

MQSeries

An Introduction to Messaging and Queuing

GC33-0805-01

IBM

MQSeries

An Introduction to Messaging and Queuing

GC33-0805-01

 Note!

Before using this information and the products it supports, be sure to read the general information under “Notices” on page v.

| Second Edition (June 1995)

| This edition applies to the IBM MQSeries announcement of November 1994.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

At the back of this publication is a page titled “Sending your comments to IBM.” If you want to make comments, but the methods
described are not available to you, please address your comments to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 contents

 Contents

Notices . v
Trademarks . v

Introducing Messaging and Queuing . vii

Meeting the interoperability challenge . 1

How Messaging and Queuing works . 3

Some benefits of Messaging and Queuing 13

Some Messaging and Queuing examples . 19

Messages and message queues . 29

 Figures

1. Program A sends a message to program B via Queue 1 3
2. Two-way communication between programs is optional 4
3. Either program can be busy or unavailable 5
4. A one-to-many relationship between programs 6
5. A many-to-one relationship between programs 7
6. Three basic program-to-program relationships combined 8
7. There are no constraints on application structure 9
8. Queue managers are “middleware” . 11
9. A technique of interception . 16

10. Independently operating but related programs 20
11. One-way message flows for an output-only device 22
12. Addressing the “batch window” problem 23
13. Load balancing . 25

| 14. Syncpoint participation . 27

 Copyright IBM Corp. 1993, 1995 iii

 contents

iv An Introduction to Messaging and Queuing

 notices

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication
is not intended to state or imply that only IBM’s program or other product may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to

| these patents. You can send license inquiries, in writing, to the IBM Director of
| Licensing, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX CICS/MVS IBM OS/400
AIX/6000 CICS/VSE MQSeries RISC System/6000
AS/400 DB2 MVS/ESA System/390
CICS ES/9000 OS/2

| The following terms are trademarks of Digital Equipment Corporation:

| Digital VAX VMS

| The following terms are trademarks of Sun Microsystems, Inc.:

| Sun SunOS Solaris

The following terms are trademarks of other companies:

AT&T American Telephone and Telegraph Corporation
HP-UX Hewlett-Packard Company
SCO Santa Cruz Operation, Inc
Tandem Tandem Computers Incorporated
UNIX X/Open Company, Limited
UnixWare Novell, Inc
Windows Microsoft Corporation

 Copyright IBM Corp. 1993, 1995 v

 notices

vi An Introduction to Messaging and Queuing

 introducing Messaging and Queuing

Introducing Messaging and Queuing

| IBM MQSeries: a
family of products
for cross-network
communication

| This book introduces the IBM MQSeries products, and the programming
style—Messaging and Queuing—that underlies them. Briefly, the MQSeries
products enable programs to talk to each other across a network of unlike
components—processors, operating systems, subsystems, and communication
protocols—using a simple and consistent application programming interface.

Why “Messaging and Queuing”?

Messaging: because programs communicate by sending each other data in
messages rather than by calling each other directly.

Queuing: because the messages are placed on queues in storage, so that
programs can run independently of each other, at different speeds and times,
in different locations, and without having a logical connection between them.

What’s in this book 5 On pages 1 and 2 there’s a brief discussion of the nature of the problem
addressed by the MQSeries products.

5 On pages 3 through 12 you can find a description of how Messaging and
Queuing works.

5 Some of the key benefits of Messaging and Queuing are explored on
pages 13 through 17.

5 Examples of some of the ways in which the MQSeries products can be
used begin on page 19.

5 A small amount of technical detail about messages and message queues
is provided beginning on page 29.

Who this book is for This book is for anyone who is new to Messaging and Queuing.

 Copyright IBM Corp. 1993, 1995 vii

 introducing Messaging and Queuing

viii An Introduction to Messaging and Queuing

 meeting the interoperability challenge

Meeting the interoperability challenge

Business
applications are
made up of related
programs

It’s commonplace for a business application to be designed as a group of
related programs, each of which handles a single, well-defined component of
the whole. Often, the programs that make up a business application run in a

| single environment (such as the OS/2 environment) on single or multiple
processors. And sometimes they run in multiple, unlike environments.

Related programs
are distributed
around the network
to make better use
of resources...

Many businesses go a step further and distribute programs around the
data-processing network, rather than run them all on one processor. For

| example, a single application could be distributed between an AIX/6000
| environment on a RISC System/6000 processor and an OS/400 environment
| on an AS/400 processor.

There are many advantages in this approach, most of which are related to
making better use of resources:

5 It’s often a good idea to put a program near the data it’s processing, so
that network traffic is kept to a minimum. (“My database is in Washington,
so if I put my customer accounts program in Miami, my network is going
to be kept busy just moving data between the two.”)

5 Load balancing—rescheduling and relocating the workload to complete it
| as efficiently as possible—is another reason for distributing an application.

(“My London branch is running at capacity, but I’ve got an underused
machine in Rome. Why can’t I just move some of the work to Rome?”)

5 Sometimes “rightsizing”—moving an application from one large machine to
several smaller machines—is the trigger. (“We’ve installed a midrange
processor in each of our branches, so we need to share the workload
among them.”)

...but heterogeneous
networks make
distribution difficult

Of course, when you distribute a single application, whether to unlike
environments on a single processor or to different nodes of a network, you
must have a way of getting the parts of the application to communicate with
each other. This can be challenging enough when the components of the
network are from a single vendor, when there are no variations in the
operating systems you’re using, when programs are written in a single
language, and when there’s a single communication protocol. How much
more challenging the problem becomes when the network components are
from a variety of vendors, when different operating systems are in use at
different nodes of the network, when the programs you’re trying to connect are
written in different languages, and when multiple communication protocols are
being used. And yet, the interoperability challenge—the challenge of getting
programs to communicate across unlike environments—could be the one
facing you today.

 Copyright IBM Corp. 1993, 1995 1

 meeting the interoperability challenge

The composition of
a network is likely to
remain fluid and
unpredictable...

So how do networks become so diverse in the first place? Perhaps, for your
company, buying equipment and services from multiple vendors is simply a
matter of policy. Or perhaps you have incompatible computer systems after
changes to your business: if your company has merged with or acquired
another, if it has relocated or restructured in some way, the chances are that
you’ve gathered an assortment of network components in the process. Or
perhaps you need to connect your applications with those of your business
partners—your suppliers, your distributors, even your own customers—so that
business procedures can be integrated and data can be shared. As the
boundaries between businesses themselves are becoming less distinct, the
need to connect computer systems across geographic and organizational
boundaries is growing.

...and some resource
constraints are
appearing

As more and more businesses attempt to associate related programs from
unlike environments, some constraints are emerging. In particular:

5 The time-dependent relationship between two communicating programs
can impose artificial requirements: typically, one program is executed
while the other waits. Even though they take turns to run, both programs
have to be available to maintain the conversation. Increasingly,
businesses want to be able to run related programs independently of each
other.

5 As the use of distributed applications has mushroomed, so too has the
| number of communication sessions in a network. Businesses that use a
| lot of distribution techniques can find themselves having to support

thousands of dedicated network sessions. Such numbers may be
manageable while the network is problem-free, even though long startup
times are inevitable. But if the network fails, having a large number of
sessions can cause performance problems, simply because of the time it
can take to restart a part or the whole of the network.

In summary,
interoperability is a
challenge...

Most businesses have networks of diverse hardware and software. However,
related programs in different parts of a network must be able to communicate
in a way unaffected by variations in hardware, in operating systems, in
programming languages, and in communication protocols. Moreover,
businesses need to be able to run related programs independently of each
other. And all this needs to be achieved with an overall reduction in the
number of sessions on the network.

Complex though the problem may be, it needs a solution that works in the
same way—and equally well—between programs on a single processor (in
both like and unlike environments) and between programs at different nodes
of a varied network.

...that Messaging
and Queuing can
meet

| MQSeries products provide just such a solution.

2 An Introduction to Messaging and Queuing

 how Messaging and Queuing works

How Messaging and Queuing works

Programs
communicate by
putting messages on
message queues

Messaging and Queuing enables programs to communicate across a network,
without having a private, dedicated, logical connection to link them. And it
does this in a way that’s simple, elegant, and proven: programs communicate
by putting messages on message queues, and by taking messages from
message queues.

Figure 1. Program A sends a message to program B via Queue 1

In Figure 1, programs A and B could be running on the same processor in a
single environment, on the same processor in different environments, or on
different processors in different environments.

 Copyright IBM Corp. 1993, 1995 3

 how Messaging and Queuing works

Communication can
be one-way or
two-way

| Messages can be one-way (from program A to program B, for example), or
they can be reciprocated (a message from program A can cause program B to
issue a reply message, for example). However, two-way communication isn’t
compulsory: if no response is required, none is sent.

Figure 2. Two-way communication between programs is optional. Program A
communicates with program B via Queue 1. If program B needs to communicate with
program A (whether to reply to a message from program A or for some unrelated
reason), it puts a message on Queue 2.

Three
characteristics of
Messaging and
Queuing

Three key facts about Messaging and Queuing differentiate it from other
communication styles:

1) Communicating programs can run at different times.
2) There are no constraints on application structure.
3) Programs are insulated from network complexities.

Let’s examine each of these characteristics in more detail.

4 An Introduction to Messaging and Queuing

 how Messaging and Queuing works

1) Communicating
programs can run at
different times

Programs do not talk to each other directly across the network, but indirectly
by putting messages on message queues. And because there is no direct
contact between programs, they don’t have to be running at the same time.
The target program can be busy at the time a message is put on the
appropriate queue. The fact that a message has arrived doesn’t affect the
program’s current processing, nor does it mean that it has to deal with that
message immediately. In fact, the target program doesn’t have to be running
at all at the time the message is put on the queue. The target program can
start running three hours or three weeks later, if that suits the business need.

Either program can
be busy or
unavailable

Figure 3. Either program can be busy or unavailable. In this example, program B is
unavailable. The message intended for program B is retained in Queue 1 until the
program is available again. (Message queues exist independently of the programs that
use them, so both programs could be inactive at the same time; the message on its
way from one program to the other is nonetheless retained in Queue 1 until program B
is ready for it.)

 How Messaging and Queuing works 5

 how Messaging and Queuing works

2) There are no
constraints on
application structure

The one-to-one relationship between communicating programs shown so far,
and the message-flow patterns between those programs—from program A to
program B, and possibly from program B back to program A—are fairly simple.
But the MQSeries products can support application structures and
message-flow patterns that are much more complex than this.

There can be a
one-to-many
relationship between
programs...

Figure 4. A one-to-many relationship between programs. In this example, program A
distributes work among programs B, C, and D. Message flow could be two-way if
necessary, with any of programs B, C, and D sending messages to program A.

In Figure 4, programs B, C, and D could be:

5 Three copies of a single program that are running concurrently for
load-balancing purposes. That is, program A is generating work more
quickly than a single instance of the target program could process it.

5 Three different programs taking messages from a single queue. For
example, program B could be journaling while program C is processing:
two activities that are usually performed in sequence are overlapped to do
the work more quickly.

6 An Introduction to Messaging and Queuing

 how Messaging and Queuing works

... or a many-to-one
relationship

Figure 5. A many-to-one relationship between programs. Program E can collect work
from programs B, C, and D. Messages can flow from program E back to any of
programs B, C, and D if necessary.

In Figure 5, programs B, C, and D could be multiple clients of a single server,
program E. However, because there is no direct connection between the
server and the clients, the server is able to take messages from the queue
either on a first in, first out (FIFO) basis or according to their priority. Thus, if
program E (the server) knows that messages from program C, for example,
are high priority, it can elect to take those messages ahead of messages from
other programs. Without Messaging and Queuing, the client programs in a
traditional client-server relationship must be processed in strict rotation.

| Note: Not all products support priority ordering.

 How Messaging and Queuing works 7

 how Messaging and Queuing works

And the one-to-one,
one-to-many, and
many-to-one
relationships can be
combined...

The three basic program relationships—one-to-one, one-to-many, and
many-to-one—can be brought together in a single application structure, and
message flow between any two programs can be either one-way or two-way.

Figure 6. Three basic program-to-program relationships combined. This application
structure incorporates:

5 A one-to-one relationship (between programs E and F)
5 A one-to-many relationship (between programs A, B, C, and D)
5 A many-to-one relationship (between programs B, C, D, and E)

Message flow at any point can be one-way (as between A and B, for example) or
two-way (as between C and E, for example).

8 An Introduction to Messaging and Queuing

 how Messaging and Queuing works

... such that any
application structure
is possible

Any combination of these “building-block” relationships is possible, which
means that application structure has no constraints.

Figure 7. There are no constraints on application structure.

5 Information can be relayed from program to program (from A to B to C to D, or
from A to H to F to J to K).

5 Work can be distributed from one application to many (from B to E, G, and C).

5 Results can be collected by one program from many (by F from H and E).

5 Message flow can be one-way (A to B or F to J) or two-way (B to E or C to D).

Furthermore, the programs shown in Figure 7 could be anywhere in the
network: they could be running on a single processor, or dispersed throughout
a network of unlike components, possibly in different geographical locations
and time zones. MQSeries products make it possible for the programs of a
distributed application to communicate using the same technique, regardless
of their relative locations.

3) Programs are
insulated from
network
complexities

Program A communicates with program B by placing a message on program
B’s message queue. Program B receives the communication by taking the
message from the queue. All the activity associated with making this
happen—maintaining message queues, maintaining the relationships between
programs and queues, handling network restarts, and moving messages
around the network—is the province of the MQSeries products. Programs do
not talk directly to other programs, and they are not involved in the
complexities of cross-network communication.

 How Messaging and Queuing works 9

 how Messaging and Queuing works

An example of a
distributed
application shows
how

To illustrate how the MQSeries products do their work, suppose that you have
two programs, one to process customer orders, the other to bill the customer
for the goods. For organizational reasons, these programs aren’t running on

| the same computer. The Customer Orders program (CO) is running on a
| Tandem processor in a branch office in Chicago; the Customer Billing program
| (CB) is running on an ES/9000 mainframe at company headquarters in

Düsseldorf. At some point, information has to be exchanged between CO and
CB, so that a bill can be produced when goods are ordered. Using the
interface supplied by the MQSeries products, the programs CO and CB can
communicate at any time.

Queue managers
ensure that
messages reach
their target queues

Here’s how it works. Program CO tells program CB about a customer order
by putting a message on CB’s message queue (Queue 1). When CB takes
the message from Queue 1, it uses the information in the message to produce
a bill for the goods. CB might also want to send a response to CO (just an
acknowledgement, perhaps, or confirmation that the goods have been charged
for). CB would do this by putting a message on CO’s message queue (Queue
2).

The heavy-duty work—moving messages from CO to Queue 1, and from CB
to Queue 2—is managed by some “middleware”, the queue managers.

Programs use the
Message Queue
Interface (MQI)

A program talks directly to its local queue manager (the one on the same
processor as the program itself) using the Message Queue Interface (MQI).
The MQI is a set of calls that programs use to ask for the services of a queue
manager. There are only two basic operations: put a message on a queue
(using the MQPUT call), and take a message from a queue (using the
MQGET call).

| The MQI and the queue managers are part of MQSeries.

| There is a queue
manager on each
processor in the
network

As you can see in Figure 8, there’s a queue manager on each of the two
processors on which communicating programs are running. In our example,

| the queue manager on the Tandem processor could be provided by the
| MQSeries for Tandem Guardian product, and that on the ES/9000 processor
| by the MQSeries for MVS/ESA product. When communication across a

network is required, the queue managers at the different nodes in the network
communicate with each other. When communication between programs at a
single node is required, it can be handled by a single queue manager. The
programs themselves operate in ignorance of the network, and bear no part of
the networking burden.

10 An Introduction to Messaging and Queuing

 how Messaging and Queuing works

Messaging and
Queuing shields
programs from
network
complexities

Put message
on Queue1

Put message
on Queue2

Get message
from Queue1

Get message
from Queue2

Queue
Manager

Queue
Manager

Figure 8. Queue managers are “middleware”. Programs CO and CB invoke the
services of queue managers, via the MQI, to move messages across the network to
their target queues.

Messaging and
Queuing is an
established
technique...

You might be surprised to learn that Messaging and Queuing is not new. In
fact, it’s a mature technique that’s been used in a number of IBM and non-IBM
products over many years. What is new about the MQSeries products is that,
for the first time, a simple messaging interface (the MQI) is generally available
to application programmers on the key industry platforms.

 How Messaging and Queuing works 11

 how Messaging and Queuing works

...that is central to
the IBM Networking
Blueprint...

The IBM Networking Blueprint, published in March 1992, identifies three key
communication styles. These are:

5 Message Queue Interface (MQI)
5 Common Program Interface for Communications (CPI-C)
5 Remote Procedure Call (RPC)

MQI, CPI-C, and RPC are companion interfaces: you can use any
combination of the three styles between communicating programs.

...and is supported
on major platforms

There are already many products under the MQSeries “umbrella”. In
| particular, Messaging and Queuing is implemented on the following platforms:

| 5 AT&T GIS UNIX
| 5 Digital VMS VAX
| 5 HP-UX
| 5 Tandem Guardian (C30)
| 5 Tandem Guardian Himalaya (D20)
| 5 SunOS
| 5 Sun Solaris
| 5 SCO UNIX
| 5 UnixWare
| 5 IBM AS/400 (OS/400)
| 5 IBM Operating System/2 (OS/2)
| 5 IBM RISC System/6000 (AIX)
| 5 IBM S/370 and S/390 environments including:
| – MVS/ESA
| – CICS/MVS
| – CICS/VSE
| – IMS
| – TSO/E
| – Batch
| 5 Client environment on AIX
| 5 Client environments on personal computer systems (OS/2, DOS, or
| Windows)

As you can see from this list, Messaging and Queuing isn’t aimed solely at
international corporations with high-end processors and the latest in
transaction-processing systems. On the contrary, Messaging and Queuing is
relevant to any business, large or small, where related programs must be able
to communicate across a network, regardless of environmental variations.

12 An Introduction to Messaging and Queuing

 some benefits of Messaging and Queuing

Some benefits of Messaging and Queuing

Benefits derive from
the key features:

Three key features of the Messaging and Queuing style of programming are:

1) Communicating programs can run at different times.
2) There are no constraints on application structure.
3) Programs are insulated from network complexities.

From these derive all the benefits of Messaging and Queuing. Some of those
benefits are explored in the following pages.

Programmers can
concentrate on
business
programming

Programmers who don’t have to write communication code can concentrate on
the design and coding of business applications. Given that the most
experienced programmers in any enterprise usually take on the most difficult
assignments (and most would classify communication code as a “difficult
assignment”), the MQSeries products allow you to redirect the energies of
some of your best programmers.

The MQI is easy to
use

Designing and writing application code to handle cross-network
communication is one of the most difficult parts of the application
programmer’s job. By contrast, the MQI is simple to master and easy to use.
There are just two basic calls—MQPUT and MQGET—that programs use to
put messages on queues and take them from queues. The remaining calls
(fewer than 10) are used infrequently or are optional. For example, there is
one call (MQCONN) to set up contact with a queue manager, and another
(MQDISC) to terminate contact; there are calls to open a message queue
(MQOPEN) and to close a message queue (MQCLOSE); and there is one call
for requesting information about a message queue (MQINQ).

Finally, not only is the MQI easy to use, but it’s consistent from one
environment to another.

Constraints on
program-to-program
relationships are
removed Constraints
on program-to-
program
relationships are
removed

One of the characteristics of existing program-to-program communication
techniques is that, in any pair or group of communicating programs, only one
program can be processing at any one time. This fact can put constraints on
the way you structure a distributed application.

By contrast, because Messaging and Queuing programs operate
independently of each other, this constraint on the design of an application no
longer applies. All the programs that make up a distributed application (and
there can be any number) can run concurrently. Moreover, you can change
the structure of a distributed application by adding or removing programs, and
you can change the sequence in which those programs operate, without
dismantling the whole application. The MQSeries products enable the
relationships between programs to be more adaptable than ever before.

 Copyright IBM Corp. 1993, 1995 13

 some benefits of Messaging and Queuing

Programs can be
scheduled to make
best use of
resources

Programs that communicate via the MQSeries products do not have a
time-dependent relationship. That is, the various programs that make up a
distributed application can run at different speeds and even at different times if
necessary. Programs are able to operate independently because, if the
application logic allows, they don’t have to wait for responses from other
programs before they can continue. This frees you to design and schedule
programs to suit the logic of the work they are doing, rather than the logic of
the communication method. Communicating applications can therefore run
concurrently, or with a partial overlap, or with no overlap at all. This brings all
the potential benefits of distributed processing within reach of application
developers.

To show how the MQSeries products can improve resource usage, let’s take a
simple example: one program that generates 20 different questions, and a
second program that answers those questions.

5 The two programs could alternate their work, so that one question is
answered before the next one is asked. This is the likely approach if the
logic of the questions dictates that one question be answered before the
next one can be formulated.

5 If the relationship between the questions allows, the two programs could
run at the same time: all 20 questions could be asked without waiting for
the answers. This is one way of removing the processing “slack” that
invariably occurs between communicating programs.

5 For even more dramatic reductions in total processing time, the questions
could be answered by 20 different programs, or by 20 instances of the
same program, running at the same time. In other words, the processing
of the 20 questions can be overlapped, so that they are all answered in
the time it takes to ask and answer the “worst-case” question.

Fewer network
sessions are needed

When programs communicate via the MQSeries products, private, dedicated,
network sessions are not needed. Instead, sessions are between queue
managers. As a consequence, the network traffic is concentrated on fewer
sessions, and the total number of sessions in a network can be greatly
reduced. This reduction in the number of sessions makes the network both
easier to manage and faster to restart.

Programs are less
vulnerable to
network failures

Messaging and Queuing programs communicate by putting messages on
queues and taking messages from queues. MQSeries products on each
processor in a network are responsible for ensuring that a message reaches
its target queue, regardless of the whereabouts of that queue. Therefore,
cross-network communication sessions are established between queue
managers rather than between individual programs. If a link between
processors fails, it’s the job of the queue managers to recover from the failure.
Programs on the affected processors are not brought to a halt by such an
event. In fact, they need not even be aware that it has happened.

14 An Introduction to Messaging and Queuing

 some benefits of Messaging and Queuing

Better use can be
made of all network
resources

In most networks, resources are not used as fully as they could be. A session
is established, but is used for only a small percentage of the time; processors
are available, but their workload has troughs as well as peaks; programs are
installed, but are often waiting for responses from other programs before they
can continue. Networks that use MQSeries products have fewer sessions,
and use them more fully. Programs are able to run their natural course
because they aren’t forced to wait for responses from other programs, and
can be scheduled to make best use of processor time.

Code is easier to
move and reuse

Because they are independent of communication protocols, and because they
use the same interface (the MQI) in all environments, Messaging and Queuing
programs can be moved around the network from one node to another, or
duplicated around the network, more readily than programs that contain
environment-specific communication code.

Business change is
more readily
accommodated

Programs that use Messaging and Queuing have clearly defined inputs and
outputs (messages) and a standard interface to other programs that does not
vary as the programs themselves are changed and moved. Consequently,
programs are easier to update than they would otherwise be, and so can be
adapted more readily to meet new business requirements. Thus, even though
a change to a business process may be necessary, you can be confident that
its impact on the relevant application can be contained, and that cross-network
communication will continue to work.

Message delivery
can be assured

The data in a message can be as valuable as any other business asset. For
example, the loss of a message that carries a funds transfer could mean
financial losses for your business and your customers. For this reason, you
can take the precaution of declaring valuable messages as persistent. A
persistent message is written to nonvolatile storage, from where it can be
reinstated after a system restart.

| As well as assuring you that messages will be delivered, MQSeries products
| also ensure that the messages will be delivered once only, thus protecting, for
| example, against a possible double transfer if a message is carrying a funds
| transfer notice.

| Note: Not all MQSeries products support non-persistent messages.

 Some benefits of Messaging and Queuing 15

 some benefits of Messaging and Queuing

Changes to
resources can be
coordinated

There are times when two or three data updates must all work, or they must
all be undone (backed out). If, for example, you’re transferring money from
one account to another, you need to ensure that an amount is not credited to
one account unless it’s also debited from the other account. The programs
carrying out this task must therefore be coordinated: each must be able to
undo any changes if the other is not successful, so that the job isn’t left half
done.

In environments that have a syncpoint manager, the MQSeries products allow
programs to defer commitment of changes made at a single node of the
network until all parties can commit. This is known as syncpoint processing, a
concept you’ll be familiar with if you are a CICS, IMS, or DB2 user.

A gradual transition
is possible

The good news is that you don’t have to get new equipment or throw away
your existing applications. You can adopt the Messaging and Queuing style of
programming gradually, and at a pace that suits your business. Here are four
approaches to implementing the MQSeries products, beginning with the
approach that has the least impact on existing environments:

1) You can use a technique of interception to introduce Messaging and
Queuing to well-established code that you don’t want to alter (for example,
if the program is not modular and the logic is too involved, or you don’t
have the source of the program at all). Suppose, in the 20 questions
application mentioned earlier, there is a single program (for which you
don’t have the source code) that answers all 20 questions. Question 12
changes, so you need to update the code that answers it: you write a new
Messaging and Queuing program to process question 12 only, and you
alter the program that generates the questions so that it redirects question
12, using the MQI, to the new program. Thereafter, question 12 does not
reach the original program. You can repeat this technique as required for
each of the questions until the original program is no longer called.

Existing
Program

20
Questions

New
Program

1 - 11
13 - 20

12

Figure 9. A technique of interception. New Messaging and Queuing programs can
take over the functions of existing programs gradually.

16 An Introduction to Messaging and Queuing

 some benefits of Messaging and Queuing

2) To alter or extend the function of an existing application, you can code
Messaging and Queuing programs that coexist with existing programs.
The old and the new might need to be link-edited, but no other alterations
need to be made.

3) You can make selective alterations to a program by replacing existing,
communication-related calls with MQI calls. This approach might also
require changes to the overall logic of the application, because related
programs will now be able to run independently of each other.

4) You can design and write completely new business applications that make
full use of the benefits of the MQSeries products.

 Some benefits of Messaging and Queuing 17

 some benefits of Messaging and Queuing

18 An Introduction to Messaging and Queuing

 some Messaging and Queuing examples

Some Messaging and Queuing examples

Messaging and
Queuing in the
“real” world

Here are some examples of the ways in which the MQSeries products can be
used in the “real” world. The examples are taken from industries that are
widely understood; even if you aren’t working in these industries yourselves,
you are almost certainly familiar with their workings. From the chosen
examples, you might be tempted to conclude that Messaging and Queuing is
only for large enterprises with top-of-the-range processors. Messaging and
Queuing can be applied in a vast range of business environments, and is
useful in any enterprise, large or small, where there is a need to get programs
to talk to each other.

In each of the examples, key points about Messaging and Queuing have been
highlighted. However, the following are common to all potential uses of the
MQSeries products:

5 No Messaging and Queuing program includes communication code.

5 Network sessions are between MQSeries products at each node of the
network, not between the programs themselves. As a result, the network
is likely to carry fewer sessions.

5 The relative locations of two communicating programs are unimportant.

5 The MQSeries products accommodate dynamically changing and
unpredictable message flows as easily as they accommodate unchanging
and predictable message flows.

5 Both high volumes of message traffic and high performance can be
sustained.

 Copyright IBM Corp. 1993, 1995 19

 some Messaging and Queuing examples

An example from the
insurance business

Independently operating but related programs

Insurance agents throughout the country ask for insurance quotations using an
online, menu-driven system. This system is provided by a traditional
client-server application, with client programs (the insurance agents) sending
requests for quotations to a central server program. The server does some
calculations using data from a central insurance database, then sends a
quotation to the requesting agent. Using Messaging and Queuing, the client
programs put request messages on a single queue, from which the server
program takes them.

Figure 10. Independently operating but related programs. A client-server relationship,
with client and server programs running independently of each other.

20 An Introduction to Messaging and Queuing

 some Messaging and Queuing examples

...and some key
points

The primary advantages of using Messaging and Queuing in this example are:

5 The client programs and the server can all run at the same time; the
server doesn’t need to communicate with the clients in turn, nor is any
program suspended simply because another program is running.

5 There can be any number of client programs, and the number can vary
dynamically under the control of a locally written “monitor program”. For
example, insurance agents could request quotations using portable
personal computers as they travel around the country. A client program
could be running while an agent is interacting with it, but could be stopped
by the monitor program whenever interaction ceases. (It’s generally true
of the MQSeries products that available resources are used fully, and that
resources that are not being used do not need to be available.)

5 The network is almost certain to be heterogeneous, because it is linking
multiple, independent insurance agencies. Each agency has selected its
hardware and software, and written its application programs, in isolation
from the other agencies in this network. However, provided both server
and clients use the MQI to communicate, differences in processors, in
operating environments, and in the programs themselves can be
disregarded.

5 If any of the links becomes unavailable, client and server programs can
continue working. This is especially important in the case of the server,
which can continue to process messages as they arrive from other clients.
No special programming of the server program is necessary to make this
possible.

An example from
manufacturing
industry

Output-only devices

In many businesses, output-only devices are constantly updated with
instructions or information. Examples include:

 5 Printing devices

5 Displays of information, such as stock-exchange prices or flight arrivals
and departures

5 Factory-floor robotics, where a steady stream of information controls the
operation of machinery

Ideally, such information flows would be one-way because, in general, no
response is required from the target program. In most program-to-program
communication models, however, communication has to be two-way because
the source program is suspended until the target program replies. Using
Messaging and Queuing, the requirement for a one-way information flow can
be met.

 Some Messaging and Queuing examples 21

 some Messaging and Queuing examples

Figure 11. One-way message flows for an output-only device. The Robotics A
program is in control of an automated manufacturing process. It puts messages on
Queue 1 for the Robotics B program, which directs some welding machinery, and on
Queue 2 for the Robotics C program, which controls a paint sprayer.

...and some key
points

Some of the main advantages of Messaging and Queuing for this type of
application are:

5 The source program is not suspended between the transmission of one
instruction message and the next.

5 The predictable, one-way message flow characteristic of applications such
as these yields excellent performance.

5 Source and target programs can run at the same time, but at different
speeds.

22 An Introduction to Messaging and Queuing

 some Messaging and Queuing examples

An example from the
retail industry

A solution to the classic “batch window” problem

A department store writes its sales figures to a file throughout the day’s
trading. Overnight, a report of the day’s sales is produced using this file of
data as input. The report must be on the Sales Manager’s desk before the
next day’s trading begins, which presents the store’s data-processing
department with two challenges: the first is that the amount of time available
for producing the report is limited to the “window” of time between the end of
business on one day and the start of business on the next; the second is that
the actual start and finish times for this activity are fixed.

Instead of operating in sequence and communicating via a file, the two
programs could run independently of each other and communicate using
Messaging and Queuing.

Figure 12. Addressing the “batch window” problem. The recording and reporting of
sales figures need no longer be strictly sequential processes, but can be overlapped.

 Some Messaging and Queuing examples 23

 some Messaging and Queuing examples

...and some key
points

The particular advantages of Messaging and Queuing in this example are:

5 The two programs can operate independently of each other:

– They can run in sequence.

– They can start running at the same time.

– The reporting program can overlap its processing with that of the
sales-recording program.

– The reporting program can run intermittently throughout the day to use
spare processing power.

Greater flexibility in the scheduling of the programs increases the available
time in which the report can be produced, allowing the business to use its
processors more efficiently and improving the chances of meeting the
deadline for the sales report. The business is no longer constrained by
the time window between the end of one day’s processing and the start of
the next.

In the banking, securities, and other industries, this is known as the “batch
window” problem because data accumulated (batched) throughout the day
must be processed, in the background, between the close of business on
one day and the start of business on the next. The Messaging and
Queuing solution to the batch window problem is of special interest to the
securities business, where the batch window during which a day’s
transactions can be processed is limited (by legal requirements) to the
time between the close of trading and the close of business (typically 90
minutes) on any one day.

5 Messages carrying sales data are written to a message queue, which is
owned by an MQSeries product. The programs themselves do not need
to be involved in file control, nor do they need to be concerned with the
recoverability of the data. Message delivery can be assured1, and
messages are delivered once only.

5 In this example, the function of the message queue is similar to that of a
file. However, all the data doesn’t have to be accumulated before it can
be processed, because a message queue can be read from while it is
being written to: the first message on the queue is instantly available for
processing. And, if the processing of the two programs is overlapped,
less storage in total is likely to be required for the sales data.

5 The overhead of converting from the existing approach, where programs
communicate via an intermediate file, to the Messaging and Queuing style,
where programs communicate by putting messages on a message queue,
is small.

5 The system is extendable: as new stores are opened or acquired, the
same sales-recording techniques can be used. Equally, the store’s
suppliers could be linked to the store’s network, so that inventory control
could benefit from the ready availability of the data.

1 Assured delivery means that, once the message has been written to nonvolatile storage, it is retained until successfully delivered,
subject to the reliability of the nonvolatile storage.

24 An Introduction to Messaging and Queuing

 some Messaging and Queuing examples

An example from the
travel industry

Load balancing

This example is taken from the airline business, where seat reservations are
made by an airline in response to requests from multiple travel agencies. In
data-processing terms, this is a traditional client-server relationship, with
multiple clients (the travel agencies) requesting flight bookings from a single
server (the airline). The server program takes booking requests from a single
queue of messages (either as they arrive on the queue or according to their
priority), and updates a database of seat reservations as appropriate. The
server also sends a reply message to the relevant client program. The reply
could inform the client that the requested seat has been reserved or, if the
seat is unavailable, it could include some suggestions for alternative seats or
flights.

When the number of requests on the queue reaches a particular level, a
“monitor” program could start additional instances of the server program.

Figure 13. Load balancing. Large and fluctuating volumes of message traffic can be
processed by multiple instances of a server program.

 Some Messaging and Queuing examples 25

 some Messaging and Queuing examples

...and some key
points

The advantages of Messaging and Queuing in this example are:

5 Multiple instances of the server program can be started during peak-load
periods, and those program instances can be stopped as the volume of
requests subsides. In this way, the booking system can offer its
customers a consistently high level of service.

5 Clients and server can run at the same time: there is no question of any
client program being suspended while the server is processing a seat
reservation. Furthermore, the client programs can all send messages to
the server’s message queue at any time, regardless of whether the server
program is busy.

5 Requests can be serviced as they arrive on the server’s message queue,
or according to priority. For example, a particular travel agent, or a
particular category of message from any client program, could be
accorded a higher priority than some others by the server program.

| Note: Not all products support priority ordering.

5 If the connection between one of the client nodes and the server node is
unavailable, the remaining client-server relationships are not affected.

5 The client programs do not have to be designed and coded in the same
way, nor do they have to run in identical environments.

26 An Introduction to Messaging and Queuing

 some Messaging and Queuing examples

An example from the
banking world

Synchronization points in transaction processing

| Increasing use is being made of electronic point of sale (EPOS) terminals in
| shops, at service stations, and elsewhere. A transaction is recorded at the
| EPOS and stored until it can be sent to a handling agency, usually a bank.
| The bank must ensure that both halves of the transaction—the subtraction of
| money from the customer’s account and its addition to the retailer’s—occur.

In environments that have a syncpoint manager (a “neutral” program that
synchronizes updates to resources), related changes to multiple resources can
be coordinated: either all related changes occur, or they are all undone.

Messaging and Queuing programs running on a single processor can
participate fully in syncpoint control, even though they may be running
asynchronously and communicating using the MQI: changes to the contents of
message queues can be coordinated with changes to other resources.

Credit

Debit

| Figure 14. Syncpoint participation. A customer sale is recorded at an EPOS terminal
| and sent to to the sales message queue. The bank application gets a message from
| the sales queue and instructs the Debit program to remove funds from a customer
| account. The Credit program places the funds into the shop’s account. Updates to the
| resources constitute a single unit of work.

 Some Messaging and Queuing examples 27

 some Messaging and Queuing examples

...and some key
points

Some points to note about the role of Messaging and Queuing in syncpoint
control:

5 Changes to a message queue “resource” are treated in the same way as
| changes to other resources. That is, MQGET or MQPUT calls issued
| under syncpoint control are not completed until the current unit of work
| ends successfully. If the unit of work cannot be committed, all resources
| return to their state before the unit of work was started.

5 Messages can be defined as persistent, so that they can be reinstated if
the queue manager is restarted. (Syncpointing, by contrast, insures
against failure or restart of the program or any other resource manager
participating in the unit of work.)

5 Queue managers do not participate in syncpoint control across multiple
nodes of a network. This avoids the risk of many different data resources,
possibly distributed around the world, all being “locked” until the current
unit of work ends: if one of the resources couldn’t be updated for some
reason, or if part of the network were to be unavailable, all the other
resources involved in that unit of work would be tied up until the problem
could be resolved. So that this doesn’t happen, queue managers
participate in syncpoint control within a single node only.

28 An Introduction to Messaging and Queuing

 messages...

Messages and message queues

Some detail about
messages and
message queues

Finally, for the benefit of the application programmers and designers among
you, let’s take a look at two of the key players in the MQSeries
products—messages and message queues. For a more detailed explanation
of the Messaging and Queuing concepts, see the MQSeries Message Queue
Interface Technical Reference, SC33-0850.

Messages... A message is mainly a string of bits and bytes (data such as account
numbers, account balances, booking requests, names and addresses, images
of documents — anything at all, in fact) that one program wants to send to
another. This data is called the application data. Of course, a message
needs to include other information, such as its destination and possibly a

| return address. This type of data is called the message descriptor.

| ...are defined by
programs

The program sending the message defines the application data and supplies
it. Such data can include character strings, bit strings, binary integers,
packed-decimal integers, floating-point numbers—whatever you want,
basically.

...are of four types There are four types of message:

5 A request message is used by one program to ask another program for
something (usually data). A request message needs a reply.

5 A reply message is used in response to a request message.

5 A one-way message, as you would expect, doesn’t need a reply, though it
can carry data.

5 A report message is used when something unexpected occurs. For
example, if the data in a reply message is not usable, the receiving
program might issue a report message.

Messages are labeled in this way so that the target program can know what’s
expected of it, without having to examine the message in detail. Queue
managers have no interest in the message type.

 Copyright IBM Corp. 1993, 1995 29

 messages...

...can have two
identifiers

Every message has a message identifier. This is a unique, 24-byte string
assigned by the queue manager. A message can also have a correlation
identifier. The correlation identifier, also a 24-byte string, is a field that you
can use for any purpose, but you’re recommended to use it if your program
needs to identify related messages. The correlation identifier is assigned by
the program. It could contain a customer account number, for example, or the
identifier of the initial message in a sequence, or just a random selection of
characters that means something to the program. Thus, the correlation
identifier is constant in a group of related messages, but the message
identifier is different for each message.

...can be retrieved
out-of-order

Although this is a standard queuing system (when a message arrives, it goes
to the back of the queue), you can ask for a message with a particular
identifier to be given to you next rather than the message that happens to be
next in the queue.

...can be defined as
persistent

Messages that must be delivered, come what may, can be defined as
persistent. Persistent messages are logged so that they can be reinstated
after a system restart. However, there is an overhead in logging messages,
so this classification should be reserved for valuable messages only. Other
(nonpersistent) messages are fast moving and, by definition, of little or no
value. If they go astray, the effect of their loss is usually not felt at all, or is
quickly made good. For example, messages that update a screen of
information at 20-second intervals might come into this category, because the
loss of one such message would be made good 20 seconds later.

| Note: Not all MQSeries products support non-persistent messages.

...can include a
format name

The sender of a message tells the receiver how to interpret the message data
by supplying the name of a data structure (an 8-byte format name) in the
message’s control information. Obviously, the format must be one that’s
understood by both parties. For example, if the message is requesting
information about a customer, the format name might be “QCUST”, while the
format name in the corresponding reply message might be “CUSTINFO”.
Neither the format nor its name is imposed by the queue manager.

...can include a
return address

The sender of a request message must specify the name of the queue to
which the reply should be sent. This is called the reply-to queue. The
reply-to queue is the key to a flexible application structure, because it allows
you to choose where the reply goes: it isn’t necessarily going to be processed
by the sender of the original request.

30 An Introduction to Messaging and Queuing

 messages...

...can be copied from
a queue

A message doesn’t have to be removed from the queue when you ask for it.
You can ask for a copy of the message, so that the original stays on the
queue. You might want to do this if two programs need to do something with
a single message. (At some point, one of them should remove it from the
queue to stop the queue filling up with old messages.)

...never include the
name of the target
program

Programs never interact directly with other programs. The name of the
program that is to process a message is never recorded in that message.

Message queues... At its simplest, a message queue is an area of storage set aside by the queue
manager to hold messages on their way from one program to another. By
default, it works like a physical queue: first in is first out. Whether the queue
is in main store only, or both in main store and on DASD, is for your
system-support personnel to decide. Persistent messages go to queues on
DASD.

...can be local or
remote

A program interacts with a queue manager, and queues belonging to that
queue manager are local to the program. Queues belonging to other queue
managers (whether they’re on the same node of the network or on the other
side of the world) are remote queues.

...can be redefined
and relocated

A message queue can be known by one name to the programs that use it,
and by a different name to the queue manager that owns it: the queue
manager knows that the two names identify a single queue. Therefore, even
if a queue is moved and the name by which it is known to the queue manager
changes, the name by which programs know the queue can remain unaltered.
Programs can continue to read from and write to the queue, regardless of its
new name and location.

...can be limited in
size

When an MQSeries product is installed, your system-support personnel define
the resources that are going to be used. These are (chiefly) queue manager
instances, message queues, and the relationships between them. When
queues are defined, they are given a number of attributes. One of these
controls the number of messages a queue can hold, and another can be used
to limit the length of a message. The two values together define the
maximum size of the queue.

...but are not limited
in number

The number of queues managed by a queue manager is not related to the
number of programs that put messages on them or take messages from them.
Rather, the number of queues managed by a queue manager is a
system-design and system-management consideration.

 Messages and message queues 31

 for more information...

For more
information...

This completes our introduction to the Messaging and Queuing style of
programming implemented by the MQSeries products. For a more
detailed description of Messaging and Queuing, see the MQSeries

| publication MQSeries Message Queue Interface Technical Reference,
| SC33-0850. If you would like to know more about the MQSeries

products, contact your IBM representative.

32 An Introduction to Messaging and Queuing

Sending your comments to IBM
An Introduction to Messaging and Queuing

GC33-0805-01

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

5 By mail, use the Readers’ Comment Form.

 5 By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

5 Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

5 The publication number and title
5 The page number or topic to which your comment applies
5 Your name and address/telephone number/fax number/network ID.

Readers’ Comments
An Introduction to Messaging and Queuing

GC33-0805-01

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

IBM

An Introduction to Messaging and Queuing
GC33-0805-01

REPONSE PAYEE
GRANDE-BRETAGNE

NE PAS AFFRANCHIR

NO STAMP REQUIRED

IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
SO21 2ZZ United Kingdom

IBRS/CCRI NUMBER: PHQ - D/1348/SO

Fold along this line

Fold along this line

C
u

t
a

lo
n

g
th

is
lin

e
C

u
t

a
lo

n
g

th
is

lin
e

You can send your comments POST FREE on this form from any one of these countries:
Australia
Belgium
Bermuda
Cyprus
Denmark

Finland
France
Germany
Greece
Hong Kong

Iceland
Israel
Italy
Luxembourg
Monaco

Netherlands
New Zealand
Norway
Portugal
Republic of Ireland

Singapore
Spain
Sweden
Switzerland
United Arab Emirates

United States
of America

If your country is not listed here, your local IBM representative will be pleased to forward your comments
to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

By air mail
Par avion

Name
Company or Organization
Address

EMAIL
Telephone

Fasten here with adhesive tape

From:

IBM

Printed in U.S.A.

GC33-ð8ð5-ð1

