
IBM MQSeries Workflow

Programming Guide
Version 3.2

SH12-6291-03

IBM

IBM MQSeries Workflow

Programming Guide
Version 3.2

SH12-6291-03

IBM

Note!

Before using this information and the product it supports, be sure to read the general information under
“Appendix C. Notices” on page 795.

Fourth Edition (June 1999)

This edition applies to version 3, release 2 of IBM MQSeries Workflow (product number 5697-FM3) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SH12-6291-02.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book xi
Who should read this book xi
How to get additional information xi
How to send your comments. xi
How this book is organized xii

Summary of Changes xv

Part 1. Programming Concepts 1

Chapter 1. Understanding the
programming concept 3
The role of the programmer in modeling a
process 3

Chapter 2. Programming interfaces . . . 5

Chapter 3. Prerequisites for programming 7

Chapter 4. Building an MQ Workflow
application 9
Overview 9
Handling errors 10

List of return codes 10
List of ActiveX GUI Control exceptions 13

Debugging considerations 13
Prerequisites 13
Creating a test database 14
Debugging a client application 14
Debugging an activity implementation or
support tool 14

Chapter 5. Client/server communication
and data access models 17
Synchronous client/server communication 17
Asynchronous client/server communication 17
The push data access model 18
Receiving information 19

Chapter 6. An MQ Workflow session . . 23

Chapter 7. Querying data 25
Persistent lists 25
Using filters, sort criteria, and thresholds 25

Handling collections 26
C-language vectors 27

Return codes 27
FmcjXxxVectorDeallocate 28
FmcjXxxVectorFirstElement 28
FmcjXxxVectorNextElement 28
FmcjXxxVectorSize 29
Examples 29

ActiveX arrays 32
Exceptions 32
Add 32
GetAt 33
GetSize 34
RemoveAll 34
RemoveAt 34
SetAt. 34
Events 35

Java arrays 35

Chapter 8. Handling containers 37
Data structure/container type 37
Data member/container element 37
Predefined data members 39

Fixed data members. 40
Process information data members . . . 40
Activity information data members . . 42

Determining the structure of an unknown
container 45

Determining the leaves. 45
Determining the structural members 47
Determining the type 48
Analyzing a container element 49
Determining the name or type of a
container element 49
Determining the structural properties of
a container element 50
Determining the leaves of a container
element 51
Determining the structural members of a
container element 52
Determining the elements of an array 53

Accessing a known container element . . . 54
Accessing a value of a container 55
Accessing a value of a container element 60
Setting a value of a container 64

© Copyright IBM Corp. 1993, 1999 iii

Return codes/FmcException 68

Chapter 9. Monitoring a process instance 71
Obtaining a process instance monitor . . . 71
Ownership of monitors. 73

Chapter 10. Authorization considerations 75

Chapter 11. Function/method types . . . 79
Basic functions/methods 79

Return codes 80
Allocation 80
Assignment 82
Comparison/equality 82
Copy. 83
Deallocation 84
IsComplete() 84
IsEmpty() 85
Kind() 86
C-language Example: using basic
functions 86
C++ Example: using basic methods . . 88

Accessor functions/methods 89
Return codes 91
Accessing a value of type bool 91
Accessing a value of type date/time 92
Accessing an enumerated value 93
Accessing a value of type integer . . . 115
Accessing a value of type string. . . . 116
Accessing a multi-valued property . . . 118
Accessing an object valued property 119
Accessing a pointer valued property 120
Determining whether an optional
property is set. 121
Setting a value of type integer 122
Setting an object valued property . . . 123
Updating an object 124

Action functions/methods 128
Activity implementation functions/methods 128
Program execution management
functions/methods 130

Part 2. The C and C++ APIs . . . 131

Chapter 12. An MQ Workflow client
application 133

Chapter 13. An MQ Workflow activity
implementation or support tool 135

Chapter 14. Compiling and linking . . . 137
Supported compilers 139
C++ prerequisite header files 139
Sample compile statements 139

Chapter 15. Memory management . . . 141

Chapter 16. The result object 143

Part 3. ActiveX Controls 147

Chapter 17. Component overview . . . 149
Functional overview 150
Workflow Control overview 150
How to work with an ExecutionService 151
How to work with lists 151
ProcessTemplateList Control overview . . 151
ProcessInstanceList Control overview . . . 151
Worklist Control overview 152
Monitor Control overview. 152

Chapter 18. An MQ Workflow client
application 153

Chapter 19. An MQ Workflow activity
implementation or support tool 155

Part 4. The JAVA API 157

Chapter 20. The Java CORBA Agent . . 159

Chapter 21. The communication layer 161

Chapter 22. The locator methods 163

Chapter 23. The Java API Beans 165
Java in the intranet 165
Java as a programming language 166
Java in the Internet (Servlet) 166
Java in the Internet (Applet-RMI) 167

Chapter 24. An MQ Workflow client
application 169

Chapter 25. An MQ Workflow activity
implementation or support tool 171

Chapter 26. Compiling 173

iv Programming Guide

Chapter 27. Object management 175
Garbage Collection when using Java API
Beans 175

Part 5. Using the MQ Workflow
APIs 177

Chapter 28. Using the MQ Workflow
Runtime API 179
Overview of the Runtime API 179

API classes/objects 183
Functions/methods per object 187

Activity instance 187
Activity instance array 191
Activity instance notification 191
Activity instance notification array . . . 194
Activity instance notification vector . . 194
Activity instance vector 195
Agent 195
Block instance monitor 197
Container 198
Container array 201
Container element 201
Container element array 204
Container element vector 205
Control connector array 205
Control connector instance 205
Control connector instance vector . . . 207
DateAndTime/ FmcjDateTime/
FmcjCDateTime 207
Dll options 208
ExecutionAgent/FmcjPEA. 209
Execution data 210
Execution service. 212
Execution service array. 214
Exe options 215
External service options 216
FmcError 218
FmcException 219
Global 220
Implementation data 221
Instance monitor 222
Item 223
Item vector. 226
Message. 226
Persistent list 226
Person 228
Point 232
Point array 233

Point vector 233
Process instance 233
Process instance list 238
Process instance list array 238
Process instance list vector 239
Process instance monitor 239
Process instance notification 239
Process instance notification array . . . 240
Process instance notification vector . . . 240
Process instance vector 241
Process template 241
Process template list. 244
Process template list array. 245
Process template list vector 245
Process template vector 245
Program data 246
ReadOnly container 247
ReadWrite container. 247
Result object 249
Service 250
String array 251
String vector 251
Symbol layout. 252
Work item 253
Work item array 256
Work item vector. 256
Worklist 257
Work list array 258
Worklist vector 258

Part 6. Programming interfaces 259

Chapter 29. Activity instance actions 261
ObtainProcessInstanceMonitor()/
ObtainInstanceMonitor 261
SubProcessInstance() 264

Chapter 30. Activity instance notification
actions 267
PersistentObject(). 267
StartTool() 270

Chapter 31. Block instance monitor
actions 273
ObtainBlockInstanceMonitor() 273
ObtainProcessInstanceMonitor() 275
Refresh() 278

Contents v

Chapter 32. Container activity
implementation functions/methods . . . 281
InContainer() 281
OutContainer() 283
RemoteInContainer() 285
RemoteOutContainer() 288
SetOutContainer() 290
SetRemoteOutContainer() 292

Chapter 33. Execution service actions 295
CreateProcessInstanceList() 296
CreateProcessTemplateList() 303
CreateWorklist() 310
Logoff() 319
Logon() 321
Passthrough() 326
PEAShutDown() 329
PEAStartUp() 331
QueryActivityInstanceNotifications() . . . 333
QueryItems() 341
QueryProcessInstanceLists() 347
QueryProcessInstanceNotifications() . . . 349
QueryProcessInstances() 356
QueryProcessTemplateLists() 362
QueryProcessTemplates() 365
QueryWorkitems() 370
QueryWorklists() 376
Receive() 379
RemotePassthrough() 382
TerminateReceive() 384

Chapter 34. Instance monitor actions 387
ObtainInstanceMonitor() 387
Refresh() 389

Chapter 35. Item actions 393
Delete() 393
ObtainProcessInstanceMonitor()/
ObtainInstanceMonitor 395
ProcessInstance() 399
Refresh() 401
SetDescription() 403
SetName() 406
Transfer() 409

Chapter 36. Persistent list actions . . . 413
Delete() 413
Refresh 416
SetDescription() 418
SetFilter() 420

SetSortCriteria() 423
SetThreshold(). 425

Chapter 37. Person actions 429
Refresh() 429
SetAbsence() 431
SetSubstitute(). 433

Chapter 38. Process instance actions 437
Delete() 437
InContainer() 440
ObtainMonitor() 442
PersistentObject(). 444
Refresh() 447
Restart(). 449
Resume() 451
SetDescription() 453
SetName() 456
Start() 458
Suspend() 460
Terminate(). 463

Chapter 39. Process instance list actions 467
QueryProcessInstances() 467

Chapter 40. Process instance notification
actions 471
PersistentObject(). 471

Chapter 41. Process template actions 475
CreateAndStartInstance() 475
CreateInstance() 480
Delete() 483
ExecuteProcessInstance() 486
InContainer() 491
PersistentObject(). 493
Refresh() 495

Chapter 42. Process template list actions 499
QueryProcessTemplates() 499

Chapter 43. Service actions 503
Refresh() 503
SetPassword() 505
UserSettings() 507

Chapter 44. Work item actions. 511
CancelCheckOut() 514
CheckIn() 516

vi Programming Guide

CheckOut(). 518
Finish() 524
ForceFinish() 526
ForceRestart() 528
InContainer() 530
OutContainer() 532
PersistentObject(). 534
Restart(). 536
Start() 538
StartTool() 540
Terminate(). 542

Chapter 45. Work list actions 545
QueryActivityInstanceNotifications() . . . 545
QueryItems() 548
QueryProcessInstanceNotifications() . . . 551
QueryWorkitems() 554

Part 7. Working with ActiveX
Controls 559

Chapter 46. The ExecutionService Control 561

Chapter 47. The list controls 563

Chapter 48. The Monitor Control 565

Chapter 49. Typical scenario of ActiveX
Control methods 567

Chapter 50. MQWorkflowCtrl 569
Methods 569

ConfigurationID 569
Connect 569
ContainerArray 569
DateAndTime 570
Disconnect 570
ExecutionServiceArray 570
NewActivityInstanceNotification . . . 570
NewProcessInstance. 571
NewProcessInstanceNotification 571
NewProcessTemplate 571
NewWorkitem. 571
ProgramID 572
RemoteUserID 572
SetConfigurationID 572
StringArray 573
UserID 573

Chapter 51. ContainerCtrl 575
Properties 575
Methods 575

Container 575
ProgramID 575
RemoteUserID 575
UserID 576

Events 576
Error 576

Chapter 52. Methods supported by all
GUI controls 579
AboutBox 579
ReadUserSettings. 579
RemoveGUI 579
SetHelpFile. 580
ShowContextMenu 580
WriteUserSettings 580

Chapter 53. Methods supported by all list
controls 583
ConnectGUI 583
ContextMenuDelete 583
ContextMenuListProperties 583
ContextMenuListSettings 584
ContextMenuListRefresh 584
ContextMenuProperties 584
ContextMenuViewIcon 585
ContextMenuViewList 585
ContextMenuViewReport 585
ContextMenuViewSmallIcon 585
FindFirst 586
FindNext 586
GetItemAt 587
GetItemCount 587

Chapter 54. Events triggered by all GUI
controls 589
Click 589
DblClick 589
KeyPress 589

Chapter 55. Events triggered by all
non-monitor GUI controls 591
Error 591
KeyDown 591
KeyUp 592
MouseDown 592
MouseMove 593
MouseUp 593

Contents vii

Chapter 56. Events triggered by all list
controls 595
ViewChanged 595

Chapter 57. ExecutionServiceCtrl 597
Properties 597
Methods 597

ConnectGUI 598
ContextMenuDeleteProcInstList 598
ContextMenuDeleteProcTempList . . . 598
ContextMenuDeleteWorklist 599
ContextMenuLogoff 599
ContextMenuLogon 599
ContextMenuLogonDialog 600
ContextMenuNewProcInstList 600
ContextMenuNewProcTempList 600
ContextMenuNewWorklist 601
ContextMenuProperties 601
ContextMenuRefresh 601
ContextMenuRefreshProcInstLists . . . 601
ContextMenuRefreshProcInstances . . . 602
ContextMenuRefreshProcTempLists . . 602
ContextMenuRefreshProcTemplates . . 602
ContextMenuRefreshWorkitems 603
ContextMenuRefreshWorklists 603
ContextMenuUserInformation 603

Events 603
ItemCollapsed. 604
ItemCollapsing 604
ItemExpanded 604
ItemExpanding 605
SelChanged 605
SelChanging 605

Chapter 58. ProcessTemplateListCtrl . . 607
Properties 607
Methods 609

ContextMenuCreateInstance 609
RefreshProcessTemplateList 609

Events 609

Chapter 59. ProcessInstanceListCtrl . . 611
Properties 611
Methods 613

ContextMenuRestart 613
ContextMenuResume 614
ContextMenuResumeDeep 614
ContextMenuStart 614
ContextMenuSuspend 615
ContextMenuSuspendDeep 615

ContextMenuTerminate 615
RefreshProcessInstanceList 616

Events 616

Chapter 60. WorklistCtrl 617
Properties 617
Methods 620

ContextMenuFinish 620
ContextMenuForceFinish 620
ContextMenuForceRestart 621
ContextMenuRestart 621
ContextMenuSelectAll 621
ContextMenuStart 622
ContextMenuStartTool 622
ContextMenuTransfer 622
PushOption 623
RefreshWorklist 623
SetPushOption 624

Events 624
ActivityInstanceNotificationChanged 624
ProcessInstanceNotificationChanged 625
WorkitemChanged 625
Starting 625

Chapter 61. MonitorCtrl 627
Properties 627
Methods 627

ActivityProperties() 627
ConnectGUI 627
ControlConnectorProperties 628
OpenMonitor 628
Refresh 628

Events 629
AfterRefreshing 629
BeforeRefreshing 629
BlockActivityClick 629
BlockActivityDoubleClick 630
ControlConnectorClick 630
ControlConnectorDoubleClick 631
DoActivityEnter 631
DoControlConnectorEnter 632
DoRefresh 632
DoShowContextMenu 632
Error 633
MonitorOpen 633
ProcessActivityClick. 633
ProcessActivityDoubleClick 634
ProgramActivityClick 634
ProgramActivityDoubleClick 635

viii Programming Guide

Part 8. Examples and scenarios 637

Chapter 62. Scenarios 639

Chapter 63. Examples 641

Chapter 64. How to create persistent lists 643
Create a process instance list (ActiveX) . . 643
Create a process instance list (C-language) 644
Create a process instance list (C++) . . . 646
Create a process instance list (Java). . . . 647

Chapter 65. How to query persistent lists 651
Query worklists (ActiveX). 652
Query worklists (C-language) 653
Query worklists (C++) 655
Query worklists (Java) 657

Chapter 66. How to query a set of objects 661
Query process instances from a process
instance list (ActiveX) 662
Query process instances (C-language) . . . 663
Query process instances (C++) 664
Query process instances (Java) 665
Query work items from a worklist (ActiveX) 669
Query work items from a worklist
(C-language) 670
Query work items from a worklist (C++) 672
Query work items from a worklist (Java) 673

Chapter 67. An activity implementation 677
Programming an executable (C-language) 677
Programming an executable (C++) 678

Part 9. Using the Lotus Notes API 681

Chapter 68. Requirements 683
Header and library files 683
DLL and shared library files 683
Compiling 683

Chapter 69. Coding examples 685
Sample FDL 685
Overall database design 685
Forms to display the settings of MQ
Workflow objects 686
Forms used within dialogs 686
Forms used to create standard objects . . . 686

Forms used to start an MQ Workflow
process instance 687
Forms used to implement an MQ Workflow
activity 687
Views used by the Lotus Notes API . . . 688
Views and folders used by the end user 688
Agents 689
Navigators 689
Outlook 689

Chapter 70. Restrictions 691

Chapter 71. Data types and functions 693

Chapter 72. Mapping container data. . . 695

Chapter 73. General hints 697

Chapter 74. General Notes actions . . . 699
Change the MQ Workflow password . . . 699
Check whether a user is logged on 700
List MQ Workflow system groups 701
Log off from MQ Workflow 702
Log on to MQ Workflow 702
Update user settings in MQ Workflow . . 704

Chapter 75. Process-template actions 705
Create a process instance 705

Chapter 76. Process-instance actions 709
Delete a process instance 709
Restart a process instance 711
Resume a process instance 712
Start a process instance. 714
Suspend a process instance 716
Terminate a process instance 718

Chapter 77. Process-instance notification
actions 721
Delete process-instance notification. . . . 721

Chapter 78. Work-item actions 723
Check in a work item 723
Check out a work item 725
Delete a work item 727
Get support tools for a work item 729
Manual exit from a work item 730
Restart a work item 731
Start a support tool 733

Contents ix

Start a work item 734
Terminate a work item 736
Transfer a work item 737
Update a work item. 739

Chapter 79. Work-item notification
actions 741
Delete a notification for a work item . . . 741

Chapter 80. Replication actions 743
Replicate MQ Workflow user settings per
session 743
Replicate process instances per session . . 744
Replicate process-instance notifications per
session 746
Replicate process templates per session 747
Replicate work-item notifications per
session 748
Replicate work items per session 750

Chapter 81. Fields used by the Client for
Lotus Notes 753
Application settings 753
User settings 753
Process instance 758
Process-instance notification 762
Process template 766
Work item 769
Work-item notification 773

Part 10. Appendixes 779

Appendix A. How to read the syntax
diagrams 781

Appendix B. FlowMark Version 2
compatibility mode. 783
Deviations from FlowMark Version 2 . . . 785
FlowMark Version 2 C-language programs 787

Running an existing application program 787
FlowMark Version 2 Visual Basic programs 788

Running an existing application program 788
FlowMark Version 2 REXX programs . . . 788

Running an existing application program 788
FlowMark Version 2 C++ programs . . . 788

Running an existing application program 788
Using MQ Workflow Version 3 methods 789

Appendix C. Notices 795
Trademarks 797

Glossary 799

Bibliography 805
MQSeries Workflow publications 805
Related publications. 805

Index 807

Readers’ Comments — We’d Like to Hear
from You 815

x Programming Guide

About this book

This book describes how to use the IBM MQSeries Workflow Client
Application Programming Interfaces, hereafter called MQ Workflow APIs. The
first part of the book describes the concepts underlying the APIs while the
remainder of the book provides you with an API reference manual. The book
also describes the MQ Workflow predefined data structures and how to debug
applications running under the control of MQ Workflow.

Who should read this book

This book is intended for programmers who design and implement programs
using an MQ Workflow API and who may participate in designing a
workflow model with IBM MQSeries Workflow. It assumes that readers are
experienced programmers and that they understand the concepts of modeling
processes. Programmers must have experience with the respective operating
system they are using.

How to get additional information

Visit the MQSeries Workflow home page at
http://www.software.ibm.com/ts/mqseries/workflow

For a list of additional publications, refer to “MQSeries Workflow
publications” on page 805.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any
other MQSeries Workflow documentation, choose one of the following
methods:
v Send your comments by e-mail to: swsdid@de.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of MQSeries Workflow, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table
number).

v Fill out one of the forms at the back of this book and return it by mail, by
fax, or by giving it to an IBM representative.

© Copyright IBM Corp. 1993, 1999 xi

How this book is organized

The first part of this book gives an overview of the various MQ Workflow
APIs. It describes all concepts common to the Version 3 APIs and introduces
the APIs supported.
v “Part 1. Programming Concepts” on page 1 describes the concepts

underlying all MQ Workflow APIs. It groups the functions/methods
according to their behavior and describes basic and accessor methods in a
generic way.

v “Part 2. The C and C++ APIs” on page 131 describes the concepts specific to
the C and C++ APIs and states how application programs can be compiled
and linked.

v “Part 3. ActiveX Controls” on page 147 provides for an overview on the
ActiveX Controls.

v “Part 4. The JAVA API” on page 157 provides for an overview on the Java
API.

“Part 5. Using the MQ Workflow APIs” on page 177 provides for an overview
on the functionality supported by the MQ Workflow Runtime. All
functions/methods supported by the MQ Workflow APIs are summarized on
a per-object basis.

The next part of this book provides for a reference manual.
v “Part 6. Programming interfaces” on page 259 describes the MQ Workflow

APIs that enable applications to manipulate worklists and work items, to
work with process instances and container data, and to log on to and log
off from an MQ Workflow execution service. All action, activity
implementation, and program execution management functions/methods
are described on a per-object basis. See “Chapter 11. Function/method
types” on page 79 for the description of the basic and accessor methods.

v “Part 7. Working with ActiveX Controls” on page 559 describes the methods
and events supported by the ActiveX Controls.

“Part 8. Examples and scenarios” on page 637 provides some examples
showing how to use the APIs.

“Part 9. Using the Lotus Notes API” on page 681 describes the API provided
for the integration of MQ Workflow and Lotus Notes.

“Appendix A. How to read the syntax diagrams” on page 781 states the parts
of a syntax diagram.

“Appendix B. FlowMark Version 2 compatibility mode” on page 783 describes
how to run a FlowMark Version 2 program and states MQ Workflow Version

xii Programming Guide

3 deviations from Version 2. It describes how to change a Version 2 C++
program in order to become a Version 3 program.

The back of the book includes a glossary that defines terms as they are used
in this book, a bibliography, and an index.

About this book xiii

xiv Programming Guide

Summary of Changes

Changes to this document for IBM MQSeries Workflow Version 3.2 are:
v Support for HP-UX and Sun Solaris is now included.
v JAVA support is added.
v ActiveX supports process instance monitoring.
v The specification of a configuration identifier is supported.
v The execution service exposes a new action function/method Refresh().
v The process template exposes a new action function/method

ExecuteProcessInstance() in a synchronous and an asynchronous flavour.
This also means that an asynchronous communication protocol is added.

v The process instance exposes a new action function/method Restart().
v The work item and the activity instance notification expose new action

functions/methods StartTool(). The work item exposes a new
function/method CancelCheckOut().

v Restrictions are removed from the work item Restart(), ForceFinish(), and
ForceRestart() functions/methods; a work item implemented by a process
can now also be restarted or finished.

Changes to this document for IBM MQSeries Workflow Version 3.1.2 are:
v The item object exposes a new action function/method Delete().
v Item changes are pushed to a present client. This function applies to work

items, activity instance notifications, and process instance notifications, and
is supported in the C-language and C++ APIs.

v Process instance monitor support is added in the C-language and C++ APIs.

Changes to this document for IBM MQSeries Workflow Version 3.1.1 are:
v Support for OS/2(R) is now included.
v The person object exposes new action functions/methods Refresh(),

SetAbsence(), and SetSubstitute().
v The process template exposes a new action function/method Delete().
v The IsTerminatedOnError() accessor function/method on the process

template as well as on the process instance is removed.
v A new object FmcjError is added to describe the reason why a work item is

in state InError. The work item as well as an activity instance notification
return the error reason.

v FmcjWorkitem::Checkout() returns a new program definition, the definition
of an external service. A new object FmcjExternalOptions is added to allow
querying the properties of an external service.

© Copyright IBM Corp. 1993, 1999 xv

v The work item exposes a new action function/method Terminate().
v ActiveX support is added.
v Version 2 REXX support for OS/2 is added.
v Version 2 Lotus Notes support is added.
v Version 2 C++ Logon() now offers as an option to consider using the

Version 3 session mode. Refer to “Deviations from FlowMark Version 2” on
page 785 for more information.

xvi Programming Guide

Part 1. Programming Concepts

This part provides you with a general introduction to the programming
concepts of MQ Workflow.

© Copyright IBM Corp. 1993, 1999 1

2 Programming Guide

Chapter 1. Understanding the programming concept

This chapter introduces the concept of workflow modeling as it relates to the
design of application programs for use with IBM MQSeries Workflow,
hereafter referred to as MQ Workflow.

MQ Workflow provides a way to model a process and assign applications to
activities in the resulting workflow model. This enables the workflow
manager to automate the control of activities and the flow of data.

Work can be routed to the person who performs the activity instance. An
application program required to perform an activity instance can be designed
to start when a user starts an activity instance.

The role of the programmer in modeling a process

As workflow models are defined, the applications and data structures needed
to support program activities are identified. Programmers can create new
applications, integrate existing applications, or reengineer existing applications
to support these program activities.

To reengineer existing applications with the workflow model, programmers
must determine if the applications used by the enterprise can be functionally
decomposed. The control and flow logic are separated from the application,
the start and exit conditions are moved into the workflow model, and the
program is divided into modules to be invoked by the workflow manager at
the appropriate points. The resulting modules are applications that are
assigned to perform the program activities defined in the workflow model.

Most applications include many diverse functions, and many can support
several different activities in different stages of a process. Output produced by
one function of a program can be used as input by another function of the
same program. Therefore, the same application can be used to support many
different program activities in a workflow model.

Your enterprise might also use Enterprise Resource Planning (ERP) or
packaged applications like word-processing or spreadsheet applications.

Decomposition of such applications may not be possible. However, a
programmer could write shell procedures that query the contents of

© Copyright IBM Corp. 1993, 1999 3

containers, pass data from an input container to the program when the
activity instance is started, and direct data into an output container when it
finishes.

Return codes, provided by the assigned program, can then be used to
evaluate exit and transition conditions.

4 Programming Guide

Chapter 2. Programming interfaces

The MQ Workflow workflow manager provides application program interface
(API) support and a set of predefined data structure members to assist
programmers who develop applications for use with workflow models. In
addition, several programming samples are provided.

The MQ Workflow predefined data structure members provide information
about the current process, activity, or block, and are associated with the
operating characteristics of a process instance or activity instance.

The following MQ Workflow programming aids are described in this book:
v MQ Workflow C-language API
v MQ Workflow C++ language API
v MQ Workflow ActiveX Controls and OLE Objects
v MQ Workflow Java API
v MQ Workflow Lotus Notes API

The basic interface for requesting Runtime services from MQ Workflow is a
C-language API. Access can be gained to its functions from all languages that
support C calls - see “Chapter 14. Compiling and linking” on page 137 for
more information. On top of the C-language API, a C++ language API is
provided. Since the C++ API is a small layer of inline methods, that is,
delivered as source code, access can be gained from all popular C++
compilers. The ActiveX and Java APIs are implemented on top of the C++
layer. The same is true for the Lotus Notes API which, however, operates in
the FlowMark Version 2 compatibility mode. Besides the Version 3 APIs,
FlowMark Version 2 C-language, C++, VisualBasic, and REXX APIs are
supported.

The MQ Workflow APIs provide functions/methods:

v To execute process models, that is, to work with process instances and
container data and to manipulate worklists and work items

v To monitor the progress of execution

© Copyright IBM Corp. 1993, 1999 5

v To issue process administrator functions
v To receive information sent by an MQ Workflow server
v To process container data associated with an activity implementation; the

Lotus Notes API uses the check-out/check-in mechanism

6 Programming Guide

Chapter 3. Prerequisites for programming

MQ Workflow application development assumes that the appropriate
environment is established. This means that:
v The MQ Workflow Development Kit is installed on the machine where you

are developing your applications.
v A compiler of one of the supported languages is installed and configured.

Refer “Part 2. The C and C++ APIs” on page 131, “Part 3. ActiveX Controls”
on page 147, and “Part 4. The JAVA API” on page 157 for more information.

© Copyright IBM Corp. 1993, 1999 7

8 Programming Guide

Chapter 4. Building an MQ Workflow application

Overview

There are essentially two different tasks which you can address by using the
MQ Workflow application programming interface (API):
v You can write your own client application instead of using the MQ

Workflow provided GUIs (Graphical User Interfaces) or command line
interfaces. For example, you may want to:
– Control the MQ Workflow functionality provided to your user.
– Present the MQ Workflow functionality in a way that your user is

accustomed to.
– Run selected MQ Workflow tasks without user intervention.

v You can write a program that implements an activity or support tool in
your workflow process model.

These two kinds of programs usually contain specific parts which are
discussed in chapters “An MQ Workflow client application” and “An MQ
Workflow activity implementation or support tool”. See the respective
chapters per language.

The concepts underlying the MQ Workflow API are common to all programs
using the MQ Workflow APIs. They are summarized here and discussed in
more detail in the following chapters.

All persistent objects such as work items and process instances are accessed
through transient objects which represent their state at the time when they
were queried from a server. In the C-language API, a so-called handle
represents a pointer to such a transient object.

In order to request an action on an object, a session must have been
established with an appropriate MQ Workflow server. The action itself can
then be executed synchronously. Some actions can also be executed
asynchronously.

Only objects for which you are authorized are returned from the server to the
client.

Separate functions in the C-language API respectively methods in the C++,
ActiveX, or Java language APIs, hereafter called functions/methods, are
available for each action on an object or for accessing each property of an

© Copyright IBM Corp. 1993, 1999 9

object. This approach allows function/method parameters to be checked by
the compiler and best represents the object-action paradigm supported by MQ
Workflow.

In C and C++, detailed error information is provided by a so-called result
object. This object is available in addition to the return code set by action
functions/methods. See chapter “Chapter 16. The result object” on page 143
for detailed information on the result object.

Objects are managed by the application programmer but object memory is
owned by the MQ Workflow API. The application programmer determines the
lifetime of transient objects by using allocate, or query, and deallocate
mechanisms. The MQ Workflow API hides the internal structure of transient
objects.

Handling errors

All action, activity implementation, or program execution management
functions/methods show whether or not the call has been successfully
executed by returning a so-called return code as their return value. Java throws
an appropriate FmcException when the method has not been executed
successfully. The return code is one of a set of predefined codes (see “List of
return codes”). The exact return codes or exceptions for each of those
functions/methods are listed with the description of each call. You should
design your programs to handle all return codes or exceptions that can arise.

In addition to the return code, a so-called result object can be accessed in C
and C++ which describes the result of the call in more detail - see
“Chapter 16. The result object” on page 143.

Basic and accessor functions/methods do not return any value or return the
value queried as their return value. Since they are querying transient objects
and are able to return default values, an error does normally not occur. It can,
however, happen during application development that a wrong handle or a
buffer too small to hold a character value is specified. To look for such
erroneous situations, the result object can be queried (besides checking the
trace).

List of return codes

The following list shows the numeric values of the return codes or exceptions
that are issued by the MQ Workflow APIs; it is strongly adviced to use the
symbolic names instead of the integer values:

10 Programming Guide

Table 1. List of return codes
Numeric value Symbolic value

0 FMC_OK
1 FMC_ERROR
10 FMC_ERROR_USERID_UNKNOWN
11 FMC_ERROR_ALREADY_LOGGED_ON
12 FMC_ERROR_PASSWORD
13 FMC_ERROR_COMMUNICATION
14 FMC_ERROR_TIMEOUT
100 FMC_ERROR_INTERNAL
101 FMC_ERROR_SERVER
102 FMC_ERROR_UNKNOWN
103 FMC_ERROR_MESSAGE_FORMAT
104 FMC_ERROR_MESSAGE_DATA
105 FMC_ERROR_RESOURCE
106 FMC_ERROR_NOT_LOGGED_ON
107 FMC_ERROR_NEW_OWNER_NOT_FOUND
108 FMC_ERROR_NO_OLD_OWNER
109 FMC_ERROR_OLD_OWNER_ABSENT
110 FMC_ERROR_NEW_OWNER_ABSENT
111 FMC_ERROR_ALREADY_STARTED
112 FMC_ERROR_MEMBER_NOT_FOUND
113 FMC_ERROR_MEMBER_NOT_SET
114 FMC_ERROR_WRONG_TYPE
115 FMC_ERROR_MEMBER_CANNOT_BE_SET
116 FMC_ERROR_MEMBER_INVALID
117 FMC_ERROR_FORMAT
118 FMC_ERROR_DOES_NOT_EXIST
119 FMC_ERROR_NOT_AUTHORIZED
120 FMC_ERROR_WRONG_STATE
121 FMC_ERROR_NOT_UNIQUE
122 FMC_ERROR_EMPTY
123 FMC_ERROR_NO_MANUAL_EXIT
124 FMC_ERROR_PROFILE
125 FMC_ERROR_INVALID_FILTER
126 FMC_ERROR_PROGRAM_EXECUTION
127 FMC_ERROR_PROTOCOL
128 FMC_ERROR_TOOL_FUNCTION
129 FMC_ERROR_INVALID_TOOL
130 FMC_ERROR_INVALID_HANDLE
131 FMC_ERROR_NOT_EMPTY
132 FMC_ERROR_INVALID_USER
133 FMC_ERROR_OWNER_ALREADY_ASSIGNED
134 FMC_ERROR_INVALID_NAME
135 FMC_ERROR_INVALID_PROGRAMID

Chapter 4. Building an MQ Workflow application 11

Table 1. List of return codes (continued)
Numeric value Symbolic value

136 FMC_ERROR_SIZE_EXCEEDED
406 FMC_ERROR_WRONG_ACT_IMPL_KIND
500 FMC_ERROR_NON_LOCAL_USER
501 FMC_ERROR_WRONG_KIND
502 FMC_ERROR_INVALID_ACTIVITY
503 FMC_ERROR_CHECKOUT_NOT_POSSIBLE
504 FMC_ERROR_BACK_LEVEL_VERSION
505 FMC_ERROR_NEWER_VERSION
506 FMC_ERROR_INVALID_CORRELATION_ID
507 FMC_ERROR_NOT_ALLOWED
800 FMC_ERROR_BUFFER
801 FMC_ERROR_INVALID_SESSION
802 FMC_ERROR_INVALID_TIME
804 FMC_ERROR_NO_MORE_DATA
805 FMC_ERROR_INVALID_OID
807 FMC_ERROR_INVALID_THRESHOLD
808 FMC_ERROR_INVALID_SORT
810 FMC_ERROR_INVALID_DESCRIPTION
811 FMC_ERROR_INVALID_INVOCATION_TYPE
812 FMC_ERROR_OWNER_NOT_FOUND
813 FMC_ERROR_INVALID_LIST_TYPE
814 FMC_ERROR_INVALID_RESULT_HANDLE
815 FMC_ERROR_MESSAGE_CATALOG
816 FMC_ERROR_INVALID_SPECIFICATION
817 FMC_ERROR_QRY_RESULT_TOO_LARGE
818 FMC_ERROR_NO_VERSION_2_FILTER
819 FMC_ERROR_INVALID_USER_CONTEXT
900 FMC_ERROR_NO_SYS_ADMIN
901 FMC_ERROR_INVALID_SESSION_MODE
902 FMC_ERROR_PROGRAM_UNDEFINED
904 FMC_ERROR_PEA_NOT_LOCAL
905 FMC_ERROR_INVALID_ABSENCE_SPEC
1000 FMC_ERROR_NOT_SUPPORTED
1012 FMC_ERROR_PROGRAM_NOT_DEFINED
1014 FMC_ERROR_PEA_NOT_REACHABLE
1015 FMC_ERROR_INVALID_PEA_FROM_CTNR
1016 FMC_ERROR_INVALID_PEA_FROM_MODEL
1017 FMC_ERROR_INVALID_SYSTEM_FROM_CTNR
1018 FMC_ERROR_INVALID_SYSTEM_FROM_MODEL
1019 FMC_ERROR_SUB_PROC_TERMINATED_BY_ERROR
1020 FMC_ERROR_NO_PEA_FOUND_FOR_AUTO_START
1021 FMC_ERROR_NO_CTNR_ACCESS
1022 FMC_ERROR_INVALID_CONFIGURATION_ID

12 Programming Guide

Table 1. List of return codes (continued)
Numeric value Symbolic value

1023 FMC_ERROR_MIGRATION_OF_RUNNING_PROGRAM
1024 FMC_ERROR_MIGRATION_OF_CHECKEDOUT_SUSPENDED
1025 FMC_ERROR_MIGRATION_NO_SUBPROCESS
2000 FMC_ERROR_INVALID_QUEUE_SCOPE

List of ActiveX GUI Control exceptions

The following list shows the numeric values of exceptions that are issued by
the MQ Workflow ActiveX GUI Controls; it is strongly adviced to use the
symbolic names instead of the integer values:

Table 2. List of ActiveX exceptions
Numeric value Symbolic value

1500 FMC_METHOD_EXCEPTION
1501 FMC_WRONG_INDEX
1502 FMC_MEMORY_EXCEPTION
1503 FMC_ERROR_PARAMETER
1504 FMC_OLE_EXCEPTION
1505 FMC_OLE_DISPATCH_EXCEPTION
1506 FMC_USER_EXCEPTION
1507 FMC_OBJECT_NOT_VALID
1508 FMC_OBJECT_STILL_VALID
1509 FMC_GUI_ALREADY_CONNECTED
1510 FMC_GUI_NOT_CONNECTED
1511 FMC_WRONG_CONTAINER_TYPE
1512 FMC_UNKNOWN_ITEM
1513 FMC_SET_CONTAINER_VALUE
1514 FMC_RECURSION_ERROR

Debugging considerations

Prerequisites

Debugging an MQ Workflow application assumes that the appropriate
environment is established. This means that:
v MQ Workflow DLLs are accessible. This is automatically guaranteed by a

standard MQ Workflow installation.
v A test database has been created that reflects your debugging requirements

(see “Creating a test database” on page 14).
v The MQ Workflow servers are running on the server machine so that tests

can be executed.

Chapter 4. Building an MQ Workflow application 13

v You are able to connect to the required server. This can be checked with the
MQ Workflow provided configuration checker fmczchk (refer to IBM
MQSeries Workflow: Installation Guide).

v If you want to debug activity implementations, then the MQ Workflow
Program Execution Agent must have been started for the user who gets
assigned the work item.

Note: Programs that implement activities of a process model must be
registered for use with the MQ Workflow workflow manager. Ensure
that the program you want to debug is registered for the selected
operating system and that it can be found with the registered name
and path information.

Creating a test database

In order to create a test database, you do not only need to create the database
as such but you also need to:
v Add topology data (see the IBM MQSeries Workflow: Installation Guide on

how to bootstrap your database).
v Add test data (see the IBM MQSeries Workflow: Getting Started with Buildtime

and the chapter ″Using the Runtime export and import utility″).

Debugging a client application

To test your client application, start it under the control of your favorite
debugger. If your application is multi-threaded, it is your responsibility to
synchronize the threads properly.

Note: You can also consider to use MQ Workflow’s tracing facility to get
detailed information on MQ Workflow actions or the configuration
checker tool for problem determination.

Debugging an activity implementation or support tool

Activity implementations and support tools run under the control of the MQ
Workflow program execution agent and therefore need some special attention
so that debugging becomes possible.

As with FlowMark Version 2, there is the option to change your FDL and
register your debugger as the program implementation. This is the option you
can use for Java.

For C, C++, and ActiveX, MQ Workflow supports using an unchanged FDL. It
provides for two environment variables to enable debugging.
FMC_PEA_DEBUGGER_NAME serves to specify the name of your debugger.
You can either specify the full path and file name of your debugger or make

14 Programming Guide

the debugger accessible through your PATH statement. If you then set
FMC_PEA_DEBUG_ACT_IMPL to ″YES″, the program execution agent starts
the named debugger instead of the activity implementation. For example:

FMC_PEA_DEBUGGER_NAME = IDEBUG.EXE

FMC_PEA_DEBUG_ACT_IMPL = YES

The program execution agent starts your debugger in a separate operating
system process with an appropriate environment. Since the process
environment of the debugger process is set by the program execution agent
and inherited by the activity implementation, your activity implementation is
still known to the program execution agent and authorized to issue API
requests.

When an executable is to be debugged, the program execution agent provides
the name of the activity implementation and its parameters to the called
debugger.

When a dynamic link library is to be debugged, the program execution agent
provides the name of a program that loads your DLL and the activity
implementation parameters to the called debugger.

Note: Your DLL must have been registered to run in fenced mode.

The MQ Workflow program that loads your DLL in fenced mode is
FMCXDLL.EXE. It provides you with two functions, FmcDebugDllV2 and
FmcDebugDllV3. FmcDebugDllV3 serves to debug MQ Workflow Version 3
DLLs and FmcDebugDllV2 serves to debug FlowMark Version 2 compatible
DLLs.

They call the entry point of your Version 2 or Version 3 DLL. If you set a
breakpoint on these functions, the debugger stops before the entry point of
your DLL is called and you can step into your activity implementation.

Note: The Microsoft debugger msdev.exe cannot process these entry points.
Nevertheless, if you must debug your DLL, add the following to your
code
#if defined(_MSC_VER) && defined(_DEBUG)
DebugBreak();
#endif

When the program execution agent starts msdev.exe, then run
FMCXDLL.EXE in the msdev window. The DebugBreak() statement in
your code enables the debugger to start debugging your DLL. Note

Chapter 4. Building an MQ Workflow application 15

that DebugBreak() only works under the control of msdev.exe and
creates an unhandled exception otherwise.

When debugging a fenced DLL, be aware of the following:
1. There can exist specific problems that only apply to unfenced DLLs and

that do not show up during debugging of fenced DLLs. For instance,
consider the case that you run multiple instances of your (reentrant) DLL
in parallel. In unfenced mode, your DLL is loaded only once and runs in
the context of the program execution agent in multiple threads. In fenced
mode, your DLL runs in the context of multiple FMCXDLL processes. As
the data segment of a DLL is unique per process but shared between
threads of a single process, you may not encounter effects seen without
debugger.

2. If your DLL or the entry point in your DLL cannot be found, the debugger
window will not show up and the state of your activity implementation
will become InError. You can use MQ Workflow’s trace facility to
determine such problems.

3. Ensure that your DLL uses the supported (standard) calling convention
and signature; MQ Workflow has defined the FMC_APIENTRY calling
convention (see file fmcjcglo.h). If your DLL is registered as a FLowMark
Version 2 compatible DLL, it gets passed two parameters, the execution
session identification (called program identification in Version 3) and a
pointer to additional parameters. MQ Workflow Version 3 DLLs only
receive the additional parameters argument since the Version 3 program
execution agent can determine the program identification on its own.

16 Programming Guide

Chapter 5. Client/server communication and data access
models

When you request actions from an MQ Workflow server or when you want to
observe the result of actions, you can:
v Use a synchronous protocol to ask for an action and to view changes of the

object which you used to call the action.
v Use a synchronous protocol to pull for data created or changed.
v Receive unsolicited information on created or changed objects pushed by

the server.
v Use an asynchronous protocol to ask for an action and to view the result at

a later point in time; currently only the execution of a process instance is
supported in asynchronous mode.

For example, when you ask a process instance object to be started:
v As an immediate result, the state of the process instance is updated.
v You can query work items in order to view (pull for) new objects created.
v You can automatically receive new work items sent (pushed) to you.

Synchronous client/server communication

Applying a synchronous protocol means that you issue a request to an MQ
Workflow server and then wait until you receive a response. All action
functions/methods operate this way; your application (thread) is blocked until
the response arrives or until your timeout set on the execution service object
exceeds.

Asynchronous client/server communication

Applying an asynchronous protocol means that you issue a request to an MQ
Workflow server but you do not wait until you receive a response. The
ExecuteProcessInstanceAsync() function/method operates this way; your
application (thread) is not blocked and you can receive the response at a later
time.

When you asynchronously issue an action, then you do, however, receive an
acknowledgement telling whether MQ Workflow accepted the request or not.
You can also receive a correlation identification which you can use in order to
receive a specific response. You can specifiy a user context in order to
correlate a response received.

© Copyright IBM Corp. 1993, 1999 17

For example, when you ask a process instance to be executed asynchronously:
v As an immediate result, you get informed whether the request is accepted.
v When you specified a buffer to hold a correlation ID, you get an ID which

you can use in the Receive() call to wait for that specific response.
v When you specify a user context, that context is returned to you as part of

the response. You can use it for user- specific correlation.

Note: The asynchronous way of communication is only supported in C++ and
the C-language.

The push data access model

Receiving unsolicited information pushed by an MQ Workflow server means
that you set up communication in a way that you are automatically informed
about new or changed objects.

Note: The push data access model is not supported in Java.

In order to obtain information pushed by an MQ Workflow server:
1. The server must be asked for sending data. This means that:
v The settings of the considered process instance must specify

REFRESH_POLICY PUSH. This setting is inherited from the domain
level, through the system group to the system and down to the process
template. Each specification can be overwritten on a lower level.

v The users must be logged on with a Present or PresentHere session mode,
that is, they are enabled to receive information.

2. The application must use functions/methods in order to receive data
pushed.

Provided that these prerequisites are fulfilled, the MQ Workflow execution
server pushes changes on work items or notifications to the owner of the item:
1. On creation of the item.
2. On deletion of the item.
3. Whenever a primary property of the item changes - see “Accessor

functions/methods” on page 89 for a definition of primary properties.

The caller of the action will, however, not receive such information because, as
a result of the action, the transient object has already been updated with
relevant data.

Changes on disabled work items are not pushed. Only the deletion of such
work items is pushed.

18 Programming Guide

Examples:

When a process instance is suspended and when its refresh policy is push, the
MQ Workflow execution server sends informations to all owners of
non-disabled items which are currently logged on as present.

When the description of a process instance is changed and when the refresh
policy is push, the MQ Workflow execution server sends informations to all
owners of process instance notifications which are currently logged on as
present.

When a work item is transferred to user N by the owner of the work item and
when the refresh policy of the associated process instance is push, the MQ
Workflow execution server sends an information to user N when he/she is
currently logged on as present. The owner of the work item as the requester
of the action does not get any additional information.

Notes:

1. Filtering and sorting is left to the application. No indication about affected
worklists is pushed to the client.

2. The ActiveX API provides for a worklist Push processing option that
controls whether pushed information is to be placed on that list. If set, any
item information is put on the list whether it respects filtering or not. It is
put at the begin of the list, that is, does not respect sorting.

Receiving information

In C and C++, the execution service object provides for a means to receive
information (execution data) pushed by an MQ Workflow execution server at
any time wanted. The Receive() call blocks the calling application until some
information is received or until the specified timeout value has been reached.
That is why an application typically starts a separate thread for receiving data
in order to prevent that the whole application is blocked.

A timeout value of -1 specifies an indefinite wait time interval. Note that in
this case you must ensure that you stop receiving data before your application
ends. There is a TerminateReceive() function/method which can be used to
send a terminate indication to the receiving part of the application in order to
inform that receiving data may end.

Notes:

1. A Receive() call survives a Logoff() call which ends your session with an
execution server. The execution server stops, however, pushing
information when logoff has been executed. When you did not send a

Chapter 5. Client/server communication and data access models 19

TerminateReceive() to the receiving application thread, then you have to
end that thread because of other knowledge. TerminateReceive() can only
be called as long as a session exists.

2. If information is not received and therefore stays in the client input queue,
the MQSeries(R) expiration mechanism applies in order to get rid of such
"dead" messages. The expiration time of client messages can be configured
for MQ Workflow.

When receiving data, a correlation identification can be specified to indicate
which information is to be read. If it is not specified or pointing to
FMCJ_NO_CORRELID, then any data arriving is received; note that the
correlation identification is set as the result of a successful receive.

Once execution data has been received, its type can be determined and the
appropriate action can be called. For example, when a work item creation is
indicated, a conversion from the execution data to a work item can be
requested. When a work item change is indicated, the persistent object ID of
the work item can be requested so that the appropriate work item can be
updated.

When the response to an ExecuteProcessInstanceAsync() request is received,
the process instance created and executed can be analyzed. For example, its

Figure 1. Handling data sent by an MQ Workflow server. Legend: --Ê Inheritance (C++); —Ê provides for access

20 Programming Guide

state can be used to determine whether the process instance executed
successfully. Its output container can then be read. If an error occurred, the
error description can be looked at.

Note: ActiveX uses the event mechanism in order to inform an application
that data has been changed. See “Events” on page 624.

Chapter 5. Client/server communication and data access models 21

22 Programming Guide

Chapter 6. An MQ Workflow session

In order to communicate with an MQ Workflow server, a session must have
been established between the user and that server. The server is either
identified explicitly (system at system group) or taken from the user’s profile.
If the information is not found in the user’s profile, the configuration profile is
read.

The session is established by logging on. From then on services can be
requested from the server; the service object which represents the session
between the user logging on and the server, is set up accordingly.

Logon requires that the administration server is up and running on the
selected system because the administration server manages sessions and
checks the authentication of the user. It additionally cares for any severe
errors to be written to the error log.

Any objects which are retrieved or created belong to the session where they
have been queried or created. They carry the session identification so that
further actions on those objects are executed in the same session with the
authorization of the logged-on user.

Although threads are not explicitly supported by MQ Workflow (objects are
not threadsafe), MQ Workflow does not prevent you from using threads. A
session can span multiple threads. You have to care, however, for object
synchronization. And, in all languages except Java, you should use the
Connect() and Disconnect() functions/methods on each thread so that API
resources are managed correctly.

A single application program or multiple application programs can allocate
multiple service objects and log on with different users or the same user in
parallel. Sessions are kept separate by the service objects. A single service
object thus represents a single session. A second request to log on via a
service object will be rejected if it comes from a different user. Otherwise, it is
accepted but not repeated; the logon request has already been executed
successfully.

A session can run in default mode or in present mode. When you are operating
in a present session mode, activity instances which are started automatically
can be scheduled on your behalf and you can receive information pushed by
an MQ Workflow server. There can only be a single present session per user.

© Copyright IBM Corp. 1993, 1999 23

The service object provides for a timeout value to be set. This is the time the
application waits for the answer from a server. The application is thus blocked
during this time at a maximum. The timeout is specified in milliseconds. A
value of -1 denotes an indefinite timeout value. The timeout value can be
changed at any time.

Note: MQ Workflow uses the communication mechanisms of IBM MQSeries.
If your application sets up its own signal handler, then you should
refer to the MQSeries Application Programming Guide, especially the
chapter UNIX signal handling, for restrictions imposed by MQSeries.

24 Programming Guide

Chapter 7. Querying data

There are essentially three means of querying data from an MQ Workflow
server:
v A query via a service object, which returns all objects authorized for. The

number of objects returned to the client can be restricted by a filter and a
threshold. (Not supported in ActiveX.)

v A query using a persistent list definition, which returns all objects
qualifying through the list definition.

v A specific request, like the request for user settings or a refresh request for a
specific object.

Persistent lists

A persistent list represents a set of objects of the same type. Moreover, all
objects which are accessible through the list have the same characteristics. A
list can be for public usage, that is, it is visible by all users, or for private
usage, that is, it has an owner and is only visible by that owner.

The characteristics of the objects contained in the list are given by so-called
filter criteria. The filter criteria specified and the authorization of the user
issuing the query determine the contents of the list. This means that the
contents itself is not stored persistently but determined when a query request
is issued. This especially means that a public list can deliver different results
depending on the user who applies the query.

The number of objects transferred from the server to the client as the result of
the query can be restricted by specifying a threshold. The threshold is used
after sort criteria have been applied.

A list can be a process template list, a process instance list, or a worklist.

Using filters, sort criteria, and thresholds

A filter is a character string specifying criteria which must follow the rules
stated by the filter syntax diagrams. Refer to the appropriate
functions/methods for the exact syntax. Some sample criteria are shown here:

© Copyright IBM Corp. 1993, 1999 25

A sort criterion is a character string specifying criteria which must follow the
rules stated by the sort criteria syntax diagrams. Refer to the appropriate
functions/methods for the exact syntax. Some sample criteria are shown here:

Note that objects are sorted on the server, that is, the code page of the server
determines the sort sequence.

A threshold specifies the maximum number of objects to be returned to the
client. That threshold is applied after the objects have been sorted.

Handling collections

The result of a query for a set of objects is a so-called vector of objects in the
C or C++ language or an array of objects in the ActiveX and Java language.

A vector is provided by the caller and filled by the MQ Workflow API. The
ownership of the vector elements, the objects, stays with the vector. They are
automatically deleted when the vector is deleted.

Any objects returned are appended to the supplied vector. If you want to read
the current objects only, you have to clear the vector before you call the query
method. This means that you should erase all elements of the vector in the
C++ API. This means that you should set the vector handle to 0 in the
C-language API.1 If the vector handle is not initialized to 0, it must point to a
vector of objects of the appropriate kind so that newly queried objects can be
appended. In other words, any nonzero handle is used by the C-language in
order to access a vector assumed to already exist.

In the C-language, the result of the query is the vector handle initialized to
the set of objects, if a 0 handle had been passed, respectively the existing
vector extended by new objects. Special vector accessor functions are provided
to access the objects (see below). When a vector element is read, it becomes an
object of its own and thus has to be deleted when no longer used. Any
operations on that object refer to the object only and do not have any impacts
on the vector element from which the object was copied. For example, a

1. Declare a new vector handle or deallocate an existing vector object before reuse.

"NAME = 'MyProcessInstance'"
"NAME LIKE 'My*Ins?ance'"
"LAST_MODIFICATION_TIME > '1998-2-19 11:38:0'"
"STATE IN (READY,RUNNING)"

"NAME ASC"
"NAME ASC, LAST_MODIFICATION_TIME DESC"

26 Programming Guide

Refresh() changes the object only but not its original copy within the vector.
This means that a further iteration through the vector finds any elements
unchanged.

In the C++ language, the result of the query is an instance of vector<class T>.
Access to the objects is gained via appropriate vector methods; refer to the
STL documentation. When a vector element is read, a (const or non-const)
reference to the object is returned. This means that a change of the object does
actually change the vector element. A further iteration through the vector
finds the elements changed.

An array is provided and filled by the MQ Workflow API. The ownership of
the array elements, the objects, stays with the array.

C-language vectors

Vector accessor functions are described below. This is because all these
functions are similar looking and have similar requirements, even for different
objects. They are all handled locally by the API, that is, they do not
communicate with the server. Neither a connection to a server nor specific
authorizations are required to execute.

Return codes

The C-language functions or the result object can return the following codes,
the number in parentheses shows their integer value:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_MORE_DATA(804)
The vector contains no or no more element.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Vector accessor functions allow for the operations listed below; ’Xxx’ denotes
some scope, for example, FmcjXxxVectorFirstElement() can stand for
FmcjProcessInstanceVectorFirstElement().

Chapter 7. Querying data 27

FmcjXxxVectorDeallocate

Allows the application to deallocate the storage reserved for the specified
transient vector object. All elements contained are also deallocated.

The C-language handle is set to 0 so that it can no longer be used.

C-language signature
APIRET FMC_APIENTRY FmcjXxxVectorDeallocate(FmcjXxxVectorHandle * handle)

Parameters
handle Input/Output. The address of the handle to the vector to be

deallocated.

FmcjXxxVectorFirstElement

Returns the first element of the vector. That element becomes an object on its
own and has to be deallocated if no longer used. The vector is positioned to
the next element.

If the vector is empty or if an error occurred, 0 (zero) is returned.

C-language signature
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorFirstElement(

FmcjXxxVectorHandle hdlVector)

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the first element of the vector or 0.

FmcjXxxVectorNextElement

Returns the vector element at the current vector position; the initial vector
position is the first element. That element becomes an object on its own and
has to be deallocated if no longer used. The vector is positioned to the next
element.

If the vector is empty, if there are no more elements in the vector, or if an
error occurred, 0 (zero) is returned.

28 Programming Guide

C-language signature
FmcjXxxHandle FMC_APIENTRY FmcjXxxVectorNextElement(

FmcjXxxVectorHandle hdlVector)

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
FmcjXxxHandle

The handle of the vector element at the current position or 0.

FmcjXxxVectorSize

Returns the number of elements in the vector.

C-language signature
unsigned long FMC_APIENTRY FmcjXxxVectorSize(

FmcjXxxVectorHandle hdlVector)

Parameters
hdlVector Input. The handle of the vector to be queried.

Return type
unsigned long

The number of elements in the vector.

Examples

In the following, some C-language examples on how to read a vector are
shown; note that you can start with a first element call as well as with a next
element call.

Using First/NextElement() calls

Chapter 7. Querying data 29

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
unsigned long i = 0;
unsigned long numElements = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)
return rc;

printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

hdlInstance= FmcjProcessInstanceVectorFirstElement(hdlVector);
numElements= FmcjProcessInstanceVectorSize(hdlVector);

printf("Instances in the vector:\n");
for(i=0; i< numElements; i++)
{
printf("- name: %s\n",

FmcjProcessInstanceName(hdlInstance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));

FmcjProcessInstanceDeallocate(&hdlInstance);
hdlInstance= FmcjProcessInstanceVectorNextElement(hdlVector) ;
}

FmcjProcessInstanceVectorDeallocate(&hdlVecor);

30 Programming Guide

Using NextElement() call only

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{
APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceVectorHandle hdlVector = 0;
FmcjProcessInstanceHandle hdlInstance = 0;
char tInfo[FMC_PROCESS_INSTANCE_NAME_LENGTH]="";

FmcjGlobalConnect();

FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"ADMIN", "PASSWORD",
Fmc_SM_Default, Fmc_SA_Reset

);
if (rc != FMC_OK)
return rc;

printf("Logged on\n");

rc= FmcjExecutionServiceQueryProcessInstances(
service,
FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&hdlVector);

if (rc != FMC_OK)
return rc;

printf("Queried process instances\n");

Chapter 7. Querying data 31

ActiveX arrays

In ActiveX, the result of a query for a set of objects is stored in arrays. The
arrays are provided by the respective ActiveX Controls. You cannot allocate or
delete an array.

With each new query, all existing objects in the array are deleted and the new
objects are added.

All arrays provide for the same methods to query the number of objects
contained and the objects themselves.

All array indexes start with 0 (zero). That is, valid index numbers are 0 to
GetSize()-1. Note that you should not remember the index number of an
object because the object can have a different index after each query,
depending on the sort criteria and the number of objects returned.

Exceptions

Following exceptions can be thrown:
FMC_WRONG_INDEX(1501)

The index is out of the range of the array.

Add

Adds a new object to the ContainerArray or to the ContainerElementArray.

printf("Instances in the vector:\n");
while (0 != (hdlInstance=FmcjProcessInstanceVectorNextElement(hdlVector)))
{
printf("- name: %s\n",

FmcjProcessInstanceName(hdlInstance,tInfo,
FMC_PROCESS_INSTANCE_NAME_LENGTH));

FmcjProcessInstanceDeallocate(&hdlInstance));
}
FmcjProcessInstanceVectorDeallocate(&hdlVector));

FmcjExecutionServiceLogoff(service);
printf("Logged off\n");
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

32 Programming Guide

Signature
long Add()

Adds a new execution service to the ExecutionServiceArray.

Signature
long Add (BSTR system, BSTR systemGroup)

long AddDefault()

Adds the specified string to the StringArray.

Signature
long Add (BSTR string)

Parameters

string Input. The string to be added to the StringArray.

system Input. The system where the execution server runs.

systemGroup Input. The system group where the system resides.

Return type

long The index of the added object in the array.

GetAt

Returns the object at the specified index.

Signature
Object GetAt (long index)

Parameters

index Input. The index of the object to be retrieved.

Return type

Object An object of the type contained in the array.

Chapter 7. Querying data 33

GetSize

Returns the number of elements in the array.

ActiveX signature
long GetSize()

Return type

long The cardinality of the array.

RemoveAll

Removes all objects from the StringArray.

Signature
void RemoveAll ()

RemoveAt

Removes the object at the specified index; can be called on the
ExecutionServiceArray, ContainerArray, ContainerElementArray, and
StringArray.

Signature
void RemoveAt (long index)

Parameters

index Index. The index of the object to be removed.

SetAt

Sets the value of a StringArray element at the specified index.

Signature
void SetAt(long index, BSTR string)

Parameters

index Input. The index of the array value to be set.

string Input. The value to be set.

34 Programming Guide

Events

NewObject

Indicates that a new execution service has been added to the
ExecutionServiceArray or that a new list object has been added to the
ProcessInstanceListArray, the ProcessTemplateListArray, or the Worklist array.

Signature
void NewObject(long index)

Parameters

index Input. The index of new element in the array.

ObjectRemove

Indicates that an execution service has been removed from the
ExecutionServiceArray or that a list object has been removed from the
ProcessInstanceListArray, the ProcessTemplateListArray, or the Worklist array.

Signature
void ObjectRemove(long index)

Parameters

index Input. The index of new element in the array.

Java arrays

In Java, the result of a query for a set of objects is stored in arrays. The arrays
are declared by you as a variable of the respective type, for example:
ProcessInstance[] processInstances;

With each new query, all existing objects in the array are deleted and the new
objects are added.

The number of objects contained in an array is determined by accessing its
length variable, for example:
processInstances.length

All array indexes start with 0 (zero). That is, valid index numbers are 0 to
length-1. You access an object by providing its index number, for example,

Chapter 7. Querying data 35

processInstances[0]. Note that you should not remember the index number of
an object because the object can have a different index after each query,
depending on the sort criteria and the number of objects returned.

36 Programming Guide

Chapter 8. Handling containers

A container represents input or output data of a process template, process
instance, work item, activity implementation, or support tool at Runtime. Each
container is defined by a data structure which declares the container to be of
the type of that data structure.

Data structure/container type

A data structure is uniquely identified by its name and contains an ordered
list of data members. At Runtime, it can become a stream of 32KB passed
between the client and the server.

The data structures and their usage as input containers or output containers
are defined during modeling. A special data structure called
DEFAULT_DATA_STRUCTURE is provided by MQ Workflow and contains no
user-defined data members when installed. The
DEFAULT_DATA_STRUCTURE cannot be deleted, however, it can be
extended during modeling.

Data member/container element

A data member of a data structure has a name and a data type. Data types are
either basic and then STRING, LONG, BINARY, or FLOAT, or another data
structure. Using a data structure as the data type of a data member (nesting)
allows for recursive definitions of data members.

A data member can represent a one-dimensional array. If a data member
represents an array, the number of elements in that array is shown in
parenthesis ().

A data structure can have up to 512 user-defined data members. A data
member that represents an array of data members counts with as many data
members as it has elements.

Data members are specified using their fully qualified name within the
container. The fully qualified name of a data member is a name in dot
notation where the hierarchy of nested data members is presented from left to
right, and their names are separated by a dot.

© Copyright IBM Corp. 1993, 1999 37

If a data member actually specifies an array of data members, the index
number of a specific data member is specified in brackets ([n]) or parentheses
((n)).

When a data structure denotes the type of a container, then its data members
(first level of any hierarchy) are also called container elements. They define the
structural members of the container. When the data type of a container element
(n-th level of any hierarchy) is a data structure (nesting), then that container
element again has container elements or structural members.

Container elements of a basic data type are also called the leaves of the
container. These are the members which can hold a value, that is, which can
be asked for a value and which can be set to a new value.

For example, assume that the data structure PERSON describes an input
container or output container and that PERSON has been defined as:

PERSON has two structural data members named Name and Addr. Name is
of basic data type STRING and Addr is of data type ADDRESS. That is the
data structure ADDRESS is nested within the data structure PERSON.

The input or output container described by PERSON then has two container
elements or structural members named Name and Addr, where Addr defines
a structure by itself. The container elements or structural members of the
container element Addr are Street and POBOX.

The leaves of the container, that is, the container elements which can carry a
value, and their fully qualified names within the container are:

Note that since the size of the POBOX array is 2, the valid index numbers are
0 and 1. This is because all array indexes start with 0 (zero).

Also note that the fully qualified names are not prefixed with the name of the
data structure PERSON. That data structure denotes the type of the container.
There is only one exception to the rule, when the container itself is specified
to be an array, for example, an array of PERSONs. Then, to set the name of a
specific person, the fully qualified name is specified as

Name STRING
Addr ADDRESS
Street STRING
POBOX LONG(2)

Name
Addr.Street
Addr.POBOX[0]
Addr.POBOX[1]

38 Programming Guide

PERSON[i].Name

For detailed examples see “Part 8. Examples and scenarios” on page 637.

Predefined data members

All containers automatically specify data members predefined by MQ
Workflow. They can hold values associated with the operational characteristics
of an activity or process. Predefined data members are data members that
need not be defined by the modeler but are automatically available. They can
be accessed by the container API. Their names start with the reserved
character "_".

Predefined data member values can be:
v Used to evaluate activity exit criteria.
v Accessed by activity implementations or support tools.
v Dynamically set to change the operational characteristics of subsequent

activities.

Predefined data members provide for the flexibility of modelers. The decision
on operational characteristics of a process or activity is taken at Runtime.
They also provide activity implementations and support tools a means to
access the operational characteristics through the use of API
functions/methods.

There are the following sets of predefined data members:
v Fixed data members
v Process information data members
v Activity information data members

Fixed data members provide information about the current activity instance.
They cannot be set using an API function/method. An exception is the _RC
data member which, however, should not be set - see below.

Process information and activity information data members are associated
with the operational characteristics of a process or activity. They operate the
same way as any user-defined data members. This means that the values for
specific operational characteristics of a process instance or activity instance
can be accessed or changed just like the values for any other user-defined data
member.

The following provides the fully qualified name and a brief description of
each of the predefined data members.

There are no arrays of any predefined data member.

Chapter 8. Handling containers 39

Fixed data members

Fixed data members _ACTIVITY, _PROCESS, and _PROCESS_MODEL cannot
be set using API functions/methods. Their values can be read using API
container functions/methods. Fixed data member _RC cannot be read and
should only be set when your compiler does not support a program exit code.

_ACTIVITY
This data member contains the name of the considered activity
instance. The value of this data member is automatically set when the
activity instance respectively an associated work item is started.

Data type: STRING

_PROCESS
This data member contains the name of the associated process
instance. The value of this data member is automatically set when the
activity instance respectively an associated work item is started.

Data type: STRING

_PROCESS_MODEL
This data member contains the name of the associated process model.
The value of this data member is automatically set when the activity
instance respectively an associated work item is started.

Data type: STRING

_RC This data member contains the return code of the activity
implementation. Typically it is used to evaluate exit and transition
conditions. It cannot be read and is set automatically (overwritten) to
the exit code of the activity implementation when that program ends.

In cases where your compiler does not support an exit code, you can
use the Container API to set its value.

Data type: LONG

Process information data members

Process information data members serve to dynamically specify properties of
a process instance. In general, the process modeler can choose where values
for process instance properties are to be obtained from.
v Values can be inherited from a top-level process instance.
v Values can be obtained from the process information data members in the

input container. They are then either set as default values or provided in
the input container when the process instance is started.

If specified via the DATA_FROM_INPUT_CONTAINER indicator, the values of
the process information data members are read by MQ Workflow when the

40 Programming Guide

process instance is started. If a value for a process information data member is
not set, then a default value is used (see the detailed descriptions below).

_PROCESS_INFO.Role
A role that people assigned to an activity instance of the process
instance must fulfill.

Any role set becomes an additional criterion to roles set for the
activity instance. Only people who are members of all the specified
roles are eligible.

If no role is set and no roles are specified for the activity instance,
then no role criteria are applied.

Data type: STRING

_PROCESS_INFO.Organization
The organization to which people must belong to receive work items
of the process instance. This setting is only regarded if no
organization is specified for the activity instance.

If no organization is set and no organization is specified for the
activity instance, the default is the organization of the person who
starts the process instance.

Data type: STRING

_PROCESS_INFO.ProcessAdministrator
The user ID of the person notified if:
v The process instance is expired.
v No person meets the criteria to perform an activity instance.
v No valid person has been specified for notification.
v The person notified that an activity instance is overdue has

exceeded the time allowed for an action, that is, the second
notification is sent.

If not set, the default process administrator is the person who starts
the process instance.

Data type: STRING

_PROCESS_INFO.Duration
Specifies how long the process instance is allowed to take. The value
is expressed in seconds.

If not set, the default is "Endless".

Data type: LONG

Chapter 8. Handling containers 41

Activity information data members

Activity information data members serve to dynamically specify properties of
an activity instance. In general, the process modeler can choose where values
for activity instance properties are to be obtained from.
v Values can be obtained from the activity information data members in the

input container. They are then either set as default values or provided in
the input container when an activity instance or associated work item is
started.

If specified, the values of the activity information data members are read by
MQ Workflow when the activity instance is scheduled. If a value is not set,
then a default value is used (see the detailed descriptions below).

Following indicators specify that activity information data members are to be
read:
v DONE_BY STAFF DEFINED_IN INPUT_CONTAINER
v NOTIFICATION DEFINED_IN INPUT_CONTAINER
v PRIORITY DEFINED_IN INPUT_CONTAINER

_ACTIVITY_INFO.Priority
The numeric value assigned as the priority of an activity instance. MQ
Workflow does not deduce any meaning from this value; it is just
used for client purposes. Any integer value between 0 and 9 can be
specified. If the value specified is invalid or the data member is not
set, a default of 0 (zero) is used.

Data type: LONG

_ACTIVITY_INFO.MembersOfRoles
The role or roles a person must fulfill to receive a work item for the
activity instance. Multiple roles may be specified and are then to be
separated by a semicolon (;).

Any role or roles set for this data member become an additional
criterion to the role set for the process instance. Only people who are
members of all the specified roles are eligible.

If not set, the role specified for the process instance is used. If no role
is set for the process instance and no roles are specified for the
activity instance, then no role criteria are applied.

Note: This specification is ignored if any specific people are set using
the _ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.CoordinatorOfRole
The role or roles a person must coordinate to receive a work item for

42 Programming Guide

the activity instance. Multiple roles to coordinate may be specified
and are then to be separated by a semicolon (;).

To receive a work item, the eligible person must be assigned as
coordinator of all the specified roles in addition to being a member of
all roles specified for the process instance and for the activity instance.

If not set, the roles specified by the process instance and the activity
instance are solely used. If no roles to be member of nor roles to
coordinate have been specified, no role criteria are applied.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.Organization
The organization to which people must belong to receive work items
of the activity instance.

If an organization is set using this data member, any organization set
for the process instance is ignored.

If not set, the organization specified by the process instance is used. If
no organization is set and no organization is specified for the process
instance properties, the default is the organization of the person who
starts the process instance.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: STRING

_ACTIVITY_INFO.OrganizationType
This data member is used to indicate if a work item for the activity
instance should be assigned to persons in a child organization.

To make all persons in the specified organization and all of its child
organizations eligible, set the value of this data member to 0.

To limit the persons who are eligible to the members of the specified
organization and the managers of the first level of child organizations,
set this data member to any nonzero value.

If not set, the default is 0. If no organization is set for the
_ACTIVITY_INFO.Organization data member, any value set here is
ignored.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Chapter 8. Handling containers 43

Data type: long

_ACTIVITY_INFO.LowerLevel
The level persons must at least have to receive work items of the
activity instance. A value between 0 and 9 can be set. The default
value is 0 (zero).

If the level specified here is greater than the value specified for the
upper level, or if the level is not set, the default value of 0 (zero) is
used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.UpperLevel
The level persons should not exceed to receive work items of the
activity instance. A value between 0 and 9 can be set. The default
value is 9.

If the level specified here is less than the value specified for the lower
level, or the level is not set, the default value of 9 is used.

Note: This criterion is ignored if any specific people are set using the
_ACTIVITY_INFO.People data member.

Data type: LONG

_ACTIVITY_INFO.People
This data member is used to specifically identify the people who
should receive a work item of the activity instance. Multiple entries
are possible and are then to be separated by a semicolon (;).

If any people are identified using this data member, any values set for
data members _ACTIVITY_INFO.MembersOfRoles,
_ACTIVITY_INFO.CoordinatorOfRole, _ACTIVITY_INFO.Organization,
_ACTIVITY_INFO.OrganizationType, _ACTIVITY_INFO.LowerLevel, and
_ACTIVITY_INFO.UpperLevel are ignored.

If no value is set, any values set for the above data members are used.
If no values have been set for those, the values set for staff definition
for the process instance are used.

If no values have been set for the process instance, the people in the
organization and all child organizations of the process starter receive a
work item for the activity instance.

Data type: STRING

44 Programming Guide

_ACTIVITY_INFO.PersonToNotify
Used to identify the person to notify if the specified duration to
complete the activity instance expires before the activity instance is
complete.

If the user ID specified by the data member is invalid or the data
member is not set, the process administrator is notified.

Data type: LONG

_ACTIVITY_INFO.Duration
Used to specify the maximum number of seconds allowed to complete
the activity.

If the activity is not completed before the specified duration, the
defined person is notified.

If the value specified by the data member is invalid or the data
member is not set, no notification occurs.

Data type: LONG

_ACTIVITY_INFO.Duration2
Used to specify the maximum number of seconds allowed to act on
an activity instance notification.

If the notification is not acted on before the specified number of hours
expires, the process administrator is notified.

If the value specified by the data member is invalid or the data
member is not set, no notification occurs.

Data type: LONG

Determining the structure of an unknown container

There are various functions/methods in order to determine the structure of an
unknown container and/or its leaves. Applied on a container, they return a
collection of container elements. Once the collection of container elements is
available, similar functions/methods can be recursively applied in order to
step down through a nested structure.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

Determining the leaves

Following functions/methods allow to determine the number of leaves in a
container or to retrieve the leaves themselves. When all leaves are requested,

Chapter 8. Handling containers 45

then not only the user-defined leaves or their leaf count are provided, but also
the MQ Workflow predefined data members.

ActiveX signatures
long LeafCount()

void Leaves(ContainerElementArray * leaves)

long AllLeafCount()

void AllLeaves(ContainerElementArray * leaves)

C-language signatures
unsigned long FmcjContainerLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerLeaves(FmcjContainerHandle handle)

unsigned long FmcjContainerAllLeafCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerAllLeaves(FmcjContainerHandle handle)

C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

unsigned long AllLeafCount()

void AllLeaves(vector<FmcjContainerElement> const & leaves) const

Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

public abstract int allLeafCount() throws FmcException

public abstract ContainerElement[] allLeaves() throws FmcException

Parameters

46 Programming Guide

handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
long/unsigned long/int

The number of user-defined leaves respectively the number of
all leaves, user-defined and predefined.

Determining the structural members

Following functions/methods allow to determine the number of structural
members in a container or to retrieve the structural members themselves.

ActiveX signatures
long MemberCount()

void StructMembers(ContainerElementArray * members)

C-language signatures
unsigned long FmcjContainerMemberCount(FmcjContainerHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerStructMembers(FmcjContainerHandle handle)

C++ language signatures
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

Parameters
handle Input. The handle of the container to be queried.

Chapter 8. Handling containers 47

members Input/Output. The vector or array of container elements to be
filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the container.
long/unsigned long/int

The number of structural members in the container.

Determining the type

Following functions/methods provide the type of a container, that is, the
name of the associated data structure.

ActiveX signature
BSTR Type()

C-language signature
char * FmcjContainerType(FmcjContainerHandle handle,

char * containerTypeBuffer,
unsigned long bufferLength)

C++ language signature
string Type()

Java signature
public abstract String type() throws FmcException

Parameters
bufferLength Input. The length of the buffer to contain the container type;

must be at least FMC_CONTAINER_TYPE_LENGTH bytes.
containerTypeBuffer

Input/Output. The buffer to contain the container type.
handle Input. The handle of the container to be queried.

Return type
BSTR/char*/string/String

The type of the container.

48 Programming Guide

Analyzing a container element

Once a container element has been accessed, it can be asked for its properties,
its name, whether it is a leaf and an array, or a structure itself.
Functions/methods you have seen on the container can then be applied
recursively in order to step down through a nested structure.

Determining the name or type of a container element

Following functions/methods allow to determine the name of a container
element or its type.

ActiveX signatures
BSTR Name()

BSTR FullName()

BSTR Type()

C-language signatures
char* FmcjContainerElementName (FmcjContainerElementHandle handle,

char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementFullName(FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

char* FmcjContainerElementType (FmcjContainerElementHandle handle,
char * buffer,
unsigned long bufferLength)

C++ language signatures
string Name() const

string FullName() const

string Type() const

Chapter 8. Handling containers 49

Java signatures
public abstract String name() throws FmcException

public abstract String fullName() throws FmcException

public abstract String type() throws FmcException

Parameters
bufferLength Input. The length of the buffer to be filled.
buffer Input/Output. The buffer to contain the container element

name or type.
handle Input. The handle of the container element to be queried.

Return type
BSTR/char*/string/String

The name or type of the container.

Determining the structural properties of a container element

Following functions/methods allow to determine whether the considered
container element is a leaf or a structure by itself and whether it is denoted to
be an array.

ActiveX signatures
boolean IsArray()

boolean IsLeaf()

boolean IsStruct()

C-language signatures
bool FmcjContainerElementIsArray (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsLeaf (FmcjContainerElementHandle handle)

bool FmcjContainerElementIsStruct(FmcjContainerElementHandle handle)

50 Programming Guide

C++ language signatures
bool IsArray () const

bool IsLeaf () const

bool IsStruct() const

Java signatures
public abstract boolean isArray () throws FmcException

public abstract boolean isLeaf () throws FmcException

public abstract boolean isStruct() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.

Return type
boolean/bool An indicator whether the container element is an array, a leaf,

or a structure.

Determining the leaves of a container element

Following functions/methods allow to determine the number of leaves of a
container element or to retrieve the leaves themselves.

ActiveX signatures
long LeafCount()

void Leaves(ContainerElementArray * leaves)

C-language signatures
unsigned long
FmcjContainerElementLeafCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementLeaves(FmcjContainerElementHandle handle)

Chapter 8. Handling containers 51

C++ language signatures
unsigned long LeafCount()

void Leaves(vector<FmcjContainerElement> const & leaves) const

Java signatures
public abstract int leafCount() throws FmcException

public abstract ContainerElement[] leaves() throws FmcException

Parameters
handle Input. The handle of the container to be queried.
leaves Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are leaves.
long/unsigned long/int

The number of user-defined leaves.

Determining the structural members of a container element

Following functions/methods allow to determine the number of structural
members of a container element or to retrieve the structural members
themselves.

ActiveX signatures
long MemberCount()

void StructMembers(ContainerElementArray * members)

C-language signatures
unsigned long
FmcjContainerElementMemberCount(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementStructMembers(FmcjContainerElementHandle handle)

52 Programming Guide

C++ language signatures
unsigned long MemberCount()

void StructMembers(vector<FmcjContainerElement> const & members) const

Java signatures
public abstract int memberCount() throws FmcException

public abstract ContainerElement[] structMembers() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.
members Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are structural members.
long/unsigned long/int

The number of structural members.

Determining the elements of an array

Following functions/methods allow to determine the number of elements in
an array or to retrieve the elements themselves.

ActiveX signatures
long Cardinality()

void ArrayElements(ContainerElementArray * elements)

C-language signatures
unsigned long
FmcjContainerElementCardinality(FmcjContainerElementHandle handle)

FmcjContainerElementVectorHandle
FmcjContainerElementArrayElements(FmcjContainerElementHandle handle)

Chapter 8. Handling containers 53

C++ language signatures
unsigned long Cardinality() const

void ArrayMembers(vector<FmcjContainerElement> const & elements) const

Java signatures
public abstract int cardinality() throws FmcException

public abstract ContainerElement[] arrayElements() throws FmcException

Parameters
handle Input. The handle of the container element to be queried.
elements Input/Output. The vector or array of container elements to be

filled.

Return type
ContainerElement[]/FmcjContainerElementVectorHandle

The container elements which are part of the queried array
container element.

long/unsigned long
The cardinality of the array described by the container
element.

Accessing a known container element

When you know the (dotted) name of a container element, then that name can
be used in order to directly access the container element without iterating and
searching through the whole container structure.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signature
long GetElement(BSTR qualifiedName,

ContainerElement * element)

54 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjContainerGetElement(

FmcjContainerHandle handle,
char const * qualifiedName,
FmcjContainerElementHandle * element)

C++ language signature
APIRET GetElement(string const & qualifiedName,

FmcjContainerElement & element) const

Java signature
public abstract
ContainerElement getElement(String qualifiedName) throws FmcException

Parameters
element Output. The container element.
handle Input. The handle of the container to be queried.
qualifiedName

Input. The fully qualified name of the container element.

Return type
long/APIRET The return code of calling this function/method - see return

codes.

Accessing a value of a container

Following functions/methods return the value of a container leaf.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.

When the leaf is an array of values, an index must be specified. Since an
index is to be specified, the fully qualified name must be given without the
index and its parentheses.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

Chapter 8. Handling containers 55

ActiveX signatures
long GetValueDbl(BSTR qualifiedName,

double * value,
boolean isArray,
long index)

long GetValueLng(BSTR qualifiedName,
long * value,
boolean isArray,
long index)

long GetValueStr(BSTR qualifiedName,
BSTR * value,
boolean isArray,
long index)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerArrayBinaryLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerBinaryLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary * value,
unsigned long bufferLength)

56 Programming Guide

C-language signatures
APIRET FMC_APIENTRY FmcjContainerArrayFloatValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
double * value)
unsigned long bufferLength)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerArrayLongValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerLongValue(
FmcjContainerHandle handle,
long * value)

Chapter 8. Handling containers 57

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerArrayStringLength(
FmcjContainerHandle handle,
char const * qualified name,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerArrayStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerArrayStringLength(

FmcjContainerHandle handle,
char const * qualified name)

APIRET FMC_APIENTRY FmcjContainerStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
char * value,
unsigned long bufferLength)

C++ language signatures
unsigned long BinaryLength(unsigned long index)

APIRET Value(string const & qualifiedName,
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
long & value) const

APIRET Value(string const a qualifiedName,
long & value) const

58 Programming Guide

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
double & value) const

APIRET Value(string const a qualifiedName,
double & value) const

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
string & value) const

APIRET Value(string const a qualifiedName,
string & value) const

Java signatures
public abstract
byte[] getBuffer2(String qualifiedName,

int index) throws FmcException

public abstract
byte[] getBuffer(String qualifiedName) throws FmcException

Java signatures
public abstract
double getDouble2(String qualifiedName,

int index) throws FmcException

public abstract
double getDouble(String qualifiedName) throws FmcException

Java signatures
public abstract
int getLong2(String qualifiedName,

int index) throws FmcException

public abstract
int getLong(String qualifiedName) throws FmcException

Chapter 8. Handling containers 59

Java signatures
public abstract
String getString2(String qualifiedName,

int index) throws FmcException
public abstract
String getString(String qualifiedName) throws FmcException

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() functions/methods to determine the
actual length.

handle Input. The handle of the container to be queried.
index Input. When the leaf is an array, the index of the array

element to be queried.
isArray Input. If set to True, an array is to be queried and the index is

used.
qualifiedName

Input. The fully qualified name of the leaf within the
container.

value Output. The value of the leaf.

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
long/APIRET The return code of calling this function/method - see return

codes.

Accessing a value of a container element

Following functions/methods return the value of a container element leaf.
When the leaf is an array of values, an index must be specified.
FMC_ERROR_MEMBER_NOT_SET is returned if no information is available.
Note that, in contrast to querying container leaves, the name of the leaf need
not be specified because the container element itself is the leaf queried.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

60 Programming Guide

ActiveX signatures
long GetValueDbl(double * value,

long index)

long GetValueLng(long * value,
long index)

long GetValueStr(BSTR * value,
long index)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerElementArrayBinaryLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayBinaryValue(
unsigned long index,
FmcjBinary * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementBinaryLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementBinaryValue(
FmcjContainerElementHandle handle,
FmcjBinary * value,
unsigned long bufferLength)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerElementArrayFloatValue(

FmcjContainerElementHandle handle,
unsigned long index,
double * value)

APIRET FMC_APIENTRY FmcjContainerElementFloatValue(
FmcjContainerElementHandle handle,
double * value)

Chapter 8. Handling containers 61

C-language signatures
APIRET FMC_APIENTRY FmcjContainerElementArrayLongValue(

FmcjContainerElementHandle handle,
unsigned long index,
long * value)

APIRET FMC_APIENTRY FmcjContainerElementLongValue(
FmcjContainerElementHandle handle,
long * value)

C-language signatures
unsigned long

FMC_APIENTRY FmcjContainerElementArrayStringLength(
FmcjContainerElementHandle handle,
unsigned long index)

APIRET FMC_APIENTRY FmcjContainerElementArrayStringValue(
FmcjContainerElementHandle handle,
unsigned long index,
char * value,
unsigned long bufferLength)

unsigned long
FMC_APIENTRY FmcjContainerElementArrayStringLength(

FmcjContainerElementHandle handle)

APIRET FMC_APIENTRY FmcjContainerElementStringValue(
FmcjContainerElementHandle handle,
char * value,
unsigned long bufferLength)

C++ language signatures
unsigned long BinaryLength(unsigned long index)

APIRET Value(unsigned long index,
FmcjBinary * value,
unsigned long bufferLength) const

unsigned long BinaryLength()

APIRET Value(FmcjBinary * value,
unsigned long bufferLength) const

62 Programming Guide

C++ language signatures
APIRET Value(unsigned long index,

long & value) const

APIRET Value(long & value) const

APIRET Value(unsigned long index,
double & value) const

APIRET Value(double & value) const

APIRET Value(unsigned long index,
string & value) const

APIRET Value(string & value) const

Java signatures
public abstract
byte[] getBuffer2(int index) throws FmcException

public abstract
byte[] getBuffer() throws FmcException

public abstract
double getDouble2(int index) throws FmcException

public abstract
double getDouble() throws FmcException

public abstract
int getLong2(int index) throws FmcException

public abstract
int getLong() throws FmcException

public abstract
String getString2(int index) throws FmcException

public abstract
String getString() throws FmcException

Parameters
bufferLength Input. The length of the buffer available for passing the value;

must be greater than or equal to the actual length. Use the
appropriate Length() functions/methods to determine the
actual length.

handle Input. The handle of the container element to be queried.

Chapter 8. Handling containers 63

index Input. When the leaf is an array, the index of the array
element to be queried. In ActiveX, the index is ignored for a
container element which is no array.

value Output. The value of the leaf.

Return type
byte[]/double/int/String

The leaf value.
unsigned long

The minimum required buffer length for reading the value.
long/APIRET The return code of calling this function/method - see return

codes.

Setting a value of a container

Following functions/methods allow to set the value of a container leaf.

When the leaf is an array of values, an index must be specified. Since an
index is to be specified, the fully qualified name must be given without the
index and its parentheses.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signatures
long SetValueDbl(BSTR qualifiedName,

double value,
boolean isArray,
long index)

long SetValueLng(BSTR qualifiedName,
long value,
boolean isArray,
long index)

long SetValueStr(BSTR qualifiedName,
BSTR value,
boolean isArray,
long index)

64 Programming Guide

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayBinaryValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
FmcjBinary const * value,
unsigned long dataLength)

APIRET FMC_APIENTRY FmcjContainerSetBinaryValue(
FmcjContainerHandle handle,
char const * qualifiedName,
FmcjBinary const * value,
unsigned long dataLength)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayFloatValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
double value)

APIRET FMC_APIENTRY FmcjContainerSetFloatValue(
FmcjContainerHandle handle,
char const * qualifiedName,
double value)

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayLongValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
long value)

APIRET FMC_APIENTRY FmcjContainerSetLongValue(
FmcjContainerHandle handle,
long value)

Chapter 8. Handling containers 65

C-language signatures
APIRET FMC_APIENTRY FmcjContainerSetArrayStringValue(

FmcjContainerHandle handle,
char const * qualifiedName,
unsigned long index,
char const * value)

APIRET FMC_APIENTRY FmcjContainerSetStringValue(
FmcjContainerHandle handle,
char const * qualifiedName,
char const * value)

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
FmcjBinary const * value,
unsigned long dataLength) const

APIRET Value(string const & qualifiedName,
FmcjBinary const * value,
unsigned long dataLength) const

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
long value) const

APIRET Value(string const a qualifiedName,
long value) const

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
double value) const

APIRET Value(string const a qualifiedName,
double value) const

66 Programming Guide

C++ language signatures
APIRET Value(string const & qualifiedName,

unsigned long index,
string const & value) const

APIRET Value(string const & qualifiedName,
string const & value) const

Java signatures
public abstract
void setBuffer2(String qualifiedName,

int index,
byte value []) throws FmcException

public abstract
void setBuffer(String qualifiedName,

byte value[]) throws FmcException

Java signatures
public abstract
void setDouble2(String qualifiedName,

int index,
double value) throws FmcException

public abstract
void setDouble(String qualifiedName,

double value) throws FmcException

Java signatures
public abstract
void setLong2(String qualifiedName,

int index,
long value) throws FmcException

public abstract
void setLong(String qualifiedName,

long value) throws FmcException

Chapter 8. Handling containers 67

Java signatures
public abstract
void setString2(String qualifiedName,

int index,
String value) throws FmcException

public abstract
void setString(String qualifiedName,

String value) throws FmcException

Parameters
dataLength Input. The length of the binary value.
handle Input. The handle of the container to be set.
index Input. When the leaf is an array, the index of the array

element to be set.
isArray Input. If set to True, an array element is to be set and the

index is used.
qualifiedName

Input. The fully qualified name of the leaf within the
container.

value Input. The value of the leaf. Note that values for leaves of
type BINARY must be specified as a sequence of two-digit
hexadecimal numbers. For example, the string ’abc<cr><lf>’’
would be represented as ’6162630d0a’ (where <cr> denotes the
ASCII ’carriage return’ character and <lf> denotes the ASCII
line-feed character).

Return type
long/APIRET The return code of calling this function/method - see return

codes.

Return codes/FmcException

Following return codes can be returned or can be described by the result
object respectively following exceptions can be thrown, the number in
parentheses shows their integer value:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR_BUFFER(800)

The provided buffer is too small.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the server.

68 Programming Guide

FMC_ERROR_FORMAT(117)
The qualified name does not conform to the syntax rules.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_MEMBER_CANNOT_BE_SET(115)
The specified member is an MQ Workflow predefined fixed
data member; it is for information only.

FMC_ERROR_MEMBER_NOT_FOUND(112)
The specified member is not part of the container or container
element.

FMC_ERROR_MEMBER_NOT_SET(113)
The specified member has no value.

Chapter 8. Handling containers 69

70 Programming Guide

Chapter 9. Monitoring a process instance

MQ Workflow allows for obtaining a monitor for a specified process instance.
A process instance monitor typically allows for:
v Observing the progress of a process instance execution.
v Determining the state of execution, that is, to determine which activity

instance is currently in progress, is waiting to be executed by whom, is
InError and waiting for some action. It allows to determine whether
notifications occurred because the maximum work time was exceeded.

v Viewing the history of execution, that is, what path has been taken through
the process instance and why. It allows to determine where the bottlenecks
of execution are or where the most time-consuming parts are.

Obtaining a process instance monitor

Once a process instance2 has been accessed, a process instance monitor3 can
be obtained. The transient process instance monitor object then represents all
information about activity instances directly contained in the described
process instance as well as all information on control connector instances
connecting those activity instances.

2. or activity instance or a (work) item

3. ActiveX does not distinguish between process instance monitors and block instance monitors; they are both called
instance monitor.

© Copyright IBM Corp. 1993, 1999 71

For example, the illustrated process instance monitor describes three program
activities, Program Activity 1, Program Activity 2, and Program Activity 9, and an
activity of type Block, Block Activity 3. There are three control connectors
between these activities.

The process instance monitor can then be asked for the activity instances and
the control connector instances described and their properties can be
determined, for example, the state of the activity and its graphical layout, or
the result of control connector instance evaluation and activities to connect or
bend points to be drawn.

When an activity of type Block is encountered, it is possible to obtain its block
instance monitor. Similar to a process instance monitor, a block instance
monitor object represents all information about activity instances directly
contained in the described block activity instance as well as all information on
control connector instances connecting those activity instances. For example,
the block instance monitor of Block Activity 3 describes Block Activity 4,
Program Activity 5, and Process Activity 6. There is a control connector between
Block Activity 4 and Process Activity 6.

Figure 2. Process instance monitors and block instance monitors

72 Programming Guide

When an activity of type Process is encountered, it is again possible to obtain
its process instance monitor, either via the embracing monitor object or by
retrieving the implementing (sub)process instance of the activity and then
obtaining the associated process instance monitor. The process instance
monitor obtained is a monitor which is completely separate from any other
process instance monitor.

When obtaining a process instance monitor, it is possible to use the deep option
in order to specify that all monitors for activities of kind Block are to be
returned from the MQ Workflow execution server in the same step. The block
instance monitors then all show the state of the process instance at this
retrieval time. This means, when a block instance monitor is obtained via an
API call, the API finds this monitor in its cache and provides it to the caller.
When the deep option is not used, it can happen that a block instance monitor
is not available. The API then automatically fetches the requested monitor
from the execution server; it then represents a newer state than the ones
previously retrieved.

Note: The deep option is currently ignored.

Ownership of monitors

As any other transient object, a process instance monitor is owned by the
caller of the API. When a process instance monitor is no longer needed, you
should delete/deallocate the object.

A block instance monitor, however, is considered to be part of a process
instance monitor. It is cached by the API as part of the process instance
monitor. It cannot be deallocated in the C-language. Deletion in the C++
language only deletes the C++ representation but not the block instance
monitor itself in the API cache. Block instance monitors are automatically
deleted when the owning process instance monitor is deleted/deallocated.
This means that block instance monitor objects or handles can only be used as
long as the containing process instance monitor exists. When the process
instance monitor does no longer exist, then using a block instance monitor
object or handle will return unexpected results; your program can even trap
since the usage of a nonexisting object or handle violates the MQ Workflow
programming by contract concept.

Chapter 9. Monitoring a process instance 73

74 Programming Guide

Chapter 10. Authorization considerations

In general, authorization is granted to persons, either explicitly or implicitly.
Implicitly means that the authority has been given as the result of performing
some MQ Workflow action; performing that action can itself request some
specific authority.

Special authority is granted to a person playing the role of a system
administrator. The system administrator has all privileges except on (work)
items. Only the owner of a (work) item can issue any actions; the system
administrator can, however, transfer the (work) item to himself. The system
administrator role must be assigned to a single person at any time.

When a process instance is started, its process administrator is determined. The
person determined to be the process administrator receives process
administration rights for that process instance.

The person who is to become the process administrator of a process instance
is specified when the process model is defined. Identification of the process
administrator can be done in the following ways:
v Specification of a user identification for the PROCESS_ADMINISTRATOR

keyword. In this case, the process administrator is already known when the
process model is defined.

v Specification of a member in the process input container via the
PROCESS_ADMINISTRATOR TAKEN_FROM specification.

v Specification of DATA FROM INPUT_CONTAINER. The process
administrator is then taken from the process information member
_PROCESS_INFO.ProcessAdministrator field in the input container (see
“Process information data members” on page 40 for details).

The following table shows the authorizations and the MQ Workflow functions
which can be called when that authority has been granted. The E/I
(Explicit/Implicit) column indicates how the authorization is granted to
persons.

Note: Once a user has authenticated himself to MQ Workflow (logged on), he
can retrieve all objects he is authorized to see without any further
special authorization. These are all objects he has created and all objects
which are not specially secured or which are for public usage.

© Copyright IBM Corp. 1993, 1999 75

Table 3. Authorization for persons

Name E/I Authorized Functions

Authorization
definition
authorization

E Create, update, and delete authorization information.

Retrieve and update passwords.

The appropriate FDL authorization keyword is
AUTHORIZATION.

Operation
administration
authorization

E Can perform all operation administration functions.
The appropriate FDL authorization keyword is
OPERATION.

Staff definition
authorization

E Create, retrieve, update, and delete staff information.
As such, it includes authorization definition
authorization.

Create, retrieve, update, and delete public and
private process instance lists, process template lists,
and worklists.

The appropriate FDL authorization keyword is
STAFF.

Topology
definition
authorization

E Create, retrieve, update, and delete topology
information. The appropriate FDL authorization
keyword is TOPOLOGY.

Process modeling
authorization

E Create, retrieve, update, and delete process models
and process templates. The appropriate FDL
authorization keyword is PROCESS_MODELING.

76 Programming Guide

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process
authorization

E Can perform the following process instance
functions if the process instance does not belong to
any category. If the process instance does belong to a
category, you must be authorized for all categories
or for that specific category:

v Create
v Start
v Create and start
v Set process instance name
v Query
v Refresh

Can perform the following process template
functions if the process template does not belong to
any category. If the process template does belong to
a category, you must be authorized for all categories
or for that specific category:
v Query
v Refresh

The appropriate FDL authorization keyword is
PROCESS_CATEGORY.

Process
administration
authorization

E Has process authorization and can perform the
following additional process instance functions if the
process instance does not belong to any category. If
the process instance does belong to a category, you
must be authorized with administration rights for all
categories or for that specific category:
v Delete
v Restart
v Resume
v Suspend
v Terminate

Can perform the following work item functions on
the assigned work item for all process instances if
the process instance does not belong to any category.
If the process instance does belong to a category, you
must be authorized for all categories or for that
specific category:
v Force-finish
v Force-restart

The appropriate FDL authorization keyword is
PROCESS_CATEGORY AS ADMINISTRATOR.

Chapter 10. Authorization considerations 77

Table 3. Authorization for persons (continued)

Name E/I Authorized Functions

Process
administrator

I Has process administration authority for the
appropriate process instance.

Process creator I Can perform the following process instance
functions:
v Set process instance name
v Delete, if not yet started
v Query
v Refresh
v Start

Work item
authority

E Can perform the following functions on (work)
items for all persons if you are authorized for all
persons or for selected persons:
v Query
v Refresh
v Transfer

The appropriate FDL authorization keyword is
WORKITEMS_OF.

Workitem owner I Can perform all functions on the assigned (work)
item except:
v Force Finish
v Force Restart

78 Programming Guide

Chapter 11. Function/method types

MQ Workflow functions/methods can be divided into several categories
which characterize the kind and behavior of the request to be executed.

basic to manage transient objects

accessor to read properties of transient objects

action to read or manipulate persistent objects

activity implementation to deal with containers from within an activity
implementation or support tool

program execution
management

to handle program execution agents

Basic and accessor functions/methods are described in more detail but
generally below. This is because all these functions/methods are similar
looking and have similar requirements, even for different objects. They are all
handled locally by the API, that is, they do not communicate with the server.
The functions/methods of the other categories are described separately in
“Part 6. Programming interfaces” on page 259. Those are the
functions/methods which require client/server communication or
communication with the program execution agent.

Basic functions/methods

Basic functions/methods are essentially provided so that transient objects can
be allocated or constructed and deallocated or destructed. They allow for the
construction of supporting objects like service objects. They allow for the
destruction of such objects as well as for the destruction of transient
representations of persistent objects allocated implicitly by the MQ Workflow
API. Refer also to “Chapter 15. Memory management” on page 141.

Basic functions/methods are only provided in the various APIs as far as
needed. For example, the Java language does only support IsComplete(),
IsEmpty(), and the Agent constructor.

Because of the nature of transient objects, neither a connection to a server nor
some specific authorization is required to execute.

© Copyright IBM Corp. 1993, 1999 79

Return codes

The C-language functions and the MQ Workflow result object can return the
following codes, the number in parentheses shows their integer value:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Basic functions/methods allow for the basic operations listed below; Xxx
denotes some class or scope, for example, FmcjXxxEqual() can stand for
FmcjProcessInstanceEqual().

Allocation

Following functions/methods allow the application to set up the respective
object. This is needed for supporting objects like string vectors or, in ActiveX,
for objects to be initialized by a persistent one. Transient objects representing
persistent objects are allocated implicitly by the MQ Workflow API when
persistent objects are created or queried from an MQ Workflow server.

In the C++ API, constructors are made public for all classes so that their
instances can be put into collections. When they are called by the application,
empty objects of the appropriate class are created; they do not yet represent a
persistent object.

All constructed objects are transient.

ActiveX signatures
ProcessTemplate * NewProcessTemplate()
ProcessInstance * NewProcessInstance()
Workitem * NewWorkitem()
ActivityInstanceNotification * NewActivityInstanceNotification()
ProcessInstanceNotification * NewProcessInstanceNotification()

80 Programming Guide

C-language signatures
APIRET FMC_APIENTRY
FmcjExecutionServiceAllocate(FmcjExecutionServiceHandle * handle)

APIRET FMC_APIENTRY FmcjExecutionServiceAllocateForSystem(
char const * system,
char const * systemGroup,
FmcjExecutionServiceHandle * handle)

APIRET FMC_APIENTRY
FmcjStringVectorAllocate(FmcjStringVectorHandle * hdlVector)

C++ language signature
FmcjXxx()

FmcjDateTime(bool initWithCurrentDateTime= false)

FmcjDateTime(unsigned short year, unsigned short month,
unsigned short day, unsigned short hour,
unsigned short minute, unsigned short second)

Java signature
Agent()

Parameters
handle

Input/Output. The address of the handle to the object to be set when
the object has been constructed. Care that the handle passed is not
pointing to a still valid object since that object is not automatically
deallocated before the new object’s handle is set.

initWithCurrentTime
Input. An indicator whether the date/time should be initialized with
the current date/time.

system
Input. The system where the execution server runs.

systemGroup
Input. The system group where the execution server resides.

year/month/day
Input. The date part of the date/time.

hour/minute/second
Input. The time part of the date/time.

Chapter 11. Function/method types 81

Return type
APIRET

The return code set by the allocation.
Object*

The newly constructed object.

Assignment

In the C++ API, the assignment operator allows the application to assign the
contents of the specified object to the target object, and returns the target
object. The assignment is achieved by deleting the target object before the
contents are assigned from the specified object.

C++ language signature
FmcjXxx & operator=(FmcjXxx const & anObject)

Parameters
anObject Input. The object from which the contents is to be assigned.

Comparison/equality

Following functions/methods allow an application to compare two transient
objects in order to determine whether they represent the same persistent or
API object.

Normally, comparison is done on the basis of the object identifiers. True is
returned if both transient objects represent the same persistent object. The
contents of the transient objects to be compared are not further checked, that
is, it is not checked whether both transient objects carry the same states of the
persistent object.

Exceptions:
v Service objects are equal when they represent the same session.
v Error objects are equal when they report the same error, that is, when they

contain the same return code and the same parameters.
v Program data objects are equal when they belong to the same work item.
v Control connector instance objects are equal when they have the same

source and target activity instances.
v Point and symbol layout objects are equal when their properties are equal.

In the C-language, the return code of the result object is set to invalid handle, if
one of the handles passed is invalid. True is returned, if both are invalid, else
false.

82 Programming Guide

ActiveX signature
boolean IsEqual(IDispatch * anObject)

C-language signature
bool FMC_APIENTRY FmcjXxxEqual(FmcjXxxHandle handle1,

FmcjXxxHandle handle2)

C++ language signature
bool operator==(FmcjXxx const & anObject) const

Parameters
anObject Input. The object to be compared with this one.
handle1 Input. The first object to be compared.
handle2 Input. The other object to be compared.

Copy

Following functions/methods allow the application to make a copy of a
particular transient object. That copy becomes a separate object and thus
carries its own state.

An exception is the execution service where a copy points to the same session
established by the original object. This especially means, when you request to
log off on either object, then the (common) session is closed.

C-language signature
APIRET FMC_APIENTRY FmcjXxxCopy(FmcjXxxHandle handle,

FmcjXxxHandle * newHandle)

C++ language signature
FmcjXxx(FmcjXxx const & anObject)

Parameters
anObject Input. The object to be copied.
handle Input. The handle of the object to be copied.

Chapter 11. Function/method types 83

newHandle Input/Output. The address of a handle to be set when the
object has been constructed. Care that the handle passed is not
pointing to a still valid object since that object is not
automatically deallocated before the new object’s handle is set.

Deallocation

Following functions/methods allow the application to delete the specified
transient object. Deletion of a transient object has no impact on the
represented persistent object, if any.

The C-language handle is set to 0 so that it can no longer be used. The C++
destructor is automatically called when an instance of FmcjXxx is deleted. In
ActiveX, setting the object to Nothing decreases its use count so that it can
become available for destruction.

C-language signature
APIRET FMC_APIENTRY FmcjXxxDeallocate(FmcjXxxHandle * handle)

C++ language signature
virtual FmcjXxx()

Parameters
handle

Input/Output. The address of the handle to the object to be
deallocated.

IsComplete()

Returns true when the object has been completely read from an MQ Workflow
server, that is, both primary and secondary properties are available (see also
“Accessor functions/methods” on page 89).

ActiveX signature
boolean IsComplete()

C-language signature
bool FMC_APIENTRY FmcjXxxIsComplete(FmcjXxxHandle handle)

84 Programming Guide

C++ language signature
bool IsComplete()

Java signature
public abstract boolean IsComplete() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.

Return type
bool/boolean

True if the object has been completely read from the server, otherwise
false.

IsEmpty()

Returns whether the transient object contains no actual data values yet. The
transient object has just been created and still contains default values. It does
not yet reflect a persistent object.

ActiveX signature
boolean IsEmpty()

C++ language signature
bool IsEmpty()

Java signature
public abstract boolean IsEmpty() throws FmcException

Return type
bool/boolean

True if the object has not yet been read from the server, otherwise
false.

Chapter 11. Function/method types 85

Kind()

Returns the kind of the queried object.

ActiveX signature
Enum Kind()

C-language signature
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxKind(FmcjXxxHandle handle)

C++ language signature
FmcjXxx::Enum Kind() const

Java signature
public abstract Enum kind() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The kind of the object; some element of an enumeration - see
also “Accessing an enumerated value” on page 93.

C-language Example: using basic functions

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemVectorHandle wList = 0;
FmcjWorkitemHandle workitem1 = 0;
FmcjWorkitemHandle workitem2 = 0;
FmcjWorkitemHandle workitem3 = 0;

86 Programming Guide

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

/* Query Workitems */
rc= FmcjExecutionServiceQueryWorkitems(service,

FmcjNoFilter,
FmcjNoSortCriteria,
FmcjNoThreshold,
&wList);

printf("\nQuery workitems returns rc : %u\n", rc);
fflush(stdout);

if (rc == FMC_OK && FmcjWorkitemVectorSize(wList) >= 2)
{ /* access first element */
workitem1= FmcjWorkitemVectorFirstElement(wList);
if (FmcjWorkitemIsComplete(workitem1))
printf("Surprise - more than primary data available\n");

else
printf("Primary data of first workitem available\n");

fflush(stdout);

/* access next element */
workitem2= FmcjWorkitemVectorNextElement(wList) ;
if (FmcjWorkitemEqual(workitem1,workitem2))
printf("Surprise - workitems are equal\n");

else
printf("Workitems represent different objects\n");

fflush(stdout);

/* copy workitem */
FmcjWorkitemCopy(workitem1,&workitem3);
if (FmcjWorkitemEqual(workitem1,workitem3))

printf("Workitems represent same persistent object\n");
else
printf("Surprise - workitems are not equal\n");

fflush(stdout);

Chapter 11. Function/method types 87

C++ Example: using basic methods

/* cleanup */
FmcjWorkitemDeallocate(&workitem1);
FmcjWorkitemDeallocate(&workitem2);
FmcjWorkitemDeallocate(&workitem3);

}
FmcjWorkitemVectorDeallocate(&wList);

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return FMC_OK;

}

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{
FmcjGlobal::Connect();
// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");

FmcjWorkitem workitem1;
if (workitem1.IsEmpty())

cout << "Transient workitem object has been created" << endl;
else
cout << "Surprise - workitem contains actual data" << endl;

// Query Workitems
vector<FmcjWorkitem> wList;
rc= service.QueryWorkitems(FmcjNoFilter,

FmcjNoSortCriteria,
FmcjNoThreshold,
wList);

cout << "Query workitems returns rc : " << rc << endl ;

88 Programming Guide

Accessor functions/methods

Accessor functions/methods are provided so that properties of transient
objects can be read or changed. If the transient object represents a persistent
one, then the values that are returned reflect the state of the persistent object
when it was retrieved and used to set the transient object or when it was
created or updated. Retrieval is done from an MQ Workflow server using the
appropriate create, query, or refresh functions/methods. Creation or update
can be done on the client when the MQ Workflow server sends new
information (pushes information).

Default values are provided to you as long as the transient object is empty or
not complete, or when the accessed property is optional and not set.

Default values are: an empty string or buffer for character-valued properties, 0
(zero) for integer-valued properties, false for boolean-valued properties, a

if (rc == FMC_OK && wList.size() >= 2)
{

workitem1= wList[0]; // assign first element
if (workitem1.IsComplete())

cout << "Surprise - more than primary data available" << endl;
else
cout << "Primary data of first workitem available" << endl;

FmcjWorkitem workitem2= wList[1]; // access next element
if (workitem1 == workitem2)

cout << "Surprise - workitems are equal" << endl;
else
cout << "Workitems represent different objects" << endl;

// copy workitem
FmcjWorkitem workitem3(workitem1);
if (workitem1 == workitem3)

cout << "Workitems represent same persistent object" << endl;
else
cout << "Surprise - workitems are not equal" << endl;

} // destructors called automatically

// logoff
rc = service.Logoff();

FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Chapter 11. Function/method types 89

timestamp with all members set to 0 (zero) for time-valued properties,
"NotSet" for enumeration-valued properties, and an empty vector for
multi-valued properties.

A transient object just constructed in C++, ActiveX, or Java is called empty
because it does not yet reflect any persistent object. You can use the IsEmpty()
method to determine whether the transient object still contains the default
values only. Note that no action function/method can be executed on an
empty object.

By default, the MQ Workflow API provides for two views on persistent
objects. They divide the persistent object into so-called primary properties and
so-called secondary properties. Primary properties are considered “more
important” from an access point of view. They are immediately returned when
objects are queried. Secondary properties, and a refresh of the primary
properties, are only returned on an explicit Refresh() request; on a per-object
basis. You can use the IsComplete() function/method to determine whether
both primary and secondary object values have been read from the server.

Note: The ActiveX API automatically refreshes an incomplete object when a
secondary property is accessed.

Besides being primary or secondary, properties of a persistent object can be
optional. This means that they can carry a value or not. When a default value
is returned to you, you can use the IsNull() function/method to determine
whether that value is a value explicitly set or whether that value actually
denotes that no value has been set. For example, when Threshold() returns 0
(zero), the threshold can have been set to zero, that is, no object is returned to
you, or the threshold cannot have been set to a value, that is, all qualifying
objects are returned to you. Java is able to return null objects so that an
IsNull() method is not needed.

Note that being Null is a concept orthogonal to being completely read. As
long as the object is not complete, IsNull() will return true for a secondary,
optional property because nothing is known yet about the actual value and
whether it has been set or not. For example, the documentation is a secondary
and optional property of an object. When the object has been queried, then
only the primary properties have been retrieved from the server. The
Documentation() function/method returns an empty string or buffer. To
determine whether a documentation has been set at all, you can use the
DocumentationIsNull() function/method. The result will be “true”
independent from the actual documentation setting as long as IsComplete()
returns false. The documentation is assumed to be not set as long as the
secondary data has not been retrieved.

90 Programming Guide

Data values are accessible as long as the transient objects exist, regardless of
the state of the persistent objects or of the current logon or logoff state. In
general, you decide about the lifetime of your transient objects.

Because of the nature of transient objects, neither a connection to a server nor
some specific authorization is required to access object properties or to update
object properties of the transient object.

Return codes

Accessor functions/methods provide the value asked for as their return value.
Default values are returned when an error occurred during the execution of
the accessor function/method. In the C++ or C-language, you can query the
MQ Workflow result object for any errors encountered. Java throws an
FmcException. The following codes can occur, the number in parentheses
shows their integer value:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
default values are returned.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_BUFFER(800)
The buffer provided is too small to hold the largest possible
value. See file fmcmxcon.h for required lengths.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Accessor functions/methods allow for the operations listed below; Xxx
denotes some class or scope and ″Property″ denotes the property queried.
For example, FmcjXxxProperty() can stand for FmcjItemDescription().

Accessing a value of type bool

Returns the value of a property of type bool. A default of false is returned if no
information is available.

ActiveX signature
boolean Property()

Chapter 11. Function/method types 91

C-language signature
bool FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
bool Property() const

Java signature
public abstract boolean property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/ boolean The property value.

Declaration examples

ActiveX boolean ManualStartMode();

C-language bool FMC_APIENTRY FmcjWorkitemManualStartMode(
FmcjWorkitemHandle handle);

C++ bool ManualStartMode() const;

Java public abstract boolean manualStartMode() throws
FmcException;

Accessing a value of type date/time

Returns the value of a date/time property. A zero timestamp is returned if no
information is available.

ActiveX signature
void Property(DateAndTime * time)

C-language signature
FmcjCDateTime FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

92 Programming Guide

C++ language signature
FmcjDateTime Property() const

Java signature
public abstract Calendar property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.
time Input/Output. The date/time object to be set.

Return type
FmcjCDateTime/ FmcjDateTime/Calendar

The property value.

Declaration examples

ActiveX void EndTime(DateAndTime * time);

C-language FmcjCDateTime FMC_APIENTRY FmcjWorkitemEndTime(
FmcjWorkitemHandle handle);

C++ FmcjDateTime EndTime() const;

Java public abstract Calendar endTime() throws FmcException;

Accessing an enumerated value

Returns an enumerating value of a property. It is strongly advised to use the
symbolic names in order to determine the actual value instead of the
corresponding integer values. It is not guaranteed that integer values always
stay the same.

"NotSet" or a similar indicator is returned if no information is available.

ActiveX signature
Enum Property()

C-language signature
enum FmcjXxxEnum FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

Chapter 11. Function/method types 93

C++ language signature
FmcjXxx::Enum Property() const

Java signature
public abstract Enum property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
FmcjXxxEnum/Enum

The property value, some element of an enumeration.

Declaration examples

ActiveX AssignReason ReceivedAs();

C-language FmcjItemAssignReason FMC_APIENTRY
FmcjWorkitemReceivedAs(FmcjWorkitemHandle handle);

C++ FmcjItem::AssignReason ReceivedAs() const;

Java public abstract AssignReason receivedAs() throws
FmcException;

Following enumeration types and constants are defined; types are listed in the
order ActiveX, C-language, C++, Java. Numbers in parantheses are the
corresponding integer values. You are stronlgy adviced to use the symbolic
names only.
v AssignReason/ FmcjItemAssignReason/ FmcjItem::AssignReason/

com.ibm.workflow.api.ItemPackage.AssignReason

NotSet(0) Indicates that nothing is known about the assign reason.

ActiveX AssignReason_NotSpecified

C-language Fmc_IR_NotSet

C++ FmcjItem::NotSpecified

Java AssignReason.NOT_SPECIFIED

Normal(1) Indicates that the work item or notification has been
assigned to the user because the user qualified to receive
the item.

94 Programming Guide

ActiveX AssignReason_Normal

C-language Fmc_IR_Normal

C++ FmcjItem::Normal

Java AssignReason.NORMAL

Substitute(2) Indicates that the work item or notification has been
assigned because the user is the substitute for the person
who should have received the item.

ActiveX AssignReason_Substitute

C-language Fmc_IR_Substitute

C++ FmcjItem::Substitute

Java AssignReason.Substitute

ProcessAdministrator(3)
Indicates that the work item or notification has been
assigned because the user is the process administrator.

ActiveX AssignReason_ProcessAdministrator

C-language Fmc_IR_ProcessAdministrator

C++ FmcjItem::ProcessAdministrator

Java AssignReason.PROCESS_ADMINISTRATOR

SystemAdministrator(4)
Indicates that the work item or notification has been
assigned because the user is the system administrator.

ActiveX AssignReason_SystemAdministrator

C-language Fmc_IR_SystemAdministrator

C++ FmcjItem::SystemAdministrator

Java AssignReason.SYSTEM_ADMINISTRATOR

ByTransfer(5) Indicates that the work item or notification has been
transferred to the user.

ActiveX AssignReason_ByTransfer

C-language Fmc_IR_ByTransfer

C++ FmcjItem::ByTransfer

Java AssignReason.BY_TRANSFER
v AuditSetting/ FmcjProcessTemplateAuditSetting/

FmcjProcessTemplate::AuditSetting/
com.ibm.workflow.api.ProcessTemplatePackage.AuditSetting

Chapter 11. Function/method types 95

NotSet(0) Indicates that nothing is known about the audit setting.

ActiveX Audit_NotSet

C-language Fmc_TA_NotSet

C++ FmcjProcessTemplate::NotSet

Java AuditSetting.NOT_SET

NoAudit(1) Indicates that auditing is not to be performed.

ActiveX Audit_NoAudit

C-language Fmc_TA_NoAudit

C++ FmcjProcessTemplate::NoAudit

Java AuditSetting.NO_AUDIT

Condensed(2) Indicates that condensed auditing is to be performed.

ActiveX Audit_Condensed

C-language Fmc_TA_Condensed

C++ FmcjProcessTemplate::Condensed

Java AuditSetting.CONDENSED

Full(3) Indicates that full auditing is to be performed.

ActiveX Audit_Full

C-language Fmc_TA_Full

C++ FmcjProcessTemplate::Full

Java AuditSetting.FULL
v AIEscalation/ FmcjActivityInstanceEscalation/

FmcjActivityInstance::Escalation/
com.ibm.workflow.api.ActivityInstancePackage.Escalation

NotSet(0) Indicates that it is not known whether there is a notification
on the activity instance.

ActiveX AIEscalation_NotSpecified

C-language Fmc_AE_NotSet

C++ FmcjActivityInstance::NotSpecified

Java Escalation.NOT_SPECIFIED

NoNotification(1)
Indicates that no notification occurred so far on the activity
instance.

ActiveX AIEscalation_NoNotification

96 Programming Guide

C-language Fmc_AE_NoNotification

C++ FmcjActivityInstance::NoNotification

Java Escalation.NO_NOTIFICATION

FirstNotification
Indicates that the first notification occurred.

ActiveX(4) AIEscalation_FirstNotification

C-language(4) Fmc_AE_FirstNotification

C++(4) FmcjActivityInstance::FirstNotification

Java(2) Escalation.FIRST_NOTIFICATION

SecondNotification
Indicates that the second notification occurred.

ActiveX(5) AIEscalation_SecondNotification

C-language(5) Fmc_AE_SecondNotification

C++(5) FmcjActivityInstance::SecondNotification

Java(3) Escalation.SECOND_NOTIFICATION
v ActivityInstanceState/ FmcjActivityInstanceStateValue/

FmcjActivityInstance::state/
com.ibm.workflow.api.ActivityInstancePackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the
activity instance.

ActiveX AIState_Undefined

C-language Fmc_AS_NotSet

C++ FmcjActivityInstance::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the activity instance is in the ready state.

ActiveX AIState_Ready

C-language Fmc_AS_Ready

C++ FmcjActivityInstance::ready

Java ExecutionState.READY

Running(2) Indicates that the activity instance is in the running state.

ActiveX AIState_Running

C-language Fmc_AS_Running

C++ FmcjActivityInstance::running

Chapter 11. Function/method types 97

Java ExecutionState.RUNNING

Finished Indicates that the activity instance is in the finished state.

ActiveX(4) AIState_Finished

C-language(4) Fmc_AS_Finished

C++(4) FmcjActivityInstance::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the activity instance is in the terminated state.

ActiveX(8) AIState_Terminated

C-language(8) Fmc_AS_Terminated

C++(8) FmcjActivityInstance::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the activity instance is in the suspended state.

ActiveX(16) AIState_Suspended

C-language(16)
Fmc_AS_Suspended

C++(16) FmcjActivityInstance::suspended

Java(5) ExecutionState.SUSPENDED

Inactive Indicates that the activity instance is still inactive.

ActiveX(32) AIState_Inactive

C-language(32)
Fmc_AS_Inactive

C++(32) FmcjActivityInstance::inactive

Java(6) ExecutionState.INACTIVE

CheckedOut Indicates that the activity instance has been checked out.

ActiveX(64) AIState_CheckedOut

C-language(64)
Fmc_AS_CheckedOut

C++(64) FmcjActivityInstance::checkedOut

Java(7) ExecutionState.CHECKED_OUT

InError Indicates that the activity instance has not been executed
successfully.

ActiveX(128) AIState_InError

98 Programming Guide

C-language(128)
Fmc_AS_InError

C++(128) FmcjActivityInstance::inError

Java(8) ExecutionState.IN_ERROR

Executed Indicates that the activity instance has been executed.

ActiveX(256) AIState_Executed

C-language(256)
Fmc_AS_Executed

C++(256) FmcjActivityInstance::executed

Java(9) ExecutionState.EXECUTED

Planning Indicates that the activity instance is in the planning state.

ActiveX(512) AIState_Planning

C-language(512)
Fmc_AS_Planning

C++(512) FmcjActivityInstance::planning

Java(10) ExecutionState.PLANNING

ForceFinished Indicates that the activity instance is in the force-finished
state.

ActiveX(1024) AIState_ForceFinished

C-language(1024)
Fmc_AS_ForceFinished

C++(1024) FmcjActivityInstance::forceFinished

Java(11) ExecutionState.FORCE_FINISHED

Skipped Indicates that the activity instance has not been executed
but skipped.

ActiveX(2048) AIState_Skipped

C-language(2048)
Fmc_AS_Skipped

C++(2048) FmcjActivityInstance::skipped

Java(12) ExecutionState.SKIPPED

Deleted Indicates that the activity instance has been deleted.

ActiveX(4096) AIState_Deleted

Chapter 11. Function/method types 99

C-language(4096)
Fmc_AS_Deleted

C++(4096) FmcjActivityInstance::deleted

Java(13) ExecutionState.DELETED

Terminating Indicates that the activity instance is in the terminating
state.

ActiveX(8192) AIState_Teminating

C-language(8192)
Fmc_AS_Terminating

C++(8192) FmcjActivityInstance::terminating

Java(14) ExecutionState.TERMINATING

Suspending Indicates that the activity instance is in the suspending
state.

ActiveX(16384)
AIState_Suspending

C-language(16384)
Fmc_AS_Suspending

C++(16384) FmcjActivityInstance::suspendting

Java(15) ExecutionState.SUSPENDING
v ActivityInstanceType/ FmcjActivityInstanceType/

FmcjActivityInstance::Type/
com.ibm.workflow.api.ActivityInstancePackage.Type

NotSet(0) Indicates that nothing is known about the type of the
activity instance.

ActiveX AIType_NotSet

C-language Fmc_AT_NotSet

C++ FmcjActivityInstance::NotSet

Java Type.NOT_SET

Process(1) Indicates that the activity instance is implemented by a
process.

ActiveX AIType_Process

C-language Fmc_AT_Process

C++ FmcjActivityInstance::Process

Java Type.PROCESS

100 Programming Guide

Program(2) Indicates that the activity instance is implemented by a
program.

ActiveX AIType_Program

C-language Fmc_AT_Program

C++ FmcjActivityInstance::Program

Java Type.PROGRAM

Block Indicates that the activity instance is implemented by a
block.

ActiveX(16) AIType_Block

C-language(16)
Fmc_AT_Block

C++(16) FmcjActivityInstance::Block

Java(3) Type.BLOCK
v ConnectorState/ FmcjControlConnectorInstanceStateValue/

FmcjControlConnectorInstance::state/
com.ibm.workflow.api.ControlConnectorInstancePackage.EvaluationState

False(0) Indicates that evaluation of the control connector resulted in
False.

ActiveX ConnectorState_False

C-language Fmc_CS_False

C++ FmcjControlConnectorInstance::False

Java EvaluationState.IS_FALSE

True(1) Indicates that evaluation of the control connector resulted in
True.

ActiveX ConnectorState_True

C-language Fmc_CS_True

C++ FmcjControlConnectorInstance::True

Java EvaluationState.IS_TRUE

NotEvaluated(2)
Indicates that the control connector has not yet been
evaluated.

ActiveX ConnectorState_NotEvaluated

C-language Fmc_CS_NotEvaluated

C++ FmcjControlConnectorInstance::NotEvaluated

Chapter 11. Function/method types 101

Java EvaluationState.NOT_EVALUATED

NotSet(3) Indicates that nothing is known about the evaluation of the
control connector.

ActiveX ConnectorState_NotSet

C-language Fmc_CS_NotSet

C++ FmcjControlConnectorInstance::NotSet

Java EvaluationState.NOT_SET
v ConnectorType/ FmcjControlConnectorInstanceType/

FmcjControlConnectorInstance::Type/
com.ibm.workflow.api.ControlConnectorInstancePackage.Type

NotSet(0) Indicates that nothing is known about the type of the
control connector instance.

ActiveX ConnectorType_Undefined

C-language Fmc_CT_NotSet

C++ FmcjControlConnectorInstance::Undefined

Java Type.UNDEFINED

Condition(1) Indicates that the control connector instance is a connector
which can have a transition condition.

ActiveX ConnectorType_Condition

C-language Fmc_CT_Condition

C++ FmcjControlConnectorInstance::Condition

Java Type.CONDITION

Otherwise(2) Indicates that the control connector instance is the
“otherwise” connector.

ActiveX ConnectorType_Otherwise

C-language Fmc_CT_Otherwise

C++ FmcjControlConnectorInstance::Otherwise

Java Type.OTHERWISE
v ExeOptionsStyle/ FmcjExeOptionsStyle/ FmcjExeOptions::Style/

com.ibm.workflow.api.ProgramDataPackage.Style

NotSet(0) Indicates that nothing is known about the style of the EXE.

ActiveX EOStyle_NotSet

C-language Fmc_EO_NotSet

102 Programming Guide

C++ FmcjExeOptions::NotSet

Java Style.NOT_SET

Visible(1) Indicates that the EXE should start visibly.

ActiveX EOStyle_Visible

C-language Fmc_EO_Visible

C++ FmcjExeOptions::Visible

Java Style.VISIBLE

Invisible(2) Indicates that the EXE should start invisibly.

ActiveX EOStyle_Invisible

C-language Fmc_EO_Invisible

C++ FmcjExeOptions::Invisible

Java Style.INVISIBLE

Minimized(3) Indicates that the EXE should start minimized.

ActiveX EOStyle_Minimized

C-language Fmc_EO_Minimized

C++ FmcjExeOptions::Minimized

Java Style.MINIMIZED

Maximized(4) Indicates that the EXE should start maximized.

ActiveX EOStyle_Maximized

C-language Fmc_EO_Maximized

C++ FmcjExeOptions::Maximized

Java Style.MAXIMIZED
v ExternalOptionsTimePeriod/ FmcjExternalOptionsTimePeriod/

FmcjExternalOptions::TimePeriod/
com.ibm.workflow.api.ProgramDataPackage.TimePeriod

NotSet(0) Indicates that nothing is known about an external service
timeout.

ActiveX TimePeriod_NotSet

C-language Fmc_EX_NotSet

C++ FmcjExternalOptions::NotSet

Java TimePeriod.NOT_SET

Chapter 11. Function/method types 103

TimeInterval(1)
Indicates that the program execution agent should wait a
specified time interval for the answer of the started external
service.

ActiveX TimePeriod_TimeInterval

C-language Fmc_EX_TimeInterval

C++ FmcjExternalOptions::TimeInterval

Java TimePeriod.TIME_INTERVAL

Forever(2) Indicates that the program execution agent should wait
forever for the answer of the started external service, that is,
whatever time it takes.

ActiveX TimePeriod_Forever

C-language Fmc_EX_Forever

C++ FmcjExternalOptions::Forever

Java TimePeriod.FOREVER

Never(3) Indicates that the program execution agent should not wait
for an answer of the started external service.

ActiveX TimePeriod_Never

C-language Fmc_EX_Never

C++ FmcjExternalOptions::Never

Java TimePeriod.NEVER
v FmcjExecutionDataKindEnum/ FmcjExecutionData::KindEnum

NotSet(0) Indicates that nothing is known about the type of the
execution data.

ActiveX not applicable

C-language Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet

Java not supported

Error(1) Indicates that execution of an asynchronous call returns an
error.

ActiveX not applicable

C-language Fmc_DART_Error

C++ FmcjExecutionData::Error

Java not supported

104 Programming Guide

Terminate(2) Indicates that receiving execution data can end.

ActiveX not applicable

C-language Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate

Java not supported

ItemDeleted(1000)
Indicates that the execution data describes the deletion of a
work item or notification.

ActiveX not applicable

C-language Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted

Java not supported

Workitem(1002)
Indicates that the execution data describes the creation or
update of a work item.

ActiveX not applicable

C-language Fmc_DART_Workitem

C++ FmcjExecutionData::Workitem

Java not supported

ActivityInstanceNotification(1003)
Indicates that the execution data describes the creation or
update of an activity instance notification.

ActiveX not applicable

C-language Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification

Java not supported

ProcessInstanceNotification(1004)
Indicates that the execution data describes the creation or
update of a process instance notification.

ActiveX not applicable

C-language Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

Java not supported

Chapter 11. Function/method types 105

ExecuteInstanceResponse(1100)
Indicates that the execution data describes the answer to an
asynchronous request which asked for the creation and
execution of a process instance.

ActiveX not applicable

C-language Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification

Java not supported
v ImplementationDataBasis/ FmcjImplementationDataBasis/

FmcjImplementationData::Basis/
com.ibm.workflow.api.ProgramDataPackage.Basis

NotSet(0) Indicates that nothing is known about the operating system
platform of the implementing program.

ActiveX Basis_NotSpecified

C-language Fmc_DP_NotSet

C++ FmcjImplementationData::NotSpecified

Java Basis.NOT_SET

OS2(1) Indicates that the program is an OS/2 program.

ActiveX Basis_OS2

C-language Fmc_DP_OS2

C++ FmcjImplementationData::OS2

Java Basis.OS2

AIX(2) Indicates that the program is an AIX program.

ActiveX Basis_AIX

C-language Fmc_DP_AIX

C++ FmcjImplementationData::AIX

Java Basis.AIX

HPUX(3) Indicates that the program is an HP-UX program.

ActiveX Basis_HPUX

C-language Fmc_DP_HPUX

C++ FmcjImplementationData::HPUX

Java Basis.HPUX

Windows95(4) Indicates that the program is a Windows 95 program.

106 Programming Guide

ActiveX Basis_Windows95

C-language Fmc_DP_Windows95

C++ FmcjImplementationData::Windows95

Java Basis.WINDOWS_95

WindowsNT(5)
Indicates that the program is a Windows NT program.

ActiveX Basis_WindowsNT

C-language Fmc_DP_WindowsNT

C++ FmcjImplementationData::WindowsNT

Java Basis.WINDOWS_NT

OS/390(6) Indicates that the program is an OS/390 program.

ActiveX Basis_OS390

C-language Fmc_DP_OS390

C++ FmcjImplementationData::OS390

Java Basis.OS390

Solaris(7) Indicates that the program is a Solaris program.

ActiveX Basis_Solaris

C-language Fmc_DP_Solaris

C++ FmcjImplementationData::Solaris

Java Basis.SOLARIS
v ImplementationDataProgramType/ FmcjImplementationDataType/

FmcjImplementationData::Type/
com.ibm.workflow.api.ProgramDataPackage.Type

NotSet(0) Indicates that nothing is known about the implementation.

ActiveX IOProgramType_NotSet

C-language Fmc_DT_NotSet

C++ FmcjImplementationData::NotSet

Java ImplementationData.NOT_SET

EXE(1) Indicates that the program is an executable.

ActiveX IOProgramType_EXE

C-language Fmc_DT_EXE

C++ FmcjImplementationData::EXE

Chapter 11. Function/method types 107

Java ImplementationData.EXE

DLL(2) Indicates that the program is implemented by a dynamic
link library.

ActiveX IOProgramType_DLL

C-language Fmc_DT_DLL

C++ FmcjImplementationData::DLL

Java ImplementationData.DLL

External Indicates that the program is some external service.

ActiveX(4) IOProgramType_External

C-language(4) Fmc_DT_External

C++(4) FmcjImplementationData::External

Java(3) ImplementationData.EXTERNAL
v Kind/ FmcjItemType/ FmcjItem::ItemType/

com.ibm.workflow.api.ItemPackage.ItemType

NotSet(0) Indicates that nothing is known about the item type.

ActiveX Kind_Unknown

C-language Fmc_IT_NotSet

C++ FmcjItem::unknown

Java ItemType.UNKNOWN

Workitem(1) Indicates that the item is a work item.

ActiveX Kind_Workitem

C-language Fmc_IT_Workitem

C++ FmcjItem::Workitem

Java ItemType.WORK_ITEM

ProcessInstanceNotification
Indicates that the item is a process instance notification.

ActiveX(3) Kind_ProcessInstanceNotification

C-language(3) Fmc_IT_ProcessInstanceNotification

C++(3) FmcjItem::ProcessInstanceNotification

Java(2) ItemType.PROCESS_INSTANCE_NOTIFICATION

FirstActivityInstanceNotification
Indicates that the item is the first activity instance
notification.

108 Programming Guide

ActiveX(4) Kind_FirstActivityInstanceNotification

C-language(4) Fmc_IT_FirstActivityInstanceNotification

C++(4) FmcjItem::FirstActivityInstanceNotification

Java(3) ItemType.FIRST_ACTIVITY_INSTANCE_NOTIFICATION

SecondActivityInstanceNotification
Indicates that the item is the second activity instance
notification.

ActiveX(5) Kind_SecondActivityInstanceNotification

C-language(5) Fmc_IT_SecondActivityInstanceNotification

C++(45) FmcjItem::SecondActivityInstanceNotification

Java(4) ItemType.SECOND_ACTIVITY_INSTANCE_NOTIFICATION
v PIEscalation/ FmcjProcessInstanceEscalation/

FmcjProcessInstance::Escalation/
com.ibm.workflow.api.ProcessInstancePackage.Escalation

NotSet(0) Indicates that it is not known whether there is a notification
on the process instance.

ActiveX PIEscalation_NotSet

C-language Fmc_PE_NotSet

C++ FmcjProcessInstance::NotSet

Java Escalation.NOT_SET

NoNotification(1)
Indicates that no notification occurred so far on the process
instance.

ActiveX PIEscalation_NoNotification

C-language Fmc_PE_NoNotification

C++ FmcjProcessInstance::NoNotification

Java Escalation.NO_NOTIFICATION

ProcessInstanceNotification
Indicates that a process instance notification occurred.

ActiveX(3) PIEscalation_ProcessNotification

C-language(3) Fmc_PE_ProcessNotification

C++(3) FmcjProcessInstance::ProcessNotification

Java(2) Escalation.PROCESS_NOTIFICATION

Chapter 11. Function/method types 109

v ProcInstanceState/ FmcjProcessInstanceStateValue/
FmcjProcessInstance::state/
com.ibm.workflow.api.ProcessInstancePackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the
process instance.

ActiveX State_Undefined

C-language Fmc_PS_NotSet

C++ FmcjProcessInstance::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the process instance is in the ready state.

ActiveX State_Ready

C-language Fmc_PS_Ready

C++ FmcjProcessInstance::ready

Java ExecutionState.READY

Running(2) Indicates that the process instance is in the running state.

ActiveX State_Running

C-language Fmc_PS_Running

C++ FmcjProcessInstance::running

Java ExecutionState.RUNNING

Finished Indicates that the process instance is in the finished state.

ActiveX(4) State_Finished

C-language(4) Fmc_PS_Finished

C++(4) FmcjProcessInstance::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the process instance is in the terminated state.

ActiveX(8) State_Terminated

C-language(8) Fmc_PS_Terminated

C++(8) FmcjProcessInstance::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the process instance is in the suspended state.

ActiveX(16) State_Suspended

110 Programming Guide

C-language(16)
Fmc_PS_Suspended

C++(16) FmcjProcessInstance::suspended

Java(5) ExecutionState.SUSPENDED

Terminating Indicates that the process instance is in the terminating
state.

ActiveX(32) State_Terminating

C-language(32)
Fmc_PS_Terminating

C++(32) FmcjProcessInstance::terminating

Java(6) ExecutionState.TERMINATING

Suspending Indicates that the process instance is in the suspending
state.

ActiveX(64) State_Suspending

C-language(64)
Fmc_PS_Suspending

C++(64) FmcjProcessInstance::suspending

Java(7) ExecutionState.SUSPENDING

Deleted Indicates that the process instance is in the deleted state.

ActiveX(128) State_Deleted

C-language(128)
Fmc_PS_Deleted

C++(128) FmcjProcessInstance::deleted

Java(8) ExecutionState.DELETED
v State/ FmcjItemStateValue/ FmcjItem::state/

com.ibm.workflow.api.ItemPackage.ExecutionState

NotSet(0) Indicates that nothing is known about the state of the item.

ActiveX ItemState_Undefined

C-language Fmc_IS_NotSet

C++ FmcjItem::undefined

Java ExecutionState.UNDEFINED

Ready(1) Indicates that the item is in the ready state.

ActiveX ItemState_Ready

Chapter 11. Function/method types 111

C-language Fmc_IS_Ready

C++ FmcjItem::ready

Java ExecutionState.READY

Running(2) Indicates that the item is in the running state.

ActiveX ItemState_Running

C-language Fmc_IS_Running

C++ FmcjItem::running

Java ExecutionState.RUNNING

Finished Indicates that the item is in the finished state.

ActiveX(4) ItemState_Finished

C-language(4) Fmc_IS_Finished

C++(4) FmcjItem::finished

Java(3) ExecutionState.FINISHED

Terminated Indicates that the item is in the terminated state.

ActiveX(8) ItemState_Terminated

C-language(8) Fmc_IS_Terminated

C++(8) FmcjItem::terminated

Java(4) ExecutionState.TERMINATED

Suspended Indicates that the item is in the suspended state.

ActiveX(16) ItemState_Suspended

C-language(16)
Fmc_IS_Suspended

C++(16) FmcjItem::suspended

Java(5) ExecutionState.SUSPENDED

Disabled Indicates that the item is disabled.

ActiveX(32) ItemState_Disabled

C-language(32)
Fmc_IS_Disabled

C++(32) FmcjItem::disabled

Java(6) ExecutionState.DISABLED

CheckedOut Indicates that the item is checked out.

112 Programming Guide

ActiveX(64) ItemState_CheckedOut

C-language(64)
Fmc_IS_CheckedOut

C++(64) FmcjItem::checkedOut

Java(7) ExecutionState.CHECKED_OUT

InError Indicates that the item is in the InError state.

ActiveX(128) ItemState_InError

C-language(128)
Fmc_IS_InError

C++(128) FmcjItem::inError

Java(8) ExecutionState.IN_ERROR

Executed Indicates that the item has been executed.

ActiveX(256) ItemState_Executed

C-language(256)
Fmc_IS_Executed

C++(256) FmcjItem::Executed

Java(9) ExecutionState.EXECUTED

Planning Indicates that the item is in the planning state.

ActiveX(512) ItemState_Planning

C-language(512)
Fmc_IS_Planning

C++(512) FmcjItem::Planning

Java(10) ExecutionState.PLANNING

ForceFinished Indicates that the item has been force-finished.

ActiveX(1024) ItemState_ForceFinished

C-language(1024)
Fmc_IS_ForceFinished

C++(1024) FmcjItem::ForceFinished

Java(11) ExecutionState.FORCE_FINISHED

Deleted Indicates that the item has been deleted.

ActiveX(4096) ItemState_Deleted

C-language(4096)
Fmc_IS_Deleted

Chapter 11. Function/method types 113

C++(4096) FmcjItem::Deleted

Java(12) ExecutionState.DELETED

Terminating Indicates that the item is in the terminating state.

ActiveX(8192) ItemState_Terminating

C-language(8192)
Fmc_IS_Terminating

C++(8192) FmcjItem::Terminating

Java(13) ExecutionState.TERMINATING

Suspending Indicates that the item is in the suspending state.

ActiveX(16384)
ItemState_Suspending

C-language(16384)
Fmc_IS_Suspending

C++(16384) FmcjItem::Suspending

Java(14) ExecutionState.SUSPENDING
v WorkitemProgramRetrieval/ FmcjWorkitemProgramRetrieval/

FmcjWorkitem::ProgramRetrieval/
com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval

NotSet(0) Indicates that nothing is said about which program
definitions to retrieve.

ActiveX WIProgramRetrieval_NotSet

C-language Fmc_WS_NotSet

C++ FmcjWorkitem::NotSet

Java ProgramRetrieval.NOT_SET

CommonDataOnly(1)
Indicates that the common parts of program definitions are
to be retrieved.

ActiveX WIProgramRetrieval_CommonDataOnly

C-language Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

Java ProgramRetrieval.COMMON_DATA_ONLY

SpecifiedDefinitions(2)
Indicates that the specified program definitions are to be
retrieved.

114 Programming Guide

ActiveX WIProgramRetrieval_SpecifiedDefinitions

C-language Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

Java ProgramRetrieval.SPECIFIED_DEFINITIONS

AllDefinitions Indicates that all program definitions are to be retrieved.

ActiveX(4) WIProgramRetrieval_AllDefinitions

C-language(4) Fmc_WS_AllDefinitions

C++(4) FmcjWorkitem::AllDefinitions

Java(3) ProgramRetrieval.ALL_DEFINITIONS
v TypeOfList/ FmcjPersistentListTypeOfList/ FmcjPersistentList::TypeOfList/

com.ibm.workflow.api.PersistentListPackage.TypeOfList

NotSet(0) Indicates that nothing is known about the list type.

ActiveX TypeOfList_NotSet

C-language Fmc_LT_NotSet

C++ FmcjPersistentList::NotSet

Java TypeOfList.NOT_SET

Public(1) Indicates that the list definition is for public usage.

ActiveX TypeOfList_Public

C-language Fmc_LT_Public

C++ FmcjPersistentList::Public

Java TypeOfList.PUBLIC

Private Indicates that the list definition is for private usage.

ActiveX(3) TypeOfList_Private

C-language(3) Fmc_LT_Private

C++(3) FmcjPersistentList::Private

Java(2) TypeOfList.PRIVATE

Accessing a value of type integer

Returns the value of a property of type long, unsigned long, or int. Zero (0) is
returned if no information is available.

Chapter 11. Function/method types 115

ActiveX signature
long Property()

C-language signature
long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

unsigned long FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
long Property() const

unsigned long Property() const

Java signature
public abstract int property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.

Return type
long/unsigned long/int

The property value.

Declaration examples

ActiveX long Priority();

C-language unsigned long FMC_APIENTRY FmcjWorkitemPriority(
FmcjWorkitemHandle handle);

C++ unsigned long Priority() const;

Java public abstract int priority() throws FmcException;

Accessing a value of type string

Returns the value of a property of type string. An empty string or buffer is
returned if no information is available.

116 Programming Guide

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

ActiveX signature
BSTR Property()

C-language signature
char * FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle,

char * buffer,
unsigned long bufferLength)

C++ language signature
string Property() const

Java signature
public abstract String property() throws FmcException

Parameters
handle Input. The handle of the object to be queried.
buffer Input/Output. A pointer to a buffer to contain the property

value.
bufferLength Input. The length of the buffer; must be big enough to hold

the largest possible value (see file fmcmxcon.h for the
minimum required lengths). You can use a single buffer for
retrieving all your character values.

Return type
BSTR/char*/string/String

The property value.

Declaration examples

ActiveX BSTR Description();

C-language char* FMC_APIENTRY FmcjWorkitemDescription(
FmcjWorkitemHandle handle);

C++ string Description() const;

Chapter 11. Function/method types 117

Java public abstract String Description() throws FmcException;

Accessing a multi-valued property

Returns the value of a multi-valued property by providing a collection of
values. The collection is represented as a vector in the C++ and C-language,
as an array in ActiveX and Java. In C++, the collection object to be filled has
to be provided by the caller. Use the appropriate accessor functions/methods
to read a single value (refer to “C-language vectors” on page 27).

An unchanged vector or an empty array is returned if no information is
available.

Any already existing array elements are overwritten. Vector elements in C++
are, however, appended to the supplied vector. If you want to read the actual
values only, you have to erase all elements of the vector.

ActiveX signature
void Property(ValueTypeArray * value)

C-language signature
FmcjValueTypeVectorHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
void Property(vector<ValueType> & value) const

Java signature
public abstract ValueType[] property() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.
value Input/Output. The vector or array to contain the values of the

property.

Return type

118 Programming Guide

FmcjValueTypeVectorHandle/ValueType[]
The vector or array of values of the property.

Declaration examples

ActiveX void Staff(StringArray * staff);

C-language FmcjStringVectorHandle FMC_APIENTRY FmcjWorkitemStaff(
FmcjWorkitemHandle handle);

C++ void Staff(vector<string> & staff) const;

Java public abstract String[] staff() throws FmcException;

Accessing an object valued property

Returns the value of a property which is itself described by an object.

ActiveX signature
Object Property()

C-language signature
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjObject Property() const

Java signature
public abstract Object property() throws FmcException

public abstract ExecutionService
locate(String systemGroup, String system) throws FmcException

public abstract
ExecutionAgent getExecutionAgent() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.

Chapter 11. Function/method types 119

system
Input. The system where the execution server runs.

systemGroup
Input. The system group where the execution server runs.

Return type
ExecutionAgent

The program execution agent which provides for the context of an
activity implementation.

ExecutionService
The execution service which provides for the interface to the execution
server.

Object/Handle/FmcjObject
The property value.

Declaration examples

ActiveX fmcError ErrorReason();

C-language FmcjErrorHandle FMC_APIENTRY
FmcjWorkitemErrorReason(FmcjWorkitemHandle handle);

C++ FmcjError ErrorReason() const;

Java public abstract FmcError errorReason() throws FmcException;

Accessing a pointer valued property

Returns the value of a property which is a pointer to some object.

ActiveX signature
Object * Property()

C-language signature
FmcjObjectHandle
FMC_APIENTRY FmcjXxxProperty(FmcjXxxHandle handle)

C++ language signature
FmcjObject * Property() const

120 Programming Guide

Java signature
public abstract Object property() throws FmcException

Parameters
handle

Input. The handle of the object to be queried.

Return type
Object*/Handle/FmcjObject*

A pointer or handle to the object respectively the object itself.

Declaration examples

ActiveX Container * InContainer();

C-language FmcjReadOnlyContainerHandle FMC_APIENTRY
FmcjProgramDataInContainer(FmcjProgramDataHandle
handle);

C++ FmcjReadOnlyContainer* InContainer() const;

Java public abstract ReadOnlyContainer inContainer() throws
FmcException;

Determining whether an optional property is set

This function/method states whether an optional property is set.

When the property is a secondary property and the object queried is not yet
completely read, it is unknown whether the property is set or not so that a
default value of true is returned.

ActiveX signature
boolean PropertyIsNull()

C-language signature
bool FMC_APIENTRY FmcjXxxPropertyIsNull(FmcjXxxHandle handle)

Chapter 11. Function/method types 121

C++ language signature
bool PropertyIsNull() const

Parameters
handle Input. The handle of the object to be queried.

Return type
bool/boolean True if the property is not set, otherwise false.

Declaration examples

ActiveX boolean DescriptionIsNull();

C-language bool FMC_APIENTRY FmcjWorkitemDescriptionIsNull(
FmcjWorkitemHandle handle);

C++ bool DescriptionIsNull() const;

Setting a value of type integer

This function/method sets the specified property to the specified value.

ActiveX signature
void SetProperty(long newValue)

C-language signature
void FMC_APIENTRY FmcjXxxSetProperty(FmcjXxxHandle handle,

long newValue);

C++ language signature
void SetProperty(long newValue);

Java signature
public abstract void setProperty(int newValue) throws FmcException

Parameters
handle Input. The handle of the object to be queried.

122 Programming Guide

newValue Input. The new value of the property.

Declaration examples

ActiveX void SetTimeout(long newValue);

C-language void FMC_APIENTRY FmcjExecutionServiceSetTimeout(
FmcjExecutionServiceHandle handle, long newValue);

C++ void SetTimeout(long newValue) const;

Java public abstract void SetTimeout(int newValue) throws
FmcException;

An example is the FmcjService::SetTimeout function/method which sets the
timeout value for requests issued by the client to an MQ Workflow server via
this FmcjService object. In other words, it sets the time the client is willing to
wait for an answer.

When set, the new timeout value is used for all functions/methods requiring
communication between the client and the server. It can be set (changed) as
often as wanted. It is to be provided as microseconds. A negative value is
interpreted as -1, that is, an indefinite timeout.

The default timeout value is taken from the user’s profile, from the
APITimeOut value; if not found, from the configuration profile. If it is also not
found there, the default is 180000 ms.

Note: It is possible that, even though FMC_ERROR_TIMEOUT is returned
when you issue a client-server call, the MQ Workflow server has
successfully processed the request. However, the server could not send
back FMC_OK because communication reported a timeout in the
meantime. If the request has not been processed, increase the value set
for the timeout and retry the call.

Setting an object valued property

This function/method sets the specified property to the specified object.

Java signature
public abstract void addProperty(Object value)

public abstract
void setContext(String args[], Properties properties)

public abstract
void setContext(Applet applet, Properties properties)

Chapter 11. Function/method types 123

Parameters
applet Input. The applet which instantiated the agent. If IIOP is used

as communication protocol, providing this information is
necessary.

args Input. The command line arguments passed to the application
which instantiated the agent bean.

properties Input. The environmental properties passed to the application
or applet when it was instantiated.

value Input. The value of the property.

Declaration examples

Java public abstract void addPropertyChangeListener(
PropertyChangeListener value);

Updating an object

This function/method updates the specified object with information sent from
an MQ Workflow server. The update information must have been provided
for the specified object.

The server pushes update information for work items - as long as they are not
disabled -, activity instance notifications, and process instance notifications.
The process setting of the associated process instance must specify
REFRESH_POLICY PUSH for that process instance itself or as a process
default. Logon must have been performed with a present session mode.

C-language signature
APIRET FMC_APIENTRY FmcjXxxUpdate(FmcjXxxHandle handle,

FmcjExecutionDataHandle data);

C++ language signature
APIRET Update(FmcjExecutionData const & data);

Parameters
handle Input. The handle of the object to be updated.
data Input. The data which is to be used for the update.

Return codes

The C-language functions and the MQ Workflow result object can return the
following codes, the number in parentheses shows their integer value:
FMC_OK(0) The function/method completed successfully.

124 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is expected, but 0 is passed.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is, it
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is invalid; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_OID(805)
The execution data is no data to update the specified object; it
does not belong to the specified object.

FMC_ERROR_WRONG_KIND(501)
The execution data is no data to update the specified object; it
is no update data.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

C-language example: accessing values

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

APIRET rc;
FmcjExecutionServiceHandle service = 0;
FmcjWorkitemHandle workitem = 0;
FmcjStringVectorHandle sList = 0;
char category[FMC_CATEGORY_NAME_LENGTH+1];
char generalBuffer[200];
unsigned long priority = 0;
int enumValue = 0;
FmcjCDateTime startTime;
unsigned long i = 0;

FmcjGlobalConnect();

/* logon */
FmcjExecutionServiceAllocate(&service);
rc = FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_Reset

);

Chapter 11. Function/method types 125

/* set the timeout for requests */
FmcjExecutionServiceSetTimeout(service, 60000);

/* assumption: workitem has been queried from the server */
/* access a value of type bool */

if (FmcjWorkitemCategoryIsNull(workitem))
printf("Category is not set\n");

else /* access a value of type char */
{ /* use a buffer which fits */
FmcjWorkitemCategory(workitem, category, FMC_CATEGORY_NAME_LENGTH+1);
printf("Category : %s\n", category);

}

/* access a date/time value */
startTime= FmcjWorkitemStartTime(workitem);
printf("Start time : %s\n",
FmcjDateTimeAsString(&startTime, generalBuffer, 200));

/* access a value of type long */
priority = FmcjWorkitemPriority(workitem);
printf("Priority : %u\n", priority);

/* access an enumerated value */
enumValue= FmcjWorkitemReceivedAs(workitem);
if (enumValue == Fmc_IR_Normal)
printf("Received as: %s\n","qualified user");

...
/* access a multi-valued field */

sList= FmcjWorkitemSupportTools(workitem);
printf("Support tools: ");
for(i=0; i< FmcjStringVectorSize(sList); i++)
{ /* use a large buffer */
printf("%s ", FmcjStringVectorNextElement(sList, generalBuffer, 200));

}

/* logoff */
FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return FMC_OK;

}

126 Programming Guide

C++ example: accessing values

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{

FmcjGlobal::Connect();
// logon
FmcjExecutionService service; APIRET rc = service.Logon("USERID", "password");

// set the timeout for requests
service.SetTimeout(60000);

// assumption: workitem has been queried from the server
// access a value of type bool

if (workitem.CategoryIsNull())
cout << "Category is not set" << endl;

else // access a value of type char
{ // use a buffer which fits
cout << "Category : " << workitem.Category()<< endl;

}

// access a value of type date/time
cout << "Start time : " << workitem.StartTime()<< endl;

// access a value of type long
cout << "Priority : " << workitem.Priority()<< endl;

// access an enumerated value
FmcjItem::AssignReason reason= workitem.ReceivedAs();
cout << "Received as: " <<

((reason == FmcjItem::Normal) ? "normal user" : "...")
<< endl;

vector<string> tools; int j; // access a multi-valued field
workitem.SupportTools(tools);
cout << "Support tools: " ;
while (j < tools.size())

cout << tools[j++] << " ";
// logoff
rc = service.Logoff();
FmcjGlobal::Disconnect();
return FMC_OK;

} // destructors called automatically

Chapter 11. Function/method types 127

Action functions/methods

Action functions/methods are client-server calls, involving communication
with an MQ Workflow server. As such, they require to be logged on.

Action functions/methods can be issued on service objects and on transient
objects representing persistent ones. These objects remember the context of a
user session so that a communication path to an MQ Workflow server can be
established. As a consequence, empty objects cannot be used in order to issue
action calls.

Action functions/methods are either synchronous requests waiting for the
server’s reply, asynchronous requests expecting the server’s reply at some
other point in time, or functions/methods receiving information from an MQ
Workflow server.

All action function/methods are described separately in “Part 6. Programming
interfaces” on page 259. You can find examples in “Part 8. Examples and
scenarios” on page 637.

Activity implementation functions/methods

An activity or support tool can be implemented by a program which uses the
MQ Workflow API. In this case, the activity implementation
functions/methods provide access to the input and output containers of the
activity instance respectively work item or of the input container of the
support tool. They also allow the program implementing an activity to return
the updated output container to MQ Workflow so that navigation can
continue on the basis of those values.

A program implementing an activity or support tool is usually executed under
the control of an MQ Workflow program execution agent on request from
some MQ Workflow execution server. When an MQ Workflow execution
server receives a request to start a work item or support tool, it determines
the implementing program to be started and sends an appropriate request
together with the input and output containers, if needed, to the logged-on
user’s MQ Workflow program execution agent. Since containers are sent to the
program execution agent, input and output containers are requested from and
returned to an MQ Workflow program execution agent by the implementing
program. You do not have to create an execution service object and log on to
an MQ Workflow execution server to handle containers from within an
activity implementation or support tool.

128 Programming Guide

However, if you want to access not only containers, for example, if you want
to query information about the process instance the work item is a part of,
you have to log on to the MQ Workflow execution server that requested to
start your program. You can use the Passthrough() function/method of the
execution service to begin a session with the execution server from within the
activity implementation program. This way, you can use the environment of
the work item, that is, you do not need any other user ID, password, system
group, or system information.

An MQ Workflow program execution agent can run more than one program
at a time. When a container is requested, it determines the calling program
and provides the container sent by the server for this program’s usage.

If the activity implementation does not handle all work by itself but
distributes work by starting subprograms that run as separate operating
system processes, and when those subprograms request containers, then the
program execution agent cannot know the calling program. For that purpose,
the program calling the program execution agent must provide the program
identification of the actual activity implementation, that is, it must use the
remote container or passthrough calls. This requires that the activity
implementation has retrieved its program identification and passed it to the
started program. Note that the program execution agent only provides the
program identification to trusted programs.

Besides being an Executable, the activity implementation or support tool
program can also be a dynamic link library (DLL) or shared library. If it is a
DLL, it can execute in fenced or non-fenced mode. If fenced, the DLL is
executed in an operating system process different from the program execution
agent process. If non-fenced, the DLL is executed in the program execution
agent’s own operating system process.

A DLL signature looks as follows; in C++ use the extern ″C″ construct:

C-language signature
int FMC_APIENTRY entryPoint(char const * arguments)

Parameters
arguments

Input. The arguments to be passed to the program.

In the FlowMark Version 2 compatibility mode, a DLL signature looks as
follows:

Chapter 11. Function/method types 129

C-language signature
int FMC_APIENTRY entryPoint(char const * programID,

char const * arguments)

Parameters
programID

Input. The program ID (formerly called session ID) by which the
program is known to the program execution agent.

arguments
Input. The arguments to be passed to the program.

A DLL can also specify a DLL initialization and/or a DLL termination routine.
Immediately after the program execution agent loads a DLL, it calls the DLL
initialization entry point, if available. And immediately before the program
execution agent unloads a DLL, it calls the DLL termination entry point, if
available.

C-language Signature
void FmcDllInit()

C-language Signature
void FmcDllTerm()

For example, consider a non-fenced DLL which is kept loaded. Then
initialization could acquire resources which are held through the life time of
the DLL until they are freed by the termination routine. Examples of objects
you might want to acquire only once are sessions to resource managers or
open file handles.

See “Chapter 67. An activity implementation” on page 677 for activity
implementation examples.

Program execution management functions/methods

Program execution management functions/methods provide for the
management of MQ Workflow program execution agents. They allow for a
user-associated program execution agent to be started and to be stopped
(shutdown).

130 Programming Guide

Part 2. The C and C++ APIs

This part provides an overview of the concepts which are specific for the MQ
Workflow C-language and C++ APIs.

© Copyright IBM Corp. 1993, 1999 131

132 Programming Guide

Chapter 12. An MQ Workflow client application

An MQ Workflow C or C++ client application typically contains the following
parts, not necessarily divided that clearly.

To set up your program, you typically declare the program variables or
objects you are going to use and you include the MQ Workflow API header
files you need for your actions. When using the C++ API, definitions of bool,
string, and vector are needed. Include the respective files before the MQ
Workflow API headers.

You should then initialize the MQ Workflow API by calling the Connect()
function/method so that resources held by the API are allocated correctly.
Connect() - and Disconnect() - are to be called at the begin respectively end of
each thread.

You then need to allocate a service object which represents the server you are
going to ask services from. Once the service object is allocated, you can log
on. Logon establishes a session between the user logging on and the server
represented by your service object. All subsequent calls requiring client/server
communication run through this session.

After a successful logon, you can issue action or program execution
management functions/methods in order to query or manage MQ Workflow
objects you are authorized for.

© Copyright IBM Corp. 1993, 1999 133

At the end of your program, you log off in order to close the session to the
server and you deallocate any resources held by your program, especially the
service object.

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

134 Programming Guide

Chapter 13. An MQ Workflow activity implementation or
support tool

An MQ Workflow C or C++ activity implementation or support tool
implementation typically contains the following parts.

To set up your program, you typically declare the program variables or
objects you are going to use and you include the MQ Workflow API header
files you need for your actions. When using the C++ API, definitions of bool,
string, and vector are needed. Include the respective files before the MQ
Workflow API headers.

You should then initialize the MQ Workflow API by calling the Connect()
function/method so that resources held by the API are allocated correctly.
Connect() - and Disconnect() - are to be called at the begin respectively end of
each thread.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

© Copyright IBM Corp. 1993, 1999 135

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. Any
resources held by your program are deallocated. The return value of your
program tells the program execution agent about the overall outcome of your
program.

The output container as well as the return code of your program are passed
back to the MQ Workflow server which requested the execution of the activity
implementation. The return code (_RC) can be used in exit or transition
conditions in order to guide MQ Workflow navigation. 4

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can as well behave like a client application (see
“Chapter 18. An MQ Workflow client application” on page 153) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() function/method is then
used instead of the Logon() function/method in order to log on to the server
which caused the program execution with the user identification and
authority known to the server from the work item start request.

4. For compilers which do not support an exit code of an application, it is possible to set the _RC data member of the
output container.

136 Programming Guide

Chapter 14. Compiling and linking

All C++ and C-language programs developed for use with MQ Workflow
must include header files provided by MQ Workflow and link the
corresponding library files. These files have been installed on your system, if
you selected to install the MQ Workflow Development Kit. They are installed
by default:
v For AIX(R), the header files in the /usr/lpp/fmc/api directory; the shared

library files in the /usr/lpp/fmc/lib directory. The shared libraries are
linked to /usr/lib.

v For HP-UX, the header files in the /opt/fmc/api directory; the shared
library files in the /opt/fmc/lib directory. The shared libraries are linked to
/usr/lib.

v For OS/2, in the \fmcos2\api directory on your selected drive.
v For Solaris, the header files in the /opt/fmc/api directory; the shared

library files in the /opt/fmc/lib directory. The shared libraries are linked to
/usr/lib.

v For Windows NT, in the \fmcwinnt\api directory on your selected drive.
v For Windows 95, in the \fmcwin95\api directory on your selected drive.
v For Windows 98, in the \fmcwin98\api directory on your selected drive.

When using the MQ Workflow C++ API, definitions for bool, string, and
vector must be provided. If your compiler supports these definitions, use the
definitions of your compiler. Include the appropriate files before the MQ
Workflow C++ API headers. In case that your compiler does not support any
of these definitions, MQ Workflow delivers some files to be included: bool.h
which provides for the bool definition and must be included first, fmcjstr.hxx
which provides for the string definition, and vector.h which provides for the
vector definition. See “C++ prerequisite header files” on page 139 which
definitions must be included for the supported compilers.

Note that bool.h and vector.h are part of the Standard Template Library
delivered with MQ Workflow and copyrighted by the Hewlett-Packard
Company. Documentation of this library is provided on the MQ Workflow
CD-ROM in a file named STLDOC.PS. It is installed in the stl subdirectory of
the API.

Note: In the Windows environments, MQ Workflow interprets any input in
the ANSI code page. This means that there can be differences when MQ
Workflow tests for a printable character and, for example, when an
application uses a function like isprint() to test for a printable character.

© Copyright IBM Corp. 1993, 1999 137

The MQ Workflow features you use determine which header files to include
and the compilers you use which library files to link with. Depending on the
feature used, the following header files must be included:

Feature C-API Header C++ Header

Runtime client fmcjcrun.h fmcjprun.hxx
Runtime activity implementation:
- container access only fmcjccon.h fmcjpcon.hxx
- container and server access fmcjcrun.h fmcjprun.hxx
Runtime support tool
- container access only fmcjccon.h fmcjpcon.hxx
- container and server access fmcjcrun.h fmcjprun.hxx

The MQ Workflow dynamic link libraries have been split accordingly.
fmcjdcom contains common functionality and must always be linked
fmcjdcbr contains templates and persistent lists
fmcjdcon contains container functionality
fmcjdrun contains Runtime functionality only, that is, deals with process

instances, work items, notifications, and instance monitors

Such, the following libraries (.lib files) must be linked.

Feature fmcjdcom fmcjdcbr fmcjdcon fmcjdrun

Runtime client x x x x
Runtime activity implementation:
- container access only x x
- container and server access x x x x
Runtime support tool:
- container access only x x
- container and server access x x x x

All popular compilers can be used to compile and link your applications
accessing the C++ and C-language MQ Workflow APIs. Your compile and link
options must ensure that the MQ Workflow APIs are called with the calling
convention that is defined in the FMC_APIENTRY macro (see file fmcjcglo.h).
FMC_APIENTRY has been defined to the standard C calling convention and
should automatically be applied when you use the header files provided by
MQ Workflow. You should use the multi-thread libraries.

Access can be gained to C-language functions using calls from all languages
that support C calls. Access can be gained to the C++ API from all popular
C++ compilers since the C++ API is delivered as source code (inline methods).

138 Programming Guide

Supported compilers

Supported in terms of maintenance are, however, only those compilers and
environments listed below.
v For AIX, IBM C Set++(R) Version 3.1.4
v For HP-UX, HP aC++ Compiler S700 Version A.01.15.01
v For OS/2, IBM VisualAge(R) for C++ 3.0
v For Solaris and the C-language, Sun WorkShop Compiler Version 4.2

For Solaris and C++, Kuck&Associates Inc. KAI C++ Version 3.3
v For the Windows platforms, IBM VisualAge for C++ 3.5 and Microsoft

Visual C++ 5.0

C++ prerequisite header files

The following table indicates for the C++ API whether definitions for bool,
string, and vector are supplied by the supported compilers (compiler type or
compiler provided include) or whether the MQ Workflow provided definitions
have to be used:

Platform bool vector/string

AIX compiler type MQ Workflow
HP-UX compiler type compiler include
OS/2 MQ Workflow MQ Workflow
Solaris compiler type MQ Workflow
Windows compiler type MQ Workflow

Sample compile statements

Sample compile statements are:
v For AIX:

xlC_r -o <object file> -I /usr/lpp/fmc/api -l<MQ Workflow libs> <source file>

Note: If you include bool.h shipped with MQ Workflow, you must
additionally specify the compile option EXM_AIX.

v For HP-UX:
aCC _D_THREAD_SAFE -DRWSTD_MULTI_THREAD _D_REENTRANT

-o <object file> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For OS/2 and IBM VisualAge for C++ 3.0:
icc /GM+ <optional parameters> <source file>

v For Solaris and the C-language:
cc -o <object file> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

Chapter 14. Compiling and linking 139

v For Solaris and C++:
KCC --thread_safe

-o <object file> -I /opt/fmc/api -l<MQ Workflow libs> <source file>

v For the Windows platforms and Microsoft Visual C++ 5.0:
cl -MD <optional parameters>
<source file>

v For the Windows platforms and IBM VisualAge for C++ 3.5:
icc /GM+ <optional parameters> <source file>

140 Programming Guide

Chapter 15. Memory management

Workflow process models, their instances, and resulting work items are all
objects persistently stored in an MQ Workflow database. This means that they
exist independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects
at the time of the query. When multiple queries are issued, there can be
multiple transient objects representing the same persistent object, even
representing different states of that object.

The lifetime of transient objects and their memory is fully managed by you,
because you know best when those objects are no longer needed, that is,
when objects are to be deallocated (C-language) or destructed (C++). Transient
objects are, however, no longer available when your application program
ends.

Some transient objects are explicitly allocated by you. These are supporting
objects, which do not reflect persistent ones. Examples are the
FmcjStringVector when you specify a set of persons to stand in for (C-API) or
the FmcjExecutionService object, which allows services to be requested from
an execution server.

Transient objects, which do reflect persistent objects, are implicitly allocated by
you when you create or retrieve persistent objects, for example, by querying.

Although the life time of transient objects is fully managed by you, their
actual internal object structure is encapsulated by the MQ Workflow API. The
MQ Workflow API provides a handle (C-language) to you so that you can
issue requests against the object. In the C++ API, that handle is the only data
member of your class. Therefore, you are independent of internal changes. It
further allows MQ Workflow to lazy read a collection of objects passed from
the server and thus increases performance.

The MQ Workflow API follows the programming by contract concept. This
means that any handle passed to it which is not 0 (NULL) is assumed to be a
valid handle which can be used to access an object. This is especially
important to be considered for queries. Any nonzero vector handle is assumed
to point to an already existing vector of objects and is used in order to add
newly qualifying objects. In other words, you should initialize any new
handle to 0.

© Copyright IBM Corp. 1993, 1999 141

As all resource memory is finally owned by the application process itself, you
can access all objects from different threads within that process. MQ Workflow
does not hinder you from using threads; it is coded reentrantly. On the other
hand, MQ Workflow does not explicitly support threads. If you want to access
the same transient object from within different threads, you have to
synchronize the access on that object. Objects are not thread-safe.

142 Programming Guide

Chapter 16. The result object

In general, a result object states the result of the last MQ Workflow API
request (in the considered thread). It especially allows for analyzing an
erroneous situation in more detail and contains the following information:
v The return code.
v The origin of the result, that is, the file that caused the result to be written,

and the line and function where the error or the completion of the request
occurred.

v Parameters (up to five) which describe the objects involved.

The result can be retrieved as a formatted message text with all parameters
added to the text. The current locale is considered when building that
message text so that the message is provided in your selected language.

Although MQ Workflow does not explicitly support threads in that it
manages the synchronization of objects (you have to care for that), MQ
Workflow does not prohibit to use threads. That is why it provides for result
objects on a per thread basis.

All results of function/method calls are written into the result object
associated with the thread the request executes in. It is sufficient to access the
result object just once per-thread using the
FmcjResultObjectOfCurrentThread() function respectively the
FmcjResult::ObjectOfCurrentThread() method. The result object is
automatically updated with each request.

A result object is automatically allocated by MQ Workflow when the first MQ
Workflow API call is issued in that thread. It can be accessed at any time and
as often as needed.

For example, in the C-language, you can access and use a result object in the
following way:

© Copyright IBM Corp. 1993, 1999 143

Note: The NextResultParmElement() function is used on the string vector so
that the result object is not changed while reading the parameters.

For example, in the C++ language, you can access and use a result object the
following way:

#include <stdio.h>
#include <fmcjcrun.h>
int main()
{

FmcjResultHandle result = 0;
FmcjStringVectorHandle parms = 0;
char buffer[2000]= "";

result= FmcjResultObjectOfCurrentThread();
printf("Accessed result object of current thread\n");

printf("Return code: %i\n", FmcjResultRc(result));
printf("Text : %s\n", FmcjResultMessageText(result,buffer,2000));
printf("Origin : %s\n", FmcjResultOrigin(result,buffer,2000));
parms= FmcjResultParameters(result);
while (0 != FmcjStringVectorNextResultParmElement(parms, buffer, 2000))
printf("Parameter : %s\n", buffer);

return 0;
}

#include <iomanip.h>
#include <bool.h>
#include <vector.h>
#include <fmcjstr.hxx>
#include <fmcjprun.hxx>
int main()
{
vector<string> parms;
FmcjResult *pResult = FmcjResult::ObjectOfCurrentThread();

cout << "Accessed result object of current thread" << endl;
cout << "Return code: " << pResult->Rc() << endl;
cout << "Text : " << pResult->MessageText() ;
cout << "Origin : " << pResult->Origin() << endl;
pResult->Parameters(parms);
cout << "Parameter : ";

for (int i=0; i<parms.size(); i++)
{
cout << parms[i] << " ";

}
cout << endl;

delete pResult; // cleanup object from heap
return 0;

}

144 Programming Guide

Note: The transient C++ representation of your result object is destructed like
any other object. Each retrieval of the result object constructs a separate
representation.

Chapter 16. The result object 145

146 Programming Guide

Part 3. ActiveX Controls

This part provides for an overview on the MQ Workflow ActiveX controls.

© Copyright IBM Corp. 1993, 1999 147

148 Programming Guide

Chapter 17. Component overview

MQ Workflow delivers several ActiveX controls which can be used to write
client application programs or activity implementations and support tools.
Following controls are provided:
v IBM MQSeries Workflow Control 3.1
v IBM MQSeries ExecutionService Control 3.1
v IBM MQSeries ProcessTemplateList Control 3.1
v IBM MQSeries ProcessInstanceList Control 3.1
v IBM MQSeries Worklist Control 3.1
v IBM MQSeries ProcessMonitor Control 3.1
v IBM MQSeries Container Control 3.1

The ActiveX API is implemented on top of the C++ API and serves as an
access layer for the ActiveX controls to an execution server. The Workflow
Control and the Container Control are the OLE interface to the C++ API layer.
On top of the Workflow Control, you find all controls except the Container
Control. All controls except the Container Control contain a Design-time GUI
as well as a Runtime GUI. The Container control can be used by activity
implementations and support tools just accessing containers. Note that the
MQ Workflow Standard Runtime Client itself is implemented using the
provided ActiveX controls - see also “Part 8. Examples and scenarios” on
page 637.

© Copyright IBM Corp. 1993, 1999 149

Functional overview

The Workflow Control operates within a Visual Basic user application as
follows:
v The Visual Basic user application usually contains one (non-visual)

Workflow Control.
v The Workflow Control contains one ExecutionServiceArray.
v The ExecutionServiceArray can contain multiple ExecutionServices, and

each ExecutionService is connected to one MQ Workflow execution server.
v Each ExecutionService contains one array for each of the following list

types: ProcessTemplateList, ProcessInstanceList, and Worklist.
v Each of these arrays can contain multiple objects, that is, the WorklistArray

can contain multiple worklists, each of which can be connected to a
Worklist Control.

v You can have one or more (visual) ExecutionService Controls, connected to
the Workflow Control, showing specific information of available execution
services.

v You can have one or more (visual) controls, connected to the Workflow
Control, showing the objects of specific lists.

Workflow Control overview

The Workflow Control contains several unique objects. The objects are directly
maintained by the control. The ExecutionServiceArray object can create and
maintain any number of ExecutionService objects. Each ExecutionService
object handles a reference to an MQ Workflow execution server.

Each ExecutionService contains a ProcessTemplateListArray, a
ProcessInstanceListArray, and a WorklistArray. For each of the arrays there
are methods for adding, retrieving, and deleting array elements as well as
determining the number of entries in the array.

Furthermore, a StringArray object is maintained by the Workflow Control.
Objects maintained herein are to be used, for example, when support tools are
queried for a workitem as in Workitem::SupportTools or when a list of
Person IDs is queried as within Workitem::Staff.

There are also several enumeration types: AssignReason, Kind, or State. For
example, State contains entries that correspond to the current state of an item
(for example, Ready, Running, Disabled, or Suspended).

150 Programming Guide

How to work with an ExecutionService

To work with an ExecutionService object, your program must have access to
the WorkFlow Control OCX. In a Visual Basic programming environment this
is accomplished by imbedding the specific OCX into one of the available
forms. The Workflow Control allows you to access the ExecutionServiceArray.
By using the methods Add or AddDefault you can create a new
ExecutionService. You get access to the newly created ExecutionService object
via the GetAt method.

Having access to a new ExecutionService object you can issue all methods
provided by this object. There is no GUI involved in this process.

How to work with lists

To work with a list control, you must have created an ExecutionService object.
To access, for example, all worklists you are authorized to see, you must fill
the WorklistArray managed by the ExecutionService object. This is
accomplished by the calling the QueryWorklists() method. Having done this,
you must use the WorklistArray() method to get access to the object that
contains the Worklist objects. To get access to an individual worklist object
you can use the GetAt() method of the WorklistArray. All other lists are
handled in the same way. See “ActiveX arrays” on page 32 for detailed
information. There is no GUI involved in this process.

ProcessTemplateList Control overview

The ProcessTemplateList Control maintains the ProcessTemplate objects which
can be viewed through the particular list. You can fill the array by using the
QueryProcessTemplates() method of the ProcessTemplateList class. Using
GetSize(), you can obtain the number of items within the list and to work
with a particular ProcessTemplate object, you can use the GetAt() method.

ProcessInstanceList Control overview

The ProcessInstanceList Control maintains the ProcessInstance objects which
can be viewed through the particular list. You can fill the array by using the
QueryProcessInstances() method of the ProcessInstanceList class. Using
GetSize(), you can obtain the number of items within the list and to work
with a particular ProcessInstance object, you can use the GetAt() method.

Chapter 17. Component overview 151

Worklist Control overview

The Worklist Control maintains objects which can be viewed through the
particular list, namely work items, activity instance notifications, or process
instance notifications. It maintains an ActivityInstanceNotifArray, a
ProcessInstanceNotifArray, and a WorkitemArray.

The WorkitemArray object, for example, can create and maintain any number
of Workitem objects. There are methods for adding, retrieving, and deleting
array elements as well as determining the number of entries in the array.

Monitor Control overview

The Monitor Control represents the monitor for a process instance or an
activity instance. You can use the ObtainMonitor() methods in order to access
a monitor.

152 Programming Guide

Chapter 18. An MQ Workflow client application

An MQ Workflow ActiveX client application typically contains the following
parts, not necessarily divided that clearly.

To set up your program, your MQ Workflow Control must be on the
VisualBasic form. You then typically declare the program variables or objects
you are going to use.

You should then initialize the MQ Workflow API by calling the Connect()
method so that resources held by the API are allocated correctly. Connect()
and Disconnect() are to be called at the begin respectively end of each thread.

You then need to allocate a service object which represents the server you are
going to ask services from. You do this by adding the object to the execution
service array provided for that purpose. Once the service object is allocated,
you can log on. Logon establishes a session between the user logging on and
the server represented by your service object. All subsequent calls requiring
client/server communication run through this session.

After a successful logon, you can issue action or program execution
management methods in order to query or manage MQ Workflow objects you
are authorized for.

At the end of your program, you log off in order to close the session to the
server.

© Copyright IBM Corp. 1993, 1999 153

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

154 Programming Guide

Chapter 19. An MQ Workflow activity implementation or
support tool

An MQ Workflow ActiveX activity implementation or support tool
implementation typically contains the following parts.

To set up your program, the Container Control must be on the VisualBasic
form. You then typically declare the program variables or objects you are
going to use.

You should then initialize the MQ Workflow API by calling the Connect()
method so that resources held by the API are allocated correctly. Connect() -
and Disconnect() - are to be called at the begin respectively end of each
thread.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. The _RC
value of your output container tells the execution server about the overall
outcome of your program.

© Copyright IBM Corp. 1993, 1999 155

The output container is passed back to the MQ Workflow server which
requested the execution of the activity implementation. The return code (_RC)
can be used in exit or transition conditions in order to guide MQ Workflow
navigation.

As a last step, you disconnect from the MQ Workflow API so that resources
held by the API are deallocated correctly.

Your activity implementation can as well behave like a client application (see
“Chapter 12. An MQ Workflow client application” on page 133) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() method is then used instead
of the Logon() method in order to log on to the server which caused the
program execution with the user identification and authority known to the
server from the work item start request.

156 Programming Guide

Part 4. The JAVA API

The MQ Workflow Java API consists of:
v An agent that connects an MQSeries Workflow domain to the Java world.
v A set of API Beans that provide MQSeries Workflow API functionality to

Java based applications.

© Copyright IBM Corp. 1993, 1999 157

158 Programming Guide

Chapter 20. The Java CORBA Agent

In order to support thin clients, a Java agent approach has been chosen. The
Java CORBA Agent serves as a proxy for the MQ Workflow domain.

The Java CORBA Agent is implemented in Java and wraps the MQ Workflow
C++ API into a form that is accessible from the Java environment. On one
side, the Java CORBA Agent thus wraps the native product APIs and on the
other side publishes a Java form of the APIs on the network.

© Copyright IBM Corp. 1993, 1999 159

160 Programming Guide

Chapter 21. The communication layer

The Java CORBA Agent is running on an MQ Workflow machine and Java
clients are running somewhere on the network. MQ Workflow supports a
CORBA, RMI, and Local environment so that clients can access the agent.
v CORBA is the Object Management Group (OMG) standard for distributed

computing. It is very easy to publish existing objects on a network using
ORBs. The currently supported ORB is Inprise’s VisiBroker Java 3.3.

v Java Remote Method Invocation (RMI) is an approach that is completely
Java based and does not require additional software. RMI is included in
most Java environments.

v Local bindings offer a special mechanism which imbeds the Java CORBA
Agent. They bypass the communication layer and use procedure calls. If
client applications use local bindings, then they have to consider the
trade-off that they become MQSeries clients. It follows that local bindings
are best suited for agent side applications, for example, servlets and
Java-based non-GUI activity implementations.

© Copyright IBM Corp. 1993, 1999 161

162 Programming Guide

Chapter 22. The locator methods

There is a multitude of methods available how the clients can find their agent.
The different methods that are supported by MQ Workflow are listed below:
v OSA naming: a VisiBroker specific naming facility (Smart Agent) that is

very easy to use. It only requires one OSAgent running on the subnetwork
that keeps track of all the objects and their name in the network. As smart
agents synchronize their information via UDP, the only thing that has to be
known is the name of the object the client program is looking for.

v IOR naming: Via InterOrbReferences a vendor-independent naming service
for CORBA applications exists. The stringified idendity of a specific object
(its IOR) is published in a file on a Web server. This file can be accessed
from clients via a published URL to obtain the actual reference of an object.

v COS naming: Corba Naming Service is the native CORBA directory service.
Objects can use COS to publish their identity to the CORBA system.

v RMI registry: The RMI registry comes with every Java development kit. It
can be run as a stand-alone program where object implementations register
or it can be embedded into the application. Embedding has the big
advantage that no separate program is necessary to provide naming
functions. To locate objects via the RMI registry, the host which runs the
RMI registry has to be known.

v LOC naming: This approach can be used to connect the Java API to an MQ
Workflow C++ API that is located on the same physical machine. This
approach can be useful if a client should be written on a platform that
offers the APIs but does not offer a native client, for example, on AIX. It can

© Copyright IBM Corp. 1993, 1999 163

also be used to access the MQ Workflow APIs from a Web server through
servlet technology without the additional communication overhead because
local bindings use procedure calls.

164 Programming Guide

Chapter 23. The Java API Beans

Both, the client side communication layer and the API Beans layer are
implemented in Java. This makes it possible to run applications developed
with the MQSeries Workflow Java API on any machine that provides a Java
Virtual Machine.

The API Beans provide functionality equivalent to the other MQ Workflow
APIs. Due to the introduction of an agent, its name, context, and locator
policy have, however, to be specified.

Following are some usage scenarios of the Java API.

Java in the intranet

In this case, a non-LOC locator policy must be used and an external agent
must be specified. The API Beans and, for a non-RMI protocol, the VisiBroker
ORB (COS,IOR,OSA) must have been installed.

© Copyright IBM Corp. 1993, 1999 165

Java as a programming language

In this case, the LOC_LOCATOR policy of the Java CORBA Agent is used.
The Java API Beans must have been installed.

Java in the Internet (Servlet)

In this case, a LOC_LOCATOR policy must be used. The API Beans must
have been installed.

166 Programming Guide

Java in the Internet (Applet-RMI)

In this case, an RMI_LOCATOR policy must be used and an RMI agent must
be specified. An RMI Agent and the Java API Beans must have been installed.
The applet must be specified in the context of the agent object.

Chapter 23. The Java API Beans 167

168 Programming Guide

Chapter 24. An MQ Workflow client application

An MQ Workflow Java client application typically contains the following
parts, not necessarily divided that clearly.

To set up your program, you typically declare the program variables or
objects you are going to use and you import the MQ Workflow Java API
packages you need for your actions.

You then need to access a service object which represents the server you are
going to ask services from. You do this by locating it via an appropriate agent.
Once the service object is allocated, you can log on. Logon establishes a
session between the user logging on and the server represented by your
service object. All subsequent calls requiring client/server communication run
through this session.

After a successful logon, you can issue action or program execution
management methods in order to query or manage MQ Workflow objects you
are authorized for.

At the end of your program, you log off in order to close the session to the
server.

© Copyright IBM Corp. 1993, 1999 169

170 Programming Guide

Chapter 25. An MQ Workflow activity implementation or
support tool

An MQ Workflow Java activity implementation or support tool
implementation typically contains the following parts.

To set up your program, you typically declare the program variables or
objects you are going to use and you import the MQ Workflow Java API
packages you need for your actions.

You then need to locate your execution agent object. You do this by allocating
and asking the appropriate agent.

An activity implementation can then retrieve the activity’s input and output
containers from the MQ Workflow program execution agent that started this
program. A support tool can retrieve the activity’s input container only.

Having access to the containers, you can read and set values according to
your programming logic.

At the end of your program, the activity implementation returns the final
output container to the MQ Workflow program execution agent. The return
value of your program tells the program execution agent about the overall
outcome of your program.

© Copyright IBM Corp. 1993, 1999 171

The output container is passed back to the MQ Workflow server which
requested the execution of the activity implementation. The return code (_RC)
can be used in exit or transition conditions in order to guide MQ Workflow
navigation.

Your activity implementation can as well behave like a client application (see
“Chapter 12. An MQ Workflow client application” on page 133) and request
services from an MQ Workflow server, normally the server from where its
execution had been triggered. The Passthrough() method is then used instead
of the Logon() method in order to log on to the server which caused the
program execution with the user identification and authority known to the
server from the work item start request.

172 Programming Guide

Chapter 26. Compiling

All programs developed for use with the MQ Workflow Java API Beans must
import the packages provided by MQ Workflow. These files have been
installed on your system if you selected to install the MQ Workflow
Development Kit. They are installed by default in the \bin\java320
subdirectory of the installation directory.

JDK 1.1.x (x=6 or higher) can be used to compile and run your applications
accessing the MQ Workflow Java API. A sample compile statement is:
javac -O <java file>.java

-O is an optional parameter denoting an optimized build. The CLASSPATH
must point to fmcojapi.jar.

Depending on the used locator policies, access can be gained to the Java
CORBA Agent:

LOC, RMI
The CLASSPATH environment variable must point to fmcojagt.jar. For
example,
CLASSPATH=.;d:\fmcwinnt\bin\java320\fmcojagt.jar;

OSA, IOR
The CLASSPATH environment variable must point to fmcojagt.jar and
to the Inprise VisiBroker Java 3.2 (plus PatchPack 3) or higher. For
example,
CLASSPATH=.;d:\fmcwinnt\bin\java320\fmcojagt.jar;

d:\inprise\vbroker\lib\vbjapp.jar;
d:\inprise\vbroker\lib\vbjorb.jar;
d:\inprise\vbroker\lib\vbjtools.jar;

COS The CLASSPATH environment variable must point to fmcojagt.jar and
to the Inprise VisiBroker Java 3.2 (plus PatchPack 3) or higher.
Additionally the CORBA naming service vbjcosnm.jar must be
specified. For example,
CLASSPATH=.;d:\fmcwinnt\bin\java320\fmcojagt.jar;

d:\inprise\vbroker\lib\vbjapp.jar;
d:\inprise\vbroker\lib\vbjorb.jar;
d:\inprise\vbroker\lib\vbjtools.jar;
d:\inprise\vbroker\lib\vbjcosnm.jar

© Copyright IBM Corp. 1993, 1999 173

174 Programming Guide

Chapter 27. Object management

Workflow process models, their instances, and resulting work items are all
objects persistently stored in an MQ Workflow database. This means that they
exist independently from an application program.

When persistent objects are queried by an application program, they are
represented by transient objects which carry the states of the persistent objects
at the time of the query. When multiple queries are issued, there can be
multiple transient objects representing the same persistent object, even
representing different states of that object.

The lifetime of transient object is fully managed by you, because you know best
when those objects are no longer needed, that is, when objects are
unreferenced. Transient objects are, however, no longer available when your
application program ends.

Some transient objects are explicitly allocated by you. These are supporting
objects, which do not reflect persistent ones. Examples are the Agent or the
ExecutionService object, which allows services to be requested from an
execution server.

Transient objects, which do reflect persistent objects, are implicitly allocated by
you when you create or retrieve persistent objects, for example, by querying.

Although the life time of transient objects is fully managed by you, their
actual internal object structure is encapsulated by the MQ Workflow API.

As all resource memory is finally owned by the application process itself, you
can access all objects from different threads within that process. MQ Workflow
does not hinder you from using threads; it is coded reentrantly. On the other
hand, MQ Workflow does not explicitly support threads. If you want to access
the same transient object from within different threads, you have to
synchronize the access on that object. Objects are not thread-safe.

Garbage Collection when using Java API Beans

Garbage collection is normally running in the background without
intervention by the Java programmer. This is also true in a distributed Java
environment when objects communicate via the RMI transmission protocol.
However, for other protocols, like CORBA’s IIOP, provisions to remove
nonreferenced objects on the agent side have to be made. When CORBA is

© Copyright IBM Corp. 1993, 1999 175

used, then the memory management implicitly run by a Java Virtual Machine
does not synchronize object removal on a client and the agent. Agent-side
pendants of not referenced client objects are not automatically marked for
removal. The Object Request Broker (ORB) cannot determine if any client is
holding or not holding references to objects that it has registered (some ORBs,
in fact, can do that, however, they are using proprietary CORBA extensions to
achieve this). Agent-side pendants of client objects registered with an ORB by
using a connect method have to be disconnected explicitly. When using MQ
Workflow Java API Beans, the user is provided with a build-in garbage
collection mechanism, the MQ Workflow Java API Beans Reaper, that does
housekeeping when the transmission of data is done by a CORBA Object
Request Broker (ORB). Before starting the MQ Workflow Java API Beans
Agent a set of parameters controlling the reaper have to be set. These control
parameters are:
v The reaper cycle time value, defined in milliseconds, is valid for both the

client’s reaper and the server’s reaper. Default value is 300000 msec.
v The reaper threshold value is set to determine a maximum count for

accumulated objects that are no longer referenced. The threshold takes
precedence over the cycle time. Default value is 1000.

v The reaper ratio defines the relation between cycle times of both, client side
reaper and server side reaper. The ratio is used as a multiplier for the
server’s reaper cycle, to calculate the cycle time for the client’s reaper. The
default value is 90, that means in fact 90% of the server’s reaper cycle time.
This ensures that the client side reaper actions always precede the server’s
side reaper actions.

The parameters are initially set at configuration time.

176 Programming Guide

Part 5. Using the MQ Workflow APIs

© Copyright IBM Corp. 1993, 1999 177

178 Programming Guide

Chapter 28. Using the MQ Workflow Runtime API

Overview of the Runtime API

There are various tasks which you typically want to address by writing an
MQ Workflow application program:
v You can write a client application to:

– Manage process instances
– Handle worklists and/or work items
– Administrate process instances or work items
– Monitor the progress of execution

v You can write a program that implements an activity or support tool in
your workflow process.

These programs typically use only a subset of the MQ Workflow API. For
example, an activity implementation typically only accesses its containers, that
is, only uses the so-called “Container API”. The MQ Workflow API, that is, its
header files and library structures or its ActiveX Controls or its import
packages take this fact into account.

In order to ask for Runtime services, a communication must be established
between the client application and an MQ Workflow execution server.

As a first step, an FmcjExecutionService or ExecutionService object must be
obtained (constructed/allocated/located). An FmcjExecutionService or
ExecutionService object represents a session between a user and an MQ

Figure 3. Setting up client/server communication. Legend: --Ê Inheritance (C++); —Ê provides for access; — —Ê sends
messages to

© Copyright IBM Corp. 1993, 1999 179

Workflow execution server. It essentially provides the basic
functions/methods to set up a communication path to the specified MQ
Workflow execution server and to establish the user session (Logon()
respectively Passthrough()), and finish it (Logoff()). To log on, not only the
execution server but also the administration server must be up and running
so that authentication can be done. This is, however, transparent to you.

When the session to an execution server has been established, you can:
v Query objects for which you are authorized: process templates, process

instances, items (work items, activity instance notifications, process instance
notifications), or lists containing such objects.

v Create persistent lists, that is, persistent views on objects contained in the
MQ Workflow database.

v Query information about the logged-on user or change that user’s
password.

v Start up respectively shut down a program execution agent associated to
the logged-on user. This becomes necessary when work items are to be
executed by MQ Workflow specific means.

In C and C++, all function/method calls update a so-called result object.
Detailed information about an erroneous request can be obtained from there.
See “Handling errors” on page 10 for more information.

When the session to an execution server has been established, you can create
or query persistent lists (process template lists, process instance lists,

Figure 4. Querying objects. Legend: --Ê Inheritance (C++); —Ê provides for access

180 Programming Guide

worklists) or query other objects for which you are authorized. Note that in
Runtime you can retrieve the currently valid version of a process template
only; you cannot see any future or past versions.

A persistent list represents a set of objects the user is authorized for. It is a
view on those objects. All objects which are accessible through the list have
the same characteristics. These characteristics are specified by a filter. For
example, depending on the filter specified, a worklist can contain a set of
work items only. No activity instance notifications or process instance
notifications are accessible through that list. The worklist content, the work
items, can be queried and their attributes can be accessed. As soon as a work
item has been read from the execution server, further actions can be called, for
example, starting a work item.

When (a valid version of) a process template has been retrieved, a process
instance can be created and started. Starting a process instance can require
input data. You can use the container functions/methods for reading and
wrting values. See “Chapter 8. Handling containers” on page 37 for more
information.

Starting a process instance triggers the scheduling of activity instances and, as
a result of that, the creation of a set of work items and possibly activity

Figure 5. Dealing with process instances and (work) items. Legend: --Ê Inheritance (C++); —Ê provides for access;
— —Ê data is passed to or results in

Chapter 28. Using the MQ Workflow Runtime API 181

instance notifications or process instance notifications when they are not
worked on in time. A work item implemented by a program can then be
executed either by MQ Workflow-specific means or by user-specific means.

When executed by user-specific means, the work item is to be checked out.
Checking out provides for all information needed to execute the underlying
program, the program data and its description of the implementing options
and the input container data.

When executed by MQ Workflow-specific means, that program data is
automatically sent to the program execution agent which starts the
appropriate activity implementation. The activity implementation can then
access its input and output containers via an appropriate request to the
program execution agent. The same container accessor functions/methods are
applicable whether called from a client application program or from an
activity implementation program.

When a work item and thus the associated activity instance has not been
executed successfully, the FmcjError or FmcError object provides for analyzing
the cause of the state InError.

When a process instance or item, that is, a work item, an activity instance
notification, or a process instance notification, has been retrieved, you can
obtain the associated process instance monitor. The process instance monitor
then allows for analyzing the states of activity instances and control connector
instances. The path taken through the process instance can thus be

Figure 6. Monitoring a process instance. Legend: --Ê Inheritance (C++); —Ê provides for access

182 Programming Guide

determined. In case you want to present this information graphically, the
activity instance symbol layout and the control connector instance positions
and bend points offer support.

Once a process instance monitor has been obtained, you can iterate into the
process model by obtaining block instance monitors for activities of type
Block or process instance monitors for activities of type Process, that is, for
subprocess instances. See “Chapter 9. Monitoring a process instance” on
page 71 for more information.

When the process setting specifies a push refresh policy, then the MQ Workflow
execution server pushes changes on work items or notifications to a present
client. In this case, or when the application issued an asynchronous request,
the client application should set up a means in order to receive data or
responses sent by the server. Once received, the appropriate object can be
updated, created, or deleted depending on the information sent. See
“Chapter 5. Client/server communication and data access models” on page 17
for more information.

API classes/objects

An alphabetical list of classes respectively a list of function prefixes in the
C-language follows. All functions/methods following this list are valid calls
on the respective objects. The stated names are valid ActiveX or Java classes.

Figure 7. Handling data sent by an MQ Workflow server. Legend: --Ê Inheritance (C++); —Ê provides for access

Chapter 28. Using the MQ Workflow Runtime API 183

To become valid C++ classes, a prefix of Fmcj has to be added. To become
valid C-language function calls, the class name has to be prefixed by Fmcj and
extended by the actual function name. For example, if your ActiveX class is
Workitem, then your C++ class is named FmcjWorkitem and all your
functions in the C-language start with FmcjWorkitem; FmcjWorkitemStart is a
supported C-language function.

Class/Object Description

ActivityInstance An instance of a workflow process template
activity.

ActivityInstanceArray The ActiveX result of a query for activity
instances.

ActivityInstanceNotifArray The ActiveX result of a query for activity instance
notifications.

ActivityInstanceNotification A notification associated with an activity instance.

ActivityInstanceNotificationVector The C-language result of a query for activity
instance notifications.

ActivityInstanceVector The C-language result of a query for activity
instances.

Agent An agent in the Java API to access an MQ
Workflow domain.

BlockInstanceMonitor The monitor for an activity instance of kind Block;
see InstanceMonitor in ActiveX.

Container The data container of a work item or a process
instance.

ContainerArray The ActiveX means of holding a container.

ContainerElement An element of a data container.

ContainerElementArray The ActiveX result of a query for container
elements.

ContainerElementVector The C-language result of a query for container
elements.

ControlConnectorArray The ActiveX result of a query for control connector
instances.

ControlConnectorInstance The instance of a control connector between two
activity instances.

ControlConnectorInstanceVector The C-language result of a query for control
connector instances.

DateAndTime The ActiveX representation of date and time
values. FmcjCDateTime is the C-language
equivalent structure. The C++ class is called
FmcjDateTime. Java uses the Calendar object.

184 Programming Guide

Class/Object Description

DllOptions The program implementation definitions for a
dynamic link library.

ExecutionData Information pushed by an MQ Workflow
execution server or the response to an
asynchronous request.

ExecutionAgent The Java representation of an MQ Workflow
program execution agent. The C++ class is called
FmcjPea.

ExecutionService The representation of a session between a user and
an MQ Workflow execution server so that services
can be requested.

ExecutionServiceArray The ActiveX means of holding an execution
service.

ExeOptions The program implementation definitions for an
executable.

ExternalOptions The program implementation definitions for an
external service.

FmcError Describes the cause of a state InError in Java. The
C++ class is called FmcjError; the ActiveX class
fmcError.

FmcException The Java representation of an exception.

Global A means to group functions/methods which are
global API functions/methods in C and C++.

ImplementationData The program implementation definitions.

InstanceMonitor The monitor for a process instance or an activity
instance in ActiveX.

Item An item associated to a user; can be a work item
or notification; not available in ActiveX.

ItemVector The C-language result of a query for items.

Message A means to request an NLS regarding formatted
message for a known message ID; only
C-language and C++.

PersistentList A list definition stored persistently; not available
in ActiveX.

Person User-specific settings for the user logged on to an
MQ Workflow execution server.

Point Describes the bend points of a control connector
instance.

PointArray The ActiveX result of a query for control connector
instance bend points.

Chapter 28. Using the MQ Workflow Runtime API 185

Class/Object Description

PointVector The C-language result of a query for bend points.

ProcessInstance An instance of a workflow process template.

ProcessInstanceList A list to group process instances.

ProcessInstanceListArray The ActiveX result of a query for process instance
lists.

ProcessInstanceListVector The C-language result of a query for process
instance lists.

ProcessInstanceMonitor The monitor for a process instance; see
InstanceMonitor in ActiveX.

ProcessInstanceNotifArray The ActiveX result of a query for process instance
notifications.

ProcessInstanceNotification A notification associated with a process instance.

ProcessInstanceNotificationVector The C-language result of a query for process
instance notifications.

ProcessInstanceVector The C-language result of a query for process
instances.

ProcessTemplate A workflow process template consisting of
activities and containers and their control and data
flow.

ProcessTemplateList A list to group process templates.

ProcessTemplateListArray The ActiveX result of a query for process template
lists.

ProcessTemplateListVector The C-language result of a query for process
template lists.

ProcessTemplateVector The C-language result of a query for process
templates.

ProgramData The program definitions of an activity
implementation.

ReadOnlyContainer A data container that can only be read.

ReadWriteContainer A data container that can be read and written to.

Result The detailed result of a request; only C-language
and C++.

Service Provides for common aspects of MQ Workflow
services; not available in ActiveX.

StringArray The ActiveX result of a query resulting in a list of
strings or the ActiveX means of providing a list of
strings.

186 Programming Guide

Class/Object Description

StringVector The C-language result of a query resulting in a list
of strings or the C-language means of providing a
list of strings.

SymbolLayout Describes the graphical layout of an activity
instance.

Workitem A user-assigned activity instance to be worked on.

WorkitemArray The ActiveX result of a query for work items.

WorkitemVector The C-language result of a query for work items.

Worklist A list to group work items or notifications.

WorklistArray The ActiveX result of a query for worklists.

WorklistVector The C-language result of a query for worklists.

Functions/methods per object

Activity instance

An activity instance represents an instance of a process template activity. It is
part of a process instance.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an activity instance object. 80

Copy() Allocates and initializes the storage for an activity instance
object by copying.

83

Deallocate() Deallocates the storage for an activity instance object. 84

destructor() Destructs an activity instance object. 84

Equal() Compares two activity instances. 82

IsComplete() Indicates whether the complete activity instance information
is available.

84

IsEmpty() Indicates whether no activity instance information is
available.

85

Kind() States the kind of the activity instance, whether it is a
program, a process, or a block.

86

operator=() Assigns an activity instance to this one. 82

operator==() Compares two activity instances. 82

Chapter 28. Using the MQ Workflow Runtime API 187

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when activity instances are queried or
if this attribute is a secondary attribute (S) and set only after the refresh
of a specific activity instance. Note that the activity instances returned
by the (process or block) instance monitor contain both primary and
secondary values.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivationTime() P/D Returns the activation time of the
activity instance.

92

ActivationTimeIsNull() P/B Indicates whether an activation
time is set.

121

Category() P/C Returns the process category of the
activity instance.

116

CategoryIsNull() P/B Indicates whether a category is set. 121

Description() P/C Returns the description of the
activity instance.

116

DescriptionIsNull() P/B Indicates whether a description is
set.

121

Documentation() S/C Returns the documentation of the
activity instance.

116

DocumentationIsNull() S/B Indicates whether a documentation
is set.

121

EndTime() S/D Returns the ending time of the
activity instance.

92

EndTimeIsNull() S/B Indicates whether an end time is
set.

121

ErrorReason() S/O Returns an error object describing
the reason why the activity
instance is in state InError.

119

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

121

188 Programming Guide

Accessor methods Set/
Type

Description Page

ExitCondition() S/C Returns the exit condition of the
activity instance.

116

FirstNotificationTime() S/D Returns the time the first
notification for the activity instance
is to occur or has occurred.

92

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

121

FirstNotifiedPersons() S/M Returns the persons who received
a first notification for the activity
instance.

118

FullName() P/C Returns the fully qualified name of
the activity instance (dot notation).

116

Icon() P/C Returns the icon associated with
the activity instance.

116

Implementation() P/C Returns the name of the
implementing program of the
activity instance.

116

ImplementationIsNull() P/B Indicates whether an
implementation is set.

121

InContainerName() S/C Returns the name of the input
container of the activity instance.

116

LastModificationTime() P/D Returns the last time a primary
attribute of the activity instance
was changed.

92

LastStateChangeTime() P/D Returns the last time the state of
the activity instance changed.

92

ManualExitMode() S/B Returns whether the exit mode of
the activity instance is manual.

91

ManualStartMode() S/B Returns whether the start mode of
the activity instance is manual.

91

Name() P/C Returns the name of the activity
instance.

116

OutContainerName() S/C Returns the name of the output
container of the activity instance.

116

PersistentOid() P/C Returns a representation of the
object identification of the activity
instance.

116

Priority() P/I Returns the priority of the activity
instance.

115

Chapter 28. Using the MQ Workflow Runtime API 189

Accessor methods Set/
Type

Description Page

PriorityIsNull() P/B Indicates whether a priority is set. 121

ProcessAdmin() S/C Returns the process administrator
of the activity instance.

116

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

121

ProcessInstanceName() P/C Returns the name of the process
instance the activity instance is
part of.

116

ProcessInstanceState() P/E Returns the state of the process
instance the activity instance is
part of.

93

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

116

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the activity
instance is part of.

116

SecondNotificationTime() S/D Returns the time the second
notification for the activity instance
is to occur or has occurred.

92

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

121

SecondNotifiedPersons() S/M Returns the persons who received
a second notification for the
activity instance.

118

Staff() S/M Returns all persons a work item
for the activity instance has been
assigned to.

118

StartCondition() S/C Returns the start condition of the
activity instance.

116

Starter() P/C Returns the starter of the activity
instance.

116

StarterIsNull() P/B Indicates whether a starter is set. 121

StartTime() P/D Returns the start time of the
activity instance.

92

StartTimeIsNull() P/B Indicates whether a start time is
set.

121

State P/E Returns the state of the activity
instance.

93

190 Programming Guide

Accessor methods Set/
Type

Description Page

StateOfNotification() S/E Returns the notification state of the
activity instance.

93

SupportTools() P/M Returns the support tools
associated with the activity
instance.

118

SupportToolsIsNull() P/B Indicates whether support tools are
set.

121

SymbolLayout() S/O Returns the symbol layout of the
activity instance.

119

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

ObtainInstanceMonitor() Retrieves the process instance monitor for
the process instance the activity instance is
part of in ActiveX.

395

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for
the process instance the activity instance is
part of.

261

SubProcessInstance() Retrieves the process instance implementing
the activity instance of type Process.

264

Activity instance array

An activity instance array represents the result of a query for activity
instances in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the activity instance array. 34

Activity instance notification

An activity instance notification represents a notification for an activity
instance. All functions/methods of FmcjItem are also applicable to activity
instance notifications.

Chapter 28. Using the MQ Workflow Runtime API 191

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an activity instance notification object. 80

Copy() Allocates and initializes the storage for an activity instance
notification object by copying.

83

Deallocate() Deallocates the storage for an activity instance notification
object.

84

destructor() Destructs an activity instance notification object. 84

Kind() In the C++ language, states that the object is an activity
instance notification.

86

operator=() Assigns an activity instance notification to this one. 82

operator==() Compares two activity instance notifications. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when activity instance notifications
are queried or if this attribute is a secondary attribute (S) and set only
after the refresh of a specific activity instance notification.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

93

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

119

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

121

ExitCondition() S/C Returns the exit condition of the
associated activity instance.

116

192 Programming Guide

Accessor methods Set/
Type

Description Page

Expired() P/B Returns whether the associated
activity instance has been started
and is expired now.

91

FirstNotificationTime() S/D Returns the first notification time
of the activity instance, that is, the
time when this notification has
been created.

92

Implementation() P/C Returns the implementing program
or process name of the associated
activity instance.

116

ImplementationIsNull() P/B Indicates whether an
implementation is set.

121

ManualExitMode() S/B Returns whether the exit mode of
the associated activity instance is
manual.

91

ManualStartMode() S/B Returns whether the start mode of
the associated activity instance is
manual.

91

Priority() P/I Returns the priority of the
associated activity instance.

115

SecondNotificationTime() S/D Returns the second notification
time of the associated activity
instance.

92

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

121

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

118

StartCondition() S/C Returns the start condition of the
associated activity instance.

116

StartOverdue() P/B Returns whether the start of the
associated activity instance is
overdue.

91

State P/E Returns the state of the associated
activity instance.

93

StateOfNotification() S/E Returns the notification state of the
associated activity instance.

93

SupportTools() P/M Returns the support tools
associated with the activity
instance.

118

Chapter 28. Using the MQ Workflow Runtime API 193

Accessor methods Set/
Type

Description Page

SupportToolsIsNull() P/B Indicates whether support tools are
set.

121

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

PersistentObject() Retrieves the specified activity instance notification. 267

StartTool() Starts the specified support tool. 270

ObtainInstanceMonitor() Returns the instance monitor for the associated
process instance in ActiveX.

395

Activity instance notification array

An activity instance notification array represents the result of a query for
activity instance notifications in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Activity instance notification vector

An activity instance notification vector represents the result of a query for
activity instance notifications in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates an activity instance notification vector
object.

FirstElement() Returns the first element of the activity instance
notification vector.

NextElement() Returns the next element of the activity instance
notification vector.

194 Programming Guide

Vector methods Description

Size() Returns the number of elements in the activity
instance notification vector.

Activity instance vector

An activity instance vector represents the result of a query for activity
instances in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates an activity instance vector object.

FirstElement() Returns the first element of the activity instance vector.

NextElement() Returns the next element of the activity instance vector.

Size() Returns the number of elements in the activity instance
vector.

Agent

An agent object represents an MQ Workflow instance in Java.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an agent object. Initially an agent has no context,
locator policy, or name.

80

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

addPropertyChangeListener() O Adds the specified listener to the
set of listeners to be notified of
property changes.

123

Chapter 28. Using the MQ Workflow Runtime API 195

Accessor methods Type Description Page

addVetoableChangeListener() O Adds the specified listener to the
set of listeners to be notified of
vetoable property changes.

123

getConfigurationID() C Returns the configuration to be
used for profile accesses.

116

getExecutionAgent() O Returns a program execution agent
to the calling activity
implementation provided that the
LOC_LOCATOR policy was used.
Otherwise, null is returned.

119

getLocator() I Returns the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR.

115

getName() C Returns the name of the Java
Agent. If the agent is not bound,
an empty string is returned.

116

isBound() B Indicates whether the agent bean is
bound to a Java CORBA agent.

91

locate() O Locates the execution service in the
provided system group and
system.

119

removePropertyChangeListener() O Removes the specified listener
from the set of listeners.

123

removeVetoableChangeListener() O Removes the specified listener
from the set of listeners.

123

setConfigurationID() C Sets the configuration ID to be
used for profile access. A locator
policy of LOC_LOCATOR is
automatically assumed.

116

setContext() O Sets the context of the agent. An
applet must set the context by
issuing a agent.setContext(this,null);

119

setLocator() I Sets the locator policy; can be
COS_LOCATOR, IOR_LOCATOR,
LOC_LOCATOR, OSA_LOCATOR,
RMI_LOCATOR. This call must
precede the Agent.setName(). If
LOC_LOCATOR is set, the default
configuration ID for profile access
is automatically used.

122

setName() C Sets the name of the Java Agent. 116

196 Programming Guide

Accessor methods Type Description Page

toString() C Returns the name of the agent. 116

Block instance monitor

A block instance monitor object represents a monitor of an activity instance of
type Block. All functions/methods of a block instance monitor are also
applicable to process instance monitors.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

destructor() Destructs a block instance monitor object, that is, the
transient representation in the C++ interface. The internal
block instance monitor object is, however, not deallocated
since it is part of the process instance monitor. It is
deallocated when the process instance monitor is
destructed/deallocated.

84

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary because a block
instance monitor is a part of a process instance monitor.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

ActivityInstances() M Returns the activity instances which
are represented by the block instance
monitor, that is, which are part of the
activity instance of type Block. The
activity instances contain both primary
and secondary values.

118

ControlConnectorInstances() M Returns the control connector
instances which are represented by the
block instance monitor, that is, which
are part of the activity instance of type
Block.

118

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Chapter 28. Using the MQ Workflow Runtime API 197

Action methods Description Page

ObtainBlockInstanceMonitor() Returns the block instance monitor for an
activity instance of type Block. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

273

ObtainProcessInstanceMonitor() Returns the process instance monitor for an
activity instance of type Process. The activity
instance is part of the set of activity
instances represented by the block instance
monitor.

275

Refresh() Refreshes the block instance monitor from
the MQ Workflow execution server.

278

Container

A container represents an input or output data container of a process instance
or work item. All functions/methods of a container are applicable to
read-only and read/write containers.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

IsEmpty() Indicates whether no container information is available. 85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

AllLeafCount() I Returns the number of leaf elements of the
container including the MQ Workflow
predefined members.

45

AllLeaves() M Returns all leaf elements of the container
including the MQ Workflow predefined
members.

45

198 Programming Guide

Accessor methods Type Description Page

ArrayBinaryLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is part of an array and
of type BINARY.

55

ArrayBinaryValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type BINARY.

55

ArrayFloatValue() F Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type FLOAT.

55

ArrayLongValue() I Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type LONG.

55

ArrayStringLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is part of an array and
of type STRING.

55

ArrayStringValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
part of an array and of type STRING.

55

BinaryLength() I Returns the length of the value of the
specified container leaf element. The leaf is
of type BINARY.Binaries are not supported
in ActiveX.

55

BinaryValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
of type BINARY. Binaries are not supported
in ActiveX.

55

FloatValue() F Returns the value of the specified container
leaf element in the C-language. The leaf is
of type FLOAT.

55

getBuffer() C Returns the value of the specified container
leaf element in Java. The leaf is of type
BINARY.

55

getBuffer2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type BINARY.

55

getDouble() F Returns the value of the specified container
leaf element in Java. The leaf is of type
FLOAT.

55

getDouble2() F Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type FLOAT.

55

Chapter 28. Using the MQ Workflow Runtime API 199

Accessor methods Type Description Page

GetElement() O Provides access to a container element. 54

getLong() I Returns the value of the specified container
leaf element in Java. The leaf is of type
LONG.

55

getLong2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type LONG.

55

getString() C Returns the value of the specified container
leaf element in Java. The leaf is of type
STRING.

55

getString2() C Returns the value of the specified container
leaf element in Java. The leaf is part of an
array and of type STRING.

55

LeafCount() I Returns the number of user-defined leaf
elements of the container.

55

Leaves() M Returns all user-defined leaf elements of the
container.

55

LongValue() I Returns the value of the specified container
leaf element in the C-language. The leaf is
of type LONG.

55

MemberCount() I Returns the number of structural members
in the container.

55

StringLength() I Returns the length of the value of the
specified container leaf element in the
C-language. The leaf is of type STRING.

55

StringValue() C Returns the value of the specified container
leaf element in the C-language. The leaf is
of type STRING.

55

StructMembers() M Returns the structural members of the
container.

45

Type() C Returns the type of the container, that is,
the data structure name.

45

Value() C/I/F/N Returns the value of the specified container
leaf element in the C++ language.

55

Refer to “Activity implementation functions/methods” on page 128 for
detailed descriptions of activity implementation functions/methods.

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation; for Java see the
ExecutionAgent.

281

200 Programming Guide

Activity implementation methods Description Page

OutContainer() Accesses the output container from within
an activity implementation; for Java see the
ExecutionAgent.

283

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

285

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

288

SetOutContainer() Sets the output container from within an
activity implementation; for Java see the
ExecutionAgent.

290

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation; for Java see the
ExecutionAgent.

292

Container array

A container array represents an array of containers in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array. 32

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

RemoveAt() Removes the element at the indicated position. 34

Container element

A container element represents an arbitrary element of a container.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a container element object. 80

Chapter 28. Using the MQ Workflow Runtime API 201

Basic methods Description Page

Copy() Allocates and initializes the storage for a container element
object by copying.

83

Deallocate() Deallocates the storage for a container element object. 84

destructor() Destructs a container element object. 84

Equal() Compares two container elements. 82

operator=() Assigns a container element to another one. 82

operator==() Compares two container elements. 82

IsEmpty() Indicates whether no container element information is
available.

85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties because a
container element describes a part of a container.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

ArrayBinaryLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is part of an array
and of type BINARY.

60

ArrayBinaryValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type BINARY.

60

ArrayElements() M Returns the array elements of the container
element.

49

ArrayFloatValue() F Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type FLOAT.

60

ArrayLongValue() I Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type LONG.

60

ArrayStringLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is part of an array
and of type STRING.

60

202 Programming Guide

Accessor methods Type Description Page

ArrayStringValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is part of an array and of type STRING.

60

BinaryLength() I Returns the length of the value of the
specified container element leaf element.
The leaf is of type BINARY. Binaries are not
supported in ActiveX.

60

BinaryValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type BINARY. Binaries are not
supported in ActiveX.

60

Cardinality() I Returns the number of array elements of
the container element.

49

FloatValue() ? Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type FLOAT.

60

FullName() C Returns the fully-qualified dotted name of
the container element.

49

getBuffer() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type BINARY.

55

getBuffer2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type BINARY.

55

getDouble() F Returns the value of the specified container
element leaf element in Java. The leaf is of
type FLOAT.

55

getDouble2() FC Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type FLOAT.

55

GetElement() O Provides access to an element of the
container element.

54

getLong() I Returns the value of the specified container
element leaf element in Java. The leaf is of
type LONG.

55

getLong2() I Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type LONG.

55

getString() C Returns the value of the specified container
element leaf element in Java. The leaf is of
type STRING.

55

Chapter 28. Using the MQ Workflow Runtime API 203

Accessor methods Type Description Page

getString2() C Returns the value of the specified container
element leaf element in Java. The leaf is
part of an array and of type STRING.

55

IsArray() B Indicates whether the container element is
an array.49.

IsLeaf() B Indicates whether the container element is a
leaf.

49

IsStruct() B Indicates whether the container element is a
structure itself.

49

LeafCount() I Returns the number of leaf elements of the
container element.

49

Leaves() M Returns all leaf elements of the container
element.

49

LongValue() I Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type LONG.

60

MemberCount() I Returns the number of structural members
in the container element.

49

Name() C Returns the name of the container element. 49

StringLength() I Returns the length of the value of the
specified container element leaf element in
the C-language. The leaf is of type STRING.

60

StringValue() C Returns the value of the specified container
element leaf element in the C-language. The
leaf is of type STRING..

60

StructMembers() M Returns the structural members of the
container element.

49

Type() C Returns the type of the container element,
that is, the data structure name.

49

Value() C/I/F/N Returns the value of the specified container
element leaf element in the C++ language.

60

Container element array

A container element array represents the result of a query for container
elements in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

204 Programming Guide

Accessor
methods

Description Page

Add() Adds the element to the array. 32

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

RemoveAt() Removes the element at the indicated position. 34

Container element vector

A container element vector represents the result of a query for container
elements in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
functions.

Vector methods Description

Deallocate() Deallocates a container element vector object.

FirstElement() Returns the first element of the container element
vector.

NextElement() Returns the next element of the container element
vector.

Size() Returns the number of elements in the container
element vector.

Control connector array

A control connector array represents the result of a query for control
connector instances in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Control connector instance

A control connector instance object represents a control connector between
two activity instances and its state.

Chapter 28. Using the MQ Workflow Runtime API 205

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a control connector instance object. 80

Copy() Allocates and initializes the storage for a control connector
instance object by copying.

83

Deallocate() Deallocates the storage for a control connector instance object. 84

destructor() Destructs a control connector instance object. 84

Equal() Compares two control connector instance objects on the basis
of their source and target activity instances.

82

IsEmpty() Indicates whether no control connector instance information
is available.

85

Kind() States the kind of the control connector instance, whether it is
a transition condition or the "otherwise" connector.

86

operator=() Assigns a control connector instance object to this one. 82

operator==() Compares two control connector instance objects on the basis
of their source and target activity instances.

82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

BendPoints() M Returns the bend points of the control
connector instance.

118

Name() C Returns the name associated with the
control connector instance.

116

NameIsNull() B Indicates whether a name is set. 121

PersistentOidOfSourceActivity() C Returns the object ID of the activity
instance which is the source of this
control connector instance.

116

PersistentOidOfTargetActivity() C Returns the object ID of the activity
instance which is the target of this
control connector instance.

116

206 Programming Guide

Accessor methods Type Description Page

State() E Returns the state of the control
connector instance, whether it is
evaluated, and the result of
evaluation.

93

TransitionCondition() C Returns the transition condition of the
control connector instance.

116

TransitionConditionIsNull() B Indicates whether a transition
condition is set.

121

Control connector instance vector

A control connector instance vector represents the result of a query for control
connector instances in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a control connector instance vector object.

FirstElement() Returns the first element of the control connector
instance vector.

NextElement() Returns the next element of the control connector
instance vector.

Size() Returns the number of elements in the control
connector instance vector.

DateAndTime/ FmcjDateTime/ FmcjCDateTime

A DateAndTime object represents date and time values in the ActiveX
language. An FmcjDateTime object represents date and time values in the C++
language. An FmcjCDateTime structure represents date and time values in the
C-language.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods. Following methods are only available in the C++
language.

Basic methods Description Page

constructor() Constructs a date/time object. 80

destructor() Destructs a date/time object. 84

operator=() Assigns a date/time object to another one. 82

Chapter 28. Using the MQ Workflow Runtime API 207

Basic methods Description Page

operator==() Compares two date/time objects. 82

operator string() Returns the string representation of the date/time object. 116

IsEmpty() Indicates whether no date/time information is available. 85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. Because a date/time object represents a
supporting object on the client only, the distinction between primary and
secondary attributes is not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Following methods are only available in the C++ and ActiveX language.

Accessor methods Type Description Page

Day() I Returns the day of the date/time object. 115

Hour() I Returns the hours of the date/time object. 115

Minute() I Returns the minutes of the date/time object. 115

Month() I Returns the month of the date/time object. 115

Second() I Returns the sceonds of the date/time object. 115

Year() I Returns the year of the date/time object. 115

Following methods are only available in the C-language.

Accessor functions Type Description Page

FmcjDateTimeAsString C Returns the string representation of the
date/time structure.

116

FmcjDateTimeCurrentTime D Returns the current date/time. 92

FmcjDateTimeIsValid B Indicates whether the passed date/time is a
valid date/time.

91

Dll options

A DllOptions object represents the program implementation definitions for a
dynamic link library.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

208 Programming Guide

Basic methods Description Page

constructor() Constructs a DLL options object. 80

Copy() Allocates and initializes the storage for a DLL options object
by copying.

83

Deallocate() Deallocates the storage for a DLL options object. 84

destructor() Destructs a DLL options object. 84

IsEmpty() Indicates whether no DLL options information is available. 85

operator=() Assigns a DLL options object to this one. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

EntryPointName() C Returns the name of the entry point of the
DLL.

116

ExecuteFenced() B States whether the DLL should run in a
separate address space.

91

ExecuteFencedIsNull() B Indicates whether execute fended is set. 121

KeepLoaded() B States whether the DLL should stay loaded. 91

KeepLoadedIsNull() B Indicates whether keep loaded is set. 121

PathAndFileName() C Returns the path and file name of the DLL. 116

ExecutionAgent/FmcjPEA

A PEA or ExecutionAgent object represents an MQ Workflow program
execution agent.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. Because the following information is retrieved
from the program execution agent, a distinction between primary and
secondary properties is not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be

Chapter 28. Using the MQ Workflow Runtime API 209

found in a general format at the indicated page.

Accessor methods Type Description Page

ProgramID() C Returns the program identification by
which the invoked activity implementation
is known to the program execution agent.

116

RemoteUserID() C Returns the user identification on whose
behalf the activity implementation who
started this program was originally started.

116

UserID() C Returns the user identification on whose
behalf the activity implementation was
started.

116

Refer to “Activity implementation functions/methods” on page 128 for
detailed descriptions of activity implementation functions/methods.

Activity implementation methods Description Page

InContainer() Accesses the input container from within an
activity implementation in Java; for
non-Java see the Container.

281

OutContainer() Accesses the output container from within
an activity implementation in Java; for
non-Java see the Container.

283

RemoteInContainer() Accesses the input container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

285

RemoteOutContainer() Accesses the output container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

288

SetOutContainer() Sets the output container from within an
activity implementation in Java; for
non-Java see the Container.

290

SetRemoteOutContainer() Sets the output container from within a
program started by an activity
implementation in Java; for non-Java see
the Container.

292

Execution data

An execution data object represents data sent from an MQ Workflow
execution server.

210 Programming Guide

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an execution data object. 80

Copy() Allocates and initializes the storage for an execution data
object by copying.

83

Deallocate() Deallocates the storage for an execution data object. 84

destructor() Destructs an execution data object. 84

IsEmpty() Indicates whether no execution data information is available. 85

Kind() Returns the kind of the data, whether it is describing a work
item creation, deletion, and so on.

86

operator=() Assigns an execution data object to this one. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

ActivityInstanceNotificationFromData() P Creates an activity instance
notification from the execution
data.

120

ErrorFromData() P Creates an error description
object from the execution data.

120

PersistentOid() C Returns a representation of the
object ID of the object
described by the execution
data.

116

ProcessInstanceNotificationFromData() P Creates a process instance
notification from the execution
data.

120

ReadOnlyContainerFromData() P Creates a container object from
the execution data.

120

WorkitemFromData() P Creates a work item from the
execution data.

120

UserContext() C Returns the user context. 116

Chapter 28. Using the MQ Workflow Runtime API 211

Accessor methods Type Description Page

UserContextIsNull() B States whether a user context
had been specified.

121

Execution service

An execution service object represents a user session to an execution server.
All functions/methods provided by FmcjService are also applicable.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

Allocate() Allocates the storage for an execution service
object. The execution service to connect to is
taken from the MQ Workflow user’s or
configuration profile in the currently set
configuration.

80

AllocateForSystem() Allocates the storage for the specified execution
service object. The execution service to connect
to is taken from the specified parameters in the
currently set configuration.

80

constructor() Constructs an execution service object. 80

Copy() Allocates and initializes the storage for an
execution service object by copying.

83

Deallocate() Deallocates the storage for an execution service
object.

84

destructor() Destructs an execution service object. 84

Equal() Compares two execution service objects if they
represent the same session.

82

operator=() Assigns an execution service object to this one. 82

operator==() Compares two execution service objects if they
represent the same session.

82

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

CreateProcessInstanceList() Creates a new process instance list on
the execution server.

296

CreateProcessTemplateList() Creates a new process template list on
the execution server.

303

212 Programming Guide

Action methods Description Page

CreateWorklist() Creates a new worklist on the execution
server.

310

Logoff() Logs off from the connected execution
server.

319

Logon() Logs on to the execution server. 321

Logon2() Logs on to the execution server in Java
and provides additional parameters.

321

persistentActivityInstanceNotification() Retrieves the activity instance
notification specified by the passed
object identification in the Java API.

267

persistentProcessInstance() Retrieves the process instance specified
by the passed object identification in the
Java API.

444

persistentProcessInstanceNotification() Retrieves the process instance
notification specified by the passed
object identification in the Java API.

471

persistentProcessTemplate() Retrieves the process template specified
by the passed object identification in the
Java API.

493

persistentWorkItem() Retrieves the work item specified by the
passed object identification in the Java
API.

534

QueryActivityInstanceNotifications() Retrieves the activity instance
notifications the logged-on user has
access to.

333

QueryItems() Retrieves the work items or notifications
the logged-on user has access to.

341

QueryProcessInstanceLists() Retrieves the process instance lists the
logged-on user has access to.

347

QueryProcessInstanceNotifications() Retrieves the process instance
notifications the logged-on user has
access to.

349

QueryProcessInstances() Retrieves the process instances the
logged-on user has access to.

356

QueryProcessTemplateLists() Retrieves the process template lists the
logged-on user has access to.

362

QueryProcessTemplates() Retrieves the process templates the
logged-on user has access to.

365

QueryWorkitems() Retrieves the work items the logged-on
user has access to.

370

Chapter 28. Using the MQ Workflow Runtime API 213

Action methods Description Page

QueryWorklists() Retrieves the worklists the logged-on
user has access to.

376

Receive() Receives execution data sent by an MQ
Workflow execution server.

379

TerminateReceive() Places information in the client input
queue to indicate that receiving
execution data sent by an MQ Workflow
execution server can end.

384

Refer to “Activity implementation functions/methods” on page 128 for
detailed descriptions of activity implementation function/methods.

Activity implementation methods Description Page

Passthrough() Establishes a session between an activity
implementation and an execution server.

326

RemotePassthrough() Establishes a session between a program
started by an activity implementation and
an execution server.

382

Refer to “Program execution management functions/methods” on page 130 for
detailed descriptions of program execution management functions/methods.

Management methods Description Page

PEAShutDown() Requests to shut down the user-associated
program execution agent.

329

PEAStartUp() Starts the user-associated program
execution agent.

331

Execution service array

An execution service array is an ActiveX means of holding an execution
service.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array; the current configuration
profile is searched for the specified system and system group.

32

AddDefault() Adds the execution service to the array; system and system
group are taken from the current configuration profile.

32

GetAt() Returns the element at the indicated position. 33

214 Programming Guide

Accessor
methods

Description Page

GetSize() Returns the number of elements in the array. 34

RemoveAt() Removes the element at the indicated position. 34

Events Description Page

ExecutionServiceRemove() Removes the execution service from the array. 35

NewExecutionService() Adds a new execution service to the array. 35

Exe options

An ExeOptions object represents the program implementation definitions for
an executable.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an EXE options object. 80

Copy() Allocates and initializes the storage for an EXE options object
by copying.

83

Deallocate() Deallocates the storage for an EXE options object. 84

destructor() Destructs an EXE options object. 84

operator=() Assigns an EXE options object to this one. 82

IsEmpty() Indicates whether no EXE options information is available. 85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

AutomaticClose() B States whether the window in which
the EXE starts should close when the
EXE ends.

91

AutomaticCloseIsNull() B Indicates whether automatic close is
set.

121

Chapter 28. Using the MQ Workflow Runtime API 215

Accessor methods Type Description Page

Environment() C States the environment settings for the
EXE.

116

EnvironmentIsNull() B Indicates whether an environment is
set.

121

InheritEnvironment() B States whether the environment
settings should be merged with the
operating system environment
settings.

91

PathAndFileName() C Returns the path and file name of the
EXE.

116

RunInXTerm() B States whether the EXE should start in
a separate xterm.

91

RunInXTermIsNull() B Indicates whether run in xterm is set. 121

StartInForeGround() B States whether the EXE should start in
the foreground.

91

StartInForeGroundIsNull() B Indicates whether start in foreground
is set.

121

WindowStyle() O States the initial window style. 119

WindowStyleIsNull() B Indicates whether a window style is
set.

121

WorkingDirectoryName() C States the working directory for the
EXE.

116

WorkingDirectoryNameIsNull() B Indicates whether a working directory
is set.

121

External service options

An ExternalOptions object represents the program implementation definitions
for an external service.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an External options object. 80

Copy() Allocates and initializes the storage for an External options
object by copying.

83

Deallocate() Deallocates the storage for an External options object. 84

destructor() Destructs an External options object. 84

operator=() Assigns an External options object to this one. 82

216 Programming Guide

Basic methods Description Page

IsEmpty() Indicates whether no External options information is
available.

85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

BackwardMappingFormat() C Specifies the format of the
mapping from the structure the
executable uses to an MQ
Workflow container.

116

BackwardMappingFormatIsNull() B Indicates whether a backward
mapping format is set.

121

BackwardMappingParameters() M Returns backward mapping
parameters, if any.

118

BackwardMappingParametersIsNull() B Indicates whether backward
mapping parameters are set.

121

CodePage() I Specifies the code page of the
service.

115

CodePageIsNull() B Indicates whether a code page
is set.

121

ExecutableName() C Specifies the executable to be
invoked by the invocation type
and service.

116

ExecutableType() C Identifes the type of the
executable.

116

ForwardMappingFormat() C Specifies the format for the
mapping from an MQ
Workflow container to the
structure the executable uses.

116

ForwardMappingFormatIsNull() B Indicates whether a forward
mapping format is set.

121

ForwardMappingParameters() M Returns forward mapping
parameters, if any.

118

ForwardMappingParametersIsNull() B Indicates whether forward
mapping parameters are set.

121

Chapter 28. Using the MQ Workflow Runtime API 217

Accessor methods Type Description Page

InvocationType() C Specifies the invocation
mechanism to invoke the
executable on the service.

116

IsLocalUser() B Returns whether a local user is
to be resolved instead of using
the MQ Workflow user ID.

91

IsMappingRoutineCall() B Specifies whether forward and
backward mapping routines are
to be called.

91

IsSecurityRoutineCall() B Specifies whether a security
routine is to be called.

91

MappingType() C Identifies the type of mapping
that should occur.

116

MappingTypeIsNull() B Indicates whether a mapping
type is set.

121

ServiceName() C Identifies the service that is to
be called.

116

ServiceType() C Identifies the type of service to
be called, for example, CICS(R)
or IMS(TM).

116

TimeoutPeriod() E Specifies how long the program
execution agent should wait for
a response from the started
service, forever, a time period,
or never.

93

TimeoutInterval() I Specifies the timeout interval. 115

TimeoutIntervalIsNull() B Indicates whether a timeout
interval is set.

121

FmcError

An FmcError or FmcjError object represents a description of the reason why a
work item or activity instance is in state InError. It also describes an error
returned as an asynchronous response.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an Error object. 80

Copy() Allocates and initializes the storage for an Error object by
copying.

83

218 Programming Guide

Basic methods Description Page

Deallocate() Deallocates the storage for an Error object. 84

destructor() Destructs an Error object. 84

Equal() Compares two Error objects on the basis of their return codes
and parameters.

82

IsEmpty() Indicates whether no Error information is available. 85

operator=() Assigns an Error object to this one. 82

operator==() Compares two Error objects on the basis of their return codes
and parameters.

82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

MessageText() C Returns the error as an NLS regarding
formatted message.

116

Parameters() M Returns the parameters of the error; these
are to be incorporated into the message
text.

118

Rc() I Returns the return code remembered in the
error object.

115

FmcException

An FmcException object represents a description of an exception thrown by
Java.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Chapter 28. Using the MQ Workflow Runtime API 219

Accessor
methods

Type Description Page

MessageText() C Returns the exception as an NLS regarding
formatted message.

116

nestedException() - Returns an exception thrown by the communication
layer.
Note: The nested exception can be inspected by
(down-)casting to either
org.omg.CORBA.SystemException or to
java.rmi.RemoteException depending on the used
communication protocol. However, doing so will
make the client code protocol-dependent (unless it
deals with both cases). When using local bindings
the nested exception will always be null.

116

origin() C Returns the module that threw the exception. 116

Parameters() M Returns the parameters of the error; these are
already incorporated into the message text.

118

Rc() I Returns the return code remembered in the error
object.

115

Global

An API global object serves to group global MQ Workflow API
functions/methods.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description

Connect() Initializes the API in the current thread.

Disconnect() Deinitializes the API in the current thread.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

ConfigurationID() C Returns the configuration ID to be
used for profile access.

116

220 Programming Guide

Accessor methods Type Description Page

SetConfigurationID() C Sets the configuration ID to be used
for profile access. Can only be set
before the first profile usage.

116

Implementation data

An implementation data object represents the program implementation
definitions.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an implementation data object. 80

Copy() Allocates and initializes the storage for an implementation
data object by copying.

83

Deallocate() Deallocates the storage for an implementation data object. 84

destructor() Destructs an implementation data object. 84

operator=() Assigns an implementation data object to this one. 82

IsEmpty() Indicates whether no implementation data information is
available.

85

Kind() States the actual kind of the implementation data, whether it
is a DLL or an EXE.

86

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

CommandLineParameters() M Returns the command line
parameters to be passed to the
invoked program.

118

CommandLineParametersIsNull() B Indicates whether command line
parameters are set.

121

DllOptions() P Returns the description of a DLL,
if the implementation is a DLL.

120

Chapter 28. Using the MQ Workflow Runtime API 221

Accessor methods Type Description Page

ExeOptions() P Returns the description of an EXE,
if the implementation is an EXE.

120

ExternalOptions() P Returns the description of external
options, if the implementation is
an external service.

120

options() P Returns the description of an EXE,
a DLL, or an external service in
Java.

120

Platform() E Returns the operating system
platform this implementation data
describes.

93

Instance monitor

An instance monitor object represents a monitor in the ActiveX API. It can be
the monitor of a process instance, a monitor of an activity instance of type
Block, or a monitor of an activity instance of type Process.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

ActivityInstances() M Returns the activity instances which are
represented by the instance monitor. The
activity instances contain both primary and
secondary values.

118

ControlConnectorInstances()M Returns the control connector instances
which are represented by the instance
monitor.

118

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

222 Programming Guide

Action methods Description Page

ObtainInstanceMonitor() Returns the instance monitor for an activity
instance of type Block or Process. The
activity instance is part of the set of activity
instances represented by the instance
monitor.

273

Refresh() Refreshes the instance monitor from the
MQ Workflow execution server.

278

Item

An item represents a work item, an activity instance notification, or a process
instance notification. This means that all functions/methods of an item are
also applicable to work items, activity instance notifications, and process
instance notifications.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs an item object. 80

Copy() Allocates and initializes the storage for an item object by
copying.

83

Deallocate() Deallocates the storage for an item object. 84

destructor() Destructs an item object. 84

Equal() Compares two items. 82

IsComplete() Indicates whether the complete item information is available. 84

IsEmpty() Indicates whether no item information is available. 85

Kind() States the actual kind of the item, whether it is a work item
or some kind of notification.

86

operator=() Assigns an item to this one. 82

operator==() Compares two items. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor and mutator functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when items are queried or if this
attribute is a secondary attribute (S) and set only after the refresh of a
specific item.

Chapter 28. Using the MQ Workflow Runtime API 223

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

Category() P/C Returns the process category of the
item.

116

CategoryIsNull() P/B Indicates whether a category is set. 121

CreationTime() P/D Returns the creation time of the
item.

92

Description() P/C Returns the description of the item. 116

DescriptionIsNull() P/B Indicates whether a description is
set.

121

Documentation() S/C Returns the documentation of the
item.

116

DocumentationIsNull() S/B Indicates whether a documentation
is set.

121

EndTime() S/D Returns the ending time of the
item.

92

EndTimeIsNull() S/B Indicates whether an end time is
set.

121

Icon() P/C Returns the icon associated with
the item.

116

InContainerName() S/C Returns the name of the input
container of the item.

116

LastModificationTime() P/D Returns the last time a primary
attribute of the item was changed.

92

Name() P/C Returns the name of the item. In
the C-language, a work item or
activity instance notification
requires a buffer of at least 33
bytes, a process instance
notification a buffer of at least 64
bytes.

116

OutContainerName() S/C Returns the name of the output
container of the item.

116

Owner() P/C Returns the user ID of the owner
of the item.

116

224 Programming Guide

Accessor methods Set/
Type

Description Page

PersistentOid() P/C Returns a representation of the
object identification of the item.

116

ProcessAdmin() S/C Returns the user ID of the process
administrator of the item.

116

ProcessInstanceName() P/C Returns the name of the process
instance the item is part of.

116

ProcessInstanceState() P/E Returns the state of the process
instance the item is part of.

93

ProcessInstanceSystemGroupName() S/C Returns the name of the system
group of the process instance the
item is part of.

116

ProcessInstanceSystemName() S/C Returns the name of the system of
the process instance the item is
part of.

116

ReceivedAs() P/E Returns the reason why the item
was received.

93

ReceivedTime() P/D Returns the time when the item
was received.

92

StartTime() P/D Returns the start time of the item. 92

StartTimeIsNull() P/B Indicates whether a start time is
set.

121

Mutator methods Description Page

Update() Updates the item with the execution data sent by an
MQ Workflow execution server. The object IDs of the
item and of the object described by the execution
data must match.

124

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

Delete() Deletes an item. 393

ObtainProcessInstanceMonitor() Retrieves the process instance monitor for
the process instance the item is part of.

395

ProcessInstance() Retrieves the process instance the item is
part of.

399

Refresh() Retrieves the complete information of the
item.

401

SetDescription() Sets the description of the item. 403

Chapter 28. Using the MQ Workflow Runtime API 225

Action methods Description Page

SetName() Sets the name of the item. 406

Transfer() Transfers an item to the specified user. 409

Item vector

An item vector represents the result of a query for items in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates an item vector object.

FirstElement() Returns the first element of the item vector.

NextElement() Returns the next element of the item vector.

Size() Returns the number of elements in the item vector.

Message

A message object serves to access the MQ Workflow provided message
catalog.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself. The function/method declaration can be found in
a general format at the indicated page.

Accessor methods Type Description Page

MessageText() C Returns an NLS regarding formatted message
based on the message ID. Any parameters
passed will be incorporated.

116

Persistent list

A persistent list represents a persistent list definition. All functions/methods
of a persistent list are also applicable toprocess instance lists, process
template lists, and worklists.

226 Programming Guide

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

IsEmpty() Indicates whether no persistent list information is available. 85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

Description() C Returns the description of the persistent list. 116

DescriptionIsNull() B Indicates whether a description is set. 121

Filter() C Returns the filter of the persistent list. 116

FilterIsNull() B Indicates whether a filter is set. 121

Name() C Returns the name of the persistent list. 116

OwnerOfList() C Returns the user ID of the owner of the
persistent list.

116

OwnerOfListIsNull() B Indicates whether an owner is set; a public
list does not have an owner.

121

SortCriteria() C Returns the sort criteria of the persistent
list.

116

SortCriteriaIsNull() B Indicates whether sort criteria are set. 121

Threshold() I Returns the threshold of the persistent list. 115

ThresholdIsNull() B Indicates whether a threshold is set. 121

Type() C Returns the type of the persistent list,
whether it is a public or private list.

116

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

Delete() Deletes the persistent list. 413

Refresh() Refreshes the persistent list. 416

SetDescription() Sets the description of the persistent list. 418

SetFilter() Sets the filter of the persistent list. 420

Chapter 28. Using the MQ Workflow Runtime API 227

Action methods Description Page

SetSortCriteria() Sets the sort criteria of the persistent list. 423

SetThreshold() Sets the threshold of the persistent list. 425

Person

A person object represents the settings of the logged-on user.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a person object. 80

Copy() Allocates and initializes the storage for a person object by
copying.

83

Deallocate() Deallocates the storage for a person object. 84

destructor() Destructs a person object. 84

Equal() Compares two persons. 82

operator=() Assigns a person to this one. 82

operator==() Compares two persons. 82

IsComplete() Indicates whether the complete person information is
available.

84

IsEmpty() Indicates whether no person information is available. 85

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when persons are queried or if this
attribute is a secondary attribute (S) and set only after the refresh of a
specific person.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object (O). The function/method
declaration can be found in a general format at the indicated page.

228 Programming Guide

Accessor methods Set/
Type

Description Page

CategoriesAuthorizedFor() P/M Returns the categories the
person is authorized for
with basic or with
administration rights. If the
person is authorized for all
categories as administrator,
no category is returned
here. If the person is
authorized for all categories
with basic rights, categories
authorized with
administration rights are
returned here.

118

CategoriesAuthorizedForAsAdmin() P/M Returns the categories the
person is authorized for
with administration rights.
If the person is authorized
for all categories with
administration rights, no
category is returned here.

118

Description() P/C Returns the description of
the person.

116

DescriptionIsNull() P/B Indicates whether a
description is set.

121

FirstName() P/C Returns the first name of
the person.

116

FirstNameIsNull() P/B Indicates whether a first
name is set.

121

IsAbsent() P/B Indicates whether the
person is absent.

91

IsAdminForCategory() P/B Indicates whether the
person has administrator
rights for the specified
category. Returns false if the
category does not exist.

91

IsAdministrator() S/B Indicates whether the
person is an administrator.

91

IsAuthorizedForAllCategories() P/B Indicates whether the
person is said to be
authorized for all categories
either with basic and/or
administration rights.

91

Chapter 28. Using the MQ Workflow Runtime API 229

Accessor methods Set/
Type

Description Page

IsAuthorizedForAllCategoriesAsAdmin() P/B Indicates whether the
person is said to be
authorized for all categories
as administrator.

91

IsAuthorizedForAllPersons() P/B Indicates whether the
person is authorized to see
the items of all persons.

91

IsAuthorizedForAuthorizationDefinition() P/B Indicates whether the
person is authorized to
define authorizations.

91

IsAuthorizedForOperationAdministration() P/B Indicates whether the
person is authorized for
operational administrations.

91

IsAuthorizedForProcessDefinition() P/B Indicates whether the
person is authorized to
define process models.

91

IsAuthorizedForStaffDefinition() P/B Indicates whether the
person is authorized to
define persons.

91

IsAuthorizedForTopologyDefinition() P/B Indicates whether the
person is authorized to
define topological data.

91

IsManager() S/B Indicates whether the
person is a manager.

91

IsResetAbsence() P/B Indicates whether the
absence flag should be reset
when the person logs on.

91

LastName() P/C Returns the last name of the
person.

116

LastNameIsNull() P/B Indicates whether a last
name is set.

121

Level() P/I Returns the level of the
person.

115

Manager() S/C Returns the user
identification of the
person’s manager.

116

ManagerIsNull() S/B Indicates whether the
person’s manager is set.

121

MiddleName() P/C Returns the middle name of
the person.

116

230 Programming Guide

Accessor methods Set/
Type

Description Page

MiddleNameIsNull() P/B Indicates whether a middle
name is set.

121

NamesOfManagedOrganizations() S/M Returns the names of
organizations the person
manages.

118

NamesOfRoles() P/M Returns the names of roles
the person belongs to.

118

NamesOfRolesToCoordinate() S/M Returns the names of roles
the person can coordinate.

118

OrganizationName() P/C Returns the name of the
organization the person
belongs to.

116

OrganizationNameIsNull() P/B Indicates whether an
organization name is set.

121

PersonID() P/C Returns the person ID of
the person.

116

PersonIDIsNull() P/B Indicates whether a person
ID is set.

121

PersonsAuthorizedFor() P/M Returns the persons for
whom this person is
authorized either explicitly
or by being a substitute. If
the person is authorized for
all other persons, then no
person is returned here.

118

PersonsAuthorizedForMe() S/M Returns the persons who
are authorized for this
person.

118

PersonsToStandInFor() S/M Returns the persons for
whom this person stands in.

118

Phone() P/C Returns the phone number
of the person.

116

PhoneIsNull() P/B Indicates whether a phone
is set.

121

SecondPhone() P/C Returns the alternate phone
number of the person.

116

SecondPhoneIsNull() P/B Indicates whether an
alternate phone is set.

121

Substitute() P/C Returns the substitute of the
person.

116

Chapter 28. Using the MQ Workflow Runtime API 231

Accessor methods Set/
Type

Description Page

SubstituteIsNull() P/B Indicates whether a
substitute is set.

121

SystemName() P/C Returns the home system of
the person.

116

UserID() P/C Returns the user
identification of the person.

116

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

Refresh() Retrieves the complete person information
from the server.

429

SetAbsence() Sets the absent flag of the logged-on user to
the specified value.

431

SetSubstitute() Sets the substitute of the logged-on user to
the specified value.

433

Point

A point object represents a bend point of a control connector.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a point object. 80

Copy() Allocates and initializes the storage for a point object by
copying.

83

Deallocate() Deallocates the storage for a point object. 84

destructor() Destructs a point object. 84

Equal() Compares two point objects on the basis of their contents. 82

IsEmpty() Indicates whether no point information is available. 85

operator=() Assigns a point object to this one. 82

operator==() Compares two point objects on the basis of their contents. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

232 Programming Guide

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the point. 115

YPosition() I Returns the y-coordinate of the point. 115

Point array

A point array represents the result of a query for bend points in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Point vector

A point vector represents the result of a query for points in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a point vector object.

FirstElement() Returns the first element of the point vector.

NextElement() Returns the next element of the point vector.

Size() Returns the number of elements in the point vector.

Process instance

A process instance object represents an instance of a workflow process
template.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Chapter 28. Using the MQ Workflow Runtime API 233

Basic methods Description Page

constructor() Constructs a process instance object. 80

Copy() Allocates and initializes the storage for a process instance
object by copying.

83

Deallocate() Deallocates the storage for a process instance object. 84

destructor() Destructs a process instance object. 84

Equal() Compares two process instances. 82

IsComplete() Indicates whether the complete process instance information
is available.

84

IsEmpty() Indicates whether no process instance information is
available.

85

operator=() Assigns a process instance to this one. 82

operator==() Compares two process instances. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when process instances are queried or
if this attribute is a secondary attribute (S) and set only after the refresh
of a specific process instance.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the
process instance.

93

Category() P/C Returns the category of the process
instance.

116

CategoryIsNull() P/B Indicates whether a category is set. 121

CreationTime() S/D Returns the creation time of the
process instance.

92

Creator() S/C Returns the creator of the process
instance.

116

Description() P/C Returns the description of the
process instance.

116

234 Programming Guide

Accessor methods Set/
Type

Description Page

DescriptionIsNull() P/B Indicates whether a description is
set.

121

Documentation() S/C Returns the documentation of the
process instance.

116

DocumentationIsNull() S/B Indicates whether a documentation
is set.

121

EndTime() S/D Returns the end time of the
process instance.

92

EndTimeIsNull() S/B Indicates whether an end time is
set.

121

Icon() P/C Returns the icon associated with
the process instance.

116

InContainerName() S/C Returns the name of the input
container of the process instance.

116

InContainerNeeded() P/B Indicates whether an input
container is needed to start the
process instance.

91

LastModificationTime() P/D Returns the last time a primary
attribute of the process instance
was changed.

92

LastStateChangeTime() P/D Returns the last time the state of
the process instance was changed.

92

Name() P/C Returns the name of the process
instance.

116

NotificationTime() S/D Returns the notification time of the
process instance.

92

NotificationTimeIsNull() S/B Indicates whether a notification
time is set.

121

NotifiedPerson() S/C Returns the person who received
the notification.

116

NotifiedPersonIsNull() S/B Indicates whether a notified person
is set.

121

OrganizationName() S/C Returns the name of the
organization of the process
instance.

116

OrganizationNameIsNull() S/B Indicates whether an organization
name is set.

121

OutContainerName() S/C Returns the name of the output
container of the process instance.

116

Chapter 28. Using the MQ Workflow Runtime API 235

Accessor methods Set/
Type

Description Page

ParentName() P/C Returns the name of the parent
process instance of this process
instance.

116

ParentNameIsNull() P/B Indicates whether a parent name is
set.

121

PersistentOid() P/C Returns a representation of the
object identification of the process
instance.

116

ProcessAdmin() S/C Returns the user ID of the process
administrator of the process
instance.

116

ProcessAdminIsNull() S/B Indicates whether a process
administrator is set.

121

ProcessTemplateName() P/C Returns the name of the process
template the process instance is
derived from.

116

RoleName() S/C Returns the name of the role of the
process instance.

116

RoleNameIsNull() S/B Indicates whether a role is set. 121

Starter() S/C Returns the starter of the process
instance.

116

StarterIsNull() S/B Indicates whether a starter is set. 121

StartTime() S/D Returns the start time of the
process instance.

92

StartTimeIsNull() S/B Indicates whether a start time is
set.

121

State() P/E Returns the state of the process
instance.

93

StateOfNotification() S/E Returns the notification state of the
process instance.

93

SuspensionExpirationTime() P/D Returns the suspension expiration
time of the process instance.

92

SuspensionExpirationTimeIsNull() P/B Indicates whether the suspension
expiration time is set.

121

SuspensionTime() P/D Returns the time the process
instance was suspended.

92

SuspensionTimeIsNull() P/B Indicates whether the suspension
time is set.

121

236 Programming Guide

Accessor methods Set/
Type

Description Page

SystemGroupName() P/C Returns the name of the system
group where the process instance
runs.

116

SystemName() P/C Returns the name of the system
where the process instance runs.

116

TopLevelName() P/C Returns the name of the top level
process instance of this process
instance.

116

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

Delete() Deletes the process instance. 437

InContainer() Retrieves the input container of the process
instance.

440

ObtainMonitor() Retrieves the process instance monitor for
the process instance.

442

PersistentObject() Retrieves the process instance specified by
the passed object identification.

444

Refresh() Retrieves the complete information of the
process instance.

447

Restart() Restarts the process instance. 449

Resume() Resumes the execution of a suspended
process instance.

451

SetDescription() Sets the description of the process instance. 453

SetName() Sets the name of the process instance. 456

Start() Starts the process instance. 458

Start2() Starts the process instance in Java and
provides an input container.

458

Suspend() Suspends the process instance. 460

Suspend2() Suspends the process instance in Java until
the specified calendar date.

460

SuspendUntil() Suspends the process instance until the
specified time.

460

Terminate() Terminates the process instance. 463

Chapter 28. Using the MQ Workflow Runtime API 237

Process instance list

A process instance list represents a group of process instances. All
functions/methods of a persistent list are also applicable to process instance
lists.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a process instance list object. 80

Copy() Allocates and initializes the storage for a process instance list
object by copying.

83

Deallocate() Deallocates the storage for a process instance list object. 84

destructor() Destructs a process instance list object. 84

Equal() Compares two process instance lists. 82

operator=() Assigns a process instance list to this one. 82

operator==() Compares two process instance lists. 82

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

QueryProcessInstances() Retrieves the process instances qualifying
via the process instance list.

467

Process instance list array

A process instance list array represents the result of a query for process
instance lists in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Events Description Page

NewProcessInstanceList() Adds a new process instance list to the array. 35

ProcessInstanceListRemove() Removes the process instance list from the array. 35

238 Programming Guide

Process instance list vector

A process instance list vector represents the result of a query for process
instance lists in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a process instance list vector object.

FirstElement() Returns the first element of the process instance list
vector.

NextElement() Returns the next element of the process instance list
vector.

Size() Returns the number of elements in the process instance
list vector.

Process instance monitor

A process instance monitor object represents a monitor of a process instance.
All functions/methods of FmcjBlockInstanceMonitor are also applicable to
process instance monitors.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

Deallocate() Deallocates the storage for a process instance monitor object.
All block instance monitors contained are also deallocated.

84

destructor() Destructs a process instance monitor object. All block instance
monitors contained are also destructed.

84

Process instance notification

A process instance notification represents a notification raised for a process
instance. All functions/methods of an FmcjItem are also applicable to
process instance notifications.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a process instance notification object. 80

Chapter 28. Using the MQ Workflow Runtime API 239

Basic methods Description Page

Copy() Allocates and initializes the storage for a process instance
notification object by copying.

83

Deallocate() Deallocates the storage for a process instance notification
object.

84

destructor() Destructs a process instance notification object. 84

Kind() In the C++ language, states that the object is a process
instance notification.

86

operator=() Assigns a process instance notification to this one. 82

operator==() Compares two process instance notifications. 82

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

ObtainInstanceMonitor() Returns the instance monitor for the
associated process instance in ActiveX.

395

PersistentObject() Retrieves the specified process instance
notification.

471

Process instance notification array

A process instance notification array represents the result of a query for
process instance notifications in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Process instance notification vector

A process instance notification vector represents the result of a query for
process instance notifications in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

240 Programming Guide

Accessor methods Description

Deallocate() Deallocates a process instance notification vector
object.

FirstElement() Returns the first element of the process instance
notification vector.

NextElement() Returns the next element of the process instance
notification vector.

Size() Returns the number of elements in the process
instance notification vector.

Process instance vector

A process instance vector represents the result of a query for process instances
in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a process instance vector
object.

FirstElement() Returns the first element of the process instance
vector.

NextElement() Returns the next element of the process instance
vector.

Size() Returns the number of elements in the process
instance vector.

Process template

A process template object represents the Runtime equivalent of a Buildtime
workflow process model.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a process template object. 80

Copy() Allocates and initializes the storage for a process template
object by copying.

83

Deallocate() Deallocates the storage for a process template object. 84

destructor() Destructs a process template object. 84

Chapter 28. Using the MQ Workflow Runtime API 241

Basic methods Description Page

Equal() Compares two process templates. 82

IsComplete() Indicates whether the complete process template information
is available.

84

IsEmpty() Indicates whether no process template information is
available.

85

operator=() Assigns a process template to this one. 82

operator==() Compares two process templates. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when process templates are queried
or if this attribute is a secondary attribute (S) and set only after the
refresh of a specific process template.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), a multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

AuditMode() S/E Returns the audit mode of the process
template.

93

Category() P/C Returns the category of the process
template.

116

CategoryIsNull() P/B Indicates whether a category is set. 121

CreationTime() P/D Returns the creation time of the process
template.

92

Description() P/C Returns the description of the process
template.

116

DescriptionIsNull() P/B Indicates whether a description is set. 121

Documentation() S/C Returns the documentation of the process
template.

116

DocumentationIsNull() S/B Indicates whether a documentation is set. 121

Icon() P/C Returns the icon associated with the process
template.

116

InContainerName() S/C Returns the name of the input container of
the process template.

116

242 Programming Guide

Accessor methods Set/
Type

Description Page

InContainerNeeded() P/B Indicates whether an input container is
needed to start an instance of the process
template.

91

LastModificationTime() P/D Returns the last time a primary attribute of
the process template was changed.

92

Name() P/C Returns the name of the process template. 116

OrganizationName() S/C Returns the name of the organization of the
process template.

116

OrganizationNameIsNull() S/B Indicates whether an organization name is
set.

121

OutContainerName() S/C Returns the name of the output container of
the process template.

116

PersistentOid() P/C Returns a representation of the object
identification of the process template.

116

ProcessAdmin() S/C Returns the user ID of the process
administrator of an instance of the process
template.

116

ProcessAdminIsNull() S/B Indicates whether a process administrator is
set.

121

RoleName() S/C Returns the name of the role of the process
template.

116

RoleNameIsNull() S/B Indicates whether a role is set. 121

ValidFromTime() P/D Returns the time when the process template
becomes valid.

92

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

CreateAndStartInstance() Creates and starts an instance of the process
template.

475

CreateAndStartInstance2() Creates and starts an instance of the process
template in Java and provides an input
container.

475

CreateInstance() Creates an instance of the process template. 480

Delete() Deletes the specified process template. 483

Delete2() Deletes the specified process template
versions in Java.

483

Chapter 28. Using the MQ Workflow Runtime API 243

Action methods Description Page

ExecuteProcessInstance() Creates and executes an instance from the
specified process template.

486

ExecuteProcessInstanceAsync() Creates and executes an instance from the
specified process template; an answer is not
waited for.

486

InContainer() Retrieves the input container of the process
template.

491

PersistentObject() Retrieves the process template specified by
the passed object identification.

493

Refresh() Retrieves the complete information of the
process template.

495

Process template list

A process template list represents a group of process templates. All
functions/methods of a persistent list are also applicable to process template
lists.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a process template list object. 80

Copy() Allocates and initializes the storage for a process template list
object by copying.

83

Deallocate() Deallocates the storage for a process template list object. 84

Equal() Compares two process template lists. 82

destructor() Destructs a process template list object. 84

operator=() Assigns a process template list to this one. 82

operator==() Compares two process template lists. 82

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

QueryProcessTemplates() Retrieves the process templates qualifying
via the process template list.

499

244 Programming Guide

Process template list array

A process template list array represents the result of a query for process
template lists in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Events Description Page

NewProcessTemplateList() Adds a new process template list to the array. 35

ProcessTemplateListRemove() Removes the specified process template list from
the array.

35

Process template list vector

A process template list vector represents the result of a query for process
template lists in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates a process template list vector object.

FirstElement() Returns the first element of the process template list
vector.

NextElement() Returns the next element of the process template list
vector.

Size() Returns the number of elements in the process
template list vector.

Process template vector

A process template vector represents the result of a query for process
templates in the C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Chapter 28. Using the MQ Workflow Runtime API 245

Accessor methods Description

Deallocate() Deallocates the storage for a process template vector
object.

FirstElement() Returns the first element of the process template
vector.

NextElement() Returns the next element of the process template
vector.

Size() Returns the number of elements in the process
template vector.

Program data

A program data object represents the program implementation definitions.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a program data object. 80

Copy() Allocates and initializes the storage for a program data object
by copying.

83

Deallocate() Deallocates the storage for a program data object. 84

destructor() Destructs a program data object. 84

Equal() Compares two program data objects if they belong to the
same work item.

82

IsEmpty() Indicates whether no program data information is available
yet.

85

operator=() Assigns a program data object to this one. 82

operator==() Compares two program data objects if they belong to the
same work item.

82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

246 Programming Guide

Accessor methods Type Description Page

Description() C Returns the description of the implementing
program.

116

DescriptionIsNull() B Indicates whether a description is set. 121

Icon() C Returns the icon associated with the
implementing program.

116

Implementations() M Returns the implementation definitions of
the program.

118

InContainer() P Returns the input container of the program. 120

IsUnattended() B States whether the program can run
unattended.

91

OutContainer() P Returns the output container of the
program.

120

ReadOnly container

A read-only container represents an input data container of a work item. All
functions/methods of a container are applicable to read-only containers.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a read-only container object. 80

Copy() Allocates and initializes the storage for a read-only container
object by copying.

83

Deallocate() Deallocates the storage for a read-only container object. 84

Equal() Compares two read-only containers. 82

destructor() Destructs a read-only container object. 84

operator=() Assigns a read-only container to this one. 82

operator==() Compares two read-only containers. 82

ReadWrite container

A read/write container represents an input container of a process instance or
an output container of a work item. All functions/methods of a container are
applicable to read/write containers.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Chapter 28. Using the MQ Workflow Runtime API 247

Basic methods Description Page

constructor() Constructs a read/write container object. 80

Copy() Allocates and initializes the storage for a read/write
container object by copying.

83

Deallocate() Deallocates the storage for a read/write container object. 84

Equal() Compares two read/write containers. 82

destructor() Destructs a read/write container object. 84

operator=() Assigns a read/write container to another one. 82

operator==() Compares two read/write containers. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

The value in the Type column states the type of the property set, whether it is
a binary (N), a character string (C), a float (F), or an integer (I). The
function/method declaration can be found at the indicated page.

Accessor methods Type Description Page

SetArrayBinaryValue() N Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type BINARY.

64

SetArrayFloatValue() F Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type FLOAT.

64

SetArrayLongValue() I Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type LONG.

64

SetArrayStringValue() C Sets the value of the specified container leaf
element in the C-language. The leaf element
is part of an array and of type STRING.

64

SetBinaryValue() N Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type BINARY.

64

SetBuffer() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
BINARY.

64

SetBuffer2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type BINARY.

64

SetDouble() F Sets the value of the specified container leaf
element in Java. The leaf element is of type
FLOAT.

64

248 Programming Guide

Accessor methods Type Description Page

SetDouble2() F Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type FLOAT.

64

SetFloatValue() F Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type FLOAT.

64

SetLong() I Sets the value of the specified container leaf
element in Java. The leaf element is of type
LONG.

64

SetLong2() I Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type LONG.

64

SetLongValue() I Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type LONG.

64

SetString() N Sets the value of the specified container leaf
element in Java. The leaf element is of type
STRING.

64

SetString2() N Sets the value of the specified container leaf
element in Java. The leaf element is part of
an array and of type STRING.

64

SetStringValue() C Sets the value of the specified container leaf
element in the C-language. The leaf element
is of type STRING.

64

SetValue() N/F/C/I Sets the value of the specified container leaf
element in the C++ language.

64

Result object

A result object represents the result of a function/method call in the C++ and
C-language.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

destructor Destructs the C++ representation of the result object. 84

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. Because a result object represents a supporting
object on the client only, the distinction between primary and secondary
attributes is not applicable.

Chapter 28. Using the MQ Workflow Runtime API 249

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

MessageText() C Returns the result as an NLS regarding
formatted message.

116

ObjectOfCurrentThread() P Returns the result object associated with the
thread from where this function/method is
called.

Origin() C Returns the origin of the result, that is, file,
line, function.

116

Parameters() M Returns the parameters of the result; these
are already incorporated in the message
text.

118

Rc() I Returns the return code remembered in the
result object.

115

Service

A service object represents common aspects of MQ Workflow service objects.
All functions/methods of a service are also applicable to execution services.

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. Because a service object represents a supporting
object on the client only, the distinction between primary and secondary
attributes is not applicable.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

IsLoggedOn() B Indicates whether a user is logged on via
this service object.

91

SetTimeout() I Sets the time the client will wait for a
server to answer.

122

SystemGroupName() C Returns the name of the system group
where the server resides.

116

250 Programming Guide

Accessor methods Type Description Page

SystemName() C Returns the name of the system where the
server resides.

116

Timeout() I Returns the time the client will wait for a
server to answer.

115

UserID() C Returns the user identification of the
logged-on user.

116

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

Refresh() Refreshes information from the server,
especially the logged-on status.

503

SetPassword() Sets the password of the logged-on user. 505

UserSettings() Retrieves the user settings of the logged-on
user.

507

String array

A string array represents a list of strings in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

Add() Adds the element to the array. 32

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

RemoveAll() Removes all elements. 34

RemoveAt() Removes the element at the indicated position. 34

SetAt() Sets the element at the indicated position. 34

String vector

In the C-language, a string vector serves to represents a set of string
information. For example, a string vector is returned to show the categories
the logged-on user is authorized for. Or, a string vector must be used to
specify the persons to stand in for.

Chapter 28. Using the MQ Workflow Runtime API 251

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

AddElement() Adds a string to the string vector.

Allocate() Allocates the storage for a string vector.

Deallocate() Deallocates the storage for a string vector.

FirstElement() Returns the first element of the string
vector.

FirstResultParmElement() Returns the first element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

NextElement() Returns the next element of the string
vector.

NextResultParmElement() Returns the next element of a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

RemoveElement() Removes a string from the string vector.

ResultParmDeallocate() Deallocates the storage for a string vector
representing the parameters of a result
object; calling this function does not change
the result object and thus allows for a
consistent read.

ResultParmSize() Returns the number of elements in a string
vector representing the parameters of a
result object; calling this function does not
change the result object and thus allows for
a consistent read.

Size() Returns the number of elements in the
string vector.

Symbol layout

A symbol layout object represents graphical information of a named icon.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

252 Programming Guide

Basic methods Description Page

constructor() Constructs a symbol layout object. 80

Copy() Allocates and initializes the storage for a symbol layout
object by copying.

83

Deallocate() Deallocates the storage for a symbol layout object. 84

destructor() Destructs a symbol layout object. 84

Equal() Compares two symbol layout objects on the basis of their
contents.

82

IsEmpty() Indicates whether no symbol layout information is available. 85

operator=() Assigns a symbol layout object to this one. 82

operator==() Compares two symbol layout objects on the basis of their
contents.

82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself (O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Type Description Page

XPosition() I Returns the x-coordinate of the named icon. 115

XPositionOfName() I Returns the x-coordinate of the name
associated to the icon.

115

YPosition() I Returns the y-coordinate of the named icon. 115

YPositionOfName() I Returns the y-coordinate of the name
associated to the icon.

115

Work item

A work item represents an activity instance assigned to a user in order to be
worked on. All functions/methods of an Item are also applicable to work
items.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a work item object. 80

Chapter 28. Using the MQ Workflow Runtime API 253

Basic methods Description Page

Copy() Allocates and initializes the storage for a work item object by
copying.

83

Deallocate() Deallocates the storage for a work item object. 84

destructor() Destructs a work item object. 84

Kind() In the C++ language, states that the object is a work item. 86

operator=() Assigns a work item to this one. 82

operator==() Compares two work items. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods.

Note: The value in the Set column shows if this attribute is a primary
attribute (P) and set immediately when work items are queried or if
this attribute is a secondary attribute (S) and set only after the refresh
of a specific work item.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value
(D), an enumeration (E), an integer (I), multi-valued property (M), a
pointer to some object (P), or an object itself (O). The function/method
declaration can be found in a general format at the indicated page.

Accessor methods Set/
Type

Description Page

ActivityKind() P/E Returns the kind of the associated
activity instance, whether it is a
program or process and so on.

93

ErrorReason() S/O Returns an error object describing
the reason why the associated
activity instance is in state InError.

119

ErrorReasonIsNull() S/B Indicates whether an error reason
is set.

121

ExitCondition() S/C Returns the exit condition of the
work item.

116

FirstNotificationTime() S/D Returns the time the first
notification for the work item is to
occur or has occurred.

92

FirstNotificationTimeIsNull() S/B Indicates whether a first
notification time is set.

121

254 Programming Guide

Accessor methods Set/
Type

Description Page

Implementation() P/C Returns the name of the
implementing program of the
associated activity instance.

116

ImplementationIsNull() P/B Indicates whether an
implementation is set.

121

ManualExitMode() S/B Returns whether the exit mode of
the work item is manual.

91

ManualStartMode() S/B Returns whether the start mode of
the work item is manual.

91

Priority() P/I Returns the priority of the work
item.

115

SecondNotificationTime() S/D Returns the time the second
notification for the work item is to
occur or has occurred.

92

SecondNotificationTimeIsNull() S/B Indicates whether a second
notification time is set.

121

Staff() S/M Returns all persons owning a work
item for the associated activity
instance.

118

StartCondition() S/C Returns the start condition of the
work item.

116

State P/E Returns the state of the work item. 93

StateOfNotification() S/E Returns the notification state of the
work item.

93

SupportTools() P/M Returns the support tools
associated with the work item.

118

SupportToolsIsNull() P/B Indicates whether support tools are
set.

121

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

CancelCheckOut() Cancels the check out of the work item. 514

CheckIn() Checks in the work item. 516

CheckOut() Checks out the work item. 518

Finish() Finishes a manual exit work item. 524

ForceFinish() Force finishes the work item. 526

ForceRestart() Force restarts the work item. 528

Chapter 28. Using the MQ Workflow Runtime API 255

Action methods Description Page

InContainer() Retrieves the input container of the work item. 530

ObtainInstanceMonitor() Returns the instance monitor for the associated
process instance in ActiveX.

395

OutContainer() Retrieves the output container of the work item. 532

PersistentObject() Retrieves the specified work item. 534

Restart() Restarts the work item. 536

Start() Starts the work item. 538

StartTool() Starts the specified support tool. 540

Terminate() Terminates the work item. 542

Work item array

A work item array represents the result of a query for work items in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Work item vector

A workitem vector represents the result of a query for work items in the
C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

Accessor methods Description

Deallocate() Deallocates the storage for a workitem vector object.

FirstElement() Returns the first element of the workitem vector.

NextElement() Returns the next element of the workitem vector.

Size() Returns the number of elements in the workitem
vector.

256 Programming Guide

Worklist

A worklist represents a group of items. All functions/methods of a persistent
list are also applicable to worklists.

Refer to “Basic functions/methods” on page 79 for detailed descriptions of
basic functions/methods.

Basic methods Description Page

constructor() Constructs a worklist object. 80

Copy() Allocates and initializes the storage for a worklist object by
copying.

83

Deallocate() Deallocates the storage for a worklist object. 84

destructor() Destructs a worklist object. 84

Equal() Compares two worklists. 82

operator=() Assigns a worklist to another one. 82

operator==() Compares two worklists. 82

Refer to “Accessor functions/methods” on page 89 for detailed descriptions of
accessor functions/methods. All properties are primary properties.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), a multi-valued property (M), a pointer to some
object (P), or an object itself. The function/method declaration can be found in
a general format at the indicated page.

Accessor methods Type Description Page

BeepOption() B Indicates whether a beep should sound
when the contents of the worklist changes.

91

Refer to “Action functions/methods” on page 128 for detailed descriptions of
action functions/methods.

Action methods Description Page

QueryActivityInstanceNotifications() Retrieves the activity instance notifications
qualifying via the worklist.

545

QueryItems() Retrieves all items qualifying via the
worklist.

548

QueryProcessInstanceNotifications() Retrieves the process instance notifications
qualifying via the worklist.

551

QueryWorkitems() Retrieves the work items qualifying via the
worklist.

554

Chapter 28. Using the MQ Workflow Runtime API 257

Work list array

A worklist array represents the result of a query for worklists in ActiveX.

Refer to “ActiveX arrays” on page 32 for detailed descriptions of array
accessor methods.

Accessor
methods

Description Page

GetAt() Returns the element at the indicated position. 33

GetSize() Returns the number of elements in the array. 34

Events Description Page

NewWorklist() Adds a new worklist to the array. 35

WorklistRemove() Removes the specified worklist from the array. 35

Worklist vector

A worklist vector represents the result of a query for worklists in the
C-language.

Refer to “C-language vectors” on page 27 for detailed descriptions of vector
access functions.

The value in the Type column states the type of the property returned,
whether it is a boolean (B), a character string (C), a date/time value (D), an
enumeration (E), an integer (I), or a multi-valued property (M), a pointer to
some object (P), or an object itself(O). The function/method declaration can be
found in a general format at the indicated page.

Accessor methods Description

Deallocate() Deallocates a worklist vector object.

FirstElement() Returns the first element of the worklist vector.

NextElement() Returns the next element of the worklist vector.

Size() Returns the number of elements in the worklist
vector.

258 Programming Guide

Part 6. Programming interfaces

The following chapters describe the MQ Workflow application programming
interfaces for action or activity implementation functions/methods in
alphabetical order.

Each entry contains a functional description of the API function/method
followed by subsections:
Usage notes Points to general information about the nature of this call.
Authorization States the authority required to have the API call executed.
Required connection

States the MQ Workflow server a session must have been
established with.

API interface declaration
States the name of the file to be included respectively the
name of the package to be imported for the API
function/method declaration.

ActiveX signature
Shows the ActiveX syntax of the API call.

Note: ActiveX signatures are provided in the Object
Definition Language (ODL). For example, type BSTR is
used for strings where the VisualBasic type is actually
String.

C-language signature
Shows the C-language syntax of the API call.

C++ language signature
Shows the C++ language syntax of the API call.

Java signature Shows the Java syntax of the API call.
Parameters Describes each of the parameters together with an indicator

whether the parameter is an input or output parameter.
Return type Describes the value returned by the call.
Return codes/ FmcException

Lists all possible return codes which may be raised by this
call.

Examples Points to an example of the call.

© Copyright IBM Corp. 1993, 1999 259

260 Programming Guide

Chapter 29. Activity instance actions

An FmcjActivityInstance or an ActivityInstance object represents an instance
of an activity of a process instance. An activity instance is uniquely identified
by its object identifier or by its fully qualified name within the process
instance. The fully qualified name of an activity instance is a name in dot
notation where the hierarchy of nested activities of type Block is presented
from left to right, and their names are separated by a dot.

The following sections describe the actions which can be applied on an
activity instance. See “Activity instance” on page 187 for a complete list of
functions/methods.

ObtainProcessInstanceMonitor()/ ObtainInstanceMonitor

This function/method retrieves the process instance monitor for the process
instance the activity instance is part of from the MQ Workflow execution
server (action call).

When the deep option is specified, all activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the
server.

Note: Deep is currently not supported.

In C++, when the process instance monitor object to be initialized is not
empty, that object is destructed before the new one is assigned. In C, the
application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to
some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator

© Copyright IBM Corp. 1993, 1999 261

v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
InstanceMonitor*
ObtainInstanceMonitor(boolean deep, long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceObtainProcessInstanceMonitor(

FmcjActivityInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

C++ language signature
APIRET ObtainProcessInstanceMonitor(

FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java signature
public abstract
ProcessInstanceMonitor obtainProcessInstanceMonitor(boolean deep)
throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

262 Programming Guide

hdlInstance Input. The activity instance whose process instance monitor is
to be retrieved.

monitor Input/Output. The address of the handle to the process
instance monitor respectively the process instance monitor
object to be set.

returnCode Input/Output. The result of calling this method - see return
codes below.

Return type
APIRET The result of calling this method - see return codes below.
InstanceMonitor*/ProcessInstanceMonitor*/ ProcessInstanceMonitor

A pointer to the process instance monitor respectively the
process instance monitor.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 29. Activity instance actions 263

SubProcessInstance()

This function/method retrieves the process instance which is implementing
the activity instance from the MQ Workflow execution server (action call).

All information about the process instance, primary and secondary, is
retrieved.

In C++, when the process instance object to be initialized is not empty, then
that object is destructed before the new one is assigned. In C, the application
is completely responsible for the ownership of objects, that is, it is not checked
whether the process instance handle already points to some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstance

ActiveX signature
ProcessInstance* SubProcessInstance(long * returnCode)

264 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceSubProcessInstance(

FmcjActivityInstanceHandle hdlInstance,
FmcjProcessInstanceHandle * instance)

C++ language signature
APIRET SubProcessInstance(FmcjProcessInstance & instance) const

Java signature
public abstract
ProcessInstance subProcessInstance() throws FmcException

Parameters
hdlInstance Input. The handle of the activity instance object to be queried.
instance Input/Output. The subprocess instance object to be retrieved

(initialized).
returnCode Input/Output. The result of calling this method - see return

codes below.

Return type
APIRET

The result of calling this method - see return codes below.
ProcessInstance*/ ProcessInstance

A pointer to the subprocess instance respectively the subprocess
instance.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance does no longer exist.

Chapter 29. Activity instance actions 265

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

266 Programming Guide

Chapter 30. Activity instance notification actions

An FmcjActivityInstanceNotification or an ActivityInstanceNotification object
represents a notification on an activity instance assigned to a user.

Other items assigned to users are process instance notifications and work
items. FmcjItem or Item represents the common properties of all items.

In the C++ language, FmcjActivityInstanceNotification is thus a subclass of the
FmcjItem class and inherits all properties and methods. In the Java language,
ActivityInstanceNotification is thus a subclass of the Item class and inherits all
properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjItem. That is, common
functions start with the prefix FmcjItem; they are also defined starting with
the prefix FmcjActivityInstanceNotification. In ActiveX, inheritance is not
supported so that all functions are explicitly defined on
ActivityInstanceNotification. Note, however, that they are described as Item
actions.

An activity instance notification is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on an
activity instance notification. See “Activity instance notification” on page 191
for a complete list of functions/methods.

PersistentObject()

This function/method retrieves the activity instance notification identified by
the passed object identifier from the MQ Workflow execution server (action
call).

The MQ Workflow execution server from which the activity instance
notification is to be retrieved is identified by the execution service object. The
transient object is then created or updated with all information (primary and
secondary) of the activity instance notification.

In C++, when the activity instance notification object to be initialized is not
empty, that object is destructed before the new one is assigned. In C, the
application is completely responsible for the ownership of objects, that is, it is
not checked whether the activity instance notification handle already points to
some object. In Java, an activity instance notification is newly created; the
execution service acts as a factory.

© Copyright IBM Corp. 1993, 1999 267

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PersistentObject(ExecutionService * service, BSTR oid)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjActivityInstanceNotificationHandle * hdlItem)

C++ language signature
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

268 Programming Guide

Java signature
public abstract
ActivityInstanceNotification
ExecutionService.persistentActivityInstanceNotification(String oid)

throws FmcException

Parameters
hdlItem Input/Output. The address of the handle to the activity

instance notification object to be set.
oid Input. The object identifier of the activity instance notification

to be retrieved.
service Input. The service object representing the session with the

execution server.

Return type
ActivityInstanceNotification

The activity instance notification retrieved.
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The activity instance notification does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 30. Activity instance notification actions 269

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()

This function/method starts the specified support tool (action call).

The support tool must be one of the tools associated to the activity instance
the notification has been created for. It is then started on the program
execution agent associated to the logged-on user.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the activity instance notification owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ActivityInstanceNotification

ActiveX signature
long StartTool(BSTR toolName)

C-language signature
APIRET FMC_APIENTRY FmcjActivityInstanceNotificationStartTool(

FmcjActivityInstanceNotificationHandle hdlItem,
char const * toolName)

270 Programming Guide

C++ language signature
APIRET StartTool(string const & toolName) const

Java signature
public abstract
void startTool(String toolName) throws FmcException

Parameters
hdlItem Input. The handle of the activity instance notification to be

dealt with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined
for the activity instance notification.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

Chapter 30. Activity instance notification actions 271

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

272 Programming Guide

Chapter 31. Block instance monitor actions

An FmcjBlockInstanceMonitor or a BlockInstanceMonitor object represents a
monitor for an activity instance of type Block.

Note: The ownership of a block instance monitor stays with the embracing
process instance monitor. A block instance monitor is automatically
deleted when the process instance monitor is deleted. After that action,
using the block instance monitor handle or object is invalid.

An FmcjBlockInstanceMonitor or a BlockInstanceMonitor object represents the
common aspects of monitors. In the C++ language, FmcjBlockInstanceMonitor
is thus the superclass of the FmcjProcessInstanceMonitor class and provides
for all common properties and methods. In the Java language,
BlockInstanceMonitor is thus a superclass of the ProcessInstanceMonitor class
and provides for all common properties and methods. Similarly, in the
C-language, common implementations of functions are taken from
FmcjBlockInstanceMonitor. That is, common functions start with the prefix
FmcjBlockInstanceMonitor; they are also defined starting with the prefix
FmcjProcessInstanceMonitor. In ActiveX, inheritance is not supported. All
methods are defined on class InstanceMonitor - see “Chapter 34. Instance
monitor actions” on page 387.

The following sections describe the actions which can be applied on a block
instance monitor. See “Block instance monitor” on page 197 for a complete list
of functions/methods.

ObtainBlockInstanceMonitor()

This function/method retrieves the block instance monitor for the specified
activity instance from the MQ Workflow execution server (action call).

The specified activity instance must be of type Block and be part of this block
instance monitor.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization

© Copyright IBM Corp. 1993, 1999 273

v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX Not applicable - see “Chapter 34. Instance monitor actions” on
page 387.

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.BlockInstanceMonitor

C-language signature
FmcjBlockInstanceMonitorHandle

FMC_APIENTRY FmcjBlockInstanceMonitorObtainBlockInstanceMonitor(
FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity)

C++ language signature
FmcjBlockInstanceMonitor *
ObtainBlockInstanceMonitor(FmcjActivityInstance const & activity) const

APIRET
ObtainBlockInstanceMonitor(FmcjActivityInstance const & activity,

FmcjBlockInstanceMonitor & monitor) const

Java signature
public abstract

BlockInstanceMonitor obtainBlockInstanceMonitor(
ActivityInstance activity) throws FmcException

Parameters
activity Input. The activity instance of type Block whose block

instance monitor is to be retrieved.

274 Programming Guide

hdlMonitor Input. The block instance monitor containing the activity
instance of type Block.

monitor Input/Output. The block instance monitor retrieved.

Return type
APIRET The result of calling this function/method - see return codes

below.
FmcjBlockInstanceMonitor*/ Handle/ BlockInstanceMonitor

The block instance monitor respectively a pointer or handle to
the block instance monitor.

APIRET or the MQ Workflow result object can return the following codes
respectively the following FmcExceptions can be thrown:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block
instance monitor.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Block.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessInstanceMonitor()

This function/method retrieves the process instance monitor for the specified
activity instance from the MQ Workflow execution server (action call).

Chapter 31. Block instance monitor actions 275

The specified activity instance must be of type Process and be part of this
block instance monitor.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the
server.

Note: Deep is currently not supported.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX Not applicable - see “Chapter 34. Instance monitor actions” on
page 387.

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.BlockInstanceMonitor

C-language signature
FmcjProcessInstanceMonitorHandle

FMC_APIENTRY FmcjBlockInstanceMonitorObtainProcessInstanceMonitor(
FmcjBlockInstanceMonitorHandle hdlMonitor,
FmcjActivityInstanceHandle activity,
bool deep)

276 Programming Guide

C++ language signature
FmcjProcessInstanceMonitor *

ObtainProcessInstanceMonitor(
FmcjActivityInstance const & activity,
bool deep= false) const

APIRET ObtainProcessInstanceMonitor(
FmcjActivityInstance const & activity,
FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java signature
public abstract
ProcessInstanceMonitor
obtainProcessBlockInstanceMonitor(ActivityInstance activity,

boolean deep)
throws FmcException

Parameters
activity Input. The activity instance of type Process whose process

instance monitor is to be retrieved.
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlMonitor Input. The block instance monitor containing the activity
instance of type Process.

monitor Output. The process instance monitor retrieved.

Return type
APIRET The result of calling this function/method - see return codes

below.
FmcjProcessInstanceMonitor*/ Handle/ ProcessInstanceMonitor

The process instance monitor respectively a pointer or handle
to the process instance monitor.

APIRET or the MQ Workflow result object can return the following codes
respectively the following FmcExceptions can be thrown:
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

Chapter 31. Block instance monitor actions 277

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the block
instance monitor.

FMC_ERROR_WRONG_KIND(501)
The specified activity instance is not of type Process.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This function/method refreshes the block instance monitor from the MQ
Workflow execution server (action call).

All information about the block instance monitor is retrieved.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also refreshed from the
server.

Note: Deep is currently not supported.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization

278 Programming Guide

v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX Not applicable - see “Chapter 34. Instance monitor actions” on
page 387.

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.BlockInstanceMonitor

C-language signature
APIRET FMC_APIENTRY FmcjBlockInstanceMonitorRefresh(

FmcjBlockInstanceMonitorHandle hdlMonitor,
bool deep)

C++ language signature
APIRET Refresh(bool deep= false)

Java signature
public abstract
void refresh(boolean deep) throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlMonitor Input. The handle of the block instance monitor to be
refreshed.

Return type
APIRET The result of calling this function/method - see return codes

below.

Chapter 31. Block instance monitor actions 279

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1) A parameter references an undefined location.

For example, the address of a handle is 0.
FMC_ERROR_EMPTY(122) The object has not yet been read from the

database, that is, does not yet represent a
persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is
not pointing to an object of the requested
type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the
server to which the connection should be
established is not defined in your profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred.
Contact your IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact
your IBM representative.

FMC_ERROR_TIMEOUT(14) Timeout has occurred.

280 Programming Guide

Chapter 32. Container activity implementation
functions/methods

An FmcjContainer or Container object represents a data container of a process
template, process instance, work item, activity implementation, or support
tool. A container can be a read-only input container or a read/write input or
output container.

The functions/methods defined on the container allow to access the values of
data members of a basic type (container leaves), or to get a substructure of a
container, a container element.

An FmcjContainer or Container object represents the common aspects of
read-only or read/write containers. In the C++ language, FmcjContainer is
thus the superclass of the FmcjReadOnlyContainer and
FmcjReadWriteContainer classes and provides for all common properties and
methods. In the Java language, Container is thus a superclass of the
ReadOnlyContainer and ReadWriteContainer classes and provides for all
common properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjContainer. That is, common
functions start with the prefix FmcjContainer; they are also defined starting
with the prefixes FmcjReadOnlyContainer and FmcjReadWriteContainer. In
ActiveX, inheritance is not supported. All methods are available on the
Container class.

The following sections describe the activity implementation functions which
are used for communication between an activity implementation or support
tool and a program execution agent. See “Container” on page 198 for a
complete list of functions/methods on containers.

InContainer()

This function/method retrieves the input container from the MQ Workflow
program execution agent (activity implementation call).

It can be used from within an activity implementation or support tool.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

© Copyright IBM Corp. 1993, 1999 281

Be an activity implementation or support tool

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx resepctively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long InContainer()

C-language signature
APIRET FMC_APIENTRY FmcjContainerInContainer(

FmcjReadOnlyContainerHandle * input)

C++ language signature
static APIRET InContainer(FmcjReadOnlyContainer & input)

Java signature
public abstract

ReadOnlyContainer ExecutionAgent.inContainer()
throws FmcException

Parameters
input Input/Output. The address of the input container handle respectively

the input container of the activity implementation or support tool to
be set.

Return type
long/ APIRET

The return code of calling this function/method - see return codes
below.

282 Programming Guide

ReadOnlyContainer
The input container of the activity implementation or support tool.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or support tool or the program execution
agent is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples

v For a C-language example see “Programming an executable (C-language)”
on page 677

v For a C++ example see “Programming an executable (C++)” on page 678

OutContainer()

This function/method retrieves the output container from the MQ Workflow
program execution agent (activity implementation call).

It can be used from within an activity implementation.

Usage notes

Chapter 32. Container activity implementation functions/methods 283

v See “Activity implementation functions/methods” on page 128 for general
information.

Authorization

Be an activity implementation

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long OutContainer()

C-language signature
APIRET FMC_APIENTRY FmcjContainerOutContainer(

FmcjReadWriteContainerHandle * output)

C++ language signature
static APIRET OutContainer(FmcjReadWriteContainer & output)

Java signature
public abstract

ReadWriteContainer ExecutionAgent.outContainer()
throws FmcException

Parameters
output Input/Output. The address of the output container handle

respectively the output container of the activity
implementation to be set.

284 Programming Guide

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ReadWriteContainer

The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot access an output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples

v For a C-language example see “Programming an executable (C-language)”
on page 677

v For a C++ example see “Programming an executable (C++)” on page 678

RemoteInContainer()

This function/method retrieves the input container from the MQ Workflow
program execution agent (activity implementation call).

Chapter 32. Container activity implementation functions/methods 285

It can be used from within a program started by an activity implementation
or support tool.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long RemoteInContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerRemoteInContainer(

char const * programID,
FmcjReadOnlyContainerHandle * input)

C++ language signature
static APIRET RemoteInContainer(

string const & programID,
FmcjReadOnlyContainer & input)

286 Programming Guide

Java signature
public abstract

ReadOnlyContainer ExecutionAgent.remoteInContainer(String programID)
throws FmcException

Parameters
input Input/Output. The address of the input container handle

respectively the input container of the activity implementation
or support tool to be set.

programID Input. The program identification by which the activity
implementation or support tool is known to the program
execution agent.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ReadOnlyContainer

The input container of the activity implementation or support
tool.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an input container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

Chapter 32. Container activity implementation functions/methods 287

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

RemoteOutContainer()

This function/method retrieves the output container from the MQ Workflow
program execution agent (activity implementation call).

It can be used from within a program started by an activity implementation.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long RemoteOutContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle * output)

288 Programming Guide

C++ language signature
static APIRET RemoteOutContainer(

string const & programID,
FmcjReadWriteContainer & output)

Java signature
public abstract

ReadWriteContainer ExecutionAgent.remoteOutContainer(String programID)
throws FmcException

Parameters
output Input/Output. The address of the output container handle

respectively the output container of the activity
implementation to be set.

programID Input. The program identification by which the activity
implementation is known to the program execution agent.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ReadWriteContainer

The output container of the activity implementation.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

Chapter 32. Container activity implementation functions/methods 289

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot access an output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

SetOutContainer()

This function/method returns the output container to the MQ Workflow
program execution agent (activity implementation call).

It can be used from within an activity implementation as often as required.
Note, however, that the output container is not returned to the MQ Workflow
execution server until the activity implementation ends. It is kept transiently
by the program execution agent.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

Be an activity implementation

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

290 Programming Guide

ActiveX signature
long SetOutContainer()

C-language signature
APIRET FMC_APIENTRY FmcjContainerSetOutContainer(

FmcjReadWriteContainerHandle const output)

C++ language signature
static APIRET SetOutContainer(FmcjReadWriteContainer const & output)

Java signature
public abstract
void ExecutionAgent.setOutContainer(ReadWriteContainer output)

throws FmcException

Parameters
output Input. The output container handle respectively the output

container of the activity implementation to be passed.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

Chapter 32. Container activity implementation functions/methods 291

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot set the output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Examples

v For a C-language example see “Programming an executable (C-language)”
on page 677

v For a C++ example see “Programming an executable (C++)” on page 678

SetRemoteOutContainer()

This function/method returns the output container to the MQ Workflow
program execution agent (activity implementation call).

It can be used from within a program started by an activity implementation as
often as required. Note, however, that the output container is not returned to
the MQ Workflow execution server until the activity implementation ends. It
is kept transiently by the program execution agent.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent.

API interface declarations

292 Programming Guide

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjccon.h respectively fmcjcrun.h

C++ fmcjpcon.hxx respectively fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionAgent

ActiveX signature
long SetRemoteOutContainer(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjContainerSetRemoteOutContainer(

char const * programID,
FmcjReadWriteContainerHandle const output)

C++ language signature
static APIRET SetRemoteOutContainer(

string const & programID,
FmcjReadWriteContainer const & output)

Java signature
public abstract
void ExecutionAgent.setRemoteOutContainer(String programID,

ReadWriteContainer output)
throws FmcException

Parameters
output Input. The output container handle respectively the output

container of the activity implementation to be passed.
programID Input. The program identification by which the activity

implementation is known to the program execution agent.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.

Chapter 32. Container activity implementation functions/methods 293

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NO_CTNR_ACCESS(1021)
The program does not have an output container.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_PROGRAM_EXECUTION(126)
The function/method was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
A support tool cannot set the output container.

FMC_ERROR_COMMUNICATION(13)
The specified program execution agent cannot be reached.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

294 Programming Guide

Chapter 33. Execution service actions

An FmcjExecutionService or ExecutionService object represents a session
between a user and an MQ Workflow execution server so that Runtime
services may be asked for.

The execution service object essentially provides for the basic
functions/methods to set up a communication path to the specified MQ
Workflow execution server and to establish the user session (log on), and
finish it (log off).

At FmcjExecutionService or ExecutionService construction or allocation time
the name of the MQ Workflow system and system group where the execution
server resides can be specified. Default values are taken from the current
user’s profile or from the configuration profile, in this sequence, when logging
on. The configuration where to search for the profiles can also be specified.

When the session to an execution server has been established, you can query
objects for which you are authorized; for example, you can query process
templates, process instances, or work items. The attributes of the queried
objects can then be read and further actions can be requested. For example,
once a process template has been queried, creation of a process instance can
be asked for.

When the execution service object is destructed or deallocated and still
represents an active session, logoff is automatically called (provided that there
is no other object referencing this session). It is, however, recommended that
logon and logoff calls are paired before the execution service object is
deallocated.

FmcjService or Service represents common properties of services.

In the C++ language, FmcjExecutionService is thus a subclass of the
FmcjService class and inherits all properties and methods. In the Java
language, ExecutionService is thus a subclass of the Service class and inherits
all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjService. That is, common
functions start with the prefix FmcjService; they are also defined starting with
the prefix FmcjExecutionService. In ActiveX, inheritance is not supported so
that all functions are explicitly defined on ExecutionService. Note, however,
that they are described as Service actions.

© Copyright IBM Corp. 1993, 1999 295

The following sections describe the actions which can be applied on an
execution service. See “Execution service” on page 212 for a complete list of
functions/methods.

CreateProcessInstanceList()

This function/method creates a process instance list on the MQ Workflow
execution server so that process instances can be grouped to one’s own taste
or for a group of users (action call).

A process instance list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

When the process instance list is to be created for public usage or for the
private usage of another user, that is, not the logged-on user itself, then the
logged-on user needs to have staff definition authorization.

A process instance list groups a set of process instances which have the same
characteristics. These characteristics are defined via search filters. The number
of process instances in the list can be restricted via a threshold which specifies
the maximum number of process instances to be returned to the client. That
threshold is applied after the process instance list has been sorted according to
sort criteria specified. Note that process instances are sorted on the server, that
is, the code page of the server determines the sort sequence.

The following rules apply for specifying a process instance list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

296 Programming Guide

A process instance list filter is specified as a character string containing a filter
on process instances (refer to “Appendix A. How to read the syntax
diagrams” on page 781).

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PILFilter

ÊÊ
NOT

PIPredicate
(PILFilter)

Ê

Ê

»

AND PIPredicate
OR NOT

(PILFilter)

ÊÍ

PIPredicate

Chapter 33. Execution service actions 297

ÊÊ

»

»

»

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

298 Programming Guide

PIString

ÊÊ ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

ÊÍ

PITimeStamp

ÊÊ LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A process instance list sort criterion is specified as a character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState
diagram.

PILOrderBy

ÊÊ »

,

PIString
PITimeStamp ASC

STATE DESC

ÊÍ

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

Chapter 33. Execution service actions 299

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long CreateProcessInstanceList(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessInstanceList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessInstanceListHandle * newList)

300 Programming Guide

C++ language signature
APIRET CreateProcessInstanceList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceList & newList) const

Java signature
public abstract
ProcessInstanceList createProcessInstanceList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the process instance list.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the process

instances to be contained in the process instance list.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the process instance list.
newList Input/Output. The newly created process instance list.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances

in the process instance list.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

process instances in the process instance list to be passed to
the client.

Chapter 33. Execution service actions 301

thresholdIsNull
Input. Indicates whether a threshold is provided for the list.

type Input. An indication whether a private or a public list is to be
created.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ProcessInstanceList

The newly created process instance list.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance list name does not comply with
the syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process instance list is
not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance list is not unique within the
specified type.

302 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Create a process instance list (ActiveX)” on
page 643.

v For a C-language example see “Create a process instance list (C-language)”
on page 644.

v For a C++ example see “Create a process instance list (C++)” on page 646.

v For a Java example see “Create a process instance list (Java)” on page 647.

CreateProcessTemplateList()

This function/method creates a process template list on the MQ Workflow
execution server so that process templates can be grouped to one’s own taste
or for a group of users (action call).

A process template list is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

When the process template list is to be created for public usage or for the
private usage of another user, that is, not the logged-on user itself, then the
logged-on user needs to have staff definition authorization.

A process template list groups a set of process templates which have the same
characteristics. These characteristics are defined via filters. The number of
process templates in the list can be restricted via a threshold which specifies

Chapter 33. Execution service actions 303

the maximum number of process templates to be returned to the client. That
threshold is applied after the process template list has been sorted according
to sort criteria specified. Process templates are sorted on the server, that is, the
code page of the server determines the sort sequence.

The following rules apply for specifying a process template list name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A process template list filter is specified as a character string containing a
filter on process templates (refer to “Appendix A. How to read the syntax
diagrams” on page 781).

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PTLFilter

ÊÊ
NOT

PTPredicate
(PTLFilter)

Ê

Ê

»

AND PTPredicate
OR NOT

(PTLFilter)

ÊÍ

304 Programming Guide

PTPredicate

ÊÊ

»

»

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PTString

ÊÊ CATEGORY
DESCRIPTION
NAME

ÊÍ

PTTimeStamp

ÊÊ LAST_MODIFICATION_TIME ÊÍ

TimeStamp

Chapter 33. Execution service actions 305

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A process template list sort criterion is specified as a character string.

Note: The default sort order is ascending.

PTLOrderBy

ÊÊ »

,

PTString
PTTimeStamp ASC

DESC

ÊÍ

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None or staff definition or be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

306 Programming Guide

ActiveX signature
long CreateProcessTemplateList(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateProcessTemplateList(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjProcessTemplateListHandle * newList)

C++ language signature
APIRET CreateProcessTemplateList(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateList & newList) const

Chapter 33. Execution service actions 307

Java signature
public abstract
ProcessTemplateList createProcessTemplateList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the process template list.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the process

templates in the process template list.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the process template list.
newList Input/Output. The newly created process template list.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates

in the process template list.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

process templates in the process template list.
thresholdIsNull

Input. Indicates whether a threshold is provided for the list.
type Input. An indication whether a private or a public list is to be

created.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ProcessTemplateList

The newly created process template list.

Return codes/ FmcException

308 Programming Guide

FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified process template list name does not comply
with the syntax rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the process template list is
not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process template list is not unique within the
specified type.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 33. Execution service actions 309

Examples

v For an ActiveX example see “Create a process instance list (ActiveX)” on
page 643.

v For a C-language example see “Create a process instance list (C-language)”
on page 644.

v For a C++ example see “Create a process instance list (C++)” on page 646.

v For a Java example see “Create a process instance list (Java)” on page 647.

CreateWorklist()

This function/method creates a worklist on the MQ Workflow execution
server so that work items or notifications can be grouped to one’s own taste
or for a group of users (action call).

A worklist is identified by:
v Its name, which is unique per type
v Its type, that is, an indicator whether the list is for public or private usage
v Its owner, that is, the owner of the list when the type is private

If the list is for public usage, any owner specification is ignored. If the list is
for private usage and no owner is provided, then the list is created for the
logged-on user.

When the worklist is to be created for public usage or for the private usage of
another user, that is, not the logged-on user itself, then the logged-on user
needs to have staff definition authorization.

A worklist groups a set of work items or notifications which have the same
characteristics. These characteristics are defined via filters. The number of
items in the worklist can be restricted via a threshold which specifies the
maximum number of items to be returned to the client. That threshold is
applied after the worklist has been sorted according to sort criteria specified.
Items are sorted on the server, that is, the code page of the server determines
the sort sequence.

The following rules apply for specifying a worklist name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : .

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

310 Programming Guide

The following rules apply for specifying a description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

A worklist filter is specified as a character string containing a filter on the
items in the worklist (refer to “Appendix A. How to read the syntax
diagrams” on page 781).

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

WLFilter

ÊÊ
NOT

WLPredicate-1
WLPredicate-2

(WLFilter)

Ê

Ê

»

AND WLPredicate-1
OR NOT WLPredicate-2

(WLFilter)

ÊÍ

WLPredicate-1

Chapter 33. Execution service actions 311

ÊÊ

»

»

TYPE IN ITType
NOT ,

(ITType)
OWNER BasicPredicate string

CURRENT_USER
OWNER BETWEEN string AND string

NOT CURRENT_USER CURRENT_USER
OWNER IN string

NOT CURRENT_USER
,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ÊÍ

WLPredicate-2

312 Programming Guide

ÊÊ

»

»

»

»

»

»

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

Chapter 33. Execution service actions 313

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

ITType

ÊÊ WORK_ITEM
PROCESS_NOTIFICATION
FIRST_NOTIFICATION
SECOND_NOTIFICATION

ÊÍ

314 Programming Guide

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

A worklist sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

Item types are sorted according to the sequence shown in the ITType
diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

WLOrderBy

ÊÊ »

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE
TYPE

ÊÍ

Usage notes
v See “Action functions/methods” on page 128 for general information.

Chapter 33. Execution service actions 315

Authorization

None or staff definition or be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long CreateWorklist(

BSTR name,
long type,
BSTR owner,
boolean ownerIsNull,
BSTR description,
boolean descriptionIsNull,
BSTR filter,
boolean filterIsNull,
BSTR sortCriteria,
boolean sortCriteriaIsNull,
long threshold,
boolean thresholdIsNull)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceCreateWorklist(

FmcjExecutionServiceHandle service,
char const * name,
enum FmcjPersistentListTypeOfList type,
char const * owner,
char const * description,
char const * filter,
char const * sortCriteria,
unsigned long * threshold,
FmcjWorklistHandle * newList)

316 Programming Guide

C++ language signature
APIRET CreateWorklist(

string const & name,
FmcjPersistentList::TypeOfList type,
string const * owner,
string const * description,
string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
FmcjWorklist & newList) const

Java signature
public abstract
WorkList createWorkList(

String name,
TypeOfList type,
String owner,
String description,
String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
description Input. A user-defined description of the worklist.
descriptionIsNull

Input. Indicates whether a description is provided for the list.
filter Input. The filter criteria which characterize the items in the

worklist.
filterIsNull Input. Indicates whether a filter is provided for the list.
name Input. A user-defined name for the worklist.
newList Input/Output. The newly created worklist.
owner Input. The owner of the list when the type is private. Ignored

for public lists.
ownerIsNull Input. Indicates whether a list owner is provided. No owner is

needed for public lists.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the items in the

worklist.
sortCriteriaIsNull

Input. Indicates whether sort criteria are provided for the list.
threshold Input. The threshold which defines the maximum number of

items in the worklist.

Chapter 33. Execution service actions 317

thresholdIsNull
Input. Indicates whether a threshold is provided for the list.

type Input. An indication whether a private or a public list is to be
created.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
WorkList The newly created worklist.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_DESCRIPTION(810)
The specified description is invalid.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_LIST_TYPE(813)
The specified list type is invalid.

FMC_ERROR_INVALID_NAME(134)
The specified worklist name does not comply with the syntax
rules.

FMC_ERROR_INVALID_USER(132)
The user ID specified for the owner of the list does not
conform to the syntax rules.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid; exceeds the maximum
possible value.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_OWNER_NOT_FOUND(812)
The person to become the owner of the worklist is not found.

FMC_ERROR_NOT_UNIQUE(121)
The name of the worklist is not unique within the specified
type.

318 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Create a process instance list (ActiveX)” on
page 643.

v For a C-language example see “Create a process instance list (C-language)”
on page 644.

v For a C++ example see “Create a process instance list (C++)” on page 646.

v For a Java example see “Create a process instance list (Java)” on page 647.

Logoff()

This function/method allows the application to finish the specified user
session with an MQ Workflow execution server (action call).

When logoff has been successfully executed, no further client/server calls are
accepted using this execution service object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

Chapter 33. Execution service actions 319

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long Logoff()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogoff(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET Logoff()

Java signature
public abstract
void logoff() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with the execution server.

Return type
long/ APIRET

The return code of calling this function/method - see return codes
below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

320 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 8. Examples and scenarios” on page 637.

Logon()

This function/method allows an application to establish a user session with
an MQ Workflow execution server (action call).

A successful Logon() is the prerequisite for using all other action and program
execution management functions/methods of the MQ Workflow API.

The user ID to log on with must be a registered MQ Workflow user.

When the execution server supports unified logon, an empty password and
user ID can be provided. The user ID to log on with is then retrieved from the
operating system, that is, logon must have been performed at the client. The
client is trusted and the execution server performs no password checking.

After a successful logon, the execution service object represents that single
user session. A further request to log on with a different user ID will be
rejected. You can, however, establish as many sessions as needed, even for the
same user, using different execution service objects, one for each session.

At logon time, you can specify your mode of operation. When you are
operating in a present session mode, the execution server can assume that you
are able to react to requests from activity implementations which might ask,
for example, for container data. Thus, activity instances that are started
automatically may be scheduled on your behalf - provided that you also
started a program execution agent.

Chapter 33. Execution service actions 321

Furthermore, the present mode indicates to MQ Workflow that the session can
handle unsolicited messages pushed by the execution server - see “The push
data access model” on page 18 for additional prerequisites.

There can only be a single present session for one user. The present here option
can be used, to force that other present session logoff and to newly establish a
present session here.

When you are operating in a default session mode, the execution server does
not assume that you are able to react. Activity instances are not automatically
started on your behalf and messages are not pushed to you. There can be
multiple sessions for one user with the default session mode.

The following enumeration types can be used to specify the session mode:

ActiveX SessionMode

C-language FmcjServiceSessionMode

C++ FmcjService::SessionMode

JAVA com.ibm.workflow.api.ServicePackage.SessionMode

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
Default Indicates that you want to operate in a default, nonpresent,

session mode.

ActiveX SessionMode_Default

C-language Fmc_SM_Default

C++ FmcjService::Default respectively
FmcjExecutionService::Default

JAVA SessionMode.DEFAULT
Present Indicates that you want to operate in a present session mode.

ActiveX SessionMode_Present

C-language Fmc_SM_Present

C++ FmcjService::Present respectively
FmcjExecutionService::Present

JAVA SessionMode.PRESENT
PresentHere Indicates that you want to operate in a present session mode.

If a session with the present session mode already exists, then
it should be logged off.

ActiveX SessionMode_PresentHere

C-language Fmc_SM_PresentHere

322 Programming Guide

C++ FmcjService::PresentHere respectively
FmcjExecutionService::PresentHere

JAVA SessionMode.PRESENT_HERE

At logon time, you can also specify whether you are back in case you are set
to be absent. When you are not absent you participate in work assignment;
otherwise no work items are assigned to you.

The following enumeration types can be used to deal with your absence:

ActiveX AbsenceIndicator

C-language FmcjServiceAbsenceIndicator

C++ FmcjService::AbsenceIndicator

JAVA com.ibm.workflow.api.ServicePackage.AbsenceIndicator

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet Indicates that no value is specified. This means that the

definition in your person record applies. Your absence is reset
or not according to the definition found there.

ActiveX AbsenceIndicator_NotSet

C-language Fmc_SA_NotSet

C++ FmcjService::NotSet respectively
FmcjExecutionService::NotSet

JAVA AbsenceIndicator.NOT_SET
Reset Indicates that your absence setting is to be reset; you are back.

ActiveX AbsenceIndicator_Reset

C-language Fmc_SA_Reset

C++ FmcjService::Reset respectively
FmcjExecutionService::Reset

JAVA AbsenceIndicator.RESET
Leave Indicates that your absence setting should stay as is; you are

either absent or not.

ActiveX AbsenceIndicator_Leave

C-language Fmc_SA_Leave

C++ FmcjService::Leave respectively
FmcjExecutionService::Leave

JAVA AbsenceIndicator.LEAVE

Chapter 33. Execution service actions 323

See logon; allows for the sepcification of the session mode and absence
setting.

Usage notes

v See “Action functions/methods” on page 128 for general information.

Authorization

Be a registered MQ Workflow user

Required connection

None

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long Logon (BSTR userID, BSTR password)

long LogonWithOptions(BSTR userID,
BSTR password,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceLogon (

FmcjExecutionServiceHandle service,
char const * userID,
char const * password,
enum FmcjServiceSessionMode sessionMode,
enum FmcjServiceAbsenceIndicator absenceIndicator)

324 Programming Guide

C++ language signature
APIRET Logon(string const & userID, string const & password)

APIRET Logon(
string const & userID,
string const & password,
SessionMode sessionMode = Present,
AbsenceIndicator absenceIndicator = NotSet)

Java signature
public abstract
void logon (String userID, String password)

public abstract
void logon2(String userID,

String password,
SessionMode sessionMode,
AbsenceIndicator absenceIndicator) throws FmcException

Parameters
absenceIndicator

Input. An indicator to state how to handle any absence set.
password Input. The password of the user. Can be empty for unified

logon.
service Input. A handle to the service object representing the session

to be established with the execution server.
sessionMode Input. The mode of the session to be established.
userID Input. The user ID of the user on whose behalf a logon is to

be made. Can be empty for unified logon.

Return type
long/ APIRET

The return code of calling this function/method - see return codes
below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

Chapter 33. Execution service actions 325

FMC_ERROR_ALREADY_LOGGED_ON(11)
The user is already logged on with present mode or the
execution service object already represents a different user
session.

FMC_ERROR_BACK_LEVEL_VERSION(504)
The version of the client is out-of-date, that is, not supported
by this server.

FMC_ERROR_INVALID_ABSENCE_SPEC(905)
An unknown absence setting has been specified.

FMC_ERROR_INVALID_SESSION_MODE(901)
An unknown session mode has been specified.

FMC_ERROR_NEWER_VERSION(505)
The version of the client is newer than the server version, that
is, not supported.

FMC_ERROR_PASSWORD(12)
Incorrect password.

FMC_ERROR_PROFILE(124)
Required user or workstation profile entries cannot be found.

FMC_ERROR_USERID_UNKNOWN(10)
No user ID registered with MQ Workflow has been provided.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

For examples see “Part 8. Examples and scenarios” on page 637.

Passthrough()

This function/method can be used by an activity implementation to establish
a user session with an MQ Workflow execution server from within this
program (activity-implementation call).

326 Programming Guide

When successfully executed, a session to the same execution server is set up
from where the work item implemented by this program was started; the user
on whose behalf the session is set up is the same one on whose behalf the
work item was started.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

Authorization

Activity implementation started by MQ Workflow

Required connection

None but active MQ Workflow program execution agent

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long Passthrough()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePassthrough(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET Passthrough()

Java signature
public abstract
void passthrough() throws FmcException

Chapter 33. Execution service actions 327

Parameters
service Input. A handle to the service object which is to represent the

session to be established with the execution server.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a support tool.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Programming an executable (C-language)”
on page 677.

v For a C++ example see “Programming an executable (C++)” on page 678.

328 Programming Guide

PEAShutDown()

This function/method allows to shutdown the program execution agent
associated to the logged on user (program execution management
function/method call).

The program execution agent is then shut down whether activity
implementations are still running or not. Be careful to wait for any running
activity implementations so that their result is correctly passed to the
execution server.

Usage notes
v See “Program execution management functions/methods” on page 130 for

general information.

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PEAShutDown()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePEAShutDown(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET PEAShutDown()

Chapter 33. Execution service actions 329

Java signature
public abstract
void programExecutionAgentShutDown() throws FmcException

Parameters
service Input. The handle of the execution service object to identify

the user and the program execution agent to be shutdown.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
A program execution agent for the logged-on user is not
running.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to issue this call from within an activity
implementation or support tool.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

330 Programming Guide

PEAStartUp()

This function/method is used to start a program execution agent associated to
the logged-on user (program-execution-management call).

The program execution agent is then started on the same node where this
calling application runs. A single program execution agent per user is
supported. All user’s work, whether from this session or from others, is send
to this program execution agent.

The program execution agent is not automatically shut down when the user
session(s) ends; it must be possible for the program execution agent to wait
for activity implementations to complete.

If you are told that the program execution agent already runs on a different
node, you can issue a shutdown and try again. Be careful to wait for any
running activity implementations.

Usage notes
v See “Program execution management functions/methods” on page 130 for

general information.

Authorization

Valid user session

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PEAStartUp()

Chapter 33. Execution service actions 331

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServicePEAStartUp(

FmcjExecutionServiceHandle service)

C++ language signature
APIRET PEAStartUp()

ActiveX signature
public abstract
void programExecutionAgentStartUp() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with the execution server.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_ALREADY_STARTED(111)
A program execution agent for the logged-on user is already
running.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to issue this call from within an activity
implementation or support tool.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

332 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

QueryActivityInstanceNotifications()

This function/method retrieves the activity instance notifications the user has
access to from the MQ Workflow execution server (action call).

In C and C++, any activity instance notifications retrieved are appended to the
supplied vector. If you want to read the current activity instance notifications
only, you have to clear the vector before you call this function/method. This
means that you should set the vector handle to 0 in the C-language,
respectively erase all elements of the vector in the C++ API.

The activity instance notifications to be retrieved can be characterized by a
filter. An activity instance notification filter is specified as a character string:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

AINFilter

ÊÊ
NOT

ITPredicate
(AINFilter)

Ê

Ê

»

AND ITPredicate
OR NOT

(AINFilter)

ÊÍ

Chapter 33. Execution service actions 333

ITPredicate

334 Programming Guide

ÊÊ

»

»

»

»

»

»

»

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

Chapter 33. Execution service actions 335

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

336 Programming Guide

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Activity instance notifications can be sorted. An activity instance notification
sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

AINOrderBy

ÊÊ »

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of activity instance notifications to be retrieved can be restricted
via a threshold which specifies the maximum number of activity instance
notifications to be returned to the client. That threshold is applied after the
activity instance notifications have been sorted according to the sort criteria
specified. Note that the activity instance notifications are sorted on the server,
that is, the code page of the server determines the sort sequence.

Chapter 33. Execution service actions 337

The primary information that is retrieved for each activity instance notification
is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

338 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryActivityInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryActivityInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjActivityInstanceNotification> & notifications) const

Java signature
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold)

throws FmcException

Parameters
filter Input. The filter criteria which characterize the activity

instance notifications to be retrieved.
notifications Input/Output. The qualifying vector of activity instance

notifications.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the activity instance

notifications found.
threshold Input. The threshold which defines the maximum number of

activity instance notifications to be returned to the client.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Chapter 33. Execution service actions 339

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of activity instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

v For a Java example see “Query process instances (Java)” on page 665.

340 Programming Guide

QueryItems()

This function/method retrieves the work items or notifications the user has
access to from the MQ Workflow execution server (action call).

In C and C++, any items retrieved are appended to the supplied vector. If you
want to read the current items only, you have to clear the vector before you
call this function/method. This means that you should set the handle to 0 in
the C-language respectively erase all elements of the vector in the C++ API.

The items to be retrieved can be characterized by a filter. An item filter is
specified as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

ItemFilter

ÊÊ
NOT

ITPredicate
(ItemFilter)

Ê

Ê

»

AND ITPredicate
OR NOT

(ItemFilter)

ÊÍ

ITPredicate

Chapter 33. Execution service actions 341

ÊÊ

»

»

»

»

»

»

»

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

342 Programming Guide

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

Chapter 33. Execution service actions 343

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Items can be sorted. An item sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

ItemOrderBy

ÊÊ »

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of items to be retrieved can be restricted via a threshold which
specifies the maximum number of items to be returned to the client. That
threshold is applied after the items have been sorted according to the sort
criteria specified. Note that the items are sorted on the server, that is, the code
page of the server determines the sort sequence.

The primary information that is retrieved for each item is:

344 Programming Guide

v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryItems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjItemHandle * items)

Chapter 33. Execution service actions 345

C++ language signature
APIRET QueryItems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjItem> & items) const

Java signature
public abstract
Item[] queryItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the items to be

retrieved.
items Input/Output. The qualifying vector of items.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the items found.
threshold Input. The threshold which defines the maximum number of

items to be returned to the client.

Return type
APIRET The return code of calling this function/method - see return

codes below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

346 Programming Guide

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of items to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

v For a Java example see “Query process instances (Java)” on page 665.

QueryProcessInstanceLists()

This function/method retrieves the process instance lists the user has access to
from the MQ Workflow execution server (action call).

In C and C++, any process instance lists retrieved are appended to the
supplied vector. If you want to read the current process instance lists only,
you have to clear the vector before you call this function/method. This means
that you should set the vector handle to 0 in the C-language, respectively
erase all elements of the vector in the C++ API. In ActiveX, the process
instance list array on the ExecutionService is updated.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Chapter 33. Execution service actions 347

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryProcessInstanceLists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceLists(

FmcjExecutionServiceHandle service,
FmcjProcessInstanceListVectorHandle * lists)

C++ language signature
APIRET QueryProcessInstanceLists(

vector<FmcjProcessInstanceList> & lists) const

Java signature
public abstract
ProcessInstanceList[] queryProcessInstanceLists() throws FmcException

Parameters
lists Input/Output. The vector of process instance lists.
service Input. A handle to the service object representing the session

with the execution server.

Return type

348 Programming Guide

long/ APIRET The return code of calling this function/method - see return
codes below.

ProcessInstanceList[]
The qualifying process instance lists.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance lists to be returned exceeds
the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Query worklists (ActiveX)” on page 652.

v For a C-language example see “Query worklists (C-language)” on page 653.

v For a C++ example see “Query worklists (C++)” on page 655.

v For a Java example see “Query worklists (Java)” on page 657.

QueryProcessInstanceNotifications()

This function/method retrieves the process instance notifications the user has
access to from the MQ Workflow execution server (action call).

Chapter 33. Execution service actions 349

In C and C++, any process instance notifications retrieved are appended to the
supplied vector. If you want to read the current process instance notifications
only, you have to clear the vector before you call this function/method. This
means that you should set the vector handle to 0 in the C-language
respectively erase all elements of the vector in the C++ API.

The process instance notifications to be retrieved can be characterized by a
filter. A process instance notification filter is specified as a character string.

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PINFilter

ÊÊ
NOT

ITPredicate
(PINFilter)

Ê

Ê

»

AND ITPredicate
OR NOT

(PINFilter)

ÊÍ

ITPredicate

350 Programming Guide

ÊÊ

»

»

»

»

»

»

»

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

Chapter 33. Execution service actions 351

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

352 Programming Guide

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Process instance notifications can be sorted. A process instance notification
sort criterion is specified as a character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

PINOrderBy

ÊÊ »

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of process instance notifications to be retrieved can be restricted
via a threshold which specifies the maximum number of process instance
notifications to be returned to the client. That threshold is applied after the
activity instance notifications have been sorted according to the sort criteria
specified. Note that the process instance notifications are sorted on the server,
that is, the code page of the server determines the sort sequence.

Chapter 33. Execution service actions 353

The primary information that is retrieved for each process instance notification
is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstanceNotifications(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceNotificationVectorHandle * notifications)

354 Programming Guide

C++ language signature
APIRET QueryProcessInstanceNotifications(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstanceNotification> & notifications) const

Java signature
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

instance notifications to be retrieved.
items Input/Output. The qualifying vector of process instance

notifications.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instance

notifications found.
threshold Input. The threshold which defines the maximum number of

process instance notifications to be returned to the client.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

Chapter 33. Execution service actions 355

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instance
notifications.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
instance notifications.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instance notifications to be returned
exceeds the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

v For a Java example see “Query process instances (Java)” on page 665.

QueryProcessInstances()

This function/method retrieves the current process instances the user has
access to from the MQ Workflow execution server (action call).

In C and C++, any process instances retrieved are appended to the supplied
vector. If you want to read the current process instances only, you have to

356 Programming Guide

clear the vector before you call this function/method. This means that you
should set the vector handle to 0 in the C-language respectively erase all
elements of the vector in the C++ API.

A filter on process instances is specified as a character string containing a
filter predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PIFilter

ÊÊ
NOT

PIPredicate
(PIFilter)

Ê

Ê

»

AND PIPredicate
OR NOT

(PIFilter)

ÊÍ

PIPredicate

Chapter 33. Execution service actions 357

ÊÊ

»

»

»

PIString BasicPredicate string
PIString BETWEEN string AND string

NOT
PIString IN string

NOT ,

(string)
PIString LIKE pattern

NOT
PIString IS NULL

NOT
PITimeStamp BasicPredicate TimeStamp
PITimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PITimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PITimeStamp IS NULL

NOT
STATE BasicPredicate PIState
STATE IN PIState

NOT ,

(PIState)
NAME BasicPredicate TOP_LEVEL_PROCESS_NAME

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

358 Programming Guide

PIString

ÊÊ ADMINISTRATOR
CATEGORY
DESCRIPTION
NAME
PARENT_PROCESS_NAME
TOP_LEVEL_PROCESS_NAME

ÊÍ

PITimeStamp

ÊÊ LAST_MODIFICATION_TIME
LAST_STATE_CHANGE_TIME

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Process instances can be sorted. A process instance sort criterion is specified as
a character string.

Note: The default sort order is ascending.

States are sorted according to the sequence shown in the PIState
diagram.

PIOrderBy

ÊÊ »

,

PIString
PITimeStamp ASC

STATE DESC

ÊÍ

The number of process instances to be retrieved can be restricted via a
threshold which specifies the maximum number of process instances to be
returned to the client. That threshold is applied after the process instances
have been sorted according to the sort criteria specified. Note that the process
instances are sorted on the server, that is, the code page of the server
determines the sort sequence.

Chapter 33. Execution service actions 359

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessInstances(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessInstanceVectorHandle * instances)

360 Programming Guide

C++ language signature
APIRET QueryProcessInstances(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessInstance> & instances) const

Java signature
public abstract
ProcessInstance[] queryProcessInstances(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

instances to be retrieved.
instances Input/Output. The qualifying vector of process instances.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process instances

found.
threshold Input. The threshold which defines the maximum number of

process instances to be returned to the client.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process instances.

Chapter 33. Execution service actions 361

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
instances.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process instances to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

v For a Java example see “Query process instances (Java)” on page 665.

QueryProcessTemplateLists()

This function/method retrieves the current process template lists the user has
access to from the MQ Workflow execution server (action call).

In C and C++, any process template lists retrieved are appended to the
supplied vector. If you want to read the current process template lists only,
you have to clear the vector before you call this function/method. This means
that you should set the vector handle to 0 in the C-language respectively erase
all elements of the vector in the C++ API. In ActiveX, the process template list
array on the ExecutionService is updated.

362 Programming Guide

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryProcessTemplateLists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplateLists(

FmcjExecutionServiceHandle service,
FmcjProcessTemplateListVectorHandle * lists)

C++ language signature
APIRET QueryProcessTemplateLists(

vector<FmcjProcessTemplateList> & lists) const

Java signature
public abstract
ProcessTemplateList[] queryProcessTemplateLists() throws FmcException

Parameters
lists Input/Output. The vector of process template lists.

Chapter 33. Execution service actions 363

service Input. A handle to the service object representing the session
with the execution server.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
ProcessTemplateList[]

The qualifying process template lists.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process template lists to be returned exceeds
the maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Query worklists (ActiveX)” on page 652.

v For a C-language example see “Query worklists (C-language)” on page 653.

v For a C++ example see “Query worklists (C++)” on page 655.

v For a Java example see “Query worklists (Java)” on page 657.

364 Programming Guide

QueryProcessTemplates()

This function/method retrieves the current process templates from the MQ
Workflow execution server (action call).

In C and C++, any process templates retrieved are appended to the supplied
vector. If you want to read the current process templates only, you have to
clear the vector before you call this function/method. This means that you
should set the vector handle to 0 in the C-language respectively erase all
elements of the vector in the C++ API.

A filter on process templates is specified as a character string containing a
filter predicate:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

PTFilter

ÊÊ
NOT

PTPredicate
(PTFilter)

Ê

Ê

»

AND PTPredicate
OR NOT

(PTFilter)

ÊÍ

PTPredicate

Chapter 33. Execution service actions 365

ÊÊ

»

»

PTString BasicPredicate string
PTString BETWEEN string AND string

NOT
PTString IN string

NOT ,

(string)
PTString LIKE pattern

NOT
PIString IS NULL

NOT
PTTimeStamp BasicPredicate TimeStamp
PTTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
PTTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
PTTimeStamp IS NULL

NOT

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

PTString

ÊÊ CATEGORY
DESCRIPTION
NAME

ÊÍ

PTTimeStamp

ÊÊ LAST_MODIFICATION_TIME ÊÍ

366 Programming Guide

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Process templates can be sorted. A process template sort criterion is specified
as a character string.

Note: The default sort order is ascending.

PTOrderBy

ÊÊ »

,

PTString
PTTimeStamp ASC

DESC

ÊÍ

The number of process templates to be retrieved can be restricted via a
threshold which specifies the maximum number of process templates to be
returned to the client. That threshold is applied after the process templates
have been sorted according to the sort criteria specified. Note that the process
templates are sorted on the server, that is, the code page of the server
determines the sort sequence.

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

Chapter 33. Execution service actions 367

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryProcessTemplates(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjProcessTemplateVectorHandle * templates)

C++ language signature
APIRET QueryProcessTemplates(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjProcessTemplate> & templates) const

Java signature
public abstract
ProcessTemplates[] queryProcessTemplates(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the process

templates to be retrieved.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the process templates

found.
templates Input/Output. The qualifying vector of process templates.
threshold Input. The threshold which defines the maximum number of

process templates to be returned to the client.

Return type

368 Programming Guide

APIRET
The return code of calling this function/method - see return codes
below.

ProcessTemplate[]
The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to process templates.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to process
templates.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of process templates to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

Chapter 33. Execution service actions 369

v For a Java example see “Query process instances (Java)” on page 665.

QueryWorkitems()

This function/method retrieves the work items the user has access to from the
MQ Workflow execution server (action call).

In C and C++, any work items retrieved are appended to the supplied vector.
If you want to read the current work items only, you have to clear the vector
before you call this function/method. This means that you should set the
vector handle to 0 in the C-language respectively erase all elements of the
vector in the C++ API.

The work items to be retrieved can be characterized by a filter. A work item
filter is specified as a character string:

Notes:

1. A string constant is to be enclosed in single quotes (’).
A pattern is a string constant in which the asterisk and the question mark
have special meanings.
v The question mark (?) represents any single character.
v The asterisk (*) represents a string of zero or more characters.
v The escape character is backslash (\) and must be used when the

pattern itself contains actual question marks or asterisks.
2. Optional specifications in the TimeStamp are set to 0 (zero) if not specified.

WIFilter

ÊÊ
NOT

ITPredicate
(WIFilter)

Ê

Ê

»

AND ITPredicate
OR NOT

(WIFilter)

ÊÍ

ITPredicate

370 Programming Guide

ÊÊ

»

»

»

»

»

»

»

OWNER BasicPredicate string
CURRENT_USER

OWNER BETWEEN string AND string
NOT CURRENT_USER CURRENT_USER

OWNER IN string
NOT CURRENT_USER

,

(string)
CURRENT_USER

OWNER LIKE pattern
NOT CURRENT_USER

OWNER IS NULL
NOT

ITString BasicPredicate string
ITString BETWEEN string AND string

NOT
ITString IN string

NOT ,

(string)
ITString LIKE pattern

NOT
ITString IS NULL

NOT
ITTimeStamp BasicPredicate TimeStamp
ITTimeStamp BETWEEN TimeStamp AND TimeStamp

NOT
ITTimeStamp IN TimeStamp

NOT ,

(TimeStamp)
ITTimeStamp IS NULL

NOT
PRIORITY BasicPredicate integer
PRIORITY BETWEEN integer AND integer

NOT
PRIORITY IN integer

NOT ,

(integer)
ACTIVITY_TYPE IN AIType

NOT ,

(AIType)
STATE BasicPredicate ITState
STATE IN ITState

NOT ,

(ITState)
PROCESS_STATE BasicPredicate PIState
PROCESS_STATE IN PIState

NOT ,

(PIState)

ÊÍ

Chapter 33. Execution service actions 371

AIType

ÊÊ PROCESS_ACTIVITY
PROGRAM_ACTIVITY

ÊÍ

BasicPredicate

ÊÊ =
>
>=
<
<=
<>

ÊÍ

ITState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
DISABLED
CHECKED_OUT
IN_ERROR
EXECUTED
PLANNING
FORCE_FINISHED
TERMINATING
SUSPENDING

ÊÍ

ITString

ÊÊ DESCRIPTION
NAME
PROCESS_CATEGORY
PROCESS_NAME

ÊÍ

ITTimeStamp

ÊÊ LAST_MODIFICATION_TIME
RECEIVED_TIME

ÊÍ

372 Programming Guide

PIState

ÊÊ READY
RUNNING
FINISHED
TERMINATED
SUSPENDED
TERMINATING
SUSPENDING

ÊÍ

TimeStamp

ÊÊ year - month - day
hours

: minutes
: seconds

ÊÍ

Work items can be sorted. A work item sort criterion is specified as a
character string.

Note: The default sort order is ascending.

Activity types are sorted according to the sequence shown in the
AIType diagram.

States are sorted according to the sequence shown in the ITState
respectively the PIState diagram.

WIOrderBy

ÊÊ »

,

ACTIVITY_TYPE
ITString ASC
ITTimeStamp DESC

OWNER
PRIORITY
PROCESS_STATE
STATE

ÊÍ

The number of work items to be retrieved can be restricted via a threshold
which specifies the maximum number of work items to be returned to the
client. That threshold is applied after the items have been sorted according to
the sort criteria specified. Note that the items are sorted on the server, that is,
the code page of the server determines the sort sequence.

Chapter 33. Execution service actions 373

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

374 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorkitems(

FmcjExecutionServiceHandle service,
char const * filter,
char const * sortCriteria,
unsigned long const * threshold,
FmcjWorkitemHandle * workitems)

C++ language signature
APIRET QueryWorkitems(

string const * filter,
string const * sortCriteria,
unsigned long const * threshold,
vector<FmcjWorkitem> & workitems) const

Java signature
public abstract
WorkItem[] queryWorkItems(

String filter,
String sortCriteria,
Integer threshold) throws FmcException

Parameters
filter Input. The filter criteria which characterize the work items to

be retrieved.
service Input. A handle to the service object representing the session

with the execution server.
sortCriteria Input. The sort criteria to be applied to the work items found.
threshold Input. The threshold which defines the maximum number of

work items to be returned to the client.
workitems Input/Output. The qualifying vector of work items.

Return type
APIRET The return code of calling this function/method - see return

codes below.
WorkItem[] The qualifying work items.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.

Chapter 33. Execution service actions 375

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is not applicable to work items.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are not applicable to work items.

FMC_ERROR_INVALID_THRESHOLD(807)
The specified threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of work items to be returned exceeds the
maximum size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query process instances (C-language)” on
page 663.

v For a C++ example see “Query process instances (C++)” on page 664.

v For a Java example see “Query process instances (Java)” on page 665.

QueryWorklists()

This function/method retrieves the worklists the user has access to from the
MQ Workflow execution server (action call).

376 Programming Guide

In C and C++, any worklists retrieved are appended to the supplied vector. If
you want to read the current worklists only, you have to clear the vector
before you call this function/method. This means that you should set the
vector handle to 0 in the C-language respectively erase all elements of the
vector in the C++ API. In ActiveX, the worklist array on the ExecutionService
array is updated.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long QueryWorklists()

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceQueryWorklists(

FmcjExecutionServiceHandle service,
FmcjWorklistVectorHandle * lists)

C++ language signature
APIRET QueryWorklists(vector<FmcjWorklist> & lists) const

Chapter 33. Execution service actions 377

Java signature
public abstract
WorkList[] queryWorkLists() throws FmcException

Parameters
lists Input/Output. The vector of worklists.
service Input. A handle to the service object representing the session

with the execution server.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.
WorkList[] The qualifying worklists.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_QRY_RESULT_TOO_LARGE(817)
The number of worklists to be returned exceeds the maximum
size allowed for query results - see the
MAXIMUM_QUERY_MESSAGE_SIZE definition in your
system, system group, or domain.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

378 Programming Guide

v For an ActiveX example see “Query worklists (ActiveX)” on page 652.

v For a C-language example see “Query worklists (C-language)” on page 653.

v For a C++ example see “Query worklists (C++)” on page 655.

v For a Java example see “Query worklists (Java)” on page 657.

Receive()

This function/method allows for receiving data pushed by an MQ Workflow
execution server or for receiving a response on an asynchronous request.

A correlation ID can be used to receive a specific response. To receive any
data sent, it must be a 0 (NULL) pointer or specify FMCJ_NO_CORRELID.
Note that the correlation ID is set on return provided that no 0 pointer is
passed. This means that it has to be reset for each request.

The timeout value specifies how long the application should wait at a
maximum for some data to arrive. If no data arrives, a timeout error is
indicated. A timeout value of -1 indicates an indefinite wait time.

If data is successfully received, the execution data contains the data sent and
can be used for updating objects or for creating new objects. See “Execution
data” on page 210 for functions/methods supported by the execution data
object.

The following enumeration types can be used to determine the contents of the
execution data received:

ActiveX not supported

C-language FmcjExecutionDataKindEnum

C++ FmcjExecutionData::KindEnum

JAVA not supported

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet(0) Indicates that nothing is known about the content of the

execution data.

C-language Fmc_DART_NotSet

C++ FmcjExecutionData::NotSet
Error(1) Indicates that the execution data describes an error returned

as the response on an asynchronous request.

C-language Fmc_DART_Error

Chapter 33. Execution service actions 379

C++ FmcjExecutionData::Error
Terminate(2) Indicates that receiving data can end.

C-language Fmc_DART_Terminate

C++ FmcjExecutionData::Terminate
ItemDeleted(1000)

Indicates that a work item, an activity instance notification, or
a process instance notification has been deleted.

C-language Fmc_DART_ItemDeleted

C++ FmcjExecutionData::ItemDeleted
Workitem(1001)

Indicates that a work item has been created or updated.

C-language Fmc_DART_Workitem

C++ FmcjExecutionData::Workitem
ActivityInstanceNotification(1002)

Indicates that an activity instance notification has been created
or updated.

C-language Fmc_DART_ActivityInstanceNotification

C++ FmcjExecutionData::ActivityInstanceNotification
ProcessInstanceNotification(1003)

Indicates that a process instance notification has been created
or updated.

C-language Fmc_DART_ProcessInstanceNotification

C++ FmcjExecutionData::ProcessInstanceNotification
ExecuteInstanceResponse(1100)

Indicates that the execution data contains the response on an
ExecuteProcessInstance() request.

C-language Fmc_DART_ExecuteInstanceResponse

C++ FmcjExecutionData::ExecuteInstanceResponse

Usage notes

v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server (present session mode)

380 Programming Guide

API interface declarations

ActiveX not applicable

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA not supported

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID,
FmcjExecutionDataHandle * data,
signed long timeout)

C++ language signature
APIRET Receive(FmcjCorrelID * correlID,

FmcjExecutionData & data,
signed long timeout) const

Parameters
correlID Input/Output. The correlation ID by which this data can be

correlated to a previous request. Must be a NULL (0) pointer
or point to Fmcj_No_CorrelID if you want to receive any data.

data Output. The data sent by an MQ Workflow execution server.
service Input. A handle to the service object representing the present

session with the execution server.
timeout Input. The maximum time period in milliseconds to wait for

some data to arrive.

Return type
APIRET The return code of calling this function/method - see return

codes below.

Return codes
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

Chapter 33. Execution service actions 381

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

RemotePassthrough()

This function/method can be used by an application program to establish a
user session with an MQ Workflow execution server from within this program
(activity-implementation call).

An activity implementation started by an MQ Workflow program execution
agent can request services from that program execution agent without further
identification. It is known by the program execution agent.

When that activity implementation decides to distribute work among other
programs and starts those programs as separate operating system processes,
then those processes are unknown by the program execution agent and cannot
request services. The activity implementation can, however, ask the program
execution agent for its program identification and pass that identification to
the programs started. That is, the programs started receive the authorization
to talk to the program execution agent as long as the actual activity
implementation is alive.

The started programs can then request services from the program execution
agent by themselves by specifying this program identification.

When successfully executed, a session to the same execution server is set up
from where the original work item was started; the user on whose behalf the
session is set up is the same one on whose behalf the original work item was
started.

Usage notes
v See “Activity implementation functions/methods” on page 128 for general

information.

382 Programming Guide

Authorization

Valid program identification

Required connection

None but active MQ Workflow program execution agent

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long RemotePassthrough(BSTR programID)

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceRemotePassthrough(

FmcjExecutionServiceHandle service)
char const * programID)

C++ language signature
APIRET RemotePassthrough(string const & programID)

Java signature
public abstract
void remotePassthrough(String programID) throws FmcException

Parameters
programID Input. The program identification by which the actually

started activity implementation is known to the program
execution agent.

service Input. A handle to the service object representing the session
to be established with the execution server.

Chapter 33. Execution service actions 383

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_PROGRAMID(135)
The program identification is invalid.

FMC_ERROR_PROGRAM_EXECUTION(126)
Passthrough was not called from within an activity
implementation or the program execution agent is not active.

FMC_ERROR_TOOL_FUNCTION(128)
Passthrough cannot be called from a program started by a
support tool.

FMC_ERROR_USERID_UNKNOWN(10)
The user who started the work item does no longer exist.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

TerminateReceive()

This function/method causes information to be placed into the client input
queue to tell that receiving data from an MQ Workflow execution server can
end.

In this way, the receiving part of the application gets to know that receiving
data can end. Any resulting actions are up to the application.

384 Programming Guide

When the correlID parameter points to some buffer initialized to
FMCJ_NO_CORRELID, then a correlation ID is returned which can be used to
explicitly receive this data.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

None

API interface declarations

ActiveX not supported

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA not supported

C-language signature
APIRET FMC_APIENTRY FmcjExecutionServiceTerminateReceive(

FmcjExecutionServiceHandle service,
FmcjCorrelID * correlID)

C++ language signature
APIRET TerminateReceive(FmcjCorrelID * correlID = 0)

Parameters
correlID Input/Output. The correlation ID by which this request can be

correlated.
service Input. A handle to the service object.

Return type
APIRET The return code of calling this function/method - see return

codes below.

Return codes
FMC_OK(0) The function/method completed successfully.

Chapter 33. Execution service actions 385

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_CORRELATION_ID(506)
The correlation ID passed is not FMCJ_NO_CORRELID.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

386 Programming Guide

Chapter 34. Instance monitor actions

An InstanceMonitor object represents a monitor for a process instance, an
activity instance of type Block, or an activity instance of type Process in the
ActiveX API.

The following sections describe the actions which can be applied on an
instance monitor. See “Instance monitor” on page 222 for a complete list of
functions/methods.

ObtainInstanceMonitor()

This function/method retrieves the instance monitor for the specified activity
instance from the MQ Workflow execution server (action call).

The specified activity instance must be of type Block or of type Process and be
part of this instance monitor.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

C-language not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

© Copyright IBM Corp. 1993, 1999 387

C++ not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

JAVA not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

ActiveX signature
InstanceMonitor *
ObtainInstanceMonitor(long * returnCode,

ActivityInstance * activity,
boolean deep)

Parameters
activity Input. The activity instance whose instance monitor is to be

retrieved.
deep Input. An indicator whether monitors of activity instances of

type Block are also to be retrieved. Note that deep is currently
not supported.

returnCode Input/Output. The result of calling this function/method - see
return codes below.

Return type
InstanceMonitor*

The instance monitor retrieved.

Return codes
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The specified activity instance is not described by the instance
monitor or does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

388 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This function/method refreshes the instance monitor from the MQ Workflow
execution server (action call).

All information about the instance monitor is retrieved.

When the deep option is specified, then activity instances of type Block are
resolved, that is, their instance monitors are also refreshed from the server.

Note: Deep is currently not supported.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow 3.1

Chapter 34. Instance monitor actions 389

C-language not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

C++ not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

JAVA not applicable - see “Chapter 31. Block instance monitor
actions” on page 273

C++ language signature
long Refresh(boolean deep)

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

Return type
long The result of calling this function/method - see return codes

below.

Return codes
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

390 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 34. Instance monitor actions 391

392 Programming Guide

Chapter 35. Item actions

An FmcjItem or Item object represents a work item or an activity instance
notification or a process instance notification.

An FmcjItem or Item object represents the common aspects of work items and
notifications. In the C++ language, FmcjItem is thus the superclass of the
FmcjWorkitem, FmcjActivityInstanceNotification, and
FmcjProcessInstanceNotification classes and provides for all common
properties and methods. In the Java language, Item is thus a superclass of the
WorkItem, ActivityInstanceNotification, and ProcessInstanceNotification
classes and provides for all common properties and methods. Similarly, in the
C-language, common implementations of functions are taken from FmcjItem.
That is, common functions start with the prefix FmcjItem; they are also
defined starting with the prefixes FmcjWorkitem,
FmcjActivityInstanceNotification, and FmcjProcessInstanceNotification. In
ActiveX, inheritance is not supported so that all methods are explicitly
defined on the appropriate classes. Note, however, that they are described
here as Item actions.

An item is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on an item.
See “Item” on page 223 for a complete list of functions/methods.

Delete()

This function/method deletes the specified item from the MQ Workflow
execution server (action call).

A notification can always be deleted. A work item must be in states Ready,
Finished, ForceFinished, or Disabled. If the work item is in the Ready state and
represents the only work associated with the activity instance and when the
associated process instance is not Terminating or Terminated, then deletion is
rejected.

There are no impacts on the transient representation of your item; in C and
C++, you have to destruct or deallocate the transient object when it is no
longer needed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

© Copyright IBM Corp. 1993, 1999 393

Authorization

Be the item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.Delete()

long ProcessInstanceNotification.Delete()

long Workitem.Delete()

C-language signature
APIRET FMC_APIENTRY FmcjItemDelete(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationDelete FmcjItemDelete
#define FmcjProcessInstanceNotificationDelete FmcjItemDelete
#define FmcjWorkitemDelete FmcjItemDelete

C++ language signature
APIRET Delete()

Java signature
public abstract
void delete() throws FmcException

Parameters
hdlItem Input. The handle of the item to be deleted.

394 Programming Guide

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_ALLOWED(507)
The item represents the only work associated with the activity
instance.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainProcessInstanceMonitor()/ ObtainInstanceMonitor

This function/method retrieves the process instance monitor for the process
instance the item is part of from the MQ Workflow execution server (action
call).

Chapter 35. Item actions 395

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the
server.

Note: Deep is currently not supported.

In C++, when the process instance monitor object to be initialized is not
empty, that object is destructed before the new one is assigned. In C, the
application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to
some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Process authorization
v Process administration authorization
v Be the process administrator
v Be the process creator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

396 Programming Guide

ActiveX signature
InstanceMonitor*
ActivityInstanceNotification.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

InstanceMonitor*
ProcessInstanceNotification.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

InstanceMonitor*
Workitem.ObtainInstanceMonitor(

long * returnCode,
boolean deep)

C-language signature
APIRET FMC_APIENTRY FmcjItemObtainProcessInstanceMonitor(

FmcjItemHandle hdlItem,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

#define FmcjActivityInstanceNotificationObtainProcessInstanceMonitor
FmcjItemObtainProcessInstanceMonitor

#define FmcjProcessInstanceNotificationObtainProcessInstanceMonitor
FmcjItemObtainProcessInstanceMonitor

#define FmcjWorkitem
FmcjItemObtainProcessInstanceMonitor

C++ language signature
APIRET ObtainProcessInstanceMonitor(

FmcjProcessInstanceMonitor & monitor,
bool deep= false) const

Java signature
public abstract
ProcessInstanceMonitor obtainProcessInstanceMonitor(

boolean deep) throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

Chapter 35. Item actions 397

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlItem Input. The item whose process instance monitor is to be
retrieved.

monitor Input/Output. The address of the handle to the process
instance monitor respectively the process instance monitor
object to be set.

returnCode Input/Output. The return code of calling this method - see
return codes below.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstanceMonitor*/ ProcessInstanceMonitor

A pointer to the process instance monitor or the process
instance monitor the item is a part of.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

398 Programming Guide

ProcessInstance()

This function/method retrieves the process instance the item is a part of from
the MQ Workflow execution server (action call).

All information about the process instance, primary and secondary, is
retrieved.

In C++, when the process instance object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance handle already points to some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

Chapter 35. Item actions 399

ActiveX signature
ProcessInstance*
ActivityInstanceNotification.ProcessInstance(long * returnCode)

ProcessInstancer*
ProcessInstanceNotification.ProcessInstance(long * returnCode)

ProcessInstance*
Workitem.ProcessInstance(long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjItemProcessInstance(

FmcjItemHandle hdlItem,
FmcjProcessInstanceHandle * instance)

#define FmcjActivityInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjProcessInstanceNotificationProcessInstance
FmcjItemProcessInstance

#define FmcjWorkitemProcessInstance
FmcjItemProcessInstance

C++ language signature
APIRET ProcessInstance(FmcjProcessInstance & instance) const

Java signature
public abstract
ProcessInstance processInstance() throws FmcException

Parameters
hdlItem Input. The handle of the item object to be queried.
instance Input/Output. The process instance object to be retrieved

(initialized).
returnCode Input/Output. The return code of calling this method - see

return codes below.

Return type
APIRET The return code of calling this function/method - see return

codes below.

400 Programming Guide

ProcessInstance*/ ProcessInstance
A pointer to the process instance or the process instance the
item is a part of.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This function/method refreshes the item from the MQ Workflow execution
server (action call).

All information about the item, primary and secondary, is retrieved.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Chapter 35. Item actions 401

One of:

v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.Refresh()

long ProcessInstanceNotification.Refresh()

long Workitem.Refresh()

C-language signature
APIRET FMC_APIENTRY FmcjItemRefresh(FmcjItemHandle hdlItem)

#define FmcjActivityInstanceNotificationRefresh FmcjItemRefresh
#define FmcjProcessInstanceNotificationRefresh FmcjItemRefresh
#define FmcjWorkitemRefresh FmcjItemRefresh

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters

402 Programming Guide

hdlItem Input. The handle of the item object to be refreshed.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This function/method sets the description of the item to the specified value
(action call).

If no description is provided, the description of the item is reset to the
description of the associated activity instance or process instance.

The following rules apply for specifying an item description:

Chapter 35. Item actions 403

v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.SetDescription(

BSTR description,
boolean isNull)

long ProcessInstanceNotification.SetDescription(
BSTR description,
boolean isNull)

long Workitem.SetDescription(BSTR description,
boolean isNull)

404 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjItemSetDescription(

FmcjItemHandle hdlItem,
char const * description)

#define FmcjActivityInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjProcessInstanceNotificationSetDescription
FmcjItemSetDescription

#define FmcjWorkitemSetDescription
FmcjItemSetDescription

C++ language signature
APIRET SetDescription(string const * description)

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters
description Input. The description or a pointer to the description to be set;

can be a NULL (0) pointer or null object (Java).
hdlItem Input. The handle of the item object whose description is to be

set.
isNull Input. If set to True, indicates that any description of the item

is to be reset.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 35. Item actions 405

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetName()

This function/method sets the name of the item (action call).

If no name is provided, the name of the item is reset to its default, the activity
instance respectively the process instance name.

The following rules apply for specifying a work item or activity instance
notification name:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale,

except the following:
! " ' () * + , - . / : ; < = > [\] |

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

v You cannot use leading digits.
v You cannot use keywords AND, OR, NOT, IS, NULL, MOD, LOWER,

UPPER, VALUE, SUBSTR, _BLOCK

406 Programming Guide

The following rules apply for specifying a process instance notification name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

ActiveX signature
long ActivityInstanceNotification.SetName(BSTR name)

long ProcessInstanceNotification.SetName(BSTR name)

long Workitem.SetName(BSTR name)

C-language signature
APIRET FMC_APIENTRY FmcjItemSetName(FmcjItemHandle hdlItem,

char const * name)

#define FmcjActivityInstanceNotificationSetName FmcjItemSetName
#define FmcjProcessInstanceNotificationSetName FmcjItemSetName
#define FmcjWorkitemSetName FmcjItemSetName

Chapter 35. Item actions 407

C++ language signature
APIRET SetName(string const * name)

Java signature
public abstract
void setName(String name) throws FmcException

Parameters
hdlItem Input. The handle of the item to be dealt with.
name Input. The new name of the item; can be a NULL (0) pointer

or null object (Java).

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

408 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Transfer()

This function/method transfers an item to the specified user (action call).

Notifications can always be transferred. A work item must be in states Ready,
InError, Executed, Suspending, or Suspended and the associated process instance
in states Running, Suspending, or Suspended.

The user who transfers the item must be the owner of the item or have work
item authorization for the owner of the item and have work item
authorization for the new owner.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:
v Workitem authority for the persons to transfer from/to
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Item

Chapter 35. Item actions 409

ActiveX signature
long ActivityInstanceNotification.Transfer(BSTR userID)

long ProcessInstanceNotification.Transfer(BSTR userID)

long Workitem.Transfer(BSTR userID)

C-language signature
APIRET FMC_APIENTRY FmcjItemTransfer(FmcjItemHandle hdlItem,

char const * userID)

#define FmcjActivityInstanceNotificationTransfer FmcjItemTransfer
#define FmcjProcessInstanceNotificationTransfer FmcjItemTransfer
#define FmcjWorkitemTransfer FmcjItemTransfer

C++ language signature
APIRET Transfer(string const & userID)

Java signature
public abstract
void transfer(String userID) throws FmcException

Parameters
hdlItem Input. The handle of the item object to be transferred.
userID Input. The ID of the user to whom the item is to be

transferred.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

410 Programming Guide

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The item does no longer exist.

FMC_ERROR_NEW_OWNER_ABSENT(110)
The user to whom the item is to be transferred is absent, that
is, the item is not transferred.

FMC_ERROR_NEW_OWNER_NOT_FOUND(107)
The user to whom the item is to be transferred is unknown.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_OWNER_ALREADY_ASSIGNED(133)
The user to whom the item is to be transferred does already
have that item.

FMC_ERROR_WRONG_STATE(120)
The item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 35. Item actions 411

412 Programming Guide

Chapter 36. Persistent list actions

An FmcjPersistentList or PersistentList object represents a set of objects of the
same type the user is authorized for. Moreover, all objects which are accessible
through this list have the same characteristics. These characteristics are
specified by a filter. Additionally, sort criteria can be applied and, after that, a
threshold to restrict the number of objects to be transferred from a server to
the client.

As the name indicates, the list definition is stored persistently. The objects
contained in the list are, however, assembled dynamically when they are
queried.

A persistent list can be a process template list, a process instance list, or a
worklist.

An FmcjPersistentList or PersistentList object represents the common aspects
of lists. In the C++ language, FmcjPersistentList is thus the superclass of the
FmcjProcessInstanceList, FmcjProcessTemplateList, and FmcjWorklist classes
and provides for all common properties and methods. In the Java language,
PersistentList is thus a superclass of the ProcessInstanceList,
ProcessTemplateList, and Worklist classes and provides for all common
properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefixes FmcjProcessInstanceList,
FmcjProcessTemplateList, and FmcjWorklist. In ActiveX, inheritance is not
supported so that all methods are explicitly defined on the appropriate
classes. Note, however, that they are described here as PersistentList actions.

A persistent list is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

The following sections describe the actions which can be applied on a
persistent list. See “Persistent list” on page 226 for a complete list of
functions/methods.

Delete()

This function/method deletes the specified persistent list from the MQ
Workflow execution server (action call).

© Copyright IBM Corp. 1993, 1999 413

The transient representation of the persistent list is not impacted; in C and
C++, you have to destruct or deallocate the transient object when it is no
longer needed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.Delete()

long ProcessTemplateList.Delete()

long Worklist.Delete()

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListDelete(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListDelete FmcjPersistentListDelete
#define FmcjProcessTemplateListDelete FmcjPersistentListDelete
#define FmcjWorklistDelete FmcjPersistentListDelete

414 Programming Guide

C++ language signature
APIRET Delete()

Java signature
public abstract
void delete() throws FmcException

Parameters
hdlList Input. The handle of the persistent list to be deleted.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

Chapter 36. Persistent list actions 415

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh

This function/method refreshes the persistent list from the MQ Workflow
execution server (action call).

All information about the persistent list is retrieved, for example, its
description, its filter, or its sort criteria.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.Refresh()

long ProcessTemplateList.Refresh()

long Worklist.Refresh()

416 Programming Guide

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListRefresh(FmcjPersistentListHandle hdlList)

#define FmcjProcessInstanceListRefresh FmcjPersistentListRefresh
#define FmcjProcessTemplateListRefresh FmcjPersistentListRefresh
#define FmcjWorklistRefresh FmcjWorklistRefresh

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlList Input. The handle of the persistent list to be refreshed.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 36. Persistent list actions 417

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This function/method sets the description of the persistent list to the specified
value (action call).

If no description is provided, the description of the persistent list is erased.

The following rules apply for specifying a persistent list description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

418 Programming Guide

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetDescription(

BSTR description,
boolean isNull)

long ProcessTemplateList.SetDescription(
BSTR description,
boolean isNull)

long Worklist.SetDescription(
BSTR description,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetDescription(FmcjPersistentListHandle hdlList,

char const * description)

#define FmcjProcessInstanceListSetDescription
FmcjPersistentListSetDescription

#define FmcjProcessTemplateListSetDescription
FmcjPersistentListSetDescription

#define FmcjWorklistSetDescription
FmcjPersistentListSetDescription

C++ language signature
APIRET SetDescription(string const * description)

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters
description Input. The description or a pointer to the description to be set;

can be a NULL (0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose

description is to be set.
isNull Input. If set to True, indicates that any description is to be

removed.

Chapter 36. Persistent list actions 419

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetFilter()

This function/method sets the filter of the persistent list to the specified value
(action call).

If no filter is provided, the current filter of the persistent list is erased. This
means that all objects authorized for will be selected via this list.

Refer to the appropriate list creation for a description of a valid filter syntax.

Usage notes

420 Programming Guide

v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetFilter(

BSTR filter,
boolean isNull)

long ProcessTemplateList.SetFilter(
BSTR filter,
boolean isNull)

long Worklist.SetFilter(BSTR filter,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetFilter(FmcjPersistentListHandle hdlList,

char const * filter)

#define FmcjProcessInstanceListSetFilter FmcjPersistentListSetFilter
#define FmcjProcessTemplateListSetFilter FmcjPersistentListSetFilter
#define FmcjWorklistSetFilter FmcjPersistentListSetFilter

Chapter 36. Persistent list actions 421

C++ language signature
APIRET SetFilter(string const * filter)

Java signature
public abstract
void setFilter(String filter) throws FmcException

Parameters
filter Input. The filter or a pointer to the filter to be set; can be a

NULL (0) pointer or null object (Java).
hdlList Input. The handle of the persistent list object whose filter is to

be set.
isNull Input. If set to True, indicates that any filter is to be removed.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_FILTER(125)
The specified filter is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

422 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetSortCriteria()

This function/method sets the sort criteria of the persistent list to the
specified value (action call).

If no sort criteria are provided, the current sort criteria of the persistent list
are erased. This means that objects selected via this list will not be sorted.

Refer to the appropriate list creation for a description of a valid sort criteria
syntax.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

Chapter 36. Persistent list actions 423

ActiveX signature
long ProcessInstanceList.SetSortCriteria(

BSTR sortCriteria,
boolean isNull)

long ProcessTemplateList.SetSortCriteria(
BSTR sortCriteria,
boolean isNull)

long Worklist.SetSortCriteria(
BSTR sortCriteria,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetSortCriteria(FmcjPersistentListHandle hdlList,

char const * sortCriteria)

#define FmcjProcessInstanceListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjProcessTemplateListSetSortCriteria
FmcjPersistentListSetSortCriteria

#define FmcjWorklistSetSortCriteria
FmcjPersistentListSetSortCriteria

C++ language signature
APIRET SetSortCriteria(string const * sortCriteria)

Java signature
public abstract
void setSortCriteria(String sortCriteria) throws FmcException

Parameters
hdlList Input. The handle of the persistent list object whose sort

criteria are to be set.
sortCriteria Input. The sort criteria or a pointer to the sort criteria to be

set; can be a NULL (0) pointer or null object (Java).
isNull Input. If set to True, indicates that any sort criteria are to be

removed.

424 Programming Guide

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_SORT(808)
The specified sort criteria are invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetThreshold()

This function/method sets the threshold of the persistent list to the specified
value (action call).

If no threshold is provided, the threshold of the persistent list is erased. This
means that all objects contained in the list will be provided when queried.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Chapter 36. Persistent list actions 425

Authorization

One of:

v Be the owner of the list
v Staff definition
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.PersistentList

ActiveX signature
long ProcessInstanceList.SetThreshold(

long threshold,
boolean isNull)

long ProcessTemplateList.SetThreshold(
long threshold,
boolean isNull)

long Worklist.SetThreshold(
long threshold,
boolean isNull)

C-language signature
APIRET FMC_APIENTRY
FmcjPersistentListSetThreshold(FmcjPersistentListHandle hdlList,

unsigned long const * threshold)

#define FmcjProcessInstanceListSetThreshold FmcjPersistentListSetThreshold
#define FmcjProcessITemplateListSetThreshold FmcjPersistentListSetThreshold
#define FmcjWorklistSetThreshold FmcjPersistentListSetThreshold

426 Programming Guide

C++ language signature
APIRET SetThreshold(unsigned long const * threshold)

Java signature
public abstract
void setThreshold(Integer threshold) throws FmcException

Parameters
hdlList Input. The handle of the persistent list object whose threshold

is to be set.
threshold Input. The threshold or a pointer to the threshold to be set;

can be a NULL (0) pointer or null object (Java).
isNull Input. If set to True, indicates that any threshold is to be

erased.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The persistent list does no longer exist.

FMC_ERROR_INVALID_THRESHOLD(807)
The threshold is invalid.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

Chapter 36. Persistent list actions 427

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

428 Programming Guide

Chapter 37. Person actions

An FmcjPerson or a Person object represents an MQ Workflow user. A person
is uniquely identified by its user identification.

The following sections describe the actions which can be applied on a person.
See “Person” on page 228 for a complete list of functions/methods.

Refresh()

This function/method refreshes the person from the MQ Workflow execution
server (action call).

All information about the person, primary and secondary, is retrieved.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long Refresh()

© Copyright IBM Corp. 1993, 1999 429

C-language signature
APIRET FMC_APIENTRY FmcjPersonRefresh(FmcjPersonHandle hdlPerson)

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlPerson Input. The handle of the person to be refreshed.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

430 Programming Guide

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetAbsence()

This function/method sets the absence indication of the logged-on user to the
specified value (action call).

When a person is absent, this person does not participate in staff resolution,
that is, this person does not get assigned any work items.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long SetAbsence(boolean newValue)

C-language signature
APIRET FMC_APIENTRY FmcjPersonSetAbsence(

FmcjPersonHandle hdlPerson,
bool newValue)

Chapter 37. Person actions 431

C++ language signature
APIRET SetAbsence(bool newValue)

Java signature
public abstract
void setAbsence(boolean newValue) throws FmcException

Parameters
hdlPerson Input. The handle of the person object whose absence is to be

set.
newValue Input. True, if the person is denoted as absent, else false.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

432 Programming Guide

SetSubstitute()

This function/method sets the substitute of the logged-on user (action call).

The substitute must be a registered MQ Workflow user ID other than the
logged-on user. If no substitute is provided, the substitute of the logged-on
user is erased.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Person

ActiveX signature
long SetSubstitute(BSTR substitute, boolean isNull)

C-language signature
APIRET FMC_APIENTRY FmcjPersistentListSetSubstitute(

FmcjPersonHandle hdlPerson,
char const * substitute)

C++ language signature
APIRET SetSubstitute(string const * substitute)

Chapter 37. Person actions 433

Java signature
public abstract
void setSubstitute(String substitute) throws FmcException

Parameters
hdlPerson Input. The handle of the person object whose substitute is to

be set.
isNull Input. If set to True, any substitute specification is removed.
substitute Input. The substitute or a pointer to the substitute to be set;

can be a NULL (0) pointer or null object (Java).

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_INVALID_USER(132)
The specified user ID does not correspond to the syntax rules
or the user cannot be logged on and be the substitute at the
same time.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_USERID_UNKNOWN(10)
The specified user ID is not a registered MQ Workflow user
ID.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

434 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 37. Person actions 435

436 Programming Guide

Chapter 38. Process instance actions

An FmcjProcessInstance or a ProcessInstance object represents an instance of a
process template. A process instance is uniquely identified by its object
identifier or by its name. Depending on the keep option when the process
instance was created, the unique process instance name has been supplied by
the user or has been generated by MQ Workflow.

The following diagram provides an overview on the possible process instance
states and the actions which are allowed in those states, provided that the
appropriate authority has been granted:

The following sections describe the actions which can be applied on a process
instance. See “Process instance” on page 233 for a complete list of
functions/methods.

Delete()

This function/method deletes the specified process instance from the MQ
Workflow execution server (action call).

Figure 8. Process instance states

© Copyright IBM Corp. 1993, 1999 437

The process instance must be a top-level process and in states Ready, Finished,
or Terminated. The creator can delete the process instance as long as it has not
been started.

There are no impacts on your transient representation of the process instance;
in C and C++, you have to destruct or deallocate the transient object when it
is no longer needed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Delete()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceDelete(FmcjProcessInstanceHandle hdlInstance)

438 Programming Guide

C++ language signature
APIRET Delete()

Java signature
public abstract
void delete() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance to be deleted.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 38. Process instance actions 439

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

InContainer()

This function/method retrieves the input container associated with the
process instance from the MQ Workflow execution server (action call).

In C++, when the container object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
container handle already points to some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long InContainer(Container * input)

440 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceInContainer(

FmcjProcessInstanceHandle hdlInstance,
FmcjReadWriteContainerHandle * input)

C++ language signature
APIRET InContainer(FmcjReadWriteContainer & input)

Java signature
public abstract
ReadWriteContainer inContainer() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object whose input

container is to be retrieved.
input Input/Output. The address of the input container or of its

handle respectively the input container of the process instance
to be set.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ReadWriteContainer

The input container of the process instance.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

Chapter 38. Process instance actions 441

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ObtainMonitor()

This function/method obtains a monitor for the process instance from the MQ
Workflow execution server (action call).

When the deep option is specified, then activity instances of type Block are
resolved, that is, their block instance monitors are also fetched from the
server.

Note: Deep is currently not supported.

In C++, when the process instance monitor object to be initialized is not
empty, that object is destructed before the new one is assigned. In C, the
application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance monitor handle already points to
some object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

442 Programming Guide

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
InstanceMonitor* ObtainMonitor(long * returnCode,

boolean deep)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceObtainMonitor(

FmcjProcessInstanceHandle hdlInstance,
bool deep,
FmcjProcessInstanceMonitorHandle * monitor)

C++ language signature
APIRET ObtainMonitor(FmcjProcessInstanceMonitor & monitor,

bool deep= false)

Java signature
public abstract
ProcessInstanceMonitor obtainMonitor(boolean deep) throws FmcException

Parameters
deep Input. An indicator whether activity instances of type Block

are to be resolved, that is, their monitor is also to be provided.
Note, deep is currently ignored.

hdlInstance Input. The handle of the process instance object whose
monitor is to be retrieved.

monitor Input/Output. The address of the monitor handle respectively
the monitor of the process instance to be set.

Chapter 38. Process instance actions 443

returnCode Input/Output. A pointer to the result of the method call - see
return codes below.

Return type
APIRET The return code of calling this function/method - see return

codes below.
InstanceMonitor*/ProcessInstanceMonitor

A pointer to the process instance monitor respectively the
process instance monitor.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()

This function/method retrieves the process instance identified by the passed
object identifier from the MQ Workflow execution server (action call).

444 Programming Guide

The MQ Workflow execution server from which the process instance is to be
retrieved is identified by the execution service object. The transient object is
then created or updated with all information, primary and secondary, of the
process instance.

In C++, when the process instance object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process instance handle already points to some object. In Java, a
process instance is newly created; the execution service acts as a factory.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PersistentObject(ExecutionService service, BSTR oid)

Chapter 38. Process instance actions 445

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstancePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceHandle * hdlInstance)

C++ language signature
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java signature
public abstract

ProcessInstance ExecutionService.persistentObject(String oid)
throws FmcException

Parameters
hdlInstance Input/Output. The address of the handle to the process

instance object to be set.
oid Input. The object identifier of the process instance to be

retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ProcessInstance

The process instance retrieved.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

446 Programming Guide

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This function/method refreshes the process instance from the MQ Workflow
execution server (action call).

All information about the process instance, primary and secondary, is
retrieved.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

Chapter 38. Process instance actions 447

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Refresh()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceRefresh(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

refreshed.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

448 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()

This function/method restarts the process instance on the MQ Workflow
execution server (action call).

Only finished or terminated top-level process instances can be restarted. The
process administrator does not change. The process starter is set to the
requester of this function/method.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

Chapter 38. Process instance actions 449

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Restart()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceRestart(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Restart()

Java signature
public abstract
void restart() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

restarted.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

450 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_KIND(501)
The process instance is no top-level process instance.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Resume()

This function/method resumes processing of a suspended or suspending
process instance (action call).

All non-autonomous subprocesses with respect to control autonomy are also
resumed, if the deep option is true.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

Chapter 38. Process instance actions 451

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Resume(boolean deep)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceResume(FmcjProcessInstanceHandle hdlInstance,

bool deep)

C++ language signature
APIRET Resume(bool deep)

Java signature
public abstract
void resume(boolean deep) throws FmcException

Parameters
deep Input. If deep is true, processing of all non-autonomous

subprocesses is also resumed.
hdlInstance Input. The handle of the process instance to be resumed.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.

452 Programming Guide

FMC_ERROR(1)
A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetDescription()

This function/method sets the description of the process instance to the
specified value (action call).

If no description is provided, the description of the process instance is erased.

The following rules apply for specifying a process instance description:
v You can specify a maximum of 254 characters.
v You can use any printable characters depending on your current locale,

including the end-of-line and new-line characters.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Chapter 38. Process instance actions 453

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long SetDescription(BSTR description, boolean isNull)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceSetDescription(

FmcjProcessInstanceHandle hdlInstance,
char const * description)

C++ language signature
APIRET SetDescription(string const * description)

Java signature
public abstract
void setDescription(String description) throws FmcException

Parameters

454 Programming Guide

description Input. The description or a pointer to the description to be set;
can be a NULL (0) pointer or null object (Java).

hdlInstance Input. The handle of the process instance object whose
description is to be set.

isNull Input. If set to True, any description is removed.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_DESCRIPTION(810)
The description does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 38. Process instance actions 455

SetName()

This function/method sets the name of the process instance to the specified
value (action call).

The process instance must still be in the Ready state.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long SetName(BSTR name)

456 Programming Guide

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceSetName(FmcjProcessInstanceHandle hdlInstance,

char const * name)

C++ language signature
APIRET SetName(string const & name)

Java signature
public abstract
void setName(String name) throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object whose name

is to be set.
name Input. The name to be set.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_INVALID_NAME(134)
The name does not conform to the syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

Chapter 38. Process instance actions 457

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The process instance name is not unique.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()

This function/method starts a ready process instance (action call).

When successfully executed, the starter is set to the requestor of this action
and the process administrator is determined.

When initial values are to be passed to the process instance to be started, an
input container can be provided (see also FmcjProcessInstance:: InContainer()).
When the process instance requires input and is started without specifying an
input container, the input-container values are not set. So, when, for example,
input-container values are queried from within an activity implementation,
FMC_ERROR_MEMBER_NOT_SET is returned.

See start; additionally allows to pass an input container.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the process instance creator
v Be the process administrator

458 Programming Guide

v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Start()

long StartWithContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceStart(FmcjProcessInstanceHandle hdlInstance,

FmcjReadWriteContainerHandle input)

C++ language signatures
APIRET Start()

APIRET Start(FmcjReadWriteContainer const & input)

Java signature
public abstract
void start() throws FmcException

public abstract
void start2(ReadWriteContainer input) throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be started.
input Input. The input container of the process instance.

Chapter 38. Process instance actions 459

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Suspend()

This function/method suspends (temporarily stops) the process instance
(action call).

The process instance must be in state Running. All non-autonomous
subprocesses with respect to control autonomy are also suspended if the deep
option is true. Autonomous subprocesses are not considered.

460 Programming Guide

The process instance remains in state Suspending as long as there are running
program activity implementations or suspending non-autonomous
subprocesses. When the activity implementations completed their executions
and when the non-autonomous subprocesses reached the Suspended state, the
process instance is put into the Suspended state.

Optionally, a date may be specified up to when the process instance is
suspended; it is then automatically resumed, together with the
non-autonomous subprocesses, if the deep option had been specified.

See suspend; additionally allows to provide a date at which the process
instance is automatically resumed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Suspend(boolean deep)

long SuspendUntilDateTime(DateAndTime * time,
boolean deep)

Chapter 38. Process instance actions 461

C-language signatures
APIRET FMC_APIENTRY FmcjProcessInstanceSuspend(

FmcjProcessInstanceHandle hdlInstance,
bool deep)

APIRET FMC_APIENTRY FmcjProcessInstanceSuspendUntil(
FmcjProcessInstanceHandle hdlInstance,
FmcjCDateTime const * time,
bool deep)

C++ language signatures
APIRET Suspend(bool deep)

APIRET Suspend(FmcjDateTime const & time, bool deep)

Java signature
public abstract
void suspend(boolean deep) throws FmcException

public abstract
void suspend2(Calendar time, boolean deep) throws FmcException

Parameters
deep Input. An indicator whether also non-autonomous

subprocesses are to be suspended.
hdlInstance Input. The handle of the process instance object to be

suspended.
time Input. The date/time respectively a pointer to the date/time

up to when the process instance is to be suspended.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

462 Programming Guide

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()

This function/method terminates a process instance and all of its
non-autonomous subprocesses (action call).

The process instance must be in states Running, Suspended, or Suspending.

The process instance is put into state terminating as long as there are running
activity implementations or terminating non-autonomous subprocesses. When
the activity implementations completed their executions or when the
non-autonomous subprocesses terminated, the process instance is put into the
Terminated state. When the process instance has reached the Terminated state, it
is deleted depending on the setting of the “delete finished items” option.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Chapter 38. Process instance actions 463

One of:

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessInstance

ActiveX signature
long Terminate()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessInstanceTerminate(FmcjProcessInstanceHandle hdlInstance)

C++ language signature
APIRET Terminate()

Java signature
public abstract
void terminate() throws FmcException

Parameters
hdlInstance Input. The handle of the process instance object to be

terminated.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

464 Programming Guide

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 38. Process instance actions 465

466 Programming Guide

Chapter 39. Process instance list actions

A process instance list represents a set of process instances. All process
instances which are accessible through this list have the same characteristics.
These characteristics are specified by a filter. Additionally, sort criteria can be
applied and, after that, a threshold to restrict the number of process instances
to be transferred from the execution server to the client.

The process instance list definition is stored persistently.

A process instance list is uniquely identified by its name, type, and owner. It
can be defined for general access purposes; it is then of a public type. Or, it
can be defined for some specific user; it is then of a private type.

Other lists that can be defined are process template lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all
lists.

In the C++ language, FmcjProcessInstanceList is a subclass of the
FmcjPersistentList class and inherits all properties and methods. In the Java
language, ProcessInstanceList is thus a subclass of the PersistentList class and
inherits all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefix FmcjProcessInstanceList. In ActiveX,
inheritance is not supported so that all methods are explicitly defined on
ProcessInstanceList. Note, however, that they are described as PersistentList
actions.

The following sections describe the actions which can be applied on a process
instance list. See “Process instance list” on page 238 for a complete list of
functions/methods.

QueryProcessInstances()

This function/method retrieves the primary information for all process
instances characterized by the specified process instance list from the MQ
Workflow execution server (action call).

From the set of qualifying process instances, only those are retrieved the user
is authorized for. The user is authorized for a process instance if the process
instance:

© Copyright IBM Corp. 1993, 1999 467

v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process
authorization or selected process administration authorization for that
category

The primary information that is retrieved for each process instance is:
v Category
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v LastStateChangeTime
v Name
v ParentName
v ProcessTemplateName
v StartTime
v State
v SuspensionExpirationTime
v SuspensionTime
v SystemName
v SystemGroupName
v TopLevelName

In C and C++, any process instances retrieved are appended to the supplied
vector of process instances. If you want to read those process instances only
which are currently included in the process instance list, you have to clear the
vector before you call this function/method.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

468 Programming Guide

JAVA com.ibm.workflow.api.ProcessInstanceList

ActiveX signature
long QueryProcessInstances()

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceListQueryProcessInstances(

FmcjProcessInstanceListHandle hdlList,
FmcjProcessInstanceVectorHandle * instances)

C++ language signature
APIRET QueryProcessInstances(

vector<FmcjProcessInstance> & instances) const

Java signature
public abstract
ProcessInstance[] queryProcessInstances() throws FmcException

Parameters
hdlList Input. The handle of the process instance list to be queried.
instances Input/Output. The vector of qualifying process instances.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ProcessInstance[]

The qualifying process instances.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 39. Process instance list actions 469

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query worklists (C-language)” on page 653

v For a C++ example see “Query worklists (C++)” on page 655

470 Programming Guide

Chapter 40. Process instance notification actions

An FmcjProcessInstanceNotification or a ProcessInstanceNotification object
represents a notification on a process instance assigned to a user.

Other items assigned to users are activity instance notifications and work
items. FmcjItem or Item represents the common properties of all items.

In the C++ language, FmcjProcessInstanceNotification is thus a subclass of the
FmcjItem class and inherits all properties and methods. In the Java language,
ProcessInstanceNotification is thus a subclass of the Item class and inherits all
properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjItem. That is, common
functions start with the prefix FmcjItem; they are also defined starting with
the prefix FmcjProcessInstanceNotification. In ActiveX, inheritance is not
supported so that all functions are explicitly defined on
ProcessInstanceNotification. Note, however, that they are described as Item
actions.

A process instance notification is uniquely identified by its object identifier.

The following sections describe the actions which can be applied on a process
instance notification. See “Process instance notification” on page 239 for a
complete list of functions/methods.

PersistentObject()

This function/method retrieves the process instance notification identified by
the passed object identifier from the MQ Workflow execution server (action
call).

The MQ Workflow execution server from which the process instance
notification is to be retrieved is identified by the execution service object. The
transient object is then created or updated with all information - primary and
secondary - of the process instance notification.

In C++, when the process instance notification object to be initialized is not
empty, that object is destructed before the new one is assigned. In C, the
application is completely responsible for the ownership of objects, that is, it is
not checked whether the process instance notification handle already points to
some object. In Java, a process instance notification is newly created; the
execution service acts as a factory.

© Copyright IBM Corp. 1993, 1999 471

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PersistentObject(ExecutionService * service, BSTR oid)

C-language signature
APIRET FMC_APIENTRY FmcjProcessInstanceNotificationPersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessInstanceNotificationHandle * hdlItem)

C++ language signature
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

472 Programming Guide

Java signature
public abstract
ProcessInstanceNotification
ExecutionService.processInstanceNotification(String oid)

throws FmcException

Parameters
hdlItem Input/Output. The address of the handle to the process

instance notification object to be set.
oid Input. The object identifier of the process instance notification

to be retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ProcessInstanceNotification

The process instance notification retrieved.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process instance notification does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

Chapter 40. Process instance notification actions 473

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

474 Programming Guide

Chapter 41. Process template actions

An FmcjProcessTemplate or a ProcessTemplate object is the frozen state of a
process model from which it is created via translation. All program definitions
and data structures referenced by the process model are copied into the
process template (early binding). Subprocesses are bound lately. Their
definitions are only located during execution.

A process template is uniquely identified by its object identifier or by its name
and a valid-from date. This valid-from date determines since when the process
template can be used to create process instances.

When process templates are queried from the execution server, then only
currently valid process templates are returned.

The following sections describe the actions which can be applied on a process
template. See “Process template” on page 241 for a complete list of
functions/methods.

CreateAndStartInstance()

This function/method creates a process instance from the specified process
template and starts the resulting process instance (action call).

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created

with a default name ProcessTemplateName$Oid, where Oid is a printable

© Copyright IBM Corp. 1993, 1999 475

version of the process instance object identifier. Since the process instance
name cannot be longer than 63 characters, the process template name can
be shortened.

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute
values only.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires
input is started without specifying an input container, the input-container
values are not set. When, for example, input-container values are queried
from within an activity implementation, FMC_ERROR_MEMBER_NOT_SET is
returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

See createAndStartInstance; additionally allows to pass an input container.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

476 Programming Guide

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
ProcessInstance* CreateAndStartInstance(

BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

ProcessInstance* CreateAndStartInstanceWithCnr(
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
Container * input,
boolean keepName,
long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateAndStartInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

Chapter 41. Process template actions 477

C++ language signatures
APIRET CreateAndStartInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

APIRET CreateAndStartInstance(
string const * name,
string const * reserved1,
string const * reserved2,
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
bool keepName = false) const;

Java signature
public abstract
ProcessInstance createAndStartInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

public abstract
ProcessInstance createAndStartInstance2(

String name,
String reserved1,
String reserved2,
ReadWriteContainer input,
boolean keepName) throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created and

started.
nameIsNull Input. Indicates whether a name is specified for the process

instance to be created and started.
newInstance Input/Output. The newly created and started process

instance.
returnCode Input/Output. The result of calling this method - see below.

478 Programming Guide

reserved1/reserved2
Input. Pass a 0 (NULL) pointer or an empty string.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created and started process instance
respectively the newly created and started process instance.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. Process template actions 479

CreateInstance()

This function/method creates a process instance from the specified process
template (action call).

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no name or an empty process instance name is provided, an instance is

created with a default name ProcessTemplateName$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the process template
name can be shortened.

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains the primary attribute
values only.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization

480 Programming Guide

v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
ProcessInstance* CreateInstance(

BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateCreateInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
bool keepName,
FmcjProcessInstanceHandle * newInstance)

C++ language signature
APIRET CreateInstance(

string const * name,
string const * reserved1,
string const * reserved2,
FmcjProcessInstance & newInstance,
bool keepName = false) const

Chapter 41. Process template actions 481

Java signature
public abstract
ProcessInstance createInstance(

String name,
String reserved1,
String reserved2,
boolean keepName) throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object to be used.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be created.
nameIsNull Input. Indicates whether a name is specified for the process

instance to be created.
newInstance Input/Output. The newly created process instance.
reserved1/reserved2

Input. Pass a 0 (NULL) pointer or an empty string.
returnCode Input/Output. The result of calling this method - see below.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstance*/ ProcessInstance

A pointer to the newly created process instance respectively
the newly created process instance.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

482 Programming Guide

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Delete()

This function/method deletes the specified process template(s) from the
execution server (action call).

Since process templates are versioned, you can specify whether you want to
delete the currently valid process template, the past versions of the process
template, or the future versions of the process template. When all options are
specified, all versions of the process template are deleted. Deletion always
applies to the currently exisiting process templates only.

See delete; additionally allows for specifying the versions to be deleted.

There are no impacts on your transient representation of the process template;
in C and C++, you have to destruct or deallocate the transient object when it
is no longer needed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process modeling authorization
v Be the system administrator

Chapter 41. Process template actions 483

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long Delete(boolean pastVersions,

boolean currentVersion,
boolean futureVersions)

C-language signature
APIRET FMC_APIENTRY
FmcjProcessTemplateDelete(FmcjProcessTemplateHandle hdlTemplate,

bool pastVersions,
bool currentVersion,
bool futureVersions)

C++ language signature
APIRET Delete(bool pastVersions = true,

bool currentVersion= true,
bool futureVersions= true)

Java signature
public abstract
void delete() throws FmcException

public abstract
void delete2(boolean pastVersions,

boolean currentVersion,
boolean futureVersions) throws FmcException

Parameters

484 Programming Guide

currentVersion
Input. An indication whether the current version of this
process template is to be deleted.

futureVersions
Input. An indication whether future versions of this process
template are to be deleted.

hdlTemplate Input. The handle of the process template to be deleted.
pastVersions Input. An indication whether past versions of this process

template are to be deleted.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template or its specified versions do no longer
exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. Process template actions 485

ExecuteProcessInstance()

This function/method creates a process instance from the specified process
template and causes the execution of the resulting process instance (action
call).

This function/method can be called synchronously and asynchronously. When
called asynchronously, a user context can be specified to correlate the response
received later. The correlation ID returned can be used to wait for the specific
response.

Depending on the keepName option, a process instance name must be
provided. If the process instance name is to be kept as is, you cannot provide
an empty string.

The following rules apply for specifying a process instance name:
v You can specify a maximum of 63 characters.
v You can use any printable characters depending on your current locale,

except the following:
* ? " ; : . $

v You can use blanks with these restrictions: no leading blanks, no trailing
blanks, and no consecutive blanks.

If a unique name may be generated by MQ Workflow, the following applies:
v If no or an empty process instance name is provided, an instance is created

with a default name ProcessTemplateName$Oid, where Oid is a printable
version of the process instance object identifier. Since the process instance
name cannot be longer than 63 characters, the process template name can
be shortened.

v If a process instance name is provided, that name is kept as long as it is
unique. If the provided process instance name is already used for another
instance, an instance is created with the name name$Oid, where Oid is a
printable version of the process instance object identifier. Since the process
instance name cannot be longer than 63 characters, the name can be
shortened.

The passed name parameter value remains unchanged;
FmcjProcessInstance::Name() returns the actual name of the process instance
created. The newly created process instance contains all attributes, primary
and secondary.

When initial values are to be passed to the process instance to be created and
started, an input container can be provided - see also
FmcjProcessTemplate::InContainer(). When a process instance that requires

486 Programming Guide

input is started without specifying an input container, the input-container
values are not set. When, for example, input-container values are queried
from within an activity implementation, FMC_ERROR_MEMBER_NOT_SET is
returned.

Pass a NULL (0) pointer or an empty string for the reserved parameters.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA not supported

Chapter 41. Process template actions 487

ActiveX signature
ProcessInstance* ExecuteProcessInstance(

Container * output,
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

ProcessInstance* ExecuteProcessInstanceWithCnr(
Container * input,
Container * output,
BSTR name,
boolean nameIsNull,
BSTR reserved1,
BSTR reserved2,
boolean keepName,
long * returnCode)

C-language signatures
APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstance(

FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjProcessInstanceHandle * newInstance,
FmcjReadOnlyContainerHandle * output)

APIRET FMC_APIENTRY FmcjProcessTemplateExecuteProcessInstanceAsync(
FmcjProcessTemplateHandle hdlTemplate,
char const * name,
char const * reserved1,
char const * reserved2,
FmcjReadWriteContainerHandle input,
bool keepName,
FmcjCorrelID * correlID,
char const * userContext)

488 Programming Guide

C++ language signatures
APIRET ExecuteProcessInstance(

FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstance(
FmcjReadWriteContainer const & input,
FmcjProcessInstance & newInstance,
FmcjReadOnlyContainer & output,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false) const

APIRET ExecuteProcessInstanceAsync(
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

APIRET ExecuteProcessInstanceAsync(
FmcjReadWriteContainer const & input,
string const * name = 0,
string const * reserved1 = 0,
string const * reserved2 = 0,
bool keepName = false,
FmcjCorrelID * correlID = 0,
string const * userContext = 0)

Parameters
correlID Input/Output. If specified, contains the correlation ID by

which this request can be correlated to a later response.
hdlTemplate Input. The handle of the process template object to be used.
input Input. The input container of the process instance.
keepName Input. True, if only the specified name can be used for the

process instance. False, if a unique name can be generated.
name Input. The name of the process instance to be executed.
nameIsNull Input. Indicates whether a name is specified for the process

instance to be executed.
newInstance Input/Output. The executed process instance.
output Output. The output container of the process instance.
returnCode Input/Output. The result of calling this method - see below.

Chapter 41. Process template actions 489

reserved1/reserved2
Input. Pass a 0 (NULL) pointer or an empty string.

userContext Input. A user-defined context which can be used for
correlation.

Return type
APIRET The return code of calling this function/method - see return

codes below.
ProcessInstance*

A pointer to the newly created and executed process instance.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_CORRELATION_ID
The specified correlation ID does not point to
FMCJ_NO_CORRELID.

FMC_ERROR_INVALID_NAME(134)
The specified process instance name does not comply with the
syntax rules.

FMC_ERROR_INVALID_USER_CONTEXT(819)
The specified user context is longer than 254 characters.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_NOT_UNIQUE(121)
The name of the process instance is not unique.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

490 Programming Guide

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

InContainer()

This function/method retrieves the input container associated with the
process template from the MQ Workflow execution server (action call).

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long InContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateInContainer(

FmcjProcessTemplateHandle hdlTemplate,
FmcjReadWriteContainerHandle * input)

Chapter 41. Process template actions 491

C++ language signature
APIRET InContainer(FmcjReadWriteContainer & input)

Java signature
public abstract
ReadWriteContainer inContainer() throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object whose input

container is to be retrieved.
input Input/Output. The address of the input container handle

respectively the input container of the process template to be
set.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ReadWriteContainer

The input container of the process template.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

492 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()

This function/method retrieves the process template identified by the passed
object identifier from the MQ Workflow execution server (action call).

The MQ Workflow execution server from which the process template is to be
retrieved is identified by the execution service object. The transient object is
then created or updated with all information - primary and secondary - of the
process template.

In C++, when the process template object to be initialized is not empty, that
object is destructed before the new one is assigned. In C, the application is
completely responsible for the ownership of objects, that is, it is not checked
whether the process template handle already points to some object. In Java, a
process template is newly created; the execution service acts as a factory.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization
v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

Chapter 41. Process template actions 493

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PersistentObject(ExecutionService service, BSTR oid)

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplatePersistentObject(

FmcjExecutionServiceHandle service,
char const * oid,
FmcjProcessTemplateHandle * hdlTemplate)

C++ language signature
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java signature
public abstract

ProcessTemplate ExecutionService.processTemplate(String oid)
throws FmcException

Parameters
hdlTemplate Input/Output. The address of the handle to the process

template object to be set.
oid Input. The object identifier of the process template to be

retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ProcessTemplate

The process template retrieved.

494 Programming Guide

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Refresh()

This function/method refreshes the process template from the MQ Workflow
execution server (action call).

All information about the process template - primary and secondary - is
retrieved.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Process authorization

Chapter 41. Process template actions 495

v Process administration authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplate

ActiveX signature
long Refresh()

C-language signature
APIRET FMC_APIENTRY
FmcjProcessTemplateRefresh(FmcjProcessTemplateHandle hdlTemplate)

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
hdlTemplate Input. The handle of the process template object to be

refreshed.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.

Return codes/ FmcException

496 Programming Guide

FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template does no longer exist or is no longer
valid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 41. Process template actions 497

498 Programming Guide

Chapter 42. Process template list actions

A process template list represents a set of process templates. All process
templates which are accessible through this list have the same characteristics.
These characteristics are specified by a filter. Additionally, sort criteria can be
applied and, after that, a threshold to restrict the number of process templates
to be transferred from the execution server to the client.

The process template list definition is stored persistently.

A process template list is uniquely identified by its name, type, and owner. It
can be defined for general access purposes; it is then of a public type. Or, it
can be defined for some specific user; it is then of a private type.

Other lists that can be defined are process instance lists or worklists.
FmcjPersistentList or PersistentList represents the common properties of all
lists.

In the C++ language, FmcjProcessTemplateList is thus a subclass of the
FmcjPersistentList class and inherits all properties and methods. In the Java
language, ProcessTemplateList is thus a subclass of the PersistentList class and
inherits all properties and methods. Similarly, in the C-language, common
implementations of functions are taken from FmcjPersistentList. That is,
common functions start with the prefix FmcjPersistentList; they are also
defined starting with the prefix FmcjProcessTemplateList. In ActiveX,
inheritance is not supported so that all functions are explicitly defined on
ProcessTemplateList. Note, however, that they are described as PersistentList
actions.

The following sections describe the actions which can be applied on a process
template list. See “Process template list” on page 244 for a complete list of
functions/methods.

QueryProcessTemplates()

This function/method retrieves the primary information for all process
templates characterized by the specified process template list from the MQ
Workflow execution server (action call).

From the set of qualifying process templates, only those are retrieved, the user
is authorized for. The user is authorized for a process template if the process
template:

© Copyright IBM Corp. 1993, 1999 499

v Does not belong to any category
v Does belong to a category and the user has global process authorization or

global process administration authorization or selected process
authorization or selected process administration authorization for that
category

The primary information that is retrieved for each process template is:
v Category
v CreationTime
v Description
v Icon
v InContainerNeeded
v LastModificationTime
v Name
v ValidFromTime

In C and C++, any process templates retrieved are appended to the supplied
vector of process templates. If you want to read those process templates only
which are currently included in the process template list, you have to clear the
vector before you call this function/method.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ProcessTemplateList

ActiveX signature
long QueryProcessTemplates()

500 Programming Guide

C-language signature
APIRET FMC_APIENTRY FmcjProcessTemplateListQueryProcessTemplates(

FmcjProcessTemplateListHandle hdlList,
FmcjProcessTemplateVectorHandle * templates)

C++ language signature
APIRET QueryProcessTemplates(

vector<FmcjProcessTemplate> & templates) const;

Java signature
public abstract
ProcessTemplate[] queryProcessTemplates() throws FmcException

Parameters
hdlList Input. The handle of the process template list to be queried.
templates Input/Output. The vector of qualifying process templates.

Return type
long/ APIRET The result of calling this function/method - see return codes

below.
ProcessTemplate[]

The qualifying process templates.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The process template list does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 42. Process template list actions 501

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query worklists (C-language)” on page 653

v For a C++ example see “Query worklists (C++)” on page 655

502 Programming Guide

Chapter 43. Service actions

An FmcjService or Service object represents the common aspects of MQ
Workflow service objects.

In the C++ language, FmcjService is the superclass of the
FmcjExecutionService class and provides for all common properties and
methods. In the Java language, Service is thus a superclass of the
ExecutionService class and provides for all common properties and methods.
Similarly, in the C-language, common implementations of functions are taken
from FmcjService. That is, common functions start with the prefix FmcjService;
they are also defined starting with the prefix FmcjExecutionService. In
ActiveX, inheritance is not supported so that all methods are explicitly
defined on ExecutionService. Note, however, that they are described here as
Service actions.

The following sections describe the actions which can be applied on a service.
See “Service” on page 250 for a complete list of functions/methods.

Refresh()

This function/method refreshes the log on status from the server(action call).

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Service

© Copyright IBM Corp. 1993, 1999 503

ActiveX signature
long ExecutionService.Refresh()

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceRefresh(FmcjServiceHandle service)

#define FmcjExecutionServiceRefresh FmcjServiceRefresh

C++ language signature
APIRET Refresh()

Java signature
public abstract
void refresh() throws FmcException

Parameters
service Input. A handle to the service object representing the session

with an MQ Workflow server.

Return type
APIRET/long The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

504 Programming Guide

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

SetPassword()

This function/method allows a user’s password to be changed (action call).

Note: The password is case-sensitive.

The following rules apply for specifying a password:
v You can specify a maximum of 32 characters.
v You can use any printable characters depending on your current locale.
v Do not use DBCS characters.

Note: If you intend to work in a multi-platform environment or switch
between codepages, it is recommended that you use alphabetic
characters, digits, and blanks only. This is because it cannot be
guaranteed that special characters are available in all codepages.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

Chapter 43. Service actions 505

JAVA com.ibm.workflow.api.Service

ActiveX signature
long ExecutionService.SetPassword(BSTR newPassword)

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceSetPassword(FmcjServiceHandle service,
char const * newPassword)

#define FmcjExecutionServiceSetPassword FmcjServiceSetPassword

C++ language signature
APIRET SetPassword(string const & newPassword) const

Java signature
public abstract
void setPassword(String newPassword) throws FmcException

Parameters
newPassword Input. The new password to be used.
service Input. A handle to the service object representing the session

with an MQ Workflow server.

Return type
long/ APIRET The return code of calling this function/method - see return

codes below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_USERID_UNKNOWN(10)
The user does no longer exist.

506 Programming Guide

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_PASSWORD(12)
The password does not comply with the MQ Workflow syntax
rules.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

UserSettings()

This function/method returns all settings of the logged on user (action call).

An empty object respectivly a null pointer is returned if no user has logged
on yet via this service object.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Logon required

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.Service

Chapter 43. Service actions 507

ActiveX signature
IDispatch* ExecutionService.UserSettings(long * returnCode)

C-language signature
APIRET FMC_FMC_APIENTRY

FmcjServiceUserSettings(FmcjServiceHandle service,
FmcjPersonHandle * user)

#define FmcjExecutionServiceUserSettings FmcjServiceUserSettings

C++ language signature
APIRET UserSettings(FmcjPerson & user) const

Java signature
public abstract
Person userSettings() throws FmcException

Parameters
returnCode Input/Output. The return code of calling this method - see

return codes below.
service Input. A handle to the service object representing the session

with an MQ Workflow server.
user Input/Output. The person object to contain respectively the

address of the person handle to point to the settings of the
logged on user.

Return type
APIRET The return code of calling this function/method - see return

codes below.
IDispatch*/ Person

A pointer to the person settings or the person settings of the
logged on user.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

508 Programming Guide

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 43. Service actions 509

510 Programming Guide

Chapter 44. Work item actions

An FmcjWorkitem or Workitem object represents an activity instance assigned
to a user in order to be worked on.

Other items assigned to users are process instance notifications and activity
instance notifications. FmcjItem or Item represents the common properties of
all items.

In the C++ language, FmcjWorkitem is thus a subclass of the FmcjItem class
and inherits all properties and methods. In the Java language, WorkItem is
thus a subclass of the Item class and inherits all properties and methods.
Similarly, in the C-language, common implementations of functions are taken
from FmcjItem. That is, common functions start with the prefix FmcjItem; they
are also defined starting with the prefix FmcjWorkitem. In ActiveX, inheritance
is not supported so that all functions are explicitly defined on Workitem.
Note, however, that common methods are described as Item actions.

A work item is uniquely identified by its object identifier.

The following diagrams provide an overview on the possible work item states
and the actions which are allowed in those states, provided that the
appropriate authority has been granted. Note that the actions and possible
states are dependent on the process instance state, the work item is a part of.

© Copyright IBM Corp. 1993, 1999 511

Figure 9. Work item states - process instance state running

512 Programming Guide

Figure 10. Work item states - process instance state suspending or suspended

Chapter 44. Work item actions 513

The following sections describe the actions which can be applied on a work
item. See “Work item” on page 253 for a complete list of functions/methods.

CancelCheckOut()

This function/method cancels the checkout of the work item (action call).

The work item must have been checked out and is put into the Ready state.
The associated process instance must be in the Running, Suspending, Suspended,
or Terminating state.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

Figure 11. Work item states - process instance state terminating or terminated

514 Programming Guide

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long CancelCheckOut()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCancelCheckOut(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET CancelCheckOut()

Java signature
public abstract
void cancelCheckOut() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 44. Work item actions 515

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is not in a required state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckIn()

This function/method allows for the check in of a work item that was
previously checked out for user processing (action call).

Checking in a work item tells MQ Workflow that user processing has finished
and workflow processing under the control of MQ Workflow can continue.
The return code of the user processing and, optionally, the output container
values are passed back to MQ Workflow. As usual, these container values and
the return code can be used in exit conditions to let navigation continue
depending on the success of the processing and in transition conditions to
indicate how to proceed.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

516 Programming Guide

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long CheckIn(Container * output, long returnCode)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCheckIn(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle output,
long returnCode)

C++ language signature
APIRET CheckIn(FmcjReadWriteContainer const * output,

long returnCode)

Java signature
public abstract
void checkIn(ReadWriteContainer output,

int returnCode) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input. A handle or pointer to the output container; can be a

NULL pointer.
returnCode Input. The return code of user processing.

Return type
long/ APIRET

The return code of calling this function/method- see below.

Return codes/ FmcException

Chapter 44. Work item actions 517

FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is not checked out.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

CheckOut()

This function/method checks out a ready work item for user processing
(action call).

The work item must be implemented by a program.

Checkout then means that processing is not done by MQ Workflow’s inherent
program-invocation mechanism. MQ Workflow assumes that processing is
done by user-specific means and changes the state of the work item to
CheckedOut.

The associated process instance must be in the Running state.

518 Programming Guide

The caller can request program definitions for specific operating system
platforms. The following enumeration types can be used to specify the
requested program data.

ActiveX WorkitemProgramRetrieval

C-language FmcjWorkitemProgramRetrieval

C++ FmcjWorkitem::ProgramRetrieval

JAVA com.ibm.workflow.api.WorkItemPackage.ProgramRetrieval

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

ActiveX WIProgramRetrieval_NotSet

C-language Fmc_WS_NotSet

C++ FmcjWorkitem::NotSet

JAVA ProgramRetrieval.NOT_SET
CommonDataOnly

returns only data common to all platforms, the description,
the icon, the unattended indicator, and the input and output
containers. Any platform specification is ignored.

ActiveX WIProgramRetrieval_CommonDataOnly

C-language Fmc_WS_CommonDataOnly

C++ FmcjWorkitem::CommonDataOnly

JAVA ProgramRetrieval.COMMON_DATA_ONLY
SpecifiedDefinitions

returns the program definition for the specified platform. A
platform must be specified.

ActiveX WIProgramRetrieval_SpecifiedDefinitions

C-language Fmc_WS_SpecifiedDefinitions

C++ FmcjWorkitem::SpecifiedDefinitions

JAVA ProgramRetrieval.SPECIFIED_DEFINITIONS
AllDefinitions returns all available program definitions. Any platform

specification is ignored.

ActiveX WIProgramRetrieval_AllDefinitions

C-language Fmc_WS_AllDefinitions

C++ FmcjWorkitem::AllDefinitions

JAVA ProgramRetrieval.ALL_DEFINITIONS

Chapter 44. Work item actions 519

The following enumeration types can be used to specify the platform for
which program definitions are to be retrieved.

ActiveX ImplementationDataBasis

C-language FmcjImplementationDataBasis

C++ FmcjImplementationData::Basis

JAVA com.ibm.workflow.api.ProgramDataPackage.Basis

The enumeration constants can take the following values; it is strongly
advised to use the symbolic names instead of the associated integer values.
NotSet indicates that no value is set.

ActiveX Basis_NotSpecified

C-language Fmc_WS_NotSet

C++ FmcjImplementationData::NotSpecified

JAVA Basis.NOT_SPECIFIED
OS2 indicates that the program definition for the OS/2 platform is

requested.

ActiveX Basis_OS2

C-language Fmc_WS_OS2

C++ FmcjImplementationData::OS2

JAVA Basis.OS2
AIX indicates that the program definition for the AIX platform is

requested.

ActiveX Basis_AIX

C-language Fmc_WS_AIX

C++ FmcjImplementationData::AIX

JAVA Basis.AIX
HPUX indicates that the program definition for the HP-UX platform

is requested.

ActiveX Basis_HPUX

C-language Fmc_WS_HPUX

C++ FmcjImplementationData::HPUX

JAVA Basis.HPUX
Windows95 indicates that the program definition for the Windows 95

platform is requested.

ActiveX Basis_Windows95

520 Programming Guide

C-language Fmc_WS_Windows95

C++ FmcjImplementationData::Windows95

JAVA Basis.WINDOWS_95
WindowsNT indicates that the program definition for the Windows NT

platform is requested.

ActiveX Basis_WindowsNT

C-language Fmc_WS_WindowsNT

C++ FmcjImplementationData::WindowsNT

JAVA Basis.WINDOWS_NT
OS390 indicates that the program definition for the OS/390(R)

platform is requested.

ActiveX Basis_OS390

C-language Fmc_WS_OS390

C++ FmcjImplementationData::OS390

JAVA Basis.WINDOWS_OS390
Solaris indicates that the program definition for the Solaris platform

is requested.

ActiveX Basis_Solaris

C-language Fmc_WS_Solaris

C++ FmcjImplementationData::Solaris

JAVA Basis.Solaris

See checkOut; additionally allows for specifying which program definitions to
retrieve.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

Chapter 44. Work item actions 521

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
ProgramData CheckOut(WorkitemProgramRetrieval requestedData,

ImplementationDataBasis platform,
long * returnCode)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemCheckOut(FmcjWorkitemHandle hdlWorkitem,

enum FmcjWorkitemProgramRetrieval requestedData,
enum FmcjImplementationDataBasis platform,
FmcjProgramDataHandle * programData)

C++ language signature
APIRET CheckOut(ProgramRetrieval requestedData,

FmcjImplementationData::Basis platform,
FmcjProgramData & programData)

Java signature
public abstract
ReadOnlyContainer checkOut() throws FmcException

public abstract
ProgramData checkOut2(

ProgramRetrieval requestedData,
Basis platform) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
platform Input. The platform for which the program definition is to be

returned.
programData Input/Output. The address of a handle to the program

definition respectively the program definition object to be set.
requestedData

Input. An indicator which program definitions are to be
returned.

522 Programming Guide

returnCode Input/Output. The return code of calling this method - see
below.

Return type
APIRET The return code of calling this method - see below.
ProgramData The program definition.
ReadOnlyContainer

The input container of the work item; the container is part of
the program definition. Returned for Version 2 compatibility
reasons.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 44. Work item actions 523

Finish()

This function/method ends the execution of a manual-exit work item (action
call).

The work item must be in state Executed, that is, must have run at least once.
The work item is then put into the Finished state. Depending on the “delete
finished items” option, it is deleted.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Finish()

C-language signature
APIRET FMC_APIENTRY FmcjWorkitemFinish(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Finish()

524 Programming Guide

Java signature
public abstract
void finish() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 44. Work item actions 525

ForceFinish()

This function/method ends the execution of a work item which is known to
have completed in cases where MQ Workflow did not recognize this event
(action call).

This situation can occur when the execution server aborted before it received
the activity implementation completion message.

A work item implemented by a program must be in the states Ready, Running,
Executed, CheckedOut, InError, Terminating, or Terminated. A work item
implemented by a process must be in the states Ready, Executed, InError, or
Terminated. The associated process instance must be in the states Running,
Suspending, Suspended, or Terminating.

The work item is then put into the ForceFinished state. The exit condition is
considered to be true and navigation proceeds.

Depending on the “delete finished items” option, the work item is deleted.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner and one of

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

526 Programming Guide

ActiveX signature
long ForceFinish()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemForceFinish(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET ForceFinish()

Java signature
public abstract
void forceFinish() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

Chapter 44. Work item actions 527

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

ForceRestart()

This function/method forces MQ Workflow to enable the restart of a work
item (action call).

A work item implemented by a program must be in states Running, Executed,
CheckedOut, InError, Terminating, or Terminated. A work item implemented by a
process must be in states Executed, InError, or Terminated. The associated
process instance must be in states Running, Suspending, or Suspended.

It is then reset into the Ready state. Note that automatic activity instances
must now be started manually.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner and one of

v Process administration authorization
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

528 Programming Guide

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long ForceRestart()

C-language signature
APIRET FMC_APIENTRY FmcjWorkitemForceRestart(

FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET ForceRestart()

Java signature
public abstract
void forceRestart() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

Chapter 44. Work item actions 529

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

InContainer()

This function/method retrieves the input container associated with the work
item from the MQ Workflow execution server (action call).

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

530 Programming Guide

ActiveX signature
long InContainer(Container * input)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemInContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadOnlyContainerHandle * input)

C++ language signature
APIRET InContainer(FmcjReadOnlyContainer & input) const

Java signature
public abstract
ReadOnlyContainer inContainer() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
input Input/Output. The input container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadOnlyContainer

The input container.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

Chapter 44. Work item actions 531

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

OutContainer()

This function/method retrieves the output container associated with the work
item from the MQ Workflow execution server (action call).

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

532 Programming Guide

ActiveX signature
long OutContainer(Container * output)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemOutContainer(FmcjWorkitemHandle hdlWorkitem,

FmcjReadWriteContainerHandle * output)

C++ language signature
APIRET OutContainer(FmcjReadWriteContainer & output) const

Java signature
public abstract
ReadWriteContainer outContainer() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
output Input/Output. The output container.

Return type
long/ APIRET The return code of calling this method - see below.
ReadWriteContainer

The output container.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

Chapter 44. Work item actions 533

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

PersistentObject()

This function/method retrieves the work item identified by the passed object
identifier from the MQ Workflow execution server (action call).

The MQ Workflow execution server from which the work item is to be
retrieved is identified by the execution service object. The transient object is
then created or updated with all information - primary and secondary - of the
work item.

In C++, when the work item object to be initialized is not empty, that object is
destructed before the new one is assigned. In C, the application is completely
responsible for the ownership of objects, that is, it is not checked whether the
Work item handle already points to some object. In Java, a work item is newly
created; the execution service acts as a factory.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

One of:

v Be the work item owner
v Work item authorization
v Be the system administrator

Required connection

534 Programming Guide

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.ExecutionService

ActiveX signature
long PersistentObject(ExecutionService service, BSTR oid)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemPersistentObject(FmcjExecutionServiceHandle service,

char const * oid,
FmcjWorkitemHandle * hdlWorkitem)

C++ language signature
APIRET PersistentObject(FmcjExecutionService const & service,

string const & oid)

Java signature
public abstract
WorkItem ExecutionService.persistentWorkItem(String oid)

throws FmcException

Parameters
hdlWorkitem Input/Output. The address of the handle to the work item

object to be set.
oid Input. The object identifier of the work item to be retrieved.
service Input. The service object representing the session with the

execution server.

Return type
long/ APIRET The return code of calling this method - see below.
WorkItem The work item retrieved.

Chapter 44. Work item actions 535

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_OID(805)
The provided oid is invalid.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Restart()

This function/method asks MQ Workflow to enable the restart of a work item
(action call).

The work item must be in state Executed. It is then reset into the Ready state.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

536 Programming Guide

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Restart()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemRestart(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Restart()

Java signature
public abstract
void restart() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 44. Work item actions 537

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Start()

This function/method starts a ready work item (action call).

The associated process instance must be in the Running state.

If the associated activity instance is implemented by a program, the program
is started on the program execution agent associated to the logged-on user.

The work item is put into the Running state. If the activity implementation or
an associated process activity cannot be started, the work item is put into the
InError state.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

538 Programming Guide

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Start()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemStart(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Start()

Java signature
public abstract
void start() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 44. Work item actions 539

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

StartTool()

This function/method starts the specified support tool (action call).

The support tool must be one of the tools associated to the activity instance
the work item is derived from. It is then started on the program execution
agent associated to the logged-on user.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

Required connection

MQ Workflow execution server

API interface declarations

540 Programming Guide

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long StartTool(BSTR toolName)

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemStartTool(FmcjWorkitemHandle hdlWorkitem,

char const * toolName)

C++ language signature
APIRET StartTool(string const & toolName) const

Java signature
public abstract
void startTool(String toolName) throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be dealt with.
toolName Input. The support tool to be started.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 44. Work item actions 541

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_INVALID_TOOL(129)
No tool name is provided or the specified tool is not defined
for the work item.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Terminate()

This function/method terminates a work item implemented by a program or
process (action call).

If the work item is implemented by a program, it must be in the states
CheckedOut or Running and the process instance must be in the states Running,
Suspending, or Suspended. If the work item is implemented by a process, it
must be in the states Running, Suspending, or Suspended and the process
instance must be in the states Running, Suspending, Suspended, or Terminating.

A work item implemented by a process is terminated together with all its
non-autonomous subprocesses with respect to control autonomy.

The work item is then put into the Terminating or Terminated state.

Depending on the “delete finished items” option, the work item is deleted.

When the Terminated state has been reached, the exit condition is considered to
be false, the output container and especially the return code (_RC) are not set,

542 Programming Guide

and navigation ends. If not yet deleted, navigation can be explicitly continued
by a user with process administration rights, that is, ForceFinish() or
ForceRestart() repair actions can be called.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

Be the work item owner

For work items implemented by a process, additionally one of:
v Process administration authority
v Be the process administrator
v Be the system administrator

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkItem

ActiveX signature
long Terminate()

C-language signature
APIRET FMC_APIENTRY
FmcjWorkitemTerminate(FmcjWorkitemHandle hdlWorkitem)

C++ language signature
APIRET Terminate()

Chapter 44. Work item actions 543

Java signature
public abstract
void terminate() throws FmcException

Parameters
hdlWorkitem Input. The handle of the work item to be terminated.

Return type
long/ APIRET The return code of calling this method - see below.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The work item does no longer exist.

FMC_ERROR_NOT_AUTHORIZED(119)
Not authorized to use the function/method.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_WRONG_STATE(120)
The work item or process instance is in the wrong state.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

544 Programming Guide

Chapter 45. Work list actions

An FmcjWorklist or a Worklist object represents a set of items, that is, a set of
work items or notifications. All items which are accessible through this list
have the same characteristics. These characteristics are specified by a filter.
Additionally, sort criteria can be applied and, after that, a threshold to restrict
the number of items to be transferred from the execution server to the client.

The worklist definition is stored persistently. The items contained in the
worklist are, however, assembled dynamically when they are queried.

A worklist is uniquely identified by its name, type, and owner. It can be
defined for general access purposes; it is then of a public type. Or, it can be
defined for some specific user; it is then of a private type.

Other lists that can be defined are process template lists or process instance
lists. FmcjPersistentList or PersistentList represents the common properties of
all lists.

In the C++ language, FmcjWorklist is thus a subclass of the FmcjPersistentList
class and inherits all properties and methods. In the Java language, WorkList
is thus a subclass of the PersistentList class and inherits all properties and
methods. Similarly, in the C-language, common implementations of functions
are taken from FmcjPersistentList. That is, common functions start with the
prefix FmcjPersistentList; they are also defined starting with the prefix
FmcjWorklist. In ActiveX, inheritance is not supported so that all functions are
explicitly defined on Worklist. Note, however, that common methods are
described as PersistentList actions.

The following sections describe the actions which can be applied on a
worklist. See “Worklist” on page 257 for a complete list of functions/methods.

QueryActivityInstanceNotifications()

This function/method retrieves the primary information for all activity
instance notifications characterized by the specified worklist from the MQ
Workflow execution server (action call).

From the set of qualifying activity instance notifications, only those are
retrieved, the user is authorized for. The user is authorized for an activity
instance notification if
v He is the owner of the activity instance notification

© Copyright IBM Corp. 1993, 1999 545

v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each activity instance notification
is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

In C and C++, any activity instance notifications retrieved are appended to the
supplied vector of activity instance notifications. If you want to read those
activity instance notifications only which are currently included in the
worklist, you have to clear the vector before you call this function/method.
This means that you should set the handle to 0 in the C-language respectively
erase all elements of the vector in the C++ API.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

546 Programming Guide

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryActivityInstanceNotifs()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryActivityInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjActivityInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryActivityInstanceNotifications(

vector<FmcjActivityInstanceNotification> & notifications) const

Java signature
public abstract
ActivityInstanceNotification[] queryActivityInstanceNotifications()
throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying activity instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ActivityInstanceNotification[]

The qualifying activity instance notifications.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

Chapter 45. Work list actions 547

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Query work items from a worklist (ActiveX)”
on page 669

v For a C-language example see “Query work items from a worklist
(C-language)” on page 670

v For a C++ example see “Query work items from a worklist (C++)” on
page 672

v For a Java example see “Query work items from a worklist (Java)” on
page 673

QueryItems()

This function/method retrieves the primary information for all items
characterized by the specified worklist from the MQ Workflow execution
server (action call).

From the set of qualifying items, only those are retrieved, the user is
authorized for. The user is authorized for an item if
v He is the owner of the item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each item is:

548 Programming Guide

v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State

If the item is an actual work item or an activity instance notification, then
additional primary information is retrieved:
v ActivityType
v Implementation
v Priority
v SupportTools

In C and C++, any items retrieved are appended to the supplied vector of
items. If you want to read those items only which are currently included in
the worklist, you have to clear the vector before you call this
function/method. This means that you should set the handle to 0 in the
C-language respectively erase all elements of the vector in the C++ API.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX not applicable

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

Chapter 45. Work list actions 549

C-language signature
APIRET FMC_APIENTRY
FmcjWorklistQueryItems(FmcjWorklistHandle hdlList,

FmcjItemVectorHandle * items)

C++ language signature
APIRET QueryItems(vector<FmcjItem> & items) const

Java signature
public abstract Item[] queryItems() throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
items Input/Output. The vector of qualifying items.

Return type
APIRET The return code of calling this method - see below.
Item[] The qualifying items.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

550 Programming Guide

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For a C-language example see “Query work items from a worklist
(C-language)” on page 670

v For a C++ example see “Query work items from a worklist (C++)” on
page 672

v For a Java example see “Query work items from a worklist (Java)” on
page 673

QueryProcessInstanceNotifications()

This function/method retrieves the primary information for all process
instance notifications characterized by the specified worklist from the MQ
Workflow execution server (action call).

From the set of qualifying process instance notifications, only those are
retrieved, the user is authorized for. The user is authorized for a process
instance notification if
v He is the owner of the process instance notification
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each process instance notification
is:
v Category
v CreationTime
v Description
v Icon
v Kind
v LastModificationTime
v Name
v Owner
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime

Chapter 45. Work list actions 551

v State

In C and C++, any process instance notifications retrieved are appended to the
supplied vector of process instance notifications. If you want to read those
process instance notifications only which are currently included in the
worklist, you have to clear the vector before you call this function/method.
This means that you should set the handle to 0 in the C-language respectively
erase all elements of the vector in the C++ API.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryProcessInstanceNotifs()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryProcessInstanceNotifications(

FmcjWorklistHandle hdlList,
FmcjProcessInstanceNotificationVectorHandle * notifications)

C++ language signature
APIRET QueryProcessInstanceNotifications(

vector<FmcjProcessInstanceNotification> & notifications) const

552 Programming Guide

Java signature
public abstract
ProcessInstanceNotification[] queryProcessInstanceNotifications()
throws FmcException

Parameters
hdlList Input. The handle of the worklist to be queried.
notifications Input/Output. The vector of qualifying process instance

notifications.

Return type
long/ APIRET The return code of calling this method - see below.
ProcessInstanceNotification[]

The qualifying process instance notifications.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Chapter 45. Work list actions 553

Examples

v For an ActiveX example see “Query work items from a worklist (ActiveX)”
on page 669

v For a C-language example see “Query work items from a worklist
(C-language)” on page 670

v For a C++ example see “Query work items from a worklist (C++)” on
page 672

v For a Java example see “Query work items from a worklist (Java)” on
page 673

QueryWorkitems()

This function/method retrieves the primary information for all work items
characterized by the specified worklist from the MQ Workflow execution
server (action call).

From the set of qualifying work items, only those are retrieved, the user is
authorized for. The user is authorized for a work item if
v He is the owner of the work item
v He has workitem authority
v He is the system administrator

The primary information that is retrieved for each work item is:
v ActivityType
v Category
v CreationTime
v Description
v Icon
v Implementation
v Kind
v LastModificationTime
v Name
v Owner
v Priority
v ProcessInstanceName
v ReceivedAs
v ReceivedTime
v StartTime
v State
v SupportTools

In C and C++, any work items retrieved are appended to the supplied vector
of work items. If you want to read those work items only which are currently

554 Programming Guide

included in the worklist, you have to clear the vector before you call this
function/method. This means that you should set the handle to 0 in the
C-language respectively erase all elements of the vector in the C++ API.

Usage notes
v See “Action functions/methods” on page 128 for general information.

Authorization

None

Required connection

MQ Workflow execution server

API interface declarations

ActiveX IBM MQSeries Workflow Control 3.1

C-language fmcjcrun.h

C++ fmcjprun.hxx

JAVA com.ibm.workflow.api.WorkList

ActiveX signature
long QueryWorkitems()

C-language signature
APIRET FMC_APIENTRY FmcjWorklistQueryWorkitems(

FmcjWorklistHandle hdlList,
FmcjWorkitemVectorHandle * workitems)

C++ language signature
APIRET QueryWorkitems(vector<FmcjWorkitem> & workitems) const

Java signature
public abstract
WorkItem[] queryWorkItems() throws FmcException

Chapter 45. Work list actions 555

Parameters
hdlList Input. The handle of the worklist to be queried.
workitems Input/Output. The vector of qualifying work items.

Return type
long/ APIRET The return code of calling this method - see below.
WorkItem[] The qualifying work items.

Return codes/ FmcException
FMC_OK(0) The function/method completed successfully.
FMC_ERROR(1)

A parameter references an undefined location. For example,
the address of a handle is 0.

FMC_ERROR_EMPTY(122)
The object has not yet been read from the database, that is,
does not yet represent a persistent one.

FMC_ERROR_INVALID_HANDLE(130)
The handle provided is incorrect; it is 0 or it is not pointing to
an object of the requested type.

FMC_ERROR_DOES_NOT_EXIST(118)
The worklist does no longer exist.

FMC_ERROR_NOT_LOGGED_ON(106)
Not logged on.

FMC_ERROR_COMMUNICATION(13)
The specified server cannot be reached; the server to which
the connection should be established is not defined in your
profile.

FMC_ERROR_INTERNAL(100)
An MQ Workflow internal error has occurred. Contact your
IBM representative.

FMC_ERROR_MESSAGE_FORMAT(103)
An internal message format error. Contact your IBM
representative.

FMC_ERROR_TIMEOUT(14)
Timeout has occurred.

Examples

v For an ActiveX example see “Query work items from a worklist (ActiveX)”
on page 669

v For a C-language example see “Query work items from a worklist
(C-language)” on page 670

v For a C++ example see “Query work items from a worklist (C++)” on
page 672

556 Programming Guide

v For a Java example see “Query work items from a worklist (Java)” on
page 673

Chapter 45. Work list actions 557

558 Programming Guide

Part 7. Working with ActiveX Controls

The following chapters describe the ActiveX Controls.

Note: ActiveX signatures are provided in the Object Definition Language
(ODL). For example, type BSTR is used for strings where the
VisualBasic type is actually String.

© Copyright IBM Corp. 1993, 1999 559

560 Programming Guide

Chapter 46. The ExecutionService Control

To access an ExecutionService in the ExecutionServiceArray, the
ExecutionService Control must be connected to the Workflow Control. The
connection is established by the ConnectGUI() method of the ExecutionService
Control class. When the connection has been established, the user has full
access to the ExecutionService shown within the tree view of the
ExecutionService Control window.

© Copyright IBM Corp. 1993, 1999 561

562 Programming Guide

Chapter 47. The list controls

To access, for example, the worklists in the WorklistArray, each worklist must
be connected to a Worklist Control. This connection is established via the
ConnectGUI() method of the Worklist Control class. When the connection has
been established, the user has access to the Worklist object in the Worklist
Control. The same mechanism is used to connect all other List types to be
used within a GUI.

© Copyright IBM Corp. 1993, 1999 563

564 Programming Guide

Chapter 48. The Monitor Control

The Monitor Control OCX is the ActiveX component that implements the
Process Monitor GUI. To access a monitor, the Monitor Control must be
connected to the Workflow Control. The connection is established by the
ConnectGUI() method of the Monitor Control class. When the connection has
been established, the user has full access to the instance monitor object.

The Monitor Control can be used to display one process model graph. A
Refresh() method is provided in order to display changed activity instance
states. The OCX is not intended to be used for different process models
graphs. You must use separate Monitor OCX instances in order to view
different process models.

© Copyright IBM Corp. 1993, 1999 565

566 Programming Guide

Chapter 49. Typical scenario of ActiveX Control methods

If you want to look at a typical scenario to get, for example, the name of a
specific worklist, the sequence of steps to establish the prerequisites is as
follows:
1. The ExecutionService Control accessor method ExecutionServiceArray

provides access to the local Control object ExecutionServiceArray.
2. The ExecutionServiceArray action method Add provides the

ExecutionService index and the accessor method GetAt provides the
transient ExecutionService object.

3. The ExecutionService action method QueryWorklists provides transient
Worklist objects.

4. The ExecutionService accessor method WorklistArray provides access to
the local Control object WorklistArray.

5. The WorklistArray accessor method GetAt provides access to a specific
Worklist object with the WorklistArray.

6. The Worklist accessor method Name provides the name of the specific
Worklist.

© Copyright IBM Corp. 1993, 1999 567

568 Programming Guide

Chapter 50. MQWorkflowCtrl

Methods

The MQWorkflow Control supports the following methods:

ConfigurationID

Returns the configuration ID to be used for profile access.

Signature
BSTR ConfigurationID()

Return type
BSTR The configuration ID.

Connect

This method initializes MQ Workflow API processing for a particular thread.

Signature
long Connect()

Return type
long If processing completes successfully, FMC_OK is returned.

ContainerArray

Provides access to the ContainerArray object.

Signature
ContainerArray * ContainerArray()

Return type
ContainerArray*

A pointer to the ContainerArray object.

© Copyright IBM Corp. 1993, 1999 569

DateAndTime

Creates a new (uninitialized) DateAndTime object.

Signature
DateAndTime * DateAndTime()

Return type
DateAndTime*

A pointer to the DateAndTime object.

Disconnect

This method uninitializes MQ Workflow API processing for a particular
thread.

Signature
long Disconnect()

Return type
long If processing completes successfully, FMC_OK is returned.

ExecutionServiceArray

Provides access to the ExecutionServiceArray object.

Signature
ExecutionServiceArray * ExecutionServiceArray()

Return type
ExecutionServiceArray*

A pointer to the ExecutionServiceArray object.

NewActivityInstanceNotification

Creates an empty activity instance notification object.

Signature
ActivityInstanceNotification * NewActivityInstanceNotification()

570 Programming Guide

Return type
ActivityInstanceNotification*

A pointer to the activity instance notification created.

NewProcessInstance

Creates an empty process instance object.

Signature
ProcessInstance * NewProcessInstance()

Return type
ProcessInstance*

A pointer to the process instance object created.

NewProcessInstanceNotification

Creates an empty process instance notification object.

Signature
ProcessInstanceNotification * NewProcessInstanceNotification()

Return type
ProcessInstanceNotification*

A pointer to the process instance notification object created.

NewProcessTemplate

Creates an empty process template object.

Signature
ProcessTemplate * NewProcessTemplate()

Return type
ProcessTemplate*

A pointer to the process template object created.

NewWorkitem

Creates an empty work item object.

Chapter 50. MQWorkflowCtrl 571

Signature
Workitem * NewWorkitem()

Return type
Workitem* A pointer to the work item object created.

ProgramID

Returns the program ID by which an activity implementation is known to the
program execution agent.

Signature
BSTR ProgramID()

Return type
BSTR The program ID.

RemoteUserID

Returns the user ID for whom the original activity implementation has been
started by the program execution agent.

Signature
BSTR RemoteUserID()

Return type
BSTR The user ID.

SetConfigurationID

This method sets the configuration ID to be used for profile access.

Signature
long SetConfigurationID(BSTR configID)

Parameters
configID Input. The configuration ID to be set; must be a configuration

already defined.

572 Programming Guide

Return type
long If processing completes successfully, FMC_OK is returned.

StringArray

Provides access to the StringArray object.

Signature
StringArray * StringArray()

Return type
StringArray* A pointer to the StringArray object.

UserID

Returns the user ID for whom an activity implementation has been started by
the program execution agent.

Signature
BSTR UserID()

Return type
BSTR The user ID.

Chapter 50. MQWorkflowCtrl 573

574 Programming Guide

Chapter 51. ContainerCtrl

Properties

The Container Control has the following property, which can be modified:
Visible

Methods

The Container Control supports the following methods:

Container

This method provides access to an MQ Workflow Container object.

Signature
Container * Container()

Return type
Container* The pointer to the Container object.

ProgramID

Returns the program ID by which an activity implementation is known to the
program execution agent.

Signature
BSTR ProgramID()

Return type
BSTR The program ID.

RemoteUserID

Returns the user ID for whom the original activity implementation has been
started by the program execution agent.

© Copyright IBM Corp. 1993, 1999 575

Signature
BSTR RemoteUserID()

Return type
BSTR The user ID.

UserID

Returns the user ID for whom an activity implementation has been started by
the program execution agent.

Signature
BSTR UserID()

Return type
BSTR The user ID.

Events

The Container Control triggers the following events:

Error

Occurs only as the result of an error that takes place when no Visual Basic
code is being executed.

Signature
void Error(short number,

BSTR * description,
SCODE scode,
BSTR source,
BSTR helpFile,
long helpContext,
boolean cancel)

Parameters
number Output. The error number as an integer.
description Output. The description of the error.
scode Output. The scode error as a long integer.
source Output. The source of the error.

576 Programming Guide

helpFile Output. The name of the help file.
helpContext Output. The help context identifier.
cancel Input. If set to True, the message is not sent to the next layer.

Chapter 51. ContainerCtrl 577

578 Programming Guide

Chapter 52. Methods supported by all GUI controls

Following methods are supported by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, the Worklist
Control, and the Monitor Control.

AboutBox

Opens the about box of the Control.

Signature
void AboutBox()

ReadUserSettings

Restores user settings from the registry.

This restores values for the columns to be shown in the report view.

Signature
boolean ReadUserSettings(BSTR name)

Parameters
name Input. The string denoting the name of the registry key, the

values of which are restored.

Return type
boolean If processing completes successfully, True is returned.

RemoveGUI

Removes the connection between the ExecutionService Control and the
MQWorkflow Control.

© Copyright IBM Corp. 1993, 1999 579

Signature
long RemoveGUI()

Return type
long If processing completes successfully, FMC_OK is returned.

SetHelpFile

Defines the path and filename of the help file to be used in Runtime mode.

Signature
void SetHelpFile(BSTR name)

Parameters
name Input. The string denoting the fully qualified pathname of the

help file.

ShowContextMenu

Enables or disables the context menu.

Signature
void ShowContextMenu(boolean toggle)

Parameters
toggle Input. If True is specified, a right mouse click shows the

context menu. The specification of False disables the context
menu.

WriteUserSettings

Saves the user settings within the registry.

This saves the current columns sizes as well as the columns that are selected
to be shown in report view.

580 Programming Guide

Signature
boolean WriteUserSettings(BSTR name)

Parameters
name Input. The string denoting the name of the registry key where

the current values are stored.

Return type
boolean If processing completes successfully, True is returned.

Chapter 52. Methods supported by all GUI controls 581

582 Programming Guide

Chapter 53. Methods supported by all list controls

Following methods are supported by all list controls, the ProcessTemplateList
Control, the ProcessInstanceList Control, and the Worklist Control.

ConnectGUI

Connects the specified process template list, the specified process instance list,
or the specified worklist to the GUI.

Signature
long ConnectGUI(IDispatch * list, IDispatch * es, IDispatch * wfc)

Parameters
es Input. The pointer to the execution service object.
list Input. The pointer to the list object.
wfc Input. The pointer to the MQWorkflowCtrl object.

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuDelete

Calls the context menu item ’Delete’.

Signature
long ContextMenuDelete()

Return type
long Return code of FmcjProcessTemplate::Delete(), or

FmcjProcessInstanceListDelete(), or FmcjWorklist::Delete().

ContextMenuListProperties

Calls the context menu item ’Properties’.

© Copyright IBM Corp. 1993, 1999 583

This method shows a dialog which provides property information of the
process template list, process instance list, or worklist.

Signature
void ContextMenuListProperties()

ContextMenuListSettings

Calls the context menu item ’Processlist settings’.

This method shows a dialog which provides information on name, type, filter,
and sort criteria of the process template list, process instance list, or worklist.

Signature
void ContextMenuListSettings ()

ContextMenuListRefresh

Calls the context menu item ’Refresh ProcessTemplateList’, or ’Refresh
ProcessInstanceList’, or ’Refresh Worklist’.

Signature
long ContextMenuListRefresh()

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuProperties

Calls the context menu item ’Show Properties’.

This method shows the properties of the selected objects within the
ProcessTemplateList, the ProcessInstanceList, or the Worklist Control.

Signature
void ContextMenuProperties()

584 Programming Guide

ContextMenuViewIcon

Displays the ProcessTemplateList, or ProcessInstanceList, or Worklist Control
grid in icon mode.

Signature
void ContextMenuViewIcon()

ContextMenuViewList

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in list mode.

Signature
void ContextMenuViewList()

ContextMenuViewReport

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in report mode.

Signature
void ContextMenuViewReport()

ContextMenuViewSmallIcon

Displays the ProcessTemplateList, the ProcessInstanceList, or Worklist Control
grid in small icon mode.

Signature
void ContextMenuViewSmallIcon()

Chapter 53. Methods supported by all list controls 585

FindFirst

Returns the first selected object of the process template list array, the process
instance list, or the worklist array.

Signature
IDispatch * FindFirst(long * index)

Parameters
index Output. A pointer to a long field where the returned index is

to be stored. If no selected object is found, 1 is returned.

Return type
IDispatch* The object pointer. NULL (0) is returned if the selected object

is not found.

FindNext

Returns the next selected object of the process template list array, the process
instance list array, or the worklist array. FindFirst() must have been called
before.

Signature
IDispatch * FindNext(long * index)

Parameters
index Output. A pointer to a long field where the returned index is

to be stored. If no selected object is found, 1 is returned.

Return type
IDispatch* The object pointer. NULL (0) is returned if the selected object

is not found.

Return Value

IDispatch* The ProcessTemplate object pointer. 0 (null) is returned if no
selected object is found.

Parameters

index Output. A pointer to a long field where the returned index is stored. If
no selected object is found, 1 is returned.

586 Programming Guide

GetItemAt

Returns the object of the process template list array, the process instance list
array, or the worklist array at the given index.

Signature
IDispatch * GetItemAt(long index)

Parameters
index Input. The array index of the object to be returned.

Return type
IDispatch* The object pointer.

GetItemCount

Returns the number of objects in the process template list array, the process
instance list array, or the worklist array.

Signature
long GetItemCount()

Return type
long The number of objects in the array.

Chapter 53. Methods supported by all list controls 587

588 Programming Guide

Chapter 54. Events triggered by all GUI controls

Following events are triggered by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, the Worklist
Control, and the Monitor Control.

Click

Occurs when the user presses a mouse button over this control.

Signature
void Click()

DblClick

Occurs when the user presses and releases a mouse button and then presses
and releases it again over this control.

Signature
void DblClick()

KeyPress

Occurs when the user presses and releases an ANSI key.

Signature
void KeyPress(short keyAscii)

Parameters
keyAscii Output. An integer that returns a standard numeric ANSI

keycode.

© Copyright IBM Corp. 1993, 1999 589

590 Programming Guide

Chapter 55. Events triggered by all non-monitor GUI
controls

Following events are triggered by the ExecutionService Control, the
ProcessTemplateList Control, the ProcessInstanceList Control, and the Worklist
Control.

Error

Occurs only as the result of an error that takes place when no Visual Basic
code is being executed.

Signature
void Error(short number,

BSTR * description,
SCODE scode,
BSTR source,
BSTR helpFile,
long helpContext,
boolean cancel)

Parameters
number Output. The error number as an integer.
description Output. The description of the error.
scode Output. The scode error as a long integer.
source Output. The source of the error.
helpFile Output. The name of the help file.
helpContext Output. The help context identifier.
cancel Input. If set to True, the message is not sent to the next layer.

KeyDown

Occurs when the user pressed a key while an object has this control as the
focus.

Signature
void KeyDown(short * keyCode, short shift)

© Copyright IBM Corp. 1993, 1999 591

Parameters
keyCode Output. A key code, such as vbKeyF1 (the F1 key) or

vbKeyHome (the HOME key).
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.

KeyUp

Occurs when the user releases a key while an object has this control as the
focus.

Signature
void KeyUp(short * keyCode, short shift)

Parameters
keyCode Output. A key code, such as vbKeyF1 (the F1 key) or

vbKeyHome (the HOME key).
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.

MouseDown

Occurs when the user presses the mouse button over the ProcessInstanceList
Control window.

Signature
void MouseDown(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

592 Programming Guide

MouseMove

Occurs when the user moves the mouse.

Signature
void MouseMove(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

MouseUp

Occurs when the user releases a mouse button over the ProcessInstanceList
Control window.

Signature
void MouseUp(short button ,

short shift ,
OLE_XPOS_PIXELS x ,
OLE_YPOS_PIXELS y)

Parameters
button Output. Returns an integer that identifies the button that was

pressed.
shift Output. An integer that corresponds to the state of the SHIFT,

CTRL, and ALT keys at the time of the event.
x Output. Returns an integer that specifies the current location

(abscissa) of the mouse pointer.
y Output. Returns an integer that specifies the current location

(ordinate) of the mouse pointer.

Chapter 55. Events triggered by all non-monitor GUI controls 593

594 Programming Guide

Chapter 56. Events triggered by all list controls

Following events are triggered by all lists, the ProcessTemplateList Control,
the ProcessInstanceList Control, and the Worklist Control.

ViewChanged

Occurs when the list grid view has changed.

Signature
void ViewChanged()

© Copyright IBM Corp. 1993, 1999 595

596 Programming Guide

Chapter 57. ExecutionServiceCtrl

Properties

In design mode, the properties for the ExecutionService Control can be
viewed by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button and selecting Properties.

The property dialog contains two tabs: Fonts and Pictures.

All tabs are available in design mode and run mode.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the ExecutionService Control can be
manipulated here.

The Pictures tab provides the ability to associate icons with the various
elements of the ExecutionService Control’s display.

To view the icon currently associated with a given item, select the item from
the Property Name drop-down list. The associated icon is displayed in the
Preview area.

To change the icon for the currently selected item, click on the Browse button.
A standard browse dialog will be displayed. Any icon chosen through the
browser replaces the icon currently associated with the given item. Clicking
on the Clear button removes the icon currently associated with the given
item, leaving the item without an icon.

Following properties can be modified: Appearance, BorderStyle, Font,
IconMQWorkflow, IconOneProcessInstanceList,
IconOneProcessTemplateList, IconOneWorklist, IconProcessInstanceLists,
IconProcessTemplateLists, IconSystem, IconWorklists.

Methods

The ExecutionService Control supports the following methods besides the
methods supported by all controls - see “Chapter 52. Methods supported by
all GUI controls” on page 579:

© Copyright IBM Corp. 1993, 1999 597

ConnectGUI

Connects the ExecutionServiceCtrl object with the MQWorkflowCtrl object.

Signature
long ConnectGUI(IDispatch * wfc)

Parameters
wfc Input. The pointer to the MQWorkflowCtrl object.

Return type
long If processing completes successfully, FMC_OK is returned.

ContextMenuDeleteProcInstList

Calls the context menu item ’Delete Process Instance List’.

Signature
long ContextMenuDeleteProcInstList(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the ProcessInstanceListArray.

Return type
long Return code of FmcjProcessInstanceList::Delete().

ContextMenuDeleteProcTempList

Calls the context menu item ’Delete Process Template List’.

Signature
long ContextMenuDeleteProcTempList(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the ProcessTemplateListArray.

Return type
long Return code of FmcjProcessTemplateList::Delete().

598 Programming Guide

ContextMenuDeleteWorklist

Calls the context menu item ’Delete Worklist’.

Signature
long ContextMenuDeleteWorklist(long index1, long index2)

Parameters
index1 Input. The index within the ExecutionServiceArray.
index2 Input. The index within the WorklistListArray.

Return type
long Return code of FmcjWorklistList::Delete().

ContextMenuLogoff

Calls the context menu item ’Logoff’.

Signature
long ContextMenuLogoff(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::Logoff().

ContextMenuLogon

Calls the context menu item ’Logon’.

Signature
long ContextMenuLogon(long index,

BSTR userID,
BSTR password)

Parameters
index Input. The index within the ExecutionServiceArray.
userID Input. The user identification to logon with.
password Input. The password.

Chapter 57. ExecutionServiceCtrl 599

Return type
long Return code of FmcjExecutionService::Logon().

ContextMenuLogonDialog

Calls the context menu item ’Logon’. Calling this method displays a separate
logon dialog where the user must specify detailed logon parameters, such as
user ID and password.

Signature
long ContextMenuLogonDialog()

Return type
long Return code of FmcjExecutionService::Logon().

ContextMenuNewProcInstList

Calls the context menu item ’Create New Process Instance List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewProcInstList(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateProcessInstanceList().

ContextMenuNewProcTempList

Calls the context menu item ’Create New Process Template List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewProcTempList(long index)

600 Programming Guide

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateProcessTemplateList().

ContextMenuNewWorklist

Calls the context menu item ’Create New Work List’.

A dialog is shown where the user must specify detailed list creation
parameters.

Signature
long ContextMenuNewWorklist(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Return type
long Return code of FmcjExecutionService::CreateWorklist().

ContextMenuProperties

Calls the context menu item ’Properties’.

Signature
void ContextMenuProperties()

ContextMenuRefresh

Calls the context menu item ’Refresh’.

Signature
void ContextMenuRefresh()

ContextMenuRefreshProcInstLists

Calls the context menu item ’Refresh Process Instance Lists’.

Chapter 57. ExecutionServiceCtrl 601

Signature
void ContextMenuRefreshProcInstLists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcInstances

Calls the context menu item ’Refresh Process Instances’.

Signature
void ContextMenuRefreshProcInstances(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcTempLists

Calls the context menu item ’Refresh Process Template Lists’.

Signature
void ContextMenuRefreshProcTempLists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshProcTemplates

Calls the context menu item ’Refresh Process Templates’.

Signature
void ContextMenuRefreshProcTemplates(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

602 Programming Guide

ContextMenuRefreshWorkitems

Calls the context menu item ’Refresh Work Items’.

Signature
void ContextMenuRefreshWorkitems(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuRefreshWorklists

Calls the context menu item ’Refresh Worklists’.

Signature
void ContextMenuRefreshWorklists(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

ContextMenuUserInformation

Calls the context menu item ’User Information’.

Signature
void ContextMenuUserInformation(long index)

Parameters
index Input. The index within the ExecutionServiceArray.

Events

The ExecutionService Control triggers the following events besides the events
triggered by all non-monitor controls - see “Chapter 54. Events triggered by
all GUI controls” on page 589 and “Chapter 55. Events triggered by all
non-monitor GUI controls” on page 591:

Chapter 57. ExecutionServiceCtrl 603

ItemCollapsed

Occurs when the item has collapsed.

Signature
void ItemCollapsed(BSTR name, long type, long index)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

ItemCollapsing

Occurs when the item is collapsing.

Signature
void ItemCollapsing (BSTR name,

long type,
long index,
boolean * cancel)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.
cancel Input/Output. A pointer to a boolean variable. If True is

returned, the item is not collapsed.

ItemExpanded

Occurs when the item has expanded.

Signature
void ItemExpanded(BSTR name, long type, long index)

Parameters
name Output. The item name.
type Output. The type of the item.

604 Programming Guide

index Output. The index of the corresponding ExecutionService
within the ExecutionServiceArray.

ItemExpanding

Occurs when the item is expanding.

Signature
void ItemExpanding(BSTR name,

long type,
long index,
boolean * cancel)

Parameters
name Output. The item name.
type Output. The type of the item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.
cancel Input/Output. A pointer to a boolean variable. If True is

returned, the item is not collapsed.

SelChanged

Occurs when the selection has changed.

Signature
void SelChanged(BSTR name, long type, long index)

Parameters
name Output. The item name of the newly selected item.
type Output. The type of the newly selected item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.

SelChanging

Occurs when the item is changing.

Signature
void SelChanging(BSTR name, long type, long index, boolean * cancel)

Parameters

Chapter 57. ExecutionServiceCtrl 605

name Output. The item name of the newly selected item.
type Output. The type of the newly selected item.
index Output. The index of the corresponding ExecutionService

within the ExecutionServiceArray.
cancel Input. A pointer to a boolean variable. If set to True, the item

is not changed.

606 Programming Guide

Chapter 58. ProcessTemplateListCtrl

For GUI processing, a process template list must be connected to a
ProcessTemplateList Control. This connection is established via the method
ConnectGUI() from the ProcessTemplateListCtrl class. When this connection
has been established, the user has full access to the ProcessTemplateList object
in the ProcessTemplateList Control.

Properties

In design mode, the properties for the Process TemplateListControl can be
viewed and adjusted by placing the mouse pointer within the Control’s grid
area, clicking the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection, and
Column Attribute.

All of the tabs are available in design mode and runtime mode.

The display of the Control can be configured in a number of ways via this
dialog. There are four options for the View; namely Report, List, Small Icon,
and Icon.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Control’s window can be manipulated in
this dialog.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set and altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons. Then
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane and click the Add button. To remove columns, highlight items in
the left pane and click the Delete button.

The Column Attribute tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:

© Copyright IBM Corp. 1993, 1999 607

1. The Icon view check box is used to indicate which columns of information
(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right.

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of thedisplay. To adjust
the width of a column, highlight the desired item in the list box on the
left, enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

In Runtime mode, if the mouse pointer is placed on a given item and the
right mouse button is clicked, the context menu for that item is displayed. If
the Properties option is selected, a tabbed dialog appears.

The property dialog contains four tabs: General, Data and Staff, History, and
Documentation. The General tab displays the following pieces of information
belonging to the process template list.

The Data and Staff tab displays information belonging to the administration
of the listitem object. They are:
v Input and output container names of the process instance.
v The process administrator of the process instance.
v The user who started the process instance.
v The role and organization criteria for the activities assigned to the users for

the process instance.

The History tab displays the template information. They are:
v TimeStamps:

The date and time when the process template was created, started, and the
validfrom-time.

The Documentation tab displays any annotations added for the listitem
object.

Note: In the Client, or any application created with the ProcessTemplateList
Control, which utilizes a menu bar, the process item properties dialog
(and all other context menu items) can also be accessed via the menu
bar’s Process option.

ProcessTemplateList Settings

608 Programming Guide

The settings for the process template list can be viewed and adjusted by
placing the mouse pointer within an unused portion of the Control’s window
area, clicking the right mouse button, and selecting ProcessTemplateList
settings.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The ProcessTemplateList Control supports the following methods besides the
methods supported by all list controls - see “Chapter 52. Methods supported
by all GUI controls” on page 579 and “Chapter 53. Methods supported by all
list controls” on page 583:

ContextMenuCreateInstance

Calls the context menu item ’Create Instance’.

Signature
long ContextMenuCreateInstance()

Return type
long Return code of FmcjProcessTemplate::CreateInstance().

RefreshProcessTemplateList

Refreshes the ProcessTemplateList Control.

Signature
long RefreshProcessTemplateList()

Return type
long If processing completes successfully, FMC_OK is returned.

Events

See “Chapter 54. Events triggered by all GUI controls” on page 589,
“Chapter 55. Events triggered by all non-monitor GUI controls” on page 591,
and “Chapter 56. Events triggered by all list controls” on page 595.

Chapter 58. ProcessTemplateListCtrl 609

610 Programming Guide

Chapter 59. ProcessInstanceListCtrl

To access the process instance list, the ProcessInstanceList object must be
connected to a ProcessInstanceList Control. This connection is established via
the function ConnectGUI() from the ProcessInstanceListCtrl class. When this
connection has been established, the user has full access to the
ProcessInstanceList object in the ProcessInstanceList Control.

Properties

In design mode, the properties for the ProcessInstanceList Control can be
viewed and adjusted by placing the mouse pointer within the Control’s grid
area, clicking the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection and
Column Attribute.

All of the tabs are available in design mode and run mode.

The display of the Control can be configured in a number of ways via this
dialog. There are four options for the View; namely Report, List, Small Icon,
and Icon.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Control’s window can be manipulated
here.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set or altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons, and
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane, and click the Add button. To remove columns, highlight items in
the left pane, and click the Delete button.

The Column Attribute tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:

© Copyright IBM Corp. 1993, 1999 611

1. The Icon view check box is used to indicate which columns of information
(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right.

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of the display. To adjust
the width of a column, highlight the desired item in the list box at the left,
enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

In Runtime mode, if the mouse pointer is placed on a given item and the
right mouse button is clicked, the context menu for that item is displayed. If
the Properties option is selected, a tabbed dialog appears.

The property dialog contains four tabs: General, Data and Staff, History, and
Documentation. The General tab displays the following pieces of information
pertaining to the ProcessInstance. They are:
v Name
v Description
v Process category
v Status
v Parent process of the process instance
v Top-level process of the process instance
v Whether or not the process instance is being audited
v Whether or not the process instance is exited in case an error occurred
v Whether or not the starter of the process instance will be prompted to enter

data for the process instance

The Data and Staff tab displays information relating to the administration of
the list-item object. They are:
v Input and output Container names of the process instance
v The process administrator of the process instance
v The user who started the process instance
v The role and organization criteria for the users assigned activities for the

process instance

The History tab displays three pieces of activity information. They are:
v TimeStamps

The date and time when the process instance was created, started, and last
modified.

612 Programming Guide

v Notification
The date and time that the first notification will be sent (or was sent) for
the activity.

v Finished
The date and time the activity was completed.

The Documentation tab displays any annotations added for the list-item
object.

Note: In the Runtime Client or any application created with the
ProcessInstanceList Control, which utilizes a menu bar, the process item
property dialog (and all other context menu items) can also be accessed
via the menu bar’s Process option.

ProcessInstanceList Settings

The settings for the process instance list can be viewed and adjusted by
placing the mouse pointer within an unused portion of the Control’s window
area, clicking the right mouse button and selecting ProcessInstanceList
settings.

The ProcessInstanceList settings dialog displays three tabs: General, Filter,
and Sort.

In the General page the name and the type of the process template list are
shown. Here the user can also modify the threshold value and the description
of the process template list. The other two pages are intended to display and
modify the Filter and the Sort Criteria.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The ProcessInstanceList Control supports the following methods besides the
methods supported by all list controls - see “Chapter 52. Methods supported
by all GUI controls” on page 579 and “Chapter 53. Methods supported by all
list controls” on page 583:

ContextMenuRestart

Calls the context menu item ’Restart’.

Chapter 59. ProcessInstanceListCtrl 613

This method restarts the selected list of process instances within the Control.
See “Restart()” on page 449 for a more detailed description.

Signature
long ContextMenuRestart()

Return type
long Return code of FmcjProcessInstance::Restart().

ContextMenuResume

Calls the context menu item ’Resume’.

This method resumes the selected list of process instances within the Control.
See “Resume()” on page 451 for a more detailed description.

Signature
long ContextMenuResume()

Return type
long Return code of FmcjProcessInstance::Resume().

ContextMenuResumeDeep

Calls the context menu item ’Resume deep’.

This method resumes the selected list of process instances within the Control.
See “Resume()” on page 451 for a more detailed description.

Signature
long ContextMenuResumeDeep()

Return type
long Return code of FmcjProcessInstance::Resume().

ContextMenuStart

Calls the context menu item ’Start’.

614 Programming Guide

This method starts the selected list of process instances within the Control.
See “Start()” on page 458 for a more detailed description.

Signature
long ContextMenuStart()

Return type
long Return code of FmcjProcessInstance::Start().

ContextMenuSuspend

Calls the context menu item ’Suspend’.

This method suspends the selected list of process instances within the Control.
See “Suspend()” on page 460 for a more detailed description.

Signature
long ContextMenuSuspend()

Return type
long Return code of FmcjProcessInstance::Suspend().

ContextMenuSuspendDeep

Calls the context menu item ’Suspend deep’.

This method suspends the selected list of process instances within the Control.
See “Suspend()” on page 460 for a more detailed description.

Signature
long ContextMenuSuspendDeep()

Return type
long Return code of FmcjProcessInstance::Suspend().

ContextMenuTerminate

Calls the context menu item ’Terminate’.

Chapter 59. ProcessInstanceListCtrl 615

This method terminates the selected list of process instances within the
Control. See “Terminate()” on page 463 for a more detailed description.

Signature
long ContextMenuTerminate ()

Return type
long Return code of FmcjProcessInstance::Terminate().

RefreshProcessInstanceList

Refreshes the ProcessInstanceList Control.

Signature
long RefreshProcessInstanceList()

Return type
long If processing completes successfully, FMC_OK is returned.

Events

See “Chapter 54. Events triggered by all GUI controls” on page 589,
“Chapter 55. Events triggered by all non-monitor GUI controls” on page 591,
and “Chapter 56. Events triggered by all list controls” on page 595.

616 Programming Guide

Chapter 60. WorklistCtrl

The following describes the methods related to the WorklistCtrl Control. A
worklist comprises a set of work items for a user. The worklist object reflects
the worklist, which is stored in the IBM MQWorkflow Runtime server’s
database.

Properties

In design mode, the properties for the Worklist Control can be viewed and
adjusted by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button and selecting Properties.

The property dialog contains four tabs: Fonts, Colors, Column Selection, and
Column Attribute.

All of the tabs are available in design mode and runtime mode.

The Fonts tab displays a standard font dialog. The font, its size, style, and the
effects used to display the text in the Worklist Control’s window can be
manipulated here.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

The foreground and background colors of the Control can be set or altered.
Select ForeColor or BackColor, click on one of the sixteen color buttons, and
click on the Apply button.

The Column Selection tab allows columns or information to be added to or to
be removed from the Control’s display. To add columns, highlight items in the
right pane, and click the Add button. To remove columns, highlight in the left
pane, and click the Delete button.

The Icon view and Width tab provides a mechanism to manipulate certain
aspects of how the Control displays its items. They are as follows:
1. The Icon view check box is used to indicate which columns of information

(the names of which are shown in the list box on the left) are to be
included when the Icon display style is in effect. The columns that are
selected at any given time are shown below the icon on the right. They are
Description and Activity Type.

© Copyright IBM Corp. 1993, 1999 617

2. The Column width is used to indicate the number of pixels a column item
will occupy. It only pertains to the Report format of the display. To adjust
the width of a column, highlight the desired item in the list box on the
left, enter a numeric value in the Column width entry box, and click the
Apply button.

3. The Alignment is used to justify the text of a column either to the left or
to the right. It only pertains to the Report format of the display.

Runtime Mode

If the mouse pointer is placed on a given item and the right mouse button is
clicked, the context menu for that item is displayed. If the Properties option is
selected, a tabbed dialog appears.

The property dialog contains five tabs: General, Staff, Start & exit , History,
and Documentation. The General tab displays the following pieces of
information pertaining to the Worklist-item object. They are:
v Activity name
v Activity status
v Activity type
v Program

The name of the program or process assigned to the activity.
v Received as

A user category that defines why the activity was placed on the worklist:
– The user who has been assigned the activity.
– The substitute who received the activity because a defined user is

declared absent.
– The process administrator who received the activity because the defined

user is declared absent and no substitute has been specified for the
defined user.

Note: If no process administrator is defined for a process in Buildtime,
the person who starts the process instance is assigned as the
process administrator of the process instance.

– The system administrator who received the activity because the process
administrator has been deleted.

The Staff tab displays information belonging to the administration of the
Worklist-item object. They are:

v On the worklist of
User IDs of the users who were assigned the activity or (if the activity has
been started) the user ID of the user who started the activity.

618 Programming Guide

v Process administrator
The process administrator of the process instance to which the activity
belongs.

v Priority
The priority assigned to the activity in Buildtime.

v Started on Server
The name of the server on which the activity was initiated.

The Start & exit tab displays information relating to the start and exit
conditions of the work item. They are:
v Start

The start mode of the activity (manual or automatic).
v Start condition:

The condition that must be met before the activity is started (automatic
start) or is added to a worklist (manual start).

v Exit
The exit mode of the activity (manual or automatic).

v Exit condition
The condition that must be met before the activity is finished.

The History tab displays the following activity information:
v Received

The date and time when the activity arrived on the worklist.
v Notification

The date and time when the first notification is due for the activity.
v Finished

The date and time when the activity was completed.

The Documentation tab displays any annotations added for the list.

Note: In the Client or any application created with the Worklist Control,
which also utilizes a menu bar, the work item properties dialog (and all other
context menu items) can also be accessed via the menu bar’s Activity option.

Worklist Settings

The settings for the Worklist Control can be viewed and adjusted by placing
the mouse pointer within an unused portion of the Control window area,
clicking the right mouse button and selecting Worklist settings.

Chapter 60. WorklistCtrl 619

The General tab displays various pieces of information pertaining to the
worklist and its appearance. The ordering of the first three columns (from left
to right) can be set along with the sort order (ascending or descending). The
column ordering only applies when the report format is in effect.

After adjusting the settings, select the OK button. Items that meet the
selection criteria are displayed on the worklist. The filter criteria are saved
and persist, even between logons.

Following properties can be modified: Appearance, Arrange, BackColor,
BorderStyle, CtrlColumnOrder, CtrlColumnWidth, Font, ForeColor, View.

Methods

The Worklist Control supports the following methods besides the methods
supported by all list controls - see “Chapter 52. Methods supported by all GUI
controls” on page 579 and “Chapter 53. Methods supported by all list
controls” on page 583:

ContextMenuFinish

Calls the context menu item ’Finish’.

This method finishes the selected list of work items within the Control. See
“Finish()” on page 524 for a more detailed description.

Signature
long ContextMenuFinish()

Return type
long Return code of FmcjWorkitem::Finish().

ContextMenuForceFinish

Calls the context menu item ’Force finish’.

This method finishes the selected list of Workitems within the Control. See
“ForceFinish()” on page 526 for a more detailed description.

620 Programming Guide

Signature
long ContextMenuForceFinish()

Return type
long Return code of FmcjWorkitem::ForceFinish().

ContextMenuForceRestart

Calls the context menu item ’Force restart’.

This method restarts the selected list of Workitems within the Control. See
“ForceRestart()” on page 528 for a more detailed description.

Signature
long ContextMenuForceRestart()

Return type
long Return code of FmcjWorkitem::ForceFinish().

ContextMenuRestart

Calls the context menu item ’Restart’.

This method restarts the selected list of Workitems within the Control. See
“Restart()” on page 536 for a more detailed description.

Signature
long ContextMenuRestart()

Return type
long Return code of FmcjWorkitem::Restart().

ContextMenuSelectAll

Calls the context menu item ’Select all’.

This method selects all objects within the List Control.

Chapter 60. WorklistCtrl 621

Signature
long ContextMenuSelectAll()

Return type
long If proceesing completes successfully, FMC_OK is returned..

ContextMenuStart

Calls the context menu item ’Start’.

This method starts the selected list of work items within the Control. See
“Start()” on page 538 for a more detailed description.

Signature
long ContextMenuStart()

Return type
long Return code of FmcjWorkitem::Start().

ContextMenuStartTool

Calls the context menu item ’Start tool’.

This method starts the selected list of support tools within the Control. See
“StartTool()” on page 540 for a more detailed description.

Signature
long ContextMenuStartTool()

Return type
long Return code of FmcjWorkitem::StartTool().

ContextMenuTransfer

Calls the context menu item ’Transfer’.

This method transfers the selected list of work items within the Control from
one user to another one. A separate dialog is shown to specify the fromUserID

622 Programming Guide

as well as the toUserID. A dropdown list provides a list of user IDs from the
FDL. The dropdown list is empty in case you are authorized for all users, in
which case you must explicitly specify the toUserID. The transfer occurs for all
selected items within the List Control.

See “Transfer()” on page 409 for a more detailed description.

Signature
long ContextMenuTransfer()

Return type
long Return code of FmcjWorkitem::Transfer().

PushOption

This method is used to return the current setting of the PUSH option for this
worklist.

If True is returned, PUSH processing is enabled for the worklist. In this case,
pushed items (work items as well as notifications) are used to dynamically
update the items in the worklist. The user does not need to invoke worklist
refresh processing in order to add new items to the worklist or to see changes
(state, time stamps) of items already contained in the worklist.

The MQ Workflow Runtime client invokes this method in order to display the
current setting within the Settings dialog of a specific worklist.

Signature
boolean PushOption()

Return type
boolean If push is enabled for the worklist, True is returned, False

otherwise.

RefreshWorklist

Refreshes the Worklist Control.

Signature
long RefreshWorklist()

Chapter 60. WorklistCtrl 623

Return type
long If processing completes successfully, FMC_OK is returned.

SetPushOption

This method is used to enable or disable PUSH processing for the current
worklist.

The MQ Workflow Runtime client invokes this method when the user changes
the value of the PUSH check-box within the Settings dialog of a specific
worklist.

Signature
void SetPushOption(boolean value)

Parameters
value Input. An indicator whether PUSH processing is to be enabled

or not.

Events

The Worklist Control supports the following events besides the events
triggered by all non-monitor controls - see “Chapter 54. Events triggered by
all GUI controls” on page 589, “Chapter 55. Events triggered by all
non-monitor GUI controls” on page 591, and “Chapter 56. Events triggered by
all list controls” on page 595.

ActivityInstanceNotificationChanged

This OLE event is fired when an existing activity instance notification of the
current worklist has changed.

The index parameter denotes the index of the changed activity instance
notification in the ActivityInstanceNotifArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
ActivityInstanceNotificationChanged(long index)

624 Programming Guide

Parameters
index Input. The index of the activity instance notification in the

current worklist.

ProcessInstanceNotificationChanged

This OLE event is fired when an existing process instance notification of the
current worklist has changed.

The index parameter denotes the index of the changed process instance
notification in the ProcessInstanceNotifArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
ProcessInstanceNotificationChanged(long index)

Parameters
index Input. The index of the process instance notification in the

current worklist.

WorkitemChanged

This OLE event is fired when an existing work item of the current worklist
has changed.

The index parameter denotes the index of the changed work item in the
WorkitemArray of the current worklist.

The WorklistCtrl as exploited by the MQ Workflow Runtime client uses this
event to refresh the values in the GUI.

Signature
WorkitemChanged(long index)

Parameters
index Input. The index of the work item in the current worklist.

Starting

Occurs when a work item was started.

Chapter 60. WorklistCtrl 625

Signature
void Starting(BSTR name)

Parameters
name Output. The string denoting the name of the started work

item.

626 Programming Guide

Chapter 61. MonitorCtrl

Properties

In design mode, the properties for the Monitor Control can be viewed and
adjusted by placing the mouse pointer within the Control’s grid area, clicking
the right mouse button, and selecting Properties.

The property dialog contains two tabs: General and Colors.

All of the tabs are available in design mode and runtime mode.

The General tab displays the Zoom factor which can be changed for the
current session. A valid value is between 10 and 200. Zoom factor 100 is the
default.

The Colors tab provides a mechanism to manipulate the color scheme of the
Control’s window.

It displays the current color settings. For the current session you can change
the color used for selected items as well as the color for the background
(PaperColor).

Methods

The Monitor Control supports the following methods besides the methods
supported by all controls - see “Chapter 52. Methods supported by all GUI
controls” on page 579.

ActivityProperties()

This method displays the property pages of the currently selected activity
instance.

Signature
void ActivityProperties()

ConnectGUI

Connects the MonitorCtrl object with the MQWorkflowCtrl object.

© Copyright IBM Corp. 1993, 1999 627

Signature
long ConnectGUI(IDispatch * wfc)

Parameters
wfc Input. The pointer to the MQWorkflowCtrl object.

Return type
long If processing completes successfully, FMC_OK is returned.

ControlConnectorProperties

This method displays the property pages of the currently selected
ControlConnector.

Signature
void ControlConnectorProperties()

OpenMonitor

This method displays the process model graph as provided by the monitor
parameter. The graph layout is controlled by the layout coordinates provided
by the underlying C++ Api layer. The request is ignored when issued more
than once.

Signature
void OpenMonitor(IDISPATCH * monitor)

Parameters
monitor Input. The pointer to the instance monitor object.

Refresh

This method refreshes the current process model graph. It must be used to
refresh activity instance states. An automatic refresh is not supported.

Signature
long Refresh()

628 Programming Guide

Return type
long The return code of FmcjBlockInstanceMonitor::Refresh().

Events

The Monitor Control triggers the following events besides the events triggered
by all controls - see “Chapter 54. Events triggered by all GUI controls” on
page 589.

AfterRefreshing

This OLE event is fired when refreshing ends. It is preceded by a
BeforeRefreshing event.

Signature
void AfterRefreshing()

BeforeRefreshing

This OLE event is fired when the user clicks the Refresh menu item. It is
preceded by a DoRefresh event.

Signature
void BeforeRefreshing()

BlockActivityClick

This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Block.

Signature
void BlockActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.

Chapter 61. MonitorCtrl 629

button Input. Indicates which button was pressed; 0 denotes the left
button, 2 the right button.

enableDefault Input. An indicator whether the Monitor Control should
perform its default action and display the context menu.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

BlockActivityDoubleClick

This OLE event is fired when the user double- clicks the left mouse button
over an activity instance of kind Block.

Signature
void BlockActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and open a new monitor window.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ControlConnectorClick

This OLE event is fired when the user clicks the right mouse button over a
control connector instance.

Signature
void ControlConnectorClick(IDISPATCH * connector,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
connector Input. A pointer to the control connector instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.

630 Programming Guide

enableDefault Input. An indicator whether the Monitor Control should
perform its default action and display the context menu.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ControlConnectorDoubleClick

This OLE event is fired when the user double-clicks the left mouse button
over a control connector instance.

Signature
void ControlConnectorDoubleClick(IDISPATCH * connector,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
connector Input. A pointer to the control connector instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the control connector
instance property page.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

DoActivityEnter

This OLE event is fired when the user selects an activity instance and presses
the Enter key.

Signature
void DoActivityEnter(IDISPATCH * activity,

boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action which is the same as the mouse
double-click; it depends on the activity instance type.

Chapter 61. MonitorCtrl 631

DoControlConnectorEnter

This OLE event is fired when the user selects a control connector instance and
presses the Enter key.

Signature
void DoControlConnectorEnter(IDISPATCH * connector,

boolean * enableDefault)

Parameters
connector Input. A pointer to the control connector instance object.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action; currently there is no default action.

DoRefresh

This OLE event is fired when the user selects Refresh from the context menu.

Signature
void DoRefresh(boolean * enableDefault)

Parameters
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and issue a complete refresh of all
activity instances and control connector instances displayed
within the Monitor window.

DoShowContextMenu

This event is fired in case the right mouse button is clicked to show the
context menu. The user can cancel the ContextMenu display by setting the
enableDefault parameter to False.

Signature
void DoShowContextMenu(boolean * enableDefault)

Parameters
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the context menu.

632 Programming Guide

Error

Occurs when opening a monitor signals an error.

Signature
void Error(short returnCode,

BSTR * messageText,
boolean * cancelDisplay)

Parameters
returnCode Input. The return code.
messageText Input. The formatted message text describing the error.
cancelDisplay Input. If set to True, the display is canceled.

MonitorOpen

This OLE event is fired when the user clicks the in-place (or context) menu
monitor item Open Activity.

Signature
void MonitorOpen(IDISPATCH * activity)

Parameters
activity Input. A pointer to the activity instance object.

ProcessActivityClick

This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Process.

Signature
void ProcessActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.

Chapter 61. MonitorCtrl 633

enableDefault Input. An indicator whether the Monitor Control should
perform its default action and display the context menu.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProcessActivityDoubleClick

This OLE event is fired when the user double-clicks the left mouse button
over an activity instance of kind Process.

Signature
void ProcessActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action; currently there is not default action.
x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProgramActivityClick

This OLE event is fired when the user clicks the right mouse button over an
activity instance of kind Program. It displays the properties page of the activity
instance.

Signature
void ProgramActivityClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.

634 Programming Guide

enableDefault Input. An indicator whether the Monitor Control should
perform its default action and display the context menu.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

ProgramActivityDoubleClick

This OLE event is fired when the user double-clicks the left mouse button
over an activity instance of kind Program. It displays the property pages of the
activity instance.

Signature
void ProcessActivityDoubleClick(IDISPATCH * activity,

OLE_XPOS_PIXELS x,
OLE_XPOS_PIXELS y,
long button,
boolean * enableDefault)

Parameters
activity Input. A pointer to the activity instance object.
button Input. Indicates which button was pressed; 0 denotes the left

button, 2 the right button.
enableDefault Input. An indicator whether the Monitor Control should

perform its default action and display the property pages of
the selected activity instance.

x Input. The x-coordinate of the mouse when the click occurred.
y Input. The y-coordinate of the mouse when the click occurred.

Chapter 61. MonitorCtrl 635

636 Programming Guide

Part 8. Examples and scenarios

© Copyright IBM Corp. 1993, 1999 637

638 Programming Guide

Chapter 62. Scenarios

The following scenarios are delivered with MQ Workflow. Scenarios are
intended to demonstrate some functionality of the product. They can be
executed and looked at. In order to execute a scenario:
1. Import the FDL.
2. Start the MQ Workflow system.
3. Execute the scenario; by default, it has been installed in the \bin

subdirectory of your installation directory if you selected to install the
samples.

Refer to the readme file in the appropriate directory for possible updates.
v A sample credit request

For Windows NT and ActiveX in \fmcwinnt\scenario\credit; for Windows
95 and ActiveX in \fmcwin95\scenario\credit; for Windows 98 and ActiveX
in \fmcwin98\scenario\credit:
– The FDL: fmccred.fdl
– The activity implementations: fmcn6bnp.vbp, fmcn6bni.vbp,

fmcn6bnp.vbp, fmcn6bnr.vbp
v A sample life insurance request

For Windows NT and the C-language in \fmcwinnt\scenario\life; for
Windows 95 and the C-language in \fmcwin95\scenario\life; for Windows
98 and the C-language in \fmcwin98\scenario\life:
– The FDL: fmclife.fdl
– The activity implementations: all *.c and *.h files starting with fmcsi

© Copyright IBM Corp. 1993, 1999 639

640 Programming Guide

Chapter 63. Examples

The following examples are delivered with the MQ Workflow; examples are
intended to demonstrate some API usage. They can be compiled and linked
and then executed. Some examples also provide a version which can be
executed. They can then be found in the \bin subdirectory of your installation
directory if you selected to install the samples.

Refer to the readme file in the appropriate directory for possible updates.
v Container handling in an activity implementation

– For all supported platforms and the C-language in the \smp\c\actimpl
subdirectory of the install directory: fmctjcim.c

– For all supported platforms and the C++-language in the
\smp\c++\actimpl subdirectory of the install directory: fmctjpim.cxx

– For Windows NT and ActiveX in \fmcwinnt\smp\vb\actimpl; for
Windows 95 and ActiveX in \fmcwin95\smp\vb\actimpl; for Windows
98 and ActiveX in \fmcwin98\smp\vb\actimpl: fmcnshow.vbp

Note: These programs are able to analyze an unknown container. Especially
the fmcnshow program can be used as your initial activity
implementation in order to test a new process model.

v The Runtime client
For Windows NT and ActiveX in \fmcwinnt\smp\vb\rtc; for Windows 95
and ActiveX in \fmcwin95\smp\vb\rtc; for Windows 98 and ActiveX in
\fmcwin98\smp\vb\rtc: fmcn6rtc.vbp

v Hello world
For all supported platforms (except OS/2) and the Java language:
– In the \smp\java\HelloApplication subdirectory of the installation

directory: HelloApplication.java
– In the \smp\java\HelloApplet subdirectory of the installation directory:

HelloApplet.java and HelloApplet.html
– In the \smp\java\HelloApplet1 subdirectory of the installation directory:

HelloApplet1.java and HelloApplet1.html
– In the \smp\java\HelloServlet subdirectory of the installation directory:

HelloServlet.java and HelloServlet.html

The following chapters additionally show some examples. They are intended
to present the stated concept only.

© Copyright IBM Corp. 1993, 1999 641

642 Programming Guide

Chapter 64. How to create persistent lists

The following examples show how to create a persistent list, that is, a
persistent view on a set of objects. They define a view on process instances.
Other possible lists to define are process template lists or worklists.

Create a process instance list (ActiveX)

Dim eService As ExecutionService
Dim Err As String

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then
Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.CreateProcessInstanceList(
"PIL1",
TypeOfList.TypeOfList_Private, "ADMIN", False,
"", True,
"", True,
"", True,
0, True)

If Rc <> 0 Then
Err = "CreateProcessInstanceList failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

© Copyright IBM Corp. 1993, 1999 643

Create a process instance list (C-language)

#include <stdio.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceListHandle instanceList = 0;
unsigned long threshold = 10;
int enumValue = 0;
char name[50] = "MyTenInstances";
char desc[50] = "This list contains no more than 10 instances";

FmcjGlobalConnect();
/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* create a process instance list */
rc = FmcjExecutionServiceCreateProcessInstanceList(

service,
name,
Fmc_LT_Private,
"USERID",
desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
&instanceList);

644 Programming Guide

if (rc != FMC_OK)
printf("CreateProcessInstanceList returns: %u%\n",rc);

else
printf("CreateProcessInstanceList okay\n");

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);
FmcjGlobalDisconnect();
return 0;

}

Chapter 64. How to create persistent lists 645

Create a process instance list (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{
cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// create a process instance list

FmcjProcessInstanceList instanceList;
string name ("MyTenInstances");
string desc ("List contains no more than 10 instances");
string onwer ("USERID");
unsigned long threshold= 10;

rc = service.CreateProcessInstanceList(
name,
FmcjPersistentList::Private,
&owner,
&desc,
FmcjNoFilter,
FmcjNoSortCriteria,
&threshold,
instanceList);

if (rc != FMC_OK)
cout << "CreateProcessInstanceList returns: " << rc << endl;

else
cout << "CreateProcessInstanceList okay" << endl;

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

646 Programming Guide

Create a process instance list (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class CreateProcInstList
{

public static void main(String[] args)
{
// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{
System.out.println("Usage:");
System.out.println("java CreateProcessInstanceList

<agent> <LOC|RMI|OSA|IOR|COS>
[userid] [password]");

System.exit(0);
}

Chapter 64. How to create persistent lists 647

try
{
// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{
agent.setLocator(Agent.LOC_LOCATOR);

}
else if (args[1].equalsIgnoreCase("RMI"))
{
agent.setLocator(Agent.RMI_LOCATOR);

}
else if (args[1].equalsIgnoreCase("OSA"))
{
agent.setLocator(Agent.OSA_LOCATOR);

}
else if (args[1].equalsIgnoreCase("IOR"))
{
agent.setLocator(Agent.IOR_LOCATOR);

}
else if (args[1].equalsIgnoreCase("COS"))
{
agent.setLocator(Agent.COS_LOCATOR);

}
else
{
System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

648 Programming Guide

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
service.logon(userid, passwd);
System.out.println("Logon successful");

String ListName ="MyTenInstances";
String ListDesc = "List contains no more than 10 instances";
String ListFilter = "";
String ListSort = "";
int ListThreshold = 10;

try
{
service.createProcessInstanceList(ListName, TypeOfList.PRIVATE,

userid , ListDesc, ListFilter,
ListSort, ListThreshold);

System.out.println("Private ProcessInstanceList created successfully");
}
catch(FmcException e)
{

if (e.rc == FmcException.FMC_ERROR_NOT_UNIQUE)
{
System.out.println("ProcessInstanceList: '" + ListName +

"' already exists");
}

}

Chapter 64. How to create persistent lists 649

finally
{

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

}

catch(FmcException e)
{
// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{
System.out.println(" " + e.parameters[i]);

}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{
// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

650 Programming Guide

Chapter 65. How to query persistent lists

The following examples show how to retrieve persistent lists from the MQ
Workflow execution server and how to query the characteristics of a list. They
use worklists as example. Other possible lists to query are process template
lists or process instance lists.

© Copyright IBM Corp. 1993, 1999 651

Query worklists (ActiveX)

Dim eService As ExecutionService
Dim wl As Worklist
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As Integer

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then
Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryWorklists
If Rc <> 0 Then
Err = "QueryWorklists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.WorklistArray.GetSize
For i = 0 To s - 1
Set wl = eService.WorklistArray.GetAt(i)

Msg = "Worklist: Name = " + wl.Name
MsgBox Msg, vbInformation, "Worklist"

Next i

End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

652 Programming Guide

Query worklists (C-language)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorklistVectorHandle lists = 0;
unsigned long numWList = 0;
unsigned long i = 0;
unsigned long enumValue = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &lists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

Chapter 65. How to query persistent lists 653

if (rc == FMC_OK)
{
numWList= FmcjWorklistVectorSize(lists);
printf ("Number of worklists returned : %u\n", numWList);
for(i=1; i<= numWList; i++)
{
worklist= FmcjWorklistVectorNextElement(lists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("- Name : %s\n",tInfo);

enumValue= FmcjWorklistType(worklist);
if (enumValue == Fmc_LT_Private)
printf("- Type : %s\n","private");

if (enumValue == Fmc_LT_Public)
printf("- Type : %s\n","public");

FmcjWorklistOwnerOfList(worklist, tInfo, 4097);
printf("- OwnerOfList : %s\n",tInfo);
printf("- OwnerOfList is null ? : %u\n",

FmcjWorklistOwnerOfListIsNull(worklist));

FmcjWorklistDescription(worklist, tInfo, 4097);
printf("- Description : %s\n",tInfo);
printf("- Description is null ? : %u\n",

FmcjWorklistDescriptionIsNull(worklist));

FmcjWorklistFilter(worklist, tInfo, 4097);
printf("- Filter : %s\n",tInfo);
printf("- Filter is null ? : %u\n",

FmcjWorklistFilterIsNull(worklist));

FmcjWorklistSortCriteria(worklist, tInfo, 4097);
printf("- SortCriteria : %s\n",tInfo);
printf("- SortCriteria is null ? : %u\n",

FmcjWorklistSortCriteriaIsNull(worklist));

printf("- Threshold : %u\n",
FmcjWorklistThreshold(worklist));

printf("- Threshold is null ? : %u\n",
FmcjWorklistThresholdIsNull(worklist));

/* deallocate just read object */
FmcjWorklistDeallocate(&worklist);

}
FmcjWorklistVectorDeallocate(&lists);

}

654 Programming Guide

Query worklists (C++)

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{
FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{
cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;
rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

if (rc == FMC_OK)
{
unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;

for(unsigned long i=0; i< numWList; i++)
{
worklist= lists[i];
cout << "Name : " << worklist.Name() << endl;

Chapter 65. How to query persistent lists 655

cout << "Type : " <<
((worklist.Type() == FmcjPersistentList::Private) ? "private" :
(worklist.Type() == FmcjPersistentList::Public) ? "public" :
"not set") << endl;

cout << "Owner : " << worklist.OwnerOfList() << endl;
cout << "Owner null ? : " << worklist.OwnerOfListIsNull() << endl;

cout << "Description : " << worklist.Description() << endl;
cout << "Description null ?: " << worklist.DescriptionIsNull() << endl;

cout << "Filter : " << worklist.Filter() << endl;
cout << "Filter null ? : " << worklist.FilterIsNull() << endl;
cout << "SortCriteria : " << worklist.SortCriteria() << endl;
cout << "SortCriteria null?: " << worklist.SortCriteriaIsNull()<< endl;

cout << "Threshold : " << worklist.Threshold() << endl;
cout << "Threshold null ? : " << worklist.ThresholdIsNull() << endl;
cout << endl; } cout << endl; }

rc = service.Logoff();
FmcjGlobal::Disconnect();
return 0;

}

656 Programming Guide

Query worklists (Java)

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;
import com.ibm.workflow.api.PersistentListPackage.*;

public class QueryWorkLists
{

public static void main(String[] args)
{
// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password
//
if ((args.length < 2) || (args.length > 4))
{
System.out.println("Usage:");
System.out.println("java QueryWorkLists [userid] [password]");
System.exit(0);

}

Chapter 65. How to query persistent lists 657

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{
agent.setLocator(Agent.LOC_LOCATOR);

}
else if (args[1].equalsIgnoreCase("RMI"))
{
agent.setLocator(Agent.RMI_LOCATOR);

}
else if (args[1].equalsIgnoreCase("OSA"))
{
agent.setLocator(Agent.OSA_LOCATOR);

}
else if (args[1].equalsIgnoreCase("IOR"))
{
agent.setLocator(Agent.IOR_LOCATOR);

}
else if (args[1].equalsIgnoreCase("COS"))
{
agent.setLocator(Agent.COS_LOCATOR);

}
else
{
System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

658 Programming Guide

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.

// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{
System.out.println(" No worklist found");

}
else
{
System.out.println(" Number of worklists returned: " + worklists.length

);

// Iterate over the worklists, printing out their names.
for (int ndx = 0; ndx < worklists.length; ndx++)
{
System.out.println(" Name :" + worklists[ndx].name());

if (worklists[ndx].type() == TypeOfList.PUBLIC)
{
System.out.println(" Type :Public ");

}
else if (worklists[ndx].type() == TypeOfList.PRIVATE)
{
System.out.println(" Type :Private");

}
else
{
System.out.println(" Type :NotSet ");

}

Chapter 65. How to query persistent lists 659

System.out.println(" Owner :" + worklists[ndx].ownerOfList());
System.out.println(" Description :"+ worklists[ndx].description());
System.out.println(" Filter :"+ worklists[ndx].filter());
System.out.println(" SortCriteria :"+ worklists[ndx].sortCriteria());
System.out.println(" Threshold :"+ worklists[ndx].threshold());
System.out.println(" ");

}

}/* End if*/

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

catch(FmcException e)
{
// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{
System.out.println(" " + e.parameters[i]);

}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{
// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

660 Programming Guide

Chapter 66. How to query a set of objects

The following examples show how to query objects for which you are
authorized. They use a query for process instances in order to demonstrate an
ad-hoc query. They use work items in order to demonstrate how to query the
contents of a predefined list, a worklist.

Note: ActiveX supports querying objects only from a predefined list.

© Copyright IBM Corp. 1993, 1999 661

Query process instances from a process instance list (ActiveX)

Dim eService As ExecutionService
Dim pil As ProcessInstanceList
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As IntegerDim

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then
Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryProcessInstanceLists
If Rc <> 0 Then
Err = "QueryProcessInstanceLists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.ProcessInstanceListArray.GetSize

If s > 0 Then
Set pil = eService.ProcessInstanceListArray.GetAt(0)
Rc = pil.QueryProcessInstances
If Rc <> 0 Then

Err = "QueryProcessInstances failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
Msg = "Number of instances returned: " + Str(pil.GetSize)
MsgBox Msg, vbInformation, "ProcessInstances"

End If
Else
Err = "No ProcessInstanceList available"
MsgBox Err, vbCritical, "Error"

End If
End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

662 Programming Guide

Query process instances (C-language)

#include <stdio.h>
#include <memory.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */
int main()
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjProcessInstanceHandle instance = 0;
FmcjProcessInstanceVectorHandle iList = 0;
unsigned long numIList = 0;
unsigned long i = 0;
char tInfo[4096+1]= "";

FmcjGlobalConnect();

/* logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated - rc: %u%\n",rc);
return -1;

}
rc= FmcjExecutionServiceLogon(service,

"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet

);
if (rc != FMC_OK)
{
printf("Logon failed - rc: %u%\n",rc);
FmcjExecutionServiceDeallocate(&service);
return -1;

}
/* query process instances */
rc= FmcjExecutionServiceQueryProcessInstances(

service,
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
&iList);

if (rc != FMC_OK)
printf("QueryProcessInstances() returns: %u%\n",rc);

else
printf("QueryProcessInstances() returns okay\n");

Chapter 66. How to query a set of objects 663

Query process instances (C++)

if (rc == FMC_OK)
{
numIList= FmcjProcessInstanceVectorSize(iList);
printf ("Number of instances returned : %u\n", numIList);

for(i=1; i<= numIList; i++)
{
instance= FmcjProcessInstanceVectorNextElement(iList);
FmcjProcessInstanceName(instance, tInfo, 4097);
printf("- Name : %s\n",tInfo);
FmcjProcessInstanceDeallocate(&instance);

}

FmcjProcessInstanceVectorDeallocate(&iList);
}

FmcjExecutionServiceLogoff(service);
FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{
FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{
cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

664 Programming Guide

Query process instances (Java)

// query process instances

vector<FmcjProcessInstance> instances;

rc = service.QueryProcessInstances(
FmcjNoFilter, FmcjNoSortCriteria, FmcjNoThreshold,
instances);

if (rc != FMC_OK)
cout << "QueryProcessInstances returns: " << rc << endl;

else
cout << "QueryProcessInstances okay" << endl;

if (rc == FMC_OK)
{
cout << "Number of instances returned: " << instances.size() << endl;

for (int i=0; i < instances.size(); i++)
cout << "- Name: " << instances[i].Name() << endl;

}

service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryProcInst
{
public static void main(String[] args)
{
// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{
System.out.println("Usage:");
System.out.println(" java QueryProcessInstances [userid] [password]");
System.exit(0);

}

Chapter 66. How to query a set of objects 665

try
{
// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();
// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{
agent.setLocator(Agent.LOC_LOCATOR);

}
else if (args[1].equalsIgnoreCase("RMI"))
{
agent.setLocator(Agent.RMI_LOCATOR);

}
else if (args[1].equalsIgnoreCase("OSA"))
{
agent.setLocator(Agent.OSA_LOCATOR);

}
else if (args[1].equalsIgnoreCase("IOR"))
{
agent.setLocator(Agent.IOR_LOCATOR);

}
else if (args[1].equalsIgnoreCase("COS"))
{
agent.setLocator(Agent.COS_LOCATOR);

}
else
{
System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

666 Programming Guide

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query a set of processinstances (30 at maximum), sort them by name
ProcessInstance[] procInstances =
service.queryProcessInstances("","NAME DESC", 30);

if (procInstances.length == 0)
{
System.out.println(" No process instances found");

}
else
{
System.out.println("Number of instances returned: " + procInstances.length);

// Iterate over the process instances, printing out their names.
for (int ndx = 0; ndx < procInstances.length; ndx++)
{
System.out.println(" - Name: " + procInstances[ndx].name());

}
}

Chapter 66. How to query a set of objects 667

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

catch(FmcException e)
{
// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{
System.out.println(" " + e.parameters[i]);

}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{
// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

668 Programming Guide

Query work items from a worklist (ActiveX)

Dim eService As ExecutionService
Dim wl As Worklist
Dim Err As String
Dim Msg As String
Dim s As Integer
Dim i As Integer

MQWorkflowCtrl1.Connect
Index = MQWorkflowCtrl1.ExecutionServiceArray.Add("SYSTEM", "SYS_GRP")

If Index < 0 Then
Err = "Error adding execution service to service array"
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Set eService = MQWorkflowCtrl1.ExecutionServiceArray.GetAt(Index)
Rc = eService.Logon("USERID", "password")
If Rc <> 0 Then
Err = "Logon failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"
MQWorkflowCtrl1.Disconnect
Return

End If

Rc = eService.QueryWorklists
If Rc <> 0 Then
Err = "QueryWorklists failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
s = eService.WorkliistArray.GetSize

If s > 0 Then
Set wl = eService.WorklistArray.GetAt(0)
Rc = wl.QueryWorkitems
If Rc <> 0 Then
Err = "QueryWorkitems failed, rc = " + Str(Rc)
MsgBox Err, vbCritical, "Error"

Else
Msg = "Number of workitems returned: " + Str(pil.GetSize)
MsgBox Msg, vbInformation, "Workitems"

End If
Else
Err = "No Worklist available"
MsgBox Err, vbCritical, "Error"

End If
End If

eService.Logoff
MQWorkflowCtrl1.Disconnect

Chapter 66. How to query a set of objects 669

Query work items from a worklist (C-language)

#include <stdio.h>
#include <string.h>
#include <fmcjcrun.h> /* MQ Workflow Runtime API */

int main (int argc, char ** argv)
{

APIRET rc = FMC_OK;
FmcjExecutionServiceHandle service = 0;
FmcjWorklistVectorHandle wLists = 0;
FmcjWorklistHandle worklist = 0;
FmcjWorkitemVectorHandle wVector = 0;
FmcjWorkitemHandle workitem = 0;
unsigned long numWList = 0;
char tInfo[4096+1] = "";

FmcjGlobalConnect();

/* Logon */
rc= FmcjExecutionServiceAllocate(&service);
if (rc != FMC_OK)
{
printf("Service object could not be allocated: %u%\n",rc);
return -1;

}

rc= FmcjExecutionServiceLogon(service,
"USERID", "password",
Fmc_SM_Default, Fmc_SA_NotSet);

if (rc != FMC_OK)
{
printf("Logon failed - rc : %u%\n",rc);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

/* query worklists */
rc = FmcjExecutionServiceQueryWorklists(service, &wLists);
if (rc != FMC_OK)

printf("QueryWorklists() returns: %u%\n",rc);
else

printf("QueryWorklists() returns okay\n");

670 Programming Guide

if (rc == FMC_OK)
{

numWList= FmcjWorklistVectorSize(wLists);
printf ("Number of worklists returned : %u\n", numWList);
if (numWList == 0)
{
printf("No worklist found \n");
FmcjWorklistVectorDeallocate(&wLists);
rc= FmcjExecutionServiceDeallocate(&service);
return -1;

}

worklist= FmcjWorklistVectorFirstElement(wLists);
FmcjWorklistName(worklist, tInfo, 4097);
printf("Name : %s\n",tInfo);

/* query workitems */
rc= FmcjWorklistQueryWorkitems(worklist, &wVector);
printf("\nQuery workitems of list returns rc: %u\n",rc);

if (rc == FMC_OK)
{
while (0 != (workitem= FmcjWorkitemVectorNextElement(wVector)))
{
FmcjWorkitemName(workitem, tInfo, 4097);
printf("- Name : %s\n",tInfo);

FmcjWorkitemDeallocate(&workitem);
}

}

FmcjWorklistDeallocate(&worklist);
FmcjWorklistVectorDeallocate(&wLists);

}

/* Logoff */
rc= FmcjExecutionServiceLogoff(service);
rc= FmcjExecutionServiceDeallocate(&service);

FmcjGlobalDisconnect();
return 0;

}

Chapter 66. How to query a set of objects 671

Query work items from a worklist (C++)

#include <iomanip.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjprun.hxx> // MQ Workflow Runtime API
int main()
{

FmcjGlobal::Connect();

// logon
FmcjExecutionService service;
APIRET rc = service.Logon("USERID", "password");
if (rc != FMC_OK)
{
cout << "Logon failed, - rc: " << rc << endl;
return -1;

}

// query worklists

vector<FmcjWorklist> lists;
FmcjWorklist worklist;

rc = service.QueryWorklists(lists);
if (rc != FMC_OK)

cout << "QueryWorklists() returns: " << rc << endl;
else

cout << "QueryWorklists returns okay" << endl;

if (rc == FMC_OK)
{
unsigned int numWList= lists.size();
cout << "Number of worklists returned : " << numWList << endl;
if (numWList == 0)
{
cout << "No worklist found" << endl;
return -1;

}

672 Programming Guide

Query work items from a worklist (Java)

worklist= lists[0];
cout << "Name : " << worklist.Name() << endl;

vector<FmcjWorkitem> wVector;
FmcjWorkitem workitem;

rc= worklist.QueryWorkitems(wVector);
cout << "Query workitems of list returns: " << rc << endl;
cout << "Number of workitems " << wVector.size() << endl;

if (rc == FMC_OK)
{
for (int i= 0; i < wVector.size(); i++)
{
workitem= wVector[i];
cout << "Name : " << workitem.Name() << endl;

}
}

}

rc = service.Logoff();

FmcjGlobal::Disconnect();
return 0;

}

import com.ibm.workflow.api.*;
import com.ibm.workflow.api.ServicePackage.*;

public class QueryWorkItems
{
public static void main(String[] args)
{
// Check the arguments. The first argument is the name of the MQSeries
// Workflow agent the client will connect to. The second argument defines
// the locator policy the client will use when trying to contact the agent.
// The third/fourth argument define the userid/password, which, if not
// specified, default to USERID and password

if ((args.length < 2) || (args.length > 4))
{
System.out.println("Usage:");
System.out.println(" java QueryWorkitems [userid] [password]");
System.exit(0);

}

Chapter 66. How to query a set of objects 673

try
{

// An agent bean representing a MQSeries Workflow domain
String userid = "USERID";
String passwd = "password";
Agent agent = new Agent();

// Parse the command line and set the locator to be used to
// communicate with the agent.
if (args[1].equalsIgnoreCase("LOC"))
{
agent.setLocator(Agent.LOC_LOCATOR);

}
else if (args[1].equalsIgnoreCase("RMI"))
{
agent.setLocator(Agent.RMI_LOCATOR);

}
else if (args[1].equalsIgnoreCase("OSA"))
{
agent.setLocator(Agent.OSA_LOCATOR);

}
else if (args[1].equalsIgnoreCase("IOR"))
{
agent.setLocator(Agent.IOR_LOCATOR);

}
else if (args[1].equalsIgnoreCase("COS"))
{
agent.setLocator(Agent.COS_LOCATOR);

}
else
{
System.out.println("Invalid locator policy: " + args[1]);
System.exit(0);

}

674 Programming Guide

if (args.length >=3) userid = args[2].toUpperCase();
if (args.length >=4) passwd = args[3];

// Set the name of the Agent to be contacted. Setting the name
// automatically instructs the agent bean to contact the Agent using
// the current locator policy. For this reason the 'setLocator' must be
// called before 'setName' is invoked. If the agent bean cannot contact
// the Agent, it will raise a java.beans.PropertyVetoException instead
// of returning from the 'setName' call.
agent.setName(args[0]);

// Locate the default execution service in the system group named
// 'SYS_GRP' and the system named 'FMCSYS'. This call intentionally
// always returns successful (to prevent intrusion attempts which guess
// at service names until they find a valid one). Of course, only using
// a valid systemgroup and/or system name will return an ExecutionService
// which can be used to log on.
ExecutionService service = agent.locate("", "");

// Log on to the execution service. If the UserID and/or the password is
// invalid, a FmcException will be thrown.
// do a forced logon
service.logon2(userid, passwd, SessionMode.PRESENT_HERE,

AbsenceIndicator.LEAVE);
System.out.println("Logon successful");

// Query the set of worklists the logged on user can access.
WorkList[] worklists = service.queryWorkLists();

if (worklists.length == 0)
{
System.out.println(" No worklist found");

}
else
{
System.out.println(" Number of worklists returned: " + worklists.length);

WorkList worklist = worklists[0];
System.out.println(" Name: "+worklist.name());

// Query the set of workitems in the first worklist.
WorkItem[] workitems = worklist.queryWorkItems();
System.out.println(" Number of workitems: " + workitems.length);

// Iterate over the workitems, printing out their names.
for (int ndx = 0; ndx < workitems.length; ndx++)
{
System.out.println(" " + workitems[ndx].name());

}
}/* End if*/

Chapter 66. How to query a set of objects 675

// Logoff from the execution service. This (like any other remote call)
// may raise an FmcException indicating a communication failure.
service.logoff();

System.out.println("Logoff successful");
}

catch(FmcException e)
{
// Catch and report details about the FmcException
System.out.println("FmcException occured");
System.out.println(" RC : " + e.rc);
System.out.println(" Origin : " + e.origin);
System.out.println(" MessageText: " + e.messageText);
System.out.println(" Exception : " + e.getMessage());
System.out.println(" Parameters : ");
for (int i = 0; i < e.parameters.length ; i++)
{
System.out.println(" " + e.parameters[i]);

}
System.out.println(" StackTrace : ");
e.printStackTrace();

}

catch(Exception e)
{
// Catch and report any exception that occurred.
e.printStackTrace();

}

System.exit(0);
}

}

676 Programming Guide

Chapter 67. An activity implementation

The following examples show the concept of how to query and set containers
from within an activity implementation. Refer to the examples provided with
the product for more details.

Programming an executable (C-language)

#include <stdio.h>
#include <fmcjccon.h> /* MQ Workflow Container API */
int main()
{

FILE * file1 = 0;
APIRET rc = FMC_OK;
FmcjReadOnlyContainerHandle input = 0;
FmcjReadWriteContainerHandle output = 0;
char stringBuffer[4097]="";

/*- keep results in a file --*/
file1 = fopen ("sample.out", "a");
if (file1 == 0)
return -1;

fprintf(file1,"\n----- C-API Activity Implementation called -----\n");
fflush(file1);

FmcjGlobalConnect();

/*-- retrieve the input container from the PEA who started the program --*/
rc = FmcjContainerInContainer(&input);
fprintf(file1, "Get Input Container - rc: %u\n", rc);
if (rc != FMC_OK)
{
fclose(file1);
return 1;

}

fprintf(file1, "Input Container Name: %s\n",
FmcjReadOnlyContainerType(input, stringBuffer, 4097));

© Copyright IBM Corp. 1993, 1999 677

Programming an executable (C++)

/*-- retrieve the output container from the PEA who started the program -*/
rc = FmcjContainerOutContainer(&output);
fprintf(file1, "Get Output Container - rc: %u\n", rc);
if (rc != FMC_OK)
{
fclose(file1);
return 1;

}

fprintf(file1, "Output Container Name: %s\n",
FmcjReadWriteContainerType(output, stringBuffer, 4097));

/*----- Modify output values --*/
rc= FmcjReadWriteContainerSetLongValue(output, "aFieldInTheOutput",42);
fprintf(file1, "\nSetting long value returns rc: %u\n", rc);

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainerSetOutContainer(output);
fprintf(file1, "\nSet Output Container - rc: %u\n",rc);
fflush(file1);

FmcjGlobalDisconnect();
fclose(file1);
return 0; // _RC passed to MQ Workflow

}

#include <fstream.h>
#include <bool.h> // bool
#include <fmcjstr.hxx> // string
#include <vector.h> // vector
#include <fmcjpcon.hxx> // MQ Workflow Container API
int main()
{
/*- keep results in a file --*/
ofstream file1("sample.out");
if (file1 == 0)
return -1;

file1 << "\n----- C++-API Activity Implementation called -----\n" << endl;

678 Programming Guide

FmcjGlobal::Connect();

/*-- retrieve the input container from the PEA who started the program --*/
FmcjReadOnlyContainer input;

APIRET rc = FmcjContainer::InContainer(input);
file1 << "Get Input Container - rc: " << rc << endl;
if (rc != FMC_OK)
{
file1.close();
return 1;

}

file1 << "Input Container Name: " << input.Type() << endl;

/*-- retrieve the output container from the PEA who started the program -*/
FmcjReadWriteContainer output;

rc = FmcjContainer::OutContainer(output);
file1 << "Get Output Container - rc: " << rc << endl;
if (rc != FMC_OK)
{
file1.close();
return 1;

}

file1 << "Output Container Name: " << output.Type() << endl;
/*----- Modify output values --*/
rc= output.SetValue("aFieldInTheOutput",42L);
file1 << "Setting long value returns rc: " << rc << endl;

...

/*-- return the output container to the PEA who started the program -----*/
rc = FmcjContainer::SetOutContainer(output);
file1 << "Set Output Container - rc: " << rc << endl;

FmcjGlobal::Disconnect();
file1.close();
return 0; // _RC passed to MQ Workflow

}

Chapter 67. An activity implementation 679

680 Programming Guide

Part 9. Using the Lotus Notes API

This part provides an overview of the API provided for the integration of MQ
Workflow and Lotus Notes.

The Lotus Notes API is a C– language API. It is intended to be used within
LotusScript code. It is possible to call it from C code directly. However, it is
not recommended to do this because most of the Lotus Notes API functions
require parameters that are available inside Lotus Notes only.

The Lotus Notes API is available for the OS/2, Windows NT, and Windows 95
platforms.

© Copyright IBM Corp. 1993, 1999 681

682 Programming Guide

Chapter 68. Requirements

The MQ Workflow C++ API must be installed.

Header and library files

All LotusScript functions developed for use with the Lotus Notes API must
include the external LotusScript files for the Lotus Notes API. These files are
already installed on your system if you selected to install the API files during
the MQ Workflow installation procedure. The files are EXMP4API.LSS and
EXMP4ARC.LSS, and by default are installed in the \fmc\os2\lnc,
fmc\winnt\lnc, or \fmc\win95\lnc subdirectory on the selected drive.

All C programs developed for use with the Lotus Notes API must include the
Lotus Notes API header files. These files are already installed on your system
if you selected to install the API files during the installation procedure. The
files are FMC4API.H, FMC4GLO.H, and FMC4ARC.H, and by default are
installed in the \fmc\os2\api, fmc\winnt\api, or \fmc\win95\api
subdirectory on the selected drive. Applications must include the file
FMC4API.H. All other required header files are implicitly included by
FMC4API.H.

If these files were not installed when MQ Workflow was initially installed,
refer to the IBM MQSeries Workflow: Installation Guide for instructions on how
to install them.

DLL and shared library files

Ensure that the directory where the MQ Workflow DLL files reside is specified
in your environment settings. This is the LIBPATH statement of your
CONFIG.SYS file. This is done automatically by a standard MQ Workflow
installation.

Compiling

The compilers supported for the Lotus Notes API are:
v For OS/2: IBM VisualAge for C++ 3.0
v For Windows NT or Windows 95: Microsoft Visual C++ 5.0

© Copyright IBM Corp. 1993, 1999 683

They are required only if you intend to use the Lotus Notes API within your
own C programs.

684 Programming Guide

Chapter 69. Coding examples

When you install the Lotus Notes database templates, the files
FMC4Rxxx.NTF and FMC4Sxxx.NTF are provided (where xxx represents the
language identifier, for example, ENU for US English). FMC4Rxxx.NTF is the
database-design template for the MQ Workflow Client for Lotus Notes and
FMC4Sxxx.NTF is a sample database template. These templates use the
external LotusScript files EXMP4API.LSS and EXMP4ARC.LSS, which contain
the definitions of the MQ Workflow API calls and return codes.

Before working with the provided templates, copy the Lotus Notes database
templates to the Lotus Notes data directory, which is usually NOTES\DATA, and
the external LotusScript files to the Lotus Notes directory, which is usually
NOTES.

The database design template FMC4Rxxx.NTF provides the main functions of
an MQ Workflow Runtime client by means of the Lotus Notes API. The
database template FMC4Sxxx.NTF provides, in addition to the main functions,
some examples on how to implement MQ Workflow activities in Lotus Notes
and how to add other functions to the standard functions. All templates are
delivered as source code. You can use them as coding examples or modify the
templates directly. If you modify the files provided with MQ Workflow,
several considerations apply. These are covered in the following sections.

Sample FDL

Import FMC4SMP.FDL into your MQ Workflow database and translate the
process NotesCreditRequest before you work with the FMC4Sxxx.NTF sample.

Overall database design

FMC4Rxxx.NTF and FMC4Sxxx.NTF are design templates. FMC4Sxxx.NTF
inherits its design from FMC4Rxxx.NTF. If you want to customize these
templates, consider the following:
v You need at least Lotus Notes development experience.
v If you change the templates, also change the database-template names

(IBM_MQSeries_Workflow_XXX_3.1 and
IBM_MQSeries_Workflow_XXX_3.1_Sample).

v Only the unchanged templates are part of the product and are directly
supported. If you change the templates, it is your responsibility to fix any
errors resulting from these changes.

© Copyright IBM Corp. 1993, 1999 685

Forms to display the settings of MQ Workflow objects

The sample templates use several forms (which use subforms in most cases)
to display the settings information for the different MQ Workflow objects. If
an API call creates a Notes document as a representation of an MQ Workflow
object, the Form item within the document is filled with the respective values
(see “Chapter 81. Fields used by the Client for Lotus Notes” on page 753). The
forms (User settings), (Process template), (Process instance), (Work item),
(Work-item notification), and (Process-instance notification) contain the
respective form aliases.

Each of these forms contains some logic for displaying a document with the
respective form where the settings action from the view is used. The actual
form name stored in the document is not changed.

In addition, the forms (User settings) and (Work item) contain the logic for
invoking the respective update API function during the save action of the
form.

You can change the look and feel of these forms, but be careful when
changing the processing logic.

Forms used within dialogs

Some forms are used within dialogs invoked from specific actions:
v (User settings - Change password)
v (Work item - Start support tool)
v (Work item - Transfer)

You can change the look and feel of these forms, but be careful when
changing the processing logic.

Forms used to create standard objects

The Application settings form allows you to create an application-settings
document, if the original document was deleted. The form contains logic to
prevent the creation of more than one application-settings document.

The (User settings) form allows you to create additional user-settings
documents. In a user-settings document, you can specify the information that
is necessary for connecting to an MQ Workflow system. The form contains the
logic to prevent the creation of more than one user-settings document for the
same user ID and MQ Workflow system group. It also contains the logic to

686 Programming Guide

display only those MQ Workflow system groups that have been defined in the
MQ Workflow profile at the user’s workstation.

The (Distribute MQ Workflow template) form is used to supply the
information necessary for creating new databases from the current database
template. The form contains the logic to delete all documents created with this
form before, thus deleting any documents no longer needed.

You can change the look and feel of these forms, but be careful when
changing the processing logic.

Forms used to start an MQ Workflow process instance

The Credit Request form is used to start an MQ Workflow process with start
data. First, the user is prompted for some data. The form contains the action
button Start Credit Request. With this button, you can initiate the following
actions:
1. Search for the correct template document.
2. Create an instance using the Lotus Notes API.
3. Access the instance document.
4. When the instance document is found, add the data from the form and

start the instance using the Lotus Notes API.

This form is only an example for how you could start an MQ Workflow
process with input data. The provided code does not handle all possible error
situations, but shows the necessary minimum logic.

In a production environment, you may want to add functions to such a form.
For example, you could add some additional actions to scan documents and
store these documents within a central repository. You could pass the key to
this information to the MQ Workflow process, so that it is available via the
input container during later activity implementations.

Forms used to implement an MQ Workflow activity

With the ExmWorkitemStart and ExmWorkitemCheckout agents, the
following naming convention is used to decide whether an activity is
implemented inside Lotus Notes: If the activity implementation is
NOTESFORMxyz, it is assumed that the activity is implemented by a form
named xyz.

Chapter 69. Coding examples 687

The forms AssessCreditRisk, RequestCreditApproval, AcceptCredit, and
RejectCredit are examples. They are used within the NotesCreditRequest
process defined in FMC4SMP.FDL.

These forms contain fields to show the values of the input container as well as
fields to set the output container. In addition, they contain the actions:
v Done, which saves the user input and invokes the API function for

checking in the work item.
v Save - Rework later, which saves the user input and closes the document.
v Undo, which invokes the API function to force the restart of the work item.

This undoes the checkout of the work item.

These forms are examples for MQ Workflow activity implementation inside
Lotus Notes. The provided code does not handle all possible error situations
but shows the minimum logic necessary.

In a production environment, you may want to add a lot of functions to such
forms. For example, you could add some actions to view process-relevant
documents, such as scanned documents, or you could enhance the
possibilities to use the document for printing or mailing, or you could add an
action to call the customer automatically via phone.

Views used by the Lotus Notes API

All views named MQ Workflow API - viewname are used by the Lotus Notes
API and must not be changed.

Views and folders used by the end user

The views and folders visible to the end user show settings, process
templates, process instances, and work items with predefined columns. The
columns can be resized and used for resorting. The view selection is based on
_ExmDocType and _ExmState. The view and folder actions invoke agents
suitable for the kind of documents selected for the view.

You can change the views and folders shown to the end user in any way. You
can add fields, omit fields, change the order of the fields and the sorting or
categorizing criteria. Work items\By Activity shows an example of a
categorized view.

Note: The views do not show the user ID and database associated with the
different MQ Workflow objects in the view. If users log on to more than

688 Programming Guide

one MQ Workflow system or if they do not always log on to the same
MQ Workflow system, you might want to add these columns to the
view.

You can also remove those actions that should not be available for the end
user, or replace those actions with actions more suitable to your end users’
needs.

Agents

Agents provide an easy way to add actions to your own views or forms. You
may also want to create agents for combined actions, for example, create a
process instance and start it with some default data.

With the agents supplied with the sample database templates, you can invoke
one Lotus Notes API function per agent. The agents are designed to work on
the currently selected document (cursor selection). Multiple selection is not
supported. The resync agents, however, work on all documents of a specific
type. The provided agents include basic error handling.

You can change the agents to your needs, but consider that they are used
from the actions of the different views and folders, too.

Navigators

The MQ Workflow navigator supplied with the samples shows graphical
representations for the different views and folders. When you click on the
respective hotspot, it invokes the different views and folders.

You can change the navigator to your needs, for example, add additional
hotspots, or change the actions behind existing hotspots.

Outlook

The supplied sample databases show a few possibilities of the combination of
Lotus Notes and the Lotus Notes API. Many completely different scenarios are
possible.

These are a few ideas:
v Hide MQ Workflow worklists from the end user.

Use a graphical navigator as primary end-user interface. Create graphical
representations for the different types of activities the end user is to work
with. If the end user clicks on the hotspot, use a LotusScript to search for

Chapter 69. Coding examples 689

such an activity in the end user’s worklist. If one is found, check it out, and
display it inside a form. If nothing is found, refresh the worklist and search
again. Provide a Next action inside the form, which checks in the current
work item and searches for the next.

v Add more automation features using server-based agents.

If you allow time-triggered agents running on the Notes server to access the
user ID and password information inside the database, you could use such
agents to automatically log on to MQ Workflow at specific times, refresh the
worklist of the user, and process the work items found based on special
algorithms (for example, send an e-mail as notification, automatically check
out all those work items that have only one person assigned, check in work
items with specific flags set inside the corresponding document).

v Separate MQ Workflow database and Application database.

You could create your own Lotus Notes database with your forms and
agents, which access the MQ Workflow database and retrieve the data using
LotusScript. The advantages would be, for example, that the code is
separate and that MQ Workflow is hidden from the end user.

690 Programming Guide

Chapter 70. Restrictions

The following restrictions apply to the MQ Workflow Client for Lotus Notes:
v The sum of the length of all fields (standard fields, input container fields,

output container fields) within the Notes document created by the Lotus
Notes API is restricted by the maximum summary-buffer size of Lotus
Notes.

v Working with the worklists of other users is not supported.
v The Lotus Notes API supports only the pull model for worklist refreshes,

that is, the user (or program) has to refresh the worklist explicitly to see
changes made by other users. This is also true for the state changes of a
running program started via the Program Execution client even if this
program has been started from the Client for Lotus Notes.

v There are reserved names:
– All field names within documents starting with _EXM are reserved for the

Lotus Notes API.
– All field names within documents starting with _Impl are reserved for

the specific implementations within the MQ Workflow Client for Lotus
Notes database templates.

Refer to “Chapter 81. Fields used by the Client for Lotus Notes” on
page 753 for more information about the fields.

© Copyright IBM Corp. 1993, 1999 691

692 Programming Guide

Chapter 71. Data types and functions

MQ Workflow data types are mapped to the following Lotus Notes data types
and vice versa:
MQ Workflow data type Lotus Notes data type

STRING TEXT
ARRAY of STRING TEXTLIST
FLOAT NUMBER
LONG NUMBER

The return code for all successful function calls is zero (0).

The API functions are divided into the following groups:

General Notes actions
General Notes actions are used to log on to or log off from MQ
Workflow, to change the MQ Workflow password, to check whether a
user is logged on, to list the MQ Workflow system groups, and to
update the user settings in the MQ Workflow database.

Process-template actions
Process-template actions are used to create process instances.

Process-instance actions
Process-instance actions are used to delete, restart, resume, start,
suspend, or terminate a process instance.

Process-instance notification actions
Process-instance notification actions are used to delete a
process-instance notification.

Work-item actions
Work-item actions are used to check in or check out a work item, to
delete, monitor, restart, start, terminate, transfer a work item, to get
support tools, to start a support tool for a work item, or to update the
attributes of a work item in the MQ Workflow database.

Work-item notification actions
Work-item notification actions are used to delete a work-item
notification.

Replication actions
Replication actions are used to replicate per session the MQ Workflow
user settings, the process instances, the process-instance notifications,
the process templates, and the work items, and to replicate per work
item the work-item input container.

© Copyright IBM Corp. 1993, 1999 693

694 Programming Guide

Chapter 72. Mapping container data

This section describes how an MQ Workflow input container is mapped with
values from a Lotus Notes document and vice versa.

Depending on the workflow model, the functions ExmnStartInstance and
ExmnCheckInWorkitem must fill an MQ Workflow container. Also depending
on the workflow model, the function ExmnCheckOutWorkitem retrieves
container data for the work item that is to be processed in Lotus Notes.

If the process instance that is to be started or the work item that is to be
checked in requires an input container, the leaves of the container are filled
with the values of the Lotus Notes items with the same names as the data
members in the MQ Workflow container. If a Lotus Notes item does not exist,
the respective data member is not set in the container.

An example for fully qualified names is shown in Figure 12.

FlowMark data structure Fully qualified item name
----------------------- -------------------------
Adress[2]

Name
Firstname Adress[0].Name.Firstname
Lastname Adress[0].Name.Lastname

City Adress[0].City
Age Adress[0].Age

Adress[1].Name.Firstname
Adress[1].Name.Lastname
Adress[1].City
Adress[1].Age

Figure 12. Example for fully qualified names

© Copyright IBM Corp. 1993, 1999 695

696 Programming Guide

Chapter 73. General hints
1. If a parameter is specified as pointer, the Lotus Notes API functions do not

check whether this pointer points to a valid address. So make sure you use
valid pointers. An invalid pointer can cause a trap or undefined behavior.

2. Whenever a Lotus Notes server and a Lotus Notes database must be
specified in a function call, this function reads from or writes to (that is,
updates) the Lotus Notes database. If the Lotus Notes database is not on a
server but local, specify a NULL value or an empty string for the Lotus
Notes server parameter. If a Lotus Notes database is specified, the function
updates the Lotus Notes database. When you invoke such a function,
consider performance. Avoid updating the Lotus Notes database
immediately unless it is necessary.
If a Lotus Notes database is specified:
a. Execute the MQ Workflow request
b. Replicate the specified MQ Workflow object to the Lotus Notes

database

In this case, the return code
EXMN_API_ERROR_REPLICATION_INTERNAL means that the MQ
Workflow request completed successfully, but the replication was not
successful. If the data must be replicated in this case, invoke the respective
ExmnReplicate function separately.

3. If the error EXMN_API_ERROR_TIMEOUT occurs, retry the function. If
the error occurs often, increase the time-out value by setting or modifying
the environment variable APITimeOut in the MQ Workflow user or
machine profile.

© Copyright IBM Corp. 1993, 1999 697

698 Programming Guide

Chapter 74. General Notes actions

General Notes actions are:

ExmnChangePassword
Change MQ Workflow password.

ExmnIsLoggedOn
Check whether a user is logged on.

ExmnListDatabases
List MQ Workflow system groups.

ExmnLogoff
Log off from MQ Workflow.

ExmnLogon
Log on to MQ Workflow.

ExmnUpdateUserSettings
Update user settings in MQ Workflow.

Change the MQ Workflow password

Use the ExmnChangePassword function to change the password of an MQ
Workflow user.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID for

which the password is to be changed.
pszFMDatabase I Provide the name of the MQ Workflow

database.
pszFMOldPassword I Provide the current MQ Workflow user

password.
pszFMNewPassword I Provide the new MQ Workflow user

password.

Return Codes:

NAPIRET ExmnChangePassword(char * pszFMUserID,
char * pszFMDatabase,
char * pszFMOldPassword,
char * pszFMNewPassword)

Figure 13. Change the MQ Workflow password

© Copyright IBM Corp. 1993, 1999 699

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_OLD_PASSWORD
The password specified as current password is not correct.

EXMN_API_ERROR_PASSWORD
Password does not comply with the FlowMark syntax rules for password.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark(R) internal error has occurred. Contact your IBM
representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

Check whether a user is logged on

Use the ExmnIsLoggedOn function to check whether an ExmnLogon call has
already been issued.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID for

which the logon check is to be done.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

Return Codes:

EXMN_API_OK
The specified user is logged on.

NAPIRET ExmnIsLoggedOn(char * pszFMUserID,
char * pszFMDatabase)

Figure 14. Check logon

700 Programming Guide

EXM_API_ERROR_NOT_LOGGED_ON
No ExmnLogon function call was issued for the specified user.

List MQ Workflow system groups

Use the ExmnListDatabases function to list all MQ Workflow sytem group
entries that are specified in the MQ Workflow configuration profile. To enable
logon to MQ Workflow, the MQ Workflow system must be defined in the MQ
Workflow user or machine profile.

Parameter I/O Description
lFMDBBufferSize I The size of the allocated memory of

pszFMDatabaseList.
plFMDBNeededBufferSize O The parameter returns the actual buffer size

for pszFMDatabaseList.
pszFMDatabaseList O Returns the list of all configured MQ

Workflow system groups. The list is
returned as null-terminated string where the
individual system group names are
separated with a dot (·). For example, if you
specified the system groups EXMDB,
EXMDB1, and EXMDB2 in your profile, the
ExmnListDatabases function returns the
string EXMDB.EXMDB1.EXMDB2.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_PROFILE
No system group entry has been found in the MQ Workflow user or
machine profile.

EXMN_API_ERROR_BUFFER_TOO_SMALL
The buffer specified for pszFMDatabaseList is too small.

Reallocate the buffer with at least the size returned in
plFMDBNeededBufferSize and call this function again.

NAPIRET ExmnListDatabases(long lFMDBBufferSize,
long * plFMDBNeededBufferSize,
char * pszFMDatabaseList)

Figure 15. List MQ Workflow databases

Chapter 74. General Notes actions 701

Log off from MQ Workflow

Use the ExmnLogoff function to terminate an MQ Workflow session that was
established with ExmnLogon.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID that is

to be logged off.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Log on to MQ Workflow

Use the ExmnLogon function to log on to MQ Workflow. This function also
updates the user settings in the specified Lotus Notes database.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMPassword I Provide the MQ Workflow user password.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

NAPIRET ExmnLogoff(char * pszFMUserID,
char * pszFMDatabase)

Figure 16. Log off from MQ Workflow

NAPIRET ExmnLogon(char * pszFMUserID,
char * pszFMPassword,
char * pszFMDatabase,
char * pszNotesServer,
char * pszFMUSNotesDB)

Figure 17. Log on to MQ Workflow

702 Programming Guide

Parameter I/O Description
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMUSNotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMUSNotesDB I Provide the name of the Lotus Notes
database where the MQ Workflow user
settings are stored. If the data is not to be
updated by this function, specify a null
pointer or an empty string for
pszFMUSNotesDB. If a valid Lotus Notes
database name was specified, this function
updates this database with the values
specified in MQ Workflow.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_USERID_UNKNOWN
Unknown user ID.

EXMN_API_ERROR_PASSWORD
Incorrect password.

EXMN_API_ERROR_ALREADY_LOGGED_ON
User already logged on to the specified system group.

EXMN_API_ERROR_PROFILE
Profile data for system group not found.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_REPLICATION_INTERNAL
The replication of the user settings in the Lotus Notes database failed after
a successful logon to FlowMark.

To update the database, invoke ExmnReplicateFMUserSettings.

Chapter 74. General Notes actions 703

Update user settings in MQ Workflow

Use the ExmnUpdateUserSettings function to update the MQ Workflow user
settings with the values of the fields specified in the Lotus Notes database.

Parameter I/O Description
pszFMUserId I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszNotesServer I Provide the name of the Lotus Notes server

where the database pszFMDatabase is
located. If the database is local, specify a
null pointer or an empty string.

pszFMUSNotesDB I Provide the name of the Lotus Notes
database where the MQ Workflow user
settings are stored. If the data is not to be
updated by this function, specify a null
pointer or an empty string for
pszFMUSNotesDB. If a valid Lotus Notes
Database is specified, this function updates
the MQ Workflow database with the values
specified in this Lotus Notes database.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

NAPIRET ExmnUpdateUserSettings(char * pszFMUserId,
char * pszFMDatabase,
char * pszNotesServer,
char * pszFMUSNotesDB)

Figure 18. Update MQ Workflow user settings

704 Programming Guide

Chapter 75. Process-template actions

Process-template actions are:

ExmnCreateInstance
Create process instance.

Create a process instance

Use the ExmnCreateInstance function to create a new process instance in MQ
Workflow. This function uses a replicate function to update the Lotus Notes
database with the new process instance if a Lotus Notes database is specified.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszTemplateOID I Provide the identifier of the

process-template object from which an
instance is to be created.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszProcessInstanceName I Provide the name for the process instance
that is to be created. If you do not provide
an instance name, a default name is used
(ProcessTemplateNameXXX where XXX is a
representation of the object ID).

lInstanceOIDBufLen I Provide the size of the buffer allocated for
pszInstanceOID. The recommended size is
200 bytes.

NAPIRET ExmnCreateInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszTemplateOID,
char * pszProcessInstanceName,
long lInstanceOIDBufLen,
long * plInstanceOIDLen,
char * pszInstanceOID,
char * pszNotesServer,
char * pszFMPINotesDB,
long lInstanceNIDBufLen,
char * pszInstanceNID)

Figure 19. Create a process instance

© Copyright IBM Corp. 1993, 1999 705

Parameter I/O Description
plInstanceOIDLen O This parameter contains the actual length of

the process-instance identifier. If the
ExmnCreateInstance function returns
EXMN_API_ERROR_BUFFER_TOO_SMALL,
reallocate the buffer for pszInstanceOID with
the length returned in plInstanceOIDLen.

pszInstanceOID O This parameter contains the identifier of the
newly created MQ Workflow process
instance. The size of this buffer has to be
specified in lInstanceOIDBufLen.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. Specify a null pointer or an
empty string for pszFMPINotesDB if the
Lotus Notes data is not to be updated by
this function.

lInstanceNIDBufLen I Provide the size of the buffer allocated for
pszInstanceNID (size should be at least 8 for
the current release of Lotus Notes).

pszInstanceNID O Provide the NoteID of the new
process-instance document.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
The parsed instance object references an undefined location.

EXMN_API_ERROR_BUFFER_TOO_SMALL
The buffer for pszInstanceOID was allocated too small. The instance is
created and replicated to the Lotus Notes database but the identifier of the
new instance could not be returned.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_NOT_UNIQUE
The name of the process instance is not unique.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

706 Programming Guide

EXMN_API_ERROR_DOES_NOT_EXIST
The process template no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The process template is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The replication of the process instance in the Lotus Notes database failed
after successful creation of the instance. To update the Lotus Notes
database, invoke ExmnReplicateInstances.

Chapter 75. Process-template actions 707

708 Programming Guide

Chapter 76. Process-instance actions

Process-instance actions are:

ExmnDeleteInstance
Delete process instance.

ExmnRestartInstance
Restart process instance.

ExmnResumeInstance
Resume process instance.

ExmnStartInstance
Start process instance.

ExmnSuspendInstance
Suspend process instance.

ExmnTerminateInstance
Terminate process instance.

Delete a process instance

Use the ExmnDeleteInstance function to delete a finished or terminated
process instance from MQ Workflow.

Note: The authorization for deleting the process instance is checked by MQ
Workflow.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

NAPIRET ExmnDeleteInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 20. Delete a process instance

© Copyright IBM Corp. 1993, 1999 709

Parameter I/O Description
pszInstanceOID I Provide the identifier of the

process-instance object that is to be deleted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances if the Lotus Notes database is to
be updated. If the Lotus Notes database is
not to be updated, specify a null pointer or
an empty string.

pszInstanceNID I Provide the identifier of the
process-instance object (in the Lotus Notes
database) that is to be deleted.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

710 Programming Guide

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The process instance was deleted in MQ Workflow but the deletion of the
specified process instance in the Lotus Notes database failed. To update
the Lotus Notes database, invoke the function ExmnReplicateInstances.

Restart a process instance

Use the ExmnRestartInstance function to restart an MQ Workflow process.
Only top-level processes can be restarted.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszInstanceOID I Provide the identifier of the

process-instance object that is to be
restarted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. If the Lotus Notes database is not
to be updated, specify a null pointer or an
empty string.

pszInstanceNID I Provide the identifier of the
process-instance object (in the Lotus Notes
database) that is to be restarted.

Return Codes:

NAPIRET ExmnRestartInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 21. Restart a process instance

Chapter 76. Process-instance actions 711

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The process instance is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed. To update the Lotus
Notes database, use the function ExmnReplicateInstances.

Resume a process instance

Use the ExmnResumeInstance function to resume processing of a suspended
MQ Workflow process instance.

712 Programming Guide

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszInstanceOID I Provide the identifier of the process instance

that is to be resumed.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

sInDeep I If sInDeep is set to true, processing of all
subprocesses is also resumed.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. If the Lotus Notes database is not
to be updated, specify a null pointer or an
empty string.

pszInstanceNID I Provide the identifier of the process-instance
object (in the Lotus Notes database) that is
to be resumed.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

NAPIRET ExmnResumeInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
short sInDeep,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 22. Resume a process instance

Chapter 76. Process-instance actions 713

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed. To update the Lotus
Notes database, use the function ExmnReplicateInstances.

Start a process instance

Use the ExmnStartInstance function to start an MQ Workflow process
instance. The user who is currently logged on becomes the process starter. If
the process requires an input container, the ExmnStartInstance function fills it
with the information provided in the Lotus Notes document that is specified
with pszInstanceOID. How the document fields are mapped to the MQ
Workflow input container is described in “Chapter 72. Mapping container
data” on page 695.

This function also initiates an update of the process status in the Lotus Notes
database.

NAPIRET ExmnStartInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 23. Start a process instance

714 Programming Guide

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszInstanceOID I Provide the identifier to the

process-instance object that is to be started.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. If an input container is required,
you must provide the name of this
database. If the Lotus Notes database is not
to be updated, specify a null pointer or an
empty string.

pszInstanceNID I Provide the identifier of the
process-instance object (in the Lotus Notes
database) that is to be started.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
The parsed container object references an undefined location or the
container is empty.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_MEMBER_NOT_SET
Process requires input fields in the Lotus Notes database that were not
specified.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

Chapter 76. Process-instance actions 715

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The process instance is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed.

Suspend a process instance

Use the ExmnSuspendInstance function to suspend (that is, temporarily stop)
an MQ Workflow process instance.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszInstanceOID I Provide the identifier of the process

instance that is to be suspended.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

sInDeep I If sInDeep is set to true, processing of all
subprocesses is also suspended.

NAPIRET ExmnSuspendInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
short sInDeep,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 24. Suspend a process instance

716 Programming Guide

Parameter I/O Description
pszNotesServer I Provide the name of the Lotus Notes

server where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. If the Lotus Notes database is
not to be updated, specify a null pointer or
an empty string.

pszInstanceNID I Provide the identifier of the
process-instance object (in the Lotus Notes
database) that is to be suspended.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed.

Chapter 76. Process-instance actions 717

Terminate a process instance

Use the ExmnTerminateInstance function to terminate an MQ Workflow
process instance. The process instance is then marked as terminated on the
MQ Workflow Runtime server.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszInstanceOID I Provide the identifier of the

process-instance object that is to be
terminated.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes
server where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances. If the Lotus Notes database is
not to be updated, specify a null pointer or
an empty string.

pszInstanceNID I Provide the identifier of the
process-instance object (in the Lotus Notes
database) that is to be terminated.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

NAPIRET ExmnTerminateInstance(char * pszFMUserID,
char * pszFMDatabase,
char * pszInstanceOID,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNID)

Figure 25. Terminate a process instance

718 Programming Guide

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed.

Chapter 76. Process-instance actions 719

720 Programming Guide

Chapter 77. Process-instance notification actions

Process-instance notification actions are:

ExmnDeletePINotification
Delete process-instance notification.

Delete process-instance notification

Use the ExmnDeletePINotification function to delete a finished
process-instance notification from MQ Workflow.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszPINotificationOID I Provide the identifier of the

process-instance notification object that is to
be deleted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszPINotificationNID I Provide the identifier of the
process-instance notification object (in the
Lotus Notes database) that is to be deleted.

NAPIRET ExmnDeletePINotification(char * pszFMUserID,
char * pszFMDatabase,
char * pszPINotificationOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszPINotificationNID)

Figure 26. Delete process-instance notification

© Copyright IBM Corp. 1993, 1999 721

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
process instance in the Lotus Notes database failed.

722 Programming Guide

Chapter 78. Work-item actions

Work-item actions are:

ExmnCheckInWorkitem
Check in work item.

ExmnCheckOutWorkitem
Check out work item.

ExmnDeleteWorkitem
Delete work item.

ExmnGetSupportTool
Get support tools.

ExmnManualExitWorkitem
Manual exit from work item.

ExmnRestartWorkitem
Restart work item.

ExmnStartSupportTool
Start support tool for a work item.

ExmnStartWorkitem
Start work item.

ExmnTerminateWorkitem
Terminate work item.

ExmnTransferWorkitem
Transfer work item.

ExmnUpdateWorkitem
Update the attributes of a work item.

Check in a work item

Use the ExmnCheckInWorkitem function to check in an MQ Workflow work
item that was checked out for user processing. If container data is required,
this function fills the container with the corresponding items from the Lotus
Notes document. How the document fields are mapped to the MQ Workflow
container is described in “Chapter 72. Mapping container data” on page 695.

© Copyright IBM Corp. 1993, 1999 723

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work-item

object that is to be checked in.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

sReturnCode I Contains the return code that is set by the
Lotus Notes application.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be checked in.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

NAPIRET ExmnCheckInWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
long sReturnCode,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 27. Check in a work item

724 Programming Guide

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state, not checked in.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the deletion of the specified work
item in the Lotus Notes database failed.

Check out a work item

Use the ExmnCheckOutWorkitem function to check out an MQ Workflow
work item for user processing. This means that processing is not done by MQ
Workflow’s inherent tool-invocation mechanism. MQ Workflow assumes that
processing is done by user-specific means.

When the user processing is complete, the work item must be checked in
again for further workflow processing. If any container data is associated with
the checked-out work item, the ExmnCheckOutWorkitem function creates the
corresponding Lotus Notes items with the fully qualified names. For more
information about container data refer to “Chapter 72. Mapping container
data” on page 695.

Chapter 78. Work-item actions 725

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work-item

object that is to be checked out.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be checked out.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

NAPIRET ExmnCheckOutWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 28. Check out a work item

726 Programming Guide

EXMN_API_ERROR_WRONG_STATE
Not possible in this state, not checked out.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the deletion of the specified work
item in the Lotus Notes database failed.

Delete a work item

Use the ExmnDeleteWorkitem function to delete a finished work item from
MQ Workflow. Specify a Lotus Notes database to delete the work item also
from the Lotus Notes database.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work-item

object that is to be deleted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

NAPIRET ExmnDeleteWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 29. Delete a work item

Chapter 78. Work-item actions 727

Parameter I/O Description
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be deleted.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

728 Programming Guide

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the deletion of the specified work
item in the Lotus Notes database failed.

Get support tools for a work item

Use the ExmnGetSupportTools function to get a list of the support tools that
were defined for a work item.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work-item

object for which the list of support tools is
requested.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

lSuppToolsBufLen O Provide the length of the buffer allocated
for the list of support tools that is provided
in pszSupportToolList.

plSuppToolsLen O This parameter contains the actual size of
the string returned in pszSupportToolList.

pszSupportToolList O Returns the list of support tools that are
defined for a work item. The list is returned
as a string where the tool names are
separated with a period (.). For example, if
the list contains the items Editor and
Calculator, the string is Editor.Calculator.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

NAPIRET ExmnGetSupportTools(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
long lSuppToolsBufLen,
long * plSuppToolsLen,
char * pszSupportToolList)

Figure 30. Get support tools for a work item

Chapter 78. Work-item actions 729

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_BUFFER_TOO_SMALL
The buffer allocated for pszSupportToolList is too small. Allocate a buffer
with the size returned in plSuppToolsLen and call this function again.

Manual exit from a work item

Use the ExmnManualExitWorkitem function to successfully complete a specific
type of program activity, for example, a checklist of manual tasks.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work-item

object that is to be exited manually.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be completed.

Return Codes:

EXMN_API_OK
The method completed successfully.

NAPIRET ExmnManualExitWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 31. Manual exit from a work item

730 Programming Guide

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
work item in the Lotus Notes database failed.

Restart a work item

Use the ExmnRestartWorkitem function to set a running work item back to
the ready state so that the ExmnStartWorkitem function can be called again.

Chapter 78. Work-item actions 731

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work item that

is to be restarted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be restarted.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

NAPIRET ExmnRestartWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 32. Restart a work item

732 Programming Guide

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
work item in the Lotus Notes database failed.

Start a support tool

Use the ExmnStartSupportTool function to start a support tool that is
associated with the work item.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work item for

which the support tool is to be started.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszSupportTool I Provide the name of the support tool that is
to be started.

NAPIRET ExmnStartSupportTool(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszSupportTool)

Figure 33. Start a support tool

Chapter 78. Work-item actions 733

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Start a work item

Use the ExmnStartWorkitem function to start the implementation tool or
process assigned to the activity that is represented by the work item. The tool
is started by MQ Workflow’s tool-invocation mechanism. Specify a Lotus
Notes database to replicate the new state of the work item to the Lotus Notes
database.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work item that

is to be started.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

NAPIRET ExmnStartWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 34. Start a work item

734 Programming Guide

Parameter I/O Description
pszWorkitemNID I Provide the identifier of the work-item

object (in the Lotus Notes database) that is
to be started.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
work item in the Lotus Notes database failed.

Chapter 78. Work-item actions 735

Terminate a work item

Use the ExmnTerminateWorkitem function to terminate an MQ Workflow
work item.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work item that

is to be terminated.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be terminated.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

NAPIRET ExmnTerminateWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 35. Terminate a work item

736 Programming Guide

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
work item in the Lotus Notes database failed.

Transfer a work item

Use the ExmnTransferWorkitem function to transfer a work item to another
MQ Workflow user.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

NAPIRET ExmnTransferWorkitem(char * pszFMUserID,
char * pszFMDatabase,
char * pszWorkItemOID,
char * pszUserID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 36. Transfer a work item

Chapter 78. Work-item actions 737

Parameter I/O Description
pszWorkItemOID I Provide the identifier of the work item that

is to be transferred.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszUserID I Provide the user ID of the user to whom
the work item is to be transferred.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWorkitemNID I Provide the identifier of the work-item
object (in the Lotus Notes database) that is
to be transferred.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_USERID_UNKNOWN
Unknown user ID.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

738 Programming Guide

EXMN_API_ERROR_INTERNAL
A FlowMark internal error has occurred. Contact your IBM representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

EXMN_API_ERROR_REPLICATION_INTERNAL
The method completed successfully but the replication of the specified
work item in the Lotus Notes database failed.

Update a work item

Use the ExmnUpdateWorkitem function to update the MQ Workflow work
item with the values of the fields specified in the Lotus Notes database.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWorkItemOID I Provide the identifier of the work item that

is to be updated.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database where the MQ Workflow work
item is stored.

NAPIRET ExmnUpdateWorkitem(char * pszFMUserId,
char * pszFMDatabase,
char * pszWorkitemOId,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNID)

Figure 37. Update a work item in MQ Workflow

Chapter 78. Work-item actions 739

Parameter I/O Description
pszWorkitemNID I Provide the identifier of the work-item

object (in the Lotus Notes database) that is
to be updated.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

740 Programming Guide

Chapter 79. Work-item notification actions

Work-item notification action:

ExmnDeleteWINotification
Delete a work-item notification.

Delete a notification for a work item

Use the ExmnDeleteWINotification function to delete a finished work-item
notification object from MQ Workflow.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
pszWINotificationOID I Provide the identifier of the work-item

notification object that is to be deleted.
Note: You can obtain this value from the
_ExmDocObjectId item in the Lotus Notes
document.

pszNotesServer I Provide the name of the Lotus Notes server
where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.
If the Lotus Notes database is not to be
updated, specify a null pointer or an empty
string.

pszWINotificationNID I Provide the identifier of the work-item
notification object (in the Lotus Notes
database) that is to be deleted.

Return Codes:

NAPIRET ExmnDeleteWINotification(char * pszFMUserID,
char * pszFMDatabase,
char * pszWINotificationOID,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWINotificationNID)

Figure 38. Delete a notification for a work item

© Copyright IBM Corp. 1993, 1999 741

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

EXMN_API_ERROR_DOES_NOT_EXIST
The work item no longer exists.

EXMN_API_ERROR_NOT_AUTHORIZED
Not authorized to use the method.

EXMN_API_ERROR_WRONG_STATE
Not possible in this state.

EXMN_API_ERROR_TIMEOUT
Timeout has occurred.

EXMN_API_ERROR_SERVER
The server is not available, or is unknown.

EXMN_API_ERROR_INTERNAL
An MQ Workflow internal error has occurred. Contact your IBM
representative.

EXMN_API_ERROR_RESOURCE
An internal resource problem.

EXMN_API_ERROR_MESSAGE_FORMAT
An internal message format error.

EXMN_API_ERROR_EMPTY
The work-item object is still empty.

742 Programming Guide

Chapter 80. Replication actions

The replication functions read the specified MQ Workflow objects from the
MQ Workflow database and synchronize the Lotus Notes database. If return
code EXMN_API_OK is issued, this means that the databases are
synchronized. This does not always imply an update of the Lotus Notes
database.

Replication actions are:

ExmnReplicateFMUserSettings
Replicate MQ Workflow user settings per session.

ExmnReplicateInstances
Replicate process instances per session.

ExmnReplicatePINotification
Replicate process-instance notifications per session.

ExmnReplicateTemplates
Replicate process templates per session.

ExmnReplicateWINotification
Replicate work-item notifications per session.

ExmnReplicateWorkitems
Replicate work items per session.

Replicate MQ Workflow user settings per session

Use the ExmnReplicateFMUserSettings function to replicate the user settings
to the Lotus Notes database.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

ExmnReplicateFMUserSettings(char * pszFMUserID,
char * pszFMDatabase,
char * pszNotesServer,
char * pszFMUSNotesDB)

Figure 39. Replicate FMUserSettings per session

© Copyright IBM Corp. 1993, 1999 743

Parameter I/O Description
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMUSNotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMUSNotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow user
settings.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Replicate process instances per session

Use the ExmnReplicateInstances function to replicate to the Lotus Notes
database all MQ Workflow process-instance objects that meet the specified
filter criteria.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

NAPIRET ExmnReplicateInstances(char * pszFMUserID,
char * pszFMDatabase,
ExmnReplFlag fReplicateFlag,
char * pszInstanceOIDList,
char * pszLastReplicationDate,
char * pszNotesServer,
char * pszFMPINotesDB,
char * pszInstanceNIDList)

Figure 40. Replicate process instances per session

744 Programming Guide

Parameter I/O Description
fReplicateFlag I Set the filter flag. This can be:

ReplAll
Replicate all process instances to
the specified Lotus Notes database.
pszInstanceOIDList and
pszLastReplicationDate are ignored.

ReplObjectList
Replicate only those process
instances of which the object IDs
are listed in pszInstanceOIDList and
pszInstanceNIDList.

ReplLastDate
Reserved.

pszInstanceOIDList I Provide a list of the MQ Workflow
identifiers (separated by periods) of the
objects to be refreshed if fReplicateFlag is set
to ReplObjectList.

pszLastReplicationDate I Specify NULL or an empty string.
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMPINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
instances.

pszInstanceNIDList I Provide a list of the Lotus Notes identifiers
of the objects that are to be refreshed if
fReplicateFlag is set to ReplObjectList.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR
pszWorkItemOID references an undefined location or contains an incorrect
value.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Chapter 80. Replication actions 745

Replicate process-instance notifications per session

Use the ExmnReplicatePINotification function to replicate to the Lotus Notes
database all MQ Workflow process-instance notification objects that meet the
specified filter criteria.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
fReplicateFlag I Set the filter flag. This can be:

ReplAll
Replicate all process instances
notifications to the specified Lotus
Notes database.
pszPINotificationOIDList and
pszLastReplicationDate are ignored.

ReplObjectList
Replicate only those process
instance notifications of which the
object IDs are listed in
pszPINotificationOIDList and
pszPINotificationNIDList.

ReplLastDate
Reserved.

pszPINotificationOIDList I Provide a list of the identifiers (separated
by periods) of the objects to be refreshed if
fReplicateFlag is set to ReplObjectList.

pszLastReplicationDate I Specify NULL or an empty string.
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

NAPIRET ExmnReplicatePINotification(char * pszFMUserID,
char * pszFMDatabase,
ExmnReplFlag fReplicateFlag,
char * pszPINotificationOIDList,
char * pszLastReplicationDate,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszPINotificationNIDList)

Figure 41. Replicate process-instance notifications per session

746 Programming Guide

Parameter I/O Description
pszFMWINotesDB I Provide the name of the Lotus Notes

database for the MQ Workflow
process-instance notifications.

pszInstanceNIDList I Provide a list of the Lotus Notes identifiers
of the objects that are to be refreshed if
fReplicateFlag is set to ReplObjectList.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Replicate process templates per session

Use the ExmnReplicateTemplates function to replicate to the Lotus Notes
database all process templates that meet the specified filter criteria.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.

NAPIRET ExmnReplicateTemplates(char * pszFMUserID,
char * pszFMDatabase,
ExmnReplFlag fReplicateFlag,
char * pszTemplateOIDList,
char * pszLastReplicationDate,
char * pszNotesServer,
char * pszFMPTNotesDB,
char * pszTemplateNIDList)

Figure 42. Replicate process templates per session

Chapter 80. Replication actions 747

Parameter I/O Description
fReplicateFlag I Set the filter flag. This can be:

ReplAll
Replicate all process templates to
the specified Lotus Notes database.
pszTemplateOIDList and
pszLastReplicationDate are ignored.

ReplObjectList
Replicate only those process
templates of which the object IDs
are listed in pszTemplateOIDList
and pszTemplateNIDList.

ReplLastDate
Reserved.

pszTemplateOIDList I Provide a list of identifiers (separated by
periods) of the objects to be refreshed if
fReplicateFlag is set to ReplObjectList.

pszLastReplicationDate I Specify NULL or an empty string.
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMPTNotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMPTNotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow process
templates.

pszTemplateNIDList I Provide a list of the Lotus Notes identifiers
of the objects that are to be refreshed if
fReplicateFlag is set to ReplObjectList.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Replicate work-item notifications per session

Use the ExmnReplicateWINotification function to replicate to the Lotus Notes
database all work-item notification objects that meet the specified filter
criteria.

748 Programming Guide

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
fReplicateFlag I Set the filter flag. This can be:

ReplAll
Replicate all work-item
notifications to the specified Lotus
Notes database.
pszWINotificationOIDList and
pszLastReplicationDate are ignored.

ReplObjectList
Replicate only those work-item
notifications of which the object
IDs are listed in
pszWINotificationOIDList and
pszWINotificationNIDList.

ReplLastDate
Reserved.

pszWINotificationOIDList I Provide a list of the objects (separated by
periods) to be refreshed if fReplicateFlag is
set to ReplObjectList.

pszLastReplicationDate I Specify NULL or an empty string.
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.

pszWINotificationNIDList I Provide a list of the Lotus Notes identifiers
of the objects that are to be refreshed if
fReplicateFlag is set to ReplObjectList.

Return Codes:

NAPIRET ExmnReplicateWINotification(char * pszFMUserID,
char * pszFMDatabase,
ExmnReplFlag fReplicateFlag,
char * pszWINotificationOIDList,
char * pszLastReplicationDate,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWINotificationNIDList)

Figure 43. Replicate work-item notifications per session

Chapter 80. Replication actions 749

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Replicate work items per session

Use the ExmnReplicateWorkitems function to replicate to the Lotus Notes
database all work-item objects that meet the specified filter criteria.

Parameter I/O Description
pszFMUserID I Provide the MQ Workflow user ID.
pszFMDatabase I Provide the name of the MQ Workflow

system group.
fReplicateFlag I Set the filter flag. This can be:

ReplAll
Replicate all work items to the
specified Lotus Notes database.
pszWorkitemOIDList and
pszLastReplicationDate are ignored.

ReplObjectList
Replicate only those work items of
which the object IDs are listed in
pszWorkitemOIDList and
pszWorkitemNIDList.

ReplLastDate
Reserved.

pszWorkitemOIDList I Provide a list of the objects (separated by
periods) to be refreshed if fReplicateFlag is
set to ReplObjectList.

pszLastReplicationDate I Specify NULL or an empty string.

NAPIRET ExmnReplicateWorkitems(char * pszFMUserID,
char * pszFMDatabase,
ExmnReplFlag fReplicateFlag,
char * pszWorkitemOIDList,
char * pszLastReplicationDate,
char * pszNotesServer,
char * pszFMWINotesDB,
char * pszWorkitemNIDList)

Figure 44. Replicate work items per session

750 Programming Guide

Parameter I/O Description
pszNotesServer I Provide the name of the Lotus Notes server

where the database specified in
pszFMWINotesDB is located. If the database
is local, specify a null pointer or an empty
string.

pszFMWINotesDB I Provide the name of the Lotus Notes
database for the MQ Workflow work items.

pszWorkitemNIDList I Provide a list of the Lotus Notes identifiers
of the objects that are to be refreshed if
fReplicateFlag is set to ReplObjectList.

Return Codes:

EXMN_API_OK
The method completed successfully.

EXMN_API_ERROR_NOT_LOGGED_ON
There is no session established for the specified user.

Chapter 80. Replication actions 751

752 Programming Guide

Chapter 81. Fields used by the Client for Lotus Notes

The tables in the following sections describe the fields used in the forms
supplied with the MQ Workflow Lotus Notes client. The value in the Set
column in those tables shows if this item is set immediately (I) when queried
or only after a refresh (R).

Application settings

Table 4. Application settings

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmAs”

_ExmDocType I Text The field is set to: “ExmAs”

Implementation-
specific fields

_ImplSuppressNotLoggedOn Text Possible values for this field are:

Value Explanation
0 No
1 Yes

_ImplOriginalForm Text

User settings

Table 5. User settings

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmUs”

_ExmDocType I Text The field is set to: “ExmUs”

_ExmUserId I Text This field contains the MQ
Workflow user ID of the logged-on
user.

The length of the user ID can be
1–32 characters.

© Copyright IBM Corp. 1993, 1999 753

Table 5. User settings (continued)

Field name Set Data type Description and contents of the
field

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–32
characters.

_ExmPersonId I Text This field contains the person ID of
the logged-on user.

The length of the person ID can be
0–32 characters.

_ExmFirstName I Text This field contains the first name of
the logged-on user.

The length of the name can be 0–32
characters.

_ExmMiddleName I Text This field contains the middle
name of the logged-on user.

The length of the name can be 0–32
characters.

_ExmLastName I Text This field contains the last name of
the logged-on user.

The length of the name can be 0–32
characters.

_ExmPhone1 I Text This field contains the telephone
number of the logged-on user.

The field can contain 0–32
characters.

_ExmPhone2 I Text The alternative telephone number
of the logged-on user.

This field can contain 0–32
characters.

_ExmLevel I Text This field contains the level for the
logged-on user.

This can be a number from 0 to 9.

754 Programming Guide

Table 5. User settings (continued)

Field name Set Data type Description and contents of the
field

_ExmAbsent I Text This field indicates whether the
logged-on user is declared absent.
It can be modified in MQ
Workflow via the update API
function. Possible values are:

Value Explanation
0 Not absent
1 Absent

_ExmDeleteFinished I Text This field indicates whether
finished items are to be deleted
from the MQ Workflow database. It
can be modified in MQ Workflow
via the update API function.
Possible values are:

Value Explanation
0 No
1 Yes

_ExmManager I Text This field contains the manager
information for the logged-on user.

It can contain 0–32 characters.

_ExmOrganization I Text This field shows the organization
to which the logged-on user
belongs.

The field can contain 0–32
characters.

_ExmOrgManager I Text This field indicates whether the
logged-on user has the role
manager.

Possible values are:

Value Explanation
0 No
1 Yes

_ExmRolesAssigned I Text This field contains the roles the
logged-on user has.

The field is a multi-value field. It
can contain 0–32 characters.

Chapter 81. Fields used by the Client for Lotus Notes 755

Table 5. User settings (continued)

Field name Set Data type Description and contents of the
field

_ExmRolesCoordinating I Text This field contains the roles the
logged-on user coordinates.

The field is a multi-value field. It
can contain 0–32 characters.

_ExmAuthUsers I Text This field contains a list of persons
to whose work items the logged-on
user has access.

This field is a multi-value field. It
can contain 0–32 characters.

_ExmAuthAllUsers I Text This field indicates whether the
logged-on user is authorized to
access other people’s activities.

Possible values are:

Value Explanation
0 No
1 Yes

_ExmAuthAccessPermitted I Text This field contains a list of persons
who have access to the logged-on
user’s work items.

This field is a multi-value field. It
can contain 0–32 characters.

_ExmAuthStaff I Text This field indicates whether the
logged-on user is authorized to
define staff.

Possible values are:

Value Explanation
0 No
1 Yes

756 Programming Guide

Table 5. User settings (continued)

Field name Set Data type Description and contents of the
field

_ExmAuthOther I Text This field indicates whether the
logged-on user is authorized to
model processes.

Possible values are:

Value Explanation
0 No
1 Yes

_ExmAuthCategories I Text This field contains the categories
for which the logged-on user has
basic authorization.

The field is a multi-value field. It
can contain 0–32 characters.

_ExmAuthCategoriesAdmin I Text This field contains the categories
for which the logged-on user has
administrator authorization.

The field is a multi-value field. It
can contain 0–32 characters.

_ExmAuthAllCategoriesAdmin I Text This field indicates whether the
logged-on user is authorized to
manage process instances in all
categories.

Possible values are:

Value Explanation
0 No
1 Yes

_ExmOwnSubstitute I Text This field contains information
about the user who substitutes for
the logged-on user.

The field can contain 0–32
characters.

Chapter 81. Fields used by the Client for Lotus Notes 757

Table 5. User settings (continued)

Field name Set Data type Description and contents of the
field

_ExmUsersSubstituted I Text This field shows the persons for
whom the logged-on user
substitutes.

The field is a multi-value field and
can be modified in MQ Workflow
via the update API function. It can
contain 0–32 characters.

_ExmDescription I Text This field contains a description of
the logged-on user.

The field can contain 0–1 024
characters.

Implementation-specific fields

_ImplConnectionState Text Possible values are:

Value Explanation
'0' Disconnected
'1' Connected

_ImplPassword Text This field is encrypted. It can
contain 0–32 characters.

_ImplPasswordVerify Text This field is encrypted. It can
contain 0–32 characters.

_ImplOriginalForm Text

_ImplDatabaseList Text This is a multi-value field.

_ImplAbsentDisp Keyword

_ImplDeleteFinishedDisp Keyword

Process instance

Table 6. Process template

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmPi”

_ExmDocType I Text The field is set to: “ExmPi”

_ExmDocObjectId I Text This field can contain 1–n
characters.

758 Programming Guide

Table 6. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–8
characters.

_ExmUserId I Text This field contains the MQ
Workflow user ID of the person.

The length of the user ID can be
1–32 characters.

_ExmName I Text This field contains the name of the
process instance.

The field can contain 1–63
characters.

_ExmDescription I Text This field contains the description
of the process instance.

The field can contain 0–254
characters.

_ExmCategory I Text This field contains the category of
the process instance.

The field can contain 0–32
characters.

_ExmState I Text This field indicates the status of the
process instance.

Possible values are:

Value Explanation
'0' Undefined
'1' Ready
'2' Running
'4' Finished
'8' Terminated
'16' Suspended

_ExmParentName I Text This field contains the name of the
parent process of the process
instance associated with this
notification.

This field can contain 0–63
characters.

Chapter 81. Fields used by the Client for Lotus Notes 759

Table 6. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmTopLevelName I Text This field contains the name of the
top-level process of the process
instance associated with this
notification.

This field can contain 1–63
characters.

_ExmAudit R Text This field indicates whether an
audit log is to be written for this
process instance.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmTerminateOnError R Text This field indicates whether the
process instance is to be terminated
if an error occurs during the
evaluation of an exit or transition
condition.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmInContainerNeeded I Text This field indicates whether this
process instance requires input
data.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

760 Programming Guide

Table 6. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmInContainerName R Text This field contains the name of the
input-container data structure of
the process instance.

The field can contain 1–32
characters.

_ExmOutContainerName R Text This field contains the name of the
output-container data structure of
the process instance.

The field can contain 1–32
characters.

_ExmProcessAdmin R Text This field contains the user ID of
the process administrator of this
process instance.

The field can contain 0–32
characters.

_ExmStarter R Text This field contains the user ID of
the user who started this process
instance.

The field can contain 0–32
characters.

_ExmRole R Text This field contains the role that can
be used for staff assignment.

The field can contain 0–32
characters.

_ExmOrganization R Text This field contains the organization
that can be used for staff
assignment.

The field can contain 0–32
characters.

_ExmDocumentation R Text This field contains the
documentation of the process
instance.

The field can contain 0–4 096
characters.

_ExmStartTime R Time This field contains the time and
date when the process instance was
started.

Chapter 81. Fields used by the Client for Lotus Notes 761

Table 6. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmNotificationTime R Time This field contains the time and
date when a notification for the
process instance is to occur.

_ExmEndTime I Time This field contains the time and
date when the process instance was
completed.

Internal fields

_ExmReplicationDate I Text

Implementation-
specific fields

_ImplOriginalForm Text

Process-instance notification

Table 7. Process-instance notification

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmWiPin”

_ExmDocType I Text The field is set to: “ExmWiPin”

_ExmDocObjectId I Text This field can contain 1–n
characters.

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–8
characters.

_ExmUserId I Text This field contains the MQ
Workflow user ID of the person.

The length of the user ID can be
1–32 characters.

762 Programming Guide

Table 7. Process-instance notification (continued)

Field name Set Data type Description and contents of the
field

_ExmExpired I Text This field indicates whether the
maximum duration time of the
process instance has expired.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmName I Text This field contains the name of the
process instance.

The field can contain 1–63
characters.

_ExmDescription I Text This field contains the description
of the process instance.

The field can contain 0–254
characters.

_ExmCategory I Text This field contains the category of
the process the process-instance
notification is a part of.

The field can contain 0–32
characters.

_ExmState I Text This field indicates the status of the
process instance.

Possible values are:

Value Explanation
'0' Undefined
'1' Ready
'2' Running
'4' Finished
'8' Terminated
'16' Suspended

Chapter 81. Fields used by the Client for Lotus Notes 763

Table 7. Process-instance notification (continued)

Field name Set Data type Description and contents of the
field

_ExmParentName I Text This field contains the name of the
parent process of the process
instance associated with this
notification.

This field can contain 0–63
characters.

_ExmTopLevelName I Text This field contains the name of the
top-level process of the process
instance associated with this
notification.

This field can contain 1–63
characters.

_ExmAudit I Text This field indicates whether an
audit log is to be written for the
process instance associated with
this notification.

This field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmTerminateOnError I Text This field indicates whether the
process instance associated with
this notification is terminated if an
error occurs during the evaluation
of an exit or transition condition.

This field can have the following
values:

Value Explanation
'0' No
'1' Yes

764 Programming Guide

Table 7. Process-instance notification (continued)

Field name Set Data type Description and contents of the
field

_ExmInContainerNeeded I Text This field indicates whether the
process instance associated with
this notification requires input
data.

This field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmInContainerName I Text This field contains the name of the
input-container data structure of
the process instance.

The field can contain 1–32
characters.

_ExmOutContainerName I Text This field contains the name of the
output-container data structure of
the process instance.

The field can contain 1–32
characters.

_ExmProcessAdmin I Text This field contains the user ID of
the process administrator of the
process instance.

The field can contain 1–32
characters.

_ExmStarter I Text This field contains the user ID of
the user who started the process
instance associated with this
notification.

This field can contain 1–32
characters.

_ExmRole I Text This field contains the role that can
be used for the staff assignment of
the process instance associated
with this notification.

This field can contain 0–32
characters.

Chapter 81. Fields used by the Client for Lotus Notes 765

Table 7. Process-instance notification (continued)

Field name Set Data type Description and contents of the
field

_ExmOrganization I Text This field contains the organization
that can be used for the staff
assignment of the process instance
associated with this notification.

This field can contain 0–32
characters.

_ExmDocumentation I Text This field contains the
documentation of the process
instance.

The field can contain 0–4 096
characters.

_ExmStartTime I Time This field contains the time and
date when the process instance was
started.

_ExmNotificationTime I Time This field contains the time and
date when a notification is to occur
for the process instance associated
with this notification.

_ExmEndTime I Time This field contains the time and
date when the item was completed.

_ExmProcessInstanceNameI Text This field contains the name of the
process instance associated with
this notification.

The field can contain 1–54
characters.

Internal fields

_ExmReplicationDate I Text

Implementation-
specific fields

_ImplOriginalForm Text

Process template

Table 8. Process template

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

766 Programming Guide

Table 8. Process template (continued)

Field name Set Data type Description and contents of the
field

FORM Text The field is set to: “ExmPt”

_ExmDocType I Text The field is set to: “ExmPt”

_ExmDocObjectId I Text This field can contain 1–n
characters.

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–8
characters.

_ExmUserId I Text This field contains the MQ
Workflow user ID of the person.

The length of the user ID can be
1–32 characters.

_ExmName I Text This field contains the name of the
process template.

The field can contain 1–32
characters.

_ExmDescription I Text This field contains the description
of the process template.

The field can contain 0–1 024
characters.

_ExmCategory I Text This field contains the category of
the process template.

The field can contain 0–32
characters.

_ExmAudit R Text This field indicates whether an
audit log is to be written for
process instances created from this
process template.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

Chapter 81. Fields used by the Client for Lotus Notes 767

Table 8. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmTerminateOnError R Text This field indicates whether
process instances created from this
template are to be terminated if an
error occurs during the evaluation
of an exit or transition condition.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmInContainerNeeded I Text This field indicates whether
process instances created from this
template require input data.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmInContainerName R Text This field contains the name of the
input-container data structure of
the process.

The field can contain 1–32
characters.

_ExmOutContainerName R Text This field contains the name of the
output-container data structure of
the process.

The field can contain 1–32
characters.

_ExmProcessAdmin R Text This field contains the user ID of
the process administrator of the
process instances created from this
template.

The field can contain 0–32
characters.

768 Programming Guide

Table 8. Process template (continued)

Field name Set Data type Description and contents of the
field

_ExmRole R Text This field contains the role that can
be used for staff assignment.

The field can contain 0–32
characters.

_ExmOrganization R Text This field contains the organization
that can be used for staff
assignment.

The field can contain 0–32
characters.

_ExmDocumentation R Text This field contains the
documentation of the process
template.

The field can contain 0–4 096
characters.

Internal fields

_ExmReplicationDate I Text

Implementation-
specific fields

_ImplOriginalForm Text

Work item

Table 9. Work item

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmWi”

_ExmDocType I Text The field is set to: “ExmWi”

_ExmDocObjectId I Text This field can contain 1–n
characters.

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–8
characters.

Chapter 81. Fields used by the Client for Lotus Notes 769

Table 9. Work item (continued)

Field name Set Data type Description and contents of the
field

_ExmUserId I Text This field contains the MQ
Workflow user ID of the person.

The length of the user ID can be
1–32 characters.

_ExmName I Text This field contains the name of the
work item.

The field can contain 1–32
characters.

_ExmDescription I Text This field contains the description
of the work item. It can be
modified in MQ Workflow via the
update API function and can
contain 0–1 024 characters.

_ExmState I Text This field indicates the status of the
work item.

Possible values are:

Value Explanation
'0' Undefined
'1' Ready
'2' Running
'4' Finished
'8' Terminated
'16' Suspended
'32' Disabled

_ExmEscalated I Text This field indicates whether the
work item is escalated (that is,
whether there is a notification for
the work item).

This field can have the following
values:

Value Explanation
'0' No
'1' Yes

770 Programming Guide

Table 9. Work item (continued)

Field name Set Data type Description and contents of the
field

_ExmImplementation I Text This field contains the name of the
tool or process implementing the
work item.

The field can contain 1–32
characters.

_ExmReceivedAs I Text This field indicates why the work
item was placed on the worklist.

The field can have the following
values:

Value Explanation
'0' Undefined
'1' Normal
'2' Substitute
'3' ProcessAdministrator
'4' SystemAdministrator
'5' ByTransfer

_ExmProcessInstanceName I Text This field contains the name of the
process instance the work item is a
part of.

The field can contain 1–54
characters.

_ExmProcessCategory I Text This field contains the category of
the process the work item is a part
of.

The field can contain 0–32
characters.

_ExmManualStartMode R Text This field indicates whether the
start mode of the item is set to
manual.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

Chapter 81. Fields used by the Client for Lotus Notes 771

Table 9. Work item (continued)

Field name Set Data type Description and contents of the
field

_ExmStartCondition R Text This field contains the start
condition associated with the work
item.

The field can have the following
values:

Value Explanation
'ANY' One of the incoming

connectors must evaluate
to true.

'ALL' All incoming connectors
must evaluate to true.

_ExmManualExitMode R Text This field indicates whether the
exit mode of the work item is set
to manual.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmExitCondition R Text This field contains the end
condition of the work item.

The field can contain up to 4 KB of
data.

_ExmStaff R Text This field contains the user IDs of
all persons associated with the
activity that is represented by the
work item.

This is a multi-value field and can
contain 0–32 characters.

_ExmProcessAdmin R Text This field contains the user ID of
the process administrator of the
process of which the work item is
a part.

The field can contain 1–32
characters.

772 Programming Guide

Table 9. Work item (continued)

Field name Set Data type Description and contents of the
field

_ExmPriority I Text This field indicates the priority of
the work item.

The field can contain a number
from 0 to 9.

_ExmDocumentation R Text This field contains the
documentation of the work item.

This field can contain 0–4 096
characters.

_ExmStartTime I Time This field contains the time and
date when the activity was started
(that is, when the work item
became ready).

_ExmNotificationTime R Time This field contains the time and
date when a notification for the
work item is to occur.

_ExmEndTime R Time This field contains the time and
date when the work item was
completed.

Internal fields

_ExmReplicationDate I Text

Implementation-specific fields

_ImplOriginalForm Text

_ImplNewOwner Text

_ImplTool Text

_ImplToolsList Text This is a multi-value field.

_ImplRc Text

Work-item notification

Table 10. Work-item notification

Field name Set Data type Description and contents of the
field

Lotus Notes API fields

FORM Text The field is set to: “ExmWiWin”

_ExmDocType I Text The field is set to: “ExmWiWin”

Chapter 81. Fields used by the Client for Lotus Notes 773

Table 10. Work-item notification (continued)

Field name Set Data type Description and contents of the
field

_ExmDocObjectId I Text This field can contain 1–n
characters.

_ExmDatabase I Text This field contains the name of the
MQ Workflow system group.

The length of the name can be 1–8
characters.

_ExmUserId I Text This field contains the MQ
Workflow user ID of the person.

The length of the user ID can be
1–32 characters.

_ExmExpired I Text This field indicates whether the
maximum duration time for the
work item has expired.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmOverdue I Text This field indicates whether
starting the work item is overdue.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmEscalation I Text This field indicates if the escalation
is the first or the second escalation.

The field can have the following
values:

Value Explanation
'1' First escalation
'2' Second escalation

774 Programming Guide

Table 10. Work-item notification (continued)

Field name Set Data type Description and contents of the
field

_ExmName I Text This field contains the name of the
work item.

The field can contain 1–32
characters.

_ExmDescription I Text This field contains the description
of the work item. The field can
contain 0–1 024 characters.

_ExmState I Text This field indicates the status of the
work item.

Possible values are:

Value Explanation
'0' Undefined
'1' Ready
'2' Running
'4' Finished
'8' Terminated
'16' Suspended
'32' Disabled

_ExmEscalated I Text This field indicates whether the
work item is escalated.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmImplementation I Text This field contains the name of the
tool or process implementing the
work item.

The field can contain 1–32
characters.

Chapter 81. Fields used by the Client for Lotus Notes 775

Table 10. Work-item notification (continued)

Field name Set Data type Description and contents of the
field

_ExmReceivedAs I Text This field indicates why the
work-item notification was placed
on the worklist.

This field can have the following
values:

Value Explanation
'0' Undefined
'1' Normal
'2' Substitute
'3' ProcessAdministrator
'4' SystemAdministrator
'5' ByTransfer

_ExmProcessInstanceName I Text This field contains the name of the
process instance the work-item
notification is a part of.

The field can contain 1–54
characters.

_ExmProcessCategory I Text This field contains the category of
the process the work-item
notification is a part of.

This field can contain 0–32
characters.

_ExmManualStartMode R Text This field indicates whether the
start mode of the item is set to
manual.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

776 Programming Guide

Table 10. Work-item notification (continued)

Field name Set Data type Description and contents of the
field

_ExmStartCondition R Text This field contains the start
condition associated with the work
item.

The field can have the following
values:

Value Explanation
'ANY' One of the incoming

connectors must evaluate
to true.

'ALL' All incoming connectors
must evaluate to true.

_ExmManualExitMode R Text This field indicates whether the
exit mode of the work item is set
to manual.

The field can have the following
values:

Value Explanation
'0' No
'1' Yes

_ExmExitCondition R Text This field contains the end
condition of the work item.

The field can contain up to 4 KB of
data.

_ExmStaff R Text This field contains the user IDs of
all persons associated with the
activity that is represented by the
work item.

This is a multi-value field and can
contain 0–32 characters.

_ExmPriority I Text This field indicates the priority of
the work item.

The field can contain a number
from 0 to 9.

Chapter 81. Fields used by the Client for Lotus Notes 777

Table 10. Work-item notification (continued)

Field name Set Data type Description and contents of the
field

_ExmDocumentation R Text This field contains the
documentation of the work item.

The field can contain 0–4 096
characters.

_ExmStartTime R Time This field contains the time and
date when the activity was started
(that is, when the work item
became ready).

_ExmNotificationTime R Time This field contains the time and
date when a second notification for
the work item is to occur.

_ExmEndTime R Time This field contains the time and
date when the work-item
notification was completed.

Implementation-specific
fields

_ImplOriginalForm Text

778 Programming Guide

Part 10. Appendixes

© Copyright IBM Corp. 1993, 1999 779

780 Programming Guide

Appendix A. How to read the syntax diagrams

Throughout this book, syntax is described the following way; all spaces and
other characters are significant:
v Read the syntax diagrams from left to right, from top to bottom, following

the main path of the line.
The ÊÊ— symbol indicates the beginning of a statement.
The —Ê symbol indicates that the statement syntax is continued on the next
line.
The Ê— symbol indicates that a statement is continued from the previous
line.
The —ÊÍ symbol indicates the end of a statement.

v Diagrams can be broken into fragments. A fragment is indicated by vertical
bars with the name of the fragment between the bars. The fragment itself
follows the same syntactical rules as the main diagram.

ÊÊ a-fragment ÊÍ

v Required items appear on the horizontal line, the main path.

ÊÊ required-item ÊÍ

v Optional items appear below (or above) the main path.

ÊÊ required-item
optional-item

ÊÍ

v If you can choose from one or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

ÊÊ required-item required-choice1
required-choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the
main path.

© Copyright IBM Corp. 1993, 1999 781

ÊÊ required-item
optional-choice1
optional-choice2

ÊÍ

v An arrow returning to the left, above the main path, indicates an item that
can be repeated.

ÊÊ required-item » repeatable-item ÊÍ

If the repeat arrow contains a comma, you must separate repeated items
with a comma.

ÊÊ required-item »

,

repeatable-item ÊÍ

v Keywords appear in uppercase, for example, NAME. They must be spelled
exactly as shown. Variables appear in lowercase italic letters, for example,
string. They represent user-supplied values.

782 Programming Guide

Appendix B. FlowMark Version 2 compatibility mode

The MQ Workflow APIs support a FlowMark Version 2.3 API compatibility
mode that allows you to run FlowMark Version 2.3 programs. It is, however,
recommended that you replace the Version 2 functions/methods with the MQ
Workflow Version 3 functions/methods in all your applications.

The following languages and compilers are supported in compatibility mode:
v The C-language API

– For AIX and the IBM C Set++ Version 3.1.4
– For OS/2 and IBM VisualAge for C++ 3.0
– For Windows NT or Windows 95 and IBM VisualAge for C++ 3.5 or

Microsoft Visual C++ 5.0
v The C++ language API

– For AIX and the IBM C Set++ Version 3.1.4
– For HP-UX and the HP aC++ Compiler S700 Version A.01.15.01
– For OS/2 and IBM VisualAge for C++ 3.0
– For Windows NT or Windows 95 and IBM VisualAge for C++ 3.5 or

Microsoft Visual C++ 5.0
v The REXX API

– For OS/2 and the compiler provided with the operating system
v The VisualBasic API

– For Windows NT or Windows 95 and Microsoft VisualBasic 5.0

Repeating the compile-and-link step should be sufficient to make your Version
2.3 programs run.

MQ Workflow Version 3 contains new header, library and dynamic link
libraries for this purpose. The header files have the FlowMark Version 2.3
names so that you do not have to change your source code. The library and
dynamic link libraries have new names. You can, however, choose to (DLL)
rename these files to their Version 2 names; otherwise, you have to adapt your
link step to the new names. The following table provides an overview on the
compatibility API and the files to include and link with:

Table 11. FlowMark Version 2 Compatibility APIs on AIX

Language AIX

header lib DLL

C exmajapc.h fmcjdapc.lib libfmcjdapc.a

© Copyright IBM Corp. 1993, 1999 783

Table 11. FlowMark Version 2 Compatibility APIs on AIX (continued)

Language AIX

header lib DLL

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

libfmcjdcom.a
libfmcjdcbr.a
libfmcjdrun.a
libfmcjdcon.a

Table 12. FlowMark Version 2 Compatibility APIs on HP-UX

Language HP-UX

header lib DLL

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

libfmcjdcom.sl
libfmcjdcbr.sl
libfmcjdrun.sl
libfmcjdcon.sl

Table 13. FlowMark Version 2 Compatibility APIs on OS/2

Language OS/2

header lib DLL

C exmpjapc.h fmcjdapc.lib fmcjdapc.dll

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

fmcjdcom.dll
fmcjdcbr.dll
fmcjdrun.dll
fmcjdcon.dll

Rexx fmcjdrex.dll

Table 14. FlowMark Version 2 Compatibility APIs on Windows NT/95

Language Windows NT/95

header lib DLL

C exmwjapc.h fmcjdapc.lib fmcjdapc.dll

C++ exmpjapi.hxx fmcjdcom.lib
fmcjdcbr.lib
fmcjdrun.lib
fmcjdcon.lib

fmcjdcom.dll
fmcjdcbr.dll
fmcjdrun.dll
fmcjdcon.dll

VisualBasic exmbjapv.bas fmcjdapv.dll

Because MQ Workflow Version 3 has an extended functionality and flexibility,
there are some deviations related to the API. You must be aware of these
differences, which can influence your Version 2 program behaving differently.
This applies mainly to return codes and authorization definitions.

784 Programming Guide

Deviations from FlowMark Version 2

v Version 3 provides for more detailed states than Version 2 and, therefore,
these states are mapped on a best-can-do basis:
When a work item is to be started and the program execution agent is not
running or when the program to be started is not found, the work item
goes into state InError. The InError state is exposed as a Version 2 Running
state so that a Version 2 Restart() or Terminate() can be issued. Because of
the actual InError state, a Version 3 ForceRestart() or ForceFinish() is called
which, however, requires the caller to have process administration authority.
When a work item is checked out, the work item goes into state
CheckedOut. The CheckedOut state is exposed as a Version 2 Running state
so that a Version 2 Restart() or Terminate() can be issued. Because of the
actual CheckedOut state, a Version 3 ForceRestart() or ForceFinish() is called
which, however, requires the caller to have process administration authority.
When a manual exit work item has executed its activity implementation, it
is set to state Executed. This is mapped to the Version 2 Ready state to show
that the program has executed once and can be finished (called
ManualExit() in Version 2).

v Version 3 supports an authorization concept that is more restricted than the
Version 2 concept:
Process administration authority is needed for work item ForceFinish() and
ForceRestart(). This is also needed for the Version 2 C-language
ChangeActivityState() function when you request finish or restart.
Authorization changes become active at once. This is because authorization
is checked by the server only. The UserSettings() method returns the
settings of the user at the time when called, that is, it fetches the current
user authorizations from the server every time it is called. In Version 2, the
user settings were retrieved once when logging on.

v Version 3 return codes are mapped to Version 2 return codes on a
best-can-do basis:
ERROR_TIMEOUT is returned when the client does not receive an answer
within the specified time. This can also mean that the server is not running.

v The scope or database and server specifications are case-sensitive. They are
not folded to uppercase. The scope or database corresponds to the system
group specification in Version 3; the server to the system specification.

v The password is case-sensitive.
v Logon() allows for a specification of the absence setting. If it is not set (as in

the compatibility mode), the absence behavior - whether the absence
information is to be reset or not - is taken from the person record.

v If the MQ Workflow server allows for a unified logon, an empty password
and user ID are accepted (see also “Logon()” on page 321).

Appendix B. FlowMark Version 2 compatibility mode 785

v Logon() allows for a specification of the session mode. If it is not set (as in
the compatibility mode), the session mode is taken from the user or
configuration profile. If it is not found there, session mode present here is
used. Present here forces any other present session for the user logoff.
If an application that is using the present session mode ends abnormally
during the application test phase, a session record is still held on the server.
You then have to wait with a new logon attempt until that session expires.
Present here especially forces any pending present session logoff. If you rely
on the already logged on return code, set the present mode in the profile.
Default allows for multiple parallel sessions.
You can use the configuration utility fmczutil to set or erase profile values;
the key is V2_SESSION_MODE; the values are DEFAULT, PRESENT, or
PRESENTHERE.

v IsDeleteFinishedItems() always returns false since this setting has been
moved from the user to the process. The attempt to change this setting
returns FMC_OK but nothing is changed.

v The PersonsAuthorizedFor() method does not return any persons when the
logged-on user is authorized for all persons.

v When the logged-on user is an administrator for all categories, then
IsAdminForCategory(x) returns true even if the category does not exist.

v Process templates are versioned in MQ Workflow. This means that a process
template can be no longer valid, which is defined as invalid.

v Creation of a process instance returns primary values only.
v Process instance names are generated differently. The process template

name is no longer padded by _n but by a $ sign followed by an object ID
representation so that names are unique.

v The IsTerminatedOnError() method on process templates or process
instances always returns false.

v MQ Workflow introduces the concept of autonomy of subprocesses. Only
non-autonomous subprocesses with respect to control autonomy are
suspended or resumed when the deep option is specified. Suspend() of a
ready process instance is not supported.

v Creation of a worklist does not check whether the owner of the items
contained is a registered user or whether you are authorized to see the
items of that user. The worklist is created anyhow. The item owner is part
of the filter in Version 3 so that the owner is only applied when the
worklist content, that is, the items, are queried. If you specified an
unknown item owner or if you are not authorized to see the items of the
specified owner, you will not see any items at all.

v The last modification time of a work item is changed even if only the
description of the work item changes.

786 Programming Guide

v To check out a work item is possible only if the corresponding MQ
Workflow setting defines that checking out is allowed.

v Deletion of a ready work item is allowed as long as it is not the last work
associated with the activity instance. You can always delete ready work
items in a terminated or terminating process instance.

v When a notification duration is not set, then no notification occurs. If the
person to notifiy is not supplied or is unknown, the process administrator
is notified.

v Finish() on a notification is supported by an implementation returning
FMC_OK. This means that notifications must be deleted explicitly.

v Input and output containers are only sent to the program execution agent
when they are accessed by the activity implementation or support tool. This
behavior can be set in Version 3.

v The program execution agent provides the program identification (called
session ID in Version 2) only to trusted programs. This property can be set
in Version 3.

v Passthrough() cannot be called from a support tool.
v The maximum size of a container passed between the client and the server

can be 32KB.
v A container can have leaves of binary data types.
v ExmcChangeActivityState() performs the finish action without first checking

for a requested ready or running state. It currently requires that the activity
name is unique within a process instance, which means it does not support
unique activity names within blocks. It returns
EXMPJ_WRONG_ACTIVITY_STATE also if the process is not running.

v Bundles are not yet supported.

FlowMark Version 2 C-language programs

Running an existing application program

MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 785 for possible increased authorization requirements. A compile and
link should be sufficient to make your Version 2 programs run.

If you want to run an existing FlowMark Version 2 C-language application
program in an MQ Workflow Version 3 environment:
v Make sure that MQ Workflow Version 3 paths are searched so that the new

header file for Version 3 is used:
– exmwjapc.h for Windows NT or Windows 95
– exmajapc.h for AIX

Appendix B. FlowMark Version 2 compatibility mode 787

v Change your application build step to link with the MQ Workflow Version
3 API library fmcjdapc.lib instead of the FlowMark Version 2 library

v Compile and link your application

FlowMark Version 2 Visual Basic programs

Running an existing application program

MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 785 for possible increased authorization requirements.

If you want to run an existing FlowMark Version 2 Visual Basic application
program in the MQ Workflow Version 3 environment, make sure that:
v MQ Workflow Version 3 paths are searched so that the new Version 3

provided declarations exmbjapv.bas are used
v The MQ Workflow Version 3 dynamic link library fmcjdapv.dll is in a

directory in your PATH statement

FlowMark Version 2 REXX programs

Running an existing application program

MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 785 for possible increased authorization requirements.

If you want to run an existing FlowMark Version 2 REXX application program
in an MQ Workflow Version 3 environment:
v Load the MQ Workflow REXX functions contained in fmcjdrex.dll
v Ensure that the MQ Workflow Version 3 dynamic link library fmcjdrex.dll is

in a directory in your PATH statement

FlowMark Version 2 C++ programs

Running an existing application program

MQ Workflow Version 3 is delivered so that FlowMark Version 2 application
programs can run unchanged. See “Deviations from FlowMark Version 2” on
page 785 for possible increased authorization requirements. A re-compile and
re-link should be sufficient to make your Version 2 programs run.

If you want to run an existing FlowMark Version 2 C++ application program
in an MQ Workflow Version 3 environment:

788 Programming Guide

v Make sure that MQ Workflow Version 3 paths are searched so that the new
Version 3 provided exmpjapi.hxx header file is used

Note: Since the FlowMark Version 2 exmpjapi.hxx header file is
self-sufficient, you should have included no other FlowMark header
files in your application. If this is not the case, delete all other
inclusions.

v Change your application build step to link with the MQ Workflow Version
3 API libraries fmcjdcom.lib, and fmcjdcbr.lib, fmcjdrun.lib and/or fmcjdcon.lib
instead of the FlowMark Version 2 library, see “Chapter 14. Compiling and
linking” on page 137

v Compile and link your application

Using MQ Workflow Version 3 methods

If you want to extend an existing FlowMark Version 2 C++ application
program in order to use the new methods provided with the MQ Workflow
Version 3 API, then you should migrate your application first. This is because
there are some extensions and deviations from FlowMark Version 2.

Migration is done according to the following list:
1. General steps to be done

Note: You should follow the sequence of steps illustrated below since
some of the global change steps base on each other.

Header file inclusion:
#include <bool.h> // true, false (dependent inclusion)
#include <fmcjstr.hxx> // string (dependent inclusion)
#include <vector.h> // vector (dependent inclusion)
#include <fmcjprun.hxx> // C++ runtime client interface

or
#include <fmcjpcon.hxx> // C++ container interface

a. Include the MQ Workflow Version 3 C++ Runtime API header file
fmcjprun.hxx or fmcjpcon.hxx instead of the FlowMark Version 2 header
file exmpjapi.hxx.

Note: Because the FlowMark Version 2 exmpjapi.hxx header file is
self-sufficient, you should have included no other FlowMark
header files in your application. If not so, delete all other
inclusions.

b. Conditionally include bool.h before fmcjprun.hxx or fmcjpcon.hxx.
If your compiler does not support any bool definition, include this MQ
Workflow delivered definition of bool. Otherwise, use the bool
definition of your compiler.

Appendix B. FlowMark Version 2 compatibility mode 789

Note: bool.h must be included before your string definition file.
c. Conditionally include fmcjstr.hxx before fmcjprun.hxx or fmcjpcon.hxx.

If your compiler does not support any string class, include this MQ
Workflow delivered definition of a string class. Otherwise, include your
compiler string definition file.

d. Conditionally include vector.h before fmcjprun.hxx.
If your compiler does not support any vector, include this MQ
Workflow delivered definition of a vector. Otherwise, include your
compiler vector definition file.

Names of error codes:
e. Change all EXM_API_ERROR occurrences to FMC_ERROR.

After this step, error codes are named correctly.

Names of classes:
f. Change all Exm occurences to Fmcj. Change the resulting FmcjServer

references to FmcjExecutionService. Change the resulting
FmcjWorkitemNotification references to
FmcjActivityInstanceNotification. Change the resulting FmcjItemBase
references to FmcjItem. Change the resulting FmcjUser references to
FmcjPerson.
After this step, classes are named correctly.

Names of methods:
g. Change all GetXxx() method names to Xxx() except the GetElement()

method which does not change its name. Change all ChangeXxx()
method names to SetXxx().
This means that accessor methods are consistently named according to
the data member name; mutator methods have the prefix ″Set″.

Change all EndCondition() method calls to ExitCondition().
Change all ExecutionSessionID() method calls to ProgramID().
Change all PersistentHandle() method calls to PersistentOid().
Change all ReadPersistentObject() method calls to PersistentObject().
Change all Organization() method calls to OrganizationName().
Change all Role() method calls to RoleName().
Change all RolesToCoordinate() method calls to
NamesOfRolesToCoordinate().
Change all QueryWorkitemNotifications() method calls to
QueryActivityInstanceNotifications().

This is because of Version 3 C++- and C-language API cleanup and
compatibility. The PersistentHandle() method name has been changed
to avoid confusion with C-API handles.

790 Programming Guide

After this step, all supported methods are named correctly.
2. Mandatory specific steps

These are steps which you must carry out if you use the named class and
method.
v FmcjActivityInstanceNotification

The IsEscalated() method has been changed to StateOfNotification()
returning the exact state of escalation as an enumeration.
The information formerly queried via the IsFirstEscalatation(), and
IsSecondEscalation() methods can be accessed by using the Kind()
method. The Kind() method returns the exact type of an item as an
enumeration.
The IsProcessType() and IsProgramType() methods have been changed
to ActivityKind() returning the kind of the associated activity instance as
an enumeration.
The NotificationTime() method has been changed to
FirstNotificationTime() and SecondNotificationTime() so that both times
can be queried.
The ManualExit() and ManualStart() accessor methods return false (the
boolean default) as long as the object is not complete.
The Finish() method is no longer needed, that is, it has to be removed.

v FmcjContainer

ActivityInfo() and ProcessInfo() methods need to be removed; it is no
longer necessary to call these methods before accessing their data
members. Specifying their fully qualified names when querying a
container is sufficient.
Activity implementations do not need to pass their program
identifications to the program execution agent when they are dealing
with their input or output containers. This means, that either the
program ID parameter has to be removed from the InContainer(), or
OutContainer() calls, or the appropriate RemoteInContainer(), or
RemoteOutContainer() methods have to be called.

v FmcjExecutionService respectively FmcjService

Constructor FmcjExecutionService(systemGroup) - ExmServer(scope) - is
no longer supported since you always connect to either a specific
system or your home system.
The Name() method has to be replaced by SystemName().
The Scope() method has to be replaced by SystemGroupName().
The user identification is case-sensitive. It is no longer folded to
uppercase when logging on.
The CreateWorklist() method needs to specify the additional parameters
for persistent lists, namely worklist owner, type, description, sort

Appendix B. FlowMark Version 2 compatibility mode 791

criteria, and threshold. The filter attribute has become a string and the
owner of the workitems is part of the filter criterion.
The QueryProcessTemplates() and QueryProcessInstances() methods
newly allow for specifying sort criteria, and thresholds. The filter
attribute has become a string.
The UserSettings() method has become an action method returning an
APIRET value. In FlowMark Version 2, user information was provided
as the result of a successful Logon() request. In MQ Workflow Version 3,
user settings have to be queried explicitly.
Passthrough() does no longer need to pass a program identification. This
means that either the program ID parameter has to be removed or the
RemotePassthrough() method has to be called.

v FmcjFilter

To provide for increased flexibility and extentability, the FmcjFilter class
has been removed. A string containing the filter expression has to be
provided instead of the FmcjFilter object.

v FmcjItem

The ItemType enumeration ″WorkitemNotification″ has become more
specific and is split into FirstActivityInstanceNotification and
SecondInstanceActivityNotification. Such, any check on an item whether
it is a notification has to be replaced with an appropriate or-statement to
check whether it is a first or second notification.
Methods ManualExit(), ManualStart(), ExitCondition(), StartCondition(),
Priority(), and Staff() are not applicable for process instance notifications.
Thus, they have been moved from the FmcjItem class to the
FmcjWorkitem and FmcjActivityInstanceNotification classes. This means
that you can only call them on objects of the respective kind.

v FmcjPerson

The functionality to specify whether finished items are to be deleted has
been moved from the logged-on user to the process models. Thus, any
IsDeleteFinishedItems() and SetDeleteFinishedItems() calls need to be
removed.

v FmcjProcessInstance

The IsAudited() method has been changed to AuditMode() returning the
exact type of auditing as an enumeration.

v ExmProcessInstanceNotification

The Expired() method has been removed since a process instance
notification is only raised when the process instance is expired.
The Finish() method is no longer needed, that is, it has to be removed.

v FmcjProcessTemplate

The IsAudited() method has been changed to AuditMode() returning the
exact type of auditing as an enumeration.

792 Programming Guide

The CreateInstance() and CreateAndStartInstance() methods have
additional, still reserved parameters; at least 0 pointers need to be
provided.

v FmcjWorkitem

The IsEscalated() method has been changed to StateOfNotification()
returning the exact state of escalation as an enumeration.
The IsProcessType() and IsProgramType() methods have been changed
to ActivityKind() returning the kind of the work item - inherited from
the activity - as an enumeration.
The NotificationTime() method has been changed to
FirstNotificationTime() and SecondNotificationTime() so that both times
can be queried.
The ManualExit() and ManualStart() accessor methods return false (the
boolean default) as long as the object is not complete.
The ManualExit() action method has been changed to Finish() to better
fit to the resulting state.
The CheckIn() method does no longer require a work item output
container. You must pass a pointer to your output container instead of
the container itself.
The CheckOut() method potentially returns all information about the
activity implementation known to MQ Workflow. You need to request
the common data only and pick up your input container; from there in
order to achieve the FlowMark Version 2 behavior.

v FmcjWorklist

The filter is returned as a string instead of a Filter object.
The IsDefault() method has been removed. There is only a worklist if
you or someone else created one.
The owner of the work items has become part of the filter specification;
there may be multiple owners.
The QueryWorkitems() method no longer allows for the specification of
an ad-hoc filter. A persistent filter can be specified when a worklist
definition is created. If you need to filter, either create the worklist with
the appropriate filter or use the
FmcjExecutionServive::QueryWorkitems() method which allows for
specifying an ad-hoc filter.

v CppStartApi and CppFinishApi are no longer needed and need to be
removed.

3. Optional specific steps

These are steps which you can choose to execute or not.
v FmcjItem::StartTime() If you used this method, it actually returned the

creation time of the item. If you want to keep this semantics, change the
method name to CreationTime(). StartTime returns the starting time.

Appendix B. FlowMark Version 2 compatibility mode 793

v Refresh If you used the refresh method to update relevant object values
after an action, this is not always necessary. The object is automatically
refreshed with the changed values as the result of calling an action
method. For example, calling FmcjWorkitem::Start() updates the
workitem’s state.

v FmcjPerson::CategoriesAuthorizedFor() This method only returns the
categories for which you are authorized with basic rights. If you want to
keep the FlowMark Version 2 behavior, then you have to add the
CategoriesAuthorizedForAsAdmin().

794 Programming Guide

Appendix C. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504–1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 1993, 1999 795

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

796 Programming Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp.1993, 1999. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States, or other countries, or both:
v AIX
v CICS
v C Set++
v FlowMark
v IBM
v IMS
v MQSeries
v OS/2

Appendix C. Notices 797

v OS/390
v VisualAge

Lotus Notes is a registered trademark, and Domino and Lotus Go Webserver
are trademarks of Lotus Development Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or
registered trademarks of Intel Corporation in the U.S. and other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Other company, product, and service names may be trademarks or service
marks of others.

798 Programming Guide

Glossary

This glossary defines important terms and
abbreviations used in this publication. If
you do not find the term you are looking
for, refer to the index or the IBM Dictionary
of Computing, New York: McGraw-Hill, 1994.

A

administration server. The MQ Workflow
component that performs administration
functions within an MQ Workflow system.
Functions include starting and stopping of the
MQ Workflow system, performing error
management, and participating in administrative
functions for a system group.

activity. One of the steps that make up a
process model. This can be a program activity,
process activity, or block activity.

activity information member. A predefined
data structure member associated with the
operating characteristics of an activity.

API. Application Programming Interface.

application programming interface. An
interface provided by the MQ Workflow
workflow manager that enables programs to
request services from the MQ Workflow
workflow manager. The services are provided
synchronously.

audit trail. A relational table in the database
that contains an entry for each major event
during execution of a process instance.

authorization. The attributes of a user’s staff
definition that determine the user’s level of
authority in MQ Workflow. The system
administrator is allowed to perform all functions.

B

bend point. A point at which a connector starts,
ends, or changes direction.

block activity. A composite activity that consists
of a group of activities, which can be connected
with control and data connectors. A block
activity is used to implement a Do-Until loop; all
activities within the block activity are processed
until the exit condition of the block activity
evaluates to true. See also composite activity.

Buildtime. An MQ Workflow component with a
graphical user interface for creating and
maintaining workflow models, administering
resources, and the system network definitions.

C

cardinality. (1) An attribute of a relationship
that describes the membership quantity. There
are four types of cardinality: One-to-one,
one-to-many, many-to-many, and many-to-one.
(2) The number of rows in a database table or
the number of different values in a column of a
database table.

child organization. An organization within the
hierarchy of administrative units of an enterprise
that has a parent organization. Each child
organization can have one parent organization
and several child organizations. The parent is
one level above in the hierarchy. Contrast with
parent organization.

cleanup server. The MQ Workflow component
that physically deletes information in the MQ
Workflow Runtime database, which had only
been deleted logically.

composite activity. An activity which is
composed of other activities. Composite activities
are block activities and bundle activities.

© Copyright IBM Corp. 1993, 1999 799

container API. An MQ Workflow API that
allows programs executing under the control of
MQ Workflow to obtain data from the input and
output container of the activity and to store data
in the output container of the activity.

control connector. Defines the potential flow of
control between two nodes in the process. The
actual flow of control is determined at run time
based on the truth value of the transition
conditions associated with the control connector.

coordinator. A predefined role that is
automatically assigned to the person designated
to coordinate a role.

D

data connector. Defines the flow of data
between containers.

data container. Storage for the input and output
data of an activity or process. See input container
and output container.

data mapping. Specifies, for a data connector,
which fields from the associated source container
are mapped to which fields in the associated
target container.

data structure. A named entity that consists of a
set of data structure members. Input and output
containers are defined by reference to a data
structure and adopt the layout of the referenced
data structure type.

data structure member. One of the variables of
which a data structure is composed.

default control connector. The graphical
representation of a standard control connector,
shown in the process diagram. Control flows
along this connector if no other control path is
valid.

domain. A set of MQ Workflow system groups
which have the same meta-model, share the
same staff information, and topology
information. Communication between the
components in the domain is via message
queuing.

dynamic staff assignment. A method of
assigning staff to an activity by specifying criteria
such as role, organization, or level. When an
activity is ready, the users who meet the selection
criteria receive the activity to be worked on. See
also level, organization, process administrator, and
role.

E

end activity. An activity that has no outgoing
control connector.

execution server. The MQ Workflow component
that performs the processing of process instances
at runtime.

exit condition. A logical expression that
specifies whether an activity is complete.

export. An MQ Workflow utility program for
retrieving information from the MQ Workflow
database and making it available in MQ
Workflow Definition Language (FDL) or HTML
format. Contrast with import.

F

fixed member. A predefined data structure
member that provides information about the
current activity. The value of a fixed member is
set by the MQ Workflow workflow manager.

(FDL) MQ Workflow Definition Language. The
language used to exchange MQ Workflow
information between MQ Workflow system
groups. The language is used by the import and
export function of MQ Workflow and contains
the workflow definitions for staff, programs, data
structures, and topology. This allows non-MQ
Workflow components to interact with MQ
Workflow. See also export and import.

fork activity. An activity that is the source of
multiple control connectors.

form. In Lotus Notes, a form controls how you
enter information into Lotus Notes and how that
information is displayed and printed.

800 Programming Guide

formula. In Lotus Notes, a mathematical
expression that is used, for example, to select
documents from a database or to calculate values
for display.

fully-qualified name. A qualified name that is
complete; that is, one that includes all names in
the hierarchical sequence above the structure
member to which the name refers, as well as the
name of the member itself.

I

import. An MQ Workflow utility program that
accepts information in the MQ Workflow
definition language (FDL) format and places it in
an MQ Workflow database. Contrast with export.

input container. Storage for data used as input
to an activity or process. See also source and data
mapping.

L

level. A number from 0 through 9 that is
assigned to each person in an MQ Workflow
database. The person who defines staff in
Buildtime can assign a meaning to these
numbers such as rank and experience. Level is
one of the criteria that can be used to
dynamically assign activities to people.

local user. Identifies a user during staff
resolution whose home server is in the same
system group as the originating process.

local subprocess. A subprocess that is processed
in the same MQ Workflow system group as the
originating process.

logical expression. An expression composed of
operators and operands that, when evaluated,
gives a result of true, false, or an integer.
(Nonzero integers are equivalent to false.) See
also exit condition and transition condition.

M

manager. A predefined role that is automatically
assigned to the person who is defined as head of
an organization.

message queuing. A communication technique
that uses asynchronous messages for
communication between software components.

N

navigation. Movement from a completed
activity to subsequent activities in a process. The
paths followed are determined by control
connectors, their associated transition conditions,
and by the start conditions of activities. See also
control connector, exit condition, transition condition,
and start condition.

node. (1) The generic name for activities within
a process diagram. (2) The operating system
image that hosts MQ Workflow systems.

notification. An MQ Workflow facility that can
notify a designated person when a process or
activity is not completed within the specified
time.

notification work item. A work item that
represents an activity or process notification.

O

organization. An administrative unit of an
enterprise. Organization is one of the criteria that
can be used to dynamically assign activities to
people. See child organization and parent
organization.

output container. Storage for data produced by
an activity or process for use by other activities
or for evaluation of conditions. See also sink.

P

parent organization. An organization within the
hierarchy of administrative units of an enterprise
that has one or more child organizations. A child

Glossary 801

is one level below its parent in the hierarchy.
Contrast with child child organization.

parent process. A process instance that contains
the process activity which started the process as
a subprocess.

pattern activity. A single and simple activity in
a bundle activity from which multiple instances,
called pattern activity instances, are created at
run time.

person (pl. people). A member of staff in an
enterprise who has been defined in the MQ
Workflow database.

predefined data structure member. A data
structure member predefined by MQ Workflow
and used for communication between user
applications and MQ Workflow Runtime.

process. Synonymously used for a process
model and a process instance. The actual
meaning is typically derived from the context.

process activity. An activity that is part of a
process model. When a process activity is
executed, an instance of the process model is
created and executed.

process administrator. A person who is the
administrator for a particular process instance.
The administrator is authorized to perform all
operations on a process instance. The
administrator is also the target for staff resolution
and notification.

process category. An attribute that a process
modeler can specify for a process model to limit
the set of users who are authorized to perform
functions on the appropriate process instances.

process definition. Synonym for process model.

process diagram. A graphical representation of
a process that shows the properties of a process
model.

process instance. An instance of a process to be
executed in MQ Workflow Runtime.

process instance list. A set of process instances
that are selected and sorted according to
user-defined criteria.

process instance monitor. An MQ Workflow
client component that shows the state of a
particular process instance graphically.

process management. The MQ Workflow
Runtime tasks associated with process instances.
These consist of creating, starting, suspending,
resuming, terminating, restarting, and deleting
process instances.

process model. A set of processes represented
in a process model. The processes are
represented in graphical form in the process
diagram. The process model contains the
definitions for staff, programs, and data
structures associated with the activities of the
process. After having translated the process
model into a process template, the process
template can be executed over and over again.
Workflow model and process definition are
synonyms.

process monitor API. An application
programming interface that allows applications
to implement the functions of a process instance
monitor.

process-relevant data. Data that is used to
control the sequence of activities in a process
instance.

process status. The status of a process instance.

process template. A fixed form of a process
model from which process instances can be
created. It is the translated form in MQ
Workflow Runtime. See also process instance.

process template list. A set of process templates
that have been selected and sorted according to
user-defined criteria.

program. A computer-based application that
serves as the implementation of a program
activity or as a support tool. Program activities
reference executable programs using the logical

802 Programming Guide

names associated with the programs in MQ
Workflow program registrations. See also program
registration.

program activity. An activity that is executed by
a registered program. Starting this activity
invokes the program. Contrast with process
activity.

program execution agent. The MQ Workflow
component that manages the implementations of
program activities, such as .EXE and .DLL files.

program registration. Registering a program in
MQ Workflow so that sufficient information is
available for managing the program when it is
executed by MQ Workflow.

R

role. A responsibility that is defined for staff
members. Role is one of the criteria that can be
used to dynamically assign activities to people.

S

scheduling server. The MQ Workflow
component that schedules actions based on time
events, such as resuming suspended work items,
or detecting overdue processes.

server. The servers that make up an MQ
Workflow system are called Execution Server,
Administration Server, Scheduling Server, and
Cleanup Server.

sink. The symbol that represents the output
container of a process or a block activity.

source. The symbol that represents the input
container of a process or a block activity.

specific resource assignment. A method of
assigning resources to processes or activities by
specifying their user IDs.

standard client. The MQ Workflow component,
which enables creation and control of process
instances, working with worklists and work
items, and manipulation of personal data of the
logged-on user.

start activity. An activity that has no incoming
control connector.

start condition. The condition that determines
whether an activity with incoming control
connectors can start after all of the incoming
control connectors are evaluated.

subprocess. A process instance that is started by
a process activity.

substitute. The person to whom an activity is
automatically transferred when the person to
whom the activity was originally assigned is
declared as absent.

support tool. A program that end users can
start from their worklists in the MQ Workflow
MQ Workflow Client to help complete an
activity.

symbolic reference. A reference to a specific
data item, the process name, or activity name in
the description text of activities or in the
command-line parameters of program
registrations. Symbolic references are expressed
as pairs of percent signs (%) that enclose the
fully-qualified name of a data item, or either of
the keywords _PROCESS or _ACTIVITY.

system. The smallest MQ Workflow unit within
an MQ Workflow domain. It consists of a set of
the MQ Workflow servers.

system group. A set of MQ Workflow systems
that share the same database.

system administrator. (1) A predefined role that
conveys all authorizations and that can be
assigned to exactly one person in an MQ
Workflow system. (2) The person at a computer
installation who designs, controls, and manages
the use of the computer system.

T

top-level process. A process instance that is not
a subprocess and is started from a user’s process
instance list or from an application program.

Glossary 803

transition condition. A logical expression
associated with a conditional control connector. If
specified, it must be true for control to flow
along the associated control connector. See also
control connector.

translate. The action that converts a process
model into a Runtime process template.

U

user ID. An alphanumeric string that uniquely
identifies an MQ Workflow user.

V

verify. The action that checks a process model
for completeness.

W

workflow. The sequence of activities performed
in accordance with the business processes of an
enterprise.

Workflow Management Coalition (WfMC). A
non-profit organization of vendors and users of
workflow management systems. The Coalition’s
mission is to promote workflow standards for
workflow management systems to allow
interoperability between different
implementations.

workflow model. Synonym for process model.

work item. Representation of work to be done
in the context of an activity in a process instance.

work item set of a user. All work items
assigned to a user.

worklist. A list of work items and notifications
assigned to a user and retrieved from a
workflow management system.

worklist view. List of work items selected from
a work item set of a user according to filter
criteria which are an attribute of a worklist. It
can be sorted according to sort criteria if
specified for this worklist.

804 Programming Guide

Bibliography

To order any of the following publications,
contact your IBM representative or IBM
branch office.

MQSeries Workflow publications

This section lists the publications included
in the MQSeries Workflow library.
v IBM MQSeries Workflow: List of Workstation

Server Processor Groups, GH12-6357, lists
the processor groups for MQ Workflow.

v IBM MQSeries Workflow: Concepts and
Architecture, GH12-6285, explains the basic
concepts of MQ Workflow. It also
describes the architecture of MQ
Workflow and how the components fit
together.

v IBM MQSeries Workflow: Getting Started
with Buildtime, SH12-6286, describes how
to use Buildtime of MQ Workflow.

v IBM MQSeries Workflow: Getting Started
with Runtime, SH12-6287, describes how
to get started with the MQ Workflow
Client.

v IBM MQSeries Workflow: Programming
Guide, SH12-6291, explains the application
programming interfaces (APIs).

v IBM MQSeries Workflow: Installation Guide,
SH12-6288, contains information and
procedures for installing and customizing
MQ Workflow.

v IBM MQSeries Workflow: Administration
Guide, SH12-6289, explains how to
administer an MQ Workflow system.

Related publications
v IBM MQSeries: Application Programming

Guide, SC33-0807.
v Frank Leymann, Dieter Roller,

″Workflow-based Applications″, IBM Systems

Journal 36, no. 1(1997): 102–123— You can
also refer to the Internet:
http://www.almaden.ibm.com/journal/
sj/361/leymann.html

v Workflow Handbook 1997 published in
association with WfMC. Edited by Peter
Lawrence.

© Copyright IBM Corp. 1993, 1999 805

806 Programming Guide

Index

A
accessor functions/methods

authorization 91
bool 91
char 116
date/time 92
default values 89
definition 89
enumeration 93
error handling 10
functions/methods 91
integer 122
IsNull 121
lifetime of values 91
long 115, 122, 124
multi-valued 118
object 123
object valued 119, 120
return codes 91
session requirements 91
string 116
vector 27

action messages/functions
definition 128
error handling 10

activity implementation
container 135, 155, 171
error handling 10
functions/methods 128
input container 281, 285
output container 283, 288, 290,

292
passthrough 326
pseudo code 135, 155, 171
remote passthrough 382
return code 136, 155, 171

activity instance
array methods 191
definition 261
error reason 218
monitor, process instance 261
notification 333
overview 187
subprocess instance,

retrieval 264
vector functions/methods 195

activity instance notification
array methods 194
definition 267

activity instance notification
(continued)

delete 393
description, set 403
monitor, process instance 395
name, set 406
object identifier 267
overview 191
process instance 399
refresh 401
retrieve 267
start tool 270
transfer 409

agent
functions/methods 195
overview 195

allocation
copy 83
declaration 80
explicit 141, 175
implicit 141, 175

API fields, Client for Lotus
Notes 753

APIENTRY 138
application

activity implementation 9, 135,
179

activity implementation,
ActiveX 155

activity implementation,
Java 171

client 9, 133, 179
client, ActiveX 153
client, Java 169
support tool 9, 135, 171, 179
support tool, ActiveX 155

array
ActiveX 32
activity instance notification 194
activity instances 191
container 201
container element 204
control connector instance 205
exceptions 32
execution serviceactivity instance

notification 214
Java 35
point 233
process instance list 238

array (continued)
process instance notification 240
process template list 245
query result 26
string 251
work item 256
worklistactivity instance

notification 258
assignment 82
asynchronous protocol 17
authorization

accessor functions/methods 91
definitions 75
explicit 75
implicit 75
process administrator 75
system administrator 75

B
basic functions/methods

definition 79
error handling 10
return codes 80

block instance monitor
definition 273
monitor, block activity 273
monitor, process instance 275
obtain 72
overview 197
ownership 73
refresh 278

bool definition 133

C
calling convention 138
check in 516
check out 518
code page 137
comparison 82
compatibility

C++ language 783, 788
C-language 783, 787
FlowMark 783
REXX language 783, 788
Visual Basic language 783, 788

compile
bool, string, vector 133
calling convention 138
compilers supported 139
FMC_APIENTRY 138

© Copyright IBM Corp. 1993, 1999 807

compile (continued)
headers 137
library files 137
platforms supported 139

complete
data view 84
function 84, 90

concepts
functions/methods 9
memory management 10, 141
object access 9
object management 175
result object 10
session 9

constructor
copy 83
declaration 80

container
activity implementation 128,

135, 155, 171
analyze structure 45
array 37
array index 38
array methods 201
basic data types 37
container element 38
data member 37
data structure 37
definition 37
element overview 201
element vector 205
example 38
exception 68
fixed data members 40
fully qualified name 37
input, process template 491
input, work item 530
input container 281, 285
leaf 38, 45
name in dot notation 37
output, work item 532
output container 283, 288, 290,

292
overview 198
predefined data members 39
read-only 281
read/write 281
return codes 68
structural member 38, 47
support tool 128, 135, 155, 171
type 48
value 38, 55, 64

container element
access 54
array 50, 53

container element (continued)
array methods 204
definition 38
exception 68
leaf 38, 50, 51
name 49
return codes 68
structural member 50, 52
type 38, 49
value 60

control connector instance
array methods 205
overview 205
vector 207

copy
constructor 83
function 83

D
data access

models 17
pull 17
push 17
view 84, 90

date/time
overview 207

deallocation
declaration 84
function 28, 84
vector 28

debug
activity implementation 14
authorization 15
client application 14
dynamic link library 15
enablement 14
executable 15
prerequisites 13
support tool 14
test database 14

default values 89
description

item 403
persistent list 418
process instance 453
process instance list 296
process template list 304
worklist 311

destructor
declaration 84

development kit
requirement 7

DLL options
overview 208

E
empty

function 85, 90
object 85

equal
comparison 82
function 82

error
ActiveX exceptions 13
handling 10
Java exceptions 10
overview 218
reason 218
result object 143
return codes 10

exception, Java 219
exceptions

ActiveX GUI controls 13
Java 10

EXE options
overview 215

execution data 19
overview 210

execution service
array methods 214
definition 295
log off 319
log on 321
overview 179, 212
passthrough 326
password, set 505
PEA startup 331
process instance list 296
process template list 303
query, activity instance

notification 333
query, item 341
query, process instance 356
query, process instance list 347
query, process instance

notification 349
query, process template 365
query, process template list 362
query, work item 370
query, worklist 376
remote passthrough 382
session, begin 321
session, end 319
session, passthrough 326
session, remote passthrough 382
settings, logged on user 507
worklist 310

ExmnChangePassword 699
ExmnCheckInWorkitem 723
ExmnCheckOutWorkitem 725

808 Programming Guide

ExmnCreateInstance 705
ExmnDeleteInstance 709
ExmnDeletePINotification 721
ExmnDeleteWINotification 741
ExmnDeleteWorkitem 727
ExmnGetSupportTools 729
ExmnIsLoggedOn 700
ExmnListDatabases 701
ExmnLogoff 702
ExmnLogon 702
ExmnManualExitWorkitem 730
ExmnReplicateFMUserSettings 743
ExmnReplicateInstances 744
ExmnReplicatePINotification 746
ExmnReplicateTemplates 747
ExmnReplicateWINotification 748
ExmnReplicateWorkitems 750
ExmnRestartInstance 711
ExmnRestartWorkitem 731
ExmnResumeInstance 712
ExmnStartInstance 714
ExmnStartSupportTool 733
ExmnStartWorkitem 734
ExmnSuspendInstance 716
ExmnTerminateInstance 718
ExmnTerminateWorkitem 736
ExmnTransferWorkitem 737
ExmnUpdateUserSettings 704
ExmnUpdateWorkitem 739
EXMP4API.LSS 683
EXMP4ARC.LSS 683
External service options

overview 216

F
filter

activity instance notification 333
definition 25
item 341
persistent list 413, 420
process instance 357
process instance list 296, 297
process instance notification 350
process template 365
process template list 303, 304
work item 370
worklist 310, 311

finish
work item 524
work item, force 526

FlowMark Version 2 783
FMC_APIENTRY 138
FmcjActivityInstance

functions/methods 187
ObtainInstanceMonitor() 261

FmcjActivityInstance (continued)
ObtainProcessInstanceMonitor() 261
SubProcessInstance() 264

FmcjActivityInstanceNotification
Delete() 393
functions/methods 191
ObtainProcessInstanceMonitor() 395
PersistentObject() 267
ProcessInstance() 399
Refresh() 401
SetDescription() 403
SetName() 406
StartTool() 270
Transfer() 409

FmcjBlockInstanceMonitor
functions/methods 197
ObtainBlockInstanceMonitor() 273
ObtainProcessInstanceMonitor() 275
Refresh() 278

FmcjContainer
container element 281
definition 281
functions/methods 198
InContainer() 281
leaves 281
OutContainer() 283
RemoteInContainer() 285
RemoteOutContainer() 288
SetOutContainer() 290
SetRemoteOutContainer() 292

FmcjContainerElement
functions/methods 201

FmcjControlConnectorInstance
functions/methods 205

FmcjDateAndTime
functions/methods 207

FmcjDllOptions
functions/methods 208

FmcjError
functions/methods 218

FmcjExecutionData
functions/methods 210

FmcjExecutionService
CreateProcessInstanceList() 296
CreateProcessTemplateList() 303
CreateWorklist() 310
definition 295
functions/methods 212
Logoff() 319
Logon() 321
Passthrough() 326
PEAStartUp() 331
Query

ActivityInstanceNotifications() 333
QueryItems() 341

FmcjExecutionService (continued)
QueryProcessInstanceLists() 347
QueryProcessInstanceNotifications() 349
QueryProcessInstances() 356
QueryProcessTemplateLists() 362
QueryProcessTemplates() 365
QueryWorkitems() 370
QueryWorklists() 376
Receive() 379
Refresh() 503
RemotePassthrough() 382
SetPassword() 505
TerminateReceive() 384
UserSettings() 507

FmcjExeOptions
functions/methods 215

FmcjExternalOptions
functions/methods 216

FmcjGlobal
functions/methods 220

FmcjImplementationData
functions/methods 221

FmcjInstanceMonitor
functions/methods 222
ObtainInstanceMonitor() 387
Refresh() 389

FmcjItem
Delete() 393
functions/methods 223
ObtainProcessInstanceMonitor() 395
ProcessInstance() 399
Refresh() 401
SetDesription() 403
SetName() 406

FmcjMessage
functions/methods 226

FmcjPEA
functions/methods 209

FmcjPersistentList
Delete() 413
functions/methods 226
Refresh() 416
SetDescription() 418
SetFilter() 420
SetSortCriteria() 423
SetThreshold() 425

FmcjPerson
functions/methods 228
Refresh() 429
SetAbsence() 431
SetSubstitute() 433

FmcjPoint
functions/methods 232

FmcjProcessInstance
Delete() 437

Index 809

FmcjProcessInstance (continued)
functions/methods 233
InContainer() 440
ObtainMonitor() 442
PersistentObject() 444
Refresh() 447
Restart() 449
Resume() 451
SetDescription() 453
SetName() 456
Start() 458
Suspend() 460
Terminate() 463
Transfer() 409

FmcjProcessInstanceList
Delete() 413
functions/methods 238
QueryProcessInstances() 467
Refresh() 416
SetDescription() 418
SetFilter() 420
SetSortCriteria() 423
SetThreshold() 425

FmcjProcessInstanceMonitor
functions/methods 239
ObtainBlockInstanceMonitor() 273
ObtainProcessInstanceMonitor() 275
Refresh() 278

FmcjProcessInstanceNotification
Delete() 393
functions/methods 239
ObtainProcessInstanceMonitor() 395
PersistentObject() 471
ProcessInstance() 399
Refresh() 401
SetDescription() 403
SetName() 406
Transfer() 409

FmcjProcessTemplate
CreateAndStartInstance() 475
CreateInstance() 480
Delete() 483
ExecuteProcessInstance() 486
functions/methods 241
InContainer() 491
PersistentObject() 493
Refresh() 495

FmcjProcessTemplateList
Delete() 413
functions/methods 244
QueryProcessTemplates() 499
Refresh() 416
SetDescription() 418
SetFilter() 420
SetSortCriteria() 423

FmcjProcessTemplateList (continued)
SetThreshold() 425

FmcjProgramData
functions/methods 246

FmcjReadOnlyContainer
functions/methods 247

FmcjReadWriteContainer
functions/methods 247

FmcjResult
functions/methods 249

FmcjService
definition 503
functions/methods 250
PEAShutDown() 329
Refresh() 503
SetPassword() 505
UserSettings() 507

FmcjStringVector
vector 251

FmcjSymbolLayout
functions/methods 252

FmcjWorkitem
CancelCheckOut() 514
CheckIn() 516
CheckOut() 518
Delete() 393
Finish() 524
ForceFinish() 526
ForceRestart() 528
functions/methods 253
InContainer() 530
ObtainProcessInstanceMonitor() 395
OutContainer() 532
PersistentObject() 534
ProcessInstance() 399
Refresh() 401
Restart() 536
SetDescription() 403
SetName() 406
Start() 538, 540
Terminate() 542
Transfer() 409

FmcjWorklist
Delete() 413
functions/methods 257
QueryActivityInstance

Notifications() 545
QueryItems() 548
QueryProcessInstance

Notifications() 551
QueryWorkitems() 554
Refresh() 416
SetDescription() 418
SetFilter() 420
SetSortCriteria() 423

FmcjWorklist (continued)
SetThreshold() 425

FMNotes example files 685
fully qualified name 37
function

accessor 89
action 128
activity implementation 128
basic 79
categories 79
client/server call 128
program execution

management 130
vector accessor 27

G
global services

overview 220

H
handle

object 9

I
implementation data

overview 221
input container

activity implementation 135,
155, 171

process instance 440
process template 491
support tool 135, 155, 171
work item 530

instance monitor
definition 387
monitor, block activity 387
monitor, process activity 387
overview 222
refresh 389

item
definition 393
delete 393
description, set 403
filter 341, 370
monitor, process instance 395
name 406
object identifier 393
overview 223
process instance, retrieval 399
properties 403
query 341
refresh 401
sort criteria 344, 373
state 511
threshold 344, 373
transfer 409

810 Programming Guide

item (continued)
vector 226
worklist 310

K
kind

function 86

L
locale 137
log off 319
logon

absence setting 323
default 322
present 321
session, execution server 321
session mode 321

M
memory

management 10, 141
ownership 10
thread 142, 175

message
overview 226

method
accessor 89
action 128
activity implementation 128
basic 79
categories 79
client/server call 128
program execution

management 130
migration

C++ programs 788
C-language programs 787
compatibility mode 787, 788
REXX programs 788
steps 789
Visual Basic programs 788

modules 3
monitor 71

ActiveX 387
block 273
obtain 71
process instance 261, 275, 395,

442

N
name

item 406
persistent list 413
process instance 456, 475, 480,

486
process instance list 296, 467

name (continued)
process template list 303, 304,

499
syntax 406, 456, 475, 480, 486
worklist 310, 545

notification
activity instance notification,

query 333, 545
filter 333, 350
item, query 341
process instance notification,

query 349, 551
sort criteria 337, 353
threshold 337, 353
worklist, create 310

O
object

access 9
management 175
memory management 10
optional property 90
persistent 141, 175
primary property 90
secondary property 90
transient 141, 175

object identifier
activity instance notification 267
item 393
process instance 437
process instance notification 471
process template 475
work item 511

output container
activity implementation 135,

155, 171
work item 532

owner
block instance monitor 73
persistent list 413
process instance list 296, 467
process instance monitor 73
process template list 303, 499
transfer, item 409
worklist 310, 545

P
passthrough 326, 382
password, set 505
persistent list

definition 25, 413
delete 413
description 296, 304, 311
description, set 418

persistent list (continued)
filter 296, 297, 303, 304, 310, 311,

413
filter, set 420
name 296, 303, 304, 310, 413
overview 181, 226
owner 296, 303, 310, 413
process instance 296
process template list 303
query 467, 499
query, process instance list 347
query, worklist 545, 548, 551,

554
refresh 416
sort criteria 296, 299, 304, 306,

310, 315, 413
sort criteria, set 423
threshold 296, 303, 310, 413
threshold, set 425
type 296, 303, 310, 413
worklist 310

person
absence 431
definition 429
overview 228
password, set 505
refresh 429
settings, logged on user 507
substitute 433

point
array methods 233
overview 232
vector 233

predefined data members 39
_ACTIVITY 40
_ACTIVITY_INFO.CoordinatorOfRole 42
_ACTIVITY_INFO.Duration 45
_ACTIVITY_INFO.Duration2 45
_ACTIVITY_INFO.LowerLevel 44
_ACTIVITY_INFO.MembersOfRoles 42
_ACTIVITY_INFO.Organization 43
_ACTIVITY_INFO.OrganizationType 43
_ACTIVITY_INFO.People 44
_ACTIVITY_INFO.PersonToNotify 45
_ACTIVITY_INFO.Priority 42
_ACTIVITY_INFO.UpperLevel 44
_PROCESS 40
_PROCESS_INFO.Duration 41
_PROCESS_INFO.Organization 41
_PROCESS_INFO.Role 41
_PROCESS_MODEL 40
_RC 40
activity information 39, 42
fixed 39, 40
process information 39, 40

Index 811

primary view
definition 90
IsComplete() 84

process administrator 75
process execution management

functions/methods
error handling 10
functions/methods 130
program execution agent 128

process instance
create 475, 480
definition 437
delete 437
description 453
execute 486
filter 357
input container 440
monitor 239, 442
name 437, 456, 475, 480, 486
notification 349
object identifier 437
overview 233
persistent list, create 296
query 356
refresh 447
restart 449
resume 451
retrieve 444
sort criteria 359
start 458, 475
state 437
suspend 460
terminate 463
threshold 359
vector 241

process instance list

array methods 238
creation 296
delete 413
description 296
description, set 418
filter 296, 297
filter, set 420
name 296, 467
overview 238
owner 296, 467
query 347, 467
refresh 416
sort criteria 296, 299
sort criteria, set 423
threshold 296
threshold, set 425
type 296, 467
vector 239

process instance monitor
monitor, block activity 273
monitor, process instance 275
overview 71, 239
ownership 73
refresh 278

process instance notification
array methods 240
definition 471
delete 393
description, set 403
monitor,process instance 395
name, set 406
object identifier 471
overview 239
process instance 399
refresh 401
retrieve 471
transfer 409
vector 240

process template
create process instance 475, 480
definition 475
delete 483
execute process instance 486
filter 365
input container 491
name 475
object identifier 475
overview 241
persistent list, create 303
query 365
refresh 495
retrieve 493
sort criteria 367
start process instance 475
threshold 367
valid-from date 475
vector 245

process template list
array methods 245
creation 303
delete 413
description 304
description, set 418
filter 303, 304
filter, set 420
name 303, 304, 499
overview 244
owner 303, 499
query 362, 499
refresh 416
sort criteria 304, 306
sort criteria, set 423
threshold 303

process template list (continued)
threshold, set 425
type 303, 499
vector 245

profile
defaults 295
user 295
workstation 295

program data
overview 246

program execution agent
overview 209
shutdown 329
start 331

programming
activity implementation 9, 179
client 9, 179
prerequisites 7
support tool 9, 179

property
optional 90
primary 90
secondary 90

protocol
asynchronous 17
supported 17
synchronous 17
unsolicited 17, 322

pull data 17
push

data, receive 379
enable 18
kind of information 18
receive 19
session mode 322
terminate receive 384

push data 17

Q
query

activity instance notification 333
array of objects 26
data 25
item 341
process instance 356
process instance list 347
process instance list, process

instances 467
process instance notification 349
process template list 362
process template list, process

templates 499
vector of objects 26
work item 370
worklist 376, 545
worklist, items 548

812 Programming Guide

query (continued)
worklist, process instance

notification 551
worklist, work item 554

R
read-only container

activity implementation, input
container 281, 285

definition 281
overview 247
work item, input container 530

read/write container
activity implementation, output

container 283, 288, 290, 292
definition 281
overview 247
process instance, input

container 440
process template, input

container 491
work item, output container 532

receive data 379
remote

terminate, subprocess 463
restart

work item 536
work item, force 528

result object
definition 143
error information 10
information contained 143
overview 249
thread 143

return code
access functions/methods 91
action functions/methods 10
activity implementation 136,

155, 171
basic functions/methods 80
error handling 10
list of 10

S
secondary view

definition 90
IsComplete() 84

service
execution service 295
overview 250
password, set 505
settings, logged on user 507

session
absence setting 323
accessor functions/methods 91

session (continued)
begin 295, 321, 326, 382
default 322
end 295, 319
establish 23
establish, execution server 295
log off 295, 319
log on 295, 321
mode 321
overview 23
passthrough 326
present 321
remote passthrough 382
requirement 9
unified logon 321

sort criteria
activity instance notification 337
definition 26
item 344, 373
persistent list 413, 423
process instance 359
process instance list 296, 299
process instance notification 353
process template 367
process template list 304, 306
work item 373
worklist 310, 315

start
process instance 458, 475
support tool 270
work item 538, 540

state
item 511
process instance 437
work item 511

string
array methods 251
vector 251

string definition 133
subprocess

resume 451
suspend 460
terminate 463

support tool
input container 128, 135, 155,

171
pseudo code 135, 155, 171

suspension
process instance 460

symbol layout
overview 252

synchronous protocol 17
syntax diagrams

how to read 781

syntax rules
description, item 403
description, persistent list 418
description, process instance 453
name, item 406
name, process instance 456, 475,

480, 486
system

execution server 295
system administrator 75
system group

execution server 295

T
thread 142, 175
threshold

activity instance
notifications 337

definition 26
items 344, 373
persistent list 413, 425
process instance list 296
process instance

notifications 353
process instances 359
process template list 303
process templates 367
worklist 310

transient object 9
type

persistent list 413
private, persistent list 413
private, process instance list 467
private, process template

list 499
private, worklist 545
process instance list 296, 467
process template list 303, 499
public, persistent list 413
public, process instance list 467
public, process template list 499
public, worklist 545
worklist 310, 545

U
unified logon 321
unsolicited information 17
user

default values, profile 295
password, set 505
settings 507

V
vector

accessor function 27

Index 813

vector (continued)
activity instance

notifications 194
activity instances 195
container elements 205
control connector instances 207
deallocate 28
definiiton 133
first element 28
items 226
next element 28
overview 251
points 233
process instance lists 239
process instance

notifications 240
process instances 241
process template lists 245
process templates 245
query result 26
return codes 27
size 29
work items 256
worklist 258

view
data view 90
IsComplete() 84
primary 90
secondary 90

W
work item

array methods 256
cancel checkout 514
check in 516
check out 518
definition 511
delete 393
description, set 403
error reason 218
finish 524
finish, force 526
input container 530
monitor, process instance 395
name, set 406
object identifier 511
output container 532
overview 253
persistent list, create 310
process instance 399
query 341, 370
query, worklist 554
refresh 401
restart 536
restart, force 528

work item (continued)
retrieve 534
start 538, 540
state 511
terminate 542
transfer 409
vector 256

workflow model 3

worklist

array methods 258
creation 310
definition 545
delete 413
description 311
description, set 418
filter 310, 311
filter, set 420
name 310, 545
overview 257
owner 310, 545
query 376, 548, 551, 554
query, activity instance

notification 545
refresh 416
sort criteria 310, 315
sort criteria, set 423
threshold 310
threshold, set 425
type 310, 545
vector 258

workstation profile

default values 295

814 Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries Workflow
Programming Guide
Version 3.2

Publication No. SH12-6291-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6291-03

SH12-6291-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Part Number: 22L4285
Program Number: 5697-FM3

Printed in Denmark by IBM Danmark A/S

SH12-6291-03

22
L4
28
5

Spine information:

IBM IBM MQSeries Workflow Programming Guide Version 3.2

