you must enter ‘P’ in the
persistence parameter, ++PER++, if you require the message to be persistent.
If you fail to do so, the message will be nonpersistent.

The Put samples for the CICS environment
The transactions take the following parameters separated by commas:

1. The number of messages (up to 4 digits)

2. The padding character to be written in the message (1 character)

3. The number of characters to write in the message (up to 4 digits)

4. The persistence of the message (1 character: ‘P’ for persistent or ‘N’ for
nonpersistent)

5. The name of the target queue (48 characters)

If you enter any of the above parameters wrongly, you will receive appropriate error
messages.

For the COBOL sample, invoke the Put sample in the CICS environment by
entering:

 MVPT,9999,\,9999,P,QUEUE.NAME

For the C sample, invoke the Put sample in the CICS environment by entering:

 MCPT,9999,\,9999,P,QUEUE.NAME

Any messages from the samples are displayed on the screen.

 Usage notes
� To keep the samples simple, there are some minor functional differences

between language versions. None of the differences relate to the MQI.

� If you enter a queue name that is longer than 48 characters, its length is
truncated to the maximum of 48 characters but no error message is returned.

| � Before entering the transaction, press the ‘CLEAR’ key.

| � For the two numeric fields, enter any number between 1 and 9999. The value
| you enter should be a positive number. For example, to put a single message,
| you can enter the value 1 or 01 or 001 or 0001. If you enter non-numeric or
| negative values, you may receive an error. For example, if you enter ‘-1’, the
| COBOL program will send a 1 byte message, and the C program will abend
| with an error from malloc().

| � For both programs, CSQ4CCK1 and CSQ4CVK1, you must enter ‘P’ in the
| persistence parameter, if you require the message to be persistent. For
| non-persistent messages, enter ‘N’ in the persistence parameter. If you enter
| any other value you will receive an error message.

� The messages are put in syncpoint because default values are used for all
parameters except those set during program invocation.

410 MQSeries Application Programming Guide

 Get samples

The Get samples
The Get sample programs get messages from a queue using the MQGET call.

The source programs are supplied in C and COBOL in the batch and CICS
environments (see Table 32 on page 400 and Table 37 on page 404).

Design of the Get sample
The flow through the program logic is:

1. Connect to the queue manager using the MQCONN call. If this call fails, print
the completion and reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQCONN call; if you do, it returns DEF_HCONN. You can use the
connection handle MQHC_DEF_HCONN for the MQI calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED
and MQOO_BROWSE options. On input to this call, the program uses the
connection handle that is returned in step 1. For the object descriptor structure
(MQOD), it uses the default values for all fields except the queue name field
which is passed as a parameter to the program. If the MQOPEN call fails, print
the completion and reason codes and stop processing.

3. Create a loop within the program issuing MQGET calls until the required
number of messages are retrieved from the queue. If an MQGET call fails, the
loop is abandoned early, no further MQGET calls are attempted, and the
completion and reason codes are returned.

The following options are specified on the MQGET call:

 � MQGMO_NO_WAIT
 � MQGMO_ACCEPT_TRUNCATED_MESSAGE
� MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT
� MQGMO_BROWSE_FIRST and MQGMO_BROWSE_NEXT

| For a description of these options, see “MQGMO - Get-message options” in the
| MQSeries Application Programming Reference manual.

For each message, the message number is printed followed by the length of
the message and the message data.

4. Close the queue using the MQCLOSE call with the object handle returned in
step 2. If this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 1. If this call fails, print the completion and
reason codes.

Note: If you are running the sample in a CICS environment, you do not need
to issue an MQDISC call.

The Get samples for the batch environment
To run the samples, you must edit and run the sample JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 399.

 Chapter 32. Sample programs for MQSeries for OS/390 411

 Get samples

The programs take the following parameters in an EXEC PARM, separated by
spaces in C and commas in COBOL:

1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages to get (up to 4 digits)
4. The browse/get message option (1 character: ‘B’ to browse or ‘D’ to

destructively get the messages)
5. The syncpoint control (1 character: ‘S’ for syncpoint or ‘N’ for no syncpoint)

If you enter any of the above parameters wrongly, you will receive appropriate error
messages.

Output from the samples is written to the SYSPRINT data set:

=====================================
PARAMETERS PASSED :
 QMGR - VC9
 QNAME - A.Q
 NUMMSGS - ðððððððð2
 GET - D
 SYNCPOINT - N
=====================================
MQCONN SUCCESSFUL
MQOPEN SUCCESSFUL
ððððððððð : ððððððð1ð : \\\\\\\\\\
ðððððððð1 : ððððððð1ð : \\\\\\\\\\
ðððððððð2 MESSAGES GOT FROM QUEUE
MQCLOSE SUCCESSFUL
MQDISC SUCCESSFUL

 Usage notes
� To keep the samples simple, there are some minor functional differences

between language versions. However, these differences are minimized if the
layout of the parameters shown in the sample run JCL, CSQ4BCJR, and
CSQ4BVJR, are used. None of the differences relate to the MQI.

� CSQ4BCJ1 allows you to enter more than four digits for the number of
messages retrieved.

� Messages longer than 64 KB are truncated.

� CSQ4BCJ1 can only correctly display character messages as it only displays
until the first NULL (\0) character is displayed.

| � For the numeric number-of-messages field, enter any digit between 1 and
| 9999. The value you enter should be a positive number. For example, to get a
| single message, you can enter 1 or 01 or 001 or 0001 as the value. If you
| enter non-numeric or negative values, you may receive an error. For example,
| if you enter ‘-1’, the COBOL program will retrieve one message, but the C
| program will not retrieve any messages.

� For both programs, CSQ4BCJ1 and CSQ4BVJ1, you must enter ‘B’ in the get
parameter, ++GET++, if you want to browse the messages.

� For both programs, CSQ4BCJ1 and CSQ4BVJ1, you must enter ‘S’ in the
syncpoint parameter, ++SYNC++, for messages to be retrieved in syncpoint.

412 MQSeries Application Programming Guide

 Get samples

The Get samples for the CICS environment
The transactions take the following parameters in an EXEC PARM, separated by
commas:

1. The number of messages to get (up to 4 digits)

2. The browse/get message option (1 character: ‘B’ to browse or ‘D’ to
destructively get the messages)

3. The syncpoint control (1 character: ‘S’ for syncpoint or ‘N’ for no syncpoint)

4. The name of the target queue (48 characters)

If you enter any of the above parameters wrongly, you will receive appropriate error
messages.

| For the COBOL sample, invoke the Get sample in the CICS environment by
| entering:

 MVGT,9999,B,S,QUEUE.NAME

| For the C sample, invoke the Get sample in the CICS environment by entering:

 MCGT,9999,B,S,QUEUE.NAME

When the messages are retrieved from the queue, they are put on a CICS
temporary storage queue with the same name as the CICS transaction (for
example, MCGT for the C sample).

Here is example output of the Get samples:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\ TOP OF QUEUE \\\\\\\\\\\\\\\\\\\\\\\\
ððððððððð : ððððððð1ð: \\\\\\\\\\
ðððððððð1 : ððððððð1ð :\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\ BOTTOM OF QUEUE \\\\\\\\\\\\\\\\\\\\\\

 Usage notes
� To keep the samples simple, there are some minor functional differences

between language versions. None of the differences relate to the MQI.

� If you enter a queue name that is longer than 48 characters, its length is
truncated to the maximum of 48 characters but no error message is returned.

| � Before entering the transaction, press the ‘CLEAR’ key.

� CSQ4CCJ1 can only correctly display character messages as it only displays
until the first NULL (\0) character is displayed.

| � For the numeric field, enter any number between 1 and 9999. The value you
| enter should be a positive number. For example, to get a single message, you
| can enter the value 1 or 01 or 001 or 0001. If you enter a non-numeric or
| negative value, you may receive an error.

| � Messages longer than 24 526 bytes in C and 9 950 bytes in COBOL are
| truncated. This is due to the way the CICS temporary storage queues are

used.

| � For both programs, CSQ4CCK1 and CSQ4CVK1, you must enter ‘B’ in the get
| parameter if you want to browse the messages, otherwise enter ‘D’. This will
| perform destructive MQGET calls. If you enter any other value you will receive
| an error message.

 Chapter 32. Sample programs for MQSeries for OS/390 413

 Browse sample

| � For both programs, CSQ4CCJ1 and CSQ4CVJ1, you must enter ‘S’ in the
| syncpoint parameter for messages to be retrieved in syncpoint. If you enter ‘N’
| in the syncpoint parameter the MQGET calls will be issued out of syncpoint. If
| you enter any other value you will receive an error message.

The Browse sample
The Browse sample is a batch application that demonstrates how to browse
messages on a queue using the MQGET call. The application steps through all the
messages in a queue, printing the first 80 bytes of each one. You could use this
application to look at the messages on a queue without changing them.

Source programs and sample run JCL are supplied in the COBOL, assembler, PL/I,
and C languages (see Table 33 on page 401).

To start the application, you must edit and run the sample run JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 399. You can look at messages on one of your own queues by specifying
the name of the queue in the run JCL.

When you run the application (and there are some messages on the queue), the
output data set looks this:

| ð7/12/1998 SAMPLE QUEUE REPORT PAGE 1
| QUEUE MANAGER NAME : VC4
| QUEUE NAME : CSQ4SAMP.DEAD.QUEUE
| RELATIVE
| MESSAGE MESSAGE
| NUMBER LENGTH ------------------- MESSAGE DATA -------------

| 1 74ð HELLO. PLEASE CALL ME WHEN YOU GET BACK.
| 2 429 CSQ4BQRM
| 3 429 CSQ4BQRM
| 4 429 CSQ4BQRM
| 5 22 THIS IS A TEST MESSAGE
| 6 8 CSQ4TEST
| 7 36 CSQ4MSG - ANOTHER TEST MESSAGE.....!
| 8 9 CSQ4STOP
| \\\\\\\\\\ END OF REPORT \\\\\\\\\\

If there are no messages on the queue, the data set contains the headings and the
“End of report” message only. If an error occurs with any of the MQI calls, the
completion and reason codes are added to the output data set.

Design of the Browse sample
The Browse sample application uses a single program module—one is provided in
each of the supported programming languages.

The flow through the program logic is:

1. Open a print data set and print the title line of the report. Check that names of
the queue manager and queue have been passed from the run JCL. If both
names have been passed, print the lines of the report that contain the names.
If they have not, print an error message, close the print data set, and stop
processing.

414 MQSeries Application Programming Guide

 Browse sample

The way that the program tests the parameters it is passed from the JCL
depends on the language in which the program is written—for more
information, see “Language-dependent design considerations” on page 416.

2. Connect to the queue manager using the MQCONN call. If this call is not
successful, print the completion and reason codes, close the print data set, and
stop processing.

3. Open the queue using the MQOPEN call with the MQOO_BROWSE option.
On input to this call, the program uses the connection handle returned in step
2. For the object descriptor structure (MQOD), it uses the default values for all
the fields except the queue name (which was passed in step 1 on page 414).
If this call is not successful, print the completion and reason codes, close the
print data set, and stop processing.

4. Browse the first message on the queue, using the MQGET call. On input to
this call, the program specifies:

� The connection and queue handles from steps 2 and 3

� An MQMD structure with all fields set to their initial values

 � Two options:

 – MQGMO_BROWSE_FIRST
 – MQGMO_ACCEPT_TRUNCATED_MSG

� A buffer of size 80 bytes to hold the data copied from the message

The MQGMO_ACCEPT_TRUNCATED_MSG option allows the call to complete
even if the message is longer than the 80-byte buffer specified in the call. If
the message is longer than the buffer, the message is truncated to fit the
buffer, and the completion and reason codes are set to show this. The sample
was designed so that messages are truncated to 80 characters simply to make
the report easy to read. The buffer size is set by a DEFINE statement, so you
can easily change it if you want to.

5. Perform the following loop until the MQGET call fails:

a. Print a line of the report showing:

� The sequence number of the message (this is a count of the browse
operations).

� The true length of the message (not the truncated length). This value
is returned in the DataLength field of the MQGET call.

� The first 80 bytes of the message data.

b. Reset the MsqId and CorrelId fields of the MQMD structure to nulls

c. Browse the next message, using the MQGET call with these two options:

 � MQGMO_BROWSE_NEXT
 � MQGMO_ACCEPT_TRUNCATED_MSG

6. If the MQGET call fails, test the reason code to see if the call has failed
because the browse cursor has got to the end of the queue. In this case, print
the “End of report” message and go to step 7; otherwise, print the completion
and reason codes, close the print data set, and stop processing.

7. Close the queue using the MQCLOSE call with the object handle returned in
step 3.

8. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 2.

 Chapter 32. Sample programs for MQSeries for OS/390 415

 Print message sample

9. Close the print data set and stop processing.

Language-dependent design considerations
Source modules are provided for the Browse sample in four programming
languages. There are two main differences between the source modules:

� When testing the parameters passed from the run JCL, the COBOL, PL/I, and
assembler-language modules search for the comma character (,). If the JCL
passes PARM=(,LOCALQ1), the application attempts to open queue LOCALQ1 on
the default queue manager. If there is no name after the comma (or no
comma), the application returns an error. The C module does not search for
the comma character. If the JCL passes a single parameter (for example,
PARM=('LOCALQ1')), the C module uses this as a queue name on the default
queue manager.

� To keep the assembler-language module simple, it uses the date format yy/ddd
(for example, 93/116) when it creates the print report. The other modules use
the calendar date in mm/dd/yy format.

The Print Message sample
The Print Message sample is a simple batch application that demonstrates how to
remove all the messages from a queue using the MQGET call. It also prints, for
each message, the fields of the message descriptor, followed by the message data.
The program prints the data both in hexadecimal and as characters (if they are
printable). If a character is not printable, the program replaces it with a period
character (.). You can use the program when diagnosing problems with an
application that is putting messages on a queue.

You can change the application so that it browses the messages, rather than
removing them from the queue. To do this, remove the comment characters from
two lines in the code, as indicated in “Design of the sample” on page 418.

The application has a single source program, which is written in the C language.
Sample run JCL code is also supplied (see Table 34 on page 401).

To start the application, you must edit and run the sample run JCL, as described in
“Preparing and running sample applications for the batch environment” on
page 399. When you run the application (and there are some messages on the
queue), the output data set looks like that in Figure 43 on page 417.

416 MQSeries Application Programming Guide

 Print message sample

 MQCONN to VC4
 MQOPEN - 'CSQ4SAMP.DEAD.QUEUE'

 MQGET of message number 1
\\\\Message descriptor\\\\
 StrucId : 'MD ' Version : 1
Report : ð MsgType : 2
Expiry : -1 Feedback : ð
Encoding : 785 CodedCharSetId : 5ðð
Format : ' '
Priority : 3 Persistence : ð
MsgId : X'C3E2D84ðE5C3F44ð4ð4ð4ð4ð4ð4ð4ð4ðA6FEð6A951ð5C62ð'
CorrelId : X'C3E2D84ðE5C3F44ð4ð4ð4ð4ð4ð4ð4ð4ðA6FEð6295ðC2F125'
BackoutCount : ð

 ReplyToQ : ' '
 ReplyToQMgr : 'VC4 '
\\ Identity Context
UserIdentifier : 'CICSUSER '

 Account.Token :
 X'16ðDD5E3E2D5C5E34BC9C7D7C2F6F1FEð6ðD3B55B6ððð1ðððððððððððððððððð'
 ApplIdentData : ' '
\\ Origin Context

 PutApplType : '1'
PutApplName : 'VICAUT4 MVB5 '

 PutDate : '1993ð2ð3' PutTime : '2ð165982'
ApplOriginData : ' '

Figure 43 (Part 1 of 2). Example of a report from the Print Message sample application

 Chapter 32. Sample programs for MQSeries for OS/390 417

 Print message sample

\\\\ Message \\\\
 length - 429 bytes

ðððððððð: C3E2 D8F4 C2D8 D9D4 4ð4ð 4ð4ð 4ð4ð 4ð4ð 'CSQ4BQRM '
ðððððð1ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ðððððð2ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ðððððð3ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ðððððð4ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ðððððð5ð: 4ð4ð 4ð4ð 4ð4ð 4ðD1 D6C8 D54ð D14ð 4ð4ð ' JOHN J '
ðððððð6ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ðF1 F2F3 F4F5 ' 12345'
ðððððð7ð: F6F7 F8F9 C6C9 D9E2 E34ð C7C1 D3C1 C3E3 '6789FIRST GALACT'
ðððððð8ð: C9C3 4ðC2 C1D5 D24ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 'IC BANK '
ðððððð9ð: 4ð4ð E2D6 D4C5 E3C8 C9D5 C74ð C4C9 C6C6 ' SOMETHING DIFF'
ððððððAð: C5D9 C5D5 E34ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 'ERENT '
ððððððBð: F3F5 FðF1 F6F7 F6F2 F1F2 F1Fð FðFð FðFð '35ð16762121ððððð'
ððððððCð: D985 A297 9695 A285 4ð86 9996 944ð C3E2 'Response from CS'
ððððððDð: D8F4 E2C1 D4D7 4BC2 F74B D4C5 E2E2 C1C7 'Q4SAMP.B7.MESSAG'
ððððððEð: C5E2 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 'ES '
ððððððFð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ððððð1ðð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ððððð11ð: 4ð4ð 4ð4ð 4ðD3 9681 954ð 8194 96A4 95A3 ' Loan amount'
ððððð12ð: 4ðF1 FðFð FðFð Fð4ð 8696 994ð D1D6 C8D5 ' 1ððððð for JOHN'
ððððð13ð: 4ðD1 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' J '
ððððð14ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ððððð15ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ððððð16ð: 4ð4ð 4ð4ð C399 8584 89A3 4ðA6 9699 A388 ' Credit worth'
ððððð17ð: 8995 85A2 A24ð 8995 8485 A74ð 6ð4ð C2C1 'iness index - BA'
ððððð18ð: C44ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 'D '
ððððð19ð: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ' '
ððððð1Að: 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð ' '

 No more messages
MQCLOSE
 MQDISC

Figure 43 (Part 2 of 2). Example of a report from the Print Message sample application

Design of the sample
The Print message sample application uses a single program written in the C
language.

The flow through the program logic is:

1. Check that names of the queue manager and queue have been passed from
the run JCL. If they have not, print an error message and stop processing.

2. Connect to the queue manager using the MQCONN call. If this call is not
successful, print the completion and reason codes and stop processing;
otherwise print the name of the queue manager.

3. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED
option.

418 MQSeries Application Programming Guide

 Print message sample

Note: If you want the application to browse the messages rather than remove
them from the queue, remove the comment characters from the line in the
program that adds the MQOO_BROWSE option.

On input to this call, the program uses the connection handle returned in step
2. For the object descriptor structure (MQOD), it uses the default values for all
the fields except the queue name (which was passed in step 1). If this call is
not successful, print the completion and reason codes and stop processing;
otherwise, print the name of the queue.

4. Perform the following loop until the MQGET call fails:

a. Initialize the buffer to blanks so that the message data does not get
corrupted by any data already in the buffer.

b. Set the MsgId and CorrelId fields of the MQMD structure to nulls so that
the MQGET call selects the first message from the queue.

c. Get a message from the queue, using the MQGET call. On input to this
call, the program specifies:

� The connection and object handles from steps 2 and 3.

� An MQMD structure with all fields set to their initial values. (Note that
MsgId and CorrelId are reset to nulls for each MQGET call.)

� The option MQGMO_NO_WAIT.

Note: If you want the application to browse the messages rather than
remove them from the queue, remove the comment characters from the
line in the program that adds the MQOO_BROWSE_NEXT option.
When this option is used on a call against a queue for which no browse
cursor has previously been used with the current object handle, the
browse cursor is positioned logically before the first message.

� A buffer of size 32 KB to hold the data copied from the message.

d. Call the printMD subroutine. This prints the name of each field in the
message descriptor, followed by its contents.

e. Print the length of the message, followed by the message data. Each line
of message data is in this format:

� Relative position (in hexadecimal) of this part of the data

� 16 bytes of hexadecimal data

� The same 16 bytes of data in character format, if it is printable
(nonprintable characters are replaced by periods)

5. If the MQGET call fails, test the reason code to see if the call failed because
there are no more messages on the queue. In this case, print the message:
“No more messages”; otherwise, print the completion and reason codes. In
both cases, go to step 6 on page 420.

Note: The MQGET call fails if it finds a message that has more than 32 KB of
data. To change the program to handle larger messages, you could do one of
the following:

� Add the MQGMO_ACCEPT_TRUNCATED_MSG option to the MQGET call,
so that the call gets the first 32 KB of data and discards the remainder

� Make the program leave the message on the queue when it finds one with
this amount of data

 Chapter 32. Sample programs for MQSeries for OS/390 419

 Queue attributes sample

� Increase the size of the buffer

6. Close the queue using the MQCLOSE call with the object handle returned in
step 3 on page 418.

7. Disconnect from the queue manager using the MQDISC call with the
connection handle returned in step 2 on page 418.

The Queue Attributes sample
| The Queue Attributes sample is a conversational-mode CICS application that
| demonstrates the use of the MQINQ and MQSET calls. It shows how to inquire
| about the values of the InhibitPut and InhibitGet attributes of queues, and how
| to change them so that programs cannot put messages on, or get messages from,
| a queue. You may want to lock a queue in this way when you are testing a
| program.

To prevent accidental interference with your own queues, this sample works only
on a queue object that has the characters CSQ4SAMP in the first eight bytes of its
name. However, the source code includes comments to show you how to remove
this restriction.

Source programs are supplied in the COBOL, assembler, and C languages (see
Table 38 on page 405).

The assembler-language version of the sample uses reenterable code. To do this,
you will notice that the code for each MQI call in that version of the sample
includes the MF keyword; for example:

 CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

(The VL keyword means that you can use the CICS Execution Diagnostic Facility
(CEDF) supplied transaction for debugging the program.) For more information on
writing reenterable programs, see “Writing reenterable programs” on page 81.

To start the application, start your CICS system and use the following CICS
transactions:

� For COBOL, MVC1
� For Assembler language, MAC1
� For C, MCC1

You can change the name of any of these transactions by changing the CSD data
set mentioned in step 3 on page 403.

Design of the sample
When you start the sample, firstly it displays a screen map that has fields for:

� Name of the queue
� User request (valid actions are: inquire, allow, or inhibit)
� Current status of put operations for the queue
� Current status of get operations for the queue

The first two fields are for user input. The last two fields are filled by the
application: they show the word INHIBITED or the word ALLOWED.

The application validates the values you enter in the first two fields. It checks that
the queue name starts with the characters CSQ4SAMP and that you entered one of

420 MQSeries Application Programming Guide

 Mail manager sample

the three valid requests in the Action field. The application converts all your input
to uppercase, so you cannot use any queues with names that contain lowercase
characters.

If you enter ‘inquire’ in the Action field, the flow through the program logic is:

1. Open the queue using the MQOPEN call with the MQOO_INQUIRE option

2. Call MQINQ using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT

3. Close the queue using the MQCLOSE call

4. Analyze the attributes that are returned in the IntAttrs parameter of the
MQINQ call and move the words ‘INHIBITED’ or ‘ALLOWED’, as appropriate, to
the relevant screen fields

If you enter ‘inhibit’ in the Action field, the flow through the program logic is:

1. Open the queue using the MQOPEN call with the MQOO_SET option

2. Call MQSET using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT,
and with the values MQQA_GET_INHIBITED and MQQA_PUT_INHIBITED in
the IntAttrs parameter

3. Close the queue using the MQCLOSE call

4. Move the word ‘INHIBITED’ to the relevant screen fields

If you enter ‘allow’ in the Action field, the application performs similar processing to
that for an ‘inhibit’ request. The only differences are the settings of the attributes
and the words displayed on the screen.

When the application opens the queue, it uses the default connection handle to the
queue manager. (CICS establishes a connection to the queue manager when you
start your CICS system.) The application can trap the following errors at this stage:

� The application is not connected to the queue manager
� The queue does not exist
� The user is not authorized to access the queue
� The application is not authorized to open the queue

For other MQI errors, the application displays the completion and reason codes.

The Mail Manager sample
The Mail Manager sample application is a suite of programs that demonstrates the
sending and receiving of messages, both within a single environment and across
different environments. The application is a simple electronic mailing system that
allows users to exchange messages, even if they use different queue managers.

The application demonstrates how to create queues using the MQOPEN call and
by putting MQSeries for OS/390 commands on the system-command input queue.

Three versions of the application are provided:

| � A CICS application written in COBOL
| � A TSO application written in COBOL
| � A TSO application written in C

 Chapter 32. Sample programs for MQSeries for OS/390 421

 Mail manager sample

Preparing the sample
The Mail Manager is provided in versions that run in two environments. The
preparation you must carry out before you run the application depends on the
environment you want to use.

A user can access mail queues and nickname queues from both TSO and CICS so
long as their sign-on user IDs are the same on each system.

Before you can send messages to another queue manager, you must set up a
| message channel to that queue manager. To do this, use the channel control
| function of MQSeries, described in “Channel control function” in the MQSeries
| Intercommunication book.

Preparing the sample for the TSO environment
Follow these steps:

1. Prepare the sample as described in “Preparing sample applications for the TSO
environment” on page 401.

2. Tailor the CLIST provided for the sample to define:

� The location of the panels
� The location of the message file
� The location of the load modules
� The name of the queue manager you want to use with the application

A separate CLIST is provided for each language version of the sample:

For the COBOL version: CSQ4RVD1
For the C version: CSQ4RCD1

3. Ensure that the queues used by the application are available on the queue
manager. (The queues are defined in CSQ4CVD.)

Note: VS COBOL II does not support multitasking with ISPF. This means that
you cannot use the Mail Manager sample application on both sides of a split
screen. If you do, the results are unpredictable.

Running the sample
To start the sample in the TSO environment, execute your tailored version of the
CLIST from the TSO command processor within ISPF.

To start the sample in the CICS Transaction Server for OS/390 environment, run
transaction MAIL. If you have not already signed-on to CICS, the application
prompts you to enter a user ID to which it can send your mail.

When you start the application, it opens your mail queue. If this queue does not
already exist, the application creates one for you. Mail queues have names of the
form CSQ4SAMP.MAILMGR.userid, where userid depends on the environment:

| In TSO
| The user’s TSO ID

| In CICS
| The user’s CICS sign-on or the user ID entered by the user when prompted
| when the Mail Manager started

All parts of the queue names that the Mail Manager uses must be uppercase.

422 MQSeries Application Programming Guide

 Mail manager sample

The application then presents a menu panel that has options for:

� Read incoming mail
 � Send mail
 � Create nickname

The menu panel also shows you how many messages are waiting on your mail
queue. Each of the menu options displays a further panel:

Read incoming mail
The Mail Manager displays a list of the messages that are on your mail queue.
(Note that only the first 99 messages on the queue are displayed.) For an
example of this panel, see Figure 46 on page 428. When you select a
message from this list, the contents of the message are displayed (see
Figure 47 on page 428).

Send mail
A panel prompts you to enter:

� The name of the user to whom you want to send a message
� The name of the queue manager that owns their mail queue
� The text of your message

In the user name field you can enter either a user ID or a nickname that you
created using the Mail Manager. You can leave the queue manager name field
blank if the user’s mail queue is owned by the same queue manager that you
are using, and you must leave it blank if you entered a nickname in the user
name field:

� If you specify only a user name, the program first assumes that the name is
a nickname, and sends the message to the object defined by that name. If
there is no such nickname, the program attempts to send the message to a
local queue of that name.

� If you specify both a user name and a queue manager name, the program
sends the message to the mail queue that is defined by those two names.

For example, if you want to send a message to user JONESM on remote queue
manager QM12, you could send them a message in either of two ways:

� Use both fields to specify user JONESM at queue manager QM12.

� Define a nickname (for example, MARY) for that user and send them a
message by putting MARY in the user name field and nothing in the queue
manager name field.

Create nickname
You can define an easy-to-remember name that you can use when you send a
message to another user who you contact frequently. You are prompted to
enter the user ID of the other user and the name of the queue manager that
owns their mail queue.

Nicknames are queues that have names of the form
CSQ4SAMP.MAILMGR.userid.nickname, where userid is your own user ID and
nickname is the nickname that you want to use. With names structured in this
way, users can each have their own set of nicknames.

 Chapter 32. Sample programs for MQSeries for OS/390 423

 Mail manager sample

The type of queue that the program creates depends on how you fill in the fields
of the Create Nickname panel:

� If you specify only a user name, or the queue manager name is the same
as that of the queue manager to which the Mail Manager is connected, the
program creates an alias queue.

� If you specify both a user name and a queue manager name (and the
queue manager is not the one to which the Mail Manager is connected), the
program creates a local definition of a remote queue. The program does
not check the existence of the queue to which this definition resolves, or
even that the remote queue manager exists.

For example, if your own user ID is SMITHK and you create a nickname called
MARY for user JONESM (who uses the remote queue manager QM12), the
nickname program creates a local definition of a remote queue named
CSQ4SAMP.MAILMGR.SMITHK.MARY. This definition resolves to Mary’s mail
queue, which is CSQ4SAMP.MAILMGR.JONESM at queue manager QM12. If
you are using queue manager QM12 yourself, the program instead creates an
alias queue of the same name (CSQ4SAMP.MAILMGR.SMITHK.MARY).

The C version of the TSO application makes greater use of ISPF’s
message-handling capabilities than does the COBOL version. You may notice that
different error messages are displayed by the C and COBOL versions.

Design of the sample
The following sections describe each of the programs that comprise the Mail
Manager sample application. The relationships between the programs and the
panels that the application uses is shown in Figure 44 on page 425 for the TSO
version, and Figure 45 on page 426 for the CICS Transaction Server for OS/390
version.

424 MQSeries Application Programming Guide

 Mail manager sample

Send mail

CSQ4TVD4

Nickname

CSQ4TVD5

Get mail

CSQ4TVD2

Mail
awaiting

CSQ4VDP2

Create
nickname

CSQ4VDP5

Menu

CSQ4TVD1

Main menu

CSQ4VDP1

CSQ4RVD1

KEY

Program module

Panel

Received
mail

CSQ4VDP3

Send mail

CSQ4VDP4

Figure 44. Programs and panels for the TSO versions of the Mail Manager. This figure shows the names for the
COBOL version.

 Chapter 32. Sample programs for MQSeries for OS/390 425

 Mail manager sample

Send mail

CSQ4CVD4

Nickname

CSQ4CVD5

Get mail

CSQ4CVD2

Mail
awaiting

Mail - VD2

Menu

CSQ4CVD1 Main menu

Mail - VD1

MAIL

KEY

Program module

Panel

Received
mail

Mail - VD3

Display
message

CSQ4CVD3

Get user ID

Mail - VD0

Create
nickname

Mail - VD5

Send mail

Mail - VD4

| Figure 45. Programs and panels for the CICS version of the Mail Manager

 Menu program
| In the TSO environment, the menu program is invoked by the CLIST. In the CICS
| environment, the program is invoked by transaction MAIL.

The menu program is the initial program in the suite. It displays the menu and
invokes the other programs when they are selected from the menu.

The program first obtains the user’s ID:

| � In the CICS version of the program, if the user has signed on to CICS, the user
| ID is obtained by using the CICS command ASSIGN USERID. If the user has
| not signed on, the program displays the sign-on panel (CSQ4VD0) to prompt
| the user to enter a user ID. There is no security processing within this
| program—the user can give any user ID.

� In the TSO version, the user’s ID is obtained from TSO in the CLIST. It is
passed to the menu program as a variable in the ISPF shared pool.

426 MQSeries Application Programming Guide

 Mail manager sample

After the program has obtained the user ID, it checks to ensure that the user has a
mail queue (CSQ4SAMP.MAILMGR.userid). If a mail queue does not exist, the
program creates one by putting a message on the system-command input queue.
The message contains the MQSeries for OS/390 command DEFINE QLOCAL. The
object definition that this command uses sets the maximum depth of the queue to
9999 messages.

The program also creates a temporary dynamic queue to handle replies from the
system-command input queue. To do this, the program uses the MQOPEN call,
specifying the SYSTEM.DEFAULT.MODEL.QUEUE as the template for the dynamic
queue. The queue manager creates the temporary dynamic queue with a name
that has the prefix CSQ4SAMP; the remainder of the name is generated by the
queue manager.

The program then opens the user’s mail queue and finds the number of messages
on the queue by inquiring about the current depth of the queue. To do this, the
program uses the MQINQ call, specifying the MQIA_CURRENT_Q_DEPTH
selector.

The program then performs a loop that displays the menu and processes the
selection that the user makes. The loop is stopped when the user presses the PF3
key. When a valid selection is made, the appropriate program is started; otherwise
an error message is displayed.

Get-mail and display-message programs
| In the TSO versions of the application, the get-mail and display-message functions
| are performed by the same program. In the CICS version of the application, these
| functions are performed by separate programs.

The Mail Awaiting panel (see Figure 46 on page 428 for an example) shows all the
messages that are on the user’s mail queue. To create this list, the program uses
the MQGET call to browse all the messages on the queue, saving information
about each one. In addition to the information displayed, the program records the
MsgId and CorrelId of each message.

 Chapter 32. Sample programs for MQSeries for OS/390 427

 Mail manager sample

| à| ð
| --------------------- MQSeries for OS/39ð Sample Programs ------- ROW 16 OF 29
| COMMAND ==> Scroll ===> PAGE
| USERID - NTSFVð2
| Mail Manager System QMGR - VC4
| Mail Awaiting

| Msg Mail Date Time
| No From Sent Sent
| 16
| 16 Deleted
| 17 JOHNJ ð1/ð6/1993 12:52:ð2
| 18 JOHNJ ð1/ð6/1993 12:52:ð2
| 19 JOHNJ ð1/ð6/1993 12:52:ð3
| 2ð JOHNJ ð1/ð6/1993 12:52:ð3
| 21 JOHNJ ð1/ð6/1993 12:52:ð3
| 22 JOHNJ ð1/ð6/1993 12:52:ð4
| 23 JOHNJ ð1/ð6/1993 12:52:ð4
| 24 JOHNJ ð1/ð6/1993 12:52:ð4
| 25 JOHNJ ð1/ð6/1993 12:52:ð5
| 26 JOHNJ ð1/ð6/1993 12:52:ð5
| 27 JOHNJ ð1/ð6/1993 12:52:ð5
| 28 JOHNJ ð1/ð6/1993 12:52:ð6
| 29 JOHNJ ð1/ð6/1993 12:52:ð6

| á| ñ

| Figure 46. Example of a panel showing a list of waiting messages

| From the Mail Awaiting panel the user can select one message and display the
| contents of the message (see Figure 47 for an example). The program uses the

MQGET call to remove this message from the queue, using the MsgId and CorrelId
that the program noted when it browsed all the messages. This MQGET call is
performed using the MQGMO_SYNCPOINT option. The program displays the
contents of the message, then declares a syncpoint: this commits the MQGET call,
so the message now no longer exists.

| à| ð
| --------------------- MQSeries for OS/39ð Sample Programs ---------------------
| COMMAND ==>
| USERID - NTSFVð2
| Mail Manager System QMGR - VC4
| Received Mail

| Mail sent from JOHNJ at VC4

| Sent on the ð1/ð6/1993 at 12:52:ð2
| ------------------------------------ Message -------------------------------
	HELLO FROM JOHNJ
'--'	

| á| ñ

| Figure 47. Example of a panel showing the contents of a message

An obvious extension to the function provided by the Mail Manager is to give the
user the option to leave the message on the queue after viewing its contents. To

428 MQSeries Application Programming Guide

 Mail manager sample

do this, you would have to back out the MQGET call that removes the message
from the queue, after displaying the message.

 Send-mail program
When the user has completed the Send Mail panel, the send-mail program puts the
message on the receiver’s mail queue. To do this, the program uses the MQPUT1
call. The destination of the message depends on how the user has filled the fields
in the Send Mail panel:

� If the user has specified only a user name, the program first assumes that the
name is a nickname, and sends the message to the object defined by that
name. If there is no such nickname, the program attempts to send the
message to a local queue of that name.

� If the user has specified both a user name and a queue manager name, the
program sends the message to the mail queue that is defined by those two
names.

The program does not accept blank messages, and it removes leading blanks from
each line of the message text.

If the MQPUT1 call is successful, the program displays a message that shows the
user name and queue manager name to which the message was put. If the call is
unsuccessful, the program checks specifically for the reason codes that indicate the
queue or the queue manager do not exist; these are
MQRC_UNKNOWN_OBJECT_NAME and MQRC_UNKNOWN_OBJECT_Q_MGR.
The program displays its own error message for each of these errors; for other
errors, the program displays the completion and reason codes returned by the call.

 Nickname program
When the user defines a nickname, the program creates a queue that has the
nickname as part of its name. The program does this by putting a message on the
system-command input queue. The message contains the MQSeries for OS/390
command DEFINE QALIAS or DEFINE QREMOTE. The type of queue that the
program creates depends on how the user has filled the fields of the Create
Nickname panel:

� If the user has specified only a user name, or the queue manager name is the
same as that of the queue manager to which the Mail Manager is connected,
the program creates an alias queue.

� If the user has specified both a user name and a queue manager name, (and
the queue manager is not the one to which the Mail Manager is connected), the
program creates a local definition of a remote queue. The program does not
check the existence of the queue to which this definition resolves, or even that
the remote queue manager exists.

The program also creates a temporary dynamic queue to handle replies from the
system-command input queue.

If the queue manager cannot create the nickname queue for a reason that the
program expects (for example, the queue already exists), the program displays its
own error message. If the queue manager cannot create the queue for a reason
that the program does not expect, the program displays up to two of the error
messages that are returned to the program by the command server.

 Chapter 32. Sample programs for MQSeries for OS/390 429

 Credit check sample

Note: For each nickname, the nickname program creates only an alias queue or a
local definition of a remote queue. The local queues to which these queue names
resolve are created only when the user ID that is contained in the nickname is used
to start the Mail Manager application.

The Credit Check sample
The Credit Check sample application is a suite of programs that demonstrates how
to use many of the features provided by MQSeries for OS/390. It shows how the
many component programs of an application can pass messages to each other
using message queuing techniques.

| The sample can run as a stand-alone CICS application. However, to demonstrate
| how to design a message queuing application that uses the facilities provided by
| both the CICS and IMS environments, one module is also supplied as an IMS
| batch message processing program. This extension to the sample is described in
| “The IMS extension to the Credit Check sample” on page 442.

You can also run the sample on more than one queue manager, and send
messages between each instance of the application. To do this, see “The Credit
Check sample with multiple queue managers” on page 442.

The CICS programs are delivered in C and COBOL. The single IMS program is
delivered only in C. The supplied data sets are shown in Table 40 on page 406
and Table 41 on page 408.

The application demonstrates a method of assessing the risk when bank customers
ask for loans. The application shows how a bank could work in two ways to
process loan requests:

� When dealing directly with a customer, bank staff want immediate access to
account and credit-risk information.

� When dealing with written applications, bank staff can submit a series of
requests for account and credit-risk information, and deal with the replies at a
later time.

The financial and security details in the application have been kept simple so that
the message queuing techniques are clear.

Preparing and running the Credit Check sample
To prepare and run the Credit Check sample, perform the following steps:

1. Create the VSAM data set that holds information about some example
accounts. Do this by editing and running the JCL supplied in data set
CSQ4FILE.

2. Perform the steps in “Preparing the sample applications for the CICS
environment” on page 403. (The additional steps you must perform if you want
to use the IMS extension to the sample are described in “The IMS extension to
the Credit Check sample” on page 442.)

3. Start the CKTI trigger monitor (supplied with MQSeries for OS/390) against
queue CSQ4SAMP.INITIATION.QUEUE, using the CICS transaction CKQC.

4. To start the application, start your CICS system and use the transaction MVB1.

430 MQSeries Application Programming Guide

 Credit check sample

5. Select Immediate or Batch inquiry from the first panel.

The immediate and batch inquiry panels are similar—Figure 48 shows the
Immediate Inquiry panel.

| à| ð
| CSQ4VB2 MQSeries for OS/39ð Sample Programs

| Credit Check - Immediate Inquiry

| Specify details of the request, then press Enter.
| Name ____________________
| Social security number ___ __ ____
| Bank account name . . ______________________________
| Account number __________
| Amount requested . . . ð12345
| Response from CHECKING ACCOUNT for name : ____________________
| Account information not found
| Credit worthiness index - NOT KNOWN
| ..
| ..
| ..
| ..
| ..
| ..
| ..
| ..
| ..
| MESSAGE LINE
| F1=Help F3=Exit F5=Make another inquiry

| á| ñ
| Figure 48. Immediate Inquiry panel for the Credit Check sample application

6. Enter an account number and loan amount in the appropriate fields. See
“Entering information in the inquiry panels” for guidance on what information
you should enter in these fields.

Entering information in the inquiry panels
The Credit Check sample application checks that the data you enter in the ‘Amount
requested’ field of the inquiry panels is in the form of integers.

If you enter one of the following account numbers, the application finds the
appropriate account name, average account balance, and credit worthiness index in
the VSAM data set CSQ4BAQ:

 2222222222
 3111234329
 3256478962
 3333333333
 3501676212
 3696879656
 4444444444
 5555555555
 6666666666
 7777777777

You can enter any, or no, information in the other fields. The application retains
any information that you do enter and returns the same information in the reports
that it generates.

 Chapter 32. Sample programs for MQSeries for OS/390 431

 Credit check sample

Design of the sample
This section describes the design of each of the programs that comprise the Credit
Check sample application. For a discussion of some of the techniques that were
considered during the design of the application, see “Design considerations” on
page 439.

Figure 49 on page 433 shows the programs that make up the application, and also
the queues that these programs serve. In this figure, the prefix CSQ4SAMP has
been omitted from all the queue names to make the figure easier to understand.

432 MQSeries Application Programming Guide

 Credit check sample

CSQ4CVB5

CSQ4CVB5

CSQ4CVB5

CSQ4CVB2

Credit
Application
Manager

CSQ4CVB3

B5.MESSAGES

B6.MESSAGES

B7.MESSAGES

B2.REPLY.n

Dynamic QueueB2.RESPONSE

B3.MESSAGESB4.MESSAGES

B2.INQUIRY

B2.WAITING.n

Queue

Program
module

Symbols:

CSQ4CVB4

CSQ4CVB1
User
Interface

MVB1

Figure 49. Programs and queues for the Credit Check sample application (COBOL programs only). In the sample
application, the queue names shown in this figure have the prefix ‘CSQ4SAMP.’

 Chapter 32. Sample programs for MQSeries for OS/390 433

 Credit check sample

User-interface program (CSQ4CVB1)
When you start the conversational-mode CICS transaction MVB1, this starts the
user-interface program for the application. This program puts inquiry messages on
queue CSQ4SAMP.B2.INQUIRY and gets replies to those inquiries from a reply-to
queue that it specifies when it makes the inquiry. From the user interface you can
submit either immediate or batch inquiries:

� For immediate inquiries, the program creates a temporary dynamic queue that it
uses as a reply-to queue. This means that each inquiry has its own reply-to
queue.

� For batch inquiries, the user-interface program gets replies from the queue
CSQ4SAMP.B2.RESPONSE. For simplicity, the program gets replies for all its
inquiries from this one reply-to queue. It is easy to see that a bank might want
to use a separate reply-to queue for each user of MVB1, so that they could
each see replies to only those inquiries they had initiated.

Important differences between the properties of messages used in the application
when in batch and immediate mode are:

� For batch working, the messages have a low priority, so they are processed
after any loan requests that are entered in immediate mode. Also, the
messages are persistent, so they are recovered if the application or the queue
manager has to restart.

� For immediate working, the messages have a high priority, so they are
processed before any loan requests that are entered in batch mode. Also,
messages are not persistent so they are discarded if the application or the
queue manager has to restart.

However, in all cases, the properties of loan request messages are propagated
throughout the application. So, for example, all messages that result from a
high-priority request will also have a high priority.

Credit application manager (CSQ4CVB2)
The Credit Application Manager (CAM) program performs most of the processing
for the Credit Check application.

The CAM is started by the CKTI trigger monitor (supplied with MQSeries for
OS/390) when a trigger event occurs on either queue CSQ4SAMP.B2.INQUIRY or
queue CSQ4SAMP.B2.REPLY.n, where n is an integer that identifies one of a set
of reply queues. The trigger message contains data that includes the name of the
queue on which the trigger event occurred.

The CAM uses queues with names of the form CSQ4SAMP.B2.WAITING.n to store
information about inquiries it is processing. The queues are named so that they
are each paired with a reply-to queue; for example, queue
CSQ4SAMP.B2.WAITING.3 contains the input data for a particular inquiry, and
queue CSQ4SAMP.B2.REPLY.3 contains a set of reply messages (from programs
that query databases) all relating to that same inquiry. To understand the reasons
behind this design, see “Separate inquiry and reply queues in the CAM” on
page 439.

434 MQSeries Application Programming Guide

 Credit check sample

Start-up logic: If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the
CAM opens the queue for shared access. It then tries to open each reply queue
until a free one is found. If it cannot find a free reply queue, the CAM logs the fact
and terminates normally.

If the trigger event occurs on queue CSQ4SAMP.B2.REPLY.n, the CAM opens the
queue for exclusive access. If the return code reports that the object is already in
use, the CAM terminates normally. If any other error occurs, the CAM logs the
error and terminates. The CAM opens the corresponding waiting queue and the
inquiry queue, then starts getting and processing messages. From the waiting
queue, the CAM recovers details of partially-completed inquiries.

For the sake of simplicity in this sample, the names of the queues used are held in
the program. In a business environment, the queue names would probably be held
in a file accessed by the program.

Getting a message: The CAM first attempts to get a message from the inquiry
queue using the MQGET call with the MQGMO_SET_SIGNAL option. If a
message is available immediately, the message is processed; if no message is
available, a signal is set.

The CAM then attempts to get a message from the reply queue, again using the
MQGET call with the same option. If a message is available immediately, the
message is processed; otherwise a signal is set.

When both signals are set, the program waits until one of the signals is posted. If
a signal is posted to indicate a message is available, the message is retrieved and
processed. If the signal expires or the queue manager is terminating, the program
terminates.

Processing the message retrieved: A message retrieved by the CAM may be
one of four types:

� An inquiry message
� A reply message
� A propagation message
� An unexpected or unwanted message

The CAM processes these messages as follows:

Inquiry message
Inquiry messages come from the user-interface program. It creates an inquiry
message for each loan request.

For all loan requests, the CAM requests the average balance of the customer’s
checking account. It does this by putting a request message on alias queue
CSQ4SAMP.B2.OUTPUT.ALIAS. This queue name resolves to queue
CSQ4SAMP.B3.MESSAGES, which is processed by the checking-account
program, CSQ4CVB3. When the CAM puts a message on this alias queue, it
specifies the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue.
An alias queue is used here so that program CSQ4CVB3 can easily be replaced
by another program that processes a base queue of a different name. To do
this, you simply redefine the alias queue so that its name resolves to the new
queue. Also, you could assign differing access authorities to the alias queue
and to the base queue.

 Chapter 32. Sample programs for MQSeries for OS/390 435

 Credit check sample

If a user requests a loan that is larger than 10000 units, the CAM initiates
checks on other databases as well. It does this by putting a request message
on queue CSQ4SAMP.B4.MESSAGES, which is processed by the distribution
program, CSQ4CVB4. The process serving this queue propagates the message
to queues served by programs that have access to other records such as credit
card history, savings accounts, and mortgage payments. The data from these
programs is returned to the reply-to queue specified in the put operation.
Additionally, a propagation message is sent to the reply-to queue by this
program to specify how many propagation messages have been sent.

In a business environment, the distribution program would probably reformat the
data provided to match the format required by each of the other types of bank
account.

Any of the queues referred to here can be on a remote system.

For each inquiry message, the CAM initiates an entry in the memory-resident
Inquiry Record Table (IRT). This record contains:

� The MsgId of the inquiry message

� In the ReplyExp field, the number of responses expected (equal to the
number of messages sent)

� In the ReplyRec field, the number of replies received (zero at this stage)

� In the PropsOut field, an indication of whether a propagation message is
expected

The CAM copies the inquiry message on to the waiting queue with:

� Priority set to 3
� CorrelId set to the MsgId of the inquiry message
� The other message-descriptor fields set to those of the inquiry message

Propagation message
A propagation message contains the number of queues to which the distribution
program has forwarded the inquiry. The message is processed as follows:

1. Add to the ReplyExp field of the appropriate record in the IRT the number of
messages sent. This information is in the message.

2. Increment by 1 the ReplyRec field of the record in the IRT.

3. Decrement by 1 the PropsOut field of the record in the IRT.

4. Copy the message on to the waiting queue. The CAM sets the Priority to
2 and the other fields of the message descriptor to those of the propagation
message.

Reply message
A reply message contains the response to one of the requests to the
checking-account program or to one of the agency-query programs. Reply
messages are processed as follows:

1. Increment by 1 the ReplyRec field of the record in the IRT.

2. Copy the message on to the waiting queue with Priority set to 1 and the
other fields of the message descriptor set to those of the reply message.

3. If ReplyRec = ReplyExp, and PropsOut = 0, set the MsgComplete flag.

436 MQSeries Application Programming Guide

 Credit check sample

Other messages
The application does not expect other messages. However, the application
might receive messages broadcast by the system, or reply messages with
unknown CorrelIds.

The CAM puts these messages on queue CSQ4SAMP.DEAD.QUEUE, where
they can be examined. If this put operation fails, the message is lost and the
program continues. For more information on the design of this part of the
program, see “How the sample handles unexpected messages” on page 440.

Sending an answer: When the CAM has received all the replies it is expecting for
an inquiry, it processes the replies and creates a single response message. It
consolidates into one message all the data from all reply messages that have the
same CorrelId. This response is put on the reply-to queue specified in the original
loan request. The response message is put within the same unit of work that
contains the retrieval of the final reply message. This is to simplify recovery by
ensuring that there is never a completed message on queue
CSQ4SAMP.B2.WAITING.n.

Recovery of partially-completed inquiries: The CAM copies on to queue
CSQ4SAMP.B2.WAITING.n all the messages that it receives. It sets the fields of
the message descriptor like this:

� Priority is determined by the type of message:

– For request messages, priority = 3
– For datagrams, priority = 2
– For reply messages, priority = 1

� CorrelId is set to the MsgId of the loan request message

� Other MQMD fields are copied from those of the received message

When an inquiry has been completed, the messages for a specific inquiry are
removed from the waiting queue during answer processing. Therefore, at any time,
the waiting queue contains all messages relevant to in-progress inquiries. These
messages are used to recover details of in-progress inquiries if the program has to
restart. The different priorities are set so that inquiry messages are recovered
before propagations or reply messages.

Checking-account program (CSQ4CVB3)
The checking-account program is started by a trigger event on queue
CSQ4SAMP.B3.MESSAGES. After it has opened the queue, this program gets a
message from the queue using the MQGET call with the wait option, and with the
wait interval set to 30 seconds.

The program searches VSAM data set CSQ4BAQ for the account number in the
loan request message. It retrieves the corresponding account name, average
balance, and credit worthiness index, or notes that the account number is not in the
data set.

The program then puts a reply message (using the MQPUT1 call) on the reply-to
queue named in the loan request message. For this reply message, the program:

� Copies the CorrelId of the loan request message
� Uses the MQPMO_PASS_IDENTITY_CONTEXT option

 Chapter 32. Sample programs for MQSeries for OS/390 437

 Credit check sample

The program continues to get messages from the queue until the wait interval
expires.

Distribution program (CSQ4CVB4)
The distribution program is started by a trigger event on queue
CSQ4SAMP.B4.MESSAGES. To simulate the distribution of the loan request to
other agencies that have access to records such as credit card history, savings
accounts, and mortgage payments, the program puts a copy of the same message
on all the queues in the namelist CSQ4SAMP.B4.NAMELIST. There are three of
these queues, with names of the form CSQ4SAMP.Bn.MESSAGES, where n is 5,
6, or 7. In a business application, the agencies could be at separate locations, so
these queues could be remote queues. If you want to modify the sample
application to show this, see “The Credit Check sample with multiple queue
managers” on page 442.

The distribution program performs the following steps:

1. From the namelist, gets the names of the queues the program is to use. The
program does this by using the MQINQ call to inquire about the attributes of
the namelist object.

2. Opens these queues and also CSQ4SAMP.B4.MESSAGES.

3. Performs the following loop until there are no more messages on queue
CSQ4SAMP.B4.MESSAGES:

a. Get a message using the MQGET call with the wait option, and with the
wait interval set to 30 seconds.

b. Put a message on each queue listed in the namelist, specifying the name
of the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue.
The program copies the CorrelId of the loan request message to these
copy messages, and it uses the MQPMO_PASS_IDENTITY_CONTEXT
option on the MQPUT call.

c. Send a datagram message to queue CSQ4SAMP.B2.REPLY.n to show
how many messages it has successfully put.

d. Declare a syncpoint.

Agency-query program (CSQ4CVB5/CSQ4CCB5)
The agency-query program is supplied as both a COBOL program and a C
program. Both programs have the same design. This shows that programs of
different types can easily coexist within an MQSeries application, and that the
program modules that comprise such an application can easily be replaced.

An instance of the program is started by a trigger event on any of these queues:

� For the COBOL program (CSQ4CVB5):

 – CSQ4SAMP.B5.MESSAGES
 – CSQ4SAMP.B6.MESSAGES
 – CSQ4SAMP.B7.MESSAGES

� For the C program (CSQ4CCB5), queue CSQ4SAMP.B8.MESSAGES

Note: If you want to use the C program, you must alter the definition of the
namelist CSQ4SAMP.B4.NAMELIST to replace the queue
CSQ4SAMP.B7.MESSAGES with CSQ4SAMP.B8.MESSAGES.

438 MQSeries Application Programming Guide

 Credit check sample

To do this, you can use any one of:

� The MQSeries for OS/390 operations and control panels

| � The ALTER NAMELIST command (described in “ALTER NAMELIST” in
| the MQSeries Command Reference manual)

� The CSQUTIL utility (described in the MQSeries for OS/390 System
Management Guide)

After it has opened the appropriate queue, this program gets a message from the
queue using the MQGET call with the wait option, and with the wait interval set to
30 seconds.

The program simulates the search of an agency’s database by searching the VSAM
data set CSQ4BAQ for the account number that was passed in the loan request
message. It then builds a reply that includes the name of the queue it is serving
and a credit-worthiness index. To simplify the processing, the credit-worthiness
index is selected at random.

When putting the reply message, the program uses the MQPUT1 call and:

� Copies the CorrelId of the loan request message
� Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program sends the reply message to the reply-to queue named in the loan
request message. (The name of the queue manager that owns the reply-to queue
is also specified in the loan request message.)

 Design considerations
This section discusses:

� Why the CAM uses separate inquiry and reply queues
� How the sample handles errors
� How the sample handles unexpected messages
� How the sample uses syncpoints
� How the sample uses message context information

Separate inquiry and reply queues in the CAM
The application could use a single queue for both inquiries and replies, but it was
designed to use separate queues for the following reasons:

� When the program is handling the maximum number of inquiries, further
inquiries can be left on the queue. If a single queue were being used, these
would have to be taken off the queue and stored elsewhere.

� Other instances of the CAM could be started automatically to service the same
inquiry queue if message traffic was high enough to warrant it. But the
program must track in-progress inquiries, and to do this it must get back all
replies to inquiries it has initiated. If only one queue were used, the program
would have to browse the messages to see if they were for this program or for
another. This would make the operation much less efficient.

The application can support multiple CAMs and can recover in-progress
inquiries effectively by using paired reply-to and waiting queues.

� The program can wait on multiple queues effectively by using signaling.

 Chapter 32. Sample programs for MQSeries for OS/390 439

 Credit check sample

How the sample handles errors
The user-interface program handles errors very simply by reporting them directly to
the user. The other programs do not have user interfaces, so they have to handle
errors in other ways. Also, in many situations (for example, if an MQGET call fails)
these other programs do not know the identity of the user of the application.

The other programs put error messages on a CICS temporary storage queue called
CSQ4SAMP. You can browse this queue using the CICS-supplied transaction
CEBR. The programs also write error messages to the CICS CSML log.

How the sample handles unexpected messages
When you design a message-queuing application, you must decide how to handle
messages that arrive on a queue unexpectedly. The two basic choices are:

� The application must do no more work until it has processed the unexpected
message. This probably means that the application must notify an operator,
terminate itself, and ensure that it is not restarted automatically (it can do this
by setting triggering off). This choice means that all processing for the
application can be halted by a single unexpected message, and the intervention
of an operator is required to restart the application.

� The application must remove the message from the queue it is serving, put the
message in another location, and continue processing. The best place to put
this message is on the system dead-letter queue.

If you choose the second option:

� An operator, or another program, should examine the messages that are put on
the dead-letter queue to find out where the messages are coming from.

� An unexpected message is lost if it cannot be put on the dead-letter queue.

� An long unexpected message is truncated if it is longer than the limit for
messages on the dead-letter queue, or longer than the buffer size in the
program.

To ensure that the application smoothly handles all inquiries with minimal impact
from outside activities, the Credit Check sample application uses the second option.
To allow you to keep the sample separate from other applications that use the
same queue manager, the Credit Check sample does not use the system
dead-letter queue: instead, it uses its own dead-letter queue. This queue is named
CSQ4SAMP.DEAD.QUEUE. The sample truncates any messages that are longer
than the buffer area provided for the sample programs. You can use the Browse
sample application to browse messages on this queue, or use the Print Message
sample application to print the messages together with their message descriptors.

However, if you extend the sample to run across more than one queue manager,
unexpected messages, or messages that cannot be delivered, could be put on the
system dead-letter queue by the queue manager.

How the sample uses syncpoints
The programs in the Credit Check sample application declare syncpoints to ensure
that:

� Only one reply message is sent in response to each expected message

� Multiple copies of unexpected messages are never put on the sample’s
dead-letter queue

440 MQSeries Application Programming Guide

 Credit check sample

� The CAM can recover the state of all partially-completed inquiries by getting
persistent messages from its waiting queue

To achieve this, a single unit of work is used to cover the getting of a message, the
processing of that message, and any subsequent put operations.

How the sample uses message context information
When the user-interface program (CSQ4CVB1) sends messages, it uses the
MQPMO_DEFAULT_CONTEXT option. This means that the queue manager
generates both identity and origin context information. The queue manager gets
this information from the transaction that started the program (MVB1) and from the
user ID that started the transaction.

When the CAM sends inquiry messages, it uses the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context
information of the message being put is copied from the identity context of the
original inquiry message. With this option, origin context information is generated
by the queue manager.

When the CAM sends reply messages, it uses the
MQPMO_ALTERNATE_USER_AUTHORITY option. This causes the queue
manager to use an alternate user ID for its security check when the CAM opens a
reply-to queue. The CAM uses the user ID of the submitter of the original inquiry
message. This means that users are allowed to see replies to only those inquiries
they have originated. The alternate user ID is obtained from the identity context
information in the message descriptor of the original inquiry message.

When the query programs (CSQ4CVB3/4/5) send reply messages, they use the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context
information of the message being put is copied from the identity context of the
original inquiry message. With this option, origin context information is generated
by the queue manager.

Note: The user ID associated with the MVB3/4/5 transactions requires access to
the B2.REPLY.n queues. These user IDs may not be the same as those
associated with the request being processed. To get around this possible security
exposure, the query programs could use the
MQPMO_ALTERNATE_USER_AUTHORITY option when putting their replies. This
would mean that each individual user of MVB1 needs authority to open the
B2.REPLY.n queues.

Use of message and correlation identifiers in the CAM
The application has to monitor the progress of all the “live” inquiries it is processing
at any one time. To do this it uses the unique message identifier of each loan
request message to associate all the information it has about each inquiry.

The CAM copies the MsgId of the inquiry message into the CorrelId of all the
request messages it sends for that inquiry. The other programs in the sample
(CSQ4CVB3 - 5) copy the CorrelId of each message they receive into the
CorrelId of their reply message.

 Chapter 32. Sample programs for MQSeries for OS/390 441

 Credit check sample

The Credit Check sample with multiple queue managers
You can use the Credit Check sample application to demonstrate distributed
queuing by installing the sample on two queue managers. After you have installed
the sample on each queue manager, you need to:

| 1. Set up the communication link between the two queue managers. For
| information on how to do this, see “Setting up communication” in the MQSeries
| Intercommunication book.

2. On one queue manager, create a local definition for each of the remote queues
(on the other queue manager) that you want to use. These queues can be any
of CSQ4SAMP.Bn.MESSAGES, where n is 3, 5, 6, or 7. (These are the
queues that are served by the checking-account program and the agency-query

| program.) For information on how to do this, see “DEFINE QREMOTE” in the
| MQSeries Command Reference manual.

3. Change the definition of the namelist (CSQ4SAMP.B4.NAMELIST) so that it
| contains the names of the remote queues you choose to use. For information
| on how to do this, see “ALTER NAMELIST” in the MQSeries Command
| Reference manual.

The IMS extension to the Credit Check sample
A version of the checking-account program is supplied as an IMS batch message
processing (BMP) program. It is written in the C language.

The program performs the same function as the CICS version, except that to obtain
the account information, the program reads an IMS database instead of a VSAM
file. If you replace the CICS version of the checking-account program with the IMS
version, you see no difference in the method of using the application.

To prepare and run the IMS version you must:

1. Follow the steps in “Preparing and running the Credit Check sample” on
page 430.

2. Follow the steps in “Preparing the sample application for the IMS environment”
on page 407.

3. Alter the definition of the alias queue CSQ4SAMP.B2.OUTPUT.ALIAS to
resolve to queue CSQ4SAMP.B3.IMS.MESSAGES (instead of
CSQ4SAMP.B3.MESSAGES). To do this, you can use any one of:

� The MQSeries for OS/390 operations and control panels

| � The ALTER QALIAS command (described in “ALTER QALIAS” in the
| MQSeries Command Reference manual)

Another way of using the IMS checking-account program is to make it serve one of
the queues that receives messages from the distribution program. In the delivered
form of the Credit Check sample application, there are three of these queues
(B5/6/7.MESSAGES), all served by the agency-query program. This program
searches a VSAM data set. To compare the use of the VSAM data set and the
IMS database, you could make the IMS checking-account program serve one of
these queues instead. To do this, you must alter the definition of the namelist
CSQ4SAMP.B4.NAMELIST to replace one of the CSQ4SAMP.Bn.MESSAGES
queues with the CSQ4SAMP.B3.IMS.MESSAGES queue. You can use any one of:

� The MQSeries for OS/390 operations and control panels

442 MQSeries Application Programming Guide

 Message handler sample

| � The ALTER NAMELIST command (described in “ALTER NAMELIST” in the
| MQSeries Command Reference manual)

You can then run the sample from CICS transaction MVB1 as usual. The user
sees no difference in operation or response. The IMS BMP stops either after
receiving a stop message or after being inactive for five minutes.

Design of the IMS checking-account program (CSQ4ICB3)
This program runs as a BMP. You must start the program using its JCL before any
MQSeries messages are sent to it.

The program searches an IMS database for the account number in the loan request
messages. It retrieves the corresponding account name, average balance, and
credit worthiness index.

The program sends the results of the database search to the reply-to queue named
in the MQSeries message being processed. The message returned appends the
account type and the results of the search to the message received so that the
transaction building the response can confirm that the correct query is being
processed. The message is in the form of three 79-character groups, as follows:

'Response from CHECKING ACCOUNT for name : JONES J B'
' Opened 87ð53ð, 3-month average balance = ðððð12.57'
' Credit worthiness index - BBB'

When running as a message-oriented BMP, the program drains the IMS message
queue, then reads messages from the MQSeries for OS/390 queue and processes
them. No information is received from the IMS message queue. The program
reconnects to the queue manager after each checkpoint because the handles have
been closed.

When running in a batch-oriented BMP, the program continues to be connected to
the queue manager after each checkpoint because the handles are not closed.

The Message Handler sample
The Message Handler sample TSO application allows you to browse, forward, and
delete messages on a queue. The sample is available in C and COBOL.

Preparing and running the sample
Follow these steps:

1. Prepare the sample as described in “Preparing sample applications for the TSO
environment” on page 401.

2. Tailor the CLIST (CSQ4RCH1) provided for the sample to define:
- The location of the panels
- The location of the message file
- The location of the load modules

CLIST CSQ4RCH1 may be used to run both the C and the COBOL version of the
sample. The supplied version of CSQ4RCH1 runs the C version, and contains
instructions on the tailoring necessary for the COBOL version.

 Chapter 32. Sample programs for MQSeries for OS/390 443

 Message handler sample

Notes:

1. There are no sample queue definitions provided with the sample.

2. VS COBOL II does not support multitasking with ISPF, so you should not use
the Message Handler sample application on both sides of a split screen. If you
do, the results are unpredictable.

Using the sample
Having installed the sample and invoked it from the tailored CLIST CSQ4RCH1, the
screen shown in Figure 50 is displayed.

| à| ð
| ----------------------- MQSeries for OS/39ð -- Samples ------------------------
| COMMAND ===>
| User Id : JOHNJ

| Enter information. Press ENTER :

| Queue Manager Name : __ :

| Queue Name : __ :

| F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
| F7=UP F8=DOWN F9=SWAP F1ð=LEFT F11=RIGHT F12=RETRIEVE

| á| ñ

| Figure 50. Initial screen for Message Handler sample

Enter the Queue Manager and Queue name to be viewed (case sensitive) and the
message list screen is displayed (see Figure 51).

| à| ð
| ----------------------- MQSeries for OS/39ð -- Samples ------- Row 1 to 4 of 4
| COMMAND ==>

| Queue Manager : VMð3 :
| Queue : MQEI.IMS.BRIDGE.QUEUE :

| Message number ð1 of ð4

| Msg Put Date Put Time Format User Put Application
| No MM/DD/YYYY HH:MM:SS Name Identifier Type Name
| ð1 1ð/16/1998 13:51:19 MQIMS NTSFVð2 ððððððð2 NTSFVð2A
| ð2 1ð/16/1998 13:55:45 MQIMS JOHNJ ðððððð11 EDIT\CLASSES\BIN\PROGTS
| ð3 1ð/16/1998 13:54:ð1 MQIMS NTSFVð2 ððððððð2 NTSFVð2B
| ð4 1ð/16/1998 13:57:22 MQIMS johnj ðððððð11 EDIT\CLASSES\BIN\PROGTS
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| á| ñ

| Figure 51. Message list screen for Message Handler sample

This screen shows the first 99 messages on the queue and, for each, shows the
following fields:

444 MQSeries Application Programming Guide

 Message handler sample

| Msg No Message number

| Put Date MM/DD/YYYY Date the message was put on the queue (GMT)

| Put Time HH:MM:SS Time the message was put on the queue (GMT)

| Format Name MQMD.Format field

| User Identifier MQMD.UserIdentifier field

| Put Application Type MQMD.PutApplType field

| Put Application Name MQMD.PutApplName field

The total number of messages on the queue is also displayed.

| From this screen a message can be chosen, by number not by cursor position, and
| then displayed. For an example, see Figure 52.

| à| ð
| ----------------------- MQSeries for OS/39ð -- Samples ----- Row 1 to 35 of 35
| COMMAND ==>

| Queue Manager : VMð3 :
| Queue : MQEI.IMS.BRIDGE.QUEUE :
| Forward to Q Mgr : VMð3 :
| Forward to Queue : QL.TEST.ISCRES1 :

| Action : _ : (D)elete (F)orward

Message Content :
Message Descriptor
StrucId : MD
Version : ðððððððð1
Report : ððððððððð
MsgType : ðððððððð1
Expiry : -ððððððð1
Feedback : ððððððððð
Encoding : ðððððð785
CodedCharSetId : ðððððð5ðð
Format : MQIMS
Priority : ððððððððð
Persistence : ðððððððð1
MsgId : C3E2D84ðE5D4FðF34ð4ð4ð4ð4ð4ð4ð4ðAF6B3ðFðA89B76ð5 X
CorrelId : ðð X
BackoutCount : ððððððððð
ReplyToQ : QL.TEST.ISCRES1
ReplyToQMgr : VMð3
UserIdentifier : NTSFVð2
AccountingToken :
ð6F2F5F5F3FðF1ðð X
ApplIdentityData :
PutApplType : ðððððððð2
PutApplName : NTSFVð2A
PutDate : 19971ð16
PutTime : 135119ð3
ApplOriginData :

| Message Buffer : 1ð8 byte(s)
| ðððððððð : C9C9 C84ð ðððð ððð1 ðððð ðð54 ðððð ð311 IIH
| ðððððð1ð : ðððð ðððð 4ð4ð 4ð4ð 4ð4ð 4ð4ð ðððð ðððð
| ðððððð2ð : 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð
| ðððððð3ð : 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð 4ð4ð
| ðððððð4ð : ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð
| ðððððð5ð : 4ðF1 C3ðð ðð18 ðððð C9C1 D7D4 C4C9 F2F8 1C.....IAPMDI28
| ðððððð6ð : 4ðC8 C5D3 D3D6 4ðE6 D6D9 D3C4 HELLO WORLD
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Bottom of data \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| á| ñ

| Figure 52. Chosen message is displayed

 Chapter 32. Sample programs for MQSeries for OS/390 445

 Message handler sample

Once the message has been displayed it can be deleted, left on the queue, or
forwarded to another queue. The Forward to Q Mgr and Forward to Queue fields
are initialized with values from the MQMD, these can be changed prior to
forwarding the message.

The sample design will only allow messages with unique MsgId / CorrelId
combinations to be selected and displayed, this is because the message is
retrieved using the MsgId and CorrelId as the key. If the key is not unique the
sample cannot retrieve the chosen message with certainty.

Design of the sample
This section describes the design of each of the programs that comprise the
Message Handler sample application.

Object validation program
This requests a valid queue and queue manager name. If you do not specify a
queue manager name, the default queue manager is used, if available. Only local
queues can be used; an MQINQ is issued to check the queue type and an error is
reported if the queue is not local. If the queue is not opened successfully, or the
MQGET call is inhibited on the queue, error messages are returned indicating the
CompCode and Reason return code.

Message list program
This displays a list of messages on a queue with information about them such as
the putdate, puttime and the message format. The maximum number of messages
stored in the list is 99. If there are more messages on the queue than this, the
current queue depth is also displayed. To choose a message for display, type the
message number into the entry field (the default is 01). If your entry is invalid, you
will receive an appropriate error message.

Message content program
This displays message content. The content is formatted and split into two parts:

1. the message descriptor
2. the message buffer

The message descriptor shows the contents of each field on a separate line.

The message buffer is formatted depending on its contents. If the buffer holds a
dead letter header (MQDLH) or a transmission queue header (MQXQH), these are
formatted and displayed before the buffer itself.

Before the buffer data is formatted, a title line shows the buffer length of the
message in bytes. The maximum buffer size is 32768 bytes, and any message
longer than this is truncated. The full size of the buffer is displayed along with a
message indicating that only the first 32768 bytes of the message are displayed.

The buffer data is formatted in two ways:

1. After the offset into the buffer is printed, the buffer data is displayed in HEX.

2. The buffer data is then displayed again as EBCDIC values. If any EBCDIC
value cannot be printed, it prints a ‘.’ instead.

446 MQSeries Application Programming Guide

 Message handler sample

You may enter ‘D’ for delete, or ‘F’ for forward into the action field. If you choose
to forward the message, the forward-to queue and queue manager name must be
filled in appropriately. The defaults for these fields are read from the message
descriptor ReplyToQ and ReplyToQMgr fields.

If you forward a message, any header block stored in the buffer is stripped. If the
message is forwarded successfully, it is removed from the original queue. If you
enter invalid actions, error messages are displayed.

An example help panel is also available called CSQ4CHP9.

 Chapter 32. Sample programs for MQSeries for OS/390 447

 Message handler sample

448 MQSeries Application Programming Guide

 Part 5. Appendixes

Appendix A. Language compilers and assemblers 453

Appendix B. MQI names in RPG . 457
Names of calls . 457
Names of call parameters . 457
Data types . 458
Names of fields in structures . 458
Names of constants . 466

Appendix C. C language examples . 487
Connecting to a queue manager . 488
Disconnecting from a queue manager . 488
Creating a dynamic queue . 489
Opening an existing queue . 489
Closing a queue . 490
Putting a message using MQPUT . 490
Putting a message using MQPUT1 . 491
Getting a message . 492
Getting a message using the wait option . 492
Getting a message using signaling . 493
Inquiring about the attributes of an object . 494
Setting the attributes of a queue . 495

Appendix D. COBOL examples . 497
Connecting to a queue manager . 498
Disconnecting from a queue manager . 498
Creating a dynamic queue . 499
Opening an existing queue . 500
Closing a queue . 501
Putting a message using MQPUT . 501
Putting a message using MQPUT1 . 502
Getting a message . 503
Getting a message using the wait option . 504
Getting a message using signaling . 505
Inquiring about the attributes of an object . 506
Setting the attributes of a queue . 507

Appendix E. System/390 assembler-language examples 509
Connecting to a queue manager . 510
Disconnecting from a queue manager . 510
Creating a dynamic queue . 511
Opening an existing queue . 512
Closing a queue . 512
Putting a message using MQPUT . 513
Putting a message using MQPUT1 . 513
Getting a message . 514
Getting a message using the wait option . 515
Getting a message using signaling . 516
Inquiring about and setting the attributes of a queue 517

 Copyright IBM Corp. 1993,1999 449

Appendix F. PL/I examples . 519
Connecting to a queue manager . 520
Disconnecting from a queue manager . 520
Creating a dynamic queue . 521
Opening an existing queue . 521
Closing a queue . 522
Putting a message using MQPUT . 522
Putting a message using MQPUT1 . 523
Getting a message . 524
Getting a message using the wait option . 525
Getting a message using signaling . 526
Inquiring about the attributes of an object . 527
Setting the attributes of a queue . 528

Appendix G. MQSeries data definition files 529
C language include files . 530

| Visual Basic module files . 531
COBOL copy files . 532
System/390 assembler-language macros . 535
PL/I include files . 536

Appendix H. List of MQSeries products . 537
Level 1 products . 537
Level 2 products . 537

Appendix I. MQSeries platforms - functional comparisons 539
What is included here . 539
Syncpoint . 540

Level 1 product range support . 541
Level 1–browse-with-lock support . 542
Level 2 product range support . 542
Migration recommendations . 543

Triggering . 544
Level 1 product range support . 545
Level 2 product range support . 545
Migration recommendations . 546

Input . 547
Shared and exclusive input . 548
Browse-with-lock, and full browse . 548
Signal . 548
Get by MsgId and CorrelId . 549
Data conversion . 550

Message properties and protocols . 551
Maximum message length . 552
Maximum priority . 552
Nonpersistent messages . 552
Exception reports . 553
MsgId and CorrelId options for responses 553
Extra message types . 554
COA, COD, and Expiry message . 554
PAN and NAN messages . 554

Threading . 555
Threaded applications on UNIX platforms 555

450 MQSeries Application Programming Guide

Security . 556
Authorization checks . 556
Message context . 557
Alternate user ID checks . 558
Channel exits . 558
API-crossing exit . 559

Object types . 560
Model and dynamic queues . 560
Namelists . 561
Queue-manager object . 561

Administration . 562
Command queues . 562
Handles broken . 563
MQSET support . 563

Programming languages . 564
Header files . 564

Connection . 566
Default connection . 566

Appendix J. Notices . 567
Programming interface information . 569
Trademarks . 570

 Part 5. Appendixes 451

452 MQSeries Application Programming Guide

 Compilers and assemblers

Appendix A. Language compilers and assemblers

Table 42 lists the language compilers and assemblers supported.

Table 42 (Page 1 of 3). Language compilers and assemblers

Platform Language Compiler/Assembler

MQSeries for AIX C++ IBM C Set++ for AIX, V3.1
IBM C++ compiler, V3.6.4 (for AIX V4.3)

C IBM C for AIX, V3.1.4
IBM C Set++ for AIX, V3.1 (C bindings only)
IBM C++ compiler, V3.6.4 (for AIX V4.3)

| COBOL| IBM COBOL Set for AIX, V1.1
| Micro Focus COBOL Compiler for UNIX, V4.0

PL/I IBM PL/I Set for AIX, V1.1

| MQSeries for AS/400| C++| IBM VisualAge for C++ for AS/400, V4.2.1

| C| IBM ILE C for AS/400, V4.2.1

| COBOL| IBM ILE COBOL for AS/400, V4.2.1

| RPG| IBM ILE RPG for AS/400, V4.2.1

MQSeries for AT&T GIS UNIX C++ AT&T C++ language system for AT&T GIS UNIX

C AT&T GIS High Performance C, V1.0b

MQSeries for Digital OpenVMS C++ DEC C++, V5.0 (VAX), V5.2 (AXP)

C DEC C, V5.0

COBOL DEC COBOL, V5.0 (VAX), V2.2 (AXP)

MQSeries for HP-UX C++| ANSI C++ for HP-UX V10 and V11
| HP C++, V3.1 for HP-UX V10.x
| IBM C++ compiler, V3.6

C ANSI C++ for HP-UX V10 and V11
C bundled compiler
C Softbench, V5.0

| HP C++, V3.1 for HP-UX V10.x
HP-UX ANSI C compiler
IBM C compiler, V3.6

COBOL COBOL Softbench, V4.0
Micro Focus COBOL compiler, V4.0 for UNIX

MQSeries for OS/2 Warp C++| IBM C++ compiler, V3.6
| IBM VisualAge for C++ for OS/2, V3.0

C Borland C++, V2 (C bindings only)
IBM C compiler, V3.6

| IBM VisualAge for C++ for OS/2, V3.0 (C bindings only)

| COBOL| IBM VisualAge for COBOL for OS/2, V1.1
| Micro Focus COBOL, V4.0

| PL/I| IBM PL/I for OS/2, V1.2
| IBM VisualAge for PL/I for OS/2

 Copyright IBM Corp. 1993,1999 453

 Compilers and assemblers

Table 42 (Page 2 of 3). Language compilers and assemblers

Platform Language Compiler/Assembler

MQSeries for OS/390 Assembler Assembler H assembler
IBM High Level Assembler/MVS assembler

C++ IBM OS/390 C/C++, V2R4

C C/370, Release 2.1.0
| IBM OS/390 C/C++, V2R4

IBM SAA AD/Cycle C/370

COBOL IBM SAA AD/Cycle COBOL/370
VS COBOL II

PL/I IBM SAA AD/Cycle PL/I Compiler
OS PL/I Optimizing compiler

MQSeries for SINIX and DC/OSx C DC/OSx: C4.0 compiler, V4.0.1
SINIX: C compiler (C-DS, MIPS), V1.1

COBOL Micro Focus COBOL, V3.2

MQSeries for Sun Solaris| C++| SunWorkShop compiler C++, V4.2

| C| SunWorkShop compiler C, V4.2

COBOL Micro Focus COBOL Compiler, V4.0 for UNIX

MQSeries for Tandem NSK C D30 or later using WIDE memory model (32-bit integers)

COBOL D30 or later

TAL D30 or later

| MQSeries for VSE/ESA| C| IBM C for VSE/ESA, V1.1

| COBOL| IBM COBOL for VSE/ESA, V1.1

| PL/I| IBM PL/I for VSE/ESA, V1.1

MQSeries for Windows V2.0 16-bit Basic Microsoft Visual Basic, V3.0 or V4.0

32-bit Basic Microsoft Visual Basic, V4.0

16-bit C Microsoft Visual C++, V1.5

32-bit C Microsoft Visual C++, V2.0

MQSeries for Windows V2.1 Basic Microsoft Visual Basic, V4.0

C Microsoft Visual C++, V4.0
Borland C

454 MQSeries Application Programming Guide

 Compilers and assemblers

Table 42 (Page 3 of 3). Language compilers and assemblers

Platform Language Compiler/Assembler

| MQSeries for Windows NT| Basic| Visual Basic for Windows, V4.0 (16-bit)
| Visual Basic for Windows, V5.0 (32-bit)

| C++| IBM C++ compiler, V3.6.4
| IBM VisualAge for C++ for Windows, V3.5
| IBM VisualAge for C++ Professional, V4.0
| Microsoft Visual C++ for Windows 95 and NT, V4.0 and V5.0

| C| IBM C compiler, V3.6.4
| IBM VisualAge for C++ for Windows, V3.5
| Microsoft Visual C++ for Windows 95 and NT, V4.0 and V5.0

| COBOL| IBM VisualAge COBOL Enterprise, V2.2
| IBM VisualAge COBOL for Windows NT, V2.1
| Micro Focus Object COBOL for Windows NT, V3.3 or V4.0

| Java| IBM VisualAge e-business for Windows, V1.0.1
| IBM VisualAge for Java Enterprise, V2.0
| IBM VisualAge for Java Professional, V2.0

| PL/I| IBM PL/I for Windows, V1.2
| IBM VisualAge for PL/I for Windows
| IBM VisualAge PL/I Enterprise, V2.1

| DOS clients| C| Microsoft C, V7.0
| Microsoft Visual C++, V1.5

VM/ESA clients Assembler IBM Assembler

C IBM C for VM Release, 3.1

COBOL IBM VS COBOL II

PL/I IBM OS/PL/I, Release 2.3

REXX IBM VM/ESA REXX/VM

| Windows 3.1 clients| C++| Microsoft Visual C++, V1.5

| C| Microsoft C, V7.0

| Windows 95 and Windows 98
| clients
| C++| IBM VisualAge for C++ for Windows, V3.5
| Microsoft Visual C++, V4.0

| C| Microsoft Visual C++, V4.0

| COBOL| Micro Focus COBOL Workbench, V4.0

Note: RPG bindings are shown for the IBM SAA AD/Cycle RPG/400 compiler.

 Appendix A. Language compilers and assemblers 455

 Compilers and assemblers

456 MQSeries Application Programming Guide

 MQI names in RPG

Appendix B. MQI names in RPG

Note for RPG programmers

The names of MQI calls, call parameters, data types, fields of structures, and
constants (applicable to RPG) are shown in this book with long names. When
writing RPG programs, use the equivalent short RPG names given in the tables
in this appendix. The RPG names are used in the MQSeries for AS/400
Application Programming Reference (RPG) manual.

Names of calls
Table 43. Names of calls

Long name RPG name

MQCLOSE CID=MQCLOS

MQCONN CID=MQCONN

MQDISC CID=MQDISC

MQGET CID=MQGET

MQINQ CID=MQINQ

MQOPEN CID=MQOPEN

MQPUT CID=MQPUT

MQPUT1 CID=MQPUT1

MQSET CID=MQSET

Names of call parameters
Table 44 (Page 1 of 2). Names of call parameters

Long name RPG name

Buffer BUFFER

BufferLength BUFLEN

CharAttrs CHRATR

CharAttrLength CALEN

CompCode CMPCOD

DataLength DATLEN

GetMsgOpts GMO

Hconn HCONN

Hobj HOBJ

IntAttrs INTATR

IntAttrCount IACNT

MsgDesc MSGDSC

QMgrName QMNAME

ObjDesc OBJDSC

Options OPTS

 Copyright IBM Corp. 1993,1999 457

 MQI names in RPG

Table 44 (Page 2 of 2). Names of call parameters

Long name RPG name

PutMsgOpts PMO

Reason REASON

Selectors SELS

SelectorCount SELCNT

 Data types
Many of the data types have the same RPG name and long name, for example
MQDLH, MQGMO, MQMD, and so on. The following table shows only those data
types where the RPG representation is different from the long name.

Table 45. Data types

Long name RPG representation

MQBYTE 1-byte bit string

MQBYTEn n-byte bit string

MQCHAR 1 character

MQCHARn n-byte character string

MQHCONN (structure field) 9-digit binary integer

MQHCONN (call parameter) 9-digit decimal integer

MQHOBJ (structure field) 9-digit binary integer

MQHOBJ (call parameter) 9-digit decimal integer

MQLONG (structure field) 9-digit binary integer

MQLONG (call parameter) 9-digit decimal integer

PMQLONG 9-digit binary integer

Names of fields in structures
Table 46 (Page 1 of 9). Names of fields in structures

Long name RPG name

AccountingToken (MQMD) MDACC

AccountingToken (MQPMR) PRACC

AlternateUserId (MQOD) ODAU

ApplId (MQTMC) TCAI

ApplId (MQTM) TMAI

ApplIdentityData (MQMD) MDAID

ApplOriginData (MQMD) MDAOD

ApplType (MQTMC) TCAT

ApplType (MQTM) TMAT

AppOptions (MQDXP) DXAOP

Authenticator (MQIIH) IIAUT

BackoutCount (MQMD) MDBOC

458 MQSeries Application Programming Guide

 MQI names in RPG

Table 46 (Page 2 of 9). Names of fields in structures

Long name RPG name

BatchInterval (MQCD) CDBI

BatchSize (MQCD) CDBS

CapabilityFlags(MQCXP) CXCAP

ChannelName (MQCD) CDCHN

ChannelType (MQCD) CDCHT

CodedCharSetId (MQDH) DHCSI

CodedCharSetId (MQDLH) DLCSI

CodedCharSetId (MQDXP) DXCSI

CodedCharSetId (MQIIH) IICSI

CodedCharSetId (MQMD) MDCSI

CodedCharSetId (MQMDE) MECSI

CodedCharSetId (MQRMH) RMCSI

CodedCharSetId (MQCFSL) SLCSI

CodedCharSetId (MQCFST) STCSI

Command (MQCFH) FHCMD

CommitMode (MQIIH) IICMT

CompCode (MQDXP) DXCC

CompCode (MQCFH) FHCMP

CompCode (MQRR) RRCC

ConnectionName (MQCD) CDCON

Context (MQPMO) PMCT

Control (MQCFH) FHCTL

CorrelId (MQMD) MDCID

CorrelId (MQPMR) PRCID

Count (MQCFIL) ILCNT

Count (MQCFSL) SLCNT

DataConversion (MQCD) CDDC

| DataLength (MQDXP)| DXLEN

DataLogicalLength (MQRMH) RMDL

DataLogicalOffset (MQRMH) RMDO

DataLogicalOffset2 (MQRMH) RMDO2

Desc (MQCD) CDDES

DestEnvLength (MQRMH) RMDEL

DestEnvOffset (MQRMH) RMDEO

DestNameLength (MQRMH) RMDNL

DestNameOffset (MQRMH) RMDNO

DestQMgrName (MQDLH) DLDM

DestQName (MQDLH) DLDQ

 Appendix B. MQI names in RPG 459

 MQI names in RPG

Table 46 (Page 3 of 9). Names of fields in structures

Long name RPG name

DiscInterval (MQCD) CDDI

DynamicQName (MQOD) ODDN

Encoding (MQDH) DHENC

Encoding (MQDLH) DLENC

Encoding (MQDXP) DXENC

Encoding (MQIIH) IIENC

Encoding (MQMD) MDENC

Encoding (MQMDE) MEENC

Encoding (MQRMH) RMENC

EnvData (MQTMC) TCED

EnvData (MQTM) TMED

ExitData (MQCXP) CXDAT

ExitDataLength (MQCD) CDXDL

ExitId (MQCXP) CXXID

ExitNameLength (MQCD) CDXNL

ExitNumber (MQCXP) CXEXN

ExitOptions (MQDXP) DXXOP

ExitReason (MQCXP) CXREA

ExitResponse (MQCXP) CXRES

ExitResponse (MQDXP) DXRES

ExitResponse2 (MQCXP) CXRE2

ExitUserArea (MQCXP) CXUA

Expiry (MQMD) MDEXP

Feedback (MQCXP) CXFB

Feedback (MQMD) MDFB

Feedback (MQPMR) PRFB

Flags (MQDH) DHFLG

Flags (MQIIH IIFLG

Flags (MQMDE) MEFLG

Flags (MQRMH) RMFLG

Format (MQDH) DHFMT

Format (MQDLH) DLFMT

Format (MQIIH) IIFMT

Format (MQMD) MDFMT

Format (MQMDE) MEFMT

Format (MQRMH) RMFMT

FAPLevel (MQCXP) CXFAP

GroupId (MQMD) MDGID

460 MQSeries Application Programming Guide

 MQI names in RPG

Table 46 (Page 4 of 9). Names of fields in structures

Long name RPG name

GroupId (MQMDE) MEGID

GroupId (MQPMR) PRGID

GroupStatus (MQGMO) GMGST

Hconn (MQDXP) DXHCN

HeaderLength (MQCXP) CXHDL

HeartbeatInterval (MQCD) CDHBI

InvalidDestCount (MQOD) ODIDC

InvalidDestCount (MQPMO) PMIDC

KnownDestCount (MQOD) ODKDC

KnownDestCount (MQPMO) PMKDC

LongRetryCount (MQCD) CDLRC

LongRetryInterval (MQCD) CDLRI

LTermOverride (MQIIH) IILTO

MatchOptions (MQGMO) GMMO

MaxSegmentLength (MQCXP) CXMSL

ModeName (MQCD) CDMOD

MsgDesc (MQXQH) XQMD

MsgExit (MQCD) CDMSX

MsgExitsDefined (MQCD) CDMXD

MsgExitPtr (MQCD) CDMXP

MsgFlags (MQMD) MDMFL

MsgFlags (MQMDE) MEMFL

MsgId (MQMD) MDMID

MsgId (MQPMR) PRMID

MsgRetryCount (MQCD) CDMRC

MsgRetryCount (MQCXP) CXMRC

MsgRetryExit (MQCD) CDMRX

MsgRetryInterval (MQCD) CDMRI

MsgRetryInterval (MQCXP) CXMRI

MsgRetryReason (MQCXP) CXMRR

MsgRetryUserData (MQCD) CDMRD

MsgSeqNumber (MQCFH) FHSEQ

MsgSeqNumber (MQMD) MDSEQ

MsgSeqNumber (MQMDE) MESEQ

MsgType (MQMD) MDMT

MsgUserData (MQCD) CDMSD

MsgUserDataPtr (MQCD) CDMUP

MCAName (MQCD) CDMCA

 Appendix B. MQI names in RPG 461

 MQI names in RPG

Table 46 (Page 5 of 9). Names of fields in structures

Long name RPG name

MCAType (MQCD) CDCAT

MCAUserIdentifier (MQCD) CDAUI

MFSMapName (MQIIH) IIMMN

NonPersistentMsgSpeed (MQCD) CDNPM

ObjectInstanceId (MQRMH) RMOII

ObjectName (MQOD) ODON

ObjectName (MQOR) ORON

ObjectQMgrName (MQOD) ODMN

ObjectQMgrName (MQOD) ODMN

ObjectQMgrName (MQOR) ORMN

ObjectRecOffset (MQDH) DHORO

ObjectRecOffset (MQOD) ODORO

ObjectType (MQOD) ODOT

ObjectRecPtr (MQOD) ODORP

ObjectType (MQRMH) RMOT

Offset (MQMD) MDOFF

Offset (MQMDE) MEOFF

Options (MQGMO) GMOPT

Options (MQPMO) PMOPT

OriginalLength (MQMD) MDOLN

OriginalLength (MQMDE) MEOLN

Parameter (MQCFIL) ILPRM

Parameter (MQCFIN) INPRM

Parameter (MQCFSL) SLPRM

Parameter (MQCFST) STPRM

ParameterCount (MQCFH) FHCNT

PartnerName (MQCXP) CXPNM

Password (MQCD) CDPW

Persistence (MQMD) MDPER

Priority (MQMD) MDPRI

Persistence (MQMD) MDPER

ProcessName (MQTM) TMPN

PutApplName (MQDLH) DLPAN

PutApplName (MQMD) MDPAN

PutApplType (MQDLH) DLPAT

PutApplType (MQMD) MDPAT

PutAuthority (MQCD) CDPA

PutDate (MQDLH) DLPD

462 MQSeries Application Programming Guide

 MQI names in RPG

Table 46 (Page 6 of 9). Names of fields in structures

Long name RPG name

PutDate (MQMD) MDPD

PutMsgRecFields (MQDH) DHPRF

PutMsgRecFields (MQPMO) PMPRF

PutMsgRecOffset (MQDH) DHPRO

PutMsgRecOffset (MQPMO) PMPRO

PutMsgRecPtr (MQPMO) PMPRP

PutTime (MQDLH) DLPT

PutTime (MQMD) MDPT

QMgrName (MQCD) CDQM

QName (MQTMC) TCQN

QName (MQTM) TMQN

Reason (MQDLH) DLREA

Reason (MQDXP) DXREA

Reason (MQCFH) FHREA

Reason (MQRR) RRREA

ReceiveExit (MQCD) CDRCX

ReceiveExitsDefined (MQCD) CDRXD

ReceiveExitPtr (MQCD) CDRXP

ReceiveUserData (MQCD) CDRCD

ReceiveUserDataPtr (MQCD) CDRUP

RecsPresent (MQDH) DHCNT

RecsPresent (MQOD) ODREC

RecsPresent (MQOD) PMREC

RemotePassword (MQCD) CDRPW

RemoteQMgrName (MQXQH) XQRQM

RemoteQMgrName (MQXQH) XQRQM

RemoteQName (MQXQH) XQRQ

RemoteUserIdentifier (MQCD) CDRUI

ReplyToFormat (MQIIH) IIRFM

ReplyToQ (MQMD) MDRQ

ReplyToQMgr (MQMD) MDRM

Report (MQMD) MDREP

Reserved (MQIIH) IIRSV

Reserved1 (MQGMO) GMRE1

ResolvedQMgrName (MQPMO) PMRMN

ResolvedQName (MQGMO) GMRQN

ResolvedQName (MQPMO) PMRQN

ResponseRecOffset (MQOD) ODRRO

 Appendix B. MQI names in RPG 463

 MQI names in RPG

Table 46 (Page 7 of 9). Names of fields in structures

Long name RPG name

ResponseRecOffset (MQPMO) PMRRO

ResponseRecPtr (MQOD) ODRRP

ResponseRecPtr (MQPMO) PMRRP

SecurityExit (MQCD) CDSCX

SecurityScope (MQIIH) IISEC

SecurityUserData (MQCD) CDSCD

Segmentation (MQGMO) GMSEG

SegmentStatus (MQGMO) GMSST

SendExit (MQCD) CDSNX

SendExitsDefined (MQCD) CDSXD

SendExitPtr (MQCD) CDSXP

SendUserData (MQCD) CDSND

SendUserDataPtr (MQCD) CDSUP

SeqNumberWrap (MQCD) CDSNW

ShortConnectionName (MQCD) CDSCN

ShortRetryCount (MQCD) CDSRC

ShortRetryInterval (MQCD) CDSRI

Signal1 (MQGMO) GMSG1

Signal2 (MQGMO) GMSG2

SrcEnvLength (MQRMH) RMSEL

SrcEnvOffset (MQRMH) RMSEO

SrcNameLength (MQRMH) RMSNL

SrcNameOffset (MQRMH) RMSNO

String (MQCFST) STSTR

Strings (MQCFSL) SLSTR

StringLength (MQCFSL) SLSTL

StringLength (MQCFST) STSTL

StrucId (MQCXP) CXSID

StrucId (MQDH) DHSID

StrucId (MQDLH) DLSID

StrucId (MQDXP) DXSID

StrucId (MQGMO) GMSID

StrucId (MQIIH) IISID

StrucId (MQMD) MDSID

StrucId (MQMDE) MESID

StrucId (MQOD) ODSID

StrucId (MQPMO) PMSID

StrucId (MQRMH) RMSID

464 MQSeries Application Programming Guide

 MQI names in RPG

Table 46 (Page 8 of 9). Names of fields in structures

Long name RPG name

StrucId (MQTMC) TCSID

StrucId (MQTM) TMSID

StrucId (MQXQH) XQSID

StrucLength (MQCD) CDLEN

StrucLength (MQDH) DHLEN

StrucLength (MQCFH) FHLEN

StrucLength (MQIIH) IILEN

StrucLength (MQCFIL ILLEN

StrucLength (MQCFIN INLEN

StrucLength (MQMDE) MELEN

StrucLength (MQRMH) RMLEN

StrucLength (MQCFSL SLLEN

StrucLength (MQCFST STLEN

Timeout (MQPMO) PMTO

TpName (MQCD) CDTP

TransportType (MQCD) CDTRT

TranInstanceId (MQIIH) IITID

TranState (MQIIH) IITST

TriggerData (MQTMC) TCTD

TriggerData (MQTM) TMTD

TriggerData (MQTM) TMTD

Type (MQCFH) FHTYP

Type (MQCFIL) ILTYP

Type (MQCFIN) INTYP

Type (MQCFSL) SLTYP

Type (MQCFST) STTYP

UnknownDestCount (MQOD) ODUDC

UnknownDestCount (MQPMO) PMUDC

UserData (MQTMC) TCUD

UserData (MQTM) TMUD

UserIdentifier (MQCD) CDUID

UserIdentifier (MQMD) MDUID

Value (MQCFIN) INVAL

Values (MQCFIL) ILVAL

Version (MQCD) CDVER

Version (MQCXP) CXVER

Version (MQDH) DHVER

Version (MQDLH) DLVER

 Appendix B. MQI names in RPG 465

 MQI names in RPG

Table 46 (Page 9 of 9). Names of fields in structures

Long name RPG name

Version (MQDXP) DXVER

Version (MQCFH) FHVER

Version (MQGMO) GMVER

Version (MQIIH) IIVER

Version (MQMD) MDVER

Version (MQMDE) MEVER

Version (MQOD) ODVER

Version (MQPMO) PMVER

Version (MQRMH) RMVER

Version (MQTMC) TCVER

Version (MQTM) TMVER

Version (MQXQH) XQVER

WaitInterval (MQGMO) GMWI

XmitQName (MQCD) CDXQ

Names of constants
Table 47 (Page 1 of 21). Names of constants

Long name RPG name

MQ_ABEND_CODE_LENGTH LNABNC

MQ_ACCOUNTING_TOKEN_LENGTH LNACCT

MQ_APPL_IDENTITY_DATA_LENGTH LNAIDD

MQ_APPL_NAME_LENGTH LNAPPN

MQ_APPL_ORIGIN_DATA_LENGTH LNAORD

MQ_ATTENTION_ID_LENGTH LNATID

MQ_AUTHENTICATOR_LENGTH LNAUTH

MQ_BRIDGE_NAME_LENGTH LNBRGN

MQ_CANCEL_CODE_LENGTH LNCNCL

MQ_CHANNEL_DATE_LENGTH LNCDAT

MQ_CHANNEL_DESC_LENGTH LNCHD

MQ_CHANNEL_NAME_LENGTH LNCHN

MQ_CHANNEL_TIME_LENGTH LNCTIM

MQ_CONN_NAME_LENGTH LNCONN

MQ_CORREL_ID_LENGTH LNCID

MQ_CREATION_DATE_LENGTH LNCRTD

MQ_CREATION_TIME_LENGTH LNCRTT

MQ_EXIT_DATA_LENGTH LNEXDA

MQ_EXIT_NAME_LENGTH LNEXN

MQ_EXIT_USER_AREA_LENGTH LNEXUA

466 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 2 of 21). Names of constants

Long name RPG name

MQ_FACILITY_LENGTH LNFAC

MQ_FACILITY_LIKE_LENGTH LNFACL

MQ_FORMAT_LENGTH LNFMT

MQ_FUNCTION_LENGTH LNFUNC

MQ_GROUP_ID_LENGTH LNGID

MQ_LTERM_OVERRIDE_LENGTH LNLTOV

MQ_LUWID_LENGTH LNLUWI

MQ_MCA_JOB_NAME_LENGTH LNMCAJ

MQ_MCA_NAME_LENGTH LNMCAN

MQ_MFS_MAP_NAME_LENGTH LNMFMN

MQ_MODE_NAME_LENGTH LNMODN

MQ_MSG_HEADER_LENGTH LNMHD

MQ_MSG_ID_LENGTH LNMID

MQ_NAMELIST_DESC_LENGTH LNNLD

MQ_NAMELIST_NAME_LENGTH LNNLN

MQ_OBJECT_INSTANCE_ID_LENGTH LNOIID

MQ_PASSWORD_LENGTH LNPWRD

MQ_PROCESS_APPL_ID_LENGTH LNPROA

MQ_PROCESS_DESC_LENGTH LNPROD

MQ_PROCESS_ENV_DATA_LENGTH LNPROE

MQ_PROCESS_NAME_LENGTH LNPRON

MQ_PROCESS_USER_DATA_LENGTH LNPROU

MQ_PUT_APPL_NAME_LENGTH LNPAN

MQ_PUT_DATE_LENGTH LNPDAT

MQ_PUT_TIME_LENGTH LNPTIM

MQ_Q_DESC_LENGTH LNQD

MQ_Q_MGR_DESC_LENGTH LNQMD

MQ_Q_MGR_NAME_LENGTH LNQMN

MQ_Q_NAME_LENGTH LNQN

MQ_REMOTE_SYS_ID_LENGTH LNRSID

MQ_SHORT_CONN_NAME_LENGTH LNSCON

MQ_START_CODE_LENGTH LNSTCO

MQ_STORAGE_CLASS_LENGTH LNSTGC

MQ_TOTAL_EXIT_DATA_LENGTH LNTEXD

MQ_TOTAL_EXIT_NAME_LENGTH LNTEXN

MQ_TP_NAME_LENGTH LNTPN

MQ_TRAN_INSTANCE_ID_LENGTH LNTIID

MQ_TRANSACTION_ID_LENGTH LNTRID

 Appendix B. MQI names in RPG 467

 MQI names in RPG

Table 47 (Page 3 of 21). Names of constants

Long name RPG name

MQ_TRIGGER_DATA_LENGTH LNTRGD

MQ_USER_ID_LENGTH LNUID

MQACT_NONE ACNONE

MQAT_AIX ATAIX

MQAT_CICS ATCICS

MQAT_DEFAULT ATDEF

MQAT_DOS ATDOS

MQAT_IMS ATIMS

MQAT_IMS_BRIDGE ATIMSB

MQAT_MVS ATMVS

MQAT_NO_CONTEXT ATNCON

MQAT_OS2 ATOS2

MQAT_OS400 AT400

MQAT_QMGR ATQM

MQAT_UNIX ATUNIX

MQAT_UNKNOWN ATUNK

MQAT_USER_FIRST ATUFST

MQAT_USER_LAST ATULST

MQAT_WINDOWS ATWIN

MQAT_WINDOWS_NT ATWINT

MQAT_XCF ATXCF

MQCA_APPL_ID CAAPPI

MQCA_BACKOUT_REQ_Q_NAME CABRQN

MQCA_BASE_Q_NAME CABASQ

MQCA_CHANNEL_AUTO_DEF_EXIT CACADX

MQCA_COMMAND_INPUT_Q_NAME CACMDQ

MQCA_CREATION_DATE CACRTD

MQCA_CREATION_TIME CACRTT

MQCA_DEAD_LETTER_Q_NAME CADLQ

MQCA_DEF_XMIT_Q_NAME CADXQN

MQCA_ENV_DATA CAENVD

MQCA_FIRST CAFRST

MQCA_INITIATION_Q_NAME CAINIQ

MQCA_LAST CALAST

MQCA_LAST_USED CALSTU

MQCA_NAMELIST_DESC CALSTD

MQCA_NAMELIST_NAME CALSTN

MQCA_NAMES CANAMS

468 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 4 of 21). Names of constants

Long name RPG name

MQCA_PROCESS_DESC CAPROD

MQCA_PROCESS_NAME CAPRON

MQCA_Q_DESC CAQD

MQCA_Q_MGR_DESC CAQMD

MQCA_Q_MGR_NAME CAQMN

MQCA_Q_NAME CAQN

MQCA_REMOTE_Q_MGR_NAME CARQMN

MQCA_REMOTE_Q_NAME CARQN

MQCA_STORAGE_CLASS CASTGC

MQCA_TRIGGER_DATA CATRGD

MQCA_USER_DATA CAUSRD

MQCA_XMIT_Q_NAME CAXQN

MQCC_FAILED CCFAIL

MQCC_OK CCOK

MQCC_WARNING CCWARN

MQCCSI_DEFAULT CSDEF

MQCCSI_EMBEDDED CSEMBD

MQCCSI_Q_MGR CSQM

MQCD_CURRENT_VERSION CDVERC

MQCD_LENGTH_4 CDLEN4

MQCD_VERSION_1 CDVER1

MQCD_VERSION_2 CDVER2

MQCD_VERSION_3 CDVER3

MQCD_VERSION_4 CDVER4

MQCDC_NO_SENDER_CONVERSION DCNSND

MQCDC_SENDER_CONVERSION DCSND

MQCF_DIST_LISTS CFDIST

MQCF_NONE CFNONE

MQCFC_LAST CFCLST

MQCFC_NOT_LAST CFCNOT

MQCFH_CURRENT_VERSION FHVERC

MQCFH_STRUC_LENGTH FHLENV

MQCFH_VERSION_1 FHVER1

MQCFIL_STRUC_LENGTH_FIXED ILLENV

MQCFIN_STRUC_LENGTH INLENV

MQCFSL_STRUC_LENGTH_FIXED SLLENV

MQCFST_STRUC_LENGTH_FIXED STLENV

MQCFT_COMMAND CFTCMD

 Appendix B. MQI names in RPG 469

 MQI names in RPG

Table 47 (Page 5 of 21). Names of constants

Long name RPG name

MQCFT_EVENT CFTEVT

MQCFT_INTEGER CFTINT

MQCFT_INTEGER_LIST CFTINL

MQCFT_RESPONSE CFTRSP

MQCFT_STRING CFTSTR

MQCFT_STRING_LIST CFTSTL

MQCHAD_DISABLED CHADDI

MQCHAD_ENABLED CHADEN

MQCHT_ALL CTALL

MQCHT_CLNTCONN CTCLCN

MQCHT_RECEIVER CTRCVR

MQCHT_REQUESTER CTREQR

MQCHT_SENDER CTSEND

MQCHT_SERVER CTSERV

MQCHT_SVRCONN CTSVCN

MQCI_NEW_SESSION CINEWS

MQCI_NONE CINONE

MQCMD_CHANGE_CHANNEL CMCHCH

MQCMD_CHANGE_PROCESS CMCHPR

MQCMD_CHANGE_Q CMCHQ

MQCMD_CHANGE_Q_MGR CMCHQM

MQCMD_CHANNEL_EVENT CMCHEV

MQCMD_CLEAR_Q CMCLQ

MQCMD_COPY_CHANNEL CMCPCH

MQCMD_COPY_PROCESS CMCPPR

MQCMD_COPY_Q CMCPQ

MQCMD_CREATE_CHANNEL CMCRCH

MQCMD_CREATE_PROCESS CMCRPR

MQCMD_CREATE_Q CMCRQ

MQCMD_DELETE_CHANNEL CMDLCH

MQCMD_DELETE_PROCESS CMDLPR

MQCMD_DELETE_Q CMDLQ

MQCMD_ESCAPE CMESC

MQCMD_INQUIRE_CHANNEL CMINCH

MQCMD_INQUIRE_CHANNEL_NAMES CMINCN

MQCMD_INQUIRE_CHANNEL_STATUS CMINCS

MQCMD_INQUIRE_PROCESS CMINPR

MQCMD_INQUIRE_PROCESS_NAMES CMINPN

470 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 6 of 21). Names of constants

Long name RPG name

MQCMD_INQUIRE_Q CMINQ

MQCMD_INQUIRE_Q_MGR CMINQM

MQCMD_INQUIRE_Q_NAMES CMINQN

MQCMD_PERFM_EVENT CMPFEV

MQCMD_PING_CHANNEL CMPNCH

MQCMD_PING_Q_MGR CMPNQM

MQCMD_Q_MGR_EVENT CMQMEV

MQCMD_RESET_CHANNEL CMRSCH

MQCMD_RESET_Q_STATS CMRSQS

MQCMD_RESOLVE_CHANNEL CMRVCH

MQCMD_START_CHANNEL CMSTCH

MQCMD_START_CHANNEL_INIT CMSTCI

MQCMD_START_CHANNEL_LISTENER CMSTCL

MQCMD_STOP_CHANNEL CMSPCH

MQCMDL_LEVEL_1 CMLVL1

MQCMDL_LEVEL_101 CML101

MQCMDL_LEVEL_110 CML101

MQCMDL_LEVEL_114 CML114

MQCMDL_LEVEL_120 CML120

MQCMDL_LEVEL_200 CML200

MQCMDL_LEVEL_201 CML201

MQCMDL_LEVEL_221 CML221

MQCMDL_LEVEL_230 CML230

MQCMDL_LEVEL_320 CML320

MQCMDL_LEVEL_500 CML500

| MQCMDL_LEVEL_510 | CML510

MQCO_DELETE CODEL

MQCO_DELETE_PURGE COPURG

MQCO_NONE CONONE

MQCXP_CURRENT_VERSION CXVERC

MQCXP_STRUC_ID CXSIDV

MQCXP_VERSION_1 CXVER1

MQCXP_VERSION_2 CXVER2

MQCXP_VERSION_3 CXVER3

MQDCC_DEFAULT_CONVERSION DCCDEF

MQDCC_NONE DCCNON

MQDCC_SOURCE_ENC_FACTOR DCCSFA

MQDCC_SOURCE_ENC_MASK DCCSMA

 Appendix B. MQI names in RPG 471

 MQI names in RPG

Table 47 (Page 7 of 21). Names of constants

Long name RPG name

MQDCC_SOURCE_ENC_NATIVE DCCSNA

MQDCC_SOURCE_ENC_NORMAL DCCSNO

MQDCC_SOURCE_ENC_REVERSED DCCSRE

MQDCC_SOURCE_ENC_UNDEFINED DCCSUN

MQDCC_TARGET_ENC_FACTOR DCCTFA

MQDCC_TARGET_ENC_MASK DCCTMA

MQDCC_TARGET_ENC_NATIVE DCCTNA

MQDCC_TARGET_ENC_NORMAL DCCTNO

MQDCC_TARGET_ENC_REVERSED DCCTRE

MQDCC_TARGET_ENC_UNDEFINED DCCTUN

MQDH_CURRENT_VERSION DHVERC

MQDH_STRUC_ID DHSIDV

MQDH_VERSION_1 DHVER1

MQDHF_NEW_MSG_IDS DHFNEW

MQDHF_NONE DHFNON

MQDL_NOT_SUPPORTED DLNSUP

MQDL_SUPPORTED DLSUPP

MQDLH_CURRENT_VERSION DLVERC

MQDLH_STRUC_ID DLSIDV

MQDLH_VERSION_1 DLVER1

MQDXP_CURRENT_VERSION DXVERC

MQDXP_STRUC_ID DXSIDV

MQDXP_VERSION_1 DXVER1

MQEI_UNLIMITED EIULIM

MQENC_DECIMAL_MASK ENDMSK

MQENC_DECIMAL_NORMAL ENDNOR

MQENC_DECIMAL_REVERSED ENDREV

MQENC_DECIMAL_UNDEFINED ENDUND

MQENC_FLOAT_IEEE_NORMAL ENFNOR

MQENC_FLOAT_IEEE_REVERSED ENFREV

MQENC_FLOAT_MASK ENFMSK

MQENC_FLOAT_S390 ENF390

MQENC_FLOAT_UNDEFINED ENFUND

MQENC_INTEGER_MASK ENIMSK

MQENC_INTEGER_NORMAL ENINOR

MQENC_INTEGER_REVERSED ENIREV

MQENC_INTEGER_UNDEFINED ENIUND

MQENC_NATIVE ENNAT

472 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 8 of 21). Names of constants

Long name RPG name

MQENC_RESERVED_MASK ENRMSK

MQEVR_DISABLED EVRDIS

MQEVR_ENABLED EVRENA

MQFB_ FB

MQFB_APPL_CANNOT_BE_STARTED FBABEG

MQFB_APPL_FIRST FBAFST

MQFB_APPL_LAST FBALST

MQFB_APPL_TYPE_ERROR FBATYP

MQFB_BUFFER_OVERFLOW FBBUFO

MQFB_COA FBCOA

MQFB_COD FBCOD

MQFB_DATA_LENGTH_NEGATIVE FBDLN

MQFB_DATA_LENGTH_TOO_BIG FBDLTB

MQFB_DATA_LENGTH_ZERO FBDLZ

MQFB_EXPIRATION FBEXP

MQFB_IIH_ERROR FBIIH

MQFB_IMS_ERROR FBIERR

MQFB_IMS_FIRST FBIFST

MQFB_IMS_LAST FBILST

MQFB_LENGTH_OFF_BY_ONE FBLOB1

MQFB_NAN FBNAN

MQFB_NONE FBNONE

MQFB_NOT_AUTHORIZED_FOR_IMS FBNAFI

MQFB_PAN FBPAN

MQFB_QUIT FBQUIT

MQFB_STOPPED_BY_MSG_EXIT FBSBMX

MQFB_SYSTEM_FIRST FBSFST

MQFB_SYSTEM_LAST FBSLST

MQFB_TM_ERROR FBTM

MQFB_XMIT_Q_MSG_ERROR FBXQME

MQFMT_ADMIN FMADMN

MQFMT_COMMAND_1 FMCMD1

MQFMT_COMMAND_2 FMCMD2

MQFMT_DEAD_LETTER_HEADER FMDLH

MQFMT_DIST_HEADER FMDH

MQFMT_EVENT FMEVNT

MQFMT_IMS FMIMS

MQFMT_IMS_VAR_STRING FMIMVS

 Appendix B. MQI names in RPG 473

 MQI names in RPG

Table 47 (Page 9 of 21). Names of constants

Long name RPG name

MQFMT_MD_EXTENSION FMMDE

MQFMT_NONE FMNONE

MQFMT_PCF FMPCF

MQFMT_REF_MSG_HEADER FMRMH

MQFMT_STRING FMSTR

MQFMT_TRIGGER FMTM

MQFMT_XMIT_Q_HEADER FMXQH

MQGI_NONE GINONE

MQGMO_ACCEPT_TRUNCATED_MSG GMATM

MQGMO_ALL_MSGS_AVAILABLE GMAMSA

MQGMO_ALL_SEGMENTS_AVAILABLE GMASGA

MQGMO_BROWSE_FIRST GMBRWF

MQGMO_BROWSE_MSG_UNDER_CURSOR GMBRWC

MQGMO_BROWSE_NEXT GMBRWN

MQGMO_COMPLETE_MSG GMCMPM

MQGMO_CONVERT GMCONV

MQGMO_CURRENT_VERSION GMVERC

MQGMO_FAIL_IF_QUIESCING GMFIQ

MQGMO_LOCK GMLK

MQGMO_LOGICAL_ORDER GMLOGO

MQGMO_MSG_UNDER_CURSOR GMMUC

MQGMO_NO_SYNCPOINT GMNSYP

MQGMO_NO_WAIT GMNWT

MQGMO_NONE GMNONE

MQGMO_STRUC_ID GMSIDV

MQGMO_SYNCPOINT GMSYP

MQGMO_SYNCPOINT_IF_PERSISTENT GMPSYP

MQGMO_UNLOCK GMUNLK

MQGMO_VERSION_1 GMVER1

MQGMO_VERSION_2 GMVER2

MQGMO_WAIT GMWT

MQGS_LAST_MSG_IN_GROUP GSLMIG

MQGS_MSG_IN_GROUP GSMIG

MQGS_NOT_IN_GROUP GSNIG

MQHC_DEF_HCONN HCDEFH

MQHC_UNUSABLE_HCONN HCUNUH

MQHO_UNUSABLE_HOBJ HOUNUH

MQIA_APPL_TYPE IAAPPT

474 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 10 of 21). Names of constants

Long name RPG name

MQIA_AUTHORITY_EVENT IAAUTE

MQIA_BACKOUT_THRESHOLD IABTHR

MQIA_CHANNEL_AUTO_DEF IACAD

MQIA_CHANNEL_AUTO_DEF_EVENT IACADE

MQIA_CODED_CHAR_SET_ID IACCSI

MQIA_COMMAND_LEVEL IACMDL

MQIA_CURRENT_Q_DEPTH IACDEP

MQIA_DEF_INPUT_OPEN_OPTION IADINP

MQIA_DEF_PERSISTENCE IADPER

MQIA_DEF_PRIORITY IADPRI

MQIA_DEFINITION_TYPE IADEFT

MQIA_DIST_LISTS IADIST

MQIA_FIRST IAFRST

MQIA_HARDEN_GET_BACKOUT IAHGB

MQIA_HIGH_Q_DEPTH IAHQD

MQIA_INDEX_TYPE IAINDT

MQIA_INHIBIT_EVENT IAINHE

MQIA_INHIBIT_GET IAIGET

MQIA_INHIBIT_PUT IAIPUT

MQIA_LAST IALAST

MQIA_LAST_USED IALSTU

MQIA_LOCAL_EVENT IALCLE

MQIA_MAX_HANDLES IAMHND

MQIA_MAX_MSG_LENGTH IAMLEN

MQIA_MAX_PRIORITY IAMPRI

MQIA_MAX_Q_DEPTH IAMDEP

MQIA_MAX_UNCOMMITTED_MSGS IAMUNC

MQIA_MSG_DELIVERY_SEQUENCE IAMDS

MQIA_MSG_DEQ_COUNT IAMDC

MQIA_MSG_ENQ_COUNT IAMEC

MQIA_NAME_COUNT IANAMC

MQIA_OPEN_INPUT_COUNT IAOIC

MQIA_OPEN_OUTPUT_COUNT IAOOC

MQIA_PERFORMANCE_EVENT IAPFME

MQIA_PLATFORM IAPLAT

MQIA_Q_DEPTH_HIGH_EVENT IAQDHE

MQIA_Q_DEPTH_HIGH_LIMIT IAQDHL

MQIA_Q_DEPTH_LOW_EVENT IAQDLE

 Appendix B. MQI names in RPG 475

 MQI names in RPG

Table 47 (Page 11 of 21). Names of constants

Long name RPG name

MQIA_Q_DEPTH_LOW_LIMIT IAQDLL

MQIA_Q_DEPTH_MAX_EVENT IAQDME

MQIA_Q_SERVICE_INTERVAL IAQSI

MQIA_Q_SERVICE_INTERVAL_EVENT IAQSIE

MQIA_Q_TYPE IAQTYP

MQIA_REMOTE_EVENT IARMTE

MQIA_RETENTION_INTERVAL IARINT

MQIA_SCOPE IASCOP

MQIA_SHAREABILITY IASHAR

MQIA_START_STOP_EVENT IASSE

MQIA_SYNCPOINT IASYNC

MQIA_TIME_SINCE_RESET IATSR

MQIA_TRIGGER_CONTROL IATRGC

MQIA_TRIGGER_DEPTH IATRGD

MQIA_TRIGGER_INTERVAL IATRGI

MQIA_TRIGGER_MSG_PRIORITY IATRGP

MQIA_TRIGGER_TYPE IATRGT

MQIA_USAGE IAUSAG

MQIAUT_NONE IAUNON

MQIAV_NOT_APPLICABLE IAVNA

MQIAV_UNDEFINED IAVUND

MQICM_COMMIT_THEN_SEND ICMCTS

MQICM_SEND_THEN_COMMIT ICMSTC

MQIIH_CURRENT_VERSION IIVERC

MQIIH_LENGTH_1 IILEN1

MQIIH_NONE IINONE

MQIIH_STRUC_ID IISIDV

MQIIH_VERSION_1 IIVER1

MQISS_CHECK ISSCHK

MQISS_FULL ISSFUL

MQIT_CORREL_ID ITCORI

MQIT_MSG_ID ITMSGI

MQIT_NONE ITNONE

MQITII_NONE ITINON

MQITS_IN_CONVERSATION ITSIC

MQITS_NOT_IN_CONVERSATION ITSNIC

MQMCAT_PROCESS MCPROC

MQMCAT_THREAD MCTHRD

476 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 12 of 21). Names of constants

Long name RPG name

MQMD_CURRENT_VERSION MDVERC

MQMD_STRUC_ID MDSIDV

MQMD_VERSION_1 MDVER1

MQMD_VERSION_2 MDVER2

MQMDE_CURRENT_VERSION MEVERC

MQMDE_LENGTH_2 MELEN2

MQMDE_STRUC_ID MESIDV

MQMDE_VERSION_2 MEVER2

MQMDEF_NONE MEFNON

MQMDS_FIFO MSFIFO

MQMDS_PRIORITY MSPRIO

MQMF_ACCEPT_UNSUP_IF_XMIT_MASK MFAUXM

MQMF_ACCEPT_UNSUP_MASK MFAUM

MQMF_LAST_MSG_IN_GROUP MFLMIG

MQMF_LAST_SEGMENT MFLSEG

MQMF_MSG_IN_GROUP MFMIG

MQMF_NONE MFNONE

MQMF_REJECT_UNSUP_MASK MFRUM

MQMF_SEGMENT MFSEG

MQMF_SEGMENTATION_ALLOWED MFSEGA

MQMF_SEGMENTATION_INHIBITED MFSEGI

MQMI_NONE MINONE

MQMO_MATCH_CORREL_ID MOCORI

MQMO_MATCH_GROUP_ID MOGRPI

MQMO_MATCH_MSG_ID MOMSGI

MQMO_MATCH_MSG_SEQ_NUMBER MOSEQN

MQMO_MATCH_OFFSET MOOFFS

MQMO_NONE MONONE

MQMT_APPL_FIRST MTAFST

MQMT_APPL_LAST MTALST

MQMT_DATAGRAM MTDGRM

MQMT_REPLY MTRPLY

MQMT_REPORT MTRPRT

MQMT_REQUEST MTRQST

MQMT_SYSTEM_FIRST MTSFST

MQMT_SYSTEM_LAST MTSLST

MQNPMS_FAST NPFAST

MQNPMS_NORMAL NPNORM

 Appendix B. MQI names in RPG 477

 MQI names in RPG

Table 47 (Page 13 of 21). Names of constants

Long name RPG name

MQOD_CURRENT_LENGTH ODLENC

MQOD_CURRENT_VERSION ODVERC

MQOD_STRUC_ID ODSIDV

MQOD_VERSION_1 ODVER1

MQOD_VERSION_2 ODVER2

MQOII_NONE OIINON

MQOL_UNDEFINED OLUNDF

MQOO_ALTERNATE_USER_AUTHORITY OOALTU

MQOO_BROWSE OOBRW

MQOO_FAIL_IF_QUIESCING OOFIQ

MQOO_INPUT_AS_Q_DEF OOINPQ

MQOO_INPUT_EXCLUSIVE OOINPX

MQOO_INPUT_SHARED OOINPS

MQOO_INQUIRE OOINQ

MQOO_OUTPUT OOOUT

MQOO_PASS_ALL_CONTEXT OOPASA

MQOO_PASS_IDENTITY_CONTEXT OOPASI

MQOO_SAVE_ALL_CONTEXT OOSAVA

MQOO_SET OOSET

MQOO_SET_ALL_CONTEXT OOSETA

MQOO_SET_IDENTITY_CONTEXT OOSETI

MQOT_PROCESS OTPRO

MQOT_Q OTQ

MQOT_Q_MGR OTQM

MQPA_CONTEXT PACTXT

MQPA_DEFAULT PADEF

MQPER_NOT_PERSISTENT PENPER

MQPER_PERSISTENCE_AS_Q_DEF PEQDEF

MQPER_PERSISTENT PEPER

MQPL_AIX PLAIX

MQPL_MVS PLMVS

MQPL_OS2 PLOS2

MQPL_OS400 PL400

MQPL_UNIX PLUNIX

MQPL_WINDOWS PLWIN

MQPL_WINDOWS_NT PLWINT

MQPMO_ALTERNATE_USER_AUTHORITY PMALTU

MQPMO_CURRENT_LENGTH PMLENC

478 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 14 of 21). Names of constants

Long name RPG name

MQPMO_CURRENT_VERSION PMVERC

MQPMO_DEFAULT_CONTEXT PMDEFC

MQPMO_FAIL_IF_QUIESCING PMFIQ

MQPMO_LOGICAL_ORDER PMLOGO

MQPMO_NEW_CORREL_ID PMNCID

MQPMO_NEW_MSG_ID PMNMID

MQPMO_NO_CONTEXT PMNOC

MQPMO_NO_SYNCPOINT PMNSYP

MQPMO_NONE PMNONE

MQPMO_PASS_ALL_CONTEXT PMPASA

MQPMO_PASS_IDENTITY_CONTEXT PMPASI

MQPMO_SET_ALL_CONTEXT PMSETA

MQPMO_SET_IDENTITY_CONTEXT PMSETI

MQPMO_STRUC_ID PMSIDV

MQPMO_SYNCPOINT PMSYP

MQPMO_VERSION_1 PMVER1

MQPMO_VERSION_2 PMVER2

MQPMRF_ACCOUNTING_TOKEN PFACC

MQPMRF_CORREL_ID PFCID

MQPMRF_FEEDBACK PFFB

MQPMRF_GROUP_ID PFGID

MQPMRF_MSG_ID PFMID

MQPMRF_NONE PFNONE

MQPRI_PRIORITY_AS_Q_DEF PRQDEF

MQQA_BACKOUT_HARDENED QABH

MQQA_BACKOUT_NOT_HARDENED QABNH

MQQA_GET_ALLOWED QAGETA

MQQA_GET_INHIBITED QAGETI

MQQA_NOT_SHAREABLE QANSHR

MQQA_PUT_ALLOWED QAPUTA

MQQA_PUT_INHIBITED QAPUTI

MQQA_SHAREABLE QASHR

MQQDT_PERMANENT_DYNAMIC QDPERM

MQQDT_PREDEFINED QDPRE

MQQDT_TEMPORARY_DYNAMIC QDTEMP

MQQSIE_HIGH QSIEHI

MQQSIE_NONE QSIENO

MQQSIE_OK QSIEOK

 Appendix B. MQI names in RPG 479

 MQI names in RPG

Table 47 (Page 15 of 21). Names of constants

Long name RPG name

MQQT_ALIAS QTALS

MQQT_LOCAL QTLOC

MQQT_MODEL QTMOD

MQQT_REMOTE QTREM

MQRC_ALIAS_BASE_Q_TYPE_ERROR RC2001

MQRC_ALREADY_CONNECTED RC2002

MQRC_BRIDGE_STARTED RC2125

MQRC_BRIDGE_STOPPED RC2126

MQRC_BUFFER_ERROR RC2004

MQRC_BUFFER_LENGTH_ERROR RC2005

MQRC_CALL_IN_PROGRESS RC2219

MQRC_CFH_ERROR RC2235

MQRC_CFIL_ERROR RC2236

MQRC_CFIN_ERROR RC2237

MQRC_CFSL_ERROR RC2238

MQRC_CFST_ERROR RC2239

MQRC_CHANNEL_ACTIVATED RC2295

MQRC_CHANNEL_AUTO_DEF_ERROR RC2234

MQRC_CHANNEL_AUTO_DEF_OK RC2233

MQRC_CHANNEL_CONV_ERROR RC2284

MQRC_CHANNEL_NOT_ACTIVATED RC2296

MQRC_CHANNEL_STARTED RC2282

MQRC_CHANNEL_STOPPED RC2283

MQRC_CHAR_ATTR_LENGTH_ERROR RC2006

MQRC_CHAR_ATTRS_ERROR RC2007

MQRC_CHAR_ATTRS_TOO_SHORT RC2008

MQRC_CICS_BRIDGE_RESTRICTION RC2187

MQRC_CONNECTION_BROKEN RC2009

MQRC_CONTEXT_HANDLE_ERROR RC2097

MQRC_CONTEXT_NOT_AVAILABLE RC2098

MQRC_CONVERTED_MSG_TOO_BIG RC2120

MQRC_DATA_LENGTH_ERROR RC2010

MQRC_DBCS_ERROR RC2150

MQRC_DEF_XMIT_Q_TYPE_ERROR RC2198

MQRC_DEF_XMIT_Q_USAGE_ERROR RC2199

MQRC_DEST_ENV_ERROR RC2263

MQRC_DEST_NAME_ERROR RC2264

MQRC_DH_ERROR RC2135

480 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 16 of 21). Names of constants

Long name RPG name

MQRC_DLH_ERROR RC2141

MQRC_DYNAMIC_Q_NAME_ERROR RC2011

MQRC_EXPIRY_ERROR RC2013

MQRC_FEEDBACK_ERROR RC2014

MQRC_FORMAT_ERROR RC2110

MQRC_GET_INHIBITED RC2016

MQRC_GMO_ERROR RC2186

MQRC_GROUP_ID_ERROR RC2258

MQRC_HANDLE_NOT_AVAILABLE RC2017

MQRC_HCONN_ERROR RC2018

MQRC_HEADER_ERROR RC2142

MQRC_HOBJ_ERROR RC2019

MQRC_IIH_ERROR RC2148

MQRC_INCOMPLETE_GROUP RC2241

MQRC_INCOMPLETE_MSG RC2242

MQRC_INCONSISTENT_BROWSE RC2259

MQRC_INCONSISTENT_CCSIDS RC2243

MQRC_INCONSISTENT_ENCODINGS RC2244

MQRC_INCONSISTENT_PERSISTENCE RC2185

MQRC_INCONSISTENT_UOW RC2245

MQRC_INHIBIT_VALUE_ERROR RC2020

MQRC_INT_ATTR_COUNT_ERROR RC2021

MQRC_INT_ATTR_COUNT_TOO_SMALL RC2022

MQRC_INT_ATTRS_ARRAY_ERROR RC2023

MQRC_INVALID_MSG_UNDER_CURSOR RC2246

MQRC_MATCH_OPTIONS_ERROR RC2247

MQRC_MD_ERROR RC2026

MQRC_MDE_ERROR RC2248

MQRC_MISSING_REPLY_TO_Q RC2027

MQRC_MSG_FLAGS_ERROR RC2249

MQRC_MSG_SEQ_NUMBER_ERROR RC2250

MQRC_MSG_TOO_BIG_FOR_CHANNEL RC2218

MQRC_MSG_TOO_BIG_FOR_Q RC2030

MQRC_MSG_TOO_BIG_FOR_Q_MGR RC2031

MQRC_MSG_TYPE_ERROR RC2029

MQRC_MULTIPLE_REASONS RC2136

MQRC_NAME_NOT_VALID_FOR_TYPE RC2194

MQRC_NO_EXTERNAL_PARTICIPANTS RC2121

 Appendix B. MQI names in RPG 481

 MQI names in RPG

Table 47 (Page 17 of 21). Names of constants

Long name RPG name

MQRC_NO_MSG_AVAILABLE RC2033

MQRC_NO_MSG_LOCKED RC2209

MQRC_NO_MSG_UNDER_CURSOR RC2034

MQRC_NONE RCNONE

MQRC_NOT_AUTHORIZED RC2035

MQRC_NOT_CONVERTED RC2119

MQRC_NOT_OPEN_FOR_BROWSE RC2036

MQRC_NOT_OPEN_FOR_INPUT RC2037

MQRC_NOT_OPEN_FOR_INQUIRE RC2038

MQRC_NOT_OPEN_FOR_OUTPUT RC2039

MQRC_NOT_OPEN_FOR_PASS_ALL RC2093

MQRC_NOT_OPEN_FOR_PASS_IDENT RC2094

MQRC_NOT_OPEN_FOR_SET RC2040

MQRC_NOT_OPEN_FOR_SET_ALL RC2095

MQRC_NOT_OPEN_FOR_SET_IDENT RC2096

MQRC_OBJECT_ALREADY_EXISTS RC2100

MQRC_OBJECT_CHANGED RC2041

MQRC_OBJECT_DAMAGED RC2101

MQRC_OBJECT_IN_USE RC2042

MQRC_OBJECT_NAME_ERROR RC2152

MQRC_OBJECT_Q_MGR_NAME_ERROR RC2153

MQRC_OBJECT_RECORDS_ERROR RC2155

MQRC_OBJECT_TYPE_ERROR RC2043

MQRC_OD_ERROR RC2044

MQRC_OFFSET_ERROR RC2251

MQRC_OPEN_FAILED RC2137

MQRC_OPTION_NOT_VALID_FOR_TYPE RC2045

MQRC_OPTIONS_ERROR RC2046

MQRC_ORIGINAL_LENGTH_ERROR RC2252

MQRC_OUTCOME_MIXED RC2123

MQRC_OUTCOME_PENDING RC2124

MQRC_PARTICIPANT_NOT_AVAILABLE RC2122

MQRC_PCF_ERROR RC2149

MQRC_PERSISTENCE_ERROR RC2047

MQRC_PERSISTENT_NOT_ALLOWED RC2048

MQRC_PMO_ERROR RC2173

MQRC_PMO_RECORD_FLAGS_ERROR RC2158

MQRC_PRIORITY_ERROR RC2050

482 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 18 of 21). Names of constants

Long name RPG name

MQRC_PRIORITY_EXCEEDS_MAXIMUM RC2049

MQRC_PUT_INHIBITED RC2051

MQRC_PUT_MSG_RECORDS_ERROR RC2159

MQRC_Q_DELETED RC2052

MQRC_Q_DEPTH_HIGH RC2224

MQRC_Q_DEPTH_LOW RC2225

MQRC_Q_FULL RC2053

MQRC_Q_MGR_ACTIVE RC2222

MQRC_Q_MGR_NAME_ERROR RC2058

MQRC_Q_MGR_NOT_ACTIVE RC2223

MQRC_Q_MGR_NOT_AVAILABLE RC2059

MQRC_Q_MGR_QUIESCING RC2161

MQRC_Q_MGR_STOPPING RC2162

MQRC_Q_NOT_EMPTY RC2055

MQRC_Q_SERVICE_INTERVAL_HIGH RC2226

MQRC_Q_SERVICE_INTERVAL_OK RC2227

MQRC_Q_SPACE_NOT_AVAILABLE RC2056

MQRC_Q_TYPE_ERROR RC2057

MQRC_RECS_PRESENT_ERROR RC2154

MQRC_REMOTE_Q_NAME_ERROR RC2184

MQRC_REPORT_OPTIONS_ERROR RC2061

MQRC_RESOURCE_PROBLEM RC2102

MQRC_RESPONSE_RECORDS_ERROR RC2156

MQRC_RMH_ERROR RC2220

MQRC_SECURITY_ERROR RC2063

MQRC_SEGMENT_LENGTH_ZERO RC2253

MQRC_SELECTOR_COUNT_ERROR RC2065

MQRC_SELECTOR_ERROR RC2067

MQRC_SELECTOR_LIMIT_EXCEEDED RC2066

MQRC_SELECTOR_NOT_FOR_TYPE RC2068

MQRC_SOURCE_BUFFER_ERROR RC2145

MQRC_SOURCE_CCSID_ERROR RC2111

MQRC_SOURCE_DECIMAL_ENC_ERROR RC2113

MQRC_SOURCE_FLOAT_ENC_ERROR RC2114

MQRC_SOURCE_INTEGER_ENC_ERROR RC2112

MQRC_SOURCE_LENGTH_ERROR RC2143

MQRC_SRC_ENV_ERROR RC2261

MQRC_SRC_NAME_ERROR RC2262

 Appendix B. MQI names in RPG 483

 MQI names in RPG

Table 47 (Page 19 of 21). Names of constants

Long name RPG name

MQRC_STORAGE_NOT_AVAILABLE RC2071

MQRC_SYNCPOINT_LIMIT_REACHED RC2024

MQRC_SYNCPOINT_NOT_AVAILABLE RC2072

MQRC_TARGET_BUFFER_ERROR RC2146

MQRC_TARGET_CCSID_ERROR RC2115

MQRC_TARGET_DECIMAL_ENC_ERROR RC2117

MQRC_TARGET_FLOAT_ENC_ERROR RC2118

MQRC_TARGET_INTEGER_ENC_ERROR RC2116

MQRC_TARGET_LENGTH_ERROR RC2144

MQRC_TM_ERROR RC2265

MQRC_TMC_ERROR RC2191

MQRC_TRIGGER_CONTROL_ERROR RC2075

MQRC_TRIGGER_DEPTH_ERROR RC2076

MQRC_TRIGGER_MSG_PRIORITY_ERR RC2077

MQRC_TRIGGER_TYPE_ERROR RC2078

MQRC_TRUNCATED_MSG_ACCEPTED RC2079

MQRC_TRUNCATED_MSG_FAILED RC2080

MQRC_UNEXPECTED_ERROR RC2195

MQRC_UNKNOWN_ALIAS_BASE_Q RC2082

MQRC_UNKNOWN_DEF_XMIT_Q RC2197

MQRC_UNKNOWN_OBJECT_NAME RC2085

MQRC_UNKNOWN_OBJECT_Q_MGR RC2086

MQRC_UNKNOWN_REMOTE_Q_MGR RC2087

MQRC_UNKNOWN_REPORT_OPTION RC2104

MQRC_UNKNOWN_XMIT_Q RC2196

MQRC_UOW_IN_PROGRESS RC2128

MQRC_UOW_NOT_AVAILABLE RC2255

MQRC_WAIT_INTERVAL_ERROR RC2090

MQRC_WRONG_GMO_VERSION RC2256

MQRC_WRONG_MD_VERSION RC2257

MQRC_XMIT_Q_TYPE_ERROR RC2091

MQRC_XMIT_Q_USAGE_ERROR RC2092

MQRC_XQH_ERROR RC2260

MQRMH_CURRENT_VERSION RMVERC

MQRMH_STRUC_ID RMSIDV

MQRMH_VERSION_1 RMVER1

MQRMHF_LAST RMLAST

MQRMHF_NOT_LAST RMNLST

484 MQSeries Application Programming Guide

 MQI names in RPG

Table 47 (Page 20 of 21). Names of constants

Long name RPG name

MQRO_ACCEPT_UNSUP_IF_XMIT_MASK ROAUXM

MQRO_ACCEPT_UNSUP_MASK ROAUM

MQRO_COA ROCOA

MQRO_COA_WITH_DATA ROCOAD

MQRO_COA_WITH_FULL_DATA ROCOAF

MQRO_COD ROCOD

MQRO_COD_WITH_DATA ROCODD

MQRO_COD_WITH_FULL_DATA ROCODF

MQRO_COPY_MSG_ID_TO_CORREL_ID ROCMTC

MQRO_DEAD_LETTER_Q RODLQ

MQRO_DISCARD_MSG RODISC

MQRO_EXCEPTION ROEXC

MQRO_EXCEPTION_WITH_DATA ROEXCD

MQRO_EXCEPTION_WITH_FULL_DATA ROEXCF

MQRO_EXPIRATION ROEXP

MQRO_EXPIRATION_WITH_DATA ROEXPD

MQRO_EXPIRATION_WITH_FULL_DATA ROEXPF

MQRO_NAN RONAN

MQRO_NEW_MSG_ID RONMI

MQRO_NONE RONONE

MQRO_PAN ROPAN

MQRO_PASS_CORREL_ID ROPCI

MQRO_PASS_MSG_ID ROPMI

MQRO_REJECT_UNSUP_MASK RORUM

MQSEG_ALLOWED SEGALW

MQSEG_INHIBITED SEGIHB

MQSP_AVAILABLE SPAVL

MQSP_NOT_AVAILABLE SPNAVL

MQSS_LAST_SEGMENT SSLSEG

MQSS_NOT_A_SEGMENT SSNSEG

MQSS_SEGMENT SSSEG

MQTC_OFF TCOFF

MQTC_ON TCON

MQTM_CURRENT_VERSION TMVERC

MQTM_STRUC_ID TMSIDV

MQTM_VERSION_1 TMVER1

MQTMC_STRUC_ID TCSIDV

MQTMC_VERSION_1 TCVER1

 Appendix B. MQI names in RPG 485

 MQI names in RPG

Table 47 (Page 21 of 21). Names of constants

Long name RPG name

MQTT_DEPTH TTDPTH

MQTT_EVERY TTEVRY

MQTT_FIRST TTFRST

MQTT_NONE TTNONE

MQUS_NORMAL USNORM

MQUS_TRANSMISSION USTRAN

MQWI_UNLIMITED WIULIM

MQXCC_CLOSE_CHANNEL XCCLSC

MQXCC_OK XCOK

MQXCC_SEND_AND_REQUEST_SEC_MSG XCREQS

MQXCC_SEND_SEC_MSG XCSNDS

MQXCC_SUPPRESS_EXIT XCSUPE

MQXCC_SUPPRESS_FUNCTION XCSUPF

MQXDR_CONVERSION_FAILED XRFAIL

MQXDR_OK XROK

MQXPT_LU62 XTLU62

MQXPT_NETBIOS XTNET

MQXPT_SPX XTSPX

MQXPT_TCP XTTCP

MQXQH_CURRENT_VERSION XQVERC

MQXQH_STRUC_ID XQSIDV

MQXQH_VERSION_1 XQVER1

MQXR2_CONTINUE_CHAIN X2CONC

MQXR2_DEFAULT_CONTINUATION X2DEFC

MQXR2_PUT_WITH_DEF_ACTION X2PDA

MQXR2_PUT_WITH_DEF_USERID X2PDU

MQXR2_PUT_WITH_MSG_USERID X2PMU

MQXR2_SUPPRESS_CHAIN X2SUPC

MQXR2_USE_AGENT_BUFFER X2UAB

MQXR2_USE_EXIT_BUFFER X2UXB

MQXT_CHANNEL_MSG_EXIT XTCMSG

MQXT_CHANNEL_MSG_RETRY_EXIT XTCMR

MQXT_CHANNEL_RCV_EXIT XTCRCV

MQXT_CHANNEL_SEC_EXIT XTCSEC

MQXT_CHANNEL_SEND_EXIT XTCSND

MQXUA_NONE XUNONE

486 MQSeries Application Programming Guide

 C language examples

Appendix C. C language examples

The extracts in this appendix are mostly taken from the MQSeries for OS/390
sample applications. They are applicable to all platforms, and any exception to this
is noted.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 53 on page 488
Disconnecting from a queue manager Figure 54 on page 488
Creating a dynamic queue Figure 55 on page 489
Opening an existing queue Figure 56 on page 489
Closing a queue Figure 57 on page 490
Putting a message Figure 58 on page 490
Putting a message with the MQPUT1 call Figure 59 on page 491
Getting a message Figure 60 on page 492
Getting a message using the wait option Figure 61 on page 492
Getting a message using signaling Figure 62 on page 493
Inquiring about the attributes of an object Figure 63 on page 494
Setting the attributes of a queue Figure 64 on page 495

 Copyright IBM Corp. 1993,1999 487

 C language examples

Connecting to a queue manager

| Figure 53 demonstrates how to use the MQCONN
| call to connect a program to a queue manager in
| OS/390 batch. This extract is taken from the

Browse sample application (program CSQ4BCA1)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

#include <cmqc.h>
...

static char Parm1[MQ_Q_MGR_NAME_LENGTH] ;
...

int main(int argc, char \argv[])
 {
 /\ \/

/\ Variables for MQ calls \/
 /\ \/

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
...
/\ Copy the queue manager name, passed in the \/
/\ parm field, to Parm1 \/

 strncpy(Parm1,argv[1],MQ_Q_MGR_NAME_LENGTH);
...

 /\ \/
/\ Connect to the specified queue manager. \/

 /\ Test the output of the connect call. If the \/
 /\ call fails, print an error message showing the \/
 /\ completion code and reason code, then leave the \/
 /\ program. \/
 /\ \/
 MQCONN(Parm1,
 &Hconn,
 &CompCode,
 &Reason);

if ((CompCode != MQCC_OK) | (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQCONN, CompCode, Reason);
 PrintLine(pBuff);

RetCode = CSQ4_ERROR;
 goto AbnormalExit2;
 }

...
 }

Figure 53. Using the MQCONN call (C language)

Disconnecting from a queue
manager

| Figure 54 demonstrates how to use the MQDISC
| call to disconnect a program from a queue
| manager in OS/390 batch. This extract is taken

from the Browse sample application (program
CSQ4BCA1) supplied with MQSeries for OS/390.
For the names and locations of the sample
applications on other platforms, see Chapter 31,
“Sample programs (all platforms except OS/390)”
on page 327.

...
 /\ \/
 /\ Disconnect from the queue manager. Test the \/
 /\ output of the disconnect call. If the call \/
 /\ fails, print an error message showing the \/
 /\ completion code and reason code. \/
 /\ \/
 MQDISC(&Hconn,
 &CompCode,
 &Reason);

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQDISC, CompCode, Reason);
 PrintLine(pBuff);

RetCode = CSQ4_ERROR;
 }

...

Figure 54. Using the MQDISC call (C language). The
variables used in this code extract are those that were
set in Figure 53.

488 MQSeries Application Programming Guide

 C language examples

Creating a dynamic queue

Figure 55 demonstrates how to use the MQOPEN
call to create a dynamic queue. This extract is
taken from the Mail Manager sample application
(program CSQ4TCD1) supplied with MQSeries for
OS/390. For the names and locations of the
sample applications on other platforms, see
Chapter 31, “Sample programs (all platforms
except OS/390)” on page 327.

...
MQLONG HCONN = ð; /\ Connection handle \/
MQHOBJ HOBJ; /\ MailQ Object handle \/
MQHOBJ HobjTempQ; /\ TempQ Object Handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
MQOD ObjDesc = {MQOD_DEFAULT};

/\ Object descriptor \/
MQLONG OpenOptions; /\ Options control MQOPEN \/

...
 /\--- \/

/\ Initialize the Object Descriptor (MQOD) \/
/\ control block. (The remaining fields \/
/\ are already initialized.) \/

 /\--\/
 strncpy(ObjDesc.ObjectName,
 SYSTEM_REPLY_MODEL,
 MQ_Q_NAME_LENGTH);

 strncpy(ObjDesc.DynamicQName,
 SYSTEM_REPLY_INITIAL,
 MQ_Q_NAME_LENGTH);

OpenOptions = MQOO_INPUT_AS_Q_DEF;
 /\--\/

/\ Open the model queue and, therefore, \/
/\ create and open a temporary dynamic \/

 /\ queue \/
 /\--\/
 MQOPEN(HCONN,
 &ObjDesc,
 OpenOptions,
 &HobjTempQ,
 &CompCode,
 &Reason);

if (CompCode == MQCC_OK) {
...

 }
 else {
 /\---------------------------------------\/

/\ Build an error message to report the \/
/\ failure of the opening of the model \/

 /\ queue \/
 /\---------------------------------------\/

MQMErrorHandling("OPEN TEMPQ", CompCode,
 Reason);

ErrorFound = TRUE;
 }
 return ErrorFound;
}

...

Figure 55. Using the MQOPEN call to create a
dynamic queue (C language)

Opening an existing queue

Figure 56 demonstrates how to use the MQOPEN
call to open a queue that has already been
defined. This extract is taken from the Browse
sample application (program CSQ4BCA1) supplied
with MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

#include <cmqc.h>
...

static char Parm1[MQ_Q_MGR_NAME_LENGTH];
...

int main(int argc, char \argv[])
 {
 /\

/\ Variables for MQ calls \/
 /\

MQHCONN Hconn ; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
MQOD ObjDesc = { MQOD_DEFAULT };

/\ Object descriptor \/
MQLONG OpenOptions; /\ Options that control \/

/\ the MQOPEN call \/
MQHOBJ Hobj; /\ Object handle \/
...
/\ Copy the queue name, passed in the parm field, \/
/\ to Parm2 strncpy(Parm2,argv[2], \/

 /\ MQ_Q_NAME_LENGTH); \/
...

 /\ \/
/\ Initialize the object descriptor (MQOD) control \/
/\ block. (The initialization default sets StrucId, \/
/\ Version, ObjectType, ObjectQMgrName, \/
/\ DynamicQName, and AlternateUserid fields) \/

 /\ \/
 strncpy(ObjDesc.ObjectName,Parm2,MQ_Q_NAME_LENGTH);

...
/\ Initialize the other fields required for the open \/
/\ call (Hobj is set by the MQCONN call). \/

 /\ \/
 OpenOptions = MQOO_BROWSE;

...
 /\ \/

/\ Open the queue. \/
 /\ Test the output of the open call. If the call \/
 /\ fails, print an error message showing the \/
 /\ completion code and reason code, then bypass \/
 /\ processing, disconnect and leave the program. \/
 /\ \/
 MQOPEN(Hconn,
 &ObjDesc,
 OpenOptions,
 &Hobj,
 &CompCode,
 &Reason);

Figure 56 (Part 1 of 2). Using the MQOPEN call to
open an existing queue (C language)

 Appendix C. C language examples 489

 C language examples

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQOPEN, CompCode, Reason);
 PrintLine(pBuff);

RetCode = CSQ4_ERROR;
goto AbnormalExit1; /\ disconnect processing \/

 }
...
} /\ end of main \/

Figure 56 (Part 2 of 2). Using the MQOPEN call to
open an existing queue (C language)

Closing a queue

Figure 57 demonstrates how to use the
MQCLOSE call to close a queue. This extract is
taken from the Browse sample application
(program CSQ4BCA1) supplied with MQSeries for
OS/390. For the names and locations of the
sample applications on other platforms, see
Chapter 31, “Sample programs (all platforms
except OS/390)” on page 327.

...
 /\ \/
 /\ Close the queue. \/
 /\ Test the output of the close call. If the call \/
 /\ fails, print an error message showing the \/
 /\ completion code and reason code. \/
 /\ \/
 MQCLOSE(Hconn,
 &Hobj,
 MQCO_NONE,
 &CompCode,
 &Reason);

if ((CompCode != MQCC_OK) || (Reason != MQRC_NONE))
 {
 sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQCLOSE, CompCode, Reason);
 PrintLine(pBuff);

RetCode = CSQ4_ERROR;
 }

...

Figure 57. Using the MQCLOSE call (C language)

Putting a message using MQPUT

Figure 58 demonstrates how to use the MQPUT
call to put a message on a queue. This extract is
not taken from the sample applications supplied
with MQSeries. For the names and locations of
the sample applications, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327 and Chapter 32, “Sample programs for
MQSeries for OS/390” on page 395.

...
qput()
{

 MQMD MsgDesc;
 MQPMO PutMsgOpts;

 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN Hconn;
 MQHOBJ Hobj;

char message_buffer[] = "MY MESSAGE";

 /\-------------------------------\/
/\ Set up PMO structure. \/

 /\-------------------------------\/
memset(&PutMsgOpts, '\ð', sizeof(PutMsgOpts));

 memcpy(PutMsgOpts.StrucId, MQPMO_STRUC_ID,
 sizeof(PutMsgOpts.StrucId));

PutMsgOpts.Version = MQPMO_VERSION_1;
PutMsgOpts.Options = MQPMO_SYNCPOINT;

 /\-------------------------------\/
/\ Set up MD structure. \/

 /\-------------------------------\/
memset(&MsgDesc, '\ð', sizeof(MsgDesc));

 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,
 sizeof(MsgDesc.StrucId));
 MsgDesc.Version = MQMD_VERSION_1;
 MsgDesc.Expiry = MQEI_UNLIMITED;
 MsgDesc.Report = MQRO_NONE;
 MsgDesc.MsgType = MQMT_DATAGRAM;
 MsgDesc.Priority = 1;

MsgDesc.Persistence = MQPER_PERSISTENT;
 memset(MsgDesc.ReplyToQ,
 '\ð',
 sizeof(MsgDesc.ReplyToQ));
 /\---\/

/\ Put the message. \/
 /\---\/

MQPUT(Hconn, Hobj, &MsgDesc, &PutMsgOpts,
 sizeof(message_buffer), message_buffer,
 &CompCode, &Reason);

Figure 58 (Part 1 of 2). Using the MQPUT call (C
language)

490 MQSeries Application Programming Guide

 C language examples

 /\-------------------------------------\/
/\ Check completion and reason codes. \/

 /\-------------------------------------\/
 switch (CompCode)
 {
 case MQCC_OK:
 break;
 case MQCC_FAILED:
 switch (Reason)
 {
 case MQRC_Q_FULL:
 case MQRC_MSG_TOO_BIG_FOR_Q:
 break;
 default:

break; /\ Perform error processing \/
 }
 break;
 default:

break; /\ Perform error processing \/
 }
}

Figure 58 (Part 2 of 2). Using the MQPUT call (C
language)

Putting a message using
MQPUT1

Figure 59 demonstrates how to use the MQPUT1
call to open a queue, put a single message on the
queue, then close the queue. This extract is
taken from the Credit Check sample application
(program CSQ4CCB5) supplied with MQSeries for
OS/390. For the names and locations of the
sample applications on other platforms, see
Chapter 31, “Sample programs (all platforms
except OS/390)” on page 327.

...
MQLONG Hconn; /\ Connection handle \/
MQHOBJ Hobj_CheckQ; /\ Object handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
MQOD ObjDesc = {MQOD_DEFAULT};

/\ Object descriptor \/
MQMD MsgDesc = {MQMD_DEFAULT};

/\ Message descriptor \/
MQLONG OpenOptions; /\ Control the MQOPEN call \/

MQGMO GetMsgOpts = {MQGMO_DEFAULT};
/\ Get Message Options \/

MQLONG MsgBuffLen; /\ Length of message buffer \/
CSQ4BCAQ MsgBuffer; /\ Message structure \/
MQLONG DataLen; /\ Length of message \/

MQPMO PutMsgOpts = {MQPMO_DEFAULT};
/\ Put Message Options \/

CSQ4BQRM PutBuffer; /\ Message structure \/
MQLONG PutBuffLen = sizeof(PutBuffer);

/\ Length of message buffer \/

...

Figure 59 (Part 1 of 2). Using the MQPUT1 call (C
language)

void Process_Query(void)
 {
 /\ \/

/\ Build the reply message \/
 /\ \/

...
 /\ \/

/\ Set the object descriptor, message descriptor and \/
/\ put message options to the values required to \/
/\ create the reply message. \/

 /\ \/

 strncpy(ObjDesc.ObjectName, MsgDesc.ReplyToQ,
 MQ_Q_NAME_LENGTH);
 strncpy(ObjDesc.ObjectQMgrName, MsgDesc.ReplyToQMgr,
 MQ_Q_MGR_NAME_LENGTH);

MsgDesc.MsgType = MQMT_REPLY;
 MsgDesc.Report = MQRO_NONE;

memset(MsgDesc.ReplyToQ, ' ', MQ_Q_NAME_LENGTH);
memset(MsgDesc.ReplyToQMgr, ' ', MQ_Q_MGR_NAME_LENGTH);

memcpy(MsgDesc.MsgId, MQMI_NONE, sizeof(MsgDesc.MsgId));

PutMsgOpts.Options = MQPMO_SYNCPOINT +
 MQPMO_PASS_IDENTITY_CONTEXT;

PutMsgOpts.Context = Hobj_CheckQ;

PutBuffLen = sizeof(PutBuffer);

 MQPUT1(Hconn,
 &ObjDesc,
 &MsgDesc,
 &PutMsgOpts,
 PutBuffLen,
 &PutBuffer,
 &CompCode,
 &Reason);

if (CompCode != MQCC_OK)
 {
 strncpy(TS_Operation, "MQPUT1",
 sizeof(TS_Operation));
 strncpy(TS_ObjName, ObjDesc.ObjectName,
 MQ_Q_NAME_LENGTH);
 Record_Call_Error();
 Forward_Msg_To_DLQ();
 }

 return;
 }

...

Figure 59 (Part 2 of 2). Using the MQPUT1 call (C
language)

 Appendix C. C language examples 491

 C language examples

Getting a message

Figure 60 demonstrates how to use the MQGET
call to remove a message from a queue. This
extract is taken from the Browse sample
application (program CSQ4BCA1) supplied with
MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

#include "cmqc.h"
...

#define BUFFERLENGTH 8ð
...

int main(int argc, char \argv[])
 {
 /\ \/

/\ Variables for MQ calls \/
 /\ \/

MQHCONN Hconn ; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc = { MQMD_DEFAULT };

/\ Message descriptor \/
MQLONG DataLength ; /\ Length of the message \/

 MQCHAR Buffer[BUFFERLENGTH+1];
/\ Area for message data \/

 MQGMO GetMsgOpts = { MQGMO_DEFAULT };
/\ Options which control \/
/\ the MQGET call \/

MQLONG BufferLength = BUFFERLENGTH ;
/\ Length of buffer \/

...
/\ No need to change the message descriptor \/
/\ (MQMD) control block because initialization \/
/\ default sets all the fields. \/

 /\ \/
/\ Initialize the get message options (MQGMO) \/
/\ control block (the copy file initializes all \/
/\ the other fields). \/

 /\ \/
GetMsgOpts.Options = MQGMO_NO_WAIT +

 MQGMO_BROWSE_FIRST +
 MQGMO_ACCEPT_TRUNCATED_MSG;
 /\ \/

/\ Get the first message. \/
 /\ Test for the output of the call is carried out \/
 /\ in the 'for' loop. \/
 /\ \/
 MQGET(Hconn,
 Hobj,
 &MsgDesc,
 &GetMsgOpts,
 BufferLength,
 Buffer,
 &DataLength,
 &CompCode,
 &Reason);

Figure 60 (Part 1 of 2). Using the MQGET call (C
language)

 /\ \/
/\ Process the message and get the next message, \/
/\ until no messages remaining. \/
...
/\ If the call fails for any other reason, \/
/\ print an error message showing the completion \/
/\ code and reason code. \/

 /\ \/
if ((CompCode == MQCC_FAILED) &&

(Reason == MQRC_NO_MSG_AVAILABLE))
 {

...
 }
 else
 {
 sprintf(pBuff, MESSAGE_4_E,

ERROR_IN_MQGET, CompCode, Reason);
 PrintLine(pBuff);

RetCode = CSQ4_ERROR;
 }

...
} /\ end of main \/

Figure 60 (Part 2 of 2). Using the MQGET call (C
language)

Getting a message using the wait
option

Figure 61 demonstrates how to use the wait
option of the MQGET call. This code accepts
truncated messages. This extract is taken from
the Credit Check sample application (program
CSQ4CCB5) supplied with MQSeries for OS/390.
For the names and locations of the sample
applications on other platforms, see Chapter 31,
“Sample programs (all platforms except OS/390)”
on page 327.

...
MQLONG Hconn; /\ Connection handle \/
MQHOBJ Hobj_CheckQ; /\ Object handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
MQOD ObjDesc = {MQOD_DEFAULT};

/\ Object descriptor \/
MQMD MsgDesc = {MQMD_DEFAULT};

/\ Message descriptor \/
MQLONG OpenOptions;

/\ Control the MQOPEN call \/

MQGMO GetMsgOpts = {MQGMO_DEFAULT};
/\ Get Message Options \/

MQLONG MsgBuffLen; /\ Length of message buffer \/
CSQ4BCAQ MsgBuffer; /\ Message structure \/
MQLONG DataLen; /\ Length of message \/

Figure 61 (Part 1 of 2). Using the MQGET call with
the wait option (C language)

492 MQSeries Application Programming Guide

 C language examples

...
void main(void)
 {

...
 /\ \/

/\ Initialize options and open the queue for input \/
 /\ \/

...
 /\ \/

/\ Get and process messages \/
 /\ \/

GetMsgOpts.Options = MQGMO_WAIT +
 MQGMO_ACCEPT_TRUNCATED_MSG +
 MQGMO_SYNCPOINT;

GetMsgOpts.WaitInterval = WAIT_INTERVAL;
MsgBuffLen = sizeof(MsgBuffer);

 memcpy(MsgDesc.MsgId, MQMI_NONE,
 sizeof(MsgDesc.MsgId));
 memcpy(MsgDesc.CorrelId, MQCI_NONE,
 sizeof(MsgDesc.CorrelId));
 /\ \/

/\ Make the first MQGET call outside the loop \/
 /\ \/

 MQGET(Hconn,
 Hobj_CheckQ,
 &MsgDesc,
 &GetMsgOpts,
 MsgBuffLen,
 &MsgBuffer,
 &DataLen,
 &CompCode,
 &Reason);

...
 /\ \/

/\ Test the output of the MQGET call. If the call \/
/\ failed, send an error message showing the \/
/\ completion code and reason code, unless the \/
/\ reason code is NO_MSG AVAILABLE. \/

 /\ \/

if (Reason != MQRC_NO_MSG_AVAILABLE)
 {

strncpy(TS_Operation, "MQGET", sizeof(TS_Operation));
 strncpy(TS_ObjName, ObjDesc.ObjectName,
 MQ_Q_NAME_LENGTH);
 Record_Call_Error();
 }

...

Figure 61 (Part 2 of 2). Using the MQGET call with
the wait option (C language)

Getting a message using
signaling

Signaling is available only with MQSeries for
OS/390 and MQSeries for Windows V2.1.

Figure 62 demonstrates how to use the MQGET
call to set a signal so that you are notified when a
suitable message arrives on a queue. This extract
is not taken from the sample applications supplied
with MQSeries.

...
get_set_signal()
{

 MQMD MsgDesc;
 MQGMO GetMsgOpts;

 MQLONG CompCode;
 MQLONG Reason;
 MQHCONN Hconn;
 MQHOBJ Hobj;
 MQLONG BufferLength;
 MQLONG DataLength;

 char message_buffer[1ðð];
long int q_ecb, work_ecb;
short int signal_sw, endloop;
long int mask = 255;

 /\---------------------------\/

/\ Set up GMO structure. \/
 /\---------------------------\/
 memset(&GetMsgOpts,'\ð',sizeof(GetMsgOpts));
 memcpy(GetMsgOpts.StrucId, MQGMO_STRUC_ID,
 sizeof(GetMsgOpts.StrucId);
 GetMsgOpts.Version = MQGMO_VERSION_1;

GetMsgOpts.WaitInterval = 1ððð;
GetMsgOpts.Options = MQGMO_SET_SIGNAL +

 MQGMO_BROWSE_FIRST;
 q_ecb = ð;
 GetMsgOpts.Signal1 = &q_ecb;

 /\---------------------------\/
/\ Set up MD structure. \/

 /\---------------------------\/
 memset(&MsgDesc,'\ð',sizeof(MsgDesc));
 memcpy(MsgDesc.StrucId, MQMD_STRUC_ID,
 sizeof(MsgDesc.StrucId);
 MsgDesc.Version = MQMD_VERSION_1;
 MsgDesc.Report = MQRO_NONE;
 memcpy(MsgDesc.MsgId,MQMI_NONE,
 sizeof(MsgDesc.MsgId));
 memcpy(MsgDesc.CorrelId,MQCI_NONE,
 sizeof(MsgDesc.CorrelId));

Figure 62 (Part 1 of 3). Using the MQGET call with
signaling (C language)

 Appendix C. C language examples 493

 C language examples

 /\---\/
/\ Issue the MQGET call. \/

 /\---\/
BufferLength = sizeof(message_buffer);

 signal_sw = ð;

MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,
BufferLength, message_buffer, &DataLength,

 &CompCode, &Reason);
 /\-------------------------------------\/

/\ Check completion and reason codes. \/
 /\-------------------------------------\/
 switch (CompCode)
 {

case (MQCC_OK): /\ Message retrieved \/
 break;
 case (MQCC_WARNING):
 switch (Reason)
 {
 case (MQRC_SIGNAL_REQUEST_ACCEPTED):

signal_sw = 1;
 break;
 default:

break; /\ Perform error processing \/
 }
 break;
 case (MQCC_FAILED):
 switch (Reason)
 {
 case (MQRC_Q_MGR_NOT_AVAILABLE):
 case (MQRC_CONNECTION_BROKEN):
 case (MQRC_Q_MGR_STOPPING):
 break;
 default:

break; /\ Perform error processing. \/
 }
 break;
 default:

break; /\ Perform error processing. \/
 }
 /\---\/

/\ If the SET_SIGNAL was accepted, set up a loop to \/
/\ check whether a message has arrived at one second \/
/\ intervals. The loop ends if a message arrives or \/
/\ the wait interval specified in the MQGMO \/
/\ structure has expired. \/

 /\ \/
/\ If a message arrives on the queue, another MQGET \/
/\ must be issued to retrieve the message. If other \/
/\ MQM calls have been made in the intervening \/
/\ period, this may necessitate reinitializing the \/
/\ MQMD and MQGMO structures. \/
/\ In this code, no intervening calls \/
/\ have been made, so the only change required to \/
/\ the structures is to specify MQGMO_NO_WAIT, \/
/\ since we now know the message is there. \/

 /\ \/
/\ This code uses the EXEC CICS DELAY command to \/
/\ suspend the program for a second. A batch program \/
/\ may achieve the same effect by calling an \/
/\ assembler language subroutine which issues an \/
/\ OS/39ð STIMER macro. \/

 /\---\/

Figure 62 (Part 2 of 3). Using the MQGET call with
signaling (C language)

if (signal_sw == 1)
 {

endloop = ð;
 do
 {

EXEC CICS DELAY FOR HOURS(ð) MINUTES(ð) SECONDS(1);
work_ecb = q_ecb & mask;

 switch (work_ecb)
 {
 case (MQEC_MSG_ARRIVED):

endloop = 1;
mqgmo_options = MQGMO_NO_WAIT;
MQGET(Hconn, Hobj, &MsgDesc, &GetMsgOpts,

 BufferLength, message_buffer,
&DataLength, &CompCode, &Reason);

if (CompCode != MQCC_OK)
; /\ Perform error processing. \/

 break;
 case (MQEC_WAIT_INTERVAL_EXPIRED):
 case (MQEC_WAIT_CANCELED):

endloop = 1;
 break;
 default:
 break;
 }

} while (endloop == ð);
 }

 return;
}

Figure 62 (Part 3 of 3). Using the MQGET call with
signaling (C language)

Inquiring about the attributes of
an object

Figure 63 demonstrates how to use the MQINQ
call to inquire about the attributes of a queue.
This extract is taken from the Queue Attributes
sample application (program CSQ4CCC1)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

#include <cmqc.h> /\ MQ API header file \/
...

#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;
...

static void InquireGetAndPut(char \Message,
 PMQHOBJ pHobj,
 char \Object)

Figure 63 (Part 1 of 2). Using the MQINQ call (C
language)

494 MQSeries Application Programming Guide

 C language examples

 {
/\ Declare local variables \/

 /\ \/
MQLONG SelectorCount = NUMBEROFSELECTORS;

/\ Number of selectors \/
MQLONG IntAttrCount = NUMBEROFSELECTORS;

/\ Number of int attrs \/
MQLONG CharAttrLength = ð;

/\ Length of char attribute buffer \/
MQCHAR \CharAttrs ;

/\ Character attribute buffer \/
 MQLONG SelectorsTable[NUMBEROFSELECTORS];

/\ attribute selectors \/
 MQLONG IntAttrsTable[NUMBEROFSELECTORS];

/\ integer attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/

 /\ \/
/\ Open the queue. If successful, do the inquire \/

 /\ call. \/
 /\ \/
 /\ \/

/\ Initialize the variables for the inquire \/
 /\ call: \/

/\ - Set SelectorsTable to the attributes whose \/
 /\ status is \/
 /\ required \/

/\ - All other variables are already set \/
 /\ \/

SelectorsTable[ð] = MQIA_INHIBIT_GET;
SelectorsTable[1] = MQIA_INHIBIT_PUT;

 /\ \/
/\ Issue the inquire call \/
/\ Test the output of the inquire call. If the \/
/\ call failed, display an error message \/
/\ showing the completion code and reason code,\/
/\ otherwise display the status of the \/
/\ INHIBIT-GET and INHIBIT-PUT attributes \/

 /\ \/
 MQINQ(Hconn,
 \pHobj,
 SelectorCount,
 SelectorsTable,
 IntAttrCount,
 IntAttrsTable,
 CharAttrLength,
 CharAttrs,
 &CompCode,
 &Reason);

if (CompCode != MQCC_OK)
 {
 sprintf(Message, MESSAGE_4_E,

ERROR_IN_MQINQ, CompCode, Reason);
 SetMsg(Message);
 }
 else
 {

/\ Process the changes \/
} /\ end if CompCode \/

Figure 63 (Part 2 of 2). Using the MQINQ call (C
language)

Setting the attributes of a queue

Figure 64 demonstrates how to use the MQSET
call to change the attributes of a queue. This
extract is taken from the Queue Attributes sample
application (program CSQ4CCC1) supplied with
MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

#include <cmqc.h> /\ MQ API header file \/
...

#define NUMBEROFSELECTORS 2

const MQHCONN Hconn = MQHC_DEF_HCONN;

static void InhibitGetAndPut(char \Message,
 PMQHOBJ pHobj,
 char \Object)
 {
 /\ \/

/\ Declare local variables \/
 /\ \/

MQLONG SelectorCount = NUMBEROFSELECTORS;
/\ Number of selectors \/

MQLONG IntAttrCount = NUMBEROFSELECTORS;
/\ Number of int attrs \/

MQLONG CharAttrLength = ð;
/\ Length of char attribute buffer \/

MQCHAR \CharAttrs ;
/\ Character attribute buffer \/

 MQLONG SelectorsTable[NUMBEROFSELECTORS];
/\ attribute selectors \/

 MQLONG IntAttrsTable[NUMBEROFSELECTORS];
/\ integer attributes \/

MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Qualifying reason \/
...

 /\ \/
/\ Open the queue. If successful, do the \/

 /\ inquire call. \/
 /\ \/

...
 /\ \/

/\ Initialize the variables for the set call: \/
/\ - Set SelectorsTable to the attributes to be \/

 /\ set \/
/\ - Set IntAttrsTable to the required status \/
/\ - All other variables are already set \/

 /\ \/
SelectorsTable[ð] = MQIA_INHIBIT_GET;
SelectorsTable[1] = MQIA_INHIBIT_PUT;

 IntAttrsTable[ð] = MQQA_GET_INHIBITED;
 IntAttrsTable[1] = MQQA_PUT_INHIBITED;

...

Figure 64 (Part 1 of 2). Using the MQSET call (C
language)

 Appendix C. C language examples 495

 C language examples

 /\ \/
/\ Issue the set call. \/
/\ Test the output of the set call. If the \/
/\ call fails, display an error message \/
/\ showing the completion code and reason \/
/\ code; otherwise move INHIBITED to the \/
/\ relevant screen map fields \/

 /\ \/
 MQSET(Hconn,
 \pHobj,
 SelectorCount,
 SelectorsTable,
 IntAttrCount,
 IntAttrsTable,
 CharAttrLength,
 CharAttrs,
 &CompCode,
 &Reason);

if (CompCode != MQCC_OK)
 {
 sprintf(Message, MESSAGE_4_E,

ERROR_IN_MQSET, CompCode, Reason);
 SetMsg(Message);
 }
 else
 {

/\ Process the changes \/
} /\ end if CompCode \/

Figure 64 (Part 2 of 2). Using the MQSET call (C
language)

496 MQSeries Application Programming Guide

 COBOL examples

 Appendix D. COBOL examples

The examples in this appendix are taken from the MQSeries for OS/390 sample
applications. They are applicable to all platforms, and any exception to this is
noted.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 65 on page 498
Disconnecting from a queue manager Figure 66 on page 498
Creating a dynamic queue Figure 67 on page 499
Opening an existing queue Figure 68 on page 500
Closing a queue Figure 69 on page 501
Putting a message Figure 70 on page 501
Putting a message with the MQPUT1 call Figure 71 on page 502
Getting a message Figure 72 on page 503
Getting a message using the wait option Figure 73 on page 504
Getting a message using signaling Figure 74 on page 505
Inquiring about the attributes of an object Figure 75 on page 506
Setting the attributes of a queue Figure 76 on page 507

 Copyright IBM Corp. 1993,1999 497

 COBOL examples

Connecting to a queue manager

Figure 65 demonstrates how to use the MQCONN
call to connect a program to a queue manager in
OS/390 batch. This extract is taken from the
Browse sample application (program CSQ4BVA1)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\ Wð2 - Data fields derived from the PARM field
 ð1 Wð2-MQM PIC X(48) VALUE SPACES.
\ Wð3 - MQM API fields
 ð1 Wð3-HCONN PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
\
\ MQV contains constants (for filling in the control
\ blocks)
\ and return codes (for testing the result of a call)
\
 ð1 Wð5-MQM-CONSTANTS.
 COPY CMQV SUPPRESS.

...
\ Separate into the relevant fields any data passed
\ in the PARM statement
\

UNSTRING PARM-STRING DELIMITED BY ALL ','
 INTO Wð2-MQM
 Wð2-OBJECT.

...
\ Connect to the specified queue manager.
\

CALL 'MQCONN' USING Wð2-MQM
 Wð3-HCONN
 Wð3-COMPCODE
 Wð3-REASON.
\
\ Test the output of the connect call. If the call
\ fails, print an error message showing the
\ completion code and reason code.
\

IF (Wð3-COMPCODE NOT = MQCC-OK) THEN
...

 END-IF.
...

Figure 65. Using the MQCONN call (COBOL)

Disconnecting from a queue
manager

Figure 66 demonstrates how to use the MQDISC
call to disconnect a program from a queue
manager in OS/390 batch. This extract is taken
from the Browse sample application (program
CSQ4BVA1) supplied with MQSeries for OS/390.
For the names and locations of the sample
applications on other platforms, see Chapter 31,
“Sample programs (all platforms except OS/390)”
on page 327.

...
\
\ Disconnect from the queue manager
\

CALL 'MQDISC' USING Wð3-HCONN
 Wð3-COMPCODE
 Wð3-REASON.
\
\ Test the output of the disconnect call. If the
\ call fails, print an error message showing the
\ completion code and reason code.
\

IF (Wð3-COMPCODE NOT = MQCC-OK) THEN
...

 END-IF.
...

Figure 66. Using the MQDISC call (COBOL). The
variables used in this code extract are those that were
set in Figure 65.

498 MQSeries Application Programming Guide

 COBOL examples

Creating a dynamic queue

Figure 67 demonstrates how to use the MQOPEN
call to create a dynamic queue. This extract is
taken from the Credit Check sample application
(program CSQ4CVB1) supplied with MQSeries for
OS/390. For the names and locations of the
sample applications on other platforms, see
Chapter 31, “Sample programs (all platforms
except OS/390)” on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð2 - Queues processed in this program
\
 ð1 Wð2-MODEL-QNAME PIC X(48) VALUE
 'CSQ4SAMP.B1.MODEL '.
 ð1 Wð2-NAME-PREFIX PIC X(48) VALUE
 'CSQ4SAMP.B1.\ '.
 ð1 Wð2-TEMPORARY-Q PIC X(48).
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-OPTIONS PIC S9(9) BINARY.
 ð1 Wð3-HOBJ PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
\
\ API control blocks
\
 ð1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
\
\ CMQV contains constants (for setting or testing
\ field values) and return codes (for testing the
\ result of a call)
\
 ð1 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\

...
\ ---\
 OPEN-TEMP-RESPONSE-QUEUE SECTION.
\ ---\

Figure 67 (Part 1 of 2). Using the MQOPEN call to
create a dynamic queue (COBOL)

\
\ This section creates a temporary dynamic queue
\ using a model queue
\
\ ---\
\
\ Change three fields in the Object Descriptor (MQOD)
\ control block. (MQODV initializes the other fields)
\
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE Wð2-MODEL-QNAME TO MQOD-OBJECTNAME.
 MOVE Wð2-NAME-PREFIX TO MQOD-DYNAMICQNAME.
\

COMPUTE Wð3-OPTIONS = MQOO-INPUT-EXCLUSIVE.
\

CALL 'MQOPEN' USING Wð3-HCONN
 MQOD
 Wð3-OPTIONS
 Wð3-HOBJ-MODEL
 Wð3-COMPCODE
 Wð3-REASON.
\

IF Wð3-COMPCODE NOT = MQCC-OK
 MOVE 'MQOPEN' TO Mð1-MSG4-OPERATION
 MOVE Wð3-COMPCODE TO Mð1-MSG4-COMPCODE
 MOVE Wð3-REASON TO Mð1-MSG4-REASON

MOVE Mð1-MESSAGE-4 TO Mðð-MESSAGE
 ELSE

MOVE MQOD-OBJECTNAME TO Wð2-TEMPORARY-Q
 END-IF.
\
 OPEN-TEMP-RESPONSE-QUEUE-EXIT.
\
\ Return to performing section.
\
 EXIT.
 EJECT
\

Figure 67 (Part 2 of 2). Using the MQOPEN call to
create a dynamic queue (COBOL)

 Appendix D. COBOL examples 499

 COBOL examples

Opening an existing queue

Figure 68 demonstrates how to use the MQOPEN
call to open an existing queue. This extract is
taken from the Browse sample application
(program CSQ4BVA1) supplied with MQSeries for
OS/390. For the names and locations of the
sample applications on other platforms, see
Chapter 31, “Sample programs (all platforms
except OS/390)” on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð1 - Fields derived from the command area input
\
 ð1 Wð1-OBJECT PIC X(48).
\
\ Wð2 - MQM API fields
\
 ð1 Wð2-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð2-OPTIONS PIC S9(9) BINARY.
 ð1 Wð2-HOBJ PIC S9(9) BINARY.
 ð1 Wð2-COMPCODE PIC S9(9) BINARY.
 ð1 Wð2-REASON PIC S9(9) BINARY.
\
\ CMQODV defines the object descriptor (MQOD)
\
 ð1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
\
\ CMQV contains constants (for setting or testing
\ field values) and return codes (for testing the
\ result of a call)
\
 ð1 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
\ ---\
 E-OPEN-QUEUE SECTION.
\ ---\
\ \
\ This section opens the queue \
\
\ Initialize the Object Descriptor (MQOD) control
\ block
\ (The copy file initializes the remaining fields.)
\
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE Wð1-OBJECT TO MQOD-OBJECTNAME.
\
\ Initialize Wð2-OPTIONS to open the queue for both
\ inquiring about and setting attributes
\

COMPUTE Wð2-OPTIONS = MQOO-INQUIRE + MQOO-SET.

Figure 68 (Part 1 of 2). Using the MQOPEN call to
open an existing queue (COBOL)

\
\ Open the queue
\

CALL 'MQOPEN' USING Wð2-HCONN
 MQOD
 Wð2-OPTIONS
 Wð2-HOBJ
 Wð2-COMPCODE
 Wð2-REASON.
\
\ Test the output from the open
\
\ If the completion code is not OK, display a
\ separate error message for each of the following
\ errors:
\
\ Q-MGR-NOT-AVAILABLE - MQM is not available
\ CONNECTION-BROKEN - MQM is no longer connected to CICS
\ UNKNOWN-OBJECT-NAME - The queue does not exist
\ NOT-AUTHORIZED - The user is not authorized to open
\ the queue
\
\ For any other error, display an error message
\ showing the completion and reason codes
\
IF Wð2-COMPCODE NOT = MQCC-OK

 EVALUATE TRUE
\

WHEN Wð2-REASON = MQRC-Q-MGR-NOT-AVAILABLE
MOVE Mð1-MESSAGE-6 TO Mðð-MESSAGE

\
WHEN Wð2-REASON = MQRC-CONNECTION-BROKEN

MOVE Mð1-MESSAGE-6 TO Mðð-MESSAGE
\

WHEN Wð2-REASON = MQRC-UNKNOWN-OBJECT-NAME
MOVE Mð1-MESSAGE-2 TO Mðð-MESSAGE

\
WHEN Wð2-REASON = MQRC-NOT-AUTHORIZED

MOVE Mð1-MESSAGE-3 TO Mðð-MESSAGE
\
 WHEN OTHER
 MOVE 'MQOPEN' TO Mð1-MSG4-OPERATION
 MOVE Wð2-COMPCODE TO Mð1-MSG4-COMPCODE
 MOVE Wð2-REASON TO Mð1-MSG4-REASON

MOVE Mð1-MESSAGE-4 TO Mðð-MESSAGE
 END-EVALUATE
 END-IF.
 E-EXIT.
\
\ Return to performing section
\
 EXIT.
 EJECT

Figure 68 (Part 2 of 2). Using the MQOPEN call to
open an existing queue (COBOL)

500 MQSeries Application Programming Guide

 COBOL examples

Closing a queue

Figure 69 demonstrates how to use the
MQCLOSE call. This extract is taken from the
Browse sample application (program CSQ4BVA1)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

...
\
\ Close the queue
\

MOVE MQCO-NONE TO Wð3-OPTIONS.
\

CALL 'MQCLOSE' USING Wð3-HCONN
 Wð3-HOBJ
 Wð3-OPTIONS
 Wð3-COMPCODE
 Wð3-REASON.
\
\ Test the output of the MQCLOSE call. If the call
\ fails, print an error message showing the
\ completion code and reason code.
\

IF (Wð3-COMPCODE NOT = MQCC-OK) THEN
 MOVE 'CLOSE' TO Wð4-MSG4-TYPE
 MOVE Wð3-COMPCODE TO Wð4-MSG4-COMPCODE
 MOVE Wð3-REASON TO Wð4-MSG4-REASON

MOVE Wð4-MESSAGE-4 TO Wðð-PRINT-DATA
 PERFORM PRINT-LINE

MOVE Wð6-CSQ4-ERROR TO Wðð-RETURN-CODE
 END-IF.
\

Figure 69. Using the MQCLOSE call (COBOL). The
variables used in this code extract are those that were
set in Figure 65 on page 498.

Putting a message using MQPUT

Figure 70 demonstrates how to use the MQPUT
call using context. This extract is taken from the
Credit Check sample application (program
CSQ4CVB1) supplied with MQSeries for OS/390.
For the names and locations of the sample
applications on other platforms, see Chapter 31,
“Sample programs (all platforms except OS/390)”
on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð2 - Queues processed in this program
\
 ð1 Wð2-TEMPORARY-Q PIC X(48).
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-HOBJ-INQUIRY PIC S9(9) BINARY.
 ð1 Wð3-OPTIONS PIC S9(9) BINARY.
 ð1 Wð3-BUFFLEN PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
\
 ð1 Wð3-PUT-BUFFER.
\
 ð5 Wð3-CSQ4BIIM.
 COPY CSQ4VB1.
\
\ API control blocks
\
 ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 ð1 MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
\
\ MQV contains constants (for filling in the
\ control blocks) and return codes (for testing
\ the result of a call).
\
 ð1 MQM-CONSTANTS.

COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\

...
\ Open queue and build message.

...

Figure 70 (Part 1 of 2). Using the MQPUT call
(COBOL)

 Appendix D. COBOL examples 501

 COBOL examples

\
\ Set the message descriptor and put-message options to
\ the values required to create the message.
\ Set the length of the message.
\
 MOVE MQMT-REQUEST TO MQMD-MSGTYPE.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE Wð2-TEMPORARY-Q TO MQMD-REPLYTOQ.
 MOVE SPACES TO MQMD-REPLYTOQMGR.
 MOVE 5 TO MQMD-PRIORITY.
MOVE MQPER-NOT-PERSISTENT TO MQMD-PERSISTENCE.

 COMPUTE MQPMO-OPTIONS = MQPMO-NO-SYNCPOINT +
 MQPMO-DEFAULT-CONTEXT.
MOVE LENGTH OF CSQ4BIIM-MSG TO Wð3-BUFFLEN.

\
CALL 'MQPUT' USING Wð3-HCONN

 Wð3-HOBJ-INQUIRY
 MQMD
 MQPMO
 Wð3-BUFFLEN
 Wð3-PUT-BUFFER
 Wð3-COMPCODE
 Wð3-REASON.

IF Wð3-COMPCODE NOT = MQCC-OK
...

 END-IF.

Figure 70 (Part 2 of 2). Using the MQPUT call
(COBOL)

Putting a message using
MQPUT1

Figure 71 demonstrates how to use the MQPUT1
call. This extract is taken from the Credit Check
sample application (program CSQ4CVB5) supplied
with MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-OPTIONS PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
 ð1 Wð3-BUFFLEN PIC S9(9) BINARY.
\
 ð1 Wð3-PUT-BUFFER.
 ð5 Wð3-CSQ4BQRM.
 COPY CSQ4VB4.

Figure 71 (Part 1 of 2). Using the MQPUT1 call
(COBOL)

\
\ API control blocks
\
 ð1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
 ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 ð1 MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
\
\ CMQV contains constants (for filling in the
\ control blocks) and return codes (for testing
\ the result of a call).
\
 ð1 MQM-MQV.
 COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\

...
\ Get the request message.

...
\ ---\
 PROCESS-QUERY SECTION.
\ ---\

...
\ Build the reply message.

...
\
\ Set the object descriptor, message descriptor and
\ put-message options to the values required to create
\ the message.
\ Set the length of the message.
\
 MOVE MQMD-REPLYTOQ TO MQOD-OBJECTNAME.
MOVE MQMD-REPLYTOQMGR TO MQOD-OBJECTQMGRNAME.

 MOVE MQMT-REPLY TO MQMD-MSGTYPE.
 MOVE SPACES TO MQMD-REPLYTOQ.
 MOVE SPACES TO MQMD-REPLYTOQMGR.
 MOVE LOW-VALUES TO MQMD-MSGID.
COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +

 MQPMO-PASS-IDENTITY-CONTEXT.
 MOVE Wð3-HOBJ-CHECKQ TO MQPMO-CONTEXT.
MOVE LENGTH OF CSQ4BQRM-MSG TO Wð3-BUFFLEN.

\
CALL 'MQPUT1' USING Wð3-HCONN

 MQOD
 MQMD
 MQPMO
 Wð3-BUFFLEN
 Wð3-PUT-BUFFER
 Wð3-COMPCODE
 Wð3-REASON.

IF Wð3-COMPCODE NOT = MQCC-OK
 MOVE 'MQPUT1' TO Mð2-OPERATION
 MOVE MQOD-OBJECTNAME TO Mð2-OBJECTNAME
 PERFORM RECORD-CALL-ERROR
 PERFORM FORWARD-MSG-TO-DLQ
 END-IF.
\

Figure 71 (Part 2 of 2). Using the MQPUT1 call
(COBOL)

502 MQSeries Application Programming Guide

 COBOL examples

Getting a message

Figure 72 demonstrates how to use the MQGET
call to remove a message from a queue. This
extract is taken from the Credit Check sample
application (program CSQ4CVB1) supplied with
MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-HOBJ-RESPONSE PIC S9(9) BINARY.
 ð1 Wð3-OPTIONS PIC S9(9) BINARY.
 ð1 Wð3-BUFFLEN PIC S9(9) BINARY.
 ð1 Wð3-DATALEN PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
\
 ð1 Wð3-GET-BUFFER.
 ð5 Wð3-CSQ4BAM.
 COPY CSQ4VB2.
\
\ API control blocks
\
 ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 ð1 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
\
\ MQV contains constants (for filling in the
\ control blocks) and return codes (for testing
\ the result of a call).
\
 ð1 MQM-CONSTANTS.

COPY CMQV SUPPRESS.
\ ---\
 A-MAIN SECTION.
\ ---\

...
\ Open response queue.

...
\ ---\
 PROCESS-RESPONSE-SCREEN SECTION.
\ ---\
\ \
\ This section gets a message from the response queue. \
\ \
\ When a correct response is received, it is \
\ transferred to the map for display; otherwise \
\ an error message is built. \
\ \
\ ---\

Figure 72 (Part 1 of 2). Using the MQGET call
(COBOL)

\
\ Set get-message options
\
COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +

 MQGMO-ACCEPT-TRUNCATED-MSG +
 MQGMO-NO-WAIT.
\
\ Set msgid and correlid in MQMD to nulls so that any
\ message will qualify.
\ Set length to available buffer length.
\

MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.
MOVE LENGTH OF Wð3-GET-BUFFER TO Wð3-BUFFLEN.

\
CALL 'MQGET' USING Wð3-HCONN

 Wð3-HOBJ-RESPONSE
 MQMD
 MQGMO
 Wð3-BUFFLEN
 Wð3-GET-BUFFER
 Wð3-DATALEN
 Wð3-COMPCODE
 Wð3-REASON.
 EVALUATE TRUE

WHEN Wð3-COMPCODE NOT = MQCC-FAILED
...

\ Process the message
...

WHEN (Wð3-COMPCODE = MQCC-FAILED AND
Wð3-REASON = MQRC-NO-MSG-AVAILABLE)
MOVE Mð1-MESSAGE-9 TO Mðð-MESSAGE

 PERFORM CLEAR-RESPONSE-SCREEN
\
 WHEN OTHER
 MOVE 'MQGET ' TO Mð1-MSG4-OPERATION
 MOVE Wð3-COMPCODE TO Mð1-MSG4-COMPCODE
 MOVE Wð3-REASON TO Mð1-MSG4-REASON

MOVE Mð1-MESSAGE-4 TO Mðð-MESSAGE
 PERFORM CLEAR-RESPONSE-SCREEN
 END-EVALUATE.

Figure 72 (Part 2 of 2). Using the MQGET call
(COBOL)

 Appendix D. COBOL examples 503

 COBOL examples

Getting a message using the wait
option

Figure 73 demonstrates how to use the MQGET
call with the wait option and accepting truncated
messages. This extract is taken from the Credit
Check sample application (program CSQ4CVB5)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wðð - General work fields
\
 ð1 Wðð-WAIT-INTERVAL PIC S9(ð9) BINARY VALUE 3ðððð.
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-OPTIONS PIC S9(9) BINARY.
 ð1 Wð3-HOBJ-CHECKQ PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
 ð1 Wð3-DATALEN PIC S9(9) BINARY.
 ð1 Wð3-BUFFLEN PIC S9(9) BINARY.
\
 ð1 Wð3-MSG-BUFFER.
 ð5 Wð3-CSQ4BCAQ.
 COPY CSQ4VB3.
\
\ API control blocks
\
 ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 ð1 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
\
\ CMQV contains constants (for filling in the
\ control blocks) and return codes (for testing
\ the result of a call).
\
 ð1 MQM-MQV.
 COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\

...
\ Open input queue.

...

Figure 73 (Part 1 of 2). Using the MQGET call with
the wait option (COBOL)

\
\ Get and process messages.
\
COMPUTE MQGMO-OPTIONS = MQGMO-WAIT +

 MQGMO-ACCEPT-TRUNCATED-MSG +
 MQGMO-SYNCPOINT.
MOVE LENGTH OF Wð3-MSG-BUFFER TO Wð3-BUFFLEN.
MOVE Wðð-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.
MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.

\
\ Make the first MQGET call outside the loop.
\

CALL 'MQGET' USING Wð3-HCONN
 Wð3-HOBJ-CHECKQ
 MQMD
 MQGMO
 Wð3-BUFFLEN
 Wð3-MSG-BUFFER
 Wð3-DATALEN
 Wð3-COMPCODE
 Wð3-REASON.
\
\ Test the output of the MQGET call using the
\ PERFORM loop that follows.
\
\ Perform whilst no failure occurs
\ - process this message
\ - reset the call parameters
\ - get another message
\ End-perform
\

...
\
\ Test the output of the MQGET call. If the call
\ fails, send an error message showing the
\ completion code and reason code, unless the
\ completion code is NO-MSG-AVAILABLE.
\

IF (Wð3-COMPCODE NOT = MQCC-FAILED) OR
(Wð3-REASON NOT = MQRC-NO-MSG-AVAILABLE)
MOVE 'MQGET ' TO Mð2-OPERATION

 MOVE MQOD-OBJECTNAME TO Mð2-OBJECTNAME
 PERFORM RECORD-CALL-ERROR
 END-IF.

...

Figure 73 (Part 2 of 2). Using the MQGET call with
the wait option (COBOL)

504 MQSeries Application Programming Guide

 COBOL examples

Getting a message using
signaling

Signaling is available only with MQSeries for
OS/390.

Figure 74 demonstrates how to use the MQGET
call with signaling. This extract is taken from the
Credit Check sample application (program
CSQ4CVB2) supplied with MQSeries for OS/390.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wðð - General work fields

...
 ð1 Wðð-WAIT-INTERVAL PIC S9(ð9) BINARY VALUE 3ðððð.
\
\ Wð3 - MQM API fields
\
 ð1 Wð3-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð3-HOBJ-REPLYQ PIC S9(9) BINARY.
 ð1 Wð3-COMPCODE PIC S9(9) BINARY.
 ð1 Wð3-REASON PIC S9(9) BINARY.
 ð1 Wð3-DATALEN PIC S9(9) BINARY.
 ð1 Wð3-BUFFLEN PIC S9(9) BINARY.

...
 ð1 Wð3-GET-BUFFER.
 ð5 Wð3-CSQ4BQRM.
 COPY CSQ4VB4.
\

ð5 Wð3-CSQ4BIIM REDEFINES Wð3-CSQ4BQRM.
 COPY CSQ4VB1.
\

ð5 Wð3-CSQ4BPGM REDEFINES Wð3-CSQ4BIIM.
 COPY CSQ4VB5.

...
\ API control blocks
\
 ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 ð1 MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.

...
\ MQV contains constants (for filling in the
\ control blocks) and return codes (for testing
\ the result of a call).
\
 ð1 MQM-MQV.
 COPY CMQV SUPPRESS.
\ ---\
 LINKAGE SECTION.
\ ---\
 ð1 Lð1-ECB-ADDR-LIST.
 ð5 Lð1-ECB-ADDR1 POINTER.
 ð5 Lð1-ECB-ADDR2 POINTER.

Figure 74 (Part 1 of 3). Using the MQGET call with
signaling (COBOL)

\
 ð1 Lð2-ECBS.

ð5 Lð2-INQUIRY-ECB1 PIC S9(ð9) BINARY.
ð5 Lð2-REPLY-ECB2 PIC S9(ð9) BINARY.

 ð1 REDEFINES Lð2-ECBS.
 ð5 PIC X(ð2).

ð5 Lð2-INQUIRY-ECB1-CC PIC S9(ð4) BINARY.
 ð5 PIC X(ð2).

ð5 Lð2-REPLY-ECB2-CC PIC S9(ð4) BINARY.
\
\ ---\
 PROCEDURE DIVISION.
\ ---\

...
\ Initialize variables, open queues, set signal on
\ inquiry queue.

...
\ ---\
 PROCESS-SIGNAL-ACCEPTED SECTION.
\ ---\
\ This section gets a message with signal. If a \
\ message is received, process it. If the signal \
\ is set or is already set, the program goes into \
\ an operating system wait. \
\ Otherwise an error is reported and call error set. \
\ ---\
\
 PERFORM REPLYQ-GETSIGNAL.
\
 EVALUATE TRUE

WHEN (Wð3-COMPCODE = MQCC-OK AND
Wð3-REASON = MQRC-NONE)

 PERFORM PROCESS-REPLYQ-MESSAGE
\

WHEN (Wð3-COMPCODE = MQCC-WARNING AND
Wð3-REASON = MQRC-SIGNAL-REQUEST-ACCEPTED)

 OR
(Wð3-COMPCODE = MQCC-FAILED AND

Wð3-REASON = MQRC-SIGNAL-OUTSTANDING)
 PERFORM EXTERNAL-WAIT
\
 WHEN OTHER

MOVE 'MQGET SIGNAL' TO Mð2-OPERATION
MOVE MQOD-OBJECTNAME TO Mð2-OBJECTNAME

 PERFORM RECORD-CALL-ERROR
 MOVE Wð6-CALL-ERROR TO Wð6-CALL-STATUS
 END-EVALUATE.
\
 PROCESS-SIGNAL-ACCEPTED-EXIT.
\ Return to performing section
 EXIT.
 EJECT
\
\ ---\
 EXTERNAL-WAIT SECTION.
\ ---\
\ This section performs an external CICS wait on two \
\ ECBs until at least one is posted. It then calls \
\ the sections to handle the posted ECB. \
\ ---\

Figure 74 (Part 2 of 3). Using the MQGET call with
signaling (COBOL)

 Appendix D. COBOL examples 505

 COBOL examples

EXEC CICS WAIT EXTERNAL
 ECBLIST(Wð4-ECB-ADDR-LIST-PTR)
 NUMEVENTS(2)
 END-EXEC.
\
\ At least one ECB must have been posted to get to this
\ point. Test which ECB has been posted and perform
\ the appropriate section.
\

IF Lð2-INQUIRY-ECB1 NOT = ð
 PERFORM TEST-INQUIRYQ-ECB
 ELSE
 PERFORM TEST-REPLYQ-ECB
 END-IF.
\
 EXTERNAL-WAIT-EXIT.
\
\ Return to performing section.
\
 EXIT.
 EJECT

...
\ ---\
 REPLYQ-GETSIGNAL SECTION.
\ ---\
\ \
\ This section performs an MQGET call (in syncpoint with \
\ signal) on the reply queue. The signal field in the \
\ MQGMO is set to the address of the ECB. \
\ Response handling is done by the performing section. \
\ \
\ ---\
\
 COMPUTE MQGMO-OPTIONS = MQGMO-SYNCPOINT +
 MQGMO-SET-SIGNAL.
 MOVE Wðð-WAIT-INTERVAL TO MQGMO-WAITINTERVAL.

MOVE LENGTH OF Wð3-GET-BUFFER TO Wð3-BUFFLEN.
\
 MOVE ZEROS TO Lð2-REPLY-ECB2.

SET MQGMO-SIGNAL1 TO ADDRESS OF Lð2-REPLY-ECB2.
\
\ Set msgid and correlid to nulls so that any message
\ will qualify.
\

MOVE MQMI-NONE TO MQMD-MSGID.
MOVE MQCI-NONE TO MQMD-CORRELID.

\
CALL 'MQGET' USING Wð3-HCONN

 Wð3-HOBJ-REPLYQ
 MQMD
 MQGMO
 Wð3-BUFFLEN
 Wð3-GET-BUFFER
 Wð3-DATALEN
 Wð3-COMPCODE
 Wð3-REASON.
\
 REPLYQ-GETSIGNAL-EXIT.
\
\ Return to performing section.
\
 EXIT.
 EJECT
\

...

Figure 74 (Part 3 of 3). Using the MQGET call with
signaling (COBOL)

Inquiring about the attributes of
an object

Figure 75 demonstrates how to use the MQINQ
call to inquire about the attributes of a queue.
This extract is taken from the Queue Attributes
sample application (program CSQ4CVC1)
supplied with MQSeries for OS/390. For the
names and locations of the sample applications on
other platforms, see Chapter 31, “Sample
programs (all platforms except OS/390)” on
page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð2 - MQM API fields
\
 ð1 Wð2-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
 ð1 Wð2-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
 ð1 Wð2-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð2-CHARATTRS PIC X VALUE LOW-VALUES.
 ð1 Wð2-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð2-HOBJ PIC S9(9) BINARY.
 ð1 Wð2-COMPCODE PIC S9(9) BINARY.
 ð1 Wð2-REASON PIC S9(9) BINARY.
 ð1 Wð2-SELECTORS-TABLE.

ð5 Wð2-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES
 ð1 Wð2-INTATTRS-TABLE.

ð5 Wð2-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES
\
\ CMQODV defines the object descriptor (MQOD).
\
 ð1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
\
\ CMQV contains constants (for setting or testing field
\ values) and return codes (for testing the result of a
\ call).
\
 ð1 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\
\
\ Get the queue name and open the queue.
\

...
\
\ Initialize the variables for the inquiry call:
\ - Set Wð2-SELECTORS-TABLE to the attributes whose
\ status is required
\ - All other variables are already set
\

MOVE MQIA-INHIBIT-GET TO Wð2-SELECTORS(1).
MOVE MQIA-INHIBIT-PUT TO Wð2-SELECTORS(2).

Figure 75 (Part 1 of 2). Using the MQINQ call
(COBOL)

506 MQSeries Application Programming Guide

 COBOL examples

\
\ Inquire about the attributes.
\

CALL 'MQINQ' USING Wð2-HCONN,
 Wð2-HOBJ,
 Wð2-SELECTORCOUNT,
 Wð2-SELECTORS-TABLE,
 Wð2-INTATTRCOUNT,
 Wð2-INTATTRS-TABLE,
 Wð2-CHARATTRLENGTH,
 Wð2-CHARATTRS,
 Wð2-COMPCODE,
 Wð2-REASON.
\
\ Test the output from the inquiry:
\
\ - If the completion code is not OK, display an error
\ message showing the completion and reason codes
\
\ - Otherwise, move the correct attribute status into
\ the relevant screen map fields
\

IF Wð2-COMPCODE NOT = MQCC-OK
 MOVE 'MQINQ' TO Mð1-MSG4-OPERATION
 MOVE Wð2-COMPCODE TO Mð1-MSG4-COMPCODE
 MOVE Wð2-REASON TO Mð1-MSG4-REASON

MOVE Mð1-MESSAGE-4 TO Mðð-MESSAGE
\
 ELSE
\ Process the changes.

...
 END-IF.

...

Figure 75 (Part 2 of 2). Using the MQINQ call
(COBOL)

Setting the attributes of a queue

Figure 76 demonstrates how to use the MQSET
call to change the attributes of a queue. This
extract is taken from the Queue Attributes sample
application (program CSQ4CVC1) supplied with
MQSeries for OS/390. For the names and
locations of the sample applications on other
platforms, see Chapter 31, “Sample programs (all
platforms except OS/390)” on page 327.

...
\ ---\
 WORKING-STORAGE SECTION.
\ ---\
\
\ Wð2 - MQM API fields
\
 ð1 Wð2-SELECTORCOUNT PIC S9(9) BINARY VALUE 2.
 ð1 Wð2-INTATTRCOUNT PIC S9(9) BINARY VALUE 2.
 ð1 Wð2-CHARATTRLENGTH PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð2-CHARATTRS PIC X VALUE LOW-VALUES.
 ð1 Wð2-HCONN PIC S9(9) BINARY VALUE ZERO.
 ð1 Wð2-HOBJ PIC S9(9) BINARY.
 ð1 Wð2-COMPCODE PIC S9(9) BINARY.
 ð1 Wð2-REASON PIC S9(9) BINARY.
 ð1 Wð2-SELECTORS-TABLE.

ð5 Wð2-SELECTORS PIC S9(9) BINARY OCCURS 2 TIMES.
 ð1 Wð2-INTATTRS-TABLE.

ð5 Wð2-INTATTRS PIC S9(9) BINARY OCCURS 2 TIMES.
\
\ CMQODV defines the object descriptor (MQOD).
\
 ð1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
\
\ CMQV contains constants (for setting or testing
\ field values) and return codes (for testing the
\ result of a call).
\
 ð1 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
\ ---\
 PROCEDURE DIVISION.
\ ---\

Figure 76 (Part 1 of 2). Using the MQSET call
(COBOL)

 Appendix D. COBOL examples 507

 COBOL examples

\
\ Get the queue name and open the queue.
\

...
\
\
\ Initialize the variables required for the set call:
\ - Set Wð2-SELECTORS-TABLE to the attributes to be set
\ - Set Wð2-INTATTRS-TABLE to the required status
\ - All other variables are already set
\
 MOVE MQIA-INHIBIT-GET TO Wð2-SELECTORS(1).
 MOVE MQIA-INHIBIT-PUT TO Wð2-SELECTORS(2).

MOVE MQQA-GET-INHIBITED TO Wð2-INTATTRS(1).
MOVE MQQA-PUT-INHIBITED TO Wð2-INTATTRS(2).

\
\ Set the attributes.
\

CALL 'MQSET' USING Wð2-HCONN,
 Wð2-HOBJ,
 Wð2-SELECTORCOUNT,
 Wð2-SELECTORS-TABLE,
 Wð2-INTATTRCOUNT,
 Wð2-INTATTRS-TABLE,
 Wð2-CHARATTRLENGTH,
 Wð2-CHARATTRS,
 Wð2-COMPCODE,
 Wð2-REASON.
\
\ Test the output from the call:
\
\ - If the completion code is not OK, display an error
\ message showing the completion and reason codes
\
\ - Otherwise, move 'INHIBITED' into the relevant
\ screen map fields
\

IF Wð2-COMPCODE NOT = MQCC-OK
 MOVE 'MQSET' TO Mð1-MSG4-OPERATION
 MOVE Wð2-COMPCODE TO Mð1-MSG4-COMPCODE
 MOVE Wð2-REASON TO Mð1-MSG4-REASON

MOVE Mð1-MESSAGE-4 TO Mðð-MESSAGE
 ELSE
\
\ Process the changes.

...
 END-IF.

Figure 76 (Part 2 of 2). Using the MQSET call
(COBOL)

508 MQSeries Application Programming Guide

 Assembler-language examples

Appendix E. System/390 assembler-language examples

The extracts in this appendix are mostly taken from the MQSeries for OS/390
sample applications.

The examples in this appendix demonstrate the following techniques:

Connecting to a queue manager Figure 77 on page 510
Disconnecting from a queue manager Figure 78 on page 510
Creating a dynamic queue Figure 79 on page 511
Opening an existing queue Figure 80 on page 512
Closing a queue Figure 81 on page 512
Putting a message Figure 82 on page 513
Putting a message with the MQPUT1 call Figure 83 on page 513
Getting a message Figure 84 on page 514
Getting a message using the wait option Figure 85 on page 515
Getting a message using signaling Figure 86 on page 516
Inquiring about and setting the attributes of a queue Figure 87 on page 517

 Copyright IBM Corp. 1993,1999 509

 Assembler-language examples

Connecting to a queue manager

| Figure 77 demonstrates how to use the MQCONN
| call to connect a program to a queue manager in
| OS/390 batch. This extract is taken from the

Browse sample program (CSQ4BAA1) supplied
with MQSeries for OS/390.

...
WORKAREA DSECT
\
PARMLIST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\
COMPCODE DS F Completion code
REASON DS F Reason code
HCONN DS F Connection handle
 ORG
PARMADDR DS F Address of parm field
PARMLEN DS H Length of parm field
\
MQMNAME DS CL48 Queue manager name
\
\
\\
\ SECTION NAME : MAINPARM \
\\
MAINPARM DS ðH
 MVI MQMNAME,X'4ð'
 MVC MQMNAME+1(L'MQMNAME-1),MQMNAME
\
\ Space out first byte and initialize
\
\
\ Code to address and verify parameters passed omitted
\
\
PARM1MVE DS ðH

SR R1,R3 Length of data
LA R4,MQMNAME Address for target
BCTR R1,Rð Reduce for execute
EX R1,MOVEPARM Move the data

\
\\
\ EXECUTES \
\\
MOVEPARM MVC ð(\-\,R4),ð(R3)
\
 EJECT

Figure 77 (Part 1 of 2). Using the MQCONN call
(Assembler language)

\\
\ SECTION NAME : MAINCONN \
\\
\
\
MAINCONN DS ðH

XC HCONN,HCONN Null connection handle
\
 CALL MQCONN, X
 (MQMNAME, X
 HCONN, X
 COMPCODE, X
 REASON), X
 MF=(E,PARMLIST),VL
\
 LA Rð,MQCC_OK Expected compcode
 C Rð,COMPCODE As expected?

BER R6 Yes .. return to caller
\

MVC INF4_TYP,=CL1ð'CONNECT '
 BAL R7,ERRCODE Translate error

LA Rð,8 Set exit code
 ST Rð,EXITCODE to 8

B ENDPROG End the program
\

Figure 77 (Part 2 of 2). Using the MQCONN call
(Assembler language)

Disconnecting from a queue
manager

| Figure 78 demonstrates how to use the MQDISC
| call to disconnect a program from a queue
| manager in OS/390 batch. This extract is not

taken from the sample applications supplied with
MQSeries.

...
\
\ ISSUE MQI DISC REQUEST USING REENTRANT FORM
\ OF CALL MACRO
\
\ HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
\ R5 = WORK REGISTER
\
DISC DS ðH
 CALL MQDISC, X
 (HCONN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL

...

Figure 78 (Part 1 of 2). Using the MQDISC call
(Assembler language)

510 MQSeries Application Programming Guide

 Assembler-language examples

BADCALL DS ðH
...

\ CONSTANTS
\
 CMQA
\
\ WORKING STORAGE (RE-ENTRANT)
\
WEG3 DSECT
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\
HCONN DS F
COMPCODE DS F
REASON DS F
\
\
LEG3 EQU \-WKEG3
 END

Figure 78 (Part 2 of 2). Using the MQDISC call
(Assembler language)

Creating a dynamic queue

Figure 79 demonstrates how to use the MQOPEN
call to create a dynamic queue. This extract is not
taken from the sample applications supplied with
MQSeries.

...
\
\ R5 = WORK REGISTER.
\
OPEN DS ðH
\
MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
\ MQOD WITH DEFAULTS
MVC WOD_OBJECTNAME,MOD_Q COPY IN THE MODEL Q NAME
MVC WOD_DYNAMICQNAME,DYN_Q COPY IN THE DYNAMIC Q NAME
L R5,=AL4(MQOO_OUTPUT) OPEN FOR OUTPUT AND
A R5,=AL4(MQOO_INQUIRE) INQUIRE
ST R5,OPTIONS

Figure 79 (Part 1 of 2). Using the MQOPEN call to
create a dynamic queue (Assembler language)

\
\ ISSUE MQI OPEN REQUEST USING REENTRANT
\ FORM OF CALL MACRO
\
 CALL MQOPEN, X
 (HCONN, X
 WOD, X
 OPTIONS, X
 HOBJ, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK CHECK THE COMPLETION CODE
C R5,COMPCODE FROM THE REQUEST AND BRANCH
BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

\
 MVC TEMP_Q,WOD_OBJECTNAME SAVE NAME OF TEMPORARY Q
\ CREATED BY OPEN OF MODEL Q
\

...
BADCALL DS ðH

...
\
\
\ CONSTANTS:
\
MOD_Q DC CL48'QUERY.REPLY.MODEL' MODEL QUEUE NAME
DYN_Q DC CL48'QUERY.TEMPQ.\' DYNAMIC QUEUE NAME
\

CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
CMQA MQI VALUE EQUATES

\
\ WORKING STORAGE
\
 DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
TEMP_Q DS CL(MQ_Q_NAME_LENGTH) SAVED QNAME AFTER OPEN
\
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L LIST FORM
 OF CALL
\ MACRO

...
 END

Figure 79 (Part 2 of 2). Using the MQOPEN call to
create a dynamic queue (Assembler language)

 Appendix E. System/390 assembler-language examples 511

 Assembler-language examples

Opening an existing queue

Figure 80 demonstrates how to use the MQOPEN
call to open a queue that has already been
defined. It shows how to specify two options.
This extract is not taken from the sample
applications supplied with MQSeries.

...
\
\ R5 = WORK REGISTER.
\
OPEN DS ðH
\

MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
\ MQOD WITH DEFAULTS

MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME TO OPEN
 LA R5,MQOO_INPUT_EXCLUSIVE OPEN FOR MQGET CALLS
\
 ST R5,OPTIONS
\
\ ISSUE MQI OPEN REQUEST USING REENTRANT FORM
\ OF CALL MACRO
\
 CALL MQOPEN, X
 (HCONN, X
 WOD, X
 OPTIONS, X
 HOBJ, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK CHECK THE COMPLETION CODE
C R5,COMPCODE FROM THE REQUEST AND BRANCH
BNE BADCALL TO ERROR ROUTINE IF NOT MQCC_OK

\
...

BADCALL DS ðH
...

\
\
\ CONSTANTS:
\
Q_NAME DC CL48'REQUEST.QUEUE' NAME OF QUEUE TO OPEN
\

CMQODA DSECT=NO,LIST=YES CONSTANT VERSION OF MQOD
CMQA MQI VALUE EQUATES

\
\ WORKING STORAGE
\
 DFHEISTG
HCONN DS F CONNECTION HANDLE
OPTIONS DS F OPEN OPTIONS
HOBJ DS F OBJECT HANDLE
COMPCODE DS F MQI COMPLETION CODE
REASON DS F MQI REASON CODE
\
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L LIST FORM
 OF CALL
\ MACRO

...
 END

Figure 80. Using the MQOPEN call to open an existing
queue (Assembler language)

Closing a queue

Figure 81 demonstrates how to use the
MQCLOSE call to close a queue. This extract is
not taken from the sample applications supplied
with MQSeries.

...
\
\ ISSUE MQI CLOSE REQUEST USING REENTRANT FROM OF
\ CALL MACRO
\
\ HCONN WAS SET BY A PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY A PREVIOUS MQOPEN REQUEST
\ R5 = WORK REGISTER
\
CLOSE DS ðH

LA R5,MQCO_NONE NO SPECIAL CLOSE OPTIONS
 ST R5,OPTIONS ARE REQUIRED.
\
 CALL MQCLOSE, X
 (HCONN, X
 HOBJ, X
 OPTIONS, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
\

...
BADCALL DS ðH

...
\ CONSTANTS
\
 CMQA
\
\ WORKING STORAGE (REENTRANT)
\
WEG4 DSECT
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\
HCONN DS F
HOBJ DS F
OPTIONS DS F
COMPCODE DS F
REASON DS F
\
\
LEG4 EQU \-WKEG4
 END

Figure 81. Using the MQCLOSE call (Assembler
language)

512 MQSeries Application Programming Guide

 Assembler-language examples

Putting a message using MQPUT

Figure 82 demonstrates how to use the MQPUT
call to put a message on a queue. This extract is
not taken from the sample applications supplied
with MQSeries.

...
\ CONNECT TO QUEUE MANAGER
\
CONN DS ðH

...
\
\ OPEN A QUEUE
\
OPEN DS ðH

...
\
\ R4,R5,R6,R7 = WORK REGISTER.
\
PUT DS ðH

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

\ OF MESSAGE DESCRIPTOR
\

MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO
\

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

\
MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT

\
\ ISSUE MQI PUT REQUEST USING REENTRANT FORM
\ OF CALL MACRO
\
\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
\
 CALL MQPUT, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WPMO, X
 BUFFLEN, X
 BUFFER, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
\

...
BADCALL DS ðH

...

Figure 82 (Part 1 of 2). Using the MQPUT call
(Assembler language)

\
\ CONSTANTS
\
 CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
 CMQPMOA DSECT=NO,LIST=YES
 CMQA
TEST_MSG DC CL8ð'THIS IS A TEST MESSAGE'
\
\ WORKING STORAGE DSECT
\
WORKSTG DSECT
\
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
\
BUFFER DS CL8ð
BUFFER_LEN EQU \-BUFFER
\
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\

...
 END

Figure 82 (Part 2 of 2). Using the MQPUT call
(Assembler language)

Putting a message using
MQPUT1

Figure 83 demonstrates how to use the MQPUT1
call to open a queue, put a single message on the
queue, then close the queue. This extract is not
taken from the sample applications supplied with
MQSeries.

...
\
\ CONNECT TO QUEUE MANAGER
\
CONN DS ðH

...
\
\ R4,R5,R6,R7 = WORK REGISTER.
\
PUT DS ðH
\
 MVC WOD_AREA,MQOD_AREA INITIALIZE WORKING VERSION OF
\ MQOD WITH DEFAULTS
MVC WOD_OBJECTNAME,Q_NAME SPECIFY Q NAME FOR PUT1
\
 LA R4,MQMD SET UP ADDRESSES AND
 LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
 LA R6,WMD INSTRUCTION, AS MQMD IS
 LA R7,WMD_LENGTH OVER 256 BYES LONG.
 MVCL R6,R4 INITIALIZE WORKING VERSION
\ OF MESSAGE DESCRIPTOR

Figure 83 (Part 1 of 2). Using the MQPUT1 call
(Assembler language)

 Appendix E. System/390 assembler-language examples 513

 Assembler-language examples

\
 MVC WPMO_AREA,MQPMO_AREA INITIALIZE WORKING MQPMO
\

 LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
 ST R5,BUFFLEN AND SAVE IT FOR MQM USE
\
 MVC BUFFER,TEST_MSG SET THE MESSAGE TO BE PUT
\
\ ISSUE MQI PUT REQUEST USING REENTRANT FORM OF CALL MACRO
\
\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
\
 CALL MQPUT1, X
 (HCONN, X
 LMQOD, X
 LMQMD, X
 LMQPMO, X
 BUFFERLENGTH, X
 BUFFER, X
 COMPCODE, X
 REASON),VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
\

...
BADCALL DS ðH

...
\
\ CONSTANTS
\
 CMQMDA DSECT=NO,LIST=YES,PERSISTENCE=MQPER_PERSISTENT
 CMQPMOA DSECT=NO,LIST=YES
 CMQODA DSECT=NO,LIST=YES
 CMQA
\
TEST_MSG DC CL8ð'THIS IS ANOTHER TEST MESSAGE'
Q_NAME DC CL48'TEST.QUEUE.NAME'
\
\ WORKING STORAGE DSECT
\
WORKSTG DSECT
\
COMPCODE DS F
REASON DS F
BUFFLEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
\
BUFFER DS CL8ð
BUFFER_LEN EQU \-BUFFER
\
WOD CMQODA DSECT=NO,LIST=YES WORKING VERSION OF MQOD
WMD CMQMDA DSECT=NO,LIST=NO
WPMO CMQPMOA DSECT=NO,LIST=NO
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\

...
 END

Figure 83 (Part 2 of 2). Using the MQPUT1 call
(Assembler language)

Getting a message

Figure 84 demonstrates how to use the MQGET
call to remove a message from a queue. This
extract is not taken from the sample applications
supplied with MQSeries.

...
\
\ CONNECT TO QUEUE MANAGER
\
CONN DS ðH

...
\
\ OPEN A QUEUE FOR GET
\
OPEN DS ðH

...
\
\ R4,R5,R6,R7 = WORK REGISTER.
\
GET DS ðH

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

\ OF MESSAGE DESCRIPTOR
\

MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO
\

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

\
\
\ ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
\
\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
\
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK
 C R5,COMPCODE
 BNE BADCALL
\

...
BADCALL DS ðH

...

Figure 84 (Part 1 of 2). Using the MQGET call
(Assembler language)

514 MQSeries Application Programming Guide

 Assembler-language examples

\
\ CONSTANTS
\
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
\
\ WORKING STORAGE DSECT
\
WORKSTG DSECT
\
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
\
BUFFER DS CL8ð
BUFFER_LEN EQU \-BUFFER
\
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\

...
 END

Figure 84 (Part 2 of 2). Using the MQGET call
(Assembler language)

Getting a message using the wait
option

Figure 85 demonstrates how to use the wait
option of the MQGET call. This code accepts
truncated messages. This extract is not taken
from the sample applications supplied with
MQSeries.

...
\ CONNECT TO QUEUE MANAGER
CONN DS ðH

...
\ OPEN A QUEUE FOR GET
OPEN DS ðH

...
\ R4,R5,R6,R7 = WORK REGISTER.
GET DS ðH

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

\ OF MESSAGE DESCRIPTOR

Figure 85 (Part 1 of 3). Using the MQGET call with
the wait option (Assembler language)

\
MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO

 L R5,=AL4(MQGMO_WAIT)
 A R5,=AL4(MQGMO_ACCEPT_TRUNCATED_MSG)
 ST R5,WGMO_OPTIONS

MVC WGMO_WAITINTERVAL,TWO_MINUTES WAIT UP TO TWO
 MINUTES BEFORE
 FAILING THE
 CALL
\

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

\
\ ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
\
\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
\
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
\
 LA R5,MQCC_OK DID THE MQGET REQUEST
 C R5,COMPCODE WORK OK?
 BE GETOK YES, SO GO AND PROCESS.
 LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
C R5,COMPCODE IS THIS A WARNING?

 BE CHECK_W YES, SO CHECK THE REASON.
\
 LA R5,MQRC_NO_MSG_AVAILABLE IT MUST BE AN ERROR.

IS IT DUE TO AN EMPTY
 C R5,REASON QUEUE?
 BE NOMSG YES, SO HANDLE THE ERROR
B BADCALL NO, SO GO TO ERROR ROUTINE

\
CHECK_W DS ðH

LA R5,MQRC_TRUNCATED_MSG_ACCEPTED IS THIS A
 TRUNCATED
 C R5,REASON MESSAGE?

BE GETOK YES, SO GO AND PROCESS.
B BADCALL NO, SOME OTHER WARNING

\
NOMSG DS ðH

...
GETOK DS ðH

...
BADCALL DS ðH

...
\
\ CONSTANTS
\
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
\
TWO_MINUTES DC F'12ðððð' GET WAIT INTERVAL
\
\ WORKING STORAGE DSECT

Figure 85 (Part 2 of 3). Using the MQGET call with
the wait option (Assembler language)

 Appendix E. System/390 assembler-language examples 515

 Assembler-language examples

\
WORKSTG DSECT
\
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
\
BUFFER DS CL8ð
BUFFER_LEN EQU \-BUFFER
\
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\

...
 END

Figure 85 (Part 3 of 3). Using the MQGET call with
the wait option (Assembler language)

Getting a message using
signaling

Figure 86 demonstrates how to use the MQGET
call to set a signal so that you are notified when a
suitable message arrives on a queue. This extract
is not taken from the sample applications supplied
with MQSeries.

...
\
\ CONNECT TO QUEUE MANAGER
\
CONN DS ðH

...
\
\ OPEN A QUEUE FOR GET
\
OPEN DS ðH

...
\
\ R4,R5,R6,R7 = WORK REGISTER.
\
GET DS ðH

LA R4,MQMD SET UP ADDRESSES AND
LA R5,MQMD_LENGTH LENGTH FOR USE BY MVCL
LA R6,WMD INSTRUCTION, AS MQMD IS
LA R7,WMD_LENGTH OVER 256 BYES LONG.
MVCL R6,R4 INITIALIZE WORKING VERSION

\ OF MESSAGE DESCRIPTOR

Figure 86 (Part 1 of 3). Using the MQGET call with
signaling (Assembler language)

\
MVC WGMO_AREA,MQGMO_AREA INITIALIZE WORKING MQGMO

 LA R5,MQGMO_SET_SIGNAL
 ST R5,WGMO_OPTIONS

MVC WGMO_WAITINTERVAL,FIVE_MINUTES WAIT UP TO FIVE
 MINUTES BEFORE
\ FAILING THE CALL
\

XC SIG_ECB,SIG_ECB CLEAR THE ECB
LA R5,SIG_ECB GET THE ADDRESS OF THE ECB
ST R5,WGMO_SIGNAL1 AND PUT IT IN THE WORKING

\ MQGMO
\

LA R5,BUFFER_LEN RETRIEVE THE BUFFER LENGTH
ST R5,BUFFLEN AND SAVE IT FOR MQM USE

\
\
\ ISSUE MQI GET REQUEST USING REENTRANT FORM OF CALL MACRO
\
\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST
\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST
\
 CALL MQGET, X
 (HCONN, X
 HOBJ, X
 WMD, X
 WGMO, X
 BUFFLEN, X
 BUFFER, X
 DATALEN, X
 COMPCODE, X
 REASON), X
 VL,MF=(E,CALLLST)
\

LA R5,MQCC_OK DID THE MQGET REQUEST
 C R5,COMPCODE WORK OK?

BE GETOK YES, SO GO AND PROCESS.
LA R5,MQCC_WARNING NO, SO CHECK FOR A WARNING.
C R5,COMPCODE IS THIS A WARNING?
BE CHECK_W YES, SO CHECK THE REASON.
B BADCALL NO, SO GO TO ERROR ROUTINE

\

Figure 86 (Part 2 of 3). Using the MQGET call with
signaling (Assembler language)

516 MQSeries Application Programming Guide

 Assembler-language examples

CHECK_W DS ðH
 LA R5,MQRC_SIGNAL_REQUEST_ACCEPTED

C R5,REASON SIGNAL REQUEST SIGNAL SET?
BNE BADCALL NO, SOME ERROR OCCURRED
B DOWORK YES, SO DO SOMETHING

\ ELSE
\
CHECKSIG DS ðH
 CLC SIG_ECB+1(3),=AL3(MQEC_MSG_ARRIVED)

IS A MESSAGE AVAILABLE?
BE GET YES, SO GO AND GET IT

\
 CLC SIG_ECB+1(3),=AL3(MQEC_WAIT_INTERVAL_EXPIRED)

HAVE WE WAITED LONG ENOUGH?
BE NOMSG YES, SO SAY NO MSG AVAILABLE
B BADCALL IF IT'S ANYTHING ELSE

\ GO TO ERROR ROUTINE.
\
DOWORK DS ðH

...
TM SIG_ECB,X'4ð' HAS THE SIGNAL ECB BEEN POSTED?
BO CHECKSIG YES, SO GO AND CHECK WHY
B DOWORK NO, SO GO AND DO MORE WORK

\
NOMSG DS ðH

...
GETOK DS ðH

...
BADCALL DS ðH

...
\
\ CONSTANTS
\
 CMQMDA DSECT=NO,LIST=YES
 CMQGMOA DSECT=NO,LIST=YES
 CMQA
\
FIVE_MINUTES DC F'3ððððð' GET SIGNAL INTERVAL
\
\ WORKING STORAGE DSECT
\
WORKSTG DSECT
\
COMPCODE DS F
REASON DS F
BUFFLEN DS F
DATALEN DS F
OPTIONS DS F
HCONN DS F
HOBJ DS F
SIG_ECB DS F
\
BUFFER DS CL8ð
BUFFER_LEN EQU \-BUFFER
\
WMD CMQMDA DSECT=NO,LIST=NO
WGMO CMQGMOA DSECT=NO,LIST=NO
\
CALLLST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\

...
 END

Figure 86 (Part 3 of 3). Using the MQGET call with
signaling (Assembler language)

Inquiring about and setting the
attributes of a queue

Figure 87 demonstrates how to use the MQINQ
call to inquire about the attributes of a queue and
to use the MQSET call to change the attributes of
a queue. This extract is taken from the Queue
Attributes sample application (program
CSQ4CAC1) supplied with MQSeries for OS/390.

...
DFHEISTG DSECT

...
OBJDESC CMQODA LIST=YES Working object descriptor
\
SELECTORCOUNT DS F Number of selectors
INTATTRCOUNT DS F Number of integer attributes
CHARATTRLENGTH DS F char attributes length
CHARATTRS DS C Area for char attributes
\
OPTIONS DS F Command options
HCONN DS F Handle of connection
HOBJ DS F Handle of object
COMPCODE DS F Completion code
REASON DS F Reason code
SELECTOR DS 2F Array of selectors
INTATTRS DS 2F Array of integer attributes

...
OBJECT DS CL(MQ_Q_NAME_LENGTH) Name of queue

...
CALLLIST CALL ,(ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð),VL,MF=L
\\
\ PROGRAM EXECUTION STARTS HERE \

...
CSQ4CAC1 DFHEIENT CODEREG=(R3),DATAREG=(R13)

...
\ Initialize the variables for the set call
\

SR Rð,Rð Clear register zero
ST Rð,CHARATTRLENGTH Set char length to zero
LA Rð,2 Load to set

 ST Rð,SELECTORCOUNT selectors add
 ST Rð,INTATTRCOUNT integer attributes
\

LA Rð,MQIA_INHIBIT_GET Load q attribute selector
ST Rð,SELECTOR+ð Place in field
LA Rð,MQIA_INHIBIT_PUT Load q attribute selector
ST Rð,SELECTOR+4 Place in field

\
UPDTEST DS ðH

CLC ACTION,CINHIB Are we inhibiting?
BE UPDINHBT Yes branch to section

\
CLC ACTION,CALLOW Are we allowing?
BE UPDALLOW Yes branch to section

\
 MVC Mðð_MSG,Mð1_MSG1 Invalid request

BR R6 Return to caller
\

Figure 87 (Part 1 of 2). Using the MQINQ and
MQSET calls (Assembler language)

 Appendix E. System/390 assembler-language examples 517

 Assembler-language examples

UPDINHBT DS ðH
MVC UPDTYPE,CINHIBIT Indicate action type
LA Rð,MQQA_GET_INHIBITED Load attribute value
ST Rð,INTATTRS+ð Place in field
LA Rð,MQQA_PUT_INHIBITED Load attribute value
ST Rð,INTATTRS+4 Place in field
B UPDCALL Go and do call

\
UPDALLOW DS ðH

MVC UPDTYPE,CALLOWED Indicate action type
LA Rð,MQQA_GET_ALLOWED Load attribute value
ST Rð,INTATTRS+ð Place in field
LA Rð,MQQA_PUT_ALLOWED Load attribute value
ST Rð,INTATTRS+4 Place in field
B UPDCALL Go and do call

\
UPDCALL DS ðH
 CALL MQSET, C
 (HCONN, C
 HOBJ, C
 SELECTORCOUNT, C
 SELECTOR, C
 INTATTRCOUNT, C
 INTATTRS, C
 CHARATTRLENGTH, C
 CHARATTRS, C
 COMPCODE, C
 REASON), C
 VL,MF=(E,CALLLIST)
\

LA Rð,MQCC_OK Load expected compcode
C Rð,COMPCODE Was set successful?

...
\ SECTION NAME : INQUIRE \
\ FUNCTION : Inquires on the objects attributes \
\ CALLED BY : PROCESS \
\ CALLS : OPEN, CLOSE, CODES \
\ RETURN : To Register 6 \
INQUIRE DS ðH

...
\ Initialize the variables for the inquire call
\

SR Rð,Rð Clear register zero
ST Rð,CHARATTRLENGTH Set char length to zero
LA Rð,2 Load to set

 ST Rð,SELECTORCOUNT selectors add
 ST Rð,INTATTRCOUNT integer attributes
\

LA Rð,MQIA_INHIBIT_GET Load attribute value
ST Rð,SELECTOR+ð Place in field
LA Rð,MQIA_INHIBIT_PUT Load attribute value
ST Rð,SELECTOR+4 Place in field

 CALL MQINQ, C
 (HCONN, C
 HOBJ, C
 SELECTORCOUNT, C
 SELECTOR, C
 INTATTRCOUNT, C
 INTATTRS, C
 CHARATTRLENGTH, C
 CHARATTRS, C
 COMPCODE, C
 REASON), C
 VL,MF=(E,CALLLIST)

LA Rð,MQCC_OK Load expected compcode
C Rð,COMPCODE Was inquire successful?

...

Figure 87 (Part 2 of 2). Using the MQINQ and
MQSET calls (Assembler language)

518 MQSeries Application Programming Guide

 PL/I examples

 Appendix F. PL/I examples

| The use of PL/I is supported by MQSeries for AIX, OS/2 Warp, OS/390, VSE/ESA,
| and Windows NT only.

The examples demonstrate the following techniques:

Connecting to a queue manager Figure 88 on page 520
Disconnecting from a queue manager Figure 89 on page 520
Creating a dynamic queue Figure 90 on page 521
Opening an existing queue Figure 91 on page 521
Closing a queue Figure 92 on page 522
Putting a message Figure 93 on page 522
Putting a message with the MQPUT1 call Figure 94 on page 523
Getting a message Figure 95 on page 524
Getting a message using the wait option Figure 96 on page 525
Getting a message using signaling Figure 97 on page 526
Inquiring about the attributes of an object Figure 98 on page 527
Setting the attributes of a queue Figure 99 on page 528

 Copyright IBM Corp. 1993,1999 519

 PL/I examples

Connecting to a queue manager

| Figure 88 demonstrates how to use the MQCONN
| call to connect a program to a queue manager in
| OS/390 batch. This extract is not taken from the

sample applications supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
 /\\/

/\ STRUCTURE BASED ON PARAMETER INPUT AREA (PARAM) \/
 /\\/

DCL 1 INPUT_PARAM BASED(ADDR(PARAM)),
 2 PARAM_LENGTH FIXED BIN(15),
 2 PARAM_MQMNAME CHAR(48);

...
 /\\/

/\ WORKING STORAGE DECLARATIONS \/
 /\\/
 DCL MQMNAME CHAR(48);

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);

...
 /\\/

/\ COPY QUEUE MANAGER NAME PARAMETER \/
/\ TO LOCAL STORAGE \/

 /\\/
MQMNAME = ' ';
MQMNAME = SUBSTR(PARAM_MQMNAME,1,PARAM_LENGTH);

...
 /\\/

/\ CONNECT FROM THE QUEUE MANAGER \/
 /\\/

CALL MQCONN (MQMNAME, /\ MQM SYSTEM NAME \/
HCONN, /\ CONNECTION HANDLE \/
COMPCODE, /\ COMPLETION CODE \/
REASON); /\ REASON CODE \/

 /\\/
/\ TEST THE COMPLETION CODE OF THE CONNECT CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/

 /\\/
IF COMPCODE ¬= MQCC_OK

 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 88. Using the MQCONN call (PL/I)

Disconnecting from a queue
manager

| Figure 89 demonstrates how to use the MQDISC
| call to disconnect a program from a queue
| manager in OS/390 batch. This extract is not

taken from the sample applications supplied with
MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
 /\\/

/\ WORKING STORAGE DECLARATIONS \/
 /\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);

...
 /\\/

/\ DISCONNECT FROM THE QUEUE MANAGER \/
 /\\/

CALL MQDISC (HCONN, /\ CONNECTION HANDLE \/
COMPCODE, /\ COMPLETION CODE \/
REASON); /\ REASON CODE \/

/\\/
/\ TEST THE COMPLETION CODE OF THE DISCONNECT CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 89. Using the MQDISC call (PL/I)

520 MQSeries Application Programming Guide

 PL/I examples

Creating a dynamic queue

Figure 90 demonstrates how to use the MQOPEN
call to create a dynamic queue. This extract is not
taken from the sample applications supplied with
MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);

...
DCL MODEL_QUEUE_NAME CHAR(48) INIT('PL1.REPLY.MODEL');
DCL DYNAMIC_NAME_PREFIX CHAR(48) INIT('PL1.TEMPQ.\');
DCL DYNAMIC_QUEUE_NAME CHAR(48) INIT(' ');

...
/\\\/
/\ LOCAL COPY OF OBJECT DESCRIPTOR \/
/\\\/
DCL 1 LMQOD LIKE MQOD;

...
/\\\/
/\ SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE \/
/\\\/
LMQOD.OBJECTTYPE =MQOT_Q;
LMQOD.OBJECTNAME = MODEL_QUEUE_NAME;
LMQOD.DYNAMICQNAME = DYNAMIC_NAME_PREFIX;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,
 LMQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE OPEN CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\ IF THE CALL HAS SUCCEEDED THEN EXTRACT THE NAME OF \/
/\ THE NEWLY CREATED DYNAMIC QUEUE FROM THE OBJECT \/
/\ DESCRIPTOR. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;
 ELSE

DYNAMIC_QUEUE_NAME = LMQOD_OBJECTNAME;

Figure 90. Using the MQOPEN call to create a
dynamic queue (PL/I)

Opening an existing queue

Figure 91 demonstrates how to use the MQOPEN
call to open an existing queue. This extract is not
taken from the sample applications supplied with
MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);

...
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');

...
/\\\/
/\ LOCAL COPY OF OBJECT DESCRIPTOR \/
/\\\/
DCL 1 LMQOD LIKE MQOD;

...
/\\\/
/\ SET UP OBJECT DESCRIPTOR FOR OPEN OF REPLY QUEUE \/
/\\\/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;
OPTIONS = MQOO_INPUT_EXCLUSIVE;

CALL MQOPEN (HCONN,
 LMQOD,
 OPTIONS,
 HOBJ,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE OPEN CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 91. Using the MQOPEN call to open an existing
queue (PL/I)

 Appendix F. PL/I examples 521

 PL/I examples

Closing a queue

Figure 92 demonstrates how to use the
MQCLOSE call. This extract is not taken from the
sample applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);

...
/\\\/
/\ SET CLOSE OPTIONS \/
/\\\/
OPTIONS=MQCO_NONE;

/\\\/
/\ CLOSE QUEUE \/
/\\\/

CALL MQCLOSE (HCONN, /\ CONNECTION HANDLE \/
HOBJ, /\ OBJECT HANDLE \/
OPTIONS, /\ CLOSE OPTIONS \/
COMPCODE, /\ COMPLETION CODE \/
REASON); /\ REASON CODE \/

/\\\/
/\ TEST THE COMPLETION CODE OF THE CLOSE CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 92. Using the MQCLOSE call (PL/I)

Putting a message using MQPUT

Figure 93 demonstrates how to use the MQPUT
call using context. This extract is not taken from
the sample applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQP);
%INCLUDE SYSLIB(CMQEPP);
:
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(8ð);

...
DCL PL1_TEST_MESSAGE CHAR(8ð)
INIT('\\\\\ THIS IS A TEST MESSAGE \\\\\');

...
\\/
/\ LOCAL COPY OF MESSAGE DESCRIPTOR \/
/\ AND PUT MESSAGE OPTIONS \/
/\\\/
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;

...
/\\\/
/\ SET UP MESSAGE DESCRIPTOR \/
/\\\/
LMQMD.MSGTYPE = MQMT_DATAGRAM;
LMQMD.PRIORITY = 1;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = ' ';
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/\\\/
/\ SET UP PUT MESSAGE OPTIONS \/
/\\\/
LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/\\\/
/\ SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE \/
/\\\/
BUFFLEN = LENGTH(BUFFER);
BUFFER = PL1_TEST_MESSAGE;
/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ \/
/\\\/
CALL MQPUT (HCONN,
 HOBJ,
 LMQMD,
 LMQPMO,
 BUFFLEN,
 BUFFER,
 COMPCODE,
 REASON);

Figure 93 (Part 1 of 2). Using the MQPUT call (PL/I)

522 MQSeries Application Programming Guide

 PL/I examples

/\\\/
/\ TEST THE COMPLETION CODE OF THE PUT CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 93 (Part 2 of 2). Using the MQPUT call (PL/I)

Putting a message using
MQPUT1

Figure 94 demonstrates how to use the MQPUT1
call. This extract is not taken from the sample
applications supplied with MQSeries.

%INCLUDE SYSLIB(CMQEPP);
%INCLUDE SYSLIB(CMQP);
:
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/
DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL BUFFER CHAR(8ð);

...
DCL REPLY_TO_QUEUE CHAR(48) INIT('PL1.REPLY.QUEUE');
DCL QUEUE_NAME CHAR(48) INIT('PL1.LOCAL.QUEUE');
DCL PL1_TEST_MESSAGE CHAR(8ð)
INIT('\\\\\ THIS IS ANOTHER TEST MESSAGE \\\\\');
...

/\\\/
/\ LOCAL COPY OF OBJECT DESCRIPTOR, MESSAGE DESCRIPTOR \/
/\ AND PUT MESSAGE OPTIONS \/
/\\\/
DCL 1 LMQOD LIKE MQOD;
DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQPMO LIKE MQPMO;

...
/\\\/
/\ SET UP OBJECT DESCRIPTOR AS REQUIRED. \/
/\\\/
LMQOD.OBJECTTYPE = MQOT_Q;
LMQOD.OBJECTNAME = QUEUE_NAME;

/\\\/
/\ SET UP MESSAGE DESCRIPTOR AS REQUIRED. \/
/\\\/
LMQMD.MSGTYPE = MQMT_REQUEST;
LMQMD.PRIORITY = 5;
LMQMD.PERSISTENCE = MQPER_PERSISTENT;
LMQMD.REPLYTOQ = REPLY_TO_QUEUE;
LMQMD.REPLYTOQMGR = ' ';
LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

Figure 94 (Part 1 of 2). Using the MQPUT1 call (PL/I)

 Appendix F. PL/I examples 523

 PL/I examples

/\\\/
/\ SET UP PUT MESSAGE OPTIONS AS REQUIRED \/
/\\\/

LMQPMO.OPTIONS = MQPMO_NO_SYNCPOINT;

/\\\/
/\ SET UP LENGTH OF MESSAGE BUFFER AND THE MESSAGE \/
/\\\/

BUFFLEN = LENGTH(BUFFER);
BUFFER = PL1_TEST_MESSAGE;

CALL MQPUT1 (HCONN,
 LMQOD,
 LMQMD,
 LMQPMO,
 BUFFLEN,
 BUFFER,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE PUT1 CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING \/
/\ THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 94 (Part 2 of 2). Using the MQPUT1 call (PL/I)

Getting a message

Figure 95 demonstrates how to use the MQGET
call to remove a message from a queue. This
extract is not taken from the sample applications
supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);

 DCL BUFFER CHAR(8ð);

...

Figure 95 (Part 1 of 2). Using the MQGET call (PL/I)

/\\\/
/\ LOCAL COPY OF MESSAGE DESCRIPTOR AND \/
/\ GET MESSAGE OPTIONS \/
/\\\/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...
/\\\/
/\ SET UP MESSAGE DESCRIPTOR AS REQUIRED. \/
/\ MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST \/
/\ AVAILABLE MESSAGE WILL BE RETRIEVED. \/
/\\\/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/\\\/
/\ SET UP GET MESSAGE OPTIONS AS REQUIRED. \/
/\\\/

LMQGMO.OPTIONS = MQGMO_NO_SYNCPOINT;

/\\\/
/\ SET UP LENGTH OF MESSAGE BUFFER. \/
/\\\/

BUFFLEN = LENGTH(BUFFER);
/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ \/
/\\\/

CALL MQGET (HCONN,
 HOBJ,
 LMQMD,
 LMQGMO,
 BUFFERLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE GET CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE \/
/\ SHOWING THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 95 (Part 2 of 2). Using the MQGET call (PL/I)

524 MQSeries Application Programming Guide

 PL/I examples

Getting a message using the wait
option

Figure 96 demonstrates how to use the MQGET
call with the wait option and accepting truncated
messages. This extract is not taken from the
sample applications supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);

 DCL BUFFER CHAR(8ð);

...
/\\\/
/\ LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE \/
/\ OPTIONS \/
/\\\/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...
/\\\/
/\ SET UP MESSAGE DESCRIPTOR AS REQUIRED. \/
/\ MSGID AND CORRELID IN MQMD SET TO NULLS SO FIRST \/
/\ AVAILABLE MESSAGE WILL BE RETRIEVED. \/
/\\\/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/\\\/
/\ SET UP GET MESSAGE OPTIONS AS REQUIRED. \/
/\ WAIT INTERVAL SET TO ONE MINUTE. \/
/\\\/

LMQGMO.OPTIONS = MQGMO_WAIT +
 MQGMO_ACCEPT_TRUNCATED_MSG +
 MQGMO_NO_SYNCPOINT;
 LMQGMO.WAITINTERVAL=6ðððð;

/\\\/
/\ SET UP LENGTH OF MESSAGE BUFFER. \/
/\\\/

BUFFLEN = LENGTH(BUFFER);

Figure 96 (Part 1 of 2). Using the MQGET call with
the wait option (PL/I)

/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ \/
/\\\/

CALL MQGET (HCONN,
 HOBJ,
 LMQMD,
 LMQGMO,
 BUFFERLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE GET CALL. \/
/\ TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND \/
/\ REASON CODE. \/
/\\\/

 SELECT(COMPCODE);
WHEN (MQCC_OK) DO; /\ GET WAS SUCCESSFUL \/

...
 END;

WHEN (MQCC_WARNING) DO;
IF REASON = MQRC_TRUNCATED_MSG_ACCEPTED
THEN DO; /\ GET WAS SUCCESSFUL \/

...
 END;
 ELSE DO;

...
 CALL ERROR_ROUTINE;
 END;
 END;

WHEN (MQCC_FAILED) DO;

...
 CALL ERROR_ROUTINE;
 END;
 END;
 OTHERWISE;
 END;

Figure 96 (Part 2 of 2). Using the MQGET call with
the wait option (PL/I)

 Appendix F. PL/I examples 525

 PL/I examples

Getting a message using
signaling

Signaling is available only with MQSeries for
OS/390.

Figure 97 demonstrates how to use the MQGET
call with signaling. This extract is not taken from
the sample applications supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL DATALEN BINARY FIXED (31);
DCL BUFFLEN BINARY FIXED (31);

 DCL BUFFER CHAR(8ð);

...
 DCL ECB_FIXED FIXED BIN(31);

DCL 1 ECB_OVERLAY BASED(ADDR(ECB_FIXED)),
 3 ECB_WAIT BIT,
 3 ECB_POSTED BIT,

3 ECB_FLAG3_8 BIT(6),
 3 ECB_CODE PIC'999';

...
/\\\/
/\ LOCAL COPY OF MESSAGE DESCRIPTOR AND GET MESSAGE \/
/\ OPTIONS \/
/\\\/

DCL 1 LMQMD LIKE MQMD;
DCL 1 LMQGMO LIKE MQGMO;

...
/\\\/
/\ CLEAR ECB FIELD. \/
/\\\/

ECB_FIXED = ð;

...
/\\\/
/\ SET UP MESSAGE DESCRIPTOR AS REQUIRED. \/
/\ MSGID AND CORRELLID IN MQMD SET TO NULLS SO FIRST \/
/\ AVAILABLE MESSAGE WILL BE RETRIEVED. \/
/\\\/

LMQMD.MSGID = MQMI_NONE;
LMQMD.CORRELID = MQCI_NONE;

/\\\/
/\ SET UP GET MESSAGE OPTIONS AS REQUIRED. \/
/\ WAIT INTERVAL SET TO ONE MINUTE. \/
/\\\/

LMQGMO.OPTIONS = MQGMO_SET_SIGNAL +
 MQGMO_NO_SYNCPOINT;
 LMQGMO.WAITINTERVAL=6ðððð;

LMQGMO.SIGNAL1 = ADDR(ECB_FIXED);

Figure 97 (Part 1 of 3). Using the MQGET call with
signaling (PL/I)

/\\\/
/\ SET UP LENGTH OF MESSAGE BUFFER. \/
/\ CALL MESSGE RETRIEVAL ROUTINE. \/
/\\\/

BUFFLEN = LENGTH(BUFFER);
 CALL GET_MSG;

/\\\/
/\ TEST THE COMPLETION CODE OF THE GET CALL. \/
/\ TAKE APPROPRIATE ACTION BASED ON COMPLETION CODE AND \/
/\ REASON CODE. \/
/\\\/

 SELECT;
WHEN ((COMPCODE = MQCC_OK) &

(REASON = MQCC_NONE)) DO

...
 CALL MSG_ROUTINE;

...
 END;

WHEN ((COMPCODE = MQCC_WARNING) &
(REASON = MQRC_SIGNAL_REQUEST_ACCEPTED)) DO;

...
 CALL DO_WORK;

...
 END;

WHEN ((COMPCODE = MQCC_FAILED) &
(REASON = MQRC_SIGNAL_OUTSTANDING)) DO;

...
 CALL DO_WORK;

...
 END;

OTHERWISE DO; /\ FAILURE CASE \/
/\\\/
/\ ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE \/
/\ AND THE REASON CODE. \/
/\\\/

...
 CALL ERROR_ROUTINE;

...
 END;
 END;

...

Figure 97 (Part 2 of 3). Using the MQGET call with
signaling (PL/I)

526 MQSeries Application Programming Guide

 PL/I examples

 DO_WORK: PROC;

...
 IF ECB_POSTED
 THEN DO;
 SELECT(ECB_CODE);
 WHEN(MQEC_MSG_ARRIVED) DO;

...
 CALL GET_MSG;

...
 END;
 WHEN(MQEC_WAIT_INTERVAL_EXPIRED) DO;

...
 CALL NO_MSG;

...
 END;

OTHERWISE DO; /\ FAILURE CASE \/
/\\\/
/\ ISSUE AN ERROR MESSAGE SHOWING THE COMPLETION CODE \/
/\ AND THE REASON CODE. \/
/\\\/

...
 CALL ERROR_ROUTINE;

...
 END;

 END;

 END;

...
 END DO_WORK;

 GET_MSG: PROC;
/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ MD AND GMO SET UP AS REQUIRED. \/
/\ \/
/\\\/

CALL MQGET (HCONN,
 HOBJ,
 LMQMD,
 LMQGMO,
 BUFFLEN,
 BUFFER,
 DATALEN,
 COMPCODE,
 REASON);

 END GET_MSG;

 NO_MSG: PROC;

...
 END NO_MSG;

Figure 97 (Part 3 of 3). Using the MQGET call with
signaling (PL/I)

Inquiring about the attributes of
an object

Figure 98 demonstrates how to use the MQINQ
call to inquire about the attributes of a queue.
This extract is not taken from the sample
applications supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL SELECTORCOUNT BINARY FIXED (31);
DCL INTATTRCOUNT BINARY FIXED (31);
DCL 1 SELECTOR_TABLE,

3 SELECTORS(5) BINARY FIXED (31);
DCL 1 INTATTR_TABLE,

3 INTATTRS(5) BINARY FIXED (31);
DCL CHARATTRLENGTH BINARY FIXED (31);

 DCL CHARATTRS CHAR(1ðð);

...

/\\\/
/\ SET VARIABLES FOR INQUIRE CALL \/
/\ INQUIRE ON THE CURRENT QUEUE DEPTH \/
/\\\/

SELECTORS(ð1) = MQIA_CURRENT_Q_DEPTH;

 SELECTORCOUNT = 1;
 INTATTRCOUNT = 1;

CHARATTRLENGTH = ð;
/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ \/
/\\\/

CALL MQINQ (HCONN,
 HOBJ,
 SELECTORCOUNT,
 SELECTORS,
 INTATTRCOUNT,
 INTATTRS,
 CHARATTRLENGTH,
 CHARATTRS,
 COMPCODE,
 REASON);

Figure 98 (Part 1 of 2). Using the MQINQ call (PL/I)

 Appendix F. PL/I examples 527

 PL/I examples

/\\\/
/\ TEST THE COMPLETION CODE OF THE INQUIRE CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING \/
/\ THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 98 (Part 2 of 2). Using the MQINQ call (PL/I)

Setting the attributes of a queue

Figure 99 demonstrates how to use the MQSET
call to change the attributes of a queue. This
extract is not taken from the sample applications
supplied with MQSeries.

 %INCLUDE SYSLIB(CMQP);
 %INCLUDE SYSLIB(CMQEPP);
 :
/\\\/
/\ WORKING STORAGE DECLARATIONS \/
/\\\/

DCL COMPCODE BINARY FIXED (31);
DCL REASON BINARY FIXED (31);
DCL HCONN BINARY FIXED (31);
DCL HOBJ BINARY FIXED (31);
DCL OPTIONS BINARY FIXED (31);
DCL SELECTORCOUNT BINARY FIXED (31);
DCL INTATTRCOUNT BINARY FIXED (31);
DCL 1 SELECTOR_TABLE,

3 SELECTORS(5) BINARY FIXED (31);
DCL 1 INTATTR_TABLE,

3 INTATTRS(5) BINARY FIXED (31);
DCL CHARATTRLENGTH BINARY FIXED (31);

 DCL CHARATTRS CHAR(1ðð);

...

/\\\/
/\ SET VARIABLES FOR SET CALL \/
/\ SET GET AND PUT INHIBITED \/
/\\\/

SELECTORS(ð1) = MQIA_INHIBIT_GET;
SELECTORS(ð2) = MQIA_INHIBIT_PUT;

INTATTRS(ð1) = MQQA_GET_INHIBITED;
INTATTRS(ð2) = MQQA_PUT_INHIBITED;

 SELECTORCOUNT = 2;
 INTATTRCOUNT = 2;

CHARATTRLENGTH = ð;

Figure 99 (Part 1 of 2). Using the MQSET call (PL/I)

/\\\/
/\ \/
/\ HCONN WAS SET BY PREVIOUS MQCONN REQUEST. \/
/\ HOBJ WAS SET BY PREVIOUS MQOPEN REQUEST. \/
/\ \/
/\\\/

CALL MQSET (HCONN,
 HOBJ,
 SELECTORCOUNT,
 SELECTORS,
 INTATTRCOUNT,
 INTATTRS,
 CHARATTRLENGTH,
 CHARATTRS,
 COMPCODE,
 REASON);

/\\\/
/\ TEST THE COMPLETION CODE OF THE SET CALL. \/
/\ IF THE CALL HAS FAILED ISSUE AN ERROR MESSAGE SHOWING \/
/\ THE COMPLETION CODE AND THE REASON CODE. \/
/\\\/

IF COMPCODE ¬= MQCC_OK
 THEN DO;

...
 CALL ERROR_ROUTINE;
 END;

Figure 99 (Part 2 of 2). Using the MQSET call (PL/I)

528 MQSeries Application Programming Guide

 Data definitions

Appendix G. MQSeries data definition files

MQSeries provides data definition files to assist you with the writing of your
applications. Data definition files are also known as:

Language Data definitions
C Include files or header files

| Visual Basic Module files
COBOL Copy files
Assembler Macros
PL/I Include files
TAL Header files

See Appendix A, “Language compilers and assemblers” on page 453 for the
compilers that are supported and suitable for use with these data definition files.

The data definition files to assist with the writing of channel exits are described in
the “Data definition files” in the MQSeries Intercommunication book.

| The data definition files to assist with the writing of installable services exits are
| described in Appendix C, “Header, COPY, and INCLUDE files” in the MQSeries
| Programmable System Management book.

| For data definition files supported on C++, see the MQSeries Using C++ book.

For data definition files supported on RPG, see the MQSeries for AS/400
Application Programming Reference (RPG) book.

The names of the data definition files have the prefix CMQ, and a suffix that is
determined by the programming language:

Suffix Language
a Assembler language
b Visual Basic
c C
l COBOL (without initialized values)
p PL/I
v COBOL (with default values set)

| Installation library

| The name thlqual is the high-level qualifier of the installation library on OS/390.

 Copyright IBM Corp. 1993,1999 529

 C include files

C language include files
| The MQSeries C include files are listed in Table 48. They are installed in the
| following directories or libraries:

| Platform Installation directory or library
| AIX /usr/mqm/inc/
| Digital OpenVMS /mqm/inc/
| Other UNIX platforms /opt/mqm/inc/
| OS/2 \mqm\tools\c\include
| Windows NT \Program Files\MQSeries\Tools\C\Include
| Windows V2.0 \MQW\INCLUDE
| Windows V2.1 \Program Files\MQSeries for Windows\Lib
| OS/390 thlqual .SCSQC370
| Tandem NSK $volume.zmqslib
| VSE/ESA PRD2.MQSERIES

Notes:

1. For UNIX platforms (not including Digital OpenVMS), the include files are
symbolically linked into /usr/include.

2. For AS/400, include files are supplied as members of H in library QMQM.

| For more information on the structure of directories, see Appendix B, “Directory
| structure (UNIX systems)” (for MQSeries for AIX, HP-UX, and Sun Solaris),
| Appendix C, “Directory structure (OS/2),” and Appendix D, “Directory structure
| (Windows NT),” in the MQSeries System Administration book; for other platforms,
| see the appropriate System Management Guide.

Table 48. C include files for MQSeries

File name Contents

<cmqc.h> Call prototypes, data types, structures, return
codes, and constants

| <cmqcfc.h> (1, 2)| Definitions for programmable commands

| <cmqxc.h>(2)| Definitions for channel exits and data-conversion
| exits

| <cmqzc.h>(2, 3, 4)| Definitions for installable services exits

Notes: The files are protected against multiple declaration, so you can include
them many times.

| 1. MQSeries for Windows does not provide this include file.
| 2. MQSeries for VSE/ESA does not provide this include file.
| 3. MQSeries for OS/390 and MQSeries for Windows do not provide this
| include file.
| 4. Not provided on MQSeries for AS/400.
| 5. On Tandem NSK filenames cannot contain a period (.) so the header
| filenames are <cmqch> and so on.

530 MQSeries Application Programming Guide

 Visual Basic module files

| Visual Basic module files
| MQSeries for Windows Version 2.0 provides two Visual Basic module files. They

are listed in Table 49 and installed in \MQW\INCLUDE.

| MQSeries for Windows Version 2.1 provides two Visual Basic module files. They
are listed in Table 50 and installed in \Program Files\MQSeries for Windows\Lib.

| MQSeries for Windows NT V5.1 provides four Visual Basic module files. They are
| listed in Table 51 and installed in
| \Program Files\MQSeries\Tools\Samples\VB\Include.

| Table 49. Visual Basic module files for MQSeries for Windows V2.0

File name Contents

CMQB3.BAS Call declarations, data types, and named constants
for the 16-bit MQI.(1)

CMQB4.BAS Call declarations, data types, and named constants
for both the 16-bit and 32-bit MQI.(2)

Notes:

1. Use this with Microsoft Visual Basic Version 3.
2. Use this with Microsoft Visual Basic Version 4.

| Table 50. Visual Basic module files for MQSeries for Windows V2.1

File name Contents

CMQB.BAS Call declarations, data types, and named constants
for the main MQI.

CMQB4.BAS Call declarations, data types, and named constants
for the channel exits.

Note: In a default installation, the form files (.BAS) are supplied in the
\Program Files\MQSeries for Windows\Include subdirectory.

| Table 51. Visual Basic module files for MQSeries for Windows NT V5.1

| File name| Contents

| CMQB.BAS| Call declarations, data types, and named constants
| for the main MQI.

| CMQBB.BAS| Call declarations, data types, and named constants
| for MQAI support.

| CMQCFB.BAS| Call declarations, data types, and named constants
| for PCF support.

| CMQXB.BAS| Call declarations, data types, and named constants
| for the channel exits.

 Appendix G. MQSeries data definition files 531

 COBOL copy files

COBOL copy files
For COBOL, MQSeries provides separate copy files containing the named
constants, and two copy files for each of the structures. There are two copy files
for each structure because each is provided both with and without initial values:

� In the WORKING-STORAGE SECTION of a COBOL program, use the files that
initialize the structure fields to default values. These structures are defined in
the copy files that have names suffixed with the letter “V” (values).

� In the LINKAGE SECTION of a COBOL program, use the structures without
initial values. These structures are defined in copy files that have names
suffixed with the letter “L” (linkage).

The MQSeries COBOL copy files are listed in Table 52 on page 533. They are
installed in the following directories:

| Platform Installation directory or library
| AIX /usr/mqm/inc/
| Digital OpenVMS /mqm/inc/
| Other UNIX platforms /opt/mqm/inc/
| OS/2 \mqm\tools\cobol\copybook (for Micro Focus COBOL)
| \mqm\tools\cobol\copybook\VAcobol (for IBM VisualAge
| COBOL)
| Windows NT \Program Files\MQSeries\Tools\Cobol\Copybook (for
| Micro Focus COBOL)
| \Program Files\MQSeries\Tools\Cobol\Copybook\VAcobol
| (for IBM VisualAge COBOL)
| OS/390 thlqual .SCSQCOBC
| Tandem NSK $volume.zmqslib
| VSE/ESA PRD2.MQSERIES

Notes: For AS/400, they are supplied in the library QMQM:

For OPM, they are supplied as members of the file QLBLSRC.

For ILE, they are supplied as members of the file QCBLLESRC.

For Tandem NSK, all the sections are contained in one ENSCRIBE file
CMCPCOBOL.

532 MQSeries Application Programming Guide

 COBOL copy files

Include in your program only those files you need. Do this with one or more COPY
statements after a level-01 declaration. This means you can include multiple
versions of the structures in a program if necessary. However, note that CMQV is
a large file.

Table 52. COBOL copy files

File name
(with initial
values)

File name
(without initial
values)

Contents

CMQBOV (not
AS/400)

CMQBOL (not
AS/400)

Begin options structure (MQBO)

| CMQCFV
| (OS/390 only)
| not applicable| Additional named constants for
| events and PCF commands

| CMQCIHV| CMQCIHL| CICS information header structure

CMQCNOV CMQCNOL Connect options structure (MQCNO)

CMQDHV CMQDHL Distribution header structure (MQDH)

CMQDLHV CMQDLHL Dead-letter (undelivered-message)
header structure (MQDLH)

CMQDXPV CMQDXPL Data-conversion exit parameter
structure (MQDXP)

CMQGMOV CMQGMOL Get-message options structure
(MQGMO)

CMQIIHV CMQIIHL IMS header structure (MQIIH)

CMQMDEV CMQMDEL Message descriptor extension
structure (MQMDE)

CMQMDV CMQMDL Message descriptor structure
(MQMD)

CMQODV CMQODL Object descriptor structure (MQOD)

CMQORV CMQORL Object record structure (MQOR)

CMQPMOV CMQPMOL Put-message options structure
(MQPMO)

CMQRRV CMQRRL Response record structure (MQRR)

CMQTMCV CMQTMCL Trigger-message structure (character
format)

CMQTMC2V CMQTMC2L Trigger-message structure (character
format) (MQTMC)

CMQTMV CMQTML Trigger-message structure (MQTM)

CMQV not applicable Named constants for the MQI

| CMQWIHV| CMQWIHL| Work-information header structure

CMQXQHV CMQXQHL Transmission-queue header structure
(MQXQH)

CMQXV not applicable Named constants for exits

 Appendix G. MQSeries data definition files 533

 COBOL copy files

Here is an example of COBOL code for including the CMQMDV copy file:

ð1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.

Each structure declaration begins with a level-10 item; this means you can declare
several instances of the structure by coding the level-01 declaration followed by a
COPY statement to copy in the remainder of the structure declaration. To refer to
the appropriate instance, use the IN keyword.

Here is an example of COBOL code for including two instances of CMQMDV:

\ Declare two instances of MQMD
 ð1 MY-CMQMD.
 COPY CMQMDV.
 ð1 MY-OTHER-CMQMD.
 COPY CMQMDV.
\
\ Set MSGTYPE field in MY-OTHER-CMQMD

MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

The structures should be aligned on 4-byte boundaries. If you use the COPY
statement to include a structure following an item that is not the level-01 item, try to
ensure that the structure is a multiple of 4-bytes from the start of the level-01 item.
If you do not do this, you may get a reduction in the performance of your
application.

| The structures are described in Chapter 2, “Data type descriptions - structures” in
| the MQSeries Application Programming Reference manual. The descriptions of the

field in the structures show the names of fields without a prefix. In COBOL
programs you must prefix the field names with the name of the structure followed
by a hyphen, as shown in the COBOL declarations. The fields in the structure copy
files are prefixed this way.

The field names in the declarations in the structure copy files are in uppercase.
You can use mixed case or lowercase instead. For example, the field StrucId of
the MQGMO structure is shown as MQGMO-STRUCID in the COBOL declaration
and in the copy file.

The V-suffix structures are declared with initial values for all of the fields, so you
need to set only those fields where the value required is different from the initial
value.

534 MQSeries Application Programming Guide

 Assembler-language macros

System/390 assembler-language macros
MQSeries for OS/390 provides two assembler-language macros containing the
named constants, and one macro to generate each structure. They are listed in
Table 53 and installed in thlqual .SCSQMACS.

These macros are called using code like this:

 MY_MQMD CMQMDA EXPIRY=ð,MSGTYPE=MQMT_DATAGRAM

Table 53. System/390 assembler-language macros

Macro Contents

CMQA Values of the return codes for the API calls
Constants for filling in the option fields
Constants for each object attribute, used by the MQINQ
and MQSET calls

| CMQCFA| Additional named constants for events and PCF
| commands

| CMQCIHA| CICS information-header structure

CMQDLHA Definition of the MQDLH structure

CMQDXPA Definition of the MQDXP structure

CMQGMOA Definition of the MQGMO structure

CMQIIHA Definition of the MQIIH structure

CMQMDA Definition of the MQMD structure

CMQODA Definition of the MQOD structure

CMQPMOA Definition of the MQPMO structure

CMQTMA Definition of the MQTM structure

CMQTMC2A Definition of the MQTMC2 structure

| CMQWIHA| Work-information header structure

CMQXA Constants for exits

CMQXPA Definition of the MQXP structure

CMQXQHA Definition of the MQXQH structure

 Appendix G. MQSeries data definition files 535

 PL/I include files

PL/I include files
MQSeries for OS/390, AIX, OS/2 Warp, and Windows NT provide include files that
contain all the definitions you need when you write MQSeries applications in PL/I.
They are listed in Table 54. They are installed in the following directories:

| Platform Installation directory or library
| AIX /usr/mqm/inc/
| OS/2 \mqm\tools\pli\include
| Windows NT \Program Files\MQSeries\Tools\PLI\Include
| OS/390 thlqual .SCSQPLIC
| VSE/ESA PRD2.MQSERIES

| Include these files in your program if you are going to link the MQSeries stub to
| your program (see “Preparing your program to run” on page 275). Include only
| CMQP if you intend to link the MQSeries calls dynamically (see “Dynamically
| calling the MQSeries stub” on page 279). Dynamic linking can be performed for

batch and IMS programs only.

Table 54. PL/I include files

Include file Contents

| CMQCFP(1)| Definitions for programmable commands

CMQEPP Entry point definitions for the API calls.

CMQP Definitions of all the constants and return codes, data
types and structures, and constants to initialize the
structures.

| CMQXP(1)| Definitions for channel exits and data-conversion exits on
| OS/390. Named constants related to PCF on AIX, OS/2
| Warp, and Windows NT.

| Note:

| 1. MQSeries for VSE/ESA does not provide this include file.

536 MQSeries Application Programming Guide

 MQSeries products

Appendix H. List of MQSeries products

At the time of publication of this document, MQSeries products were available for
the hardware and software platforms listed below.

| Some of the products in the list have been renamed. For those products, the name
| by which the product used to be known is given, as well as the current product
| name.

These products fall into two broad categories, Level 1 and Level 2, in respect of the
function they support. These are referred to in Appendix I, “MQSeries platforms -
functional comparisons” on page 539.

Level 1 products

Table 55. MQSeries products, Level 1

Product name Previous name

MQSeries for UnixWare V1.4.1 ezBRIDGE Transact on UnixWare for MQSeries Release 3.0

Level 2 products

| Table 56. MQSeries products, Level 2

| Product name| Server| Client

| MQSeries for AIX V5.1| Yes| Yes

| MQSeries for AS/400 V4R2M1| Yes| No

| MQSeries for AT&T GIS UNIX V2.2| Yes| Yes

| MQSeries for Digital OpenVMS V2.2| Yes| Yes

| MQSeries for HP-UX V5.1| Yes| Yes

| MQSeries for OS/2 Warp V5.1| Yes| Yes

| MQSeries for OS/390 V2.1
| (formerly MQSeries for MVS/ESA)
| Yes| No

| MQSeries for SINIX and DC/OSx V2.2| Yes| Yes

| MQSeries for Sun Solaris V5.1| Yes| Yes

| MQSeries for Tandem NonStop Kernel V2.2| Yes| No

| MQSeries for VSE/ESA V2.1| Yes| No

| MQSeries for Windows V2.0| No| No

| MQSeries for Windows V2.1| No| No

| MQSeries for Windows NT V5.1| Yes| Yes

 Copyright IBM Corp. 1993,1999 537

 MQSeries products

538 MQSeries Application Programming Guide

 Functional comparison

Appendix I. MQSeries platforms - functional comparisons

This describes the functional differences between MQSeries queue manager
products, concentrating on the functionality relating to the Message Queue Interface
(MQI).

You may need this information for the following:

� Program migration when the queue-manager is upgraded

Programs written to work with one MQSeries queue manager will migrate
unchanged, with only a relink, when the queue manager is upgraded to one
which offers more function, operating on the same platform. You may,
alternatively, want to plan for additional functionality.

� Program migration from one platform to another

You may need to write programs in such a way that they are readily ported to a
different platform on which there is another MQSeries queue manager.

 � Personnel migration

You may need to become familiar with the functionality of more than one
MQSeries queue manager.

 � Message movement

Most of the functional differences are not relevant to the progress of messages
from one platform (or queue manager) to another. However a few are relevant,
for example differences in the maximum message size that is supported. See
“Message properties and protocols” on page 551 for differences which are
relevant in this area.

What is included here
Enough information about the functions is given here to allow you to understand the

| differences between the products. For detailed information, see the MQSeries
| Application Programming Reference manual.

The categories used here are:

� Syncpoint (see page 540)
� Triggering (see page 544)
� Input (see page 547)
� Message properties (see page 551)
� Threading (see page 555)
� Security (see page 556)
� Object types (see page 560)
� Administration (see page 562)
� Programming languages (see page 564)
� Connection (see page 566)

Within each category, a summary table of differences is given, and a brief
explanation of the features involved. Differences between support by the various
products are discussed, and recommendations made for ways in which migration
can be made easier.

 Copyright IBM Corp. 1993,1999 539

 Comparison - syncpoint

 Syncpoint

Table 57. Syncpoint support - function summary

Product Syncpoint
available

Coordination
with other

RMs

Coordination
of other

RMs

No
syncpoint
options

(1)

Syncpoint
options

(2)

Default Browse
with
lock

Backout
count

Mark
skip

backout

A Yes No No Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

| C| Yes| CICS, IMS,
| or RRS
| resources

| No| Accepted
| (checked)
| Accepted
| (checked)
| Syncpoint| No| Yes| Yes

D Yes CICS or
other

resources

Yes Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

E Yes CICS and
OS/400

resources

No Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

G Yes TMF
resources

No Rejected Accepted Syncpoint No No No

H No No No Accepted Rejected No
syncpoint

Yes No No

I Yes CICS
resources

No Rejected Accepted Syncpoint Yes No No

J Yes No No Accepted Accepted No
syncpoint

No Yes No

K Yes No No Accepted Accepted No
syncpoint

No Yes No

L Yes CICS or
other

resources

Yes Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

M Yes CICS or
other

resources

No Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

N Yes CICS or
other

resources

Yes Accepted
(checked)

Accepted
(checked)

No
syncpoint

Yes Yes No

Note:

1. MQGMO_NO_SYNCPOINT for MQGET, and MQPMO_NO_SYNCPOINT for MQPUT and MQPUT1
2. MQGMO_SYNCPOINT for MQGET, and MQPMO_SYNCPOINT for MQPUT and MQPUT1
3. Not required since shared input is not supported

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

540 MQSeries Application Programming Guide

 Comparison - syncpoint

Syncpoint coordination for MQSeries allows coordination of the effect of a number
of get or put, or both, actions issued from the same application within a single unit
of work, so that either all of these actions take place automatically, or none of them
does. Usually other actions, such as file or database updates, can also be
coordinated within the same unit of work.

A resource manager that participates in syncpoint is a component which owns a
particular resource, such as a file system. The resource manager controls updates
to that resource so that updates made from a particular unit of work are not visible
from outside that unit of work until a syncpoint is reached. At that time, depending
upon whether the syncpoint action is to commit or backout, all of the updates made
from within the unit of work are either made permanent, and visible to other units of
work, or backed out, so that other units of work never see them. If the updates are
made, they are made automatically. This will happen even if the application or the
system fails at any point. In order to carry out this action, the resource manager
must log changes, and lock uncommitted changes to prevent other units of work
from seeing them.

If the updates from more than one resource manager are to be coordinated, then
the services of a syncpoint coordinator are required. If the updates from all of the
resource managers are to take place automatically, then two-phase commit is
needed; otherwise, or if only one resource manager is involved, single-phase
commit is all that is needed. On MQSeries Version 5 products products, MQSeries
can act as a syncpoint coordinator coordinating other resource managers.

Note the variation between platforms in the calls to declare the syncpoint, and
indicate the application’s decision to commit or backout. Also, in some cases, there
is a variation between platforms in calls to declare the start of a new unit of work.
For MQSeries for OS/390 batch, MQSeries for OS/2 Warp V5.0, MQSeries Version
2 for UNIX systems, and MQSeries for Windows NT applications, these calls are
provided through the MQI, otherwise they are provided by the environment.
MQSeries for OS/2 Warp V5.0, MQSeries Version 2 for UNIX systems and
MQSeries for Windows NT support both internally-coordinated units of work (using
the MQI) and externally-coordinated units of work.

In some cases these calls need not be issued at all by the application. For
example, if an application terminates abnormally before committing its unit of work,
the unit of work will be backed out automatically. Similarly, if a CICS transaction
terminates normally, it is as if it had committed the unit of work.

Level 1 product range support
The products in this range never act as a resource manager. An underlying file or
database system is always used to hold the message queues. The resource
manager is the owner of the appropriate file or database system. This means that
the underlying system controls whether or not the MQI gets and puts participate in
a syncpoint operation. In some cases the underlying system is never coordinated,
so in these cases MQI gets and puts are never coordinated.

In other cases, whether the underlying system is coordinated depends upon how
the user has set it up. The setup can specify that actions on some queues are
always coordinated, while those on others are never coordinated.

A product in this subset will not be informed of this, and therefore does not have
any record of whether the MQI request will be coordinated. If it is coordinated,

 Appendix I. MQSeries platforms - functional comparisons 541

 Comparison - syncpoint

however, it will be fully coordinated with any other updates to the underlying
system, since only a single resource manager is involved. Additionally, if this
resource manager acts as a participant with other resource managers, under the
control of a syncpoint coordinator, MQI requests will also be coordinated with
updates to the resources owned by these other resource managers. Where an
MQI call might or might not be coordinated depending upon the setup, the queue
manager accepts both syncpoint and no-syncpoint options, without being able to
validate that the option will be honored.

Level 1–browse-with-lock support
Where there is no syncpoint support, an application can be written in order to avoid
the possibility of losing incoming messages if the system or application crashes:

Do forever
MQGET with MQGMO_BROWSE_FIRST
Process message, and make updates as necessary
MQGET with MQGMO_MSG_UNDER_CURSOR

End

If there is a failure before the updates are complete, the message is still available
on the input queue after restart. The second MQGET deletes the message from
the queue.

However, if more than one application can process the queue, this technique is not
adequate, since several applications might browse the message at the top of the
queue and begin making updates on its behalf.

To overcome this, a browse-with-lock feature is supported on platforms that don’t
have any syncpoint capability but do support shared input. This enables an
application to browse the first message on the queue, locking it at the same time so
that it is not available to other applications. The application is written in a similar
way, except that the MQGMO_LOCK option is added for the initial browse:

Do forever
MQGET with MQGMO_BROWSE_FIRST and MQGMO_LOCK
Process message, and make updates as necessary
MQGET with MQGMO_MSG_UNDER_CURSOR

End

Level 2 product range support
In Level 2 products, management of the message queues is not delegated to an
underlying file system. These products always act as a resource manager, and
include full coordination with the other resource managers, except for:

� OS/390 batch applications, and
� MQSeries Version 2 for UNIX systems, MQSeries for OS/2 V2.0.1, and

MQSeries for Windows NT V2.0 if there is no external coordinator available,

where syncpoint facilities only apply to MQI requests.

The full MQI support enables applications to specify, on a particular get or put
request, whether or not this request is to be coordinated within a unit of work. If
they do not specify this, a default is taken.

The full MQI also provides a BackoutCount, which informs the getter of a message
how many times this message has been retrieved and subsequently backed out.

542 MQSeries Application Programming Guide

 Comparison - syncpoint

The count may be inaccurate, unless the HardenGetBackout local queue attribute
for the queue specifies that it should be hardened. This does carry a resulting
performance penalty. This count can be used as an indication that a message
might be causing the application to terminate abnormally and that the application
should not attempt to process it again. Of course, the message might have been
backed out for reasons unconnected with the message itself - for example, a
system crash.

On the MQSeries for OS/390 queue manager only, the option
MQGMO_MARK_SKIP_BACKOUT can be issued with an MQGET call. This is an
advanced option, which can be used if the application might make some updates
as a result of an input message, but might then discover that these updates should
be backed out without reinstating the input message on the queue (since it would
only give the same result when it was processed the next time).

 Migration recommendations
1. If your application is not sensitive to whether the gets and puts are within

syncpoint scope, do not specify the syncpoint or no_syncpoint options with
MQGET, MQPUT, and MQPUT1.

2. If your application is designed to run without syncpoint, always specify the
no_syncpoint options (MQGMO_NO_SYNCPOINT and
MQPMO_NO_SYNCPOINT) with MQGET, MQPUT, and MQPUT1. With queue
managers that accept these options but do not validate them, ensure that the
underlying file or database system is set up so that operations on the relevant
objects do not participate in syncpoint.

If you want to port this application to a platform that always has syncpoint, the
application will have to be modified.

3. If your application is designed to run with syncpoint, always specify the
syncpoint options (MQGMO_SYNCPOINT and MQPMO_SYNCPOINT) with
MQGET, MQPUT, and and MQPUT1. With queue managers that accept these
options but do not validate them, ensure that the underlying file or database
system is set up so that operations on the relevant objects do participate in
syncpoint.

If you want to port this application to a platform that does not support
syncpoint, the application will have to be modified. Use the browse technique
outlined above, with lock support if multiple applications can service the queue.

If you have already written the application in this way, and now wish to port it to
a platform that does support syncpoint, it will have to be changed to use the
syncpoint support rather than the browse-with-lock technique. However,
MQSeries Version 2 for UNIX systems and MQSeries for OS/2 Warp V5.0 do
support the lock option to allow you to move your application without making
the changes. If you are writing a new application on either of these platforms
you are recommended to use syncpoint support.

4. Try to avoid MQGMO_MARK_SKIP_BACKOUT if portability is important. If the
database is designed so that the application can establish, before making any
updates, that the transaction can be processed successfully, this option will not
be necessary.

5. Avoid using the BackoutCount if portability beyond the Level 2 queue managers
is important.

 Appendix I. MQSeries platforms - functional comparisons 543

 Comparison - triggering

 Triggering

Table 58. Triggering support - function summary

Product Triggering Depth, priority
triggering

Type of applications
started

Passed to started
application (1)

A Yes Yes VMS system
applications

MQTMC2 structure

C Yes Yes CICS or IMS (2) MQTM structure for
CICS; MQTMC2
structure for IMS

D Yes Yes OS/2 applications
(including CICS)

MQTMC2 structure

E Yes Yes OS/400 applications
(including CICS)

MQTMC2 structure

G Yes Yes Tandem NSK
applications

MQTMC2 structure

H No No - -

I Yes No CICS only MQTM structure

J No No - -

K No No - -

L Yes Yes Windows NT
applications (including

CICS)

MQTMC2 structure

M Yes Yes UNIX systems
applications (including

CICS)

MQTMC2 structure

N Yes Yes UNIX systems
applications (including

CICS)

MQTMC2 structure

Note:

1. MQTMC is a version of the trigger message (MQTM) structure, in which the two binary fields in the structure are replaced
with character fields of the same length. MQTMC2 is a version of the trigger message structure, in which the two binary
fields in the structure are replaced with character fields of the same length and to which the queue manager name has been
added.

2. There is currently no automatic support supplied for starting OS/390 batch applications. However, this could be added by a
user.

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

If triggering is supported, a trigger message is written to the initiation queue when
the trigger conditions for the queue are satisfied. Various conditions can be

544 MQSeries Application Programming Guide

 Comparison - triggering

specified as described in “Conditions for a trigger event” on page 204. Briefly, the
conditions include the following:

� When any message arrives on the queue (every triggering)

� When the queue goes from being empty to having messages on it (first
triggering)

� When a specified number of messages have arrived on the queue (depth
triggering)

With any of these conditions, a minimum priority can also be specified. Only
messages with this or a higher priority are included when evaluating whether the
trigger conditions have been met (priority triggering).

There are also a number of unusual conditions which cover cases in which a restart
or other failure has occurred.

When the application is started, it is passed a structure which contains the name of
the queue which caused the trigger event, and from which the application is now
expected to retrieve messages. Other data in this structure includes information
which the administrator can add to the process definition, which can be used to
control the operation of the application.

The MQTM, MQTMC, and MQTMC2 structures are very similar; the difference
between them is that some binary fields in the MQTM structure are replaced by
character equivalents (of the same length) in the MQTMC and MQTMC2 structure.
(MQTMC2 also contains the name of the queue manager.) If these fields are not
referenced, portability is increased. However, one of the fields is the structure
version, and it is safer to always check that, at the cost of a possible small change
to the application in an area which would probably need change anyway.

Level 1 product range support
| No Level 1 product supports triggering.

Level 2 product range support
| Under MQSeries for VSE/ESA there is no actual initiation queue; the application is
| started directly by the queue manager. User information in the trigger message is
| not supported.

| On MQSeries for VSE/ESA two forms of triggering are supported. The triggered
| application can be initiated by an:

| � EXEC CICS START, where the started application must issue a CICS
| RETRIEVE call in order to get the trigger message. (This form is compatible
| with triggering for OS/390.)

| � EXEC CICS LINK, where the trigger message is passed in COMMAREA.

| Depth and priority triggering are not supported by MQSeries for VSE/ESA.

The other Level 2 products provide full support. There is a real initiation queue,
and the trigger monitor which reads trigger messages from this queue and starts
applications, could be replaced by a customer-written version.

 Appendix I. MQSeries platforms - functional comparisons 545

 Comparison - triggering

The trigger monitor on MQSeries Version 2 for UNIX systems, MQSeries for OS/2
Warp V5.0, and MQSeries for Windows NT V5.0 can run either on a server or a
client, with the exception of clients in DOS and Windows 3.1 environments.

 Migration recommendations
1. At present, triggering is not available on several platforms. Alternative

techniques must be used, for example on some platforms a long-running
application which does a get with signal may be used. This may migrate better
between the platforms of interest. See “Input” on page 547.

| 2. If migration between CICS for VSE/ESA and CICS Transaction Server for
| OS/390 or CICS for MVS/ESA is important, use the form of triggering on
| VSE/ESA which is compatible with the OS/390 form.

546 MQSeries Application Programming Guide

 Comparison - input

 Input

Table 59. Input features - function summary

Product Shared
input

Exclusive
input

Input
default to

queue
definition

Browse
with lock

Full
browse

(1)

Signal Selective
get by
MsgId /
CorrelId

(2)

Data
conversion

A Yes Yes Yes Yes Yes No Yes Yes

C Yes Yes Yes No Yes Yes Yes Yes

D Yes Yes Yes Yes Yes No Yes Yes

E Yes Yes Yes Yes Yes No Yes Yes

G Yes Yes Yes Yes Yes Yes No Yes

H Yes Yes No Yes No (3) No No No

| I| Yes| Yes| No| Yes| Yes| No| Yes| No

J Yes Yes Yes No Yes No Yes No

K Yes Yes Yes No Yes Yes Yes No

L Yes Yes Yes Yes Yes No Yes Yes

M Yes Yes Yes Yes Yes No Yes Yes

N Yes Yes Yes Yes Yes No Yes Yes

Note:

1. Other than Browse-with-lock

2. All products support generating a MsgId if zero is specified at put time, conveying both MsgId and CorrelId with the
message, and delivering them to the getter. Not all products support selective get, however, which is the ability of the getter
to specify the MsgId or CorrelId or both that the retrieved message must have.

3. Only the first message on a queue can be browsed.

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

 Appendix I. MQSeries platforms - functional comparisons 547

 Comparison - input

Shared and exclusive input
These options (MQOO_INPUT_EXCLUSIVE and MQOO_INPUT_SHARED) control
whether more than one application is allowed to have the queue open for input at
the same time.

If the application is not sensitive to this, MQOO_INPUT_AS_Q_DEF can be
specified, and exclusivity is determined by the queue definition. This feature is
available only with queue managers within Level 2 products.

Another feature available only with queue managers within the Level 2 products, is
a queue attribute for Shareability. If this is set to MQQA_NOT_SHAREABLE,
only one application is allowed to have the queue open for input at any time (the
MQOO_INPUT_SHARED open option for this queue is effectively treated as if it
were MQOO_INPUT_EXCLUSIVE).

MQOO_INPUT_EXCLUSIVE is supported on all platforms and is the safest to
choose from a portability point of view. However, if an application is not sensitive
to exclusivity, and portability to Digital Vax platform is not an issue,
MQOO_INPUT_SHARED, is a better choice.

Note that on MQSeries for VSE/ESA, a single MQOPEN cannot request both input
and output functions. If input and output for the same queue are required, two
MQOPEN calls must be issued, one for each. Other queue managers do not have
this restriction, so bear it in mind if your application might need to migrate to
MQSeries for VSE/ESA in the future.

Browse-with-lock, and full browse
For more information about browse-with-lock support see “Syncpoint” on page 540.
With the products in Level 1, only the first message on the queue can be browsed.

| Browse-with-lock is supported only by queue managers for which no syncpoint
| support is available, and where shared input is possible, with the exception of
| MQSeries for AS/400, MQSeries Version 2 for UNIX systems, and MQSeries for
| OS/2 Warp where it is supported to enable you to migrate from Version 1 to
| Version 2.

Full browse support allows an application to inspect each of the messages on the
queue in turn, without retrieving them destructively. A browse cursor marks the
position on the queue that the browse scan has reached. Full browse is supported
by the queue managers of Level 2 products, and by some queue managers in the
Level 1 product range. Others in the Level 1 product range offer a limited form of
browse, in which only the first message on the queue can be browsed.

Browse can be used to select a message to get destructively. It can also be used
in order to monitor or display the messages on the queue.

 Signal
Get using an operating-system signal (option MQGMO_SET_SIGNAL) is used to
allow the application to continue with other work, without blocking, while waiting for

| a suitable message to arrive. The signal is an operating-system dependent object
| (for example, in OS/390 it is an ECB). If the operating system supports waiting on
| multiple signals, as OS/390 does, then the application can effectively wait for a
| message arriving on one of several queues.

548 MQSeries Application Programming Guide

 Comparison - input

This feature is only available on platforms where there is a suitable facility provided
in the operating environment. If applications that use this feature are ported
between platforms, some change will be needed even if signal support is available
on both platforms, because the signal itself is specific to the operating environment.
If signal is not available, the application logic will have to change; MQGMO_WAIT
can be used to provide a blocking wait (MQGMO_WAIT is available with all queue
managers).

Get by MsgId and CorrelId
This allows an application to specify a non-zero MsgId or CorrelId or both when
issuing an MQGET (either a browse or a destructive get). If this is done, only
messages which have a matching MsgId or CorrelId, or both, are eligible to be
satisfied by the get. Setting either value to zero means that no matching is
required for that identifier.

This can be used for retrieving a group of messages, all of which have the same
identifier, usually the CorrelId, even though they are not all together at the top of
the queue. Getting for a specific MsgId, and possibly also for a specific CorrelId
as well, can be used to retrieve a specific message. Note however that there is no
guarantee that MsgIds are unique within a queue. If a message that is to be
retrieved has been found by issuing browse requests, it is much safer to retrieve
the message using the MQGMO_MSG_UNDER_CURSOR option than by quoting
its MsgId.

This facility is provided only by the products in Level 2 queue managers. Level 1
queue managers check that MsgId and CorrelId have been set to zero for an
MQGET, so applications migrating from Level 1 to Level 2 queue managers will
need no change in this area. Migrating the other way will require the application to
search for the required message itself by browsing, where this is supported. If
browse is not supported, more radical changes may be needed.

However, as previously mentioned, all MQSeries products support the putting of a
message with a non-zero MsgId and CorrelId. Therefore, in a client-server type of
environment, the client might MQPUT or MQPUT1 MsgId and/or CorrelId to a
server system, such as MQSeries for OS/390, or MQSeries for AS/400, where
MQGET by MsgId / CorrelId is supported. The recomposition of several related
messages could then be done at the server or host with the results message then
sent back to the client.

Alternatively, each group of messages could request replies to unique reply-to
queue names; therefore facilitating recomposition on the same or another system,
even if the specific MQGET by CorrelId function is not available on that system.

 Appendix I. MQSeries platforms - functional comparisons 549

 Comparison - data conversion

 Data conversion
See Chapter 11, “Writing data-conversion exits” on page 161 for a list of conditions
under which a data-conversion exit is invoked.

User-written exits can be provided to perform data conversion. A utility is supplied
with these products which accepts a C structure, and produces source code from
which a data-conversion exit suitable for use by the queue manager can be
generated.

Some queue managers do not support data conversion (see Table 59 on
page 547). However, when sending messages from a queue manager that does
support data conversion to one that doesn’t, a channel attribute can be set at the
sending queue manager to request that text is converted before each message is
transmitted.

550 MQSeries Application Programming Guide

 Comparison - message properties

Message properties and protocols

Table 60. Message properties - function summary

Product Default
maximum
message
length

Maximum
priority

Nonpersistent
messages

Exception
reports

MsgId,
CorrelId
response
options

Extra
message

types

COA,
COD,
Expiry

PAN,
NAN

Protocols

| A| 4 MB| 9| Yes| Yes| Yes| Yes| Yes| No| LU 6.2
| TCP/IP
| DECnet

| C| 4 MB
| (1)
| 9| Yes| Yes| Yes| Yes| Yes| Yes| LU 6.2
| TCP/IP

| D| 100 MB| 9| Yes| Yes| Yes| Yes| Yes| Yes| LU 6.2
| TCP/IP
| NetBIOS
| SPX

| E| 4 MB| 9| Yes| Yes| Yes| Yes| Yes| Yes| LU 6.2
| TCP/IP

| G| 4 MB| 0| No| No| No| No| No| No| LU 6.2
| TCP/IP

H 64000 0 No No No No No No LU 6.2
TCP/IP

| I| 4 MB| 0| Yes| No| No| No| No| No| LU 6.2
| TCP/IP

| J| 4 MB| 9| Yes| Yes| Yes| Yes| Yes| No| TCP/IP

| K| 4 MB| 9| Yes| Yes| Yes| Yes| Yes| No| TCP/IP

| L| 100 MB| 9| Yes| Yes| Yes| Yes| Yes| Yes| LU 6.2
| TCP/IP
| NetBIOS
| SPX

| M| 4 MB| 9| Yes| Yes| Yes| Yes| Yes| No| LU 6.2
| TCP/IP

| N| 100 MB| 9| Yes| Yes| Yes| Yes| Yes| Yes| LU 6.2
| TCP/IP

Note:

| 1. The CICS message mover on the OS/390 Queue Manager has a maximum segment size of 32 KB. Because Level 1
| queue managers do not support segmentation, the maximum transmission size is 32 KB to a CICS mover.

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

Message context is another message property. See “Security” on page 556.

 Appendix I. MQSeries platforms - functional comparisons 551

 Comparison - message properties

Maximum message length
The lowest maximum size of message (excluding headers) supported is 10 000
bytes. You should limit your message text size to this if you want to enable your
message to go to any platform.

For Level 2 products, the maximum size is given by the queue manager attribute
MaxMsgLength, minus MQ_MSG_HEADER_LENGTH. This currently gives 4 MB -
4000 bytes by default. This formula can be used with these queue managers for
messages that are not going to travel to, or through, a product in Level 1. If there
is any possibility of this, messages should be restricted appropriately.

If longer messages have to be split up for this (or any other) reason, a sequence
number or relative starting address should be carried in the message data, so that
the receiving application can reconstruct the original text correctly. In some cases
it cannot be guaranteed that messages will be delivered in the same order as that
in which they were put. An example of this is where multiple hops may be
necessary to reach the final destination.

See also “Handling large messages” on page 140.

 Maximum priority
The queue managers of Level 2 products recognize 10 message priority levels, in
the range 0 through 9. A message’s priority controls the position at which it is
enqueued when it arrives at a queue, and hence the order in which it will be
delivered to an application issuing MQGET.

The queue managers of Level 2 products also support a local queue attribute
MsgDeliverySequence, that allows this to be overridden. If this attribute is set to
FIFO only, all messages are enqueued at the same priority. However, the priority
value carried with the message still records its intended priority.

Level 1 queue managers treat all messages as having equal priority, so effectively
the maximum message priority for them is zero. However, to allow messages of
higher priority to pass through, they do not reject an MQPUT of a message where
the priority is greater than zero. In this case they issue a warning. So, although
the priority does not affect the speed at which the message passes through the
system, it can still be honored when the message reaches its destination at a Level
2 queue manager.

However, application program writers must ensure that the priority value is in the
range 0 through 9 when a put is issued. Values greater than 9 are rejected by the
MQSeries for OS/390 queue manager.

 Nonpersistent messages
The queue managers of Level 2 products support both persistent and nonpersistent
messages. Persistent messages are ones which are guaranteed not to be lost if
the system crashes. Messages on them are written to DASD, either as part of the
queue backup storage, or as part of the log, so that they can be recovered if
necessary. Nonpersistent messages, however, are guaranteed not to be recovered
after a restart of the queue manager which owns the queue; even if they do happen
to be found on DASD, they are discarded.

552 MQSeries Application Programming Guide

 Comparison - message properties

Persistent messages are vital if the message represents a business action that has
to be performed. In order for messages not to be lost, as guaranteed by MQSeries
products, they must be marked as persistent. All MQSeries queue managers
support persistent messages.

Nonpersistent messages are supported only by Level 2 queue managers. They
offer important performance advantages because the message does not have to be
written to DASD at all if the capacity of the main-storage buffers permits, and it is
processed sufficiently quickly. Nonpersistent messages can be used for queries,
where the query will simply be repeated if necessary, and for non-critical
notifications (for example, an update to an airport flight information screen).

The queue managers of Level 2 products also provide a third option, which allows
the persistence property of the message to be defaulted to the queue, rather than
specified by the putting application. In general a given queue can contain a mixture
of persistent and nonpersistent messages.

Although the Level 1 queue managers reject an attempt by an application to put a
nonpersistent message, they do not prevent a nonpersistent message from passing
through (or arriving at) a queue manager.

If a program that runs with a queue manager of an Level 2 product specifies
nonpersistent when putting a message, the program will need to be changed to run
with a queue manager of a Level 1 product.

 Exception reports
With Level 2 queue managers, exception reports can be requested when a
message is put. In this case, if there is a problem with the message, for example,
it cannot be delivered because the destination queue is full, an exception report is
generated and sent to the reply-to queue. The report carries a code indicating the
nature of the problem.

In addition to requesting exception reports, applications can ask that the first 100
bytes of the original message or all of the original message be included with the
report. This is convenient if state information is held at the front of the message
data; it helps the originator to identify the message which had a problem.

An exception report is not generated if the putting application can be notified of the
problem synchronously, by a reason code at the time of the put.

Level 1 queue managers and transmission programs do not generate exception
reports, nor do they allow reports to be requested. They do, however, allow an
application to generate a report message. Events that would cause an exception
report to be generated are notified instead, for example with a console message, at
the queue manager where the problem occurs. There is, however, no direct
notification to the application.

MsgId and CorrelId options for responses
With Level 2 queue managers, it is possible to request how the MsgId and
CorrelId of the report should be constructed. It is beneficial if applications honor
these requests, to facilitate requests from applications which use different schemes
to manage business unit-of-work correlation.

 Appendix I. MQSeries platforms - functional comparisons 553

 Comparison - message properties

However, these options are not supported for applications connected to Level 1
queue managers. Applications have to choose, based on the correlation scheme in
use, how to generate the MsgId and CorrelId of their replies.

Extra message types
With Level 2 queue managers the MsgType field in the message descriptor allows a
wide range of values to be accepted. These values are not accepted by queue
managers of Level 1 products, and should only be used with messages that do not
pass through, or to, applications connected to Level 1 queue managers.

COA, COD, and Expiry message
| MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for OS/390, MQSeries
| Version 2 for UNIX systems, and MQSeries for Windows NT allow a program
| putting a message to request:

| � That a confirm-of-arrival report (COA) is generated when the message has
| been put on its final destination queue. (This is supported also on MQSeries
| for VSE/ESA).

| � That a confirm-of-delivery report (COD) is generated when the message has
| been retrieved from its final destination queue. (This is supported also on
| MQSeries for VSE/ESA).

� That the message is discarded if it has not been retrieved within a specified
time, and optionally a report is generated if this happens.

These functions are not supported on other MQSeries queue managers.

Level 1 queue managers (and earlier versions of MQSeries for OS/390) do not
allow a message requesting any of these options to pass through them.

PAN and NAN messages
| MQSeries for AIX, MQSeries for AS/400, MQSeries for HP-UX, MQSeries for OS/2
| Warp, MQSeries for OS/390, MQSeries for Sun Solaris, and MQSeries for Windows
| NT allow a program putting a message to request:

� That a positive action notification (PAN) is generated when the request has
been successfully serviced

� That a negative action notification (NAN) is generated when the request has
not been successfully serviced

These functions are not supported on other MQSeries queue managers.

554 MQSeries Application Programming Guide

 Comparison - threading

 Threading

| Table 61. Threading - function summary

| Product| Multithreaded applications

| MQSeries for Digital OpenVMS V2.2| No

| MQSeries for OS/390 V2.1| No

| MQSeries for OS/2 Warp V5.1| No

| MQSeries for AS/400 V4R2M1| No

| MQSeries for Tandem NonStop Kernel V2.2| No

| MQSeries for UnixWare V1.4.1| No

| MQSeries for VSE/ESA V2.1| No

| MQSeries for Windows V2.0| No

| MQSeries for Windows V2.1| Yes

| MQSeries for Windows NT V5.1| Yes

| MQSeries for AT&T GIS UNIX V2.2
| MQSeries for SINIX and DC/OSx V2.2
| (1)

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for Sun Solaris V5.1

| Yes

| Note:

| 1. MQSeries for SINIX supports multithreaded applications whereas MQSeries for DC/OSx does not.

Threaded applications on UNIX platforms
On UNIX, an application can connect to a single queue manager only; it cannot
connect different threads to different queue managers.

A multithreaded MQSeries application must ensure that MQDISC is executed in
each thread. This can be done using a thread exit handler. Do not use detached
threads.

Those platforms that support multithreaded applications have some limitations:

AIX, Sun Solaris, and HP-UX
In addition to the considerations for “UNIX signal handling on MQSeries Version 5
products” on page 85, a multithreaded MQSeries application must not establish
signal handlers for SIGSEGV and SIGBUS while any thread has an open
connection to MQSeries. These signal handlers should be set up process wide
before MQSeries is called. MQSeries’ handlers will then attempt to invoke the
application’s handlers when possible and appropriate.

 SINIX
In addition to the considerations for “UNIX signal handling on MQSeries Version 5
products” on page 85, a multithreaded MQSeries application must not use
SIGALRM, SIGSEGV, or SIGBUS.

 Appendix I. MQSeries platforms - functional comparisons 555

 Comparison - security

 Security

Table 62. Security - function summary

Product Authorization
checks

Message
context

Alternate user
ID checks

Transmission
program exits

API crossing
exit

A Yes Yes Yes Yes No

C Yes Yes Yes Yes Yes (2)

D Yes Yes Yes Yes No

E Yes Yes Yes Yes No

G Yes No (1) No No No

H Yes No (1) No No No

I Yes No (1) No No No

J No No No No No

K No No No No No

L Yes Yes Yes Yes No

M Yes Yes Yes Yes No

N Yes Yes Yes Yes No

Note:

1. Context information is accepted and passed on, but not validated.
2. CICS applications only

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

 Authorization checks
Authorization checks are carried out for each resource, for example a queue, that is
accessed. The user identifier under which the application is running is used to
validate access to the resource.

Level 1 queue managers provide no direct support for this. However, queues are
always implemented as files or database objects, and so when a read or write to
the underlying object takes place as a result of a request from a Level 1 product,
authority to perform this operation can be validated by the underlying system.

556 MQSeries Application Programming Guide

 Comparison - security

Level 2 queue managers provide more direct support, in that they request security
validation for each function and object for which the application attempts an open.
However, Level 2 queue managers do not themselves maintain the security tables
which specify the operations each user is authorized for, although they may keep
temporary caches of this information. In OS/390 these tables are maintained by an
external security manager such as, RACF, and in OS/400 by the native OS/400
support. MQSeries Version 2 on UNIX systems and MQSeries for Windows NT
provide an Object Authority Manager (OAM) that controls access to queue manager

| resources by user and group IDs. MQSeries for OS/2 Warp provides an interface
| that allows users to provide controlled access to queue manager resources by user
| and group IDs.

At this level, there is no impact on the MQI statements in a program, and so there
is no direct effect on program migration. However, users may need to review the
security capabilities on each platform to determine how they will map.

 Message context
Level 2 queue managers support various fields that are transmitted with each
message, collectively referred to as the context information for the message. This
information includes the user identifier and accounting token of the user who
originated the message, and the name of the program that generated it. There are
also fields which can be set by suitably-authorized applications or exits (see
“Channel exits” on page 558) to contain information such as whether the other
context information has been validated at this queue manager.

Progressively higher levels of authority are required to alter these fields. At the
lowest level of authority, an application is unable to set any information in them; the
queue manager sets them all to default values.

Within the Level 2 products the UserIdentifier context field holds a user identifier
that can be used by an application for validating authority to open resources.

Level 1 queue managers do not support context fields directly. That is, they do not
set information in them on behalf of an application, nor do they check that an
application is suitably authorized to set them. Whatever information an application
sets in these fields when putting a message is carried with the message, and made
available to the recipient of the message. A message passing through one of these
queue managers will therefore retain any context information that it contains.

Applications connected to Level 1 queue managers can set user identifier and other
context information, and can carry out their own checks when receiving messages,
bearing in mind that with these queue managers no system security functions have
been used to authorize the setting of this information. Note, however, that if
applications do set the context information themselves, they will not migrate
unchanged to Level 2 queue managers unless they are given an unusually high
level of authority.

If messages are received at a Level 2 product queue manager from a Level 1
product queue manager, the context fields can be set, changed or verified in the
transmission program’s Message Exit (see “Channel exits” on page 558).

 Appendix I. MQSeries platforms - functional comparisons 557

 Comparison - security

Alternate user ID checks
When a resource of a Level 2 product, such as a queue, is opened, the
authorization check that is carried out by default uses the user identifier under
which the application is running. Level 2 queue managers support an option which
allows the user identifier which is used to be specified explicitly by the application.
An application, for example a server, can use this feature to specify the user
identifier taken from the context field of a message that it has retrieved, and for
which it is currently doing work.

This feature is not supported by Level 1 queue managers.

 Channel exits
Channels (also called Message Channel Agents), of Level 2 products support exits
that can be used for:

 � Security exit
 � Message exit
 � Send exit
 � Receive exit

| � Message retry exit (supported by MQSeries for AIX, MQSeries for AS/400,
| MQSeries for Digital OpenVMS, MQSeries for OS/2 Warp, MQSeries for
| Tandem NSK, and MQSeries for Windows NT)

Each end of the channel, if it is connected to a Level 2 queue manager can have
each of the four types of exit. For some purposes, for example encryption, it is
necessary that there is a corresponding exit at the other end of the channel.

Security exits are given control when the channel is initiated. They can initiate an
exchange of security messages, of a format that is defined by the exits themselves.
Only when each exit, if present, is satisfied can transmissions proceed along the
channel.

Message exits receive control:

� At the sending end, after a message has been retrieved from the transmission
queue, and before it is segmented if necessary, and transmitted, and

� At the receiving end, just before a message is put to its destination queue.

In particular, these exits can manipulate the context information. For example they
can:

� Validate user identifiers

� Translate user identifiers, if the messages are entering a new authority domain

� Set the user context fields, to show other programs the degree to which the
message is trusted.

Send and receive exits can be used for journaling and message encryption.

558 MQSeries Application Programming Guide

 Comparison - security

Message retry exits can be used to reduce the number of messages on a
dead-letter queue. After a message has failed to be put on a queue, the exit will
make additional attempts to put the message on the target queue. The message is
only added to the dead-letter queue if this fails.

| Transmission program exits are not available with Level 1 products.

 API-crossing exit
The MQSeries for OS/390 queue manager supports an exit, for CICS Transaction
Server for OS/390 applications only, which is executed both before and after every
API call. The exit can cause the call to be rejected, and can set, or change, any of
the parameters being returned to the application. It can therefore be used to
implement additional security checks.

Application programs do not have to be changed to cause this exit to be invoked,
so in general there are no issues of program migration involved with it, although if it
is used for security purposes migration of this function may be difficult.

This exit could also be used to perform processing essential to the working of the
application, for example, data conversion (see “Data conversion” on page 550). If
this is done, difficulty will again occur if the application has to be migrated.

 Appendix I. MQSeries platforms - functional comparisons 559

 Comparison - object types

 Object types

| Table 63. Object types - function summary

| Product| Model and
| dynamic queues
| Cluster queues| Namelists| Queue manager
| object
| Distribution
| lists

| A| Yes| No| No| Yes| No

| C| Yes| Yes| Yes| Yes| No

| D| Yes| Yes| Yes| Yes| Yes

| E| Yes| No| No| Yes| Yes

| G| Yes| No| No| Yes| No

| H| No| No| No| No| No

| I| No| No| No| No| No

| J| Yes| No| No| Yes| No

| K| Yes| No| No| Yes| No

| L| Yes| Yes| Yes| Yes| Yes

| M| Yes| No| No| Yes| No

| N| Yes| Yes| Yes| Yes| Yes

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

Model and dynamic queues
| The MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for OS/390,
| MQSeries for Tandem NSK, MQSeries for UNIX systems, and MQSeries for
| Windows NT queue managers support a type of queue called a model queue.
| Opening a model queue causes a dynamic queue to be created.

One of the main uses of this is for a requester to create a reply queue dynamically,
avoiding the need for it to be predefined. This is convenient if there needs to be
several instances of such requesters. Using dynamic queues means that there
need be no fixed limit on the total number of them.

However, this feature is currently available only with some queue managers, and so
applications making use of it will need to be changed if they are to be migrated to
other queue managers.

560 MQSeries Application Programming Guide

 Comparison - object types

 Namelists
| MQSeries for OS/390 and V5.1 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun
| Solaris, and Windows NT support a type of object called a namelist. Although this
| is intended to hold a list of queue names, it can in fact hold a list of any names
| (subject to a maximum of 48 characters per name), since there is no check that the
| objects named do in fact exist.

Namelists can be used by monitoring applications to inquire a list of the queues to
be monitored. The benefit is that the list of queues in the namelist is maintained by
the systems administrator, independently of the application.

| However, namelists are supported by only these platforms, so applications making
| use of them will not migrate to other platforms.

 Queue-manager object
With Level 2 queue managers, a queue-manager object can be opened. This
allows the application to inquire the values of various queue-manager attributes,
including the maximum message length (MaxMsgLength) supported by the queue
manager. This feature is not available with Level 1 queue managers, and
applications making use of it will not migrate to them unchanged.

 Appendix I. MQSeries platforms - functional comparisons 561

 Comparison - administration

 Administration
There are substantial differences in the way administration is carried out for the
various queue managers, in particular between the Level 1 queue managers, as a
whole, and each of the Level 2 queue managers. All Level 2 products provide

| single point of control for their object administration. In addition, the administration
| of MQSeries for AS/400, MQSeries for OS/2 Warp, MQSeries for UNIX systems,
| and MQSeries for Windows NT can be done remotely, from any one of MQSeries
| for AS/400, MQSeries for OS/2 Warp, MQSeries for UNIX systems, or MQSeries
| for Windows NT.

With Level 1 products, each queue manager must be administered individually.
The only factors that are discussed here are those which affect program migration.
For other details see the appropriate publication for the queue manager.

Table 64. Administration - function summary

Product Command queue Handles broken MQSET supported

A Yes Yes Yes

C Yes Yes Yes

D Yes Yes Yes

E Yes Yes Yes

G Yes Yes Yes

H No No No

| I| No| No| Yes

J No Yes Yes

K Yes Yes Yes

L Yes Yes Yes

M Yes Yes Yes

N Yes Yes Yes

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

 Command queues
Level 2 queue managers support a command input queue to which command
messages can be sent. If the user identifier in the message’s context is authorized
for the command, the command is executed and a reply message sent giving the
results of the command.

562 MQSeries Application Programming Guide

 Comparison - administration

However, the format of these commands is different between the MQSeries for
OS/390 queue manager, and that for the other Level 2 queue managers. For
OS/390, the command messages contain character information, in the same format
as is supported at the command line. The other Level 2 queue managers support
messages containing Programmable Command Formats, which include binary
information. Replies to these messages are in a similar format, which is easier for
programs, as opposed to humans, to parse.

The queue managers of the Level 1 products do not provide command queues.
Administration is only carried out using the supplied utility.

 Handles broken
When changes are made to the configuration information, for example a new queue
is defined or the attributes of a queue are changed, the immediacy with which this
takes effect varies.

With Level 2 queue managers, changes generally take immediate effect. Any
change to an attribute which affects the name resolution of a queue (for example, a
change to the name of the queue to which an alias queue resolves), causes any
handle for that queue to be marked as broken by the queue manager. Any
subsequent call (other than MQCLOSE) using such a handle fails, with an
MQRC_OBJECT_CHANGED reason code. The application has to close the
handle, and reopen the queue, whereupon the change will take effect. Changes to
other attributes generally take immediate effect for any new messages arriving on
the queue.

With Level 1 queue managers, handles are not broken when changes to the
configuration occur. The application does not normally see the change until it
closes and reopens the queue; the MQRC_OBJECT_CHANGED reason code is
never issued. Changes to the Inhibit-get and Inhibit-put attributes do take
immediate effect, because these attributes are checked at get or put time, not at
open time.

Some Level 1 queue managers, however, do not permit changes to the
configuration which would affect currently-open handles.

It is likely that only long-running applications need to be sensitive to changes in the
configuration tables. If portability is a strong consideration for long-running
applications, it may be better to close and reopen queues periodically, rather than
check for MQRC_OBJECT_CHANGED.

 MQSET support
Level 2 queue managers support the MQSET call to set a limited number of queue
attributes. This call is not supported by Level 1 queue managers.

 Appendix I. MQSeries platforms - functional comparisons 563

 Comparison - programming languages

 Programming languages
Support here means that the queue manager has been tested with the language,
and that header files or copybooks as appropriate are supplied, together with
relevant documentation. It is possible that other languages can be used, providing
the calling interface is (or can be made to be) the same as that generated by one
of the supported languages.

Table 65. Programming languages supported - function summary

Product C C++ Visual
Basic

COBOL RPG Assembler PL/I

A Yes No No Yes No No No

| C| Yes| Yes| No| Yes| No| Yes| Yes

D Yes Yes No Yes No No Yes

E Yes Yes No Yes Yes No No

G Yes No No No No Yes (TAL) No

H Yes No No No No No No

| I| Yes| No| No| Yes| No| No| Yes

J Yes No Yes No No No No

K Yes No Yes No No No No

| L| Yes| Yes| Yes| Yes| No| No| Yes

M Yes No No (1) No No No

| N| Yes| Yes| No| Yes| No| No| (2)

Note:

1. Not supported on MQSeries for AT&T GIS UNIX
2. Supported on MQSeries for AIX only

| Product key:

| A MQSeries for Digital OpenVMS V2.2
| C MQSeries for OS/390 V2.1
| D MQSeries for OS/2 Warp V5.1
| E MQSeries for AS/400 V4R2M1
| G MQSeries for Tandem NonStop Kernel V2.2
| H MQSeries for UnixWare V1.4.1
| I MQSeries for VSE/ESA V2.1
| J MQSeries for Windows V2.0
| K MQSeries for Windows V2.1
| L MQSeries for Windows NT V5.1
| M MQSeries V2 for UNIX systems.
| This includes MQSeries for AT&T GIS UNIX V2.2 and MQSeries for SINIX and DC/OSx V2.2.
| N MQSeries V5 for UNIX systems.
| This includes MQSeries for AIX V5.1, MQSeries for HP-UX V5.1, and MQSeries for Sun Solaris V5.1.

 Header files
The header files and copybooks supplied with queue managers include, for
example, constants for options, that are supported by that queue manager.
However, some constants (reason codes for example), that are usually part of a
test rather than being set within a program, are also included if they cannot be
generated on a particular platform. This makes it easier to port applications which
do need to test for reason codes.

Constant values are not reused for different purposes across queue managers. For
example, MQRC_OBJECT_CHANGED has the value 2041. There is no risk that

564 MQSeries Application Programming Guide

 Comparison - programming languages

the value 2041 will be used for a different reason code on a queue manager that
never generates MQRC_OBJECT_CHANGED.

 Appendix I. MQSeries platforms - functional comparisons 565

 Comparison - connection

 Connection

| Table 66. Default connection to a queue manager - function summary

| Product| Default connection to
| a queue manager

| MQSeries for Digital OpenVMS V2.2| No

| MQSeries for OS/390 V2.1| Yes (1)

| MQSeries for OS/2 Warp V5.1| No

| MQSeries for AS/400 V4R2M1| Yes

| MQSeries for
| Tandem NonStop Kernel V2.2
| No

| MQSeries for UnixWare V1.4.1| No

| MQSeries for VSE/ESA V2.1| Yes (1)

| MQSeries for Windows V2.0| No

| MQSeries for Windows V2.1| No

| MQSeries for Windows NT V5.1| No

| MQSeries for AT&T GIS UNIX V2.2
| MQSeries for SINIX and DC/OSx V2.2
| No

| MQSeries for AIX V5.1
| MQSeries for HP-UX V5.1
| MQSeries for Sun Solaris V5.1

| No

| Note:

| 1. CICS applications only

 Default connection
With MQSeries for AS/400 and with MQSeries for VSE/ESA there is a default
connection to a queue manager. It is not essential for applications to issue the
MQCONN and MQDISC verbs. However, it is recommended that even on these
platforms applications do always issue these verbs, in order to enhance their
portability.

566 MQSeries Application Programming Guide

 Notices

 Appendix J. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

| IBM Director of Licensing
| IBM Corporation
| North Castle Drive
| Armonk, NY 10504-1785
| U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1993,1999 567

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM
for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

568 MQSeries Application Programming Guide

 Notices

Programming interface information
This book documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated

| Guidance Information provided by MQSeries for AIX V5.1, MQSeries for AS/400
| V4R2M1, MQSeries for AT&T GIS UNIX V2.2, MQSeries for Digital OpenVMS
| V2.2, MQSeries for HP-UX V5.1, MQSeries for OS/2 Warp V5.1, MQSeries for
| OS/390 V2.1, MQSeries for SINIX and DC/OSx V2.2, MQSeries for Sun Solaris
| V5.1, MQSeries for Tandem NonStop Kernel V2.2, MQSeries for VSE/ESA V2.1,
| MQSeries for Windows V2.0, MQSeries for Windows V2.1, and MQSeries for
| Windows NT V5.1.

General-use programming interfaces allow the customer to write programs that
obtain the services of these products.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
these products. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-sensitive programming interface

 Appendix J. Notices 569

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Lotus, Lotus Notes, LotusScript, and Notes are trademarks of Lotus Development
Corporation in the United States, or other countries, or both.

ActiveX, BackOffice, Microsoft, Visual Basic, Visual C++, Windows, Windows NT,
and the Windows logo are trademarks of Microsoft Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

400 AD/Cycle AIX
AS/400 BookManager C/370
C/400 CICS CICS/ESA
COBOL/370 COBOL/400 Common User Access
DB2 eNetwork IBM
IBMLink IMS IMS/ESA
Language Environment MQ MQSeries
MVS/ESA OS/2 OS/390
OS/400 OpenEdition RACF
RPG/400 SupportPac System/390
VM/ESA VSE/ESA VisualAge

570 MQSeries Application Programming Guide

Part 6. Glossary and Index

 Copyright IBM Corp. 1993,1999 571

572 MQSeries Application Programming Guide

 abend reason code � authorization service

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for OS/390.
A complete list of MQSeries for OS/390 abend reason
codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log . See recovery log.

adapter . An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space . The area of virtual storage available
for a particular job.

address space identifier (ASID) . A unique,
system-assigned identifier for an address space.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

| affinity . An association between objects that have
| some relationship or dependency upon each other.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alert monitor . In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue

manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

allied address space . See ally.

ally . An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

application-defined format . In message queuing,
application data in a message, which has a meaning
defined by the user application. Contrast with built-in
format.

application environment . The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

archive log . See recovery log.

ASID. Address space identifier.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

| authorization checks . Security checks that are
| performed when a user tries to issue administration
| commands against an object, for example to open a
| queue or connect to a queue manager.

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of

 Copyright IBM Corp. 1993,1999 573

 authorized program analysis report (APAR) � client application

commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS) . A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for OS/390

� A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS. Bootstrap data set.

buffer pool . An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

built-in format . In message queuing, application data
in a message, which has a meaning defined by the
queue manager. Synonymous with in-built format.
Contrast with application-defined format.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

CICS transaction . In CICS, a unit of application
processing, usually comprising one or more units of
work.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

574 MQSeries Application Programming Guide

 client connection channel type � default object

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

| cluster . A network of queue managers that are
| logically associated in some way.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF) . In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from

the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI) . A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL) . In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

controlled shutdown . See quiesced shutdown.

CPF. Command prefix.

Cross Systems Coupling Facility (XCF) . Provides
the OS/390 coupling services that allow authorized
programs in a multisystem environment to communicate
with programs on the same or different OS/390
systems.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

data-conversion service . A service that converts
application data to the character set and encoding that
are required by applications on other platforms.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

 Glossary of terms and abbreviations 575

 deferred connection � Framework

deferred connection . A pending event that is
activated when a CICS subsystem tries to connect to
MQSeries for OS/390 before MQSeries for OS/390 has
been started.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

distribution list . A list of queues to which a message
can be put using a single MQPUT or MQPUT1
statement.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging . A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode . See dual logging.

dump analysis and elimination (DAE) . An OS/390
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
environment . See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event

(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See application log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE) . An
OS/390 macro that provides recovery capability and
gives control to the specified exit routine for processing,
diagnosing an abend, or specifying a retry address.

external security manager (ESM) . A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FIFO. First-in-first-out.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

forced shutdown . A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

format . In message queuing, a term used to identify
the nature of application data in a message. See also
built-in format and application-defined format.

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)

576 MQSeries Application Programming Guide

 FRR � local definition

� MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR) . An OS/390
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC) . An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF) . An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

global trace . An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

GTF. Generalized Trace Facility.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

in-built format . See built-in format.

| in-doubt unit of recovery . In MQSeries, the status of
| a unit of recovery for which a syncpoint has been
| requested but not yet confirmed.

.ini file . See configuration file.

initialization input data sets . Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS) . A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

 Glossary of terms and abbreviations 577

 local definition of a remote queue � message queue interface (MQI)

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and

| deliver messages, to enable them to recover in the
| event of failure.

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

M
machine check interrupt . An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises

| two message channel agents (a sender at one end and
| a receiver at the other end) and a communication link.

Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a

| communication link to a destination queue. See also
| message queue interface.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message format service (MFS) . In IMS, and editing
facility that allows application programs to deal with
simple logical messages, instead of device-dependent
data, thus simplifying the application development
process. See message input descriptor and message
output descriptor.

message group . A group of logical messages.
Logical grouping of messages allows applications to
group messages that are similar and to ensure the
sequence of the messages.

message input descriptor (MID) . In IMS, the MFS
control block that describes the format of the data
presented to the application program. Contrast with
message output descriptor.

message output descriptor (MOD) . In IMS, the MFS
control block that describes the format of the output
data produced by the application program. Contrast
with message input descriptor.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.

578 MQSeries Application Programming Guide

 message queuing � object handle

This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message segment . One of a number of segments of
a message that is too large either for the application or
for the queue manager to handle.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

MFS. Message format service.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

| MQAI. MQSeries Administration Interface.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

| MQSeries Administration Interface (MQAI) . A
| programming interface to MQSeries.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
| namelist . An MQSeries object that contains a list of
| names, for example, queue names.

name service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system being
used. Externally, the queue manager name remains
unchanged.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

| object . In MQSeries, an object is a queue manager, a
| queue, a process definition, a channel, a namelist, or a
| storage class (OS/390 only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

 Glossary of terms and abbreviations 579

 off-loading � queue

off-loading . In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA) . A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OTMA. Open Transaction Manager Access.

output log-buffer . In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
page set . A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

point of recovery . In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries
for OS/390 page sets and the corresponding log data
sets required to recover these page sets. These
backup copies provide a potential restart point in the
event of page set loss (for example, page set I/O error).

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other

580 MQSeries Application Programming Guide

 queue manager � request message

types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log . In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM) . A program
that handles all normal and abnormal termination of
tasks by passing control to a recovery routine
associated with the terminating function.

reference message . A message that refers to a piece
of data that is to be transmitted. The reference

message is handled by message exit programs, which
attach and detach the data from the message so
allowing the data to be transmitted without having to be
stored on any queues.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA) . The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply
message and request message.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program. Contrast with reply
message and report message.

 Glossary of terms and abbreviations 581

 RESLEVEL � single logging

RESLEVEL . In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for OS/390, examples of resources are buffer
pools, page sets, log data sets, queues, and messages.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

| Resource Recovery Services (RRS) . An OS/390
| facility that provides 2-phase syncpoint support across
| participating resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

| RRS. Resource Recovery Services.

RTM. Recovery termination manager.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a

transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

session ID . In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be used
by a message channel agent when moving messages
from a transmission queue to a link.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling . In MQSeries for OS/390 and MQSeries for
Windows 2.1, a feature that allows the operating system
to notify a program when an expected message arrives
on a queue.

single logging . A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

582 MQSeries Application Programming Guide

 single-phase backout � thlqual

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class . In MQSeries for OS/390, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem . In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC) . An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile . In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a refresh
security command is issued. Each switch profile that
MQSeries detects turns off checking for the specified
resource.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,

changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF) . An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA) . Data
recorded in a SYS1.LOGREC entry, which describes a
program or hardware error.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

T
target library high-level qualifier (thlqual) . High-level
qualifier for OS/390 target data set names.

task control block (TCB) . An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching . The overlapping of I/O operations and
processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

| TCP/IP. Transmission Control Protocol/Internet
| Protocol.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

termination notification . A pending event that is
activated when a CICS subsystem successfully
connects to MQSeries for OS/390.

thlqual . Target library high-level qualifier.

 Glossary of terms and abbreviations 583

 thread � XCF

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid . See transaction identifier.

transaction . See unit of work and CICS transaction.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transaction manager . A software unit that coordinates
the activities of resource managers by managing global
transactions and coordinating the decision to commit
them or roll them back. V5.1 of MQSeries for AIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT is a
transaction manager.

| Transmission Control Protocol/Internet Protocol
| (TCP/IP). A suite of communication protocols that
| support peer-to-peer connectivity functions for both local
| and wide area networks.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) . In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
X/Open XA . The X/Open Distributed Transaction
Processing XA interface. A proposed standard for
distributed transaction communication. The standard
specifies a bidirectional interface between resource
managers that provide access to shared resources
within transactions, and between a transaction service
that monitors and resolves transactions.

XCF. Cross Systems Coupling Facility.

584 MQSeries Application Programming Guide

 Index

 Index

A
abend

AEY9 223
QLOP 223

accounting using message context 37
AccountingToken field 37
activation group

AS/400 266
adapter

batch 221
CICS 222
IMS 224
trace points 222

administration, platform comparison 562
AEY9 abend 223
alias queue

examples of when to use 44
overview 41
resolving queue name 101

alias queue manager definition 99
alternate PCB, IMS bridge 242
alternate user authority 104
AlternateUserId field 104
AMQ0ECHA sample program 369
amq0gbr0 sample program 327, 346
amq0get0 sample program 327, 349
AMQ0GET4 sample program 349
amq0put0 sample program 327, 342
amq0req0 sample program 327, 359
AMQ0REQ4 sample program 359
AMQ0SETA sample program 367
amqiech2 sample program 330, 369
amqiechx sample program 327, 369
amqiinq2 sample program 330, 366
amqiinqx sample program 327, 366
amqiset2 sample program 330, 367
amqisetx sample program 327, 367
amqltmc0 trigger monitor 214
amqmech2 sample program 330, 369
amqmechx sample program 327, 369
amqminq2 sample program 330, 366
amqminqx sample program 327, 366
amqmset2 sample program 330, 367
amqmsetx sample program 327, 367
amqrgrma sample program 351
amqsbcg sample program 347
amqsbcg0 sample program 327, 347
amqsbcgc sample program 347
amqscic0 sample transaction 327, 379
amqscic21 sample transaction 327

amqsdlq sample program 327
amqsech sample program 369
amqsecha sample program 327, 369
amqsechc sample program 369
AMQSERV4 sample program 212, 371, 372
amqsgbr sample program 346
amqsgbr0 sample program 327, 346
AMQSGBR4 sample program 346
amqsgbrc sample program 346
amqsget0 sample program 327, 349
AMQSGET4 sample program 349
amqsgetc sample program 327, 349
amqsgetw sample program 327, 349
amqsinqa sample program 366
amqsinqc sample program 366
amqsprma sample program 351
amqsptl0 sample program 345
amqsput0 sample program 327, 342
AMQSPUT4 sample program 342
amqsputc sample program 327, 342
amqsputw sample program 327, 342, 343
amqsreq sample program 359
amqsreq0 sample program 327, 359
AMQSREQ4 sample program 359
amqsreqc sample program 359
amqsset sample program 367
amqsseta sample program 367
amqssetc sample program 367
amqstrg sample program 371
amqstrg0 sample program 327, 371
AMQSTRG4 sample program 212, 371
amqstrgc sample program 371
amqstxgx sample program 327, 379
amqstxpx sample program 327, 379
amqstxsx sample program 327, 379
amqsvfc0 sample program 330, 370
AMQSVFC4 sample program 333, 370
amqsvfcx sample program 370
amqsxa4x sample transaction 327
amqsxab0.sqb sample 373
amqsxab0.sqc sample 373
amqsxaex sample transaction 327, 390
amqsxaf0.sqb sample 373
amqsxaf0.sqc sample 373
amqsxag0.c sample 373
amqsxag0.cbl sample 373
amqsxas0.sqb sample 373
amqsxas0.sqc sample 373
amqsxrma sample program 351
amqzsc (XA switch load module) 195
amqzsc21 (XA switch load module) 195

 Copyright IBM Corp. 1993,1999 585

 Index

amqzsca (XA switch load module) 195
API (Application Programming Interface)

calls 66
dealing with failure of a call 53

API-crossing exit for OS/390 225
application data 23
application design

for more than one platform 21
overview 13

application queue 197
applications, writing 243
ApplIdentityData field 37
ApplOriginData field 38
assembler language

assemblers supported 453
examples

MQCLOSE 512
MQCONN 510
MQDISC 510
MQGET 514
MQGET with signaling 516
MQGET with wait option 515
MQINQ 517
MQOPEN for dynamic queue 511
MQOPEN for existing queue 512
MQPUT 513
MQPUT1 513
MQSET 517

macros 535
preparing your program to run 275
support for 79
using constants and structures 535
using the MQI 79

attributes
DefInputOpenOption 102
DefPriority 32
HardenGetBackout 36, 55
IndexType 139
inquiring about 179
MaxMsgLength 111, 128
MaxPriority 32
MsgDeliverySequence 35, 128
queue manager 39
queues 43
selectors 179
setting 179
Shareability 102
TriggerControl 208
TriggerDepth 209
TriggerInterval 210
TriggerMsgPriority 208
TriggerType 208

audit trail using message context 37
authority checking

alternate user authority on MQOPEN 104
by MQCLOSE 95

authority checking (continued)
by MQDISC 95
by MQOPEN 97

automatically starting an application
an example 361
how triggering works 197
introduction 17

B
backing out changes 35, 183
backout, skipping 150
BackoutCount field 35, 55
base queue 44
Basic

compilers supported 453
batch for MQSeries for OS/390

adapter 221
building an application 275
calling the stub dynamically 279
restrictions 84
support for 219

benefits of message queuing 10
bibliography xviii
binding

FASTPATH 92
STANDARD 92

BookManager xxii
browse cursor 102, 154
browsing (sample for MQSeries for OS/390) 414
browsing messages 154
browsing messages in logical order 156
Buffer parameter 111
BufferLength parameter 127
building your application

batch with MQSeries for OS/390 275
CICS and MQSeries for OS/390 277
IMS 278
on AIX 259
on AS/400 265
on Digital OpenVMS 269
on HP-UX 271
on NCR UNIX SVR4 MP-RAS, R3.0 267
on OS/2 Warp 289
on OS/390 275
on SINIX or DC/OSx 293
on Sun Solaris 297
on Tandem NSK 301
on VSE/ESA 305
on Windows 307
on Windows NT 309

built-in formats 31

586 MQSeries Application Programming Guide

 Index

C
C language

compilers supported 453
examples

MQCLOSE 490
MQCONN 488
MQDISC 488
MQGET 492
MQGET with signaling 493
MQGET with wait option 492
MQINQ 494
MQOPEN for dynamic queue 489
MQOPEN for existing queue 489
MQPUT 490
MQPUT1 491
MQSET 495

include files 530
support for 76

C language include files
<cmqc.h> 530
<cmqcfc.h> 530
<cmqxc.h> 530
<cmqzc.h> 530
header files 530
include files 530

C++
support for 75

C++ language
compilers supported 453

C++ sample programs 327
call interface 66
calling dynamically with MQSeries for OS/390 279
CAM (credit application manager) 434
CCSID (Coded Character Set Identifier)

same as queue manager 30
CEDF (CICS Execution Diagnostic Facility) 82, 223
CETR (CICS Trace Control transaction) 284
channel

data-conversion exit 161
channel queue 42
CICS

adapter 222
calling the stub dynamically with MQSeries for

OS/390 279
COBOL applications 262, 311, 312
debugging programs 284
Execution Diagnostic Facility 82
MQSeries for OS/390 support 219
preparing C programs 263, 300
sample transaction for MQSeries for AIX 263, 273
sample transaction for MQSeries for SINIX and

DC/OSx 295
sample transaction for MQSeries for Sun

Solaris 300
storage protection facility 228

CICS (continued)
trace 284
Trace Control transaction 284
with MQSeries for AIX 262
with MQSeries for HP-UX 273
with MQSeries for OS/2 Warp 290
with MQSeries for OS/390 277
with MQSeries for SINIX and DC/OSx 295
with MQSeries for Sun Solaris 299
with MQSeries for Windows NT 310

CICS adapter
abends 223
QLOP abend 223
trace points 222
using CEDF 223

CICS bridge
3270 considerations 234
error handling 233
examples 234
handling units of work 233
message structure 231
messages returned 232
writing applications 230

CICS Execution Diagnostic Facility (CEDF) 223
CICS for OS/2 user exit 15 193
CICS sample transaction 379
CKQC transaction 89, 284
CKTI transaction 212, 217
client (MQSeries)

LU 6.2 link library 272
MQSeries clients and servers 10
triggering support 197
what it is 6

CLISTs for Mail Manager sample application (MQSeries
for OS/390) 422

cluster
what it is 6

cluster queue
MQOPEN option 102
overview 42

clusters (message affinities)
MQSeries techniques 17

COBOL
CICS applications 262, 311, 312
compilers supported 453
copy files 532
examples

MQCLOSE 501
MQCONN 498
MQDISC 498
MQGET 503
MQGET with signaling 505
MQGET with wait option 504
MQINQ 506
MQOPEN for dynamic queue 499
MQOPEN for existing queue 500
MQPUT 501

 Index 587

 Index

COBOL (continued)
examples (continued)

MQPUT1 502
MQSET 507

LITLINK directive 291, 294, 312
on AIX 260
on AS/400 265
on HP-UX 272
on OS/2 291
on SINIX or DC/OSx 294
on Sun Solaris 298
on Windows NT 311
support for 78
using named constants 79

Coded Character Set Identifier (CCSID)
same as queue manager 30

coded character sets 32
CodedCharSetId (CCSID) 30

message data 30
commit

single-phase 183
two-phase 184

commitment control considerations 188
committing changes 183
communication

connectionless 7
time-independent 8

comparisons, functional 539
comparisons, MQSeries platforms 539
compilers supported 453
compiling

for MQSeries for AIX 259
for MQSeries for AS/400 265
for MQSeries for AT&T GIS UNIX 267
for MQSeries for Digital OpenVMS 269
for MQSeries for HP-UX 271
for MQSeries for OS/2 Warp 289
for MQSeries for OS/390 275
for MQSeries for SINIX and DC/OSx 293
for MQSeries for Sun Solaris 297
for MQSeries for Windows 307
for MQSeries for Windows NT 309

completion code 74
confirmation of arrival (COA) report 25
confirmation of delivery (COD) report 25
connecting to a queue manager 90, 92
connection 566
connection handle

returned from MQCONN 91
returned from MQCONNX 92
using with MQGET 124
what it is 74

connectionless communication 7
constants in COBOL 79
context

default 113

context (continued)
identity 37
message 37
MQOPEN options 103
MQPUT options 113
origin 38

context (Credit Check sample application) 441
Context field 109
control information 23
convert characters call 164
convert message data

MQGET 125, 152
copy files

how to use them 532
copying messages 154
correlation identifier 35
CorrelId field 35, 137
creating conversion-exit code 164
credit application manager (CAM) 434
credit check sample (MQSeries for OS/390) 430
CRTMQCVX 164
CSQ4BAA1 sample 414
CSQ4BCA1 sample 414
CSQ4BVA1 sample 414
CSQ4CAC1 sample 420
CSQ4CCB5 sample 438
CSQ4CCC1 sample 420
CSQ4CCG1 sample 416
CSQ4CVB1 sample 434
CSQ4CVB2 sample 434
CSQ4CVB3 sample 437
CSQ4CVB4 sample 438
CSQ4CVB5 sample 438
CSQ4CVC1 sample 420
CSQ4CVD1 sample 426
CSQ4CVD2 sample 427
CSQ4CVD3 sample 427
CSQ4CVD4 sample 429
CSQ4CVD5 sample 429
CSQ4ICB3 sample 443
CSQ4RCD1 sample 422
CSQ4RVD1 sample 422
CSQ4TCD1 sample 426
CSQ4TCD2 sample 427
CSQ4TCD4 sample 429
CSQ4TCD5 sample 429
CSQ4TVD1 sample 426
CSQ4TVD2 sample 427
CSQ4TVD4 sample 429
CSQ4TVD5 sample 429
CSQCAPX sample 225
CSQQTRMN transaction 212, 217
cursor, browse 102, 154
CVTMQMDTA 164

588 MQSeries Application Programming Guide

 Index

D
data

application 23
message 23, 111

data conversion
amqsvfc0 sample program 370
AMQSVFC4 sample program 370
amqsvfcx sample program 370
application 31
comparison by platform 550
convert characters call 164
convert MQSeries Data Type command 164
create MQSeries conversion-exit command 164
IMS bridge 242
interface 161
message 152
MQGET 125, 152
MQXCNVC call 68
OS/390 considerations 162
UNIX environment 174

data conversion interface (DCI) 161
data definition files 69

copy files 529
header files 529
include files 529
macros 529

data in a message 23, 111
data types

elementary 68
structures 68

data-conversion exit 161, 163
amqsvfc0 sample program 370
AMQSVFC4 sample program 370
amqsvfcx sample program 370
convert characters call 164
convert MQSeries Data Type command 164
create MQSeries conversion-exit command 164
IMS bridge 242
invoking 161
MQXCNVC call 68
skeleton 164
UNIX environment 174
writing 168

AS/400 167
Digital OpenVMS 172
OS/2 168
OS/390 170
Tandem NSK systems 171
UNIX systems 172
Windows NT 177

datagram 24
DataLength parameter 127
DCE environment for MQSeries for HP-UX

DCE threaded, libraries to use 271

DCE sample exits 327
dead-letter (undelivered-message) queue 440

handler 58
overview 48
sample to deal with messages on it 391
use within MQSeries for OS/390 sample 440
using 57

dead-letter queue handler
brief description 58
sample 391

DeadLetterQName field 204
debugging programs 284
default context 113
defining alias for queue manager 99
DefInputOpenOption attribute 102
DefPriority attribute 32
design considerations

performance hints and tips 18
disconnecting from a queue manager 94
distribution lists 116

identifying 117
opening 116
putting messages to 119
using the MQPMR structure 120

DOS clients
compilers supported 453

DOS, no triggering support 197
dynamic linking of MQI calls for MQSeries for

OS/390 279
dynamic queue

closing temporary queue 105
creating 104
overview 45
permanent queue properties 46
temporary queue properties 45
when to use 46

dynamic XA resource management structure 192
DynamicQName field 104

E
EBCDIC newline character conversion 153
ECB (event control block) 148
Encina sample transaction 390
Encoding field 30
ENDMQM

AS/400 266
environments for MQSeries for OS/390 219
errors

dead-letter (undelivered-message) queue 57
dealing with failure of a call 53
incorrect message data 55
report message 55
system interruptions 54
undelivered-message queue 57

 Index 589

 Index

event control block 148
event queue 42
event-driven processing 9
examples

assembler language
MQCLOSE 512
MQCONN 510
MQDISC 510
MQGET 514
MQGET with signaling 516
MQGET with wait option 515
MQINQ 517
MQOPEN for dynamic queue 511
MQOPEN for existing queue 512
MQPUT 513
MQPUT1 513
MQSET 517

C
MQCLOSE 490
MQCONN 488
MQDISC 488
MQGET 492
MQGET with signaling 493
MQGET with wait option 492
MQINQ 494
MQOPEN for dynamic queue 489
MQOPEN for existing queue 489
MQPUT 490
MQPUT1 491
MQSET 495

COBOL
MQCLOSE 501
MQCONN 498
MQDISC 498
MQGET 503
MQGET with signaling 505
MQGET with wait option 504
MQINQ 506
MQOPEN for dynamic queue 499
MQOPEN for existing queue 500
MQPUT 501
MQPUT1 502
MQSET 507

PL/I
MQCLOSE 522
MQCONN 520
MQDISC 520
MQGET 524
MQGET with signaling 526
MQGET with wait option 525
MQINQ 527
MQOPEN for dynamic queue 521
MQOPEN for existing queue 521
MQPUT 522
MQPUT1 523
MQSET 528

exception report 25
exclusive access to a queue 102
Execution Diagnostic Facility 82
execution key of CICS programs 228
exit programs 225

data conversion 163
expiry report 25
external syncpoint

coordination 191
interfaces 192
restrictions 193
X/Open XA interface 192

F
FASTPATH binding 92
feedback codes, IMS bridge 242
Feedback field 27
fields

AlternateUserId 104
ApplIdentityData 37
ApplOriginData 38
BackoutCount 35, 55
Context 109
CorrelId 35, 137
DeadLetterQName 204
DynamicQName 104
Encoding 30
Feedback 27
Format 30
GroupId

match options 137
MQMO 137

InitiationQName 202
MsgId 137
Persistence 34
Priority 32
PutApplName 38
PutApplType 38
PutDate 38
PutMsgRecFields 110
PutMsgRecOffset 110
PutMsgRecPtr 110
PutTime 38
RecsPresent 110
ReplyToQ 36
ReplyToQMgr 36
Report 25
ResolvedQMgrName 109
ResolvedQName 109
ResponseRecOffset 111
ResponseRecPtr 111
StrucId 109
UserIdentifier 37
Version 109, 110
WaitInterval 126, 146

590 MQSeries Application Programming Guide

 Index

fonts in this book xvii
format

control information 30
message data 30

Format field 30
formats

built-in 31
user-defined 31

functional comparisons 539
administration 562
connection 566
data conversion 550
input 547
message properties 551
object types 560
programming languages 564
protocols 551
security 556
syncpoint 540
threading 555
triggering 544

G
get (sample for MQSeries for OS/390) 411
get-message options structure 125
getting

a particular message 137
message from triggered queue 211
message when the length is unknown 155
messages 123
options 123

glossary 573
group

identifier 35
GroupStatus field

MQGMO structure 127

H
handle

scope of connection 91
scope of connection handle 98
scope of object handle 98
using 74
using object handle 97

HardenGetBackout attribute 36, 55
heap size

for OS/2 MQI client 290
MQSeries for Windows NT 310

HTML (Hypertext Markup Language) xxiii
Hypertext Markup Language (HTML) xxiii

I
identity context 37
IMS

adapter 224
building an MQSeries for OS/390 application 278
calling the stub dynamically with MQSeries for

OS/390 279
closing objects 97
enquiry application (IMS) 249
mapping MQSeries messages to transactions 241
support for 219
using MQI calls 246
using syncpoints 245
writing a server application 246
writing an enquiry application 249
writing MQSeries applications 245

IMS bridge
alternate PCB 242
data conversion 242
feedback codes 242
IMS commands 239
LLZZ data segment 242
mapping MQSeries messages to transactions 241
message segmentation 242
NAK 239
reply messages 242
sense codes 242
undelivered messages 239
writing applications 239

IMS commands, IMS bridge 240
include files

PL/I for MQSeries for OS/390 536
increasing MaxMsgLength 140
initiation queue 47

example to create one 202
what it is 199

InitiationQName field 202
input, platform comparison 547
inquiring about attributes

MQSeries for AS/400 sample program 366
MQSeries for OS/2 Warp sample program 366
MQSeries for OS/390 sample 420
MQSeries for UNIX sample program 366
MQSeries for Windows NT sample program 366
using MQINQ 179

interfaces to external syncpoint managers 192
internal syncpoint coordination 190
invoking data-conversion exit 161

J
JCL (Job Control Language)

batch 275
CICS and MQSeries for OS/390 277
IMS 278

 Index 591

 Index

L
languages 75
languages supported 453
large messages

reference messages 140
segmented messages 140

LDAP (lightweight directory access protocol) 315
libraries to use

with MQSeries for AIX 259
with MQSeries for AT&T GIS UNIX 268
with MQSeries for Digital OpenVMS 269
with MQSeries for HP-UX 271
with MQSeries for OS/2 Warp 289
with MQSeries for SINIX and DC/OSx 296
with MQSeries for Sun Solaris 298
with MQSeries for Windows 307
with MQSeries for Windows NT 309

library files 69
libsna.a 272
libsnastubs.a 272
lightweight directory access protocol (LDAP) 315
linking 293

for MQSeries for AIX 259
for MQSeries for AS/400 265
for MQSeries for AT&T GIS UNIX 267
for MQSeries for Digital OpenVMS 269
for MQSeries for HP-UX 271
for MQSeries for OS/2 Warp 289
for MQSeries for OS/390 275
for MQSeries for SINIX and DC/OSx 293
for MQSeries for Sun Solaris 297
for MQSeries for Windows 307
for MQSeries for Windows NT 309

linking in the MQI client environment
when using LU 6.2 272

LLZZ data segment, IMS bridge 242
local queue 41
looking at a message 154

M
macros, assembler language 535
mail manager sample application (MQSeries for

OS/390) 421
MatchOptions field

MQGMO structure 127
maximum message length

increasing 140
MaxMsgLength attribute 111, 128
MaxPriority attribute 32
MCA (message channel agent), definition of 4
message

backed out 35
browsing 154
browsing and removing 156

message (continued)
browsing in logical order 156
browsing when message length unknown 155
channel agent definition 4
confirm arrival 25, 554
confirm delivery 25, 554
context

MQOPEN options 103
MQPUT options 113
types 37

copying 154
creating 23
data 23, 111
data conversion

considerations 31
MQGET 152

data format 29
datagram 24
definition 4
descriptor

MQMD structure 23
when using MQGET 124
when using MQPUT 108

design 15
exception 25
expiry 25, 554
getting 123
getting a particular 137
groups 33
identifier 35
large 140
logical ordering 129
looking at 154
maximum size 111
negative action notification 26, 554
notification of arrival 147
order of retrieval from a queue 128
originator information 38
persistence 34
persistence and triggers 215
physical ordering 129
positive action notification 26, 554
priority 32, 128
priority and triggers 215
problem delivering 57
putting 107
putting one 114
reference 144
removing after browsing 156
reply 25
reply, IMS bridge 242
report 25, 55
request 24
retry sending 57
return to sender 57
sample to deal with those on dead-letter queue 391

592 MQSeries Application Programming Guide

 Index

message (continued)
segmentation 141
segmented 33
selecting from a queue 35
signaling 147
size 111
structure 23
trigger 198, 215
trigger after queue manager restart 215
trigger format 216
type for status information 25
type when no reply required 24
types 24
undeliverable, IMS bridge 241
undelivered 57
undelivered, sample to handle 391
use of types 24
waiting for 146

message affinities (clusters)
MQSeries techniques 17

message channel agent (MCA), definition of 4
message context (Credit Check sample

application) 441
message data conversion, MQGET 125, 152
message handler sample (MQSeries for OS/390) 443
message properties, platform comparison 551
Message Queue Interface 18

calls 66
data definition files 69
dealing with failure of a call 53
elementary data types 68
library files 69
structures 68
stub programs 69
using System/390 assembler 79

message queue, definition of 4
message queuing 3

benefits of 10
features 7

message segmentation, IMS bridge 242
messages

mapping to IMS transaction types 241
model queue 45, 104
MQ_MSG_HEADER_LENGTH 112
MQ*_DEFAULT values

with MQSeries for AIX 77
MQCA_ñ values 179
MQCLOSE

authority checking 95
call parameters 106
closing a queue 105

MQCMIT 186
MQCONN

call parameters 90
scope of 91

MQCONNX 92
MQDH 112
MQDISC

authority checking 95
when to use 94

MQDLH 57, 111
MQGET

backing out changes 183
buffer size 127
call parameters 123
committing changes 183
data conversion 152
increase speed of 139
message data conversion 125
message options 125
order of message retrieval 128
to get a specific message 137
triggered queues 211
unknown message length 155
using MQGMO 125
using MQMD 124
when it fails 159
when to use 123

MQGMO 125
MQGMO_ACCEPT_TRUNCATED_MSG 127
MQGMO_BROWSE_* 301
MQGMO_BROWSE_FIRST 154
MQGMO_BROWSE_MSG_UNDER_CURSOR 155
MQGMO_BROWSE_NEXT 154
MQGMO_CONVERT 152
MQGMO_MARK_SKIP_BACKOUT 55

explanation 150
MQGMO_MSG_UNDER_CURSOR 156
MQGMO_WAIT 146
MQI (Message Queue Interface)

calls 66
client library files 69
data definition files 69
dealing with failure of a call 53
elementary data types 68
IMS applications 246
library files 69
overview 18
structures 68
stub programs 69
using System/390 assembler 79

MQI client
LU 6.2 link library 272

MQIA_ñ values 180
MQIIH 239
MQINQ

call parameters 180
use of selectors 179
when it fails 181

MQMD
overview 23

 Index 593

 Index

MQMD (continued)
when using MQGET 124
when using MQPUT 108

MQMT_ñ values 24
MQOD 99
MQOO_* values 101
MQOPEN

browse cursor 154
call parameters 98
MQOO_* values 101
object handle 97
using MQOD 99
using options parameter 101

MQPMO 108
MQPUT

backing out changes 183
call parameters 107
committing changes 183
context information 113
if it fails 121
quiescing queue manager 109
syncpointing 109
using MQPMO 108

MQPUT1
call parameters 114
if it fails 121
performance 107

MQRC_SECOND_MARK_NOT_ALLOWED 150
MQRMIXASwitch 192
MQRMIXASwitchDynamic 192
MQSeries applications

planning 13
testing 21

MQSeries client
connection to queue manager 91
using triggering 198
what it is 6

MQSeries data conversion interface 161
MQSeries for AIX

amqisetx 367
amqmsetx 367
amqsseta 367
amqzsc 195
amqzsc21 195
amqzsca 195
build TUXEDO server environment 379
building your application 259
CICS support 262
compilers supported 453
key features 12
sample programs 327
scope of MQCONN 91
set sample 367
syncpoints 189
triggering using samples 361
TUXEDO samples 379

MQSeries for AIX (continued)
ubbstxcx.cfg example 384
XA switch load module 195

MQSeries for AS/400
AMQZSTUB 265
building your application 265
commitment control considerations 188
compilers supported 453
compiling 265
CRTCBLPGM 265
CRTCMOD 265
disconnecting from queue manager 94
key features 12
linking 265
sample program

using triggering 363
syncpoint considerations with CICS for AS/400 189
syncpoints 188

MQSeries for AT&T GIS UNIX
amqisetx 367
amqmsetx 367
amqsseta 367
building your application 267
C compiler 267
compilers supported 453
flags when compiling 267
key features 12
link libraries 268
sample programs 327
set sample 367
syncpoints 189
triggering using samples 361
TUXEDO samples 379
ubbstxcx.cfg example 384

MQSeries for Digital OpenVMS
building your application 269
C compiler 269
compilers supported 453
flags when compiling 269
link libraries 269
sample programs 327

MQSeries for HP-UX
amqisetx 367
amqmsetx 367
amqsseta 367
amqzsc 195
build TUXEDO server environment 382
building your application 271
CICS support 273
compilers supported 453
sample programs 327
scope of MQCONN 91
set sample 367
syncpoints 189
triggering using samples 361
TUXEDO samples 379

594 MQSeries Application Programming Guide

 Index

MQSeries for HP-UX (continued)
ubbstxcx.cfg example 384
XA switch load module 195

MQSeries for OS/2 Warp
building your application 289
CICS support 290
compilers supported 453
key features 12
sample programs 327
scope of MQCONN 91
syncpoints 189
Transaction Server support 290, 292
triggering using samples 361
TZ environment variable 38

MQSeries for OS/390
building your application 275
CMQA 535
CMQDLHA 535
CMQDXPA 535
CMQEPP 536
CMQGMOA 535
CMQIIHA 535
CMQMDA 535
CMQODA 535
CMQP 536
CMQPMOA 535
CMQTMA 535
CMQTMC2A 535
CMQXA 535
CMQXPA 535
CMQXQHA 535
compilers and assemblers supported 453
CSQBSTUB 276
CSQCSTUB 277
CSQQSTUB 278
key features 10
requesting no backout of MQGET 150
using signaling 147

MQSeries for SINIX and DC/OSx
build TUXEDO server environment 383, 384
building your application 293
CICS support 295
compilers supported 453
flags when compiling 293
link libraries 296
sample programs 327

MQSeries for Sun Solaris
build TUXEDO server environment 380, 384
building your application 297
C compiler 297
CICS support 299
compilers supported 453
link libraries 298
sample programs 327

MQSeries for Tandem NonStop Kernel
compilers supported 453

MQSeries for Tandem NSK
building your application 301
notification of message arrival 147
sample programs 327
syncpoint considerations 194
using signaling 147

MQSeries for VSE/ESA
building your application 305
compilers supported 453
sample programs 327

MQSeries for Windows
building your application 307
sample programs 327
using signaling 147

MQSeries for Windows NT
build TUXEDO server environment 385
building your application 309
CICS support 310
compilers supported 453
key features 12
sample programs 327
scope of MQCONN 91
syncpoints 189
Transaction Server support 310
triggering using samples 361
TUXEDO sample makefile 387
TUXEDO samples 379
ubbstxcn.cfg example 386

MQSeries for Windows V2.0
compilers supported 453

MQSeries for Windows V2.1
compilers supported 453

MQSeries object
closing 105
creating 14
introduction 14
namelist 48
naming 49
opening 97
process definition

attributes 49
create 202

queue 40
queue manager 39
rules for naming 49
storage class 49
what it is 39

MQSeries on UNIX systems
key features 12
platforms included xvii
sample programs 327
syncpoints 189
triggering using samples 361
TUXEDO 379
ubbstxcx.cfg example 384

 Index 595

 Index

MQSeries publications xviii
MQSeries Workflow 249
MQSET

attribute list 182
call parameters 182
use of selectors 179

MQTM 216
MQTM (trigger message) 214
MQTMC (trigger message, character) 214
MQTMC2 (trigger message, character) 214
MQXCNVC data-conversion call 68
MQXQH 111
MsgDeliverySequence attribute 35, 128
MsgId field 137
MsgToken field

MQGMO structure 127

N
NAK, IMS bridge 241
name resolution 50, 99
namelist

attributes 48
opening 97
rules for naming 49
sample application 438

naming of MQSeries objects 49
negative action notification (NAN) report 26
notification of message arrival 147

O
object

closing 105
creating 14
descriptor 99
handle 74
introduction 14
namelist 48
naming 49
opening 97
process definition 202

attributes 49
queue 40
queue manager 39
rules for naming 49
storage class 49
using handle 97
what it is 39

object types, platform comparison 560
object-oriented programming (OOP) 251
OOP (object-oriented programming) 251
opening an MQSeries object 97
opening distribution lists

identifying distribution lists 117
identifying Object Records 117

opening distribution lists (continued)
the MQOD structure 117
the MQOR structure 117

Options field
MQGMO structure 125
MQPMO structure 109

Options parameter (MQOPEN call) 101
order of message retrieval 128
origin context 38
OS/390

batch restrictions 84
OpenEdition 224
support for 219
WLM (workload manager) 249
workload manager (WLM) 249

OTMA sense codes 242

P
parameters

Buffer 111
BufferLength 127
DataLength 127
Options 101

PDF (Portable Document Format) xxiii
performance

design hints and tips 18
MQGET and buffer size 128
MQGET for a particular message 139
MQPUT1 107
persistent messages 34

permanent dynamic queue, properties 46
Persistence field 34
PL/I

CMQEPP 536
CMQP 536
compilers supported 453
examples

MQCLOSE 522
MQCONN 520
MQDISC 520
MQGET 524
MQGET with signaling 526
MQGET with wait option 525
MQINQ 527
MQOPEN for dynamic queue 521
MQOPEN for existing queue 521
MQPUT 522
MQPUT1 523
MQSET 528

include files 536
on AIX 261
on OS/2 292
on Windows NT 313
support for 83

596 MQSeries Application Programming Guide

 Index

planning an MQSeries application 13
platform support

functional comparison 539
list of 19

platforms, comparisons
administration 562
connection 566
data conversion 550
input 547
message properties 551
object types 560
programming languages 564
prptocols 551
security 556
syncpoint 540
threading 555
triggering 544

Portable Document Format (PDF) xxiii
positive action notification (PAN) report 26
PostScript format xxiii
print message (sample for MQSeries for OS/390) 416
Priority field 32
priority in messages 32
problem delivering a message, overview 35
problem determination

abend codes issued by the CICS adapter 223
trace points in CICS adapter 222
using CEDF with the CICS adapter 223

problem determination, use of report message 55
process definition object

attributes 49
example to create one 202
opening 97
rules for naming 49
triggering prerequisite 202
what it is 198

ProcessName 203, 214
product names

new, new and old 537
programming languages 75, 564
protocols, platform comparison 551
publications

MQSeries xviii
related xxiv

put (sample for MQSeries for OS/390) 408
put-message options 108
PutApplName field 38
PutApplType field 38
PutDate field 38
PutMsgRecFields field 110
PutMsgRecOffset field 110
PutMsgRecPtr field 110
PutTime field 38
putting

messages 107
one message 114

putting messages to a distribution list
the MQPMR structure 120

Q
QLOP abend on MQSeries for OS/390 404
QLOP abend, CICS adapter 223
QMQM library 530
queue

alias 41, 44
application 198
attributes 43
authority check on MQOPEN 97
base 44
channel 42
closing 97, 105
cluster 42
creating 41
dead-letter 48, 57
dead-letter on MQSeries for OS/390 440
definition 4
dynamic

permanent 46
temporary 45

dynamic, creation of 104
event 42
exclusive access 102
handle 97
initiation 47, 199
introduction to 40
local definition 41
model 45, 104
name resolution 50
name resolution when remote 105
object handle 97
opening 97
order of messages 35
remote

definition 41
putting messages 112
using 43
using local definition 99
using MQOPEN 105

reply-to 36
resolving name 99
rules for naming 49
selecting messages 35
shared access 102
system admin command 48
system command 42
system command input 48
system default 42, 48
transmission 42, 47
triggered 210
undelivered message 57
undelivered-message 48

 Index 597

 Index

queue attributes for MQSeries for OS/390
sample application 420

queue manager
alias definition 99
attributes 39
authority checking 95
connecting using MQCONN 90
connecting using MQCONNX 92
definition 5
disconnecting 94
location of default 90
number per system 5
reply-to 36
restart and trigger messages 215
scope of MQCONN 91
workload management 40

queuing
definition 3
features 7

quiescing connection
MQGET 125

quiescing queue manager
how applications should react 54
MQCONN 91
MQOPEN 104
MQPUT 109

R
reason codes 74
recoverable resource manager services (RRS)

batch adapter 221
what it is 187

recovery 9, 220
RecsPresent field 110
reenterable assembler-language programs 81
reference messages 144
related publications xxiv
remote queue

definition 41
using 43
using local definition of 99
using MQOPEN 105

reply message 25
reply messages, IMS bridge 242
reply-to queue 36
reply-to queue manager 36
ReplyToQ field 36
ReplyToQMgr field 36
report

confirmation of arrival (COA) 25
confirmation of delivery (COD) 25
exception 25
expiry 25
negative action notification (NAN) 26
positive action notification (PAN) 26

Report field 25
report message

creating 56
options 26
type of 25

reports
application-generated 28
MQSeries-generated 27
retrieval of 28
segmented messages 27

request message 24
resolution of queue names 50, 99
ResolvedQMgrName field 109
ResolvedQName field

MQGMO structure 127
MQPMO structure 109

resource manager, XA compliant
name 192

ResponseRecOffset field 111
ResponseRecPtr field 111
restrictions in OS/390 batch 84
retry sending message 57
return codes 74
ReturnedLength field

MQGMO structure 127
RPG language

compilers supported 453
on AS/400 266
support for 82

RPG sample programs 327
RRS (recoverable resource manager services)

batch adapter 221
what it is 187

runmqtmc trigger monitor 214
runmqtrm trigger monitor

error detection 218
how to run 213

running a program automatically
an example 361
how triggering works 197

S
sample applications

API-crossing exit for OS/390 225
sample applications for MQSeries for OS/390

browse 414
credit check 430
features of MQI demonstrated 395
get 411
logging on to CICS 403
mail manager 421
message handler 443
preparing in batch 399
preparing in CICS Transaction Server for

OS/390 403

598 MQSeries Application Programming Guide

 Index

sample applications for MQSeries for OS/390
(continued)

preparing in IMS 407
preparing in TSO 401
print message 416
put 408
queue attributes 420

sample programs
building C versions 339
building COBOL versions 339
building TAL versions 340
C++ 327
DCE exits 327
preparing and running

AS/400 336
Digital OpenVMS systems 337
OS/2 and Windows NT 338
Tandem NSK 338
UNIX systems 336
Windows 340

RPG 327
sample programs for MQSeries for AS/400

AMQ0ECHA 369
AMQ0GET4 349
AMQ0REQ4 359
AMQ0SETA 367
AMQSECHA 369
AMQSERV4 371, 372
AMQSGBR4 346
AMQSGET4 349
AMQSPUT4 342
AMQSREQ4 359
AMQSSETA 367
AMQSTRG4 371
AMQSVFC4 370
put 342
trigger monitor 371
trigger server 372
using remote queues 373
using triggering 363

sample programs for MQSeries for OS/2 Warp,
Windows NT, and UNIX systems

amq0gbr0 346
amq0get0 349
amq0put0 342
amq0req0 359
amqiech2 369
amqiechx 369
amqiinq2 366
amqiinqx 366
amqiset2 367
amqisetx 367
amqmech2 369
amqmechx 369
amqminq2 366
amqminqx 366

sample programs for MQSeries for OS/2 Warp,
Windows NT, and UNIX systems (continued)

amqmset2 367
amqmsetx 367
amqrgrm 351
amqrgrma 351
amqsbcg 347
amqsbcg0 347
amqsbcgc 347
amqscic0 379
amqsdlq 391
amqsech 369
amqsecha 369
amqsechc 369
amqsgbr 346
amqsgbr0 346
amqsgbrc 346
amqsget0 349
amqsgetc 349
amqsgetw 349
amqsinq 366
amqsinqa 366
amqsinqc 366
amqsprm 351
amqsprma 351
amqsptl0 345
amqsput0 342
amqsputc 342
amqsputw 342
amqsreq 359
amqsreq0 359
amqsreqc 359
amqsset 367
amqsseta 367
amqssetc 367
amqstrg 371
amqstrg0 371
amqstrgc 371
amqstxgx 390
amqstxpx 389
amqstxsx.c 379
amqsvfc0 370
amqsvfcx 370
amqsxab0.sqb 373
amqsxab0.sqc 373
amqsxaf0.sqb 373
amqsxaf0.sqc 373
amqsxag0.c 373
amqsxag0.cbl 373
amqsxas0.sqb 373
amqsxas0.sqc 373
amqsxrm 351
amqsxrma 351
browse 346
browser 347
CICS transaction 379

 Index 599

 Index

sample programs for MQSeries for OS/2 Warp,
Windows NT, and UNIX systems (continued)

data conversion 370
dead-letter queue handler 391
distribution list 345
echo 369
get 349
inquire 366
put 342
reference messages 351
request 359
set sample 367
trigger monitor 371
TUXEDO 379
TUXEDO get 390
TUXEDO put 389
using remote queues 373
using triggering 361
XA transaction manager 373

scope, handles 91, 98
security 9, 556
Segmentation field

MQGMO structure 127
segmented messages 33

reports 27
segmented messages, IMS bridge 242
SegmentStatus field

MQGMO structure 127
selection of messages from queues 35
selector for attributes 179
send message, retry on failure 57
sense codes, IMS 242
server application (IMS) 246
server environment

TUXEDO 379
setting attributes 179
setting attributes on MQSeries for OS/390 420
Shareability attribute 102
shared access to a queue 102
Signal handling on UNIX 85
Signal1 field 126, 148
Signal2 field

MQGMO structure 127
signaling 16, 147
single-phase commit 183
size of messages 111
skeleton data-conversion exit 164
skipping backout 150
softcopy books xxii
stack size

for OS/2 MQI client 290
MQSeries for Windows NT 310

starting applications automatically
an example 361
how triggering works 197
introduction 17

static XA resource management structure 192
store-and-forward 8
StrucId field

MQGMO structure 125
MQPMO structure 109

structures 68
in COBOL copy files 532

stub program for MQSeries for OS/390
batch 276
CICS 277
CSQBSTUB 276

calling dynamically 279
CSQCSTUB 277

calling dynamically 279
CSQQSTUB 278
IMS 278

stub programs 69
syncpoint

calls by platform 67
considerations 184
external coordination 191
external manager interfaces 192
IMS applications 245
in CICS for AS/400 applications 189
in Tandem NSK applications 194
in the Credit Check sample application 440
internal coordination 190
MQBACK 187
MQCMIT 186
overview 9
single-phase commit 183
support comparison by platform 540
two-phase commit 184
with MQSeries for AIX 189
with MQSeries for AS/400 188
with MQSeries for HP-UX 189
with MQSeries for OS/2 Warp 189
with MQSeries for OS/390 220
with MQSeries for Windows NT 189
with MQSeries on UNIX systems 189
X/Open XA interface 192

system command queue 42
system command queues 48
system default queue 42, 48
system interruptions 54

T
TAL

compilers supported 453
support for 84

techniques with MQSeries 16
temporary dynamic queue

closing 105
properties 45

600 MQSeries Application Programming Guide

 Index

terminology used in this book xvii, 573
testing MQSeries applications 21
threading 555
threads, maximum no. 91
time-independent communication 8
TMI (trigger monitor interface) 214
trace entries for CICS adapter 284
trace points in CICS adapter 222
Transaction Server

with MQSeries for OS/2 Warp 290, 292
with MQSeries for Windows NT 310

translation of data 153
transmission queue 42, 47
trigger

event 198
conditions for 204
controlling 208

feedback code 217
following queue manager restart 215
message

definition 198
MQTM format 216
object attribute changes 216
persistence and priority 215
properties 215
without application messages 205

monitor
what it is 199
writing your own 214

monitor, provided
amqltmc0 212
AMQSERV4 212
AMQSTRG0 212
AMQSTRG4 212
AMQSTRG4 sample program 371
CKTI 212
CSQQTRMN 212
runmqtmc 212
runmqtrm 212

process definition 198
server

AMQSERV4 sample program 372
type of 209

trigger monitor
provided, by platform 212
what it is 199

trigger monitor interface (TMI) 214
TriggerControl attribute 208
TriggerDepth attribute 209
triggered applications 301
triggering

application design 210
application queue 197
comparison by platform 544
example of type DEPTH 209
example of type EVERY 209

triggering (continued)
example of type FIRST 209, 210
getting messages 211
how it works 200
how it works with the samples 361
IMS bridge 245
introduction 17, 197
no DOS support 197
points to note 200
prerequisites 202
process definition attributes 49
sample program

for MQSeries for AS/400 363
sample trigger monitor for MQSeries for OS/2

Warp 371
sample trigger monitor for MQSeries for Windows

NT 371
sample trigger monitor for MQSeries on UNIX

systems 371
sequence of events 200
setting conditions 208
what it is 197
when it does not work 217
with the request sample on MQSeries for OS/2

Warp 361
with the request sample on MQSeries for Windows

NT 361
with the request sample on MQSeries on UNIX

systems 361
with units of work 210
without application messages 205

triggering for MQSeries for OS/390
sample application 434

TriggerInterval attribute 210
TriggerMsgPriority attribute 208
TriggerType attribute 208
trusted applications 92
TUXEDO sample makefile for MQSeries for Windows

NT 387
TUXEDO sample programs

amqstxgx 379
amqstxpx 379
amqstxsx 379
building server environment 379

TUXEDO ubbstxcn.cfg example for MQSeries for
Windows NT 386

TUXEDO ubbstxcx.cfg example for MQSeries on UNIX
systems 384

two-phase commit 184
type styles in this book xvii
TZ environment variable

MQSeries for OS/2 Warp only 38

 Index 601

 Index

U
ubbstxcn.cfg example for MQSeries for Windows

NT 386
ubbstxcx.cfg example for MQSeries on UNIX

systems 384
undelivered messages, IMS bridge 241
undelivered-message queue, using 57
unit of work

message persistence 34
syncpoint 183
triggering 210

UNIX signal handling 85
UNIX-based platforms 537
use of message types 24
user exits 225
user-defined formats 31
UserIdentifier field 37

V
valid syntax

creating conversion-exit code 166
input data set 166

Version field 110
MQGMO structure 125
MQPMO structure 109

Visual Basic
on Windows 307
on Windows NT 313

Visual Basic language
module files 531

Visual Basic module files
CMQB.BAS 531
CMQB3.BAS 531
CMQB4.BAS 531
CMQBB.BAS 531
CMQCFB.BAS 531
CMQXB.BAS 531
module files 531

W
waiting for messages 16, 146
WaitInterval field 126, 146
Windows 3.1 clients

compilers supported 453
Windows 95 and Windows 98 clients

compilers supported 453
Windows Help xxiii
WLM (workload manager) 249
Workflow 249
workload management

queue manager 40
workload manager (WLM) 249

writing applications 243
writing exit programs

data conversion
Digital OpenVMS 172
MQSeries for AS/400 167
MQSeries for OS/2 Warp 168
MQSeries for OS/390 170
Tandem NSK systems 171
UNIX systems 172
Windows NT 177

X
X/Open XA interface support 192
XA resource manager

name 192
structure 192
XA switch location 192

XA transaction manager samples 373

602 MQSeries Application Programming Guide

Sending your comments to IBM
MQSeries

Application Programming Guide

SC33-0807-09

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries

Application Programming Guide

SC33-0807-09
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries

MQSeries Application Programming Guide SC33-0807-09

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-ð8ð7-ð9

	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	Appearance of text in this book
	Terms used in this book

	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet
	Related publications
	CICS
	IMS
	MVS/ESA
	Design
	C
	C++
	COBOL
	LDAP

	Summary of Changes
	Changes for this edition (SC33-0807-09)
	MQSeries for OS/390 V2.1
	MQSeries V5.1
	MQSeries for VSE/ESA V2.1
	MQSeries for AS/400 V4R2M1

	Changes for the ninth edition (SC33-0807-08)
	Changes for the eighth edition (SC33-0807-07)

	Part 1. Designing applications that use MQSeries
	Chapter 1. Introduction to message queuing
	What is message queuing?
	What is a message?
	What is a message queue?
	What is a queue manager?
	What is a cluster?
	What is an MQSeries client?
	Main features of message queuing
	Benefits of message queuing to the application designer and developer
	What can you do with MQSeries products?

	Chapter 2. Overview of application design
	Planning
	Using MQSeries objects
	Designing your messages
	MQSeries techniques
	Application programming
	Testing MQSeries applications

	Chapter 3. MQSeries messages
	Message descriptor
	Types of message
	Format of message control information and message data
	Message priorities
	Message groups
	Message persistence
	Selecting messages from queues
	Messages that fail to be delivered
	Messages that are backed out
	Reply-to queue and queue manager
	Message context

	Chapter 4. MQSeries objects
	Queue managers
	Queues
	Namelists
	Process definitions
	Channels
	Storage classes
	Rules for naming MQSeries objects

	Chapter 5. Handling program errors
	Locally determined errors
	Using report messages for problem determination
	Remotely determined errors

	Part 2. Writing an MQSeries application
	Chapter 6. Introducing the Message Queue Interface
	What is in the MQI?
	Parameters common to all the calls
	Specifying buffers
	Programming language considerations
	OS/390 batch considerations
	UNIX signal handling on MQSeries Version 5 products

	Chapter 7. Connecting and disconnecting a queue manager
	Connecting to a queue manager using the MQCONN call
	Connecting to a queue manager using the MQCONNX call
	Disconnecting programs from a queue manager using MQDISC

	Chapter 8. Opening and closing objects
	Opening objects using the MQOPEN call
	Creating dynamic queues
	Opening remote queues
	Closing objects using the MQCLOSE call

	Chapter 9. Putting messages on a queue
	Putting messages on a local queue using the MQPUT call
	Putting messages on a remote queue
	Controlling context information
	Putting one message on a queue using the MQPUT1 call
	Distribution lists
	Some cases where the put calls fail

	Chapter 10. Getting messages from a queue
	Getting messages from a queue using the MQGET call
	The order in which messages are retrieved from a queue
	Getting a particular message
	Type of index
	Handling large messages
	Waiting for messages
	Signaling
	Skipping backout
	Application data conversion
	Browsing messages on a queue
	Browsing messages in logical order
	Some cases where the MQGET call fails

	Chapter 11. Writing data-conversion exits
	Invoking the data-conversion exit
	Writing a data-conversion exit program
	Writing a data-conversion exit program for MQSeries for AS/400
	Writing a data-conversion exit for MQSeries for OS/2 Warp
	Writing a data-conversion exit program for MQSeries for OS/390
	Writing a data-conversion exit for MQSeries for Tandem NSK
	Writing a data-conversion exit for MQSeries on UNIX systems and Digital OpenVMS
	Writing a data-conversion exit for MQSeries for Windows NT

	Chapter 12. Inquiring about and setting object attributes
	Inquiring about the attributes of an object
	Some cases where the MQINQ call fails
	Setting queue attributes

	Chapter 13. Committing and backing out units of work
	Syncpoint considerations in MQSeries applications
	Syncpoints in MQSeries for OS/390 applications
	Syncpoints in MQSeries for AS/400 applications
	Syncpoints in CICS for AS/400 applications
	Syncpoints in MQSeries for OS/2 Warp, MQSeries for Windows NT, MQSeries for Digital OpenVMS, and MQSeries on UNIX systems
	Syncpoints in MQSeries for Tandem NSK applications
	General XA support

	Chapter 14. Starting MQSeries applications using triggers
	What is triggering?
	Prerequisites for triggering
	Conditions for a trigger event
	Controlling trigger events
	Designing an application that uses triggered queues
	Trigger monitors
	Properties of trigger messages
	When triggering does not work

	Chapter 15. Using and writing applications on MQSeries for OS/390
	Environment-dependent MQSeries for OS/390 functions
	Program debugging facilities
	Syncpoint support
	Recovery support
	The MQSeries for OS/390 interface with the application environment
	Writing OS/390 OpenEditionJ applications
	The API-crossing exit for OS/390
	Writing MQSeries-CICS bridge applications
	Writing MQSeries-IMS bridge applications
	Writing IMS applications using MQSeries
	MQSeries Workflow

	Chapter 16. Object-oriented programming with MQSeries
	What is in the MQSeries Object Model?
	Programming language considerations

	Part 3. Building an MQSeries application
	Chapter 17. Building your application on AIX
	Preparing C programs
	Preparing COBOL programs
	Preparing PL/I programs
	Preparing CICS programs

	Chapter 18. Building your application on AS/400
	Preparing C programs
	Preparing COBOL programs
	Preparing RPG programs
	AS/400 programming considerations

	Chapter 19. Building your application on AT&T GIS UNIX
	Preparing C programs

	Chapter 20. Building your application on Digital OpenVMS
	Preparing C programs
	Preparing COBOL programs

	Chapter 21. Building your application on HP-UX
	Preparing C programs
	Preparing COBOL programs
	Preparing CICS programs

	Chapter 22. Building your application on OS/390
	Preparing your program to run
	Dynamically calling the MQSeries stub
	Debugging your programs

	Chapter 23. Building your application on OS/2 Warp
	Preparing C programs
	Preparing COBOL programs
	Preparing PL/I programs

	Chapter 24. Building your application on SINIX or DC/OSx
	Preparing C programs
	Preparing COBOL programs
	Preparing CICS programs
	Linking libraries

	Chapter 25. Building your application on Sun Solaris
	Preparing C programs
	Preparing COBOL programs
	Preparing CICS programs

	Chapter 26. Building your application on Tandem NSK
	Unit of work (transaction) management
	Compiling and binding applications
	Running applications

	Chapter 27. Building your application on VSE/ESA
	Linking library
	Using the batch interface
	Preparing C programs
	Preparing COBOL programs
	Preparing PL/I programs

	Chapter 28. Building your application on Windows
	Linking libraries
	Preparing Visual Basic programs

	Chapter 29. Building your application on Windows NT
	Preparing C programs
	Preparing COBOL programs
	Preparing PL/I programs
	Preparing Visual Basic programs

	Chapter 30. Using lightweight directory access protocol services with MQSeries for Windows NT
	What is a directory service?
	What is LDAP?
	Using LDAP with MQSeries
	LDAP sample program

	Part 4. Sample MQSeries programs
	Chapter 31. Sample programs (all platforms except OS/390)
	Features demonstrated in the sample programs
	Preparing and running the sample programs
	The Put sample programs
	The Distribution List sample program
	The Browse sample programs
	The Browser sample program
	The Get sample programs
	The Reference Message sample programs
	The Request sample programs
	The Inquire sample programs
	The Set sample programs
	The Echo sample programs
	The Data-Conversion sample program
	The Triggering sample programs
	Running the samples using remote queues
	Database coordination samples
	The CICS transaction sample
	TUXEDO samples
	Encina sample program
	Dead-letter queue handler sample
	The Connect sample program

	Chapter 32. Sample programs for MQSeries for OS/390
	Features demonstrated in the sample applications
	Preparing and running sample applications for the batch environment
	Preparing sample applications for the TSO environment
	Preparing the sample applications for the CICS environment
	Preparing the sample application for the IMS environment
	The Put samples
	The Get samples
	The Browse sample
	The Print Message sample
	The Queue Attributes sample
	The Mail Manager sample
	The Credit Check sample
	The Message Handler sample

	Part 5. Appendixes
	Appendix A. Language compilers and assemblers
	Appendix B. MQI names in RPG
	Appendix C. C language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix D. COBOL examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix E. System/390 assembler-language examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about and setting the attributes of a queue

	Appendix F. PL/I examples
	Connecting to a queue manager
	Disconnecting from a queue manager
	Creating a dynamic queue
	Opening an existing queue
	Closing a queue
	Putting a message using MQPUT
	Putting a message using MQPUT1
	Getting a message
	Getting a message using the wait option
	Getting a message using signaling
	Inquiring about the attributes of an object
	Setting the attributes of a queue

	Appendix G. MQSeries data definition files
	C language include files
	Visual Basic module files
	COBOL copy files
	System/390 assembler-language macros
	PL/I include files

	Appendix H. List of MQSeries products
	Level 1 products
	Level 2 products

	Appendix I. MQSeries platforms - functional comparisons
	What is included here
	Syncpoint
	Triggering
	Input
	Message properties and protocols
	Threading
	Security
	Object types
	Administration
	Programming languages
	Connection

	Appendix J. Notices
	Programming interface information
	Trademarks

	Part 6. Glossary and Index
	Glossary of terms and abbreviations
	Index

