MQSeries for VSE/ESA SC33-1142-02

User’s Guide

Version 1 Release 4

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xv.

Third Edition (March 1997)

This edition applies to Version 1 Release 4 of IBM MQSeries for VSE/ESA (program number 5787-ECX) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product.

This book is based on Version 1 Release 3.1, order number SC33-1142-01. Changes from that edition are marked by
vertical lines to the left of the text.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the
methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development
Mail Point 095, Hursley Park, Winchester, Hampshire, SO21 2JN, United Kingdom

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1993, 1997. All rights reserved
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject
to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

COMENES . o oottt e iii
TabIES . o Xiii
Nt CES .« o o ottt XV
Trademarks . ..o XV
About this BOOK . .. Xvii
Who should use this booK. e XVii
What's inthis BOOKo XVii
How to use thiSbooK Xvii
Typographical coNVeNntions.t e Xvili
Where to find more information Xviii
MQSeries publications. Xviii
Evaluating productso Xvili
PlanNning XiX
AdMINISITAtIoONo e XiX
Application programmingttt XiX
Problem determination. XiX
SPECIAl tOPICS. .« . v i XiX
Other MQSeries publications. XX
What's new with MQSeries for VSE 1.4 i e XX
Chapter 1. Product description 1
Version 1 MQSeries System elements 1
MBS SAGES . « .« o e ettt 1
QUEBUBS . ittt e e e e e 1
QUEBUE MANAGET\ ettt e e et e e e e e e 1
Channels 2
Software components of the MQSeries System. 2
Message queue interface (MQI) i 2
Message channel agent (MCA) e 2
Message queue management (MQM) i 2
SYStEM MONITOr 2
SaMPIE PrOgramS. . . . ottt e 2
Chapter 2. Installation 3
Prerequisites for normal operation 3
Hardware 3

SO WA . . o 3
Supported language for application development 3
Migration guUIdanCe 3
Contents of the distributiontape. 3
MQSeries System installation. 4
Installing The MQSeries System e 4
Allocation and initialization of subsystem files for newusers. 5
Re-initialization of subsystem files from Version 1.3 6
MQJIMIGRI sample JCLo 6
MQJIMIGR2 sample JCLo 8
Install CICS table entries e 8
Note if migrating from MQSeries 1.3: 9
Modify CICS start-up deck. 9
Recovery/Restart 9
Uppercase translation 9
SYS M SB UP .« o oo ottt 10
Initialization of the MQSeries System 10
Define global system definition 10
Other installation considerations i 11

© Copyright IBM Corp. 1993, 1997 iii

iv

MQSeries System installation verificationtest. 11

Product information file. 14
Chapter 3. Planningt 15
A planning framework for distributed applications. 15

Tasks and responsibilities e 15
System designer tasks 16

Traditional analysis and design. 16

Extending to a distributed design 17

Mapping the design to the physicalworld. 18
System / network administrator tasks 18

Map the logical design to the physical network 18

Ensure that hardware and software areinplace 18

Establish the transport layer of the network 18
MQSeries System administrator tasks 19
Application developer tasks. 19
Including legacy applications in distributed designs i 20
Planning considerations for VSE/ESA SyStEMS.o oot 20
Chapter 4. Configuration 23
MQSeries System configuration elements 23

Queue names and MesSage rOULING.o vt v ittt e e 23

Queue name format. e 24

MESSAgE QUEUE MANAGET . . . o o e ettt ettt et ettt e et e e e 24

Local MeSSAgE QUEUES.ottt et e e e e e e 24

TransSMISSION QUEUES . . . o oottt e e et et e e e e 25

Communications channels e 26

Remote queue definitions. 27

Al . o o 28
MQSeries System mesSSage roULINGottt e e e 28

Basic message roUtingo oottt 28

The MQSeries System routingtable. 29

Alias queues, remote queues, and routing 30

Other alias tyPeS. . . oot 32
Recommended naming ConNventions it 33
Configuration Capacities 34
Configuration worksheets 34
Configuration examples. 34

Simple network - minimum configuration 34

Simple network - improved configuration 36

Simple network - improved configuration #2. 36

Complex network - recommended configuration 37
Dual QUeUE SUPPOIto 40
System configuration examples. 41

FOr VT AM . L 41

FOr Gl S . o 41

Connection definition: e 41
Session definition: e 42

For the MQSeries System: 43
MQSeries channel definition e 43

IBM MQSeries for VSE/ESA product configuration guidelines 43

Background information 43

=T 0= = 44

Queue manager configuration guidelines: i 44

Channel configuration guidelines:. 46

Queue configuration guidelines: 47

Number of channels per queue manager: i 48

IBM MQSeries for VSE/ESA User's Guide

Example configuration: 49

Queue manager configuration: 49
Channel configuration: e 49
Queue CoNfiguIration:ot 50
Chapter 5. Configuring network resourcest 51
INtrOTUCTION .« . e e e e 51
Background information 52
VTAM start up parameter list. 54
Definition of CICS t0 VTAM.ot e e 55
Definitions required for the remote MQSeries System 56
MQSeries System channel definition 57
Definitions iN CICSo 57
Definitions iN VTAM Or NCPot e e 59
Definitions on the remote SNA software. e 62
Troubleshootingo oo 62
Chapter 6. System Operationttt 65
General panel [ayout. 66
MQMT master terminal - MaiNn MENUttt e e e 67
Operator screen action KeYSottt 67
Configuration fUNCHIONS 68
Global system definition. 68
Queue defiNitioNS. e 70
Create local qUEUE 71
Create remote QUEUEottt e e e 74
Create aliasS QUEBUEt e 75
Create alias qQUEUE MAaNAGET vt ettt e et e e e 76
Create alias replyo 77
Modifying and deleting queue definitions. 78
Selecting an existing queue definition. 78
Modifying an existing queue definition 79
Deleting an existing queue definition 79
Channel definitions 80
Modifying and deleting channel definitions 82
Selecting an existing channel definition 82
Modifying an existing channel definition 83
Deleting an existing channel definition L 83
Global system definition display. 83
Queue definition display.o 84
Channel definition display 84
Operations fUNCLIONS. 84
Start/Stop QUEUE oot 85
Notes on the Start/Start Queue panel. 86
Open/close channel 87
Reset message sequence number 88
Initialization of System 89
QUEUE MaINtENANCE. . . .t i e e e e e e e e e e 90
Monitoring fuNCtioNS e 91
MONItOr QUEUES . . . o o oo e e 92
Monitor queues - detail e 93
Monitor Channel 94
Monitor channel - detail 95
Browse fUNCHiON e 96
Communications operations (the MCA ProCess)t 96
VIBWING BITOr [00S . . .o oo 97
MQSeries command line function. 97
Background batch modules 98
MQPUTIL cOommMands:.o e e e e 98
Using Batch interface 99

Contents V

Logic of the Batch Interface e 99

How to use the Batch Interface. e 100
Data INtegrityot 100
Verifying the Batch Interface. 101
Restrictions on using the Batch Interface. 101
VSAM file maintenanceo 101
Delete all funCtiono 102
DESCIIPION . . ot et 102
OPEratION . . . 102
MQPREORG fUNCHION. e e e e e e 102
DESCIIPION . . ottt 102
Multiple queues sharinga VSAM cluster. i 102
Reorganizing queue files while the queue managerisdown.................... 103
Sample JCLtorun MQPREORG. 103
Chapter 7. Application programming interface 105
Working withthe MQI 105
MQI calls and sequence of operationst 105
Sample source code provided 106
Compiling your application programt 106
Compilation 106
Applications not written in COBOL for VSE i 106
Application design guidelines 106
The hidden network 106
SYNcpoints and trigOerS oo 107
SyNcpoint CoNSIAErationsS. 107

Units of WOrko oo 107

Putting messages withina unitofwork. o 108

Getting messages withinaunitofwork. L. 108
Syncpoint and PersiStence 108
Syncpoint Rollback 109

LI o T =T £ 109
Overview of trigger facility 109
Trigger CONditions. e 110
Defining a sender channel component 110
Defining a program to be triggered 110
Defining a transactionto be triggered 1
Message batch processing. 1
MQI calls referenCe e e 112
MQCONN - CONNECt QUEUE MANAGET« ottt ettt et e e et e 112
Name (MQCHAR4S8) - input e 113

Hconn (MQHCONN) - OUtPULottt 113
CompCode (MQLONG) - OULPULttt e e e e e 113

Reason (MQLONG) - OUtpUL ottt e e e 113
MQOPEN - 0pen MesSSage QUEUEottt ittt et et e e e e e e e 114
Hconn (MQHCONN) - input e e 114
ObjDesc (MQOD) - inpUt/OULPULt t 114

Options (MQLONG) -inputo e 114

Hobj (MQHOBJ) - OUtpUL.o 115
CompCode (MQLONG) - OULPULttt e e e e 116

Reason (MQLONG) - OUtpUL oottt e e 116

Vi IBM MQSeries for VSE/ESA User’s Guide

MQGET - GEL MESSAQE . .« v vttt ettt e e e e et e 117

Hconn (MQHCONN) - iNpUL . . . ot 117

Hobj (MQHOBJ) - INPULt e e e e 118
MsgDesc (MQMD) - iNpUt/OUpULot 118
GetMsgOpts (PMQGMO) - input/output.t 118
BufferLength (MQLONG) - iNPUL. o oot e 118
Buffer (MQBYTExBufferLength) -output 118
DataLength (MQLONG) - OULPULo oot e e 118
CompCode (MQLONG) - OULPUL. v vttt e e e e e e e e 119
Reason (MQLONG) - OULPULottt e e 119
MQPUT - PULMESSAGE . .« o vttt et e et e e e e e e e e e e 120
Parameters. 120
Heconn (MQHCONN) - iNpULot e e 120

Hobj (MQHOBUJ) - INPULot e 120
MsgDesc (MQMD) - iNnput/outputt 120
PutMsgOpts (MQPMO) - input/output e 120
BufferLength (MQLONG) - iNPUL. oottt e 120
Buffer (MQBYTExBufferLength) -input 120
CompCode (MQLONG) - OULPUL. o oottt e e e e e 120
Reason (MQLONG) - OULPULottt e 121
MQCLOSE - close Object.o 122
Heconn (MQHCONN) - iNpUt . . .o e e 122
Hobj(MQHOBJ) - input/outputo 122
Options (MQLONG) - input. . . .o 122
CompCode (MQLONG) - iNPUL.ttt e 122
Reason (MQLONG) - OULPULottt e 122
MQDISC - diSCONNECt QUEUE MANAJET v vttt et e et e e 123
Hconn (MQHCONN) - input/output.ot e 123
CompCode (MQLONG) - OULPUL. . . . o vttt e e e e e 123
Reason (MQLONG) - OUtpULottt e e 124
MQPUTL - PUL ONE MESSAJE . . .+« o e ettt e et e e e e e e e e 124
Hconn (MQHCONN) - inputot e 124
ObjDesc (MQOD) - INPULt t ee e 124
MsgDesc (MQMD) - input/outputo 125
PutMsgOpts (MQPMO) - input/output 125
BufferLength (MQLONG) - input.o 125
Buffer (MQBYTExBufferLength) -input 125
CompCode (MQLONG) - OULPUL. . . . oottt e e e e 125
Reason (MQLONG) - OUtpULottt e 125
MQINQ - inquire about object attributes 126
Hconn (MQHCONN) - inputot e 127

Hobj (MQHOBJ) - INpUto 127
SelectorCount (MQLONG) - INPULot e e e e 127
Selectors (MQLONGxSelectorCount) -input 127
IntAttrCount (MQLONG) - INpUt oo e 128
IntAttrs (MQLONGXxIntAttrCount) - output 128
CharAttrLength (MQLONG) - input.t e 128
CharAttrs (MQCHARXxCharAttrLength) -output 129
CompCode (MQLONG) - OULPUL. . . . oottt e e e 129
Reason (MQLONG) - OUtpULot e 129

MQI data types and StrUCIUIeS ot e 130
Data Y PES . . o oo 130
Elementary data types 130
Structure data typesot 131
Boundary alignments 131
References to structure COmMpoNeNntsttt 131
CharactersS iN NAMESot 132
MQOD - MQ object descriptor Structureot 132
MQMD - MQ message descriptor Structuret 133
MQPMO - MQ put message options Structure. oottt 138

Contents Vii

MQGMO - MQ get message OptionS StruCtUre oottt e 139

MO TEIUM COBS. . . it e e e e e e e e 141
MQI completion COAES i 141
MQI reasON COUBS . ..o ittt ittt e e e e e 142

Appendix A, SYStEM MESSAGES .« o . vttt ettt 155

AP| SYStEM MESSAGES . .+« « o o vt e et e et e 155

MQSeries System message definitions. 156

Message Coae (NMNN):. . ..ot e e e e e e e e e 156

CONSO0IE MESSAGES . . o vttt e et e e 188
A UP MESSAGES .« . v v vttt ettt et e e 188

Appendix B. COBOL programming language examples — 189

Language CoNSIderationsottt 189
CopY fileS . oo 189
SHUCTUIES . . ot 189
Notational CoNVENtiONS 189

CallS. 190

MQCLOSE . . .ttt 190
MQCONN . 190
MODISC . 190
MOGET . . o 190
MOINQ .« oot 191
MQOPEN . . oottt e e e e e 191
MOPUT . . oottt e e e e 191
MOPUTL . . oottt e et e e e 192
Elementary data types.ot 193
Structure data tyPeSot e 193
MQGMO in Copybook CMQGMOV e 193
MQMD in Copybook CMQMDYV 194
MQOD in Copybook CMQODV. 195
MQPMO in Copybook CMQPMOV 195

Appendix C. CICS control table definitions 197

Sample FCT @NtriES. . . oo 197

Sample DCT @NEIY . . . ot e e 199

Sample JCL to execute MQPUTIL e 200

Sample JCL file definition for CICS deck. 201

Sample JCLto create CICS CSD groUP . . .« vttt e e e et e e e e e 202

Programs and transactions 205

BMS mMaps. . . o 205
COBOL for VSE programs and transactions. 205

Appendix D. Sample programs e 207

Sample program TTPTSTL.Z e 207

Sample program TTPTST2.Z e e i 221

Sample program TTPTST3.Z e e 239

Sample program MQPECHO.Z 255

Appendix E. COBOL copybooks 269

CMODLHV. C . . e 269

CMQGMOV.C .. 269

CMOMDNV . C . . e 270

CMQODV.C . . 271

CMOPMOV. C .. 271

CMOT MV, C . 272

CMOV . . . o 272

Appendix F. Configuration worksheets 277

System list - worksheet 277

Application list - worksheet 278

Vil IBM MQSeries for VSE/ESA User’s Guide

Application look at queues - worksheet 279

System look at queues - worksheet i 280
Channel list - worksheet 281
MQSeries System configuration (routing table) - worksheet. 282
Appendix G. System RESOUICESottt e e e e 283
System set up file: MQFSSETt 283
Configuration file: MQFCNFG. e e 283
QUEBUIES . . i e 283
TemPOrary StOragettt e 283
In-storage-control-blocks and recovery mechanism. 284
Appendix H. Sample JCL 285
Sample JCL to define a configurationfile 285
Sample JCL to define queue file. 286
Sample JCL to define and create the setup file MQJSETUP 289
GlOS ANy e it 291
INAEX . oo 295

Contents X

X IBM MQSeries for VSE/ESA User’s Guide

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

© Copyright IBM Corp. 1993, 1997

Tasks and responsibilities. 16
Typical data flow diagram 17
Data flow With qUEUES. 17
NO messaging and qUEUINGo v vt et e e e e 20
Messaging and qQUEBUINGttt e e e e 20
Queue enabled version of Legacy application 20
MQSeries for VSE/ESA Channel Listscreen 43
SNA session and CONVErSationttt e e e e 53
Skeleton MQSeries channel definition 57
Display screen relationships.t 65
General panel layout. 66
Master terminal main Menu e 67
Configuration main MeNUttt 68
System queue manager information. 68
QUEUE MaiN MENU SCIEN. . . . o ottt e et it e et et e et et e 70
Local queue definition. e 71
Local queue extended definition. 72
Remote queue definition. 74
Alias queue definition 75
Alias queue manager definition. 76
Alias queue reply definition. 77
QUEUE LISt SCIBEBN . . . o 79
Channelrecord e 80
Channel list. e 82
Global system definition display 83
Operations Main MENU oottt e e e e e 84
Start/stop queue control SCreen 85
Open/close channel e 87
Reset channel message SeqUENCE.ttt 88
Initialization of system. 89
Maintain Queue Message Records.t 90
MONItor Main MENU e e 91
MONItOr QUEUESot et e e e e e 92
Monitor queues -detail 93
Monitor channel definitions. 94
Monitor channel definitions - detail 95
BrOWSE QUEUE. . . .t e 96
Test System Programs 3 -Start 239

Xi

Xii IBM MQSeries for VSE/ESA User’s Guide

Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35

© Copyright IBM Corp. 1993, 1997

Application and queue NAMEt 25
Routing Table Format. e e e 30
Localroutingtable. e 32
Remote serverroutingtable 32
Additional system routingtable. 33
Remote server's new routingtable i 33
Minimal Boston routing table. 35
Minimal Chicago routingtable. 35
Improved Boston routing table 36
Improved Boston routing table using ALIAS_ M i 36
Boston hostroutingtable 37
Chicago hostroutingtable 37
New York hostroutingtable e 38
State LAN routing table (identical at each site except for StateName) 39
General Definition. 41
Object Characteristics of Connectiont 41
CEMT | CONN display OUpUL.ot e 42
CEDA V SESS display parameter settings. 42
Example of a Queue Manager Configuration 49
Example of a Channel Configuration oo, 49
Example of a Queue Configuration. i 50
Extract of ATCSTRxx VTAM start parametersc.oviienn... 54
Skeleton VTAM definition for CICS. o 55
CICS SIT parameter e 56
Skeleton logon mode table source 56
Definitions in CICS using RDO for parallel session partner LU 58
Definitions in CICS for single-session capable partner LU 58
Definitions in CICS singles-session capable LU 59
Local or NCP Major Node definition of theremote LU 60
Skeleton Logon Mode Table forthe remote LU 61
Values to code in the remote SNA software i, 62
MQPUTIL program general Syntax i e e 98
Valid open options for each queuetype i 115
Copy files . .o 189
Elementary data types e 193

Xiii

Xiv IBM MQSeries for VSE/ESA User'’s Guide

Notices

The following paragraph does not apply to any country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any of the intellectual property rights of IBM may be used instead of the IBM
product, program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of the user.

Licensees of this program who wish to have information about it for the purpose of enabling:

(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged, should
contact:

Laboratory Counsel

Mail Point 151

IBM United Kingdom Laboratories
Hursley Park, Winchester
Hampshire, SO21 2JN

U.K.

Such information may be available, subject to appropriate terms and conditions, including, in
some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing to The IBM Director of Licensing, IBM Corporation,

500 Columbus Ave, Thornwood, New York, 10594, U.S.A.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

AlIX CICS IBM

MQ MQSeries MVS/ESA
0Ss/2 0S/400 RACF
RISC System/6000 VSE VTAM

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation
under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other company, product, and service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

© Copyright IBM Corp. 1993, 1997 XV

XVi IBM MQSeries for VSE/ESA User'’s Guide

About this book

The purpose of this User’s Guide is to provide all information necessary for a user to install IBM
MQSeries for VSE/ESA software, and to fully utilize its features to provide the communications
framework for distributed applications based on the IBM Message Queue Interface (MQI).

To accomplish this goal, this guide describes the IBM MQSeries for VSE/ESA software; its
installation, configuration, and operations; and the programming interface to be used by the
developers of applications.

Throughout this document, IBM MQSeries for VSE/ESA is referred to simply as MQSeries
System.

Who should use this book

The introductory product description sections of this guide will be of interest to all users. Beyond
that, different portions of this guide are intended for different audiences.

System or Network Administrators responsible for installing, operating and maintaining
MQSeries System software will be primarily interested in Chapters 1 through 6.

Distributed Application Designers will be interested in Chapters 3 through 7.

Application Developers will be primarily interested in Chapter 7.

What's in this book

This guide provides information about the MQSeries System software as implemented for
VSE/ESA systems.

How to use this book

This User’s Guide consists of seven chapters and six appendixes organized as follows:

® Chapter 1, “Product description” on page 1—describes the MQSeries System and
services, provides an overview of the components and architecture, and provides an
application example.

® Chapter 2, “Installation” on page 3—highlights the system requirements for using the
MQSeries System software and provides a detailed procedure for installing the software.

® Chapter 3, “Planning” on page 15—provides an overview of the considerations for
implementing a distributed application using the MQSeries System.

® Chapter 4, “Configuration” on page 23—covers the details for creating the system services
to support your application.

® Chapter 5, “Configuring network resources” on page 51—provides guidance and general
help in configuring the network resources to enable the MQSeries System to function.

® Chapter 6, “System operation” on page 65—provides procedures for activating system
services and troubleshooting system problems.

® Chapter 7, “Application programming interface” on page 105—provides an alphabetical
reference of the application programming interface calls.

* Appendix A, “System messages” on page 155—Ilists internal messages generated when
application programs activating the MQSeries System encounter abnormal conditions, and
external messages generated by the Administration programs.

® Appendix B, “COBOL programming language examples” on page 189—contains a
description of the supplied COBOL copy files, program structures, and program call
examples.

© Copyright IBM Corp. 1993, 1997 XVil

® Appendix C, “CICS control table definitions” on page 197—contains a listing of the current
CICS Control Table Definition entries for the CICS/MQSeries System Subsystem.

® Appendix D, “Sample programs” on page 207—contains a sample program ECHO that can
be used to test MQSeries System configurations.

* Appendix E, “COBOL copybooks” on page 269—contains a listing of the supplied COBOL
Copybook files.

* Appendix F, “Configuration worksheets” on page 277—contains blank worksheets to aid in
the design and planning of a distributed application using the MQSeries System.

Note: Only the “Value” copybooks are in Appendix E, “COBOL copybooks” on page 269.
Additional “Linkage” copybooks will be in the installation user library with an “L” suffix
instead of a “V” suffix.

Typographical conventions

boldface
Identifies an item in an MQSeries System window. The item could be a keyword, an action,
a field label, or a pushbutton. Whenever one of the steps in a procedure includes a word in
boldface, look for an item in the window that is labeled with that word.

bold italics
Are used for emphasis. Take extra care wherever you see bold italics!

italics
Identify one of the following:

* New terms that describe MQSeries System components or concepts. A term printed in
italics is usually followed by its definition.

® Parameters for which you supply the actual names or values.
* References to other books.

<angle brackets>
Identify a key on the keyboard. The instruction “press <Enter>" means “Find the key
labeled ‘Enter’ and press it.” If the instruction identifies two (or more) keys, hold down the
first key while you press the second key.

monospace
Identifies one of the following:

® Text as shown, make sure you type the uppercase and lowercase characters exactly
as shown.

® Names of files and directories (path names).

Where to find more information
MQSeries publications

Evaluating products
IBM MQSeries Brochure, G511-1908
IBM MQSeries: An Introduction to Messaging and Queuing, GC33-0805
IBM MQSeries: Concepts and Architecture, GC33-1141

IBM MQSeries Message Queue Interface Technical Reference, SC33-0850

XViii IBM MQSeries for VSE/ESA User’s Guide

Planning

Administration

IBM MQSeries Planning Guide, GC33-1349

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Licensed Program Specifications,
GC33-1350

IBM MQSeries for 0S/400 Version 3 Release 2 (and later) Licensed Program Specifications,
GC33-1360 (softcopy only)

IBM MQSeries Programmable System Management, SC33-1482

IBM MQSeries Command Reference, SC33-1369

IBM MQSeries for AlX Version 2 Release 2.1 System Management Guide, SC33-1373

IBM MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide, SC33-1642
IBM MQSeries for HP-UX Version 2 Release 2.1 System Management Guide, GC33-1633
IBM MQSeries for MVS/ESA Version 1 Release 1.4 Program Directory, GC33-1626

IBM MQSeries for MVS/ESA Version 1 Release 1.4 System Management Guide, SC33-0806
IBM MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

IBM MQSeries for 0S/400 Version 3 Release 2 (and later) Administration Guide, GC33-1361
IBM MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

IBM MQSeries for Sun Solaris Version 2.2 System Management Guide, GC33-1800

IBM MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide, GC33-1768
IBM MQSeries for Windows NT Version 2 Release 0 System Management Guide, SC33-1643
IBM MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

IBM MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

Application programming

IBM MQSeries Application Programming Guide, SC33-0807
IBM MQSeries Application Programming Reference, SC33-1673
IBM MQSeries Application Programming Summary, SX33-6095

IBM MQSeries for 0S/400 Version 3 Release 2 (and later) Application Programming Reference
(RPG), SC33-1362

Problem determination

Special topics

IBM MQSeries for MVS/ESA Version 1 Release 1.4 Problem Determination Guide, SC33-0808
IBM MQSeries for MVS/ESA Version 1 Release 1.4 Messages and Codes, SC33-0819

IBM MQSeries Version 1 Products for UNIX Operating Systems Messages and Codes,
SC33-1754

IBM MQSeries Distributed Queuing Guide, SC33-1139

About this book XiX

IBM MQSeries Clients, GC33-1632
Other MQSeries publications
For information about other MQSeries platforms, see the following publications:
IBM MQSeries for AT&T GIS UNIX User’s Guide, SC33-1437
IBM MQSeries for Digital VMS VAX User’s Guide, SC33-1144
IBM MQSeries for HP-UX User’s Guide, SC33-1376
IBM MQSeries for 0S/400 User’s Guide, SC33-1145
IBM MQSeries for SCO UNIX User’s Guide, SC33-1378
IBM MQSeries for SunOS User’s Guide, SC33-1377
IBM MQSeries for Sun Solaris User’s Guide, SC33-1439
IBM MQSeries for Tandem NonStop Kernel, SC33-1755
IBM MQSeries for UnixWare User’s Guide, SC33-1379

IBM MQSeries for VSE/ESA User’s Guide, SC33-1142

What's new with MQSeries for VSE 1.4

COBOL for VSE with LE support

Full 31 bit addressing

Reorganized batch utility

Case sensitive queue naming

Inbound ping request support

Y2000 compliance

Standard MSHP library install support

64 character non-CICS TP names

Additional code page support for communication with other platforms
Dual queue support

XX IBM MQSeries for VSE/ESA User’s Guide

Chapter 1. Product description

IBM MQSeries for VSE/ESA enables application programs to exchange messages with other
CICS applications and with remote MQSeries applications running on systems such as other
IBM Mainframes, VAXs**, Tandems**, PC LANSs, etc.

The MQSeries System provides a set of messaging and queuing services which support data
transfer between distributed applications. These services allow applications to communicate
without knowledge of the lower levels of the communications network and without specific
knowledge of the location of the other applications. The messaging and queuing services are
accessed via the IBM Message Queuing Interface (MQI).

Version 1 MQSeries System elements

There are four key conceptual elements within the MQSeries System which must be well
understood. They are messages, queues, queue managers, and channels.

Messages

All data transferred by the MQSeries System is in the form of a message exchanged between
cooperating distributed applications. Every message has two parts. The body of the message
contains the user data supplied by an application. This user data is never touched by the
MQSeries System.

Ancillary data commonly called a header, is added to the message by the MQSeries System to
provide routing and other control information required for message delivery. The header is not
normally seen by the application programs.

Messages are exchanged between applications via queues.

Queues

A message queue is simply a disk file used by the MQSeries System to hold messages. The
physical management of queues is entirely hidden from the application programs. Applications
have no access to the queues other than through the message queuing interface, MQI.

Message queues are classified as either local or remote. These terms are defined from an
application perspective. A local queue is any queue residing on the same message queuing
system as the application. A remote queue is any queue residing on another message queuing
system.

The special case of a local queue which is used to hold messages to be transmitted to another
system is called a transmission queue.

An alias queue is not a true physical queue, but rather a logical naming capability which allows
an alias queue name to be resolved to another real queue, either local or remote. This provides
a mechanism for logical indirection which often proves a convenient method to allow application
programs to be completely independent of the underlying message queuing definitions.

The physical management of the queues is provided by the queue manager.

Queue manager
The queue manager is responsible for providing the message queuing services used by
applications. Applications access these services by using the MQI calls to communicate with
the local queue manager (the queue manager on the same system as the application). It is most
common to think of a queue manager as having a one-to-one correspondence to an MQSeries
System installation. That is, normally there is one queue manager per system.

© Copyright IBM Corp. 1993, 1997 1

Channels

A channelis a unidirectional point-to-point communications link between two MQSeries
Systems. Messages flow over a channel in one direction only. If two MQSeries Systems need to
exchange messages, then two channels are required.

For outbound channels, the MQSeries System reads messages from the associated
transmission queue and sends them to the remote system via the communications channel. For
inbound channels, the MQSeries System receives messages from the communication link and
writes them to the destination /ocal queue.

Software components of the MQSeries System

The MQSeries System consists of the following software components:

Message queue interface (MQI)

The Version 1 MQSeries System implementation of MQI is built around static COBOL calls to
MQI verbs (see Chapter 7, “Application programming interface” on page 105). It is responsible
for handling user application requests to read and write from the queuing system, and for
arbitrating among multiple requests to the same queue. The MQI functions are provided in the
form of members of the VSE/ESA object library. Appropriate MQI functions are link edited into
application programs that use MQSeries System services.

Message channel agent (MCA)

The Message Channel Agent (MCA) consists of a set of CICS transactions which implement the
Message Channel Protocol (MCP). The MCP is the high level protocol used to transport
messages between MQSeries Systems. This protocol is implemented on top of an industry
standard transport layer protocol (TLP) LU6.2. The underlying TLP is not provided with the
MQSeries System but is a prerequisite.

Message queue management (MQM)

System monitor

Sample programs

The Version 1 MQSeries System Administration and Operations functions are menu driven.
They allow the system administrator to define, modify, and delete MQSeries System queues,
aliases, and channels; and to perform various maintenance tasks such as resetting message
sequence numbers, purging queues, and monitoring the status of the MQSeries System.

This long running task controls recovery, triggering, and quiescing. Refer to
“In-storage-control-blocks and recovery mechanism” on page 284 for more details.

Source code and phase modules for four sample application programs is provided. These are
test programs which will be used in verifying the system installation and which may also be
referred to for examples of MQI calls.

These programs include TTPTST1, TTPTST2, TTPTST3, and MQPECHO which are supplied
on the installation tape. Listings of these four programs may be found in Appendix D, “Sample
programs” on page 207.

2 IBM MQSeries for VSE/ESA User’s Guide

Chapter 2. Installation

This chapter highlights the system requirements for using the MQSeries System software and
provides a detailed procedure for installing the software.

Prerequisites for normal operation

The MQSeries System has specific software requirements that must be met for proper
operation. They are:

Hardware
* Any IBM System 370 or 390

— Minimum system memory = normal memory supplied with machine
— Minimum DASD = VSE library requirements + size of queues
VSE library requirements
® 3380 = 3 cylinders
® 3390 = 2 cylinders
® FBA (Fixed Block Architecture) = 4500 blocks

® Any communications hardware supporting SNA/LU6.2

Software

VSE/ESA 1.4 (5750-ACD) or later 1.x
CICS/VSE 2.3 (5686-026) or later 2.x

VTAM for VSE/ESA 4.2 (5666-363) or later 4.x
LE/VSE 1.4 Runtime library

Supported language for application development
® COBOL for VSE

Migration guidance

Redefinition of channels is not required

Redefinition of queues is not required

Redefinition of Configuration file is needed

The software levels of VSE/ESA and CICS/VSE listed above are prerequisites
Recompilation of customer applications in LE/VSE is required

Contents of the distribution tape

The distribution tape consists of only one VSE/ESA sublibrary in MSHP format. The original
sublibrary name was “PRD2.MQSERIES”, and we strongly suggest you use the same
sublibrary name when you restore it. This sublibrary contains phases, object decks, copybooks
and samples.

— Copy books are to be used by your CICS applications whenever you intend to call the
MQSeries Application Programming Interface (API).

— Object decks will be called at linkedit time when you are building your own MQSeries
applications (autolink).

— Phases were all compiled in COBOL for VSE with LE/VSE and linkedited with
AMODE(31) and RMODE(ANY).

© Copyright IBM Corp. 1993, 1997 3

— Samples have Z as member type. Some of them need to be modified for the
VSE/POWER JECL statements:

*** JOB to *$$JOB
*** ST to *$$ LST
*** SLI to *$$ SLI

*** EQJ to *$$ EOJ

Here are short descriptions of these samples:

MQJCONFG.Z Creation of MQSeries Configuration File
MQJSETUP.Z Creation of the Setup file.

MQJQUEUE.Z VSAM Cluster definitions for MQSeries queues
MQJIMIGR1.Z Migration of old configuration file (step 1)
MQJIMIGR2.Z Migration of old configuration file (step 2)
MQJREORG.Z Batch Job to reclaim space of deleted records
MQJUTILY.Z Various Batch functions

MQJLABEL.Z Label definitions for the CICS start-up job.
MQJCSD.zZ Define CICS resources into the CICS CSD
MQCICSDT.Z Entry definitions for CICS DCT.

MQCICSFT.Z Entry definitions for CICS FCT.

Note: Migration jobs are to migrate an MQSeries for VSE/ESA 1.3 to this new 1.4
release.

MQSeries System installation

The steps to accomplish the MQSeries System Installation are contained in the following
procedure:

Installing The MQSeries system

4

1. Create a VSAM user catalog. This is an optional step. It is recommended that the user use
the Interactive Interface Dialogs (ll) to create this catalog. In the examples VSAM catalog
named MQMCAT is being used, and it is assumed that its label is already defined in the
Disk Label Area.

2. Allocate a VSE library.
This step is not required if you restore the product into the PRD2 library which is standard
in a VSE/ESA system. However, for various reasons, you may want to install MQSeries in
another library. It is recommended you use the Interactive Interface dialogs for creating this
library, or run the sample below adapted for your environment. Also, don't forget to modify
provided samples accordingly.
* $$ JOB JUNM=DEFLIB,CLASS=0,DISP=D
// JOB DEFINE MQSeries Library MQMUSR1
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER (-
NAME (VSE.MQMUSR1.LIBRARY) -
CYLS (3 1) -
SHAREOPTIONS (3) -
RECORDFORMAT (NOCIFORMAT) -
VOLUMES (volid) -
NOREUSE -
NONINDEXED -
TO (99366)) -
DATA (NAME (VSE.MQMUSR1.LIBRARY.DATA)) -
CATALOG (catalog.name)
/*

IBM MQSeries for VSE/ESA User’s Guide

/&
* §$ EOQJ
3. Restore the MQSeries sublibrary from the distribution tape. There are 2 ways of doing the
restore:

1. by using the Interactive Interface Dialogs:
- from the administrator panel select: Installation
- select STacked V2 Format
- select “prepare for installation”
- submit the job, and wait for its completion.
- select “Install Product(s) from Tape”; entering PRD2.MQSERIES for the
sublibrary name, or the one you have defined if you don't use the default one.

2. by using the following job:

* $§ JOB JINM=MQMTAPE,CLASS=0,DISP=D

// JOB MQMTAPE Restore MQSeries from tape

// ASSGN SYS006,cuu

// MTC REW,SYS006

// EXEC MSHP,SIZE=1M

INSTALL PRODUCT FROM TAPE ID='MQSeries 1.4.0'-
PROD INTO=1ib.sublib

/*
/&
* §$ EOJ
Where:
cuu is the tape drive address.
lib.sublib is the sublibrary into which the product is to be installed (for example,

PRD2.MQSERIES)

Allocation and initialization of subsystem files for new users

Warning: For users upgrading from IBM MQSeries for VSE/ESA Version 1 Release 3, please
use the procedure “Re-initialization of subsystem files from Version 1.3” on page 6.

Customize and submit the following jobs contained in PRD2.MQSERIES to allocate and
initialize the MQSeries System (CICS) subsystem files:

®* MQJSETUP.Z- Allocates the MQSeries System (CICS) subsystem setup file. It is used to
populate the configuration file of textual information used by the runtime MQSeries System.

®* MQJCONFG.Z - Allocates the MQSeries System (CICS) subsystem configuration file. For
this VSAM KSDS file, each record is a fixed length of approximately 2K bytes. To estimate
the space required, one record is needed for the following MQSeries System (CICS)
subsystem objects:

® Each channel
® Each object

A space allocation of one cylinder is sufficient for normal installations.

* MQJQUEUE.Z - Allocates and initializes the MQSeries message queue files. For these
VSAM KSDS files, each record is of varying length, depending upon the size of the user
data area. A message queue file is required for each queue defined to the MQSeries
System (CICS) subsystem.

To estimate the space required for each message queue, use the following guidelines:
® Each message queue file contains one header record per local queue.
® One record will be written per user message.

® Each record is variable length and consists of a header, plus the actual variable length
user data area. Each record header is 736 bytes.

® This job allocates the following message queue files:

Chapter2.Installation 5

MQSERIES.MQFERR - Dead Letter Queue file
MQSERIES.MQFLOG - Error Log Queue file
MQSERIES.MQFMON - Monitor Queue file

Note: The above three files need to be INITIALIZED.
The following are sample definitions for user message queue files:
MQSERIES.MQFI001

MQSERIES.MQFO001

MQSERIES.MQFI002

MQSERIES.MQFO002

MQSERIES.MQFI003

MQSERIES.MQFO003

Note: Multiple local queues can be defined in one physical file. However, this is
recommended only for low activity queues.

Re-initialization of subsystem files from Version 1.3

6

® Invariants from 1.3:
If you are upgrading from version 1.3 of MQSeries for VSE, you may keep every file except
MQFSSET and MQFCNFG. You may also keep the same CICS start-up deck and entries
in the two tables: FCT and DCT.

® Customize MQFSSET as described in “Allocation and initialization of subsystem files for
new users” on page 5 by executing MQJSETUP.Z.

® Backup your old configuration file, MQFCNFG.

® Save your system definition, channel definitions and queue definitions by executing
MQJIMIGR1.Z against MQFCNFG to create MQSERIES.MQOCNFG.

® Run MQJCONFG.Z to create a new MQFCNFG.

® Bring up CICS and execute the MQSU transaction.

® Close MQFCNFG using CEMT.

®* Reproduce MQSERIES.MQOCNFG into MQFCNFG by executing MQJMIGR2.Z.
® Open MQFCNFG using CEMT.

® Use the 1.1 option of MQMT to override the default values of Max Recovery Tasks and
System Wait Interval if needed.

® Verify correctness of all queue and channel definitions before deleting the old
configuration.

MQJIMIGR1 sample JCL

* ** JOB JNM=MQJIMIGR1,DISP=D,CLASS=A
* ** | ST DISP=H,CLASS=Q,PRI=3

* IMPORTANT IMPORTANT IMPORTANT *
* *
* Please change : *
* "x o *% JOB" to "* »» JOB" *
* "k $$ LST" to "* $$ LST" *
* "k $$ E0J" to "* $$ EOJ" *
* *
* Fields filed with ?volid? have also to be modified to suit the *
* user specifications. *
* *
K e e e e e e e e *
* *

IBM MQSeries for VSE/ESA User’s Guide

Use this sample only to migrate from version 1.3 to 1.4.

This job extracts your system, queue and channel definitions
from a version 1.3 configuration file.

It then reformats them into the new version 1.4 format.

New formatted records are added to a work file (MQOCNFG) to be
merged later into the new configuration file defined by the job
MQJCONFG and initiated by the CICS transaction MQSU.

The merge process may then be executed (see job MQIMIGR2).

EE R R B T
EE I

*
*

Licensed Materials - Property of IBM

*
*
* 5787-ECX
* (C) Copyright IBM Corp. 1993, 1996
*
*
*

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

EE N B

// DLBL OLDCNFG, 'MQSERIES.MQFCNFG',,VSAM,CAT=MQMCAT
// DLBL NEWCNFG, 'MQSERIES.MQOCNFG', ,VSAM,CAT=MQMCAT
// EXEC IDCAMS,SIZE=AUTO

/* */
/* VERIFY VSAM FILE, CANCEL THE JOB IF IT IS IN USE */
/* */

VERIFY FILE(OLDCNFG)
IF MAXCC > 0 THEN CANCEL

/* */
/* */
/* DELETE AND DEFINE THE WORK FILE */
/* */
/* */

DELETE (MQSERIES.MQOCNFG) -
CL ERASE PURGE CAT(?CAT?)
SET MAXCC = 0
DEFINE CLUSTER -
(NAME (MQSERIES.MQOCNFG) -
RECORDS (50 10) -
RECORDSIZE (2048 2048) -
VOLUMES (?volid?) -
KEYS (100 0) -
SHR (2) -
INDEXED) -
DATA -
(NAME (MQSERIES.MQOCNFG.DATA) CISZ(4096)) -
INDEX -
(NAME (MQSERIES.MQOCNFG.INDEX) CISZ(512))
CAT (?CAT?)

/*
// IF $MRC > 0O THEN

// GOTO NOPROC

// LIBDEF PHASE,SEARCH=(PRD2.MQSERIES,PRD2.SCEEBASE)
// EXEC MQPCONFG,SIZE=AUTO

/*

/. NOPROC

/&

* k% EOJ

Chapter2.Installation 7

MQJIMIGR2 sample JCL

* %% JOB JNM=MQJMIGR2,DISP=D,CLASS=A
* %% | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJIMIGR2 - Migrate MQSeries for VSE/ESA Configuration file.

IMPORTANT IMPORTANT IMPORTANT

Please change :
"% *% JOBII to %)y l.]OB"
"k $$ LST" to "* §§ LST"
"+ $$ EOJ" to "* $$ EOJ"

EE
ECHE

*
*

Use this sample only to migrate from version 1.3 to 1.4.

This job has to be executed only if the previous migration steps
have been successfully processed. That is :

- Reformat old configuration file to a work file (job MQJIMIGR1)
- Redefine a new configuration file (job MQJCONFG)
- Fi11 up the new configuration file (transaction MQSU)

Thus job merges records saved to the work file into the new
configuration file, then deletes the work file

ELEE . S T R T R N
ECEE S I R

*
*

Licensed Materials - Property of IBM

*
*
* 5787-ECX
* (C) Copyright IBM Corp. 1993, 1996
*
*
*

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
// DLBL MQFCNFG, 'MQSERIES.MQFCNFG',,VSAM,CAT=MQMCAT
// DLBL MQOCNFG, 'MQSERIES.MQOCNFG',,VSAM,CAT=MQMCAT
// EXEC IDCAMS,SIZE=AUTO

LR O S

/* */
/* VERIFY VSAM FILES, CANCEL THE JOB IF THEY ARE IN USE */
/* */

VERIFY FILE(MQFCNFG)

VERIFY FILE(MQOCNFG)

IF MAXCC > O THEN CANCEL

REPRO INFILE(MQOCNFG) OUTFILE(MQFCNFG) REPLACE

/* */
/* DON'T ERASE THE WORK FILE IF REPRO FAILED */
/* */

IF MAXCC > 0 THEN CANCEL
DELETE (MQSERIES.MQOCNFG) CL NOERASE PURGE -
CATALOG(?CAT?)
/*
/&
* k% EOJ

Install CICS table entries

Use the samples (see Appendix D, “Sample programs”, on page 207) provided with the product.
Refer to Appendix C, “CICS control table definitions”, on page 197 for additional information.

8 IBM MQSeries for VSE/ESA User’s Guide

To help you install the PCT and PPT CICS definitions, the sample MQJCSD.Z is provided. It
automatically defines the MQSeries entries required into the CICS Definition Data Set (without
using migrated CICS, DFHPPT and DFHPCT tables). You may need to modify this sample to fit
your own environment, since all entries are defined in group “MQM” which is then added to the
VSELIST list.

Note if migrating from MQSeries 1.3:

If you are migrating, from release 1.3, we suggest you suppress all entries from the CSD (if
defined) before running this job or, if you use PPT and PCT tables, to remove the
MQSeries entries and recompile these tables.

® File Control Table (FCT) - sample entries are defined in member MQCICSFT.Z. Please
review this member for further details.

® Destination Control Table (DCT) - The product requires intra partition transient data queues
CSMT and MQER. See the sample DCT defined in member MQCICSDT.Z.

® Program List Table Post Initialization (PLTPI) - The system requires initialization prior to
being able to perform queuing operations. To automatically start the MQSeries system, the
user may add the following programs to the CICS initialization PLT (PLTPI) list:

MQPSENV
MQPSTART
Alternatives to this method can be found in “Initialization of the MQSeries System”, below.

® Program List Table Shut Down (PLTSD) - The MQSeries System needs to be shutdown
prior to performing shutdown of CICS itself.

Either:
Place program MQPSTOP in the CICS shutdown PLT before the DFHDELIM
statement.

or

Execute transaction MQST from a CICS terminal session.

Modify CICS start-up deck

Recovery/Restart

®* The MQSeries System (CICS) subsystem datasets must be allocated to the CICS partition.
Member MQJLABEL.Z contains sample JCL, which must be added to the CICS start-up
deck for this purpose.

® The sublibrary PRD2.MQSERIES must be added to the LIBDEF search chain for phases in
the CICS start-up deck.

Although the MQSeries System uses its own Recovery/Restart logic, it also uses the standard
CICS file management. Therefore, it is important that all MQSeries VSAM clusters be defined in
DFHFCT with the LOG = YES parameter. In addition the CICS logging facility must be activated
(JCT =xx or YES).

If the above conditions are not fulfilled, unpredictable results may occur such as loss of
messages or inaccurate values for message sequence numbers.

Uppercase translation

Queue Manager, queue and channel names are case sensitive on MQSeries Systems. If the
MQSeries System on VSE has to send messages to other MQSeries Systems, the user must
specify UCTRAN = TRANID or UCTRAN = NO in his CICS terminal definitions. If this is not done, the
names entered from the MQSeries System panels will be translated into uppercase and may
not match the actual names on the OS/2 or UNIX MQSeries System.

Chapter2.Installation 9

System setup
The following steps must be performed only once before the MQSeries System can be used.

1. The batch job MQJSETUP.Z must be executed successfully. This copies the member
SYSIN.Z into a VSAM ESDS file.

2. Execute the MQSU transaction (Setup System Configuration File). The message
“MQSERIES INSTALL COMPLETED” should be produced. If this message is not
produced, then check the installation of the MQSeries product to make sure all the
components are properly in place.

Initialization of the MQSeries System
There are three ways of initializing the MQSeries system.

— Starting transactions from a terminal (or by using CRLP on sequential terminals)
Issue MQSE - (Setup Environment)

There will be a delay of approximately one minute before the response
INITIALIZATION COMPLETED is displayed.

Issue MQIT

Warning: The first time MQSE is issued, a warning message will appear indicating that no
system record has been defined. This is normal and will disappear once the system
configuration record has been defined in MQMT.

— Using the MQSeries panels
Issue MQSE - (Setup Environment)
Issue MQMT (the main menu panel of MQSeries Administration displays)
Select 2 - Operation
Select 4 - Initialization/Shutdown
Type | in the function field and press the Enter key.

— By defining entries in the CICS PLTPI table (refer to “Install CICS table entries” on

page 8).
Note: Ifinitialization is done before the System setup is performed a

“MQ900000:MQSERIES VSE ENVIRONMENT not initialized” message will be
produced. See the System Setup below.

Once the VSE/ESA environment has been established for the MQSeries System the following
configuration entries must be completed:

1. Global System Definition must be defined.
2. At least one Local Queue definition.

Define global system definition

1. Review the sample “Global system definition” on page 68 and decide on desired values.
2. At the system prompt, type:
MQMT
3. The Main Menu will appear. To select Configuration, type:
1
4. The Configuration sub-menu will be displayed. To select the Global System Definition,
type:
1
5. Key in the desired entries and press PF6 to save the changes.

10 IBM MQSeries for VSE/ESA User’s Guide

Other installation considerations
External Security - If external security packages are used (for example, ALERT**), please
ensure that MQSeries System (CICS) LU6.2 sessions are ‘signed - on’ and authorized to
execute channel driver transactions (that is, MQO1 and MQO03), and the message delivery
transaction (MQO02).

In case of a sender channel, MQO2 is used as an outbound channel driver.

Note: Transaction names MQO1 and MQO3 may be modified to any naming conventions to fit
the installation.

MQQA and MQQD are two Queue Maintain transactions which both point to the MQPQDEL
program, used for updating queue records. MQQA is specifically for the Delete All function,
while MQQD is for the Delete By Date/Time and the Reset Deleted Records By Date/Time
functions. This allows the security package to prevent unauthorized use of these functions when
started by the Queue Maintenance Operation Master Terminal task.

The CICS Journal Control Table may be affected by the queue definitions. If a physical record is
larger than the buffer size specified in the JCT, a CICS task abend of “AFCL” will occur. This will
be reflected in either the MQM System Log or the CSMT TD queue when a MQPUT call is
executed trying to perform this function.

MQSeries System installation verification test

The installation verification test will use one local queue, the sample transaction TST2 and the
program TTPTST2 provided with the release.

Note: Before running the installation test, the Global System Definitions must be completed
(refer to “Global system definition” on page 68).

To configure the MQSeries System for this test, you need only create the queue using the

MQMT administration screens, as follows:

v Verifying the MQSeries System installation

1. At the system prompt, type:
MQMT

2. The Main Menu will appear. To select Configuration, type:
1

3. The Configuration Sub-Menu will appear. To select Queue Definitions, type:
2

4. The Define Queue Name screen will appear. Fill in the following:

Object Type: L
Object Name: ANYQ
Press PF5 (Add Queue)

5. The Create Local Queue screen will then appear with default values. Press PF10 to bring
up the extended screen and fill in the following:

Usage mode: N (Normal)

Physical File Name: MQFIOO01 (file name from FCT)
Maximum Q Depth: 100

Maximum Message Length: 40961

All other fields can remain with default values.

To save the entry, press PF5

1. This size cannot exceed the maximum message size defined in the system definition and is about 750 bytes less than the maximum
VSAM recordsize, however, the user may enter any larger number and then downsize to the suggested value provided by MQM.

Chapter2.Installation 11

12

6. Press PF2 to return to the Queue Main Options Screen.
7. To Display your Queue Definition, press:
PF9

8. A selection screen will appear, use the cursor keys to select the queue, press any
character and:

<Enter>
9. Ascreenwill display the queue parameters just entered. Visually verify that the correct data
has been entered.
Congratulations. You have created your first MQSeries System queue.

You have now created a test configuration which will allow TST2 transaction to send messages
to ANYQ.

Now we will attempt to send and receive messages locally.

The local installation verification test consists of five logical steps. First, you will initialize the
MQSeries System runtime environment. Second, you will use the test program TTPTST2 to
send a number of messages. Third, you will use MQMT to verify that these messages are on
the queue. Fourth, you will use the test program TTPTST2 to read the messages. Finally, you
will again use MQMT to verify that the messages were delivered.

Program TPTTST2 is activated when the transaction TST2 is typed. Parameters have to be
specified according to the following format:

TST2 XXXX NN QQQQ Y
One or more spaces separate the parameters. Data entered is case sensitive.

XXXX 3 or 4 character function code required (as per help screen).

NN Optional 1 or 2 character numeric field giving the number of messages to be
processed, depending on the function code.

QQQQ A field of up to 48-characters, giving the name of a queue.
Y (optional) If timestamping is required.

10. Return to the Main Menu.

11. Select the Operation sub-menu.

12. Select Initialization/Shutdown of System.

13. On the Initialization/Shutdown screen, enter an X and press PF6 to shutdown the system.
Then enter an | and press PF®6 to initialize the system.

This step reloads queue definitions, including the queue just created, into the runtime
environment, and will take approximately one minute to execute.

14. Return to the Main Menu.
15. From the Main Menu, select the Monitoring option.
16. From the Monitor Menu, select Monitor Queue.

17. The Queue Monitor screen will appear showing ANYQ as the only defined queue. Note the
number of messages currently on queue (Q DEPTH).

18. Move to another terminal, or to another workstation or window.
19. At the CICS prompt, type:
TST2 PUT 10 ANYQ
If you type TST2 with no parameters, the HELP screen for TTPTST2 usage will be
displayed.
20. TTPTST2 sends the specified messages addressed to ANYQ.
You will receive the following message on successful completion of the transaction:

IBM MQSeries for VSE/ESA User's Guide

21.
22.

23.

24.

25.
26.

27.

28.

FULL CYCLE HAS BEEN PERFORMED SUCCESFULLY

QUEUE USED - ANYQ

NUMBER OF MESSAGES PROCESSED - 10

TOTAL SECONDS +.vvvvivnnnnnnennns - hh:mm:ss
where
nn = the number of messages you specified (10) and
hh:mm:ss = the time taken to process nn messages.

Return to the window (or workstation) running the MQMT Monitor Queue.

Press <Enter >. The number of messages for queue ANYQ should now equal nn, where
nn = the value specified in Step 20.
At the CICS prompt, type:

TST2 GET 10 ANYQ

See note in step 19 above.
TTPTST2 reads the specified messages from ANYQ. You will receive the following
message after successful completion of the transaction:

FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY
QUEUE USED - ANYQ
NUMBER OF MESSAGES PROCESSED - 10
TOTAL SECONDS.....vvvnvvviiinnnn.. - hh:mm:ss

Return to the window (or workstation) running the MQMT Monitor Queue function.

Press <Enter >. The Monitor Queue screen will still be showing ANYQ as the only defined
queue. Note the number of messages on queue now (QDepth).

The screen will show the number on queue ANYQ to have decreased to zero, and the total
number of messages read from the queue (LR) will have increased by the number you read
using TTPTST2.

Exit MQMT.

You have now completed a /ocal installation verification test demonstrating that two applications
can send/receive messages via an MQSeries System queue. Realize that this test has not
verified any communications links connecting you to a remote system.

There is a log queue with a default name of SYSTEM.LOG as indicated in the Global System
Definition (Option 1 or 4 in the Configuration Main Menu) that is very helpful for debugging
purposes.

29.

30.

Define queue name as SYSTEM.LOG using physical file name MQFLOG (file name from
FCT) with Maximum Queue Depth 1,000,000 (please refer to steps 4 and 5 for details
about defining a queue).

After the test, the log queue may be browsed by choosing the Browse Queue Records
(Option 4) in the Master Terminal Main Menu, entering SYSTEM.LOG as object name with
a proper QSN number.

Notes:

1. In order to expand this test to include a remote link, three steps are required.

a. Install the prerequisite hardware and software required to support the
selected transport protocol. Refer to the manufacturers directions for this
installation.

b. Define the desired MQSeries System channel(s). Refer to Chapter 6,
“System operation”, on page 65, and coordinate with the remote system
administrator to accomplish this.

c. Configure the transmission queue(s) and remote queue(s) required for the
MQSeries System to communicate over the channel.

2. In order for new queue definitions and channels to take effect at run time, the
MQSeries System must be shut down by first closing channel, stopping the
queues, and then shutting the System down. Then you must reinitialize the
MQSeries System as in Step 13 above.

Chapter2.Installation 13

The MQSeries System software has now been installed and locally verified using the provided
test programs. The administrative programs and the MQI libraries may be used now. But,
before user applications may effectively use the system for message transmission, the
MQSeries System must be fully configured.

This last step is the most critical step of the installation. It is expanded into the following three
chapters. Chapter 3, “Planning”, on page 15, summarizes the planning for new installations.
Chapter 4, “Configuration”, on page 23, provides the configuration guidelines. Chapter 6,
“System operation”, on page 65, describes the MQSeries System administration screens used
in the configuration.

Product information file

The Product Information File named PRODINFO.Z is located in the MQSeries sublibrary, and
contains the software level and service history of the product.

14 IBM MQSeries for VSE/ESA User’s Guide

Chapter 3. Planning

This chapter provides an overview of the considerations for implementing a distributed
application using the MQSeries System. This chapter will present an overall framework for the
planning of a distributed application and will expand on areas specific to MQSeries System.

A planning framework for distributed applications

As the term “middleware” suggests, the MQSeries System supports the creation of
message-enabled applications, and resides between distributed applications and the underlying
communications network. As such, it is imbedded in an often long process of planning and
implementation.

Several disciplines are involved in this planning. These may be administered independently,
resulting in separate but related planning domains for applications, systems, networks, etc., or,
they may be integrated to a higher level of planning for the distributed environment. In either
case, planning and implementation procedures will vary substantially from one organization to
another. Yet, it is often desirable to have a frame of reference when discussing individual
planning activities. It is for this purpose that a generic Distributed Planning Procedure is outlined
below.

Tasks and responsibilities
Figure 1, on page 16 identifies tasks and allocates them to the individual or organization

typically responsible. In the paragraphs that follow, each of the individual tasks is summarized.
Those that include the MQSeries System are expanded further.

© Copyright IBM Corp. 1993, 1997 15

System Designer

Traditional
Systems
Design

Extend Design by
Inserting Queues

Establish Queue
Names and
Message Formats

Map Applications to

System/Network
Administrator

MQSeries System
Administrator

Application
Developers

Types of Hardware

Identify Specific
Hardware Systems

Y

Have All Queuing
Information Required
(i.e., Queue Names
and Hardware)

Map System Design to

Configure the MQSeries

Physical Network

Ensure all Hardware and
Software Prerequisites for the
MQSeries System are in Place

Establish or Validate all
Communications

and Transport Layer
(LU6.2, DEChnet, etc.)

System on all Platforms
by defining:

-application queues
-Transmission Queues
-Aliases, as Needed
-Remote Queues

-Communication Channels

Design and Develop
Individual Applications
Using the MQSeries

Initial Testing Using
Only Local Queues

Validate Configuration

Links

A

Using Test Programs

Final Testing
Using Actual
Network and the
MQSeries System
Configuration

-

Analyze Functional

System for Security, ~

Throughput, etc.

A

Figure 1.

Tasks and responsibilities

System designer tasks

Traditional analysis and design

16

For new development, the design begins normally. Several well recognized methodologies exist
for approaching the basic system design effort. Any one of these results in a functional
decomposition of the overall system into a mesh network of processes depicting the flow of
information through the designed system. The mesh may be arbitrarily complex based on the
system requirements, but each process will be defined in terms of its local function and in terms
of data formats exchanged with other processes.

IBM MQSeries for VSE/ESA User's Guide

For example:

Process A

Data Format B1

Data Format C

Data Format D

For existing systems which are to be modified to operate in a distributed environment, the
above process may already be complete, or may have never been performed. If documentation
at this level is not available, it must be created. The functional decomposition must be
accomplished at least to the level that will identify each process which is a candidate for
relocation. Each of the processes must be understood in terms of the data formats exchanged
with other processes.

Data Format B2

Figure 2. Typical data flow diagram

Extending to a distributed design

In order to extend a “traditional” design to a distributed environment, using messaging and
queuing, there are a few essential steps.

® [dentify which application processes are to be distributed. This might apply to all
component processes or a subset of the entire system. In many cases, this is a simple
step since the primary system goal will have been stated in terms of a desire to
distribute a particular function.

® [solate each such process by inserting q ueues (in the design) between it and the
remainder of the system.

® Assign names to each of the required queues . These names are the logical
names which will be used by applications throughout the distributed environment to
address the queues. It is convenient to think of the queue name as a logical
destination address for a message. So, the names should be associated with the
process which will receive messages via that queue.

* Define message for mats for the new queues to replace the exchanged data formats
in the original design. For example, notice the queues isolating Process C in the
diagram below:

Process A

Data Format B1

Message Format C

Message Format B2

Data Format D

Figure 3. Data flow with queues

Chapter3.Planning 17

Mapping the design to the physical world

From a purist perspective, the highest level distributed design is complete. However, before
much work can be done beyond the design, it must be mapped onto the physical distributed
environment. This occurs in two steps.

Map the component processes (applications) to the “type” of host hardware on which
they will be implemented. Such as Mainframe, VAX, UNIX, etc.

At this point, all information is known that is required by the application developers to
begin development of individual applications . For more information see “Application
developer tasks” on page 19.

® The formats of messages to be exchanged via the above queues.

The developers have no need for further knowledge of the underlying network or of the
MQSeries System configuration. They specifically have no need to know where destination
queues will eventually reside.

Map the component processes (applications) to the “specific” host hardware on which
they will be operational. Such as: the Mainframe in Chicago, the VAX called “Mickey” in
Engineering, the UNIX system at IP address 255.25.2.5, etc.

The naming conventions for these systems will be different for every company. In any case,
whether formal or informal, these host systems will already be known to the enterprise network
or they will have to be added to the network.

This step constitutes the last step of the distributed design and is the highest level map of the
logical design to the physical network.

System / network administrator tasks

Map the logical design to the physical network

This is the detailed extension of the last design step. Verify or complete the map to specific
hardware systems. (Completion of the map may be particularly necessary in the case of LAN
implementations. The System Designer may not have low level LAN configuration knowledge,
such as which workstations are served by which file servers.)

Ensure that hardware and software are in place

Verify that the hardware and software prerequisites for the MQSeries System are installed at
each system involved in the distributed implementation.

Establish the transport layer of the network

18

This is a critical step which requires detailed system/networking knowledge of each platform but
very little knowledge of the MQSeries System. This includes:

® Verify that physical communications links (paths through the network) exist between
each of these systems.

® Establish any required transport layer definitions (LUs, PUs, NCP Gens, etc.) which
are needed to support a logical point-to-point connection between the MQSeries
Systems.

Some interaction with the MQSeries System administrator is required to complete the above
steps. The information shared between the Systems/Network Administrator(s) and the
MQSeries System Administrator(s) include:

® End points of point-to-point logical links.

® Number of links between systems.

® Transport protocol used.

® Transport specific names (LU Names, XIDs, Node Names, etc.).

IBM MQSeries for VSE/ESA User's Guide

MQSeries System administrator tasks

The MQSeries System Administrator is the focal point for a successful implementation since
this is the one activity which touches all others. Interaction will be required with the System
Designers, the Network Administrators, and the Application Developers.

The Administrator will have certain operational responsibilities after the distributed system has
been implemented, but by far the most significant duty is the initial configuration of the
MQSeries System queues . This is the critical function which ties together the underlying
transport network and the distributed applications. Briefly, this includes:

Configuring the MQSeries System Message Queue Manager
Configuring MQSeries System Local Queues

Configuring MQSeries System Transmission Queues
Configuring MQSeries System Queue Aliases

Configuring MQSeries System Remote Queue Definitions
Configuring MQSeries System Communications Channels

From a planning perspective, it should be realized that the queue configuration will require
some level of coordination throughout the network, but will be accomplished on each individual
system. Further, it should be recognized that configurations are typically built in three phases.
These phases correspond to:

® Test configuration(s) to allow local testing of applications using queues, or initial
testing of communications lines.

® Functional configuration to include all communications channels and all queues.
This configuration allows full application functional testing. It has not been optimized
for performance or been modified for any security or other installation specific
requirements.

® Operational configuration which is an extension of the above after considering
performance requirements, security requirements, etc.

® Details of all configuration activities are provided in Chapter 4, “Configuration”, on
page 23, of this document.

Application developer tasks

Application development on individual platforms can begin relatively early in the implementation
process. It can start as soon as the developers know:

® The platform on which the application will run and therefore, the MQSeries
implementation specifics for that platform.

® The queue(s) on which the application will receive messages.

® The queue(s) to which the application will send messages (that is, the queues on
which destination applications will receive messages).

® The formats of messages to be exchanged via the above queues.

The developers have no need for further knowledge of the underlying network or of the
MQSeries System configuration. They specifically have no need to know where destination
queues will eventually reside.

Development will proceed very much like traditional applications development. The only
difference is the use of the MQI to interface to queues.

The MQI and other Application design considerations are described in detail in Chapter 7,
“Application programming interface”, on page 105, of this document.

Chapter3.Planning 19

Including legacy applications in distributed designs

Legacy applications are commonly old, not well understood, not well documented, but they
work. So, no one wants to touch them.

Such applications present an obvious paradox when they form a critical piece of a system that
is to become distributed. Their input/output interfaces cannot be readily altered yet they must be
modified to support messages and queues.

The solution is simple. The Legacy application is “sandwiched” between a preprocess and a
post-process application which convert queues and message formats to/from existing data
formats used by the legacy software.

To illustrate this, consider a segment of our earlier flow diagram:

Data Format C /ﬁ Data Format B

Figure 4. No messaging and queuing

If Process C can be directly modified to use the MQI to take advantage of messaging and
queuing, then the result appears as:

Message Format C Message Format B
oo o~
Figure 5. Messaging and queuing

But, if Process C is a legacy application which cannot be directly modified to use the MQI, then
new Pre and Post processor applications are required, yielding:

Message | o5, eue Enabled Version of Legacy Application Message
Format C Format B

Unchanged Legacy Application
el >~ s foal -

Figure 6. Queue enabled version of Legacy application

Of course, the Pre and Post processors must reside on the same hardware platform as the
legacy application.

Planning considerations for VS E/ESA systems

Many of the following are detailed elsewhere in this manual. They are summarized here for
convenience.

® Prerequisite Hardware and Software is defined in Chapter 2, “Installation”, on page 3.

®* MQI Features have been implemented in a slightly different manner for different
operating system environments. Chapter 7, “Application programming interface”, on
page 105, should be reviewed closely to ensure that any features of particular interest
are fully available on VSE/ESA.

® Transport protocols supported on VSE/ESA include LU6.2 only. MQSeries System
implementations on other platforms may support additional Transport protocols (for
example, TCP/IP on the RISC System/6000 and DECnet** on the VAX/VMS) but
these are not currently available on VSE/ESA.

20 IBM MQSeries for VSE/ESA User's Guide

The Application Programming Language supported with VSE/ESA is COBOL for VSE.

Other languages may be usable at the application level, provided the customer
constructs the API interface calls correctly (see Chapter 7, “Application programming
interface”, on page 105).

Security for MQSeries System queues, communication channels, and administrative
programs can be established by taking advantage of native CICS security features.
For more information, refer to the IBM CICS System Destination Guide.

Syncpoint participation is supported on the IBM MQSeries for VSE/ESA. See Chapter
7, “Application programming interface”, on page 105.

The maximum message size that can be written to a queue is affected by the Journal
Control Table (that is, BUFSIZE). If this setting is too small, a CICS abend code of
AFCL will be produced on a MQPUT Call.

If recoverability is very important, then see “Dual Queue Support” on page 40. It
outlines how this facility works. Essentially, a backup queue can be created at the
same time the primary queue is updated. The MQSeries System handles recovery of
this backup queue if it becomes out-of-sync with the primary queue.

Queues can be fully rebuilt using a background MQPDUMP facility. This facility will
copy all non-processed messages to a sequential file. A VSAM delete/define may be
performed, to be followed by a reproduction of this sequential file back over the
cleaned VSAM file. See the “Background batch modules” on page 98 for more
information.

Chapter3.Planning 21

22 IBM MQSeries for VSE/ESA User's Guide

Chapter 4. Configuration

The MQSeries System software has now been installed on your system by following the
instructions in Chapter 2, “Installation”, on page 3. However, it cannot converse with other
MQSeries System installations or even perform local messaging until it is configured.

Building an effective configuration for MQSeries System operation is by far the most critical task
to insure a successful implementation.

This chapter will explain the concepts required to properly configure the MQSeries System.

The mechanics of entering configuration data are detailed in Chapter 6, “System operation”, on
page 65, as part of the Operator Screens Reference.

MQSeries System configuration elements

Queue names and

Configuring the MQSeries System requires that the administrator/operator define the following
MQSeries System elements:

Message Queue Manager

Local Queues

Transmission Queues

Communications Channels

Queue Aliases and/or Remote Queue Definitions

A clear understanding of each of these elements and an understanding of the MQSeries
System message routing is needed in order to properly configure the system.

Note: The Configuration of these elements does not affect the Routine Environment until an
initialization of the system is performed.

message routing

Queue names are used in all MQI calls to identify the queue with which you want to work.
Queue names are also included in message headers and, as the message traverses the
network, are the basis for routing the message.

A fully qualified queue name consists of two parts:

® The queue_manager_name, which identifies an MQSeries System.
®* The queue_name, which identifies the queue itself.

The full name may be written queue_name@queue_manager_name. If the
queue_manager_name is omitted, it is assumed to be the local_queue_manager.

This two-part naming convention represents the essence of message routing for the MQSeries
System. The fundamental routing algorithm is very simple:

The queue_manager_name identifies the MQSeries System on which the queue called
queue_name resides.

A goal of IBM MQSeries is to hide the network details from the application. The application
should not have to identify the system on which a particular queue resides. For this reason,
applications can use aliases and remote queue definitions, which are explained later in this
section.

Note: Some other operating systems, which the MQSeries System for VSE user may be
communicating with, may be case sensitive. It is important to read “Uppercase
translation”, on page 9, before devising a name for a queue, channel or Queue
Manager.

© Copyright IBM Corp. 1993, 1997 23

Queue name format
Each part of the queue name is contained in a 48-character field, with the local-name part
appearing first.

The character set that can be used for the queue manager name and queue name is as follows:

Uppercase A - Z
Lowercase a - z
Numerics 0 - 9
Period (.)
Forward slash (/)
Underscore ()
Percent sign (%)

Note: Leading or embedded blanks are not allowed.

Queue names and queue manager names that are shorter than the full field width can be
passed by an application program, either by padding to the right with blanks, or by using a null
(X“00") character after the last significant character of the name.

The null character and any characters to the right of it (which are ignored), are treated as
blanks. There can be blanks between the last significant character of the name and the null
character.

For example, a single null character in the first character position of the queue manager name
field can be used to default to the connected queue manager. This method is convenient for C
programs.

Either method (right padding or null character) can be used for names that are passed by the
application across the interface, but all names (including process-object names) that are
returned by the queue manager are always padded to the right with blanks.

Any structure to the names (for example, the use of the period or underscore) is not significant
to the queue manager.

Note: Names starting “SYSTEM” are reserved for the queue manager-defined queues.

Message queue manager

It is most reasonable to think of the Message Queue Manager as the domain composed of:

1. The MQSeries System disk directory containing the messaging and queuing configuration
database.
2. Any Messaging and Queuing software which operates by using this database.

The latter includes all the MQSeries System software components described in “Software
components of the MQSeries System”, on page 2.

Local message queues

24

In Chapter 1, “Product description”, on page 1, a local queue was defined as any queue residing
on the same message queuing system as the application. In the MQSeries System, a local
queue corresponds directly to a physical disk file which holds messages.

The queue_name of a local queue is used by all programs to access the queue.

In most cases, one local queue must be created for each MQI application running on the
system. This queue is used by the MQSeries System to store inbound messages destined for
the target application. Put another way, the application receives messages via its associated
local queue.

IBM MQSeries for VSE/ESA User's Guide

The required local queues are normally identified by the System Designer who has enterprise
wide responsibility for distributed applications. The Designer typically associates a queue name
with an application program. For example, the designer may prescribe the following
relationships:

Application Queue Name
Accounts Receivable Accts_Receivable
Accounts Payable Accts_Payable
Order Entry Ops_Orders
Shipping Ops_Shipping
Inventory Ops_Inventory

Table 1. Application and queue name

The publication of a list, as above, establishes a naming convention by which all developers
understand how to address messages to a particular destination application. For example, from
the above list, any program wishing to send a message to the Order Entry application, uses the
MQI call set to put a message to the queue named Ops_Orders. Similarly, the Order Entry
application itself receives messages (sent by other programs) by using the MQI call set to get
messages from the queue Ops_Orders.

Note: While the normal case is one local (input) queue per application, there are cases in
which an application may require:

® Multiple local queues (for example, high priority traffic on a separate queue)

® No local queues (for example, programs that generate messages, but never
receive)

® A shared local queue (for example, multiple processes all servicing the same
high volume queue)

Transmission queues

A special case of a local queue which is used to hold messages to be transmitted to another
system is called a transmission queue.

Since a transmission queue is a local queue, it also corresponds directly to a physical disk file
which holds messages. Beyond that, a transmission queue is substantially different from a
normal local queue.

Whereas a local normal queue holds inbound messages, a transmission queue holds outbound
messages. Whereas a local queue holds messages for a single application, a transmission
queue interleaves messages destined for several different applications residing on the same
remote MQSeries System.

Note: A transmission queue is associated with a communications channel. The messages on
a transmission queue are processed only by the MQSeries System's Message
Channel Agent (MCA). Normal MQI applications cannot directly access a transmission
queue.

In most cases, one transmission queue must be created for each adjacent MQSeries System in
the network. In this context, adjacent means any system with which you have a point-to-point
logical connection at the MQSeries System level. Since the physical topology of the underlying
transport network is hidden by the MQSeries System, this may or may not correspond to a
point-to-point physical connection. But, it may be conceptually easier to think of the connection
in physical terms.

Chapter4.Configuration 25

While the normal case is one transmission (output) queue per adjacent MQSeries System,
there are cases in which an MQSeries System may require:

® Multiple transmission queues to the same destination (for example, for higher
throughput)

® No transmission queues (for example, if an MQSeries System is to be used for only local
interprocess communications. While rare in normal operation, this arrangement is often
useful in test scenarios.)

Though the System Designer typically identifies required local queues, the designer may not
identify all required transmission queues. If not, the MQSeries System administrator must
compile:

® A list of applications running on the local system
® A list of destination queues to which the local applications send messages
® A list of remote MQSeries Systems on which these queues reside

From the above compilation, it should be simple to determine the required transmission queues.
Further system or application information will be required to identify special cases requiring
more than one transmission queue per connection.

Communic ations channels

26

In Chapter 1, “Product description”, on page 1, a channel was defined as a unidirectional
point-to-point communications link between two MQSeries Systems. The MQSeries System
channel parameters are defined by using the Channel Definition screen in the MQMT program,
as detailed in Chapter 6, “System operation”, on page 65. Each channel has a number of
characteristics:

® Unique twenty character channel name

Unique message sequence numbers
®* Communications parameters required by the transport layer

The MQMT Channel Definition Screen defines only the communications link parameters. The
associated transmission queue must be defined separately.

To fully implement an MQSeries System channel, you must perform functions on each of two
systems. For example, in order to connect LAN_A to MAINFRAME_B, you must:
On the MQSeries System installed on LAN_A:

* Use the MQMT Queue Definition Screen to define an outbound transmission queue called,
for example, MAINFRAME_B..

® Use the MQMT Channel Definition Screen to define communications parameters for the
channel named, for example, CHANNEL_1. In the channel definition, you will specifically
identify MAINFRAME_B as the name of the transmission queue for this channel.

® Insure all transport layer hardware and software is properly installed.
® Activate the MCA to process the LAN_A end of CHANNEL_1.

On the MQSeries System installed on MAINFRAME_B:
® Insure all transport layer hardware and software is properly installed.

® Use the MQMT Channel Definition Screen to define communications parameters for the
channel named CHANNEL_1. (On the input end of a channel, no transmission queue is
involved.)

® Activate the MCA to process the MAINFRAME_B end of CHANNEL_1.

Note: The above sequence of actions has established a channel in one direction only, from
LAN_A to MAINFRAME_B. The same steps must be performed to create another
channel, if desired, to allow messages to flow in the opposite direction.

IBM MQSeries for VSE/ESA User's Guide

Remote queue definitions

A remote queue definition is simply alternative logical name which can be used to address an
MQSeries System queue instead of using the actual queue_name. A single name is provided
for use by an application which relieves the application of needing to know the location
(queue_manager_name) of the destination queue.

These extensions to the use of direct queue_names exist solely to simplify the work of
developers and to improve the flexibility/portability of distributed applications.

A remote queue definition is simply a logical name defined on the local system which identifies
a queue physically resident on another system. The queue_name so defined, can be used by
applications to address the queue, but the MQSeries System will realize the queue is elsewhere
and direct the messages to the remote site.

Note: MQI does not support GET operations directed to a remote queue.

To define a remote queue, one does not supply the same fields as when defining a local queue
(for example, no file name, or record size), but must supply both:

* the queue_manager_name of the remote system

and
® the queue_name of the actual physical queue on the remote system

Optionally, you may also identify a transmission queue (other than the default transmission
queue) which is to be used to send messages to the remote system.

When defining a remote queue, each entered name is validated by the MQSeries System as

follows:

queue_name must be unique among all names defined locally.

queue_manager_name must match a local transmit queue, or the optional alternative
transmit queue must be supplied.

remote_queue_name must match a definition on the remote system but this cannot be
validated locally.

transmit_queue_name must match a local transmit queue, if present.

This extended queue identity is not visible to an application on the local system. Local
applications use only the queue_name.

Note: Some other operating systems, which the MQSeries System for VSE user may be
communicating with, may be case sensitive. It is important to read “Uppercase
translation”, on page 9, before devising a name for a queue, channel or Queue
Manager.

Conversely, the queue_name used locally is not visible to the remote system. In its place, the
fully qualified remote queue name (remote_queue_name @ queue_manager_name) is inserted
in the message header before transmission.

Chapter4.Configuration 27

Aliases

An alias is similar to a remote queue definition in that it is an alternative logical name which can
be used to address an MQSeries System queue instead of using the actual queue_name. An
alias, however, is simpler than a remote queue definition.

An alias provides a simple one-to-one name substitution capability. It associates an alternative
(alias) name with an already defined queue.

By defining an alias, the MQSeries System administrator has the ability to redirect message
traffic. For example, if an application was originally coded to write to a queue called FRED, but
we now want the output to go to JOHN, the redirection can be accomplished by redefining
FRED as an alias for JOHN rather than as a real local queue.

The MQSeries System supports two other types of aliases beyond the simple queue alias.
There is a manager_alias, which is simply an alias associated with an already defined
queue_manager_name. There is a reply_to_alias which is somewhat more complex and
infrequently used. This last type of alias will be explained more fully in “Alias queues, remote
queues, and routing”, on page 30.

Note: An alias can be defined for a local queue, a remote queue, or a queue manager.

MQSeries System message routing

MQSeries System message routing is not to be confused with lower level network routing. The
MQSeries System is normally concerned only with fixed, point-to-point routing which is
substantially simpler than dynamic, adaptive, multi-hop, network routing algorithms. However,
the many options available can make MQSeries System routing somewhat complex.

The MQSeries System must be explicitly configured (that is, queues, channels, aliases, etc.
must be defined) to insure the desired flow of messages through the network. To do this
effectively, the MQSeries System routing algorithm must be understood.

To understand MQSeries System routing, we will look first at the basic routing algorithm, then at
the MQSeries System routing table, and finally at effects on routing which can be generated
through aliases and remote queue definitions.

Basic message routing

Early in this chapter, it was noted that the two-part MQSeries System queue names embodied
the essence of message routing for the MQSeries System. The fundamental routing algorithm is
very simple:

The queue_manager_name identifies the MQSeries System on which the queue
called queue_name resides

The basic algorithm may be expanded by following the flow of a typical message from one
system to another, as follows:

1. Atthe originating system, a message is presented (PUT) to the MQI with the two-part
destination queue_name.

2. The MQSeries System examines the destination queue_manager_name to see if it
matches the local_queue_manager_name. Typically, it does not match, so the MQSeries
System knows the message goes to another system.

3. In this case, the destination queue_manager_name must match a transmission queue
defined on the originating system. This is the default transmission queue to reach the
specified queue_manager.

4. The message is enqueued to this transmission queue.

5. The MQSeries System MCA on the originating (output) system GETs the message from
the transmission queue and sends it over the link to the remote system. Notice that the
output MCA utilizes no routing logic.

28 IBM MQSeries for VSE/ESA User's Guide

6. The MQSeries System MCA on the destination (input) system receives the message from
the communications link (and invokes routing logic to determine what to do with it).

7. The MQSeries System examines the destination queue_manager_name to see if it
matches the local_queue_manager_name. Typically, it does, so the MQSeries System
knows the message belongs “here”.

8. The MQSeries System then examines the destination queue_name. In this case, the
destination queue_name must match a local queue defined on the destination system.

9. The message is enqueued to this destination queue.
10. The destination application receives (GETs) the message via the MQI.

From this example, several basic configuration principles may be observed:

1. MQSeries System routing logic is exercised independently on each system. Therefore,
each MQSeries System must be configured individually, but all configurations must be
coordinated to be effective.

2. Any configuration must have defined one local queue for each inbound destination on the
system. These will be used to receive incoming messages. The defined queue_name must
match the queue_name applications will use in message headers.

3. Any configuration must have defined one transmission queue for each remote destination
system. These will be used to transmit outbound messages. The defined queue_name
must match the queue_manager_name applications will use in headers of outbound
message.

The MQSeries System routing table
Before exploring the routing logic further, it is useful to understand the MQSeries System’s
Routing Table which is used to resolve all queue references. Note that the table is described
here as a logical entity and may not exactly correspond to the data structure on a particular
system.

MQSeries System queue names are of the form queue_name @ queue_manager_name ,
each half of which is 48 characters. The MQSeries System Routing Table, however, is keyed to
a single 48-character string. This string is normally a queue_name but will be called
Object_Name to avoid/reduce confusion in this discussion.

An entry must exist in the Routing Table for each of the following:

All LOCAL queues (Type=Local, Usage=Normal)

All TRANSMISSION queues (Type=Local, Usage=Transmission)
Any desired definitions for REMOTE queues

Any desired ALIAS_Q names for queues

Any desired ALIAS_M names for queue_managers

Any desired ALIAS_R names for reply_to_queues

Chapter4.Configuration 29

The format of each Routing Table entry varies according to type. This is summarized in the

chart below.
Obj_Name Type Q_Name QMgr_Name Xmit_QName
Required LOCAL
Required TRANSMIT -
Required REMOTE Required Required Optional
Required ALIAS Q Required
Required ALIAS_M Required Optional
Required ALIAS_R Required Required

Table 2. Routing Table Format

Alias queues, remote queues, and routing

30

What happens to routing, when alias queues and remote queues are introduced into the

algorithm? This can be seen by considering various routing scenarios and examining the results
of these scenarios under the MQSeries System routing logic. These sample routing cases will

also further illustrate normal routing cases.

In these cases, the QName @ QMgrName shown as input indicate the “actual” nature of the

input. The routing algorithm results will be as indicated for each case.

Note: The following is not intended to suggest application level pseudo-code, but only to

explain what happens within MQSeries System routing.

1. Application attempts to operate on queue identified as
Queue_Name @ Local_Queue_Manager
Routing Process:

Queue_Name has to match a Routing Table entry for Local or Remote queue or error.

2. Application attempts to operate on queue identified as
Queue_Name @ (Blank_Queue_Manager)
Routing Process:

Queue_Name has to match a Routing Table entry for Local or Remote queue or error.

3. Application attempts to operate on queue identified as
Queue_Name @ Remote_Queue_Manager
Routing Process:

Remote_Queue_Manager has to match a Routing Table entry for Transmit queue.... or

error, Queue_Name is ignored.

4. Application attempts to operate on queue identified as
Remote_Queue_Name @ (Blank_Queue_Manager)
Routing Process:

Remote_Queue_Name has to match a Routing Table entry for Remote queue or error.

5. Application attempts to operate on queue identified as
Alias_Name @ Local_Queue_Manager
Routing Process:

Alias_Name has to match a Routing Table entry which resolves to another Routing Table

entry for Local or REMOTE queue or error.

IBM MQSeries for VSE/ESA User's Guide

6. Application attempts to operate on queue identified as
Alias_Name @ (Blank_Queue_Manager)
Routing Process:

Alias_Name has to match a Routing Table entry which resolves to another Routing Table
entry for Local or REMOTE queue or error.

7. Application attempts to operate on queue identified as
Alias_Name @ Remote_Queue_Manager
Routing Process:

Remote_Queue_Manager has to match a Routing Table entry for Transmit queue or
error, Alias_Name is ignored.

8. Application attempts to operate on queue identified as
Some_Queue_Name @ Alias_Queue_Manage r
Routing Process:

Alias_Queue_Manager has to match a Routing Table entry with type ALIAS_M which
resolves to Local_Queue_Mgr_Name. Second pass through search logic resolves
Some_Queue_Name to either case (1) or (5) above.

OR

Alias_Queue_Manager has to match a Routing Table entry with type ALIAS_M which does
NOT resolve to Local_Queue_Mgr_Name.

This case is handled same as case (3) or (7) above. No second pass through the search
logic is required. Some_Queue_Name is ignored.

OR
Error.

9. Message Channel Agent receives inbound message with destination queue identified as:

Some_Queue_Name@Some_Queue_Manager
Routing Process:

Some_Queue_Manager has to match a Local_Queue_Manager_Name and
Some_Queue_Name is resolved as in case (1) or (5) above with a single pass through the
search logic.

OR

Some_Queue_Manager has to match a Routing Table entry with type Alias_M which
resolves to the Local Queue_Manager_Name.

On second pass through search logic, Some_Queue_Name is resolved as in case (1) or
(5) above.

OR

Some_Queue_Manager has to match a Routing Table entry with type Transmit and is
handled same as case (3) or (7) above.

Some_Queue_Name is ignored.
OR
Some_Queue_Manager is invalid.

Chapter4.Configuration 31

Other alias types

In some cases, it is desirable to have multiple channels, and multiple transmit queues defined
for the same remote destination system. This conflicts with the standard use of the
gueue_manager_name as the transmit queue name.

The extension of the REMOTE queue definition to include a TRANSMIT queue is convenient for
most such cases, but may be undesirable at a central “server” system which must deal with a
large number of remote systems. The server would require a large number of REMOTE queue
definitions in order to handle anything more than one TRANSMIT queue per system.

A Routing Table entry type ALIAS_R provides a mechanism to allow the name for the response
transmission queue to be expanded at the originating system.

This may be thought of as a “Reverse Queue Manager Alias” or as a “Response Class” or as a
“Response Category”.

Itis a relatively simple concept which simultaneously frees a remote server from the need to
define a long list of REMOTE queues, and frees the local application from the need to know
details of the transmit queue structures, and allows the local application code to be completely
portable.

For example:

This example shows the use of reply aliases and manager aliases to reduce the definitions
required at a central server site.

An application running on SYS1 originates a message to a remote server and specifies
Reply_to_Queue =PRIORITY (and Reply_to_Queue_Manager =BLANK).

At SYS1, the Routing Table contains three related entries:

Obj_Name Type Q_Name QMgr_Name Xmit_QName
My_Queue LOCAL
PRIORITY ALIAS_R My_Queue SYS1_PRI -
SYS1_PRI ALIAS M — SYS1 —

Table 3. Local routing table

During outbound processing, the MQSeries System finds that PRIORITY matches a Routing
Table entry of type ALIAS_R, and substitutes MY_QUEUE @ SYS1_PRI into the outbound
Reply_to_Queue fields.

At the remote server, the Routing Table contains one related entry:

Obj_Name

Type

Q_Name

QMgr_Name

Xmit_QName

SYS1_PRI

Transmit

Table 4. Remote server routing table

When the server has completed processing the original message, the response is queued to
the transmit queue SYS1_PRI.

Back at SYS1, the response arrives with QMgrName=SYS1_PRI. This is resolved through the
Routing Table to match SYS1 and so the message is accepted and enqueued to the local
gueue MY_QUEUE.

Portable application code

Not only did the above result in minimizing Routing Table entries at the server, but also it
promotes totally portable application code.

32 IBM MQSeries for VSE/ESA User's Guide

Consider the case in which the network in the above example is to be expanded by adding a
new system called SYS2. The new system will run the same application software as SYS1, and
will post requests to the same server application.

By simply copying the unmodified application (executable) code from SYS1 to SYS2, and
making the following Routing Table updates, all will work correctly.

At SYS2, the Routing Table contains three related entries:

Obj_Name Type Q_Name QMgr_Name Xmit_QName
My_Queue LOCAL
PRIORITY ALIAS R My_Queue SYS2_PRI
SYS2_PRI ALIAS_M SYS2

Table 5. Additional system routing table
At the remote server, the Routing Table expands by only one related entry:

Obj_Name Type Q_Name QMgr_Name Xmit_QName
SYS1_PRI Transmit - - -
SYS2_PRI Transmit -—-- -—-- -—--

Table 6. Remote server’s new routing table

At both SYS1 and SYS2, the application code uses the name “PRIORITY” as the
Reply_to_Queue. The ALIAS_R logic resolves this correctly via the Routing Table and
correctly directs response traffic through the server to two different remote systems through
TRANSMIT queues which are not the default queues.

This, of course, can be extended to any number of Message Queue_Managers and to any
number of TRANSMIT queues used for Response messages.

| Recommended naming conventions

The naming (of queue_managers, queues, and aliases) used in the MQSeries System can be
very flexible. Each organization will have its own view of how these names should be
constructed. Beyond conforming to the format described in “Queue name format”, on page 24,
choosing names is left entirely in the hands of the user organization. However, a few
suggestions are provided below.

1. Do not use very long names: _ Though the name fields are 48 characters long, very long
names are cumbersome. Also, in some cases, the MQSeries System displays or
messages may truncate very long names due to screen size limitations. In most cases
names substantially shorter than 48 characters are sufficient.

2. Attempt to configure the MQSeries System so that all queues may be referred to by a

one-part name: This will maximize the “network independence”, or minimize the network
topology knowledge required, of the distributed applications. It is desirable for applications
to use only a queue_name rather than the two-part queue_name@queue_manager name
construct, allowing the MQSeries System, through its routing table, to determine the
location of the queue. This can easily be accomplished by using remote queue definitions
and/or aliases to identify all remote queues. (In installations which require access to a large
number of remote queues, this may be too cumbersome to configure.)

3. Use aliases: First, this can avoid the need to change application source code when the
network changes or when a remote application changes. Also, aliases can be used to
resolve incompatibilities between different naming domains. For example, if two computers

Chapter4.Configuration 33

in different companies are talking via the MQSeries Systems, each company will probably
want to name their own queues and queue managers. A “territorial” dispute is not
uncommon. Such conflicts can be resolved by using aliases to “translate” names at the
border.

Configuration capacities

In the current release, the major configuration elements are limited as follows:
Queue Managers: One

Local Queue Def initions: Unlimited. However, the User may set a maximum number of
allowed queues via the Global System Definition screen.

Alias Definitions: Unlimited.
Remote Queue Defi nitions: Unlimited.

Total Queue Objects: Unlimited.

Object Handles: Unlimited. However, the User may set a maximum number of
allowed connections via the Global System Definition screen.

Channels: Unlimited.

MCA Processes: Unlimited.

Maximum Message Size: 32000 bytes (excluding 736 byte header). The User may set a
system-wide maximum message size via the Global System
Definition screen. The User may also set a maximum message
size for each queue via the Queue Definition screen.

Configuration worksheets

The set of sample worksheets in Appendix F, “Configuration worksheets”, on page 277 is
presented in a format intended for duplication and use by the MQSeries System administrator
or other individuals who design, configure, or require knowledge of the MQSeries System
network.

The worksheets presented are:

System List (Message Queue Manager Names)

Application List (Queue Names & Host Systems)

Application Look at Queues

System Look at Queues

Channel List

MQSeries System Configuration (Routing Table) Work Sheet

Each of the worksheets is presented one-worksheet-per-page in Appendix H. The purpose and
field descriptions appear at the beginning of each worksheet. Users may use all, some, or none
of these worksheets at their discretion.

Configuration examples

Four sample configurations are presented below.

Simple network - minimum configuration

34

Consider two systems, one in Chicago, one in Boston. Each system has a single
Message_Queue_Manager which has the same name as the host city.

Both Chicago and Boston run copies of the same two applications, Application_1 and
Application_2 , which are served by local queues App_1 and App_2 respectively.

IBM MQSeries for VSE/ESA User's Guide

Any application must be able to talk to any other application, but no segregation of traffic is
required on the transmission between nodes. So, the default transmission queues are sufficient.

Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local
Chicago Transmit

Table 7. Minimal Boston routing table

Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local
Boston Transmit

Table 8. Minimal Chicago routing table

With the above configuration, applications at Boston may put messages to:

App_1 (The LOCAL application)

or

App_1 @ Chicago (The REMOTE application)

or

App_2 (The LOCAL application)

or

App_2 @ Chicago (The REMOTE application)

Similarly, applications at Chicago may put messages to:

App_1 (The LOCAL application)

or

App_1 @ Boston (The REMOTE application)

or

App_2 (The LOCAL application)

or

App_2 @ Boston (The REMOTE application)

Chapter4.Configuration 35

Simple network - improved configuration

This simple configuration in the preceding example is workable, but it requires the applications
to be aware of “Boston” and “Chicago” as the existing transmission queues.

This configuration could be improved as follows:

Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local
Rem_App_1 Remote App_1 Chicago
Rem_App_2 Remote App_2 Chicago
Chicago Transmit

Table 9. Improved Boston routing table

With the above configuration, and complimentary changes to the Chicago Routing Table,
applications at either Chicago or Boston may put messages to:

App_1 (The LOCAL application)

or

Rem_App_1 (The REMOTE application)
or

App_2 (The LOCAL application)

or

Rem_App_2 (The REMOTE application)

Simple network - improved configuration #2

A similar result could also be achieved with an alternative Routing Table using ALIAS_M
entries, for example:

Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local
Remote Alias_ M Chicago
Chicago Transmit

Table 10. Improved Boston routing table using ALIAS_M

With the above configuration, and similar changes to the Chicago Routing Table, applications at
either Chicago or Boston may put messages to:

App_1 (The LOCAL application)

or

App_1 @ Remote (The REMOTE application)
or

App_2 (The LOCAL application)

or

App_2 @ Remote (The REMOTE application)

36 IBM MQSeries for VSE/ESA User's Guide

Complex network - recommended con figuration

Consider three host systems, one in Chicago, one in New York, one in Boston. Each of these
systems has a single Message_Queue_Manager which has the same name as the host city.

Both Chicago and Boston run copies of the same four applications, Application_1 ,
Application_2 , Application_3 , and Security . At both locations, these applications are served
by local queues App_1, App_2, App_3, and Sec respectively. The first three applications at
these sites interact only with a server at New York but not with each other. App_3 uses a
segregated priority transmission queues to and from the server.

New York is a centralized server site running two applications, Server and Security . Server is
an “advanced” application which is served by two local queues Nor_Req and Pri_Req.
Typically the remote applications #1 and #2 send normal traffic to Nor_Req . Application #3
sends “high priority requests” to Pri_Req .

At all three locations, the Security applications may talk to any other Security application but
their “classified” traffic must be segregated from the other applications' traffic. That is they must
have a separate transmission queue.

Finally, in addition to these 3 host systems, there are fifty (50) distributed LANSs, one in every
state. Each LAN supports up to 20 applications which can generate both normal and priority
requests to Server at New York. The normal and priority traffic must have segregated
transmission queues to and from the server system.

Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local
App_3 Local
Sec Local
NewYork Transmit
NY_Priority Transmit
NY_Secure Transmit
Chicago Transmit
Chi_Secure Transmit
Sec_NY Remote Security NewYork NY_Secure
Sec_Chi Remote Security Chicago Chi_Secure
Nor_Req Remote Nor_Req NewYork
Pri_Req Remote Pri_Req NewYork NY_Priority
Pri_Reply Alias_R App_3 Boston_Pri
Boston_Pri Alias_M Boston
Table 11. Boston host routing table
Obj_Name Type Q_Name QMgr_Name Xmit_QName
App_1 Local
App_2 Local

Table 12. Chicago host routing table

Chapter4.Configuration 37

38

Obj_Name Type Q_Name QMgr_Name Xmit_QName

App_3 Local

Sec Local
NewYork Transmit
NY_Priority Transmit
NY_Secure Transmit

Boston Transmit
Bos_Secure Transmit

Sec_NY Remote Security NewYork NY_Secure
Sec_Bos Remote Security Boston Bos_Secure
Nor_Req Remote Nor_Req NewYork

Pri_Req Remote Pri_Req NewYork NY_Priority
Pri_Reply Alias_R App_3 Chicago_Pri
Chicago_Pri Alias_M Chicago

Table 12. Chicago host routing table (Continued)
Obj_Name Type Q_Name QMgr_Name Xmit_QName

Nor_Req Local

Pri_Req Local

Sec Local

Chicago Transmit
Chicago_Pri Transmit ---
Chicago_Sec Transmit

Boston Transmit
Boston_Pri Transmit
Boston_Sec Transmit
Alabama Transmit
Alabama_Pri Transmit

Repeat above pair for all 50 State LANs

Wyoming Transmit
Wyoming_Pri Transmit - ——
NY_Priority Alias_M NewYork

Table 13. New York host routing table

IBM MQSeries for VSE/ESA User's Guide

Obj_Name Type Q_Name QMgr_Name Xmit_QName

LAN_App_1 Local

Repeat above for all LAN Applications

LAN_App_20 Local

NewYork Transmit
NY_Priority Transmit

Nor_Req Remote Nor_Req NewYork

Pri_Req Remote Pri_Req NewYork NY_Priority

Nor_Reply_1 Alias_R LAN_App_1 StateName
Pri_Reply_1 Alias_R LAN_App_1 StateName_Pri | ---

Repeat above two lines for all LAN Applications

StateName P ri | Alias_M StateName

Table 14. State LAN routing table (identical at each site except for StateName)

With the above Routing Table configurations, applications at either Boston or Chicago or any of
the 50 State LANs may PUT messages to:

Nor_Req (to Server at NewYork via “normal” path)
or

Pri_Req (to Server at NewYork via “fast” path including segregated Transmission Queue)

Any replies from Server may be specified by the originating application to be returned via
Pri_Reply (or Pri_Reply_n for LAN Applications) which will use the segregated transmission
queue for high-priority responses from New York back to whichever system originated the
request.

Also, applications at the Boston or Chicago hosts may PUT messages to:

Sec_NY (to Security at NewYork via “secure” path including segregated Transmission
Queue)

Notice that the Security applications are fully defined as REMOTE queues at all of the three
major hosts. Thus no ALIAS_R routing entries are required, yet all traffic (including responses)
can flow over the segregated Secure transmission queues.

Finally, consider the Routing Table entries required to support the Server application at
NewYork. Entries are needed for 106 TRANSMIT queues (2 to each of 50 LANs and 3 to each
of the other hosts). While this is a large number of entries, realize that it allows for segregated
responses to each of more than 1,000 applications (20 at each LAN plus those at the hosts). To
provide this same capability using only REMOTE queue definitions at the server (and not using
ALIAS_R logic) would require the New York Routing Table to be over 2,000 entries (a normal
path and a priority path to each remote application).

Chapter4.Configuration 39

Dual Queue Support

40

A local queue can have a mirror image generated. This is done by filling the field “Dual Update
Queue” when defining this queue. The local queue being mirrored will be called “Primary
Queue” and the mirror queue will be called “Dual Queue”. This Dual Queue is also a local
queue. The Dual queue has to be defined before completing the “Dual Update Queue” field.

When an application writes a message to the Primary queue, the message is also placed into
the Dual queue. When a message is retrieved (logically deleted) from the Primary queue, the
message is also (logically) deleted from the Dual queue.

Dual queuing has been implemented to increase the data integrity. Therefore, the following is
strongly recommended :

® - Make the Primary queue unique in a VSAM cluster.

® - Make the Dual queue unique in a VSAM cluster.

® - Have these 2 clusters on different DASD volumes.

If the Primary queue is not empty when the Dual Update Queue field is updated via Queue
Definition Dialogs, the Dual queue will be synchronized with the Primary queue as soon as the
system is initialized (or these queues are closed then reopened). More generally, if for any
reason the Dual queue does not match the Primary queue (or the Dual queue becomes
unavailable), the queue is placed in recovery state. As soon as the Dual Queue becomes
available again, a Queue Recovery task will make sure that the Dual queue is placed back in
synch with the Primary queue.

If the Primary queue becomes unavailable, there is no automatic way to make the Dual queue
take over. Instead, a manual intervention is needed and the batch program MQPUTIL is to be
used. Therefore the following scenario is suggested:

1. Stop the MQSeries Queue Manager using MQMT dialogs.

2. Close MQSeries VSAM clusters by using CEMT, more precisely: the configuration file, and
the 2 clusters containing the primary and Dual queues.

3. Backup the current configuration file.

4. Run the program MQPUTIL with the “DUALQ TAKEOVER command. (refer to“Background
batch modules”, on page 98 for more details). This will make the Dual queue become the
primary queue.

5. Reclaim space of already delivered messages and resequence by running job
MQJREORG against the dual queue. This step is optional but recommended.

6. Reinitialize MQSeries by using MQMT. However, you should be aware that now you are
working without a Dual queue anymore.

7. Try to understand the problem and resolve it. This may take a long time (hours if it was due
to physical DASD 1/O errors).

8. When it is repaired, and MQSeries has stopped, copy the current primary queue (former
Dual queue) to the real primary queue (by using VSAM REPRO).

9. Restore the original Configuration file that you saved in step 3.
10. DELETE and REDEFINE clusters hosting Dual queues.
11. Restart MQSeries.

IBM MQSeries for VSE/ESA User's Guide

System configuration examples

For VTAM:
It is unlikely that the MQSeries System will require any changes to:
®* VTAM start parameters and
¢ the definition of CICS Systems to VTAM
However, all involved LUs must be defined.
For CICS

Sample definitions for CICS tables may be found in the sublibrary PRD2.MQSERIES. However,
other definitions are specific to the user environment and have to be done manually by using
the CEDA transaction or DEFINE commands if using the DFHCSDUP batch program. This
involves connection definitions and session definitions.

Conne ction definition:

CICS uses the connection name to identify the other system(s). For example, if sessions in
VSEL1 are to converse with sessions in VSE2 and MVS, the VSE2 connection must be
defined in VSE 1, and vice versa. All involved sessions and terminals must also be defined:

VSE1 VSE2 MVS Refer to
CONN(VSE2) CONN(VSEL1) CONN(VSEL1L) Connection Definition
CONN(MVS)

Sessions Sessions Sessions Session Def inition
Terminals Terminals Terminals Terminal Definition

Table 15. General Definition.

Type CEDA DEF CONN GROUP(MQSERIES) to create connections, and set the fields to the
following values::

Category Parameter Desired Value
Connection VSE2
Group MQSERIES
Connection Identifiers Netname vse2lu62
Connection Properties ACcessmethod Vtam
Protocol Appc
Datastream User
RECordformat U
Operational Properties AUtoconnect Yes
INService Yes
Security ATtachsec Local

Table 16. Object Characteristics of Connection

The above settings along with default values are sufficient for operation. For other
parameters, refer to CICS/VSE 2.3 Resource Definition Guide (SC33-0708).

Chapter4.Configuration 41

Connection status can also be displayed by typing CEMT I CONN::

STATUS: RESULTS - OVERTYPE TO MODIFY
Conn(VSE2) Net(XXXXXXXX) Ins Acq
Conn(MVS) Net(XXXXXXXX) Ins Rel

Table 17. CEMT | CONN display output.

Session definition:

Type - CEDA DEF SESSION G(MQSERIES) - to create session names and fill in the fields with
the following values::

Category Parameter Desired Value
Sessions VSE1VSE2
Group MQSERIES
Session Identifiers Connection VSE2
Session Properties Protocol Appc
Maximum 00006,00003
RECEIVEcount No
SENDCount No
SENDSize 04096
RECEIVESize 04096
Operational Properties Autoconnect Yes
Buildchain Yes
RELreq No
Discreq No
Recovery RECOvoption Sysdefault

Table 18. CEDA V SESS display parameter settings.

The above settings along with default values are sufficient for operation. For other
parameters, refer to CICS/VSE 2.3 Resource Definition Guide (SC33-0708).

Note: The DFHSIT Table must have the parameter ISC = YES to make the MQSeries
System work.

42 1BM MQSeries for VSE/ESA User's Guide

For the MQSeries System:

MQSeries channel definition

6/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:52:01 Channel List VSE2
MQMMCHN QMMC

S CHANNEL NAME TYPE STATUS LAST MSN LAST CHECKPOINT

C1 R ENABLE 000009 10:28:31
MQM7.LU62.VSEF.DEVL R ENABLE 005054 10:28:31
MVS1_TO_VSE2 R ENABLE 000005 10:28:31
VSE1_TO_VSE2 R ENABLE 000009 10:28:31
VSE2_TO_MVS1 S ENABLE 000069 10:28:31 MVS2
VSE2_TO_SDO01 S ENABLE 000006 11:11:09 SDo1
VSE2_TO_VSE1 S ENABLE 000000 10:28:31 VSE1

ENTER 'S' to select Channel
\ PF2=Menu PF3=Quit PF4=Read F7=Backward PF8 = Forward /

Figure 7. MQSeries for VSE/ESA Channel List screen

IBM MQSeries for VSE/ESA product configuration guidelines

Background information

IBM MQSeries for VSE/ESA is a CICS application written in COBOL. It uses LU 6.2 protocol to
exchange messages with peer MQSeries Systems. The user application (also a CICS
application) interacts with the MQSeries product via MQI calls aided with CICS SYNCPOINT
commands to keep resources synchronized. MQSeries messages are stored in queues with
map to queue files. The queue file is a logical structure under VSAM and several queues can be
defined to use a physical VSAM file. Set up parameters can affect performance significantly.
For example, with 4KB (4096 bytes) page sizes, a queue file which has a message size greater
than 4KB should be defined as SPANNED in the cluster of 4KB CI (control interval) size.

Note: There are performance implications when using VSAM SPANNED records. A Max
RECORDSIZE of 16000 defined for the VSAM cluster should perform better than a ClI
size of 4k and SPANNED records because of the special handling for SPANNED
records which includes:

— Checking the record type: first, middle, low
— buffer allocation requests

The 1/0 response time of a queue file request is subject to the contention of the I/O channel it
accesses and the DASD volume in which it resides. A high activity transmission queue or the
configuration file should not be placed in a high contention disk volume or disk bank.

Transaction program names are limited to 4 characters as the transaction IDs in CICS are
limited to 4 characters.

The performance of the MQSeries System CICS transactions can also be influenced by the
priorities set up for these transactions.

Since the MQSeries System can only allocate conversations after the LU6.2 sessions are
bound, the local LU with its partner LU must be defined to VTAM and CICS.

Chapter4.Configuration 43

General

All the following guidelines refer to the MQMT administration dialogs.

There are three levels of configurations:
the Queue Manager Configuration
the Channel Configuration
the Queue Configuration

Some fields are the same in all three levels, for example, the Maximum Message Size. The
size defined in the Channel Configuration must be equal to or greater than the largest message
size that is accessing this channel. The size defined in Queue Manager must also be the
largest of all of those defined in the channels under this Queue Manager. Each level of
Maximum Message Size utilize different kinds of resources, unnecessarily large sizes will
consume address space.

Queue manager configuration guidelines:

When configuring the Queue Manager (see “Global system definition”, on page 68), use the
following guidelines:

Checkpoint Global Timer: The time interval (in seconds) set to take a global checkpoint of
all active channel parameters. A value of 60 seconds is sufficient
since it provides a good recovery period and utilizes a
reasonable amount of resources.

Maximum Number of Tasks:
The maximum number (integer) of simultaneous connections to
the Queue Manager. Though there is a slight overhead for each
unused reservation, there is no harm in setting a large number,
such as 200.

Maximum Concurrent Queues:
The maximum number (integer) of simultaneous open LOCAL
queues allowed under this Queue Manager. One may neglect the
overhead and set it to a large number, such as 200.

System Wait Interval: The maximum polling time (in seconds) for the system monitor
program after the system initiation. Normally, a value of 5
seconds should suffice since it has been found to be good
practice to drain the incoming message queue before sending
out any pending messages.

Note: The system monitor task remains active until the CICS region is
shut down, but exists in a wait state until the task is activated by
the expiration of the System Wait Interval or by some specific
application interface tasks. This task starts up the trigger
program and schedules the processes which reclaim resources
held by abnormally terminated applications. If there are too
many, the System Wait Interval should be reduced to schedule
this clean-up process more frequently.

Maximum Q Depth: The Maximum number of active messages per queue (integer)
allowed by the Queue Manager. This value serves as the default
Maximum Q Depth value when defining a queue. Any inbound
message that causes the queue depth to exceed this size will be
rejected as “Queue Full”. If this value is smaller than the
Maximum Q Depth specified in the queue definition, it will be the
limiting value for the queue. The value should be set to the
maximum number of messages expected to be queued before
any application starts to process them. Adding an extra 100% as
a safety factor should be sufficient.

44 1BM MQSeries for VSE/ESA User's Guide

Maximum Message Size:

Note:

Maximum Single Q Access:

Maximum Global Locks:

Maximum Local Locks:

Checkpoint Threshold:

The maximum number of characters per message (integer) that
is allowed for this Queue Manager. This field needs to be large
enough to accommodate the largest message. For example, if
the anticipated largest message is 10 KB (10,240 bytes), this
field should be set to 10240. Although one may set 32 KB to
meet a 10 KB requirement, some valuable resources will be
wasted.

Since messages are actually stored in VSAM clusters, the
maximum message size has to be calculated using the largest
RECORDSIZE among all VSAM clusters containing queues.
Each record is prefixed by a Message Header of 736 bytes for
identification and description. Therefore, if for instance the
largest Cl is 4K (4096 bytes), the maximum RECORDSIZE is
4096-7=4089 bytes, and the Maximum Message size might be:
4089-736 = 3353 bytes.

This field defines the maximum number of MQOPEN calls
(integer) against any queue handled by this Queue Manager. A
value of 1000 calls would be a good cushion while consuming
little overhead, if the maximum number of opens for each queue
in the system is 100 calls.

The maximum number of entries (integer) that the Queue
Manager may use to maintain uncommitted MQPUT/MQGET
calls per queue for the system for recovery. In practice, a value of
500 is normally used.

The maximum number of entries (integer) that the Queue
Manager may use to maintain uncommitted MQPUT/MQGET
calls per queue per task for recovery. Since an entry of a Local
Lock is deleted once the application issues an explicit
SYNCPOINT CICS command to commit updates, the more often
an application takes the checkpoint, the less the Maximum
Number of Local Locks is needed. A value greater than the
largest of the maximum messages per batch of all channel
records should be specified. A value of 20 is usually sufficient.

The Maximum number of queue accesses (integer) between
checkpoints to be taken by the Queue Manager. The smaller the
value specified, the more often the Queue Manager will take
checkpoints to secure the data integrity, thereby increasing the
speed of recovery in the event of a system failure. The larger the
Checkpoint Threshold, the less resources will be consumed. A
value in the range of 100 to 1000 is a good compromise between
the performance and recovery speed.

Chapter4.Configuration 45

Channel configuration guidelines:

When configuring the channel (see “Channel definitions”, on page 80), use the following

guidelines:
Allocation Retries:
Number of Retries:

Note:

Delay Time-Fast:

Delay Time-Slow:

Get Retries:
Number of Retries:

Delay Time:

Note:

Max Messages per Batch:
Message Sequence Wrap:

Max Transmission Size:

46 1BM MQSeries for VSE/ESA User's Guide

The retry count field represents the number of times (integer) an
allocation is retried when the conversation has not been
established. A retry count of less than 10 times should be
sufficient, as if this value is exceeded, the system may under
stressed and further retries at this time could be
counterproductive.

When configuring a new environment, failures occurring more
frequently than this may indicate a network problem. An
investigation of the problem LU and its associated resources
should be conducted to ensure the session is bound and to
establish why the conversation cannot be allocated.

The time interval (in seconds) that allocation of conversation will
be retried for the first cycle of retries. A value of 1 to 5 seconds is
enough for this field. The time interval of 5 seconds would be
used for a slow environment, such as a dial-up SDLC.

The time interval (in seconds) that allocation of conversation will
be retried for the next cycle of retries should the first cycle of
retries fails. A size between 3 and 10 seconds should be
sufficient, 3 seconds for a normal environment and 10 seconds
for a slow environment.

The number of MQGET retries (integer) when queue is depleted.
If a transmission queue is empty, Queue Manager will retry at the
Delay Time interval before disconnecting the channel or making
a request to disconnect the channel.

The time interval (in seconds) between retries. The value of this
field may depend on the size of message and the platforms
where the LU resides. The “best value” may vary from 1 to 20
seconds. The longer the Delay Time is specified, the less
frequently a channel is reopened. For time-consuming dial-up
connections, a value of 20 seconds would be reasonable.

By using a value of zero for the 'number of retries' and a value of
'n' seconds for the 'delay time' it is possible to set a simple
disconnect interval similar to that provided on other MQSeries
platforms.

Only one message per batch is supported.

The MSN Wrap count (integer) represents the highest Message
Sequence Number (MSN) value which will be used on this
channel, after which the MSN will revert to 1. The value of the
MSN Wrap count must be the same at both the sending and
receiving ends of the channel. 999999 is the recommended
value.

The mutually accepted maximum number of characters per
transmission (integer). Since MQSeries for VSE/ESA does not
support the use of segmented messages, this value should be at
least equal to the Maximum Message Size expected on this
channel, plus 476 bytes for the transmission header.

Max Message Size:

Connection ID:

TP Name:

Note:

Checkpoint Frequency:

Checkpoint Time Span:

Queue configuration guidelines:

The maximum number of bytes per messages (integer) that is
allowed for this channel. It might be up to the maximum value for
the RECORDSIZE of the VSAM cluster in which the transmission
queue is defined minus the message header (736 bytes). For
instance, provided a VSAM CI of 4K, the maximum
RECORDSIZE is 4096-7=4089 bytes, and the Maximum
Message size might be 4089-736 = 3353 bytes.

A four-byte field (character) identifying the connection required
by the sender, optional for the receiver.

The remote task ID (character) of the receiver on a remote CICS
region or a Transaction Program name on a remote system.
Required by the sender. Since CICS uses four bytes as the
transaction Id, for CICS to CICS conversation, only the first four
bytes of remote task ID are meaningful.

VSE will convert the name to uppercase. The corresponding
name on the remote system should be defined as all uppercase.

A checkpoint event of this channel will be taken after the
specified I/O activities have occurred. The “best value” varies
from 10 to 1000 (in seconds) depending on emphasis of the
system throughput versus the channel recoverability.

A checkpoint event of this channel will be taken after the
specified time interval (in seconds) has expired. A value of 10
seconds will not present too much overhead.

When configuring the Queue (see “Queue definitions”, on page 70), use the following

guidelines:
Physical File Name:

Note:

Maximum Q Depth:

Maximum Message Length:

The CICS file name, up to 7 characters, used to store messages
for this queue. A physical file can hold as many queues as
desired. A message queue can be logically replenished, if its
associated physical file name is changed.

This feature may be used as a emergency short cut in a test
environment. For example, a queue file name AAAA, residing in
a physical file named P1, gets full. Without deleting and
redefining the P1 or using another queue file, the user may
simply update P1 to any existing physical file, say P2, and the
queue file AAAA will appear as a new file so long as there are no
AAAA records hidden in P1.

The maximum number of records (integer) that can be left unread
on this queue. Any inbound message that causes the queue
depth to exceed this size will be rejected as “Queue Full”. The
value should be set to the maximum number of messages
expected to be queued before the application starts to read and
process the queue. In practice, it is acceptable to set this to a
very large number such as 9999999.

The maximum number (integer) of characters per message that
is allowed for this queue. If this queue is a transmission queue,
then it needs to be large enough to accommodate all messages
using this queue as the outbound queue.

Maximum Concurrent Accesses:

The maximum number (integer) of MQOPENS that can occur to
this queue. An unrealistic value can consume too much
overhead. A value of 100 would provide a good cushion for any
non-transmission queue while consuming little overhead. The

Chapter4.Configuration 47

Number of channels per queue manager:

48

Global Lock Entries:

Local Lock Entries:

Checkpoint Threshold:

Trigger Type:

Maximum Trigger Starts:

Trans ID:

Program ID:

Term ID:

cushion could help reduce the impact of application program
errors that leave opened queues. For a transmission queue, a
value of 100 calls should be added to the base of 100 calls for
each additional target queue that receives messages from this
transmission queue.

The maximum number of entries (integer) that the Queue
Manager uses to maintain committed MQPUT/MQGET activities
for this queue for the system for recovery. An integer value equal
to or a little less than the Maximum Number of Opens for this
queue is what is needed, otherwise valuable resources may be
wasted.

The maximum number of entries (integer) that the Queue
Manager uses to maintain uncommitted MQPUT/MQGET
activities for this queue for recovery. Since an entry of a Local
Lock is deleted once the application issues an explicit
SYNCPOINT CICS commands to commit updates, the more
often an application takes the checkpoint, the less the Maximum
Number of Local Locks is needed. A value of 20 should be
sufficient.

The maximum number of queue accesses (integer) between
checkpoints to be taken by the Queue Manager for this queue.
The lower the Checkpoint Threshold, the more often the Queue
Manager takes checkpoints to secure the data integrity and
increase the reliability. The greater the Checkpoint Threshold is,
the less resources the Queue Manager will consume. A value in
the order of 500 to 5000 is a good compromise between
performance and reliability.

'F' is used to generate a trigger when an MQPUT activity
changes the status of a queue from empty to non-empty. The
triggered transaction must have logic to empty the queue
(including messages that may arrive during the process) in a
single thread.

'E' is used to generate a trigger whenever an MQPUT activity
occurs and may have many threads as specified in Max Trigger
Starts.

The maximum number (integer) of trigger threads that can be
active at once. This field is for Trigger Type 'E' only, because
Type 'F' supports single threaded processing only.

The transaction to be started by the trigger. This is mutually
exclusive with the Program Id. Leaving this as blank and using a
program ID such as MQPSEND is recommended unless a user
transaction is desired.

MQPSEND should be used on a transmission queue if triggering
is desired.

This field should be left blank unless a terminal is to be used for
debugging.

The limit on the number of channels depends more on general resources than on the Queue
Manager. The purpose of channel is to access a remote queue. The definition of a remote
queue demands the name of transmission queue which in turn is associated with a channel. In
other words, as far as Queue Manager is concerned, provided there is enough resource for
more transmission queues and channels to be defined, then there can be additional channels.

IBM MQSeries for VSE/ESA User's Guide

Example configuration:

Queue manager configuration:

Parameter Value Units
Checkpoint Global Timer 60 seconds
Maximum Number of MQCONN 200 integer
Maximum Open Queue 200 integer
System Wait Interval 1 seconds
Maximum Q Depth 9999999 integer
Maximum Message Size 3345 bytes
Maximum Number of Opens 500 integer
Max Number of Global Locks 500 integer
Max Number of Local Locks 20 integer
Checkpoint Threshold 500 integer

Table 19. Example of a Queue Manager Configuration

Channel configuration:

Parameter Value Units
Allocation Retries 10 integer
Delay Time-Fast 1 second
Delay Time-Slow 3 seconds
Get Retries 1 integer
Delay Time 10 seconds
Message Sequence Wrap 999999 integer
Maximum Transmission Size 3821 bytes
Maximum Message Size 3345 bytes
Checkpoint Time Span 10 seconds

Table 20. Example of a Channel Configuration

Chapter4.Configuration 49

50

Queue configuration:

Parameter Value Units
Maximum Q Depth 999999 integer
Maximum Message Size 3345 bytes
Maximum Number of Opens 1000 (transmit queue) integer
100 (other queues)
Max Number of Global Locks 1000 (transmit queue) integer
100 (other queues)
Max Number of Local Locks 20 integer
Checkpoint Threshold 100 integer
Trigger Type E character
Maximum Trigger Starts 1 integer
Transaction Id <blank> character
Program Id MQPSEND character

Table 21. Example of a Queue Configuration

IBM MQSeries for VSE/ESA User's Guide

Chapter 5. Configuring network resources

Introduction

One of the main aims of MQSeries is to allow applications to communicate without knowledge
of the lower levels of the communications network. However, this does not mean that, in order
to configure the product successfully, no knowledge of the communications network is required.
What it does mean, is that this knowledge is not required by the programmer writing the
application; underlying network issues can be left to those people in the enterprise who are the
experts on the subject.

This chapter is intended to give guidance and general help in configuring the network resources
to enable MQSeries to function.

Because of the wide variety of interconnections which may exist (different hardware platforms
and a variety of SNA software from a multitude of different third-party vendors), it is not possible
here to give comprehensive coverage of every imaginable scenario which might be
encountered. However, it is understood that, in any organization installing an MQSeries
network, those persons accountable for managing this work may not be familiar with SNA in a
mainframe environment. Therefore, the material presented here is intended to give information
to clarify what they require when dealing with the organization’s technical experts, and to enable
them to focus their own further reading more precisely to their present needs.

Authoritative information concerning implementations of the SNA architecture on IBM
mainframe systems may be found in the following manuals:

VTAM Network Implementation Guide (SC31-6434)
VTAM Resource Definition Reference (SC31-6438)
VTAM Operation (SC31-6435)

VTAM Messages and Codes (SC31-6433)

CICS Resource Definition (Online) (SC33-0708)
CICS Resource Definition (Macro) (SC33-0709)
CICS Intercommunication Guide (SC33-0701)

Similarly it will be necessary to consult the manuals for the SNA software at the remote system
to which the VSE system is being connected. Experience has shown third party SNA software
suppliers sometimes have idiosyncratic understandings of certain parts of the SNA architecture,
particularly when LUG6.2 is involved, and their software reflects this. Therefore, it cannot be
taken for granted that what is written in official SNA documentation will hold good in every
software implementation. The only solution is to read the manual for the product concerned and
gain an understanding of its use.

Further, for those people who possess skills in network configuration, this chapter will provide
skeleton resource definitions to illustrate the parameters which need to correspond in the
various definitions if the product is to work correctly.

Note: In the skeleton definition outlines provided in this chapter, text in angle brackets, <>,
contains a brief description of what is entered in the field. Where the same text is given
in angle brackets in different definitions, it means the same value must be coded in
both places. Where it is not essential for the same value to be coded, but it is helpful in
order to avoid confusion, or it is conventional to do so, a note will explain that <text 1>
can equal <text 2>.

© Copyright IBM Corp. 1993, 1997 51

Background information

52

For our purposes here, it is sufficient to note that VTAM (*Virtual Telecommunications Access
Method”) provides a software implementation of the entity defined in SNA as a “Systems
Services Control Point” (SSCP). In essence, in traditional SNA networks, VTAM is the
nerve-centre, monitoring and controlling the network resources.

Where a network consists of several mainframe hosts (“PU Type 5") connected together, each
host would have its own copy of VTAM controlling its own resources. This introduced the idea of
a VTAM “domain” - that is, all the resources owned (controlled) by a single VTAM. If a resource
owned by one VTAM required to communicate with a resource owned by another, the
communication is said to be “cross-domain”; thus, in this sort of environment, each
interconnected VTAM is seen as providing services as a “cross-domain resource manager”
(CDRM), and in any one VTAM domain, resources owned by another VTAM are cross-domain
resources (CDRSCs).

An extension to this idea of cross-domain resources comes when different SNA networks need
to be connected together (for example, two separate enterprises, or independent divisions in a
single enterprise, wish to be able to communicate) thus forming a larger network. Each of the
networks being joined is now given a distinct network ID, so the larger network formed is viewed
as consisting of several SNA subnetworks, the boundaries being determined by the points
where the network ID changes. This scheme enables each subnetwork to manage its affairs
relatively independently of any other subnetwork and yet still be able to communicate (for
example, across subnetworks, an alias name may be used to refer to a cross-network resource
where a name conflict arises). Cross-network resources may be viewed as a special case of
cross-domain resources.

Central to SNA is the concept of a session - a logical connection between network components
of the different types defined in SNA. Sessions may thus be described as, for example,
SSCP-SSCP, SSCP-PU or SSCP-LU, but ultimately, the whole of SNA is concerned with
establishing one type of session: those between LUs (that is, LU-LU sessions). In SNA, the term
Logical Unit (LU) describes the entry point, or port, for an end-user - an application, or a person
at a terminal - to gain access to the network. LU-LU sessions thus represent end-user to
end-user connections.

In traditional SNA, each LU was owned by one of the VTAMs in the network: the VTAM
activated the LU, establishing an SSCP-LU session between itself and the LU. It was on this
session that the LU could send requests to VTAM to initiate a session between the LU and
another LU. This type of LU is described as “dependent” since it relies on the services of an
SSCP (in this case VTAM) to establish a session to another LU (and, thereby, to another
network “end-user”).

With the advent of the requirement for smaller computer systems to be incorporated into
networks, it has not been practicable for those systems to support the full functionality of an
SSCP, so the ideas of a “Node type 2.1" (to distinquish them from the PU Type 2 nodes which
had existed before then) Peripheral Node Control Point (PNCP), and more recently, simply
Control Point (CP) were devised (along with the definition of a variety of different types of SNA
nodes), and new types of session (for example, CP-CP) were introduced. With these type 2.1
nodes came “independent” LUs - ones which do not need the services of an SSCP (that is,
VTAM) to engage in sessions with other LUs.

Independent LUs are not activated by VTAM (there is no SSCP-LU session as there is for
dependent LUs), and, even if the node in which they reside (for example, a PC, or a UNIX
system) is defined to VTAM as being in its domain, VTAM views the independent LUs as
cross-domain resources. Type 2.1 nodes can support both dependent and independent LUs at
the same time and it is important to be clear about which sort is involved in any particular case.
PU Type 2 nodes (or systems emulating this level of function) can only support dependent LUs.

LU6.2 was introduced to deal specifically with program to program communications (that is, the
network end-users are programs rather than people sitting at terminals, although the terminal
could be running a program which is engaging in LU6.2 activity). An important concept in LU6.2

IBM MQSeries for VSE/ESA User's Guide

communications is that of the “conversation” which is distinct from the SNA “session”, but
requires a session in order to take place: a session can exist without a conversation, but a
conversation cannot exist without a session; a session is the connection between the LUs, a
conversation is the interaction between the applications. This is illustrated in figure 8, “SNA
session and conversation” . In theory, a session is a long-lasting resource in that, serially, it can
handle many different conversations, one after another. By comparison, a conversation is a
short-term resource (although in practice, it may last for a considerable length of time). Note
that some LU6.2 implementations, however, terminate the session when the conversation
terminates.

Appl —P LU < >y T > Appl

- session |

- conversation |

Figure 8. SNA session and conversation

Relating this to MQSeries, it follows that each MQSeries channel requires a single session
while the conversation is in progress. Independent LUs are capable of supporting multiple
simultaneous sessions between themselves and other LUs. Dependent LUs generally support
just one LU-LU session; the CICS LU, however, although dependent, is capable of supporting
multiple sessions.

Chapter 5. Configuring network resources 53

VTAM start up parameter list.

Itis highly unlikely that VTAM start parameters will need to be changed for MQSeries System
operation. This list is provided to give people with no VTAM experience a better idea of what to
ask for when requesting information from those responsible for the SNA software environment.

54

The startup list(s) are filed with names of the form ATCSTRxx. They will contain a list of entries
similar to the outline below:

CDRSCTI = <time out>, +
HOSTPU = <host pu hame>, +
NETID = <network id>, +

SSCPNAME = <sscp hame>

Table 22. Extract of ATCSTRxx VTAM start parameters

Notes for table 22:

CDRSCTI

HOSTPU
NETID

IBM MQSeries for VSE/ESA User's Guide

is a time-out interval which applies to LUs outside the control of this VTAM
(they are “cross-domain”) and which have not been predefined to VTAM as
“cross-domain resources” (CDRSCs). Prior to VTAM becoming aware of the
existence of these resources (by a session setup request from the VTAM
which owns the resource, or from the resource itself if it is an independent
LU), the operator command:

DISPLAY NET,ID=<lu name>

would respond with

PARAMETER VALUE INVALID.

When a session request is received from the resource or its VTAM, the local
VTAM will create a dynamic definition of the resource; the operator command
DISPLAY NET,ID=<Iu hame>,E

will now display information VTAM has about this LU (and the sessions it
has). When the last session between the dynamically-defined LU and any
local LU ends, VTAM retains the resource definition for the length of time
specified by CDRSCTI before deleting it, when

D NET,ID=<lu name>

will again respond with

PARAMETER VALUE INVALID.

The command

D NET,ID=ISTCDRDY

will provide details of all the resources dynamically defined by VTAM (but be
warned it could be a very long list!). A corollary of this is that, if the session
setup request is issued by CICS when a dynamic definition is NOT in place,
VTAM will not know the resource, and, although it has means to attempt to
find it, these may fail resulting in a session establishment failure (normally
with a 087D sense code). This has implications for MQSeries if the CICS end
of a channel is to start the channel and the session has not already been
established: if the session cannot be started, the MQSeries System software
cannot conduct a conversation on it!

is the SNA Physical Unit name of the Physical Unit where CICS resides.

is the network ID in which this VTAM and all the resources it controls reside
(that is, the network ID of this VTAM domain). Note the following points:

SSCPNAME

There is a distinction between the similar sounding terms “net-ID” and
“netname”. “net-ID” specifically refers to the name of the network in which a
resource resides; “netname” refers to the name of the resource itself, as it is
known in the network - it could be an luname, a puname, a cdrscname, an
sscpname, etc., depending on the type of resource concerned.

A “fully qualified network name” (frequently required by SNA software on
non-mainframe systems) consists of both the netid and the netname,
separated by a period. Thus, the fully qualified network name of the CICS
system (see table 22) is <network id>.<minor node name> .

is the name of this VTAM. It may be used in a definition at a remote VTAM to
identify this VTAM as an adjacent SSCP (see table 22).

Definition of CICS to VTAM

Itis unlikely that the MQSeries System will require any changes to the definition of the CICS

system to VTAM.

However, it is worthwhile reviewing the existing definition to ensure nothing is

amiss. CICS is defined to VTAM by an entry in an “application major node”. It will look similar to
the outline in table 23.

<major node name> VBUILD TYPE = APPL
*

<minor node name> APPL ACBNAME = <acb name>, APPC=YES

AUTH = (ACQ,PASS,...),

EAS =?,

PARSESS = YES,

SONSCIP = YES,

MODETAB = <cics mode tab>,
MODENT=

+ + + + + o+

Table 23. Skeleton VTAM definition for CICS

Notes for table 23:

APPC=NO

is coded for CICS, or, as above, allowed to default (this is usual for CICS, and
does not depend on the presence or otherwise of MQSeries System
software).

<minor node name>

EAS

PARSESS=YES

APPL

is the “CICS LU name”, that is, the LU name a remote MQSeries System
should target if it wishes to start a channel to the MQSeries System running
on this CICS. The distinction between <minor node name> and <acb name>
is that <minor node name> can be accessed from anywhere in the entire
interconnected SNA network(s); <acb name> is only known in the domain of
the VTAM where CICS runs. Normally, to avoid confusion, <minor node
name> and <acb name> are the same value (or ACBNAME-= is not coded).

is an estimated number of simultaneous sessions between CICS and other
LUs of all types. If a large number of the MQSeries System channels is to be
defined, the value coded here may need to be reviewed.

indicates the CICS LU is capable of parallel sessions (multiple sessions to
the same partner LU).

Further APPL definition statements may exist under the same major node
name, for other CICS systems at this host, or for other VTAM applications in
general at this host.

Chapter 5. Configuring network resources 55

For CICS to use this definition, its own startup parameters have to be set up to cause it to
OPEN the correct ACB. This is done by coding an entry in the CICS System Initialization Table
(SIT), or by providing a SIT override at CICS startup. See table 24.

APPLID = <acb name>

Table 24. CICS SIT parameter

The APPL definition in table 23 made reference to a “mode table” (MODETAB). A logon mode

table specifies details of the LU. For VTAM, these tables have to be assembled from a source

deck and then brought into memory. The source, which may exist anywhere on the host system,
will look similar to that in table 25 below.

<cics mode tab> MODETAB
*

MODEENT LOGMODE = <cics mode 1>

MODEENT LOGMODE = <cics mode 2>

MODEEND

Table 25. Skeleton logon mode table source

Notes for table 25:

A mode table may contain definitions of several different logon modes (two separate modes,
called <cics mode 1> and <cics mode 2> are shown in the table above).

Definitions required for the remote MQSeries System

56

The remote MQSeries System has to be defined:
® to MQSeries on CICS (in the network specific parts of the channel definition)
® to CICS itself (in a TERMINAL definition, or in CONNECTION/SESSION definition(s), or by
the CICS AUTOINSTALL facility)
® to VTAM (either predefined, or by VTAM dynamic resource definition).

IBM MQSeries for VSE/ESA User's Guide

MQSeries System channel definition

Defining the remote MQSeries System to the local Queue Manager is covered in this manual in
Chapter 5, “System Operation”, and will not be discussed further here. However, from the point
of view of showing where fields in the various definitions have to correspond, a skeleton
MQSeries System channel definition is shown in figure 9 below.:

/ 01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1IYZMZSI2 \

11:51:28 Channel Record DISPLAY MCHN
MQMMCHN Last Check Point Last Update 19961211 0002
MSN 00000009 Time 10:28:31 Interv 000000 Create Date 19961128

Channel Name : VSE1_TO_VSE2 Channel Type : R Snd,Srv/Rcv
Protocol : L62 L62 Format : MCP MLP/MEP/MCP

Allocation Retries Get Retries
Number of Retries: 00000005 Number of Retries : 00000001
Delay Time - fast: 00000015 Delay Time : 00000001
Delay Time - slow: 00000003

Max Messages per Batch : 000001 Max Transmission Size : 004096
Message Sequence Wrap : 999999 Max Message Size 1 003338

Mess Seq Req(Y/N): Y Convers Cap (Y/N): N Split Mssg(Y/N): N
Connection ID:
Transmission Queue Name :
TP Name:
Checkpoint Values: Frequency: 0000 Time Span: 0000
Enable(Y/N) Y Dead Letter Store(Y/N) Y
Channel record displayed.
\PFZ =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete /

Figure 9. Skeleton MQSeries channel definition

Notes for figure 9:
Remote task ID need only be coded for a SENDER channel.

Definitions in CICS
If the CICS end of an MQSeries System channel is to initiate the channel connection (that is, the
CICS channel-endpoint is a SENDER), then CICS will perform an EXEC CICS ALLOCATE.
Note, however, this will only succeed if it is:

® acontention winner

® already bound

® not already allocated.

If CICS has no definition of the resource, it is incapable of formulating a request to VTAM for
session establishment. This means, in these circumstances, CICS AUTOINSTALL is
inappropriate (autoinstall is for incoming session establishment requests, not for outgoing

ones).

Thus, for SENDER channel-endpoints on VSE, a definition of the remote system is required at
the CICS level.

Chapter 5. Configuring network resources 57

If the remote system, at the network level is capable of supporting parallel sessions (for
example, it has independent LU6.2 capability, or it is another CICS system), and it is the
intention to configure several channels between the two systems, the most natural definition for
this system in CICS is to have CONNECTION and SESSIONS definitions. Typical definitions,
using the CICS Resource Definition Online (RDO) transaction, CEDA, is shown in table 26.

DEFINE GROUP(<group name 1>)
CONNECTION(<remote conn>)
NETNAME(<remote luname>)
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(NO)

DEFINE GROUP(<group name 1>)

SESSIONS(<sess hame>)

CONN(<remote conn>)

MODE(<logmode 1>)

MAXIMUM(<max sessions>,<max CICS contention winners>)

INSTALL GROUP(<group name 1>)

ADD GROUP(<group name 1>) LIST(<start-up list>) {AFTER(<group name>)}

Table 26. Definitions in CICS using RDO for parallel session partner LU

If the remote LU is capable of only one session, then it may be defined to CICS as either a
single-session connection definition (table 27) or as a terminal definition (table 28).

DEFINE GROUP(<group name 2>)
CONNECTION(<remote conn>)
NETNAME(<remote luname>)
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(YES)

DEFINE GROUP(<group name 2>)
SESSIONS(<sess hame>)
CONN(<remote conn>)
MODE(<logmode 2>)
MAXIMUM(1,1)

INSTALL GROUP(<group name 2>)

ADD GROUP(<group name 2>) LIST(<start-up list>) {AFTER(<group name>)}

Table 27. Definitions in CICS for single-session capable partner LU

58 IBM MQSeries for VSE/ESA User's Guide

DEFINE GROUP(<group name 3>)
TERMINAL(<remote conn>)
NETNAME(<remote luname>)
TYPETERM(DFHLUG62T)
MODENAME(<logmode 2>)

INSTALL GROUP(<group name 3>)

ADD GROUP(<group name 3>) LIST(<start-up list>) {AFTER(<group name>)}

Table 28. Definitions in CICS singles-session capable LU

Notes for table 28:
The CICS supplied typeterm definition, DFHLUG2T, provides a suitable terminal type definition.
It exists in group DFHTYPE, which should be installed on your system.

Definitions in VTAM or NCP

Just as CICS is not able to pass a session establishment request to VTAM if it has no definition
of the remote LU which is to be the target of this request, if VTAM is not able to identify the
remote LU, the session establishment will fail, and, consequently, the attempt to start the
channel will fail.

There are several strategies to avoid session establishment failure:

® Ensure sessions are established prior to an attempt to start the channel. Sessions can be
started when the SNA support software at the interconnected systems is started, even
though a conversation will not immediately be carried out on the sessions. It is possible for
a remote system to bind sessions which will subsequently be used by CICS to initiate a
channel connection. Note, however, some SNA implementations may impose limits on this
- it may not be possible at all to establish a session without also issuing an LU6.2
ALLOCATE command, or a remote system may only be capable of binding those sessions
for which it is the “contention winner”.

® Ensure VTAM has sufficient information to be able to locate the remote LU. This can
involve use of one or more of the following types of resource definitions:

® ADJACENT SSCP TABLES: details of other VTAMs to which the local VTAM can
make enquiries to see if they know the target LU.

® CROSS-DOMAIN RESOURCE DEFINITION: a System Programmer definition of a
resource which is not activated by the VTAM at this host; that is, this host's VTAM
does not have an SSCP-LU session with the resource. The resource could be an
independent LU6.2 in this or another domain, or a dependent LU6.2 in another domain
(a dependent LU6.2 in this domain would be explicitly defined elsewhere).

* APPLICATION DEFINITION: if the remote queue manager is another CICS system
residing on the same host, this is the only definition which will be necessary to
completely define the system to VTAM. The definition will be similar to that already
shown for this CICS.

® CHANNEL ATTACHMENT MAJOR NODE: for other host systems which are channel
attached to this host.

®* LOCAL MAJOR NODE: For peripheral nodes which are channel attached to the host.

* NETWORK CONTROL PROGRAM (NCP) MAJOR NODE: For peripheral nodes
accessed via a communications controller.

Chapter 5. Configuring network resources 59

60

The details of the majority of these definitions are beyond the scope of this User’'s Guide; the
network Systems Programmer will know what is appropriate for the particular circumstances.
However, since, in a large number of cases, the remote Queue Manager's LU will reside in a
peripheral node of one sort or another, details of how this might be defined will be covered.

If the remote LU is an independent LU, it may either be defined to the local VTAM as a cross
domain resource, or it may be defined, along with any dependent LUs for the node, in either a
Local major node, or an NCP major node, depending on whether the peripheral node is channel
attached to the host, or attached via a communications controller. Whichever method is used,
VTAM collects together all the information it has about Pre-Defined Independent LUs into one
major node, ISTPDILU, where each independent LU is a separate minor node. Thus the VTAM
command:

D NET,ID=ISTPDILU,E

will list all the predefined independent LUs known to this VTAM. (Dynamically defined
independent LUs will be listed under ISTCDRDY, along with other dynamically defined
resources, and will remain known for the period given by CDRSCTI, as noted above.) There
may be a large number of resources listed, so use the command with caution.

If the remote LU is a dependent LU, it should only be defined as a cross-domain (or
cross-network) resource if it is not in the domain of VSE's VTAM. Otherwise, it will be defined in
a local major node, or NCP major node as appropriate, as in table 29 below.

<remote luname> LU LOCADDR = <address>, +
MODETAB = <rem mode tab>, +
DLOGMOD = <logmode 1> or <logmode 2>

Table 29. Local or NCP Major Node definition of the remote LU

Notes for table 29:
<remote luname>matches the value given in the definition in CICS. This is how VTAM relates
the request from CICS to the resource intended.

<address> should be coded as 0 for an independent LU, and nonzero in accordance with
normal VTAM/NCP conventions, for a dependent LU. Very often, the SNA
software on PU Type 2 or Type 2.1 nodes will use this value, rather than the
resource name, <remote luname> (which will be considered the “local”
luname from their point of view), to relate an incoming request to a particular
LU. Such software often refers to this value as the “LU number” or something
similar. The number coded at the remote SNA software must be <address>.
With this software, it is not necessary for <remote luname> to match the
name used in the remote SNA software as “local LU name”, but it will avoid
confusion if it does.

IBM MQSeries for VSE/ESA User's Guide

Table 30 shows a typical Logon Mode Table which might be coded for the LU shown in
Table 29, “Local or NCP Major Node definition of the remote LU,” on page 60. A complete
definition from a working channel is also shown as the entry <practical example>..

<rem mode tab> MODETAB

*

MODEENT LOGMODE=<logmode 1>, +
MODEENT LOGMODE=<logmode 2>, +

MODEENT LOGMODE=<practical example>,
FMPROF=X'13',
TSPROF=X'07",
PRIPROT=X'B0",
SECPROT=X'B0',
COMPROT=X'50B1",
TYPE=0,
PSNDPAC=X'00",
SRCVPAC=X'00',
SSNDPAC=X'00',
RUSIZES=X'8888',
PSERVIC=X'060200000000000000002F00"

++ 4+ + + + + o+ 4+

MODEEND
END

Table 30. Skeleton Logon Mode Table for the remote LU

Chapter 5. Configuring network resources 61

Definitions on the remote SNA software

It is possible to deal only in very broad terms of the definitions which may be required on the
remote system's SNA software.

If the remote system is an IBM mainframe, the types of definitions will be very similar to those
explained for CICS on the VSE host.

As a very general guide, for other systems (for example, UNIX based) table 31, below, gives a
list of the resources which would need to be defined on these. Under the heading “Value to
code” in table 31, the term “remote” has been used with the same meaning as established
earlier - as being remote from the CICS host's point of view. However, from the point of view of
the system on which the definitions are entered, it is “local” and CICS is “remote”.

Likely resource type on remote SNA software | Value to code
Fully Qualified Local LU name <remote net-ID>.<remote lu name>
Local LU alias name <remote lu name>
LU number (for dependent LU6.2) <address>
Fully qualified partner LU name <net-ID>.<minor node name>
Partner LU name <minor node name>
Mode name <logmode 1> or <logmode 2>
Max number of sessions <max sessions>
Maximum local contention winners <max sessions> minus

<max cics contention winners>
Maximum remote contention winners <max cics contention winners>
Transaction Program <remote TP>

Table 31. Values to code in the remote SNA software

Notes:

<remote net-ID> The network ID of the SNA subnetwork in which this system resides. If the LU
is to be treated as being in the same SNA subnetwork as CICS, this should
be the same as <net-ID>. If the LU is a dependent one requiring CICS' VTAM
to activate it in order to establish sessions, it must be in the same subnetwork
as CICS.

<remote TP> unlike on CICS, on many Type 2.1 nodes a UNIQUE TP name must be
defined for each active channel in order to allow the LU to direct network
traffic to the correct MCA for the channel. TP names are required only for
channels defined as RECEIVER (or SERVER) types at the Type 2.1 node.
(Since REQUESTER channels are not supported on VSE, there will not be a
SERVER definition at this node.)

Troubleshooting

If an attempt to start a channel fails, it may be the result of a session failure. If it is not possible
to establish a session between CICS and the LU for the remote channel endpoint, either prior to
starting the channel, or as a concomitant of it, the channel will not start.

If a session failure is suspected to be at the root of a channel startup failure, enter the following
VTAM command:

D NET,ID=<remote Tu name>,E

62 IBM MQSeries for VSE/ESA User's Guide

This will give details of the LU which should be in session with CICS, and will also list any
sessions it currently has. Note the session limit for the LU: if it is shown as one for an
independent LU, there is a problem with the SNA definitions. See if <minor node name> is listed
amongst the sessions. Ifit is, there is a session between the LU and CICS, indicating that the
problem may not be at the network level, or if it is, it might be that there are not enough sessions
between the two LUs to support a new channel request. Enter the command again, and see fif,
for this session, the send and receive counts have changed, indicating the session is in use.

If the command returns “PARAMETER VALUE INVALID”, this means VTAM does not know of
<remote lu name>: it was either entered incorrectly, or it cannot be located. If the latter, define it
to VTAM and attempt to start the channel again.

If VTAM was able to display <remote lu name>, try the following commands in CICS:
CEMT I CONN(<remote conn>)

This shows the status of the connection from CICS to the remote system. Beside the entry will
be an indication showing it to be INService or OUTservice and ACQuired or RELeased. It needs
to be Inservice and Acquired.

CEMT I MODE CONN(<remote conn>)

This displays the status of the mode names associated with the connection. For connections
supporting parallel sessions, there will be at least two mode names, SNASVCMG and
<logmode 1>, showing the number of active sessions for each. If the SNASVCMG group has no
sessions active, the connection will be RELeased, rather than ACQuired. These sessions are
SNA services manager sessions, not used by MQSeries System channels, but at least one of
the two needs to be active for the connection to be usable. If the remote LU has been incorrectly
defined, so that it has a session limit of one, it is possible that one SNASVSMG session is
active, but no other sessions can be established, including those required by the MQSeries
System channel. The <logmode 1> sessions may be used by MQSeries System channels.

For single session connections, one mode name, <logmode 2>, will be shown with just one
session in the group.

The MQSeries System channel must have been set up to use the logon mode <logmode 1>, or
<logmode 2>, as appropriate.

Chapter 5. Configuring network resources 63

64 IBM MQSeries for VSE/ESA User's Guide

Chapter 6. System operation

This chapter will describe the system operation and administration functions available in IBM
MQSeries for VSE/ESA. Most such functions are provided through the menu driven, screen
oriented program associated with the CICS transaction MQMT. An additional CICS transaction
is a command line module that performs actions against the runtime queues and channels.
These actions include stopping and starting queues and closing and opening channels.

Background functions include the queue dump and system utility facilities. The queue dump
facility allows a user to rebuild a MQSeries System VSAM queue file. This eliminates processed
messages and fully regains VSAM freespace. The utility function includes the ability to print
MQSeries System Configuration, System Log messages and the Help facility information. This
utility function also includes the ability to reset the same Message Sequence Number to all of
the channel definitions and change all Dual queue definitions to primary queues.

The menu's and display screens of MQMT are organized in an informal hierarchy as depicted in
the following diagram. The hierarchy is informal in the sense that non-hierarchical paths
between screens can be invoked by using the Function Keys. For improved legibility, the chart
omits certain exit/return paths available from lower level screens.

Configuration Operations Monitor Browse

Global System
Definiti):)ns GIOtl?)aillsslysuam Start/Stop
play Queue
Browse Queue
Channel Channel Open/Close
Maintenance Display Channel
Monitor All
Queue Queue Reset Channel Local Queues
Maintenance Display MSN
Local Queue —
Initialize/ Shut Monitor All
Remote Queue Down System Channels
| Alias Queue Maintain
Alias Manager Queue Records

Alias Reply

Figure 10. Display screen relationships

In the next section, the main MOMT menu is presented. The subsequent sections will present
each of the operator functions available through these screens. The final section in this chapter
will present those functions which require operator action outside MQMT.

© Copyright IBM Corp. 1993, 1997 65

General panel layout
MQSeries System panels are either menu panels or data entry panels. In either case, they

show the following invariant fields:

(/"bate IBM MQSeries for VSE/ESA Version 1.4 CICS-App]g‘\\\
Q-Manager

Time
Panel-Id Termid

Message line

PF key line 1
\\\~>PF key Tine 2 (if necessary) <‘///

Figure 11. General panel layout

Where:

CICS-Appl: The VTAM application Id for this CICS partition

Panel-Id: The panel name which is displayed.

Q-Manager: The name of the MQSeries Queue Manager specified in the
Global Definitions.

Termid : The CICS terminal Id on which this panel is displayed.

66 IBM MQSeries for VSE/ESA User's Guide

MQMT master terminal - main menu

The MQSeries System administrator program, MQMT, may be invoked from any 3270 terminal.
To access the operator functions, simply type the following at the CICS prompt:

MQMT
When MQMT starts, the main menu is displayed.

ﬁl/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
08:36:59 *** Master Terminal Main Menu *** VSE2
MQMMTP 0002

SYSTEM HAS BEEN SHUTDOWN
1. Configuration
2. Operations
3. Monitoring

4. Browse Queue Records

Option:

Please enter one of the options listed.
\ 5787-ECX (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved. /

CLEAR/PF3 = Exit ENTER=Select

Figure 12. Master terminal main menu

From the Main Menu, one of several sub-menus may be selected. The first three choices
correspond to broad categories which include most MQSeries System operator functions:

® Configuring the MQSeries System
Operating (controlling) the MQSeries System
® Monitoring the MQSeries System

The fourth function allows the operator to display the records on a selected queue.
® Browsing MQSeries System Queues

Each sub-menu presents a list of operator functions available from that screen. When a specific
function is selected, the appropriate data entry or data display screens are presented to the
operator.

Operator screen action keys
The action keys available on each MQSeries System operator screen are displayed at the
bottom of the screen with an explanation of their function. In general, the following keys are
available and associated with the indicated action:

CLEAR = EXIT PF7 = Backward

PF2 = Return to Prior Menu PF8 = Forward

PF3 = Exitto CICS PF9 = List

PF4 = Select/Read (Same as Return or Enter keys) PF10 = Varies by Screen
PF5 = Add PF12 = Delete

PF6 = Update

Chapter 6. System operation 67

Configuration functions

Selecting option 1 (Configuration) from the main menu, causes MQMT to display the following
sub-menu screen:

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1IYZMZSI2 \
08:39:08 ** Configuration Main Menu *** VSE2
MQMMCFG 0002

SYSTEM IS ACTIVE

Maintenance Options :
1. Global System Definition
2. Queue Definitions
3. Channel Definitions

Display Options
4. Global System Definition
5. Queue Definitions
6. Channel Definitions

Option:

Please enter one of the options listed.
5787-ECX (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved.

KENTER = Process PF2 = Main Menu PF3 = Quit J

Figure 13. Configuration main menu

On this screen, choices 1 through 3 allow the operator to perform maintenance functions on
various MQSeries System configuration objects. Choices 4, 5, and 6 allow the passive viewing
of the same objects.

Notes: 1. Changes to parameters on Configuration screens only take effect when the
queuing system is re-initialized.

2. When values are shown on the screens, they are default values.

Global system definition

For each installation of the MQSeries System, one and only one Queue Manager must be
defined. This is accomplished through the screen below. This screen is also used to modify
previously defined global parameters.

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI2 \
11:52:14 Global System Definition VSE2

MQMMSYS Queue Manager Information 0002

Queue Manager: VSE2

Description Line 1.: MQ/Series Manager on VSE/ESA 2.1

Description Line 2.: Development System

Channel Maximum Values
Checkpointer Global Timer .: 00000060

Queue System Values
Maximum Number of Tasks . .: 00000500 System Wait Interval : 00000030
Maximum Concurrent Queues .: 00000500 Max. Recovery Tasks : 0001
Allow TDQ Write on Errors : Y CSMT Allow Internal Dump : N

Queue Maximum Values
Maximum Q Depth: 01000000 Maximum Global Locks.: 00000100
Maximum Message Size. .. .: 00032000 Maximum Local Locks .: 00000100
Maximum Single Q Access . .: 00000100 Checkpoint Threshold : 1000

Global QUEUE /File Names

Configuration File.: MQFCNFG

LOG Queue Name.: SYSTEM.LOG
Dead Letter Name.: SYSTEM.EXCEPT
Monitor Queue Name.: SYSTEM.MONITOR

Requested record displayed.
PF2 = Main Config PF3=Quit PF4/ENTER = Read

- J

Figure 14. System queue manager information

68 IBM MQSeries for VSE/ESA User's Guide

On this screen the data entry fields are:

Queue Manager:

Description Lines 1 & 2:

Channel Maximum Values
Checkpoi nter Global Timer:

Queue System Values

Maximum Number of Tasks:

Maximum Concurrent Queues:

Allow TDQ Write on Errors:

Max. Recovery Tasks:

System Wait Interval:
Allow Internal Dump:

Queue Maximum Values
Maximum Q Depth:

Maximum Message Size:

Maximum Single Q Access:
Maximum Global Locks:

Maximum Local L ocks:

Checkpoint Threshold:

Global QUEUE/File Names
Configuration File:

LOG Queue name:

Dead Letter name:

Monitor Queue name:

Note:

This is the name of the local queue manager for this
MQSeries System installation. The name may be up to 48
characters and must conform to the MQI naming
requirements.

This is a text field for operator use only. It may be up to 64
characters.

The time interval set to take a global checkpoint of all active
channel parameters.

The maximum number of simultaneous connections to the
gueue manager.

The maximum number of simultaneous open queues.

Y - allow writes to the CICS TDQ ‘CSMT' if SYSTEM.LOG
not available

N - do not allow TDQ write.

B - write to both SYSTEM.LOG and the ‘CMST’ TDQ.
Maximum number of tasks attached by the System Monitor
when errors are detected in queues or control blocks
attached to queues. An high number would lead to use too
many CICS resources and have a negative impact on the
overall CICS performance. The suggested value is 1.

The sleep time in seconds for the system monitor program
and startup of trigger programs after system initialization.
Allow the API to execute a CICS Task Dump if the internal
area(s) is(are) corrupted.

The maximum number of records that will be left unread on a
queue.

The maximum size of any message.

The maximum number of Hobj allowed for a queue.

The maximum number of entries that the queue manager
uses to maintain destructive PUT/GET locks, per queue, for
the system.

The maximum number of entries that the queue manager
uses to maintain destructive PUT/GET locks, per queue, for
each individual task.

The maximum number of queue accesses between
checkpoints.

The CICS file definition name of the MQSeries System
configuration file.

The queue name where the MQSeries System programs
write information and error messages.

The file where channel programs write messages that are
received with the wrong queue manager name or queue
name.

These messages will have the Dead Letter Header placed in
front of the Queue record. See “CMQDLHV.C” on page 269.
The queue that the API application requests when the
System Monitor is turned on.

Queue maximum value fields restrict the allowed values in the queue definition field

values. While the rest of the fields affect the run-time values when the System is

initialized.

Chapter 6. System operation 69

Queue definitions

Choice 2 on the configuration menu allows an operator to maintain (add, modify, or delete)
queue definitions for the local installation of the MQSeries System.

Note: The same screens are used to accomplish all three functions (add, modify, or delete),
with the desired action being indicated via the function keys. The following sections will
present screens as if the operation is to add a new queue definition. “Modifying and
deleting queue definitions” on page 78, presents the slightly different operation to
modify or delete a queue.

To create a queue definition, multiple screens may be involved. The first screen is the same for
all queues. It allows entry of the queue name and type. Based on the type entered, the
appropriate second screen is displayed for the operator to enter the remainder of the data to
complete the definition. In the case of Local queues, a third screen will also be involved. This
third screen is the Extended Queue Definition Screen. The first screen displayed is:

ﬂ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:39:27 Queue Main Options VSE2
MQMMQUE 0002

SYSTEM IS ACTIVE
Default Q Manager : VSE2
Object Type: L L=Local Q, R=Remote Q, AQ=Alias Queue,
AM=Alias Manager,
AR=Alias Reply Q

Object Name: QUE.TEST

Function has been terminated.

PF2=Main Config PF3 = Quit PF4/ENTER = Rea PF5 = Add PF6 = Update

PFO=List PF12= Delete /

Figure 15. Queue main menu screen

On this screen the data entry fields are:

Object Type: This is a two character field with the acceptable entries listed on the screen.
The type determines the follow on screen to be displayed.

Object Name: This is the name of the queue (or alias) being defined. The name may be up
to 48 characters, must be unique among all other defined queues for this
installation, and must conform to the MQI naming requirements.

70 IBM MQSeries for VSE/ESA User's Guide

Upon entry of the above two fields, the Object Type is used to determine which of the following

five screens is displayed:

Create local queue

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI2 \
11:40:18 Queue Definition Record VSE2
MQMMQUE QM - VSE2 0002
LOCAL QUEUE DEFINITION
ObjectName.: QUE.TEST
Description line 1. . . . : Transmission Queue for testing
Description line 2. . . . : MQSeries/VSE
Put Enabled: Y Y=Yes, N=No
GetEnabled: Y Y=Yes, N=No

Default Inbound status . . : A

Dual Update Queue

Record being added - Press

PF9 = List

PF2 = Options PF3 = Quit
PF10= Extended

Outbound .. : A A=Active,l=Inactive

ADD key again.

PF4/ENTER = Read PF5=Add PF6 = Update
PF12= Delete

/

Figure 16. Local queue definition

On this screen the data entry fields are:

Object Name:
Description Lines 1 & 2:

Put Enabled:

Get Enabled:

Default Inbound status:

Outbound status:

Dual Update Queue:

Dual Source Queue :

Filled in from the previous screen.

Text field for operator use only. It may be up to two 32 character
fields.

This is a toggle which enables/disables MQPUT operations against
this queue.

This is a toggle which enables/disables MQGET operations against
this queue.

This sets the initial status to Active or Inactive at run time for the
Inbound direction of the queue.

This sets the initial status at run time for the Outbound direction of
the queue.

When an existing queue name is entered here, Dual Queuing is
activated. The queue being created will become the primary and the
queue entered in this field will become the dual queue. The
definition of the dual queue will be updated automatically with the
name of the primary queue. The queue display of the dual queue will
have a corresponding heading “Dual Source Queue”.

The name of the primary queue, for which the queue being
displayed is the dual. This field appears only when a local queue
serves as a dual update queue.

Note: Once an existing queue is defined as the dual to a
primary queue, these two queues both participate in the
same logical unit of work. If for any reason, it becomes
impossible to update the dual queue (for example, if the
queue becomes disabled, the associated file closed or an
ISC link is lost), updates continue to be made to the
primary queue and the dual queue goes to a recovery

status.

Chapter 6. System operation 71

72

By pressing PF10, the operator may bring up a second screen to enter the extended definition
fields for the queue. On an ADD request, this Extended Definition Screen will be presented
automatically. This detailed screen is:

ﬁ1/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:41:47 Queue Extended Definition VSE2

MQMMQUE QM - VSE2 0002

Object Name.: QUE.TEST

Physical Queue Information

Usage Mode:T N=Normal, T=Transmission

ShareMode:Y Y=Yes, N=No

Physical File Name: MQFI003 MQSERIES.DEVELOP.MQFI003

Maximum Values
Maximum Q Depth.: 01000000 Global Lock Entries . : 00000100

Maximum Message Length . . : 00003353 Local Lock Entries. . : 00000100
Maximum Concurrent Accesses: 00000100 Checkpoint Threshold : 1000

Trigger Information
Trigger Enable:Y Y=yes, N=No
Trigger Type:E F=First, E=Every
Maximum Trigger Starts . . : 0001
Allow Restart of Trigger : N Y=Yes, N=No
Trans ID : Term ID : SYSID :
Program ID : MQPSEND Channel Name: VSE2_TO_VSE1

Record added OK.
PF2 = Options PF3=Quit PF4/ENTER=Read PF5=Add PF6 = Update

\ PF9 =List PF10 = Queue PF12 = Deletes J

Figure 17. Local queue extended definition

On this screen the data entry fields are:

Object Name: Filled in from the previous screen. Cannot be modified.
Local Queue Information
Usage Mode: Normal means the queue is used by an application to

receive inbound messages. Transmission means the queue
is used by the MQSeries System to hold outbound
messages destined for another MQSeries System queue

manager.
Share Mode: Defines a queue as shareable or exclusive on input.
Physical File Name: The CICS file name used to store messages for this queue.

7 characters, max.
Maximum Values

Maximum Q Depth: The maximum number of messages allowed on this queue.
The default value is the value specified in the Global System
Definition.

Maximum Message Length: The maximum length of an application message processed

on this queue.

Maximum Concurrent Ac cesses:
This is the maximum number of MQOPENSs that can occur
for this queue at once.

Global Lock Entries: This is used to allocate the locking table for this queue for all
committed MQGETs

Local Lock Entries: This is used to allocate the locking table for this queue for
each task’s non-committed MQGETs

Checkpoint Threshold: The maximum number of queue accesses between

checkpoints.

Trigger Information

Trigger Enable: Yes or No. If defining a transmission queue for use with a
Sender channel, set this value to Y; for use with a Server or
Receiver set this field to N.

Trigger Type: F: Trigger is generated when the first message arrives on an
empty queue.
E: A trigger is generated every nth message, where n is

IBM MQSeries for VSE/ESA User's Guide

determined by the following field (Max Trigger Starts).
Only one transaction can be active against the queue if the
Trigger Type = F.

Maximum Trigger Starts: The maximum number of trigger threads that can be active
at once.
Allow Restart of Trigger: This field allows the automatic restart of an application if the

Trans ID:

Program ID:

Term ID:

SYSID:

trigger count goes to zero. It will restart one trigger if
messages are available on this queue.

The name of the transaction to be started by a trigger. 4
characters. If a transaction id is specified, this transaction
will be “STARTed" with the communications area passed via
“RETRIEVEQ". If defining a transmission queue, this field will
be left blank.

The name of the user program to be invoked, 8 characters. If
defining a transmission queue to be used with a Sender
channel, MQPSEND must be used. If the field for
Transaction ID is left blank and this field contains a program
ID, then the specified program will be invoked by “LINKed”
with data passed via COMMAREA.

Optional. Used for debugging. To be attached to the
Transaction 1D specified above. 4 characters.

Reserved for future use.

Channel Name: Identifies the channel name. 20 characters.

Notes:

1. The PF10 key can be used to toggle between the Local Queue Definition screen

and the Local Queue Extended Definition screen.

. One of the items marked with a ¥ is required if the trigger is enabled. If transaction

id is specified, this transaction will be “STARTed” with the communication area
passed via “RETRIEVEQd", while the program-id is to be “LINKed” with
COMMAREA.

. The internal MQSeries System trigger API transaction MQO2 cannot be used as a

Trigger Transaction ID. This is implied when only a trigger program is defined.

. Both a trigger transaction and a trigger program can be defined, but only the

trigger transaction is activated and the trigger program name is passed in the
Trigger Comm. area (See “Triggers” on page 109, for more details).

. The Maximum Message Length is restricted by the Global System Maximum

Message Size. The Maximum Message Size cannot be bigger than the
application message size plus the IBM MQSeries System header and cannot be
bigger than the VSAM CISIZE-7.

. For information on configuring a transmission queue for a Sender/Server channel,

see “Triggers” on page 109.

Navigation through the screens is dependent upon the PF keys.

Chapter 6. System operation 73

74

Create remote queue

Default Inbound status . . : A

Record added OK.

PF2 = Options PF3 = Quit

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:44:47 Queue Definition Record VSE2
MQMMQUE QM - VSE2 0002

REMOTE QUEUE DEFINITION

Object Name.: CIC1/REMOTE

Description line 1. . .. : Remote Queue for Testing the
Description line 2. . . . : MQSeries/VSE System.
PutEnabled:Y Y=Yes, N=No
GetEnabled:Y Y=Yes, N=No

Outbound .. : A A=Active,l=Inactive

REMOTE QUEUE NAME
REMOTE QM NAME. VSE2QM
TRANSMISSION Q NAME QUE.TEST

PF4/ENTER = Read PF5=Add PF6 = Update
PF9 = List PF10= Extended PF12= Delete /

Figure 18. Remote queue definition

On this screen the data entry fields are:

Object Name:
Description Lines 1 & 2:

Put Enabled:

Get Enabled:

Default Inbound status:
Outbound status:
REMOTE QUEUE NAME:

REMOTE QM NAME:

TRANSMISSION Q NAME:

Filled in from the previous screen.

Text field for operator use only. It may be up to two 32
character fields.

This is a toggle which enables/disables MQPUT operations
against this queue.

This is a toggle which enables/disables MQGET operations
against this queue.

This sets the initial status to Active or Inactive at run time for
the Inbound direction of the queue.

This sets the initial status at run time for the Outbound
direction of the queue.

The queue name on the remote MQSeries System to which
the definition in progress will refer.

The name of the remote MQSeries System Queue Manager
on which Remote Queue Name is defined as a local queue.
This name must be defined as a local transmission queue
unless the following field us used.

The name of the local transmission queue to be used by the
MQSeries System to convey messages to this remote
queue. If left blank then the Remote Queue Manager Name
is required to map to a local transmission queue.

Note: Some other operating systems, which the MQSeries System for VSE user may be
communicating with, may be case sensitive. It is important to read “Uppercase
translation”, on page 9, before devising a name for a queue, channel or Queue

Manager.

Navigation through the screens is dependent upon the PF keys.

IBM MQSeries for VSE/ESA User's Guide

Create alias queue

Record added OK.

ﬂ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:47:16 Queue Definition Record VSE2
MQMMQUE QM - VSE2 0002

ALIAS QUEUE DEFINITION

Object Name.:QTST

Descriptionline 1. ... : Alias queue name for QUE.TEST
Descriptionline 2. ...:

Put Enabled:Y Y=Yes, N=No

GetEnabled:Y Y=Yes, N=No

Default Inbound status . . : A Outbound ..: A A=Active,l=Inactive

ALIAS QUEUE NAME.:

PF2 = Options PF3 = Quit PF4/ENTER =Read PF5=Add PF6 = Update

PF9 = List PF10= Extended PF12= Delete /

Figure 19. Alias queue definition

On this screen the data entry fields are:

Object Name:
Description Lines 1 & 2:

Put Enabled:

Get Enabled:

Default Inbound status:
Outbound status:

Alias Queue Name:

Filled in from the previous screen.

Text field for operator use only. It may be up to two 32
character fields.

This is a toggle which enables/disables MQPUT operations
against this queue.

This is a toggle which enables/disables MQGET operations
against this queue.

This sets the initial status to Active or Inactive at run time for
the Inbound direction of the queue.

This sets the initial status at run time for the Outbound
direction of the queue.

The name of another object already defined in the local
configuration. This must be a local queue name. It cannot
identify another alias.

Navigation through the screens is dependent upon the PF keys.

Chapter 6. System operation 75

Create alias queue manager

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:48:28 Queue Definition Record VSE2
MQMMQUE QM - VSE2 0002

ALIAS MANAGER DEFINITION

Object Name.:VSE2QM

Description line 1. . .. : Alias for Queue Manager
Description line2: VSE2

PutEnabled:Y Y=Yes, N=No
GetEnabled:Y Y=Yes, N=No

Default Inbound status . . : A Outbound .. : A A=Active,|=Inactive

ALIAS QM NAME VSE2
TRANSMISSION QUEUE.
Record added OK.

PF2 = Options PF3=Quit PF4/ENTER =Read PF5=Add PF6 = Update
PF9 = List PF10= Extended PF12= Delete /

Figure 20. Alias queue manager definition

On this screen the data entry fields are:

Object Name: Filled in from the previous screen.

Description Lines 1 & 2: Text field for operator use only. It may be up to two 32
character fields.

Put Enabled*: This is a toggle which enables/disables MQPUT operations
against this queue.

Get Enabled*: This is a toggle which enables/disables MQGET operations
against this queue.

Default Inbound status: This sets the initial status to Active or Inactive at run time for
the Inbound direction of the queue.

Outbound status: This sets the initial status at run time for the Outbound
direction of the queue.

Alias QM Name: The name of a known queue manager. This can be a local

transmit queue name, a remote queue manager name, or
the local queue manager name. It cannot identify another
alias.

Transmission Queue: The name of the local transmission queue to be used by the
MQSeries System to convey messages to this remote queue
manager. If left blank then the above field is required to map
to a local transmission queue or to the local queue manager
name.

Notes: 1. The above definitions cannot be used in a MQCONN call. They may only be used
for MQOPEN substitution.

2. The field definitions marked with a * are non-enterable fields.
Navigation through the screens is dependent upon the PF keys.

76 1BM MQSeries for VSE/ESA User's Guide

Create alias reply

ﬂ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:49:45 Queue Definition Record VSE2
MQMMQUE QM - VSE2 0002

ALIAS REPLY DEFINITION
Object Name.: REPLYQ
Description line 1. . .. : Alias Reply Definition
Descriptionline 2. ...:

PutEnabled:Y Y=Yes, N=No
GetEnabled:Y Y=Yes, N=No

Default Inbound status .. : A Outbound .. : A A=Active,l=Inactive

ALIAS QUEUE NAME. QUE.TEST
ALIAS QM NAME VSE2QM

Record added OK.

PF2 = Options PF3=Quit PF4/ENTER =Read PF5=Add PF6 = Update
PF9 =List PF10= Extended PF12= Delete /

Figure 21. Alias queue reply definition

On this screen the data entry fields are:

Object Name: Filled in from the previous screen.

Description Lines 1 & 2: Text field for operator use only.

Put Enabled*: This is a toggle which enables/disables MQPUT operations
against this queue.

Get Enabled*: This is a toggle which enables/disables MQGET operations
against this queue.

Default Inbound status: This sets the initial status to Active or Inactive at run time for
the Inbound direction of the queue.

Outbound status: This sets the initial status at run time for the Outbound
direction of the queue.

Alias Queue Name: The name of another object already defined in the local

configuration. This can be a local queue name or a remote
gueue name. It cannot identify another alias.

Alias QM Name: The name of a known queue manager. This can be a local
transmit queue name or a remote queue manager name. It
cannot identify another alias.

Notes:

1. The above definitions cannot be used in the MQOPEN call. They may only be used
for Reply Queue name substitution with a MQPUT call.

2. The field definitions marked with a * are non-enterable fields.
Navigation through the screens is dependent upon the PF keys.

Chapter 6. System operation 77

Modifying and deleting queue definitions

78

Choice 2 on the configuration menu (the same option as for creating a queue) also allows an
operator to modify, or delete queue definitions.

Note: The same primary screens are used in the modify and delete operations as were
described above for the add function. The PF6 key is used to modify existing
definitions. These screens are not represented here. However, the “LIST” screen is
presented and the “flow” for the modify and delete operation is described.

Selecting an existing queue definition

To modify or delete an existing queue definition, the operator must first select the definition on
which to work and bring it to the display screen. This can be accomplished by using either of
two function keys.

From the “QUEUE MAIN MENU” screen (this is the first screen displayed after choosing option
2 on the configuration menu), the operator may use either PF4 or PF9.

PF4 is the READ key . It may be used to bring a specific queue definition to the screen as
follows:

1. Enter the name of the desired queue in the Object Name field.

2. Press PF4 or Enter.

3. The MQSeries System will read and display the queue definition corresponding to the
entered name.

PF9 is the LIST key . It may be used to bring a specific queue definition to the screen as
follows:

1. Press PF9.
2. The MQSeries System will display a list of all defined queues (see screen below).

3. The operator selects the desired queue by typing an “X” next to the desired queue or by
placing the cursor on the appropriate object.

4. Press PF4 or Enter.

5. The MQSeries System will read and display the queue definition corresponding to the
selected entry.

IBM MQSeries for VSE/ESA User's Guide

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \

11:50:08 Obiject List Screen VSE2

MQMMQUE 0002

S Object Type
X Local Queue
CIC1/REMOTE Remote Queue
GEGE Local Queue
LONGQ Local Queue
MVS1_LOCAL Local Queue
MVS1_REMOTE Remote Queue
MVS1_TQ Local Queue
QL.DEVL Remote Queue
QL.DEVL.X Local Queue
QR.O0S2 Remote Queue

...More

Records found - Select one object name.

PF2 = Options PF3 = Quit PF4/ENTER=Read PF5=Add PF6 = Update

PF7 =Up PF8 = Down PF12 = Delete /

Figure 22. Queue list screen

Modifying an existing queue definition

Once the desired queue definition has been brought to the display (as described in “Selecting
an existing queue definition” on page 78), any field of the definition may be modified just as
described in the preceding section for the add operation. This may involve multiple screens to
include all fields of the queue definition

When the desired changes have been made, the operator updates the screen via PF6
(SUPDATE).

Deleting an existing queue definition
Once the desired queue definition has been brought to the display (as described in “Selecting

an existing queue definition” on page 78), it may be deleted by pressing PF12 (=DELETE). A
confirm request will be presented upon which PF12 must be pressed again.

Chapter 6. System operation 79

Channel definitions

Choice 3 on the configuration menu allows an operator to maintain (add, modify, or delete)
channel definitions for the local installation of the MQSeries System.

Note: The same screen is used for all three functions (add, modify, or delete), with the

desired action being indicated via the function keys. The following section will present
screen as if the operation is to add a new channel definition. “Modifying and deleting
channel definitions” on page 82, presents the slightly different operation to modify or

80

delete a channel.

To create a channel definition (in response to choice 3 on the configuration menu), the following

screen is displayed:

ﬂ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2
11:51:28 Channel Record DISPLAY MCHN
MQMMCHN Last Check Point Last Update 19961211 0002
MSN 00000009 Time 10:28:31 Interv 000000 Create Date 19961128
Channel Name : VSE1 _TO_VSE2 Channel Type : R Snd,Srv/Rcv
Protocol : L62 L62 Format: MCP MLP/MEP/MCP
Allocation Retries Get Retries

Number of Retries: 00000005 Number of Retries : 00000001
Delay Time - fast: 00000015 Delay Time : 00000001
Delay Time - slow: 00000003

Max Messages per Batch : 000001 Max Transmission Size : 004096
Message Sequence Wrap : 999999 Max Message Size 1 003338

Mess Seq Req(Y/N): Y Convers Cap (Y/N): N Split Mssg(Y/N): N
Connection ID:

Transmission Queue Name :
TP Name:
Checkpoint Values: Frequency: 0000 Time Span: 0000
Enable(Y/N) Y Dead Letter Store(Y/N) Y
Channel record displayed.
QFZ =Menu PF3 =Quit PF4 =Read PF5 =Add PF6=Update PF9 =List PF12 =Delete

\

Figure 23. Channel record

IBM MQSeries for VSE/ESA User's Guide

On this screen the data entry fields are:

Channel Name:
Protocol:

Channel Type:

Format:

Allocation Retries
Number of Retries:
Delay Time - fast:
Delay Time - slow:

Get retries

Number of Retries:
Delay time:

Channel Negotiation Fields
Max Messages per Batch:

Message Sequence Wrap:
Max Transmission Size:

Max Message Size:

Mess Seq Reqd:

Convers Cap:

Split Mssg:
Other Channel Data
Connection ID:

Transmission Queue Name:

TP Name:

The name of the channel to be defined.

The protocol being used by the selected channel (only L6.2
is supported).

S: A sender/server only channel. R: A receiver only channel.
Requester Channels are not supported for IBM MQSeries for
VSE/ESA.

Identifies the channel format (only MCP is supported).

Number of allocation retries when not successful.

Time between retries (in seconds).

Time between retries (in seconds) after Fast number of
retries have been depleted.

The number of Get retries when queue is empty.
The time between retries (in seconds).

The mutually accepted maximum number of messages per
batch to be transmitted (only one message per batch is
supported).

The mutually agreed maximum messages count before the
count sequence starts over.

The mutually accepted maximum number of bytes per
transmission.

The mutually accepted maximum number of bytes per
message. The Maximum Message Size cannot be bigger
than the application message size plus the IBM MQSeries
System header.

If yes, both ends of the channel must use message
sequence numbers. If no, message sequence numbers are
not required (currently, yes is required).

This is used by the MQSeries System to determine the
translation required for message headers between various
hardware platforms on the network. The user data portion of
messages is not translated.

Split or segmented messages not supported at this time.

A four-byte field identifying the connection. Required by the
sender, optional for the receiver.

The name of the transmission queue. Required for the
sender, optional for the receiver.

A sixty four character field identifying the remote task ID of
the receiver on the remote CICS region, or a TPNAME on
the remote system (for example, MQO3). Required by the

sender.

Note: Although the TPNAME may be up to 64 bytes elsewhere, for the MQSeries System
purposes it must be up to 4 bytes.

Checkpoint Values
Frequency:

Time Span:

Enable:
Dead Letter Store:

Determines checkpoint event based upon 1/O frequency.

Determines checkpoint event based upon time span in
seconds.

Enable the Dead Letter Queue.

Allow messages for undefined destinations to be written to
the Dead Letter Queue.

Chapter 6. System operation 81

Modifying and deleting channel definitions

82

Choice 3 on the configuration menu (the same option as for creating a channel) also allows an
operator to modify, or delete channel definitions.

Note: The same primary screen is used in the modify and delete operations as were
described above for the add function. This screen is not re-presented here. However,
the “LIST” screen is presented and the “flow” for the modify and delete operation is

described.

Selecting an existing channel definition

To modify or delete an existing channel definition, the operator must first select the definition on
which to work and bring it to the display screen. This can be accomplished by using either of

two function keys.

From the “CHANNEL RECORD” screen (this is the first screen displayed after choosing option
3 on the configuration menu), the operator may use either PF4 or PF9.

PF4 is the READ key . It may be used to bring a specific channel definition to the screen as
follows:

1. Enter the name of the desired channel in the Channel Name field.
2. Press PF4, or <Enter>.
3. The MQSeries System will read and display the corresponding channel definition.

PF9 is the LIST key . It may be used to bring a specific channel definition to the screen as
follows:

1. Press PF9.

2. The MQSeries System will display a list of all defined channels (see screen below).

3. The operator selects the desired channel by typing an “S” next to it.

4. Press PF4, or <Enter>.

5. The MQSeries System will read and display the corresponding channel definition.

ﬁ1/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI12 \
11:52:01 Channel List VSE2
MQMMCHN QMMC

S CHANNEL NAME TYPE STATUS LAST MSN LAST CHECKPOINT

C1 R ENABLE 000009 10:28:31
MQM7.LU62.VSEF.DEVL R ENABLE 005054 10:28:31
MVS1_TO_VSE2 R ENABLE 000005 10:28:31

VSE1_TO_VSE2 R ENABLE 000009 10:28:31
VSE2_TO_MVS1 S ENABLE 000069 10:28:31 MVS2
VSE2_TO_SDO1 S ENABLE 000006 11:11:09 SDO1

VSE2_TO_VSE1 S ENABLE 000000 10:28:31 VSE1

ENTER 'S' to select Channel
\ PF2=Menu PF3=Quit PF4=Read F7=Backward PF8 = Forward /

Figure 24. Channel list

IBM MQSeries for VSE/ESA User's Guide

On this screen the display fields are:

Channel Name: The names of all channels.

Type: Type is Sender or Receiver.

Status: Channel may be enabled or disabled.

Last MSN: The last checkpointed message sequence number of the
channel.

Last Checkpoint: The time of the last checkpoint.

Modifying an existing channel definition

Once the desired channel definition has been brought to the display (as described in “Selecting
an existing channel definition” on page 82), any field of the definition may be modified just as
described in the preceding section for the add operation.

When the desired changes have been made, the operator updates the screen via PF6
(SUPDATE).

Deleting an existing channel definition

Once the desired queue definition has been brought to the display (as described in “Selecting
an existing channel definition” on page 82), it may be deleted by pressing PF12 (=DELETE). A
confirmation request will be displayed, requiring PF12 to be pressed again.

Global system definition display

Choice 4 on the main menu allows an operator to view the attributes defined for the local queue
manager (and all system wide parameters) through the following screen:

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI2 \
11:52:14 Global System Definition VSE2

MQMMSYS Queue Manager Information 0002

Queue Manager VSE2

Description Line 1.: MQ/Series Manager on VSE/ESA 2.1

Description Line 2.: Development System

Channel Maximum Values
Checkpointer Global Timer .. 00000060

Queue System Values
Maximum Number of Tasks . .. 00000500 System Wait Interval : 00000030
Maximum Concurrent Queues .. 00000500 Max. Recovery Tasks :0001
Allow TDQ Write on Errors : Y CSMT Allow Internal Dump : N

Queue Maximum Values
Maximum Q Depth: 01000000 Maximum Global Locks.: 00000100
Maximum Message Size. 00032000 Maximum Local Locks .: 00000100
Maximum Single Q Access . .. 00000100 Checkpoint Threshold : 1000

Global QUEUE /File Names

Configuration File. MQFCNFG

LOG Queue Name.: SYSTEM.LOG
Dead Letter Name.: SYSTEM.EXCEPT
Monitor Queue Name. SYSTEM.MONITOR

Requested record displayed.
PF2 = Main Config PF3=Quit PF4/ENTER =Read

Figure 25. Global system definition display
This is a display-only screen.

To return to the Configuration Main Menu, press the PF2 key.

Chapter 6. System operation 83

Queue definition display

Choice 5 on the main menu allows an operator to view existing queue definitions.

Note: This function allows an operator to see the queue definition, not the current queue
status. To see the current queue information, refer to the Queue Monitor function.

This operation is identical to the modify queue and delete queue operations (as described in
“Modifying and deleting queue definitions” on page 78) except that the maintenance function
keys, PF5(=ADD), PF6(=UPDATE) and PF12(=DELETE), are not available to the operator.

Channel definition display

Choice 6 on the main menu allows an operator to view existing channel definitions.

This operation is identical to the modify channel and delete channel operations (as described in
“Modifying and deleting channel definitions” on page 82) except that the maintenance function
keys, PF6(=UPDATE) and PF12(=DELETE), are not available to the operator.

Operations functions

84

Selecting option 2 (Operations) from the main menu, causes MQMT to display the following
sub-menu screen:

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:52:33 ** Operations Main Menu *** VSE2
MQMMOPR 0002

SYSTEM IS ACTIVE
1. Start / Stop Queue(s)
2. Open / Close Channel(s)
3. Reset Message Sequence Number
4. Initialization / Shutdown of System
5. Maintain Queue Message Records

Option:

Please enter one of the options listed.
5787-ECX (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved.

\ENTER = Process PF2 = Main Menu PF3 = Quit /

Figure 26. Operations main menu

On this screen, choices correspond to available operator control functions.

IBM MQSeries for VSE/ESA User's Guide

Start/Stop queue

Choice 1 on the operations menu allows an operator to start or stop processing for a queue.
This differs from setting the queue’s Get Enabled or Put Enabled option to No in that the
Start/Stop functions are dynamic with immediate runtime effects. The Get Enabled and Put
Enabled functions, on the other hand, are static configuration fields which take effect at system
initialization time, or via the Refresh from Config option on this screen. Further, Start/Stop
applies universally to all processes attempting to access a local queue, whereas the Get
Enabled/Put Enabled flags can be selectively applied to aliases and remote queue definitions.

ﬁl/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:53:25 Start / Stop Queue VSE2
MQMMSS 0002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : Queuing System is active.
Channel Status : Channel System is active.
Monitor Status : Monitor is not active.
Single Queue Request
Queue Name :GEGE

Function ;X S=Start, X=Stop, R=Refresh from Config
Mode :B I=Inbound, O=Outbound, B=Both
INBOUND Status : DISABLED

OUTBOUND Status : DISABLED

All Queue's Request
Function : S=Start, X=Stop, or M=Monitor

QUEUE STOPPED.
ENTER=Display = PF2 = Oper Menu PF3 = Exit PF6 = Update

- J

Figure 27. Start/stop queue control screen

On this screen, the fields are:

System Status: Reflects the status of the system. This is normally ACTIVE,
unless the system has not been initialized, or unless the
system has been shutdown. When this occurs the field will
read: SYSTEM IS SHUTDOWN.

Queue Status: Reflects the status of the queuing system. This is normally
ACTIVE, unless the system has not yet been initialized or
unless all queues have been stopped. When this occurs the
field will read: QUEUING SYSTEM IS STOPPED.

Channel System: Reflects the status of the channels. This is normally
ACTIVE, unless the system has not yet been initialized or
unless all channels have been closed. When this occurs the
field will read: CHANNEL SYSTEM IS CLOSED.

Monitor Status: Reflects the status of the System Monitor.
Single Queue_Request

Queue Name: The name of a specific queue to Start/Stop
Function: The function to be performed.

“S” is to start a stopped local queue, to start the associated
trigger mechanism or to start receiving messages if the
channel is open.

“X" is to stop a local queue and make it unavailable.

“R” is to refresh the runtime information for this queue from
the configuration file, which was updated either by
checkpoint requests or MQMT queue configuration. The
configuration file (MQFCNFG) contains definitions of the
Queue Manager, channels and queues. It is important to
refresh a queue if its definition is changed, as the change will
not otherwise be in effect until the next initialization of the
Queue Manager.

Chapter 6. System operation 85

86

Mode: The queue process to be operated on, as indicated on
screen.

INBOUND Status: Reflects the status of the specified queue. This is normally
ACTIVE or IDLE unless the queue Inbound has been
stopped. If the queue is stopped then DISABLED is also
displayed.

OUTBOUND Status: Reflects the status of the specified queue. This is normally
ACTIVE or IDLE unless the queue Outbound has been
stopped. If the queue is stopped then DISABLED is also
displayed.

All Queue’s R equest

Function: This will either stop or start the system queue manager,
without effect on system resources. When a queue manager
is initiated or shutdown, there are certain bookkeeping
functions that must be performed so that the contents of the
disk files can be in sync with the storage control blocks.
However, when a system is started or stopped, the Queue
Manager will simply be enabled or disabled and all
resources will be left “as is”. The monitor request will toggle
the monitor flag. This flag is used to log application requests
and their results to the System Monitor Queue.

Notes on the Start/Start Queue panel

Stop/Start - Only local queue definitions can be stopped or started. In order to stop or start a
non-local queue (for example, Remote), the queue definition must be updated in the
Put-Enabled or Get-Enabled fields. These configuration changes must then be “refreshed” to
the runtime environment.

Triggering - When a local queue is started, any associated triggers will also be started, if the
Queue Depth reflects that messages are present. This will not happen when a “All Queues
Request” function is performed. In addition, any queues that were stopped before the “All
Queues Request” stop function was performed, will still be stopped when an “All Queues
Request” start function is performed. Use the Monitor Queue function to check which local
queues are stopped.

Channel Activation - If the queue definition specifies a trigger and a sender channel, then
starting a queue will trigger the sender program to activate the channel and transmit messages.

IBM MQSeries for VSE/ESA User's Guide

Open/close channel

Choice 2 on the operations menu allows an operator to open or close communications on an
existing channel.

Note:

Opening/Closing a Channel is NOT the same as Starting/Stopping the MCA process.
See “Communications operations (the MCA process)” on page 96, for further
information.

The first screen displayed is:

ﬂ/zs/lgw
11:54:03

MQMMSC

IBM MQSeries for VSE/ESA Version 1.4
Open / Close Channel VSE2

IYZMZSI2 \

0002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : QUEUING SYSTEM IS ACTIVE
Channel System : CHANNEL SYSTEM IS ACTIVE
Single Channel Request
Channel Name :VSE1_TO_VSE2

Type S=Sender or R=Receiver
Function :C O=Open, C=Close , R=Refresh from Config
Status DISABLED
All Channel's Request
Function O=0Open , C=Close

CHANNEL HAS BEEN CLOSED.
ENTER= Display PF2 =Oper Menu

PF3 = Exit PF6 = Update

J

Figure 28. Open/close channel

On this screen the fields are:
System Status:

Queue Status:

Channel System:

Single Channel Request
Channel Name:

Function:

Status:

All Channel’s Request
Function:

Reflects the status of the system. This is normally ACTIVE,
unless the system has not been initialized, or unless the
system has been shutdown. When this occurs the field will
read: SYSTEM IS SHUTDOWN.

Reflects the status of the queuing system. This is normally
ACTIVE, unless the system has not yet been initialized, the
system has been shutdown or all queues have been
stopped. When this occurs the field will read: QUEUING
SYSTEM IS STOPPED.

Reflects the status of the channels. This is normally
ACTIVE, unless the system has not yet been initialized, the
system has been shutdown or all channels have been
closed. When this occurs the field will read: CHANNEL
SYSTEM IS CLOSED.

The name of a specific channel to Start/Stop

The function to be performed.

“O" is to open a closed channel.

“C” is to close an open channel.

“R” is to restore the runtime information from the
configuration file. A channel must be refreshed if the
definition was updated by MQMT channel configuration.
Reflects the status of the specified channel. This is normally
ACTIVE or IDLE unless the channel has been stopped, then
DISABLED is also displayed.

This will either open or close the channel system.

Note:

Opening a channel will not cause a trigger to activate. However, starting the channel’s
transmission queue will activate a trigger. See Notes on page 86.

Chapter 6. System operation 87

Reset message sequence number
Choice 3 on the operations menu allows an operator to reset the message sequence numbers

88

on an existing channel.

To accomplish this, the screen displayed is:

ﬂ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI12 \
11:55:30 Reset Channel Message Sequence VSE2
MQMMMSN 0002
System Information
System Status : SYSTEM IS ACTIVE
Queue Status : QUEUING SYSTEM IS ACTIVE
Channel Status : CHANNEL SYSTEM IS ACTIVE
Reset Channel Info
Channel Name :VSE1_TO_VSE2
Type S=Sender or R=Receiver
Status . IDLE
Current Next-MSN : 00000010
New Next-MSN :
Information displayed.
PF2 = Oper Main Menu PF3 = Cancel PF6 = Update

J

Figure 29. Reset channel message sequence

On this screen the fields are:
System Information

System Status:

Queue Status:

Channel Status:

Reset Channel Info

Channel Name:
Status:

Current Next-MSN:
New Next-MSN:

Reflects the status of the system. This is normally ACTIVE,
unless the system has not been initialized, or unless the
system has been shutdown. When this occurs the field will
read: SYSTEM IS SHUTDOWN.

Reflects the status of the queuing system. This is normally
ACTIVE, unless the system has not yet been initialized or
unless all queues have been stopped. When this occurs the
field will read: QUEUING SYSTEM IS STOPPED.

Reflects the status of the channels. This is normally
ACTIVE, unless the system has not yet been initialized or
unless all channels have been closed. When this occurs the
field will read: CHANNEL SYSTEM IS CLOSED.

The name of a specific channel to Open/Close

Reflects the status of the specified channel. This is normally
ACTIVE or IDLE unless the channel has been stopped, then
DISABLED is displayed.

Displays the message sequence number to be used next.
Operator entered field for new message sequence number
to be used next.

Note: In order for a channel message sequence number to be reset, the channel must be

stopped.

IBM MQSeries for VSE/ESA User's Guide

Initialization of system
Choice 4 on the operations menu allows an operator to initialize the queuing system.

The following screen is displayed:

ﬁ1/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:55:44 Initialization / Shutdown of System VSE2
MQMMSI 0002

System Information
System Status : SYSTEM IS ACTIVE
Queue Status : QUEUING SYSTEM IS ACTIVE
Channel Status : CHANNEL SYSTEM IS ACTIVE

Function X I=Initialize, X=Shutdown

Returned Results :

SYSTEM INITIALIZED AT 01/28/199710:28:26

Please enter one of the options listed.

PF2 - Main Operation PF3 - Cancel PF6 - Update

/

Pressing PF6 with an Initialize function (I) on this screen causes the static system configuration
files to be loaded into the CICS/VSE dynamic storage. Any error messages or progress
messages are displayed below “Returned Results”.

Figure 30. Initialization of system

On this screen the data entry fields are:

Function: Here the system can be initialized or shutdown. If the system is shutdown,
this will stop the queue manager and close all channels. If the system is
initialized, this will start the Queue Manager and open all channels and
queues. Any trigger associated with queues just initialized will also be
activated if the Queue Depth is nonzero.

Note: All Queue Maintenance Requests outstanding must have finished before an Initialize
or Shutdown operation can be performed.

Chapter 6. System operation 89

Queue maintenance
Choice 5 on the operations menu allows the operator to either reset deleted records or

90

physically delete r

When selected, th

ecords.

e following screen is displayed:

System Status
Queue Status

Queue
Queue Name

Date (yyyymmd
Time (hhmmss)
Number Proces

New Last Read
Process Time

ﬂ/zs/wg? IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
11:56:43 Maintain Queue Message Records VSE2
MQMMDEL 0002
System Information

Channel System : Channel system is active.

Function : A A=Delete all, D=Delete to date/time exclusive
R=Reset from date/time inclusive

Results of Request

Number of Bypass : 00000000

Queue processing finished.
PF2 = Oper Main Menu PF3 = Quit PF6 = Update

: System is active.
: Queuing system is active.

Information

: GEGE

d) :

sed : 00000015

QSN: 00000000
1 00:00:01

PF12= Retry /

Figure 31. Maintain Queue Message Records

On this screen the data entry fields are:

Queue Name:

Function:

Note:

Date:

Time:

The name of the local queue on which the function will be performed.

D = Delete messages that have been logically deleted up to a specified
“written” date/time exclusive,

A = Delete all records (logically deleted, or written) and reclaim VSAM space,

R = Reset all logically deleted records to “written” status from a specified
“deleted” date/time inclusive.

Specifying D does not actually reclaim VSAM space, because record keys
are always created in ascending sequence. It is strongly recommended that
the user read “VSAM file maintenance” on page 101 for important information
regarding the Delete All function in relation to VSAM files.

Example: Given the date and time of 960930230000, specifying “D” will
delete all records with a written time prior to 11:00:00 p.m. Specifying “R” will
reset all delivered messages with delivery time after 10:59:59 p.m.

The last date up to which the selected function will be performed (if
applicable).

The last time up to which the selected function will be performed (if
applicable).

Once the PF6 key is pressed, the function is activated. This function is done by another task
which will signal this screen when it is done. This signal can be displayed by pressing the
ENTER key. The PF12 key is used only if the Delete task has terminated before finishing the

current request. It

will act like a new PF6 request.

Notes: 1) A Delete or Reset Messages by Date/Time will perform this function up to this
Date/Time, but will not include records with this Date/Time.

2) Ifthe queue is examined with the Browse function, the PUT time of the last
message to be reset should be the value for Date and Time.

3) The
and

IBM MQSeries for VSE/ESA User's Guide

Delete All function will purge all records which include both logically deleted
non-deleted messages.

Once a task to maintain queues is in progress, it flags the Queue Information entry and logically
prevents any other task from accessing this queue. Any attempt to open this queue will be
rejected with the following message:

Queue has xxxx tasks attached. These must be purged.

The only action available at this point is to wait and try again later.

Monitoring functions

Selecting option 3 (Monitoring) from the main menu, causes MQMT to display the following
sub-menu screen:

ﬁ/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI2 \
11:58:29 ** Monitor Main Menu *** VSE2
MQMMMON 0002

SYSTEM IS ACTIVE

1. Monitor Queue

2. Monitor Channel

Option:

Please enter one of the options listed.
5787-ECX (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved.

KENTER = Process PF2 = Main Menu PF3 = Quit /

Figure 32. Monitor main menu

On this screen, choices correspond to available system monitor functions.

Chapter 6. System operation 91

Monitor queues

\PF7 =Back PF8=Forward PF9 = All PF10 = Detail /

Choice 1 on the monitor menu allows an operator to monitor the current status of all existing
local queues. The monitor screen displayed is:

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 1YZMZSI2 \
11:58:35 Monitor Queues VSE2
MQMMMOQ 0002

QUEUING SYSTEM IS ACTIVE
QUEUE FILE TINBOUND OUTBOUND LR QDepth
X MQFIO03 N IDLE IDLE 0 0
GEGE MQFIO03 N STOPPED STOPPED 0 0
LONGQ MQFOO003 N IDLE IDLE 0 49
MVS1_LOCAL MQFIO02 N IDLE IDLE 0 1
MVS1_TQ MQFOO003 Y IDLE IDLE 0 4
QL.DEVL.X MQFIO01 N IDLE IDLE 0 4
SIMON MQFOO003 N IDLE IDLE 0 10
SYSTEM.EXCEPT MQFOO003 N IDLE IDLE 0 0
SYSTEM.LOG MQFOO002 N IDLE IDLE 0 51
SYSTEM.MONITOR MQFOO002 N IDLE IDLE 0 14
..More

Information displayed.

ENTER = Refresh PF2 = Main Monitor

Figure 33. Monitor queues

This screen displays the current status of all local queues. The displayed fields are:
The columns of the display are as follows:

Queue:
File: CICS FCT DDNAME of a Local Queue definition.

T: Queue type
N - normal local queue
Y - transmit local queue
When PF9 (All) option is selected
M - Manager Alias
A - Queue Alias
X - Remote Queue Definition.

Name of the queue.

Inbound: Status of the inbound process

ACTIVE - one or more users have the queue open for Put
IDLE - no user has the queue open for Put

STOPPED - queue has been stopped

MAX - at maximum QDepth

FULL - no space

RECOVERY - for dual queuing.

Status of the outbound process

ACTIVE - one or more users have the queue open for Get
IDLE - no user has the queue open for Get

STOPPED - queue has been stopped

RECOVERY - for dual queuing.

LR: Last Read: Relative record number of the last record on queue which has
been read and processed. (Remember, MQSeries System messages are

Outbound:

logically rather than physically deleted from the queue file. LR tells you which

physical record is prior to the first active record.)

QDepth: Estimated Queue Depth: The approximate number of records currently on

gueue, remaining to be processed.

Note: Est. QDepth is based on all MQPUT requests and only syncpointed MQGET

requests.

92 IBM MQSeries for VSE/ESA User's Guide

If the PF9 key is pressed, then an entire list of all queues (local, remote and alias) is displayed
with their associated reference. This is a toggle key, if it is pressed again, it will go back to just
listing local queues. In this local queue list, a PF10 key will show the detail information for this
local queue entry. This information will include trigger and checkpointed information.

Monitor queues - detail

Pressing PF10 will display detail information for a specific channel entry.

The screen displayed is:

@28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
12:07:05 Monitor Queues VSE2
MQMMMOQ 0002

QUEUING SYSTEM IS ACTIVE

DETAIL QUEUE INFORMATION

MVS1 TQ

INBOUND: STATUS| ENABLEDY OPENQ 0
CHECKPOINT: TAKEN OTHRESHOLD 1000

OUTBOUND: STATUS | ENABLEDY OPEN Q 0
CHECKPOINT: TAKEN OTHRESHOLD 1000

BOTH: FIQ 0 LIQ 4 GETS 0 QDEPTH 4
TRIGGER: MAX 1 USED 0 TRAN PROG. MQPSEND
CID VSE2_TO_MVS1

Information displayed.
ENTER = Refresh PF2 = Main Monitor

K PF10 = List /

Figure 34. Monitor queues - detail

Chapter 6. System operation 93

Monitor channel

Choice 2 on the monitor menu allows an operator to monitor the current status of existing
communications channels.

The screen displayed is:
1/28/1997 IBM MQSeries for VSE/ESA Version 1.4
12:10:02 Monitor Channels VSE2
MQMMMOC 0002
CHANNEL SYSTEM IS ACTIVE

IYZMZSI2 \

CHANNEL TYPE MSN QSN
C1 RECV 9 611 GEGE
MQM7.LU62.VSEF.DEVL RECV ~ 5054 37711 SYSTEM.EXCEPT
MVS1 TO_VSE2 RECV 5 301 VSE1_LOCAL

QUEUE

VSE1_TO_VSE2 RECV 9 4C QL.DEVL.X
VSE2_TO_MVS1 SEND 69 691MVS1_TQ
VSE2_TO_SDO1 SEND 6 61 TQ.SDO1

VSE2_TO_VSE1 SEND 0 0l

Information displayed.
ENTER = Refresh PF2 = Main Monitor

\PF7 = Scroll Back PF8 = Scroll Forward PF10 = Detail /

Figure 35. Monitor channel definitions

This screen displays the current status of local channels. The displayed fields are:
The columns of the display are as follows:

Channel: Name of the channel.

Type: Sender, Server or Receiver.

MSN: Last Channel Message Sequence Number received or sent.

QSN: Queue Message Sequence Number (of the queue-name displayed in the
next field)

QUEUE: Name of the queue associated with the channel. If this is a Receiver channel,

then the QUEUE field displays a “snapshot” of the last queue name for which
a message was received. This field is preceded by a one character channel

status:
I =IDLE
B = BUSY

C = CLOSED (for example, DISABLED).

PF10 will show the detail information for a specific channel entry.

94 IBM MQSeries for VSE/ESA User's Guide

Monitor channel - detail

Pressing PF10 will display detail information for a specific channel entry.

The screen displayed is:

01/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2 \
12:10:39 Monitor Channels VSE2
MQMMMOC 0002

CHANNEL SYSTEM IS ACTIVE

DETAIL CHANNEL INFORMATION

VSE1 TO_VSE2
COMMIT MSN QSN DATE/TIME
RECEIVER BEFORE 0 0 19970128102830

AFTER 9 419970128102830
QL.DEVL.X

Information displayed.
ENTER = Refresh PF2 = Main Monitor

\ PF10 = List /

Figure 36. Monitor channel definitions - detail

This screen shows channel activity. It displays the channel name, channel type and the name of
the queue it accesses. The MSN, QSN and time stamp of the last commitment for BEFORE
COMMIT and AFTER COMMIT are also shown.

Chapter 6. System operation 95

Browse function

Selecting option 4 (Browse Queue Records) from the main menu takes the operator directly to a
function with no intervening sub-menus.

The screen displayed is:

1/28/1997 IBM MQSeries for VSE/ESA Version 1.4 IYZMZSI2
12:11:00 Browse Queue Records VSE2
MQMDISP SYSTEM IS ACTIVE 0002

Object Name: GEGE
QSN Number : 00000001 LR- 0, LW- 10, DD-MQFI003
Queue Data Record
Record Status : Written. PUT date/time :19970128120243
Record Size : 00000200 GET date/time :
Queue line.
THIS IS A MESSAGE TEXT

Information displayed.
5787-ECX (C) Copyright IBM Corp. 1993, 1997 All Rights Reserved.
ENTER = Process PF2 = Main Menu PF3=Quit PF4 =Next PF5=Prior
\PF7 =Up PF8=Down PF9=Hex/Char PF10=Txt/Head PF12 = Monitor J

Figure 37. Browse queue

This screen shows the content of the message of the message for the specified QSN of the
chosen object name (Queue Name). Record status is shown as written or deleted along with the
associated time stamps.

To browse the queue records, enter the Local Object name and Queue Sequence Number
(QSN) of the message of interest. In the open area on the screen below the Queue Title, the
queue message will appear. It can then be manipulated by using the function (PF) keys.
Toggling the PF9 key causes the message to be displayed in HEXADECIMAL or EBCDIC text
code.

The PF10 key will present detailed MQSeries information for this record. It includes channel
information if it is a transmit queue.

If the System Log file is browsed, the PF12 (Help) key will appear and can be used to display
User Action and System Action for this message. This function is only available if the runtime
system is active.

Note: If the file being browsed is in the process of being updated by any other MQSeries
tasks, this function will wait until the completion of those tasks and the user may notice
a delay in the response of the browse function.

Communic ations operations (the MCA process)

The MCA (Message Channel Agent) is the communications engine for the MQSeries System. It
runs as a separate CICS task connected to the remote MQSeries System using APPC protocol.
The MCA process will automatically start in response to other system activity or when a
message is placed on a transmission queue. The operator can control the channels. The MCA
process can be stopped from the Operations Main Menu.

96 IBM MQSeries for VSE/ESA User's Guide

Viewing error logs

MQSeries System error messages, and other system informational messages are handled by
placing them on queues as follows:
SYSTEM.LOG: All MQSeries System generated error messages are written

to this queue. If SYSTEM.LOG is not defined, or if the
MQSeries System cannot successfully write to it, then the
error messages are logged to CSMT and may be viewed
using standard system utilities.!

SYSTEM.EXCEPT: Is the MQSeries System Dead Letter Queue. Messages

which cannot be properly queued to their specified
destination are queued here.

SYSTEM.MONITOR: API Monitor Queue used to log all application requests and

their results. This is primarily for trouble-shooting purposes.

The names indicated above for these queues are the default names, but the actual queue
names may be redefined via the global system definition screen.

The messages written to these queues may be viewed with the MQSeries System browse
queue function.

MQSeries command line function

MQCL is a command line interface which allows queues and channels to be selectively opened
and closed. It has the flexibility to open and close in inbound, outbound or both directions. The
syntax format is:

MQCL FF NN

Where: MQCL - the Command line transaction ID
FF - the function code. Valid codes are

CR - Close Receiver channel ID OR - Open Receiver channel ID
CS - Close Sender channel ID 0S - Open Sender channel ID

SB - Start Queue both directions

SI - Start Queue inbound direction

SO - Start Queue outbound direction

XI - Stop Queue both directions

XI - Stop Queue inbound direction

X0 - Stop Queue outbound direction

nnn...nnn - the name of a Queue or channel

A message will be sent to the activated terminal and the SYSTEM.LOG for every activation of
this task. This message will have an error code of MQMO001000 for completed messages, or an
error code of MQM001090 for any ones that did not complete properly. The text that follows will
explain the exact results. MQM001090 indicates Command Line Program invalid syntax.

1. This can be changed in the Global System Definition.

Chapter 6. System operation 97

Background batch modules

98

The PRD2.MQSERIES library contains the USER sublibrary. This contains the following
example background batch job.

MQJUTILY.Z - Contains the MQPUTIL program which performs the following functions:

Prints the system, queues and channels definitions from a configuration file.
Prints the SYSTEM.LOG file in a formatted report.

Updates all channels with a new starting MSN.

Updates a configuration file for dual queues. It will make all dual queues into a
primary queue.

5. Print new Help Facility error information.

PwdPE

The MQPUTIL program uses the CONFIG DDNAME for the MQSeries System configuration
VSAM file, if the “PRINT LOG” command is used. The following is the MQPUTIL program
general syntax:

Column Content

1to5 command name
6 space

71018 subcommand
19 space

20... arguments

Table 32. MQPUTIL program general syntax

MQPUTIL commands:

1. PRINT:
has 3 subcommands:
CONFIG Prints the full configuration of the MQSeries System.
LOG Prints the System Log in a formatted report.
MESSAGES Prints a HELP Facility resolution Report.
2. RESET:
has 2 subcommands:
MSN nnnnnn Resets all channel numbers to nnnnnn passed as argument
CHECKPOINT Resets all the channels checkpoint values to zero.

The RESET CHECKPOINT will cause the channel records to be updated with a new
checkpoint value. This will cause the current MSN values to be maintained when the
MQSeries System runtime system is started. No queue scan is performed to find a later
MSN. Essentially, the runtime system is initialized with the last checkpointed MSN for a
channel. This is done by using the checkpointed date/time. This value is compared against
the updated channel date/time of a queue record. If the queue record is a higher value,
then the MSN in the queue record is used in place of the checkpointed value. All of the
above implies that if the MQPUTIL program is used to perform the RESET CHECKPOINT
function, no queue scan is performed. Whichever checkpoint value was last taken will
become the current MSN when the MQSeries System is started.

3. DUALQ :

has 1 subcommand:

TAKEOVER dual_queue_name
Allows the Dual queue specified as argument to become the primary
queue.
The logic is as follows:
(1).The configuration file will point to the cluster hosting the dual

queue instead of to the cluster hosting the primary queue.

IBM MQSeries for VSE/ESA User's Guide

(2).All message headers in the dual queue will be modified. They will
contain the name of the primary queue instead of the name of
the dual queue.

This command may be used when a local queue becomes unavailable (for example, 1/0
errors) and a Dual queue has been defined.

It is important to backup the configuration file before using this command, since it will be
altered. The configuration file can be restored when the failure is repaired.

The best way to backup this file is by using a VSAM REPRO step.

Using Baitch interface

Logic of the Batch |

MQSeries/VSE has been designed for online programs only. However in a few cases it might be
worth using batch programs as well. For this purpose, 4 sample programs are provided.

MQBIBTCH.Z Batch Interface assembler program
MQBICALL.Z COBOL Sample Application
MQBICIRH.Z CICS COBOL Request Handler
MQBICITK.Z CICS Interface Assembler.

COBOL programs are those listed in the Manual “Messaging and Queuing Extensions for
VSE/ESA” (GC24-9296). However, they have been slightly modified.

This has been tested in development environments only and is provided on the “as-is” basis.
That is, they may have to be modified to fit the user’s environment.

nterface

Since only CICS programs may issue MQSeries requests, the idea is to mirror a batch program
by a CICS transaction which actually issues the MQSeries Requests. Data Transportation is
performed by using XPCC SEND/REPLY protocol.2

Because CICS programs cannot use VSE services without a risk of performance degradation, a
VSE subtask is attached to the CICS partition to handle all XPCC requests.

Two Assembler programs issue XPCC requests: MQBIBTCH on the Batch side and MQBICITK
on the CICS side. So the logic flow is as follows:

Call XPCC LINK Call
program ----> MQBIBTCH -------- > MQBICITK ------ > MQBTCIRH -----> MQSeries

Indeed, MQseries feedback follows the reverse path.

2. Note for DL/I users: |

t very similar to the MPS facility.

Chapter 6. System operation 99

How to use the Batch Interface

1. Inyour batch program, issue MQSeries functions the same way you usually do with CICS
programs. For example :
CALL 'MQCONN' USING
QM-NAME-AREA
HCONN-ADDR-AREA
CCODE-ADDR-AREA
RCODE-ADDR-AREA.

2. Linkedit your program by including module MQBIBTCH. For example:
// JOB GEGETST
/I OPTION CATAL
PHASE MYPROG,*
/I EXEC IGYCRCTL,....
your program here
/*
INCLUDE MQBIBTCH
/I EXEC LNKEDT
1&

3. Start the CICS Interface. Use the transaction MQBI.
4. Execute your batch program.

Note: ~ When your program has terminated, the CICS counterpart does not deactivate. So you
may start another batch program without restarting the transaction MQBI. To
deactivate the Batch Interface, the batch program must issue a CALL '"MQBIEND'. For
example this small batch program will stop the Batch Interface:

ID DIVISION.

PROGRAM-ID. MQBISTOP.
AUTHOR. IBM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

CALL 'MQBIEND".

GOBACK.

Data Integrity
Two new functions have been added :

* MQCMIT to commit all changes. This will force a CICS SYNCPOINT be issued by the
mirror transaction.

®* MQBACK to rollback all changes. The CICS mirror transaction will issue:
EXEC CICS SYNCHPOINT ROLLBACK.

For both new functions, the syntax is the same:
CALL funct’ USING
HCONN-ADDR-AREA
CCODE-ADDR-AREA
RCODE-ADDR-AREA.

This was to keep the same syntax as for other systems, but none of the passed parameters are
actually tested or used.

Under CICS updates are not automatically committed (please refer to “Syncpoints and triggers”,
on page 107 for further details), but it is different for batch programs. If a batch program issues
the MQDISC call while there are uncommitted requests, an implicit syncpoint occurs.

An implicit rollback occurs, and the Batch interface VSE subtask (under CICS) is terminated if
one of the following happens:

a. A MQBIEND call is issued without previous MQDISC call.

100 IBM MQSeries for VSE/ESA User's Guide

b. A system error condition is detected. For example the batch program terminates
without issuing a MQDISC call.

Verifying the Batch Interface

The batch program MQBICALL has been provided for this purpose. So, you may use the
following job for your first test :

// JOB CALLER

/I LIBDEF *,SEARCH=(PRD2.MQMSERIES,PRD2.SCEEBASE)

* Put 5 messages into queue: GEGE

/I EXEC MQBICALL

PUT 005 GEGE

/*

/. END

1&

Restrictions on using the Batch Interface.

1. Only one batch program may be running at a time against an MQSeries Queue Manager.

2. Only one CICS partition may run the Batch Interface at a time. However, by changing the
Application names in XPPC IDENT you might have multiple versions running. But, still, only
one batch program may communicate with one CICS.

3. The MQINQ function has the following limitations:
— amaximum of 10 selectors
— amaximum of 10 integer attributes
— 500 characters for the Character attribute Buffer.

Otherwise, modifying MQBIBTCH and QMBICIRH is needed.

VSAM file maintenance

All files used by the MQSeries System are VSAM clusters. Most of them contain queues and
need to be reorganized from time to time.

A queue is an ordered suite of VSAM records in a KSDS organization. Each record key is 52
bytes long, 48 for the queue name and four for the Queue Sequence Number (QSN). This QSN
is assigned sequentially, resulting in all keys being created in ascending order.

Even when a queue record is physically deleted from a queue, the space it occupied is not
reclaimed due to the way VSAM works. Therefore, without intervention outside of the MQ
manager, there is a high risk of having a VSAM space full condition. This risk is greater when
multiple queues share the same physical VSAM cluster (a practice which is allowable, but not
recommended).

There are two methods used to reclaim the space of deleted records:

1. By using the online “Delete All” function through the MQMT dialogs.
2. By using the MQPREORG batch program (refer to “MQPREORG function”, on page 102).

Chapter6. System operation 101

Delete all function

Description

In the Maintain Queue Records screen (“Queue maintenance” on page 90), there is a function
called “Delete All". This function will physically delete all messages and reset the QSN to one in
order to reclaim freed space. This is a useful tool to maintain the system log file for the
MQSeries System. The advantage of this function is that it is an on-line function requiring no
other manual operation; simply invoke the function itself.

Warning: Please note that this function will delete all messages and should not be used on
queue files which contain undelivered messages.

Operation
® Stop the desired queue via the Start/Stop Queue Control screen.

® Ifthe desired queue is a transmission queue, stop only the inbound direction first. When the
queue depth reaches zero, then stop the outbound and close the associated Sender
channel.

* |If the desired queue is a destination queue with trigger capability, close the associated
Receiver channel.

® Enter the Queue Name with “A” for function in Maintain Queue Records screen and press
PF6 for update.

® Press enter for result.

® After “Queue Processing Finished” is displayed, start the reorganized queue in the
Start/Stop Queue Control screen.

MQPREORG function

The MQSeries System distribution includes a batch program utility called MQPREORG and
sample JCL to run MQPREORG.

Description

This utility is designed to be used as a nightly or weekly queue cleanup facility. Either every
queue or only one queue file can be reorganized in a job step. This function accepts the queue
name from SYSIPT and the name of the VSAM file from DLBL. All messages are bypassed
except the messages marked as “Written” (to be delivered) in the specified queue. The retained
“Written” messages are resequenced and written into a work file. After the VSAM cluster is
deleted and redefined, the retained and resequenced messages are copied back into it. If none
of the written messages are to be retained, a simple ‘delete-and-define’ IDCAMS JCL is
sufficient for the job.

Multiple queues s haring a VSAM cluster

If there is more than one queue defined in a VSAM cluster, then all queues have to be
processed before deleting and recreating this cluster. Otherwise, records from unprocessed
qgueues would be lost. To help the user reorganize all queues, he may use the “ALL” option
instead of the queue name.

// EXEC MQPREORG

ALL

/~k

In fact, in most cases, “ALL is the only option that will be used. Specifying queue names is only
worthwhile when the user wants to move a queue from one cluster to another.

102 IBM MQSeries for VSE/ESA User's Guide

Reorganizing queue files while the queue manager is down
® Procedure:

1. If CICS is up, use CEMT to disable and close the VSAM file(s) to be processed.

2. Modify the sample JCL to include your system parameters and reorganization
requirements. Then execute the job to run the batch program utility, MQPREORG, to
reorganize the VSAM file(s) and reclaim all freed space.

3. If Step 1 was performed, use CEMT to open and enable the processed VSAM file(s).

Sample JCL to run MQPREORG

* ** J0B JNM=MQJREORG,DISP=D,CLASS=0
* %% | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJREORG - Re-Organize MQ/Series for VSE/ESA Queues.

* IMPORTANT IMPORTANT IMPORTANT *
* *
* Please change : *
* "k %% JOB" to "* $$ JOB" *
* "Akokx | ST" to "* $§$ LST" *
* "Akookx EQJ" to "* $$ EOJ" *
* *
* Fields filed with ?volid? have also to be modified to suit the *
* user specifications. *
* *
K e e e e e e e e o — — — — — — — —— — — — — — — —— — — —— — — — — — —— — — ——— —— *
* *
* This job deletes delivered messages from an MQSeries Queue in *
* order to reclaim the DASD freed space. *
* *
* INPUT to MQPREORG : *
* (only one statement is allowed, delimited by one or more spaces)*
* *
* 1. Any QUEUE name delimited by one or more spaces *
* (In this JCL, only queue 0S2_LOCAL is to be processed) *
* If there are any other queues reside in the same cluster, *
* they will be echoed into OUTPUTQ. *
* 2. If you want to process EVERY queue in a cluster, *
* please key in "ALL ". *
* *
* This sample assumes we want to reorganize queues defined to the *
* VSAM cluster MQIF002. Changes must be done for other clusters. *
K e e e e e e e e e e e —— — — —— — — —————— *
* Licensed Materials - Property of IBM *
* *
* 5787-ECX *
* (C) Copyright IBM Corp. 1993, 1996 *
* *
* S Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
* *

// DLBL INPUTQ, 'MQSERIES.MQFI002',,VSAM,CAT=MQMCAT
// DLBL OUTPUTQ, 'MQSERIES.WORK.QUEUE', ,VSAM, CAT=MQMCAT
// EXEC IDCAMS,SIZE=AUTO

/* */
/* VERIFY VSAM FILE */
/* */

VERIFY FILE(INPUTQ)
IF MAXCC > 0 THEN CANCEL /* This means Cluster in use */

Chapter6. System operation 103

104

DELETE

(MQSERIES .WORK . QUEUE)
CL ERASE PURGE CAT(?CAT?)

SET MAXCC = 0
DEFINE CLUSTER

/*

(NAME (MQSERIES.WORK.QUEUE)
CYLINDERS (10 10)

VOLUMES (?volid?)
NONINDEXED)

DATA

(NAME (MQSERIES.WORK.QUEUE.DATA)
RECORDSIZE (2048 32048)

CISZ (8096))

CAT (?CAT?)

// IF $MRC GT O THEN

// GOTO WRAPUP

// LIBDEF PHASE,SEARCH=(PRD2.MQSERIES,PRD2.SCEEBASE)
// EXEC MQPREORG,SIZE=AUTO

0S2_LOCAL
/~k

// IF $MRC GT O THEN

// GOTO WRAPUP

// EXEC IDCAMS,SIZE=AUTO

DELETE

SET MAXCC = 0

/*

(MQSERIES.MQFI002)

CLUSTER NOERASE PURGE CATALOG (?CAT?)

DEF CLUSTER(NAME (MQSERIES.MQFI002)
FILE(MQF1002)
VOL(?volid?)
RECORDS (3000 100)
RECORDSIZE (200 4089)
INDEXED
KEYS(52 0)
SHR(2))

DATA (NAME (MQSERIES.MQFI002.DATA) CISZ(4096))
INDEX (NAME (MQSERIES.MQFI002.INDEX) CISZ(1024))

CATALOG(?CAT?)
IF LASTCC > 0 THEN CANCEL

/*

/* Execute REPRO only of the define was OK.

/*

REPRO INFILE(OUTPUTQ) OUTFILE(INPUTQ)
IF LASTCC > 0 THEN CANCEL

/*
/*

DELETE

/*

/. WRAPUP
/&

* %5 EQJ

IBM MQSeries for VSE/ESA User's Guide

Delete only if REPRO was OK.

(MQSERIES . WORK. QUEUE)
CL ERASE PURGE CAT(?CAT?)

*/
*/
*/

*/
*/

Chapter 7. Application programming interface

The MQSeries System application programming interface implements the IBM Message Queue
Interface (MQI). This simple set of calls provides a way for applications to exchange messages
with other MQSeries Systems such as MVS/ESA, RISC System/6000, VAX, TANDEM, AS/400,
PCs, etc.

The applications programmer/analyst/designer should read earlier chapters of this document for
an overall understanding of the MQSeries System.

In addition to these sources, this chapter provides:

General information regarding the MQI

Design guidelines for applications wishing to use the MQI
Detailed reference information for each individual MQI function
Descriptions of key MQI data structures

Completion codes and reason codes returned by MQI functions

Working with the MQI

The MQI is responsible for handling user application requests to read and write from the
queuing system, and for arbitrating among multiple requests to the same queue.

In IBM MQSeries for VSE/ESA, the MQI is built around the standard COBOL language function
call interface which allows a fixed nhumber of arguments.

MQI calls and sequence of operations
The MQI calls supported by IBM MQSeries for VSE/ESA are:

MQCONN Connects the application to the MQSeries System Queue Manager
MQOPEN Opens access to a specific queue

MQGET Reads a message from a specified queue

MQPUT Writes a message to a specified queue

MQPUT1 Opens a queue, writes one message, and closes the queue

MQINQ Inquires about queue status information

MQCLOSE Closes access to a specific queue

MQDISC Disconnects the application from the MQSeries System queue manager

These calls are described in detail in “MQI calls reference” on page 112. It is also important to
understand the data structures required by the interface -- especially as part of the MQGET and
MQPUT calls. The primary structures are:

MQMD MQ Message Descriptor
MQGMO MQGet Message Options
MQPMO MQPut Message Options
MQOD MQ Object Descriptions

The use of these data structures is described along with the MQI call descriptions in “MQI calls
reference” on page 112. The structures are described independently in “MQI data types and
structures” on page 130.

The sequence of MQI operations performed by an application is very similar to the sequence
used for any familiar record-oriented 1/0 subsystem. That is, just as one must OPEN and
CLOSE a disk file, one must connect to and open (MQOPEN) a queue before accessing it, and
must close (MQCLOSE) and then disconnect at the completion of processing. Within the
application, the user requirements will determine the sequence of MQGET and MQPUT operations.

© Copyright IBM Corp. 1993, 1997 105

Sample source code provided

One sample trigger program, MQPECHO is provided with IBM MQSeries for VSE/ESA. The source
code for this program can be found in the Appendix, or it can be listed directly from the
distribution files.

Within the source code for MQPECHO, the user will find examples which illustrate the use of the
MQI calls in a trigger program.

In addition there are three sample programs, TTPTST1, TTPTST2 and TTPTST3 plus COBOL
language copybook files which are provided with the distribution in the PRD2.MQSERIES
library. These files provide examples of all of the MQI calls.

Compiling your application program

The MQI verbs are provided in the library PRD2.MQSERIES.

Compilation
Make sure to include the PRD2.MQSERIES library as part of the application phase step.

Applications not written in COBOL for VSE

For CICS, COBOL is the language in which the MQI is written. Applications written in COBOL
for VSE have been thoroughly tested with the MQI. Sample programs and copybooks are
provided in COBOL for VSE.

COBOL for VSE is clearly the language of choice for development of the MQSeries System
applications on CICS. However, for a variety of reasons, some users will want to write in
another programming language.

In these cases, the customer must meet the interface requirements of the COBOL language
interface. There are no sample programs and no includable copybook files provided in any
other language.

Nevertheless, any programming language which can call COBOL routines should be able to be
used in one of two manners:

® Call the MQI directly from another language. This usage requires that all interface
parameters match up identically at the binary level. With some languages this may present
a problem. For example, it is NOT possible to write programs calling the MQSeries APl in
Assembler language since there is no support for LE/VSE conforming assembler main
routines under CICS. Please refer to “LE/VSE Programming Guide” for further details.
or

® Within the application, call an application subroutine written in COBOL for VSE. From this
COBOL language subroutine issue static MQI calls. In this manner, there should be no
problem with data alignment.

Application design guidelines

The hidden network

106

One of the key benefits provided by the MQI is the ability for a distributed application to be
developed which is totally independent of the underlying network. This network independence
means there is no need for an application to be aware of either:

® The lower levels of the communication protocol(s)
or

® The physical location of other applications on the network.

In order to take full advantage of this network independence, the queue names used by the
application must be chosen properly.

IBM MQSeries for VSE/ESA User's Guide

In particular, it is recommended that application programs use only a single logical name to
refer to each MQSeries System queue. For the MQI calls, this means only the Queue_Name
field is used to identify queues. The use of the queue's fully qualified name (which includes both
the Queue_Name field and the Queue_Manager_Name field) is not recommended.

The reasoning behind this, parallels the logical naming used in other /O subsystems. When
dealing with disk subsystems, no application hard-codes the device name and path name for a
file. This would cause problems for the application when normal system management functions
relocate a file.

The same is true when addressing MQSeries System queues. Since the
Queue_Manager_Name is typically associated with a particular system, its use implies
knowledge of the physical network. This can place restrictions on any future modifications to the
network and increase the probability that network changes will require changes to the source
code of applications.

Note: The use of the Queue_Name field as the only logical queue name is strongly
recommended. This usage maximizes application flexibility and network
independence. The mapping of the queue name in this form to the proper network
destination then becomes a configuration issue to be handled by the MQSeries
System administrator.

This recommended usage should be reflected in the list of queue names defined by the system
designer (as described in Chapter 3, “Planning” on page 15).

Syncpoints and triggers
This section describes syncpoints and triggers:

® Syncpoints allow an application to perform a series of changes, where the changes are
treated as though they are a single change. They are described in “Syncpoint
Considerations.”

® Triggers allow applications to be started automatically when messages arrive. They are
described in “Triggers” on page 109.

Syncpoint considerations
Most applications need to access resources of one form or another, and a common requirement
is to be able to make a coordinated set of changes to two or more resources.

“Coordinated” means that either all of the changes made to the resources take effect, or none of
the changes take effect. For some applications, queues need to be coordinated. Applications
need to be able to get and put messages (and possibly update other resources, such as
databases), and know that either all of the operations take effect, or that none of the operations
take effect. This set of coordinated operations is called a unit of work. An example of a unit of
work would be a debit and credit for a funds transfer in a financial application. Both operations
must complete, or neither operations must complete, for a valid financial transaction to be
completed.

Units of work

A unit of work starts when the first recoverable resource is affected. For message queuing, a
unit of works starts when a message get or put occurs under syncpoint control.

The unit of work ends when either the application ends, or when the application declares a
syncpoint.

If the unit of work is ended by an application ending, another unit of work can start. One
instance of an application can be involved with several sequential units of work.

When a syncpoint is declared, any party (applications and a queue manager) that has interest in
the unit of work can vote “yes,” to commit the work, or “no,” to back out of the unit of work.

Chapter 7. Application programming interface 107

Applications declare syncpoints, and register their votes, by issuing an environment-dependent
call. It is advisable that an application should execute CICS SYNCPOINT prior to invoking a
MQCLOSE call.

Participation of the MQGET, MQPUT, and MQPUT1 calls in the current unit of work is determined by
the environment.

Distributed units of work (involving more than one queue manager) are not supported. A unit of
work can contain queuing operations at only one instance of the queue manager. If a message
is put to a remote queue (that is, one on another queuing system), the action of the put request
can be within the unit of work on the putting system, but the arrival of the message on the target
(remote) queue is outside its scope. The get request for the message on the remote queue can
be within the scope of work on that system, but the two units of work are not related by the
gueue manager.

Putting messages wi thin a unit of work

If an MQPUT or MQPUT1 call participates in the current unit of work, between the completion of the
MQPUT call* and the successful completion of the unit of work, the message is not available to be
retrieved from the target queue, except from within the same unit of work as the one within
which it was put.

Only when (and if) the unit of work is committed successfully does the message become
generally available.

Any errors detected by the queue manager when the message is put are returned to the
application immediately, by means of the completion code and reason code parameters. Errors
that can be detected in this way include:

Message too big for queue
® Queue full
® Put requests inhibited for queue

Failure to put the message does not affect the status of the unit of work (because that message
is not part of the unit of work). The application can still commit or backout of the unit of work as
required.

However, should an application fail after a message was put successfully within a unit of work,
the transaction is backed out.

Getting messages within a unit of work

If an MQGET call participates in the current unit of work, then between the completion of the MQGET
call and the successful completion of the unit of work, the message remains on the queue but
becomes invisible.

Neither the application that retrieved the message, nor any other application serving the queue,
can see or obtain the message again. If the unit of work is committed successfully, the message
is deleted from the queue. However, if the unit of work is backed out, the message is reinstated
in the queue in its original position, and becomes available to the same or another application to
retrieve.

Syncpoint and persistence

Currently only persistent messaging is supported. Persistent messages do not get deleted if the
Queue Manager is restarted. Thus, they are fully recovered when the Queue Manager is
restarted. Syncpointing by the application will cause these records to be in a logical unit of work.
Therefore, any records that were syncpointed will still be recovered if the Queue Manager is
shutdown and restarted.

1.

108

In this discussion it is assumed that call completes with MQCC_OK.

IBM MQSeries for VSE/ESA User's Guide

Syncpoint Rollback

Triggers

If your application wants to undo what has been done since the beginning of the current LUW, it
has to issue:

EXEC CICS SYNCPOINT ROLLBACK

This might have the following (and non-desired) results:

— Monitoring will show wrong queue depth values. This is because the Queue Manager
is not aware of rollbacks. Unless having a logic which would drastically impact the
overall performance, it was no satisfying solution to overcome this problem. This value
is correctly reset when stopping, then restarting the Queue Manager.

— The queue depth and the last Sequence Number are not the same anymore. Even if a
message has been rolled back, its Message Sequence Number (MSN) will never be
used again. This is because other applications may have also put messages into the
same queue. Let's take a simple example:

Transaction A writes Message number 5

Transaction Bccc...... 6
Transaction Acccoeevenen. 7
TransactionC 8

At this point the queue depth is 8. Now let's assume Transaction A rolls back, then
Messages 5 and 7 will be never retrieved (this is not an error). The queue depth is now
6, and the next MSN will be 9. From an application point of view this should have no
impact at all, but at first glance might be surprising when using the MQMT dialogs.

Note: To be able to use SYNCPOINT ROLLBACK, you MUST use a CICS System
LOG file (that is, defining a CICS JCT).

Some applications run continuously, and are always available to read a message when it
arrives on the application's input queue. However, having the application active consumes
system resources, even when the application is waiting for a message to arrive. This additional
load on the system is not desirable when the volume of message traffic fluctuates wildly.
Instead of the application running continuously, the application is designed to run only when
there are messages to be processed. The queue-manager's triggering facility is used to help
make this happen.

Overview of trigger facility

A local queue definition can have a trigger event associated with it when it is defined. This event
is defined to activate the MQM Trigger APl Handler (i.e., MQO2 CICS Transaction). The Trigger
API Handler will do either a CICS LINK to the application program or a CICS START to the
application transaction. This is based on whether the user defined a program name or a
transaction name in the queue definition. When an application program is entered, an
information area is available. This area can be mapped by using the structure defined in the
member CMQTMV.C.

1. If the trigger facility specified a program name, this area is passed by using the
COMMAREA.
To return to the API handler, the user should issue an EXEC CICS RETURN.

2. If the trigger facility specified a transaction name, this information area can be gotten by
issuing an EXEC CICS RETRIEVE command.
Before exiting from the program, the user must issue a MQCLOSE command.

Note: In order to perform this function, this transaction ID must be unique in respect to any
MQSeries System local queue. Essentially, the MQSeries System Queue Manager will
recognize this transaction ID for a local queue being opened. When this queue is
closed fully, then this trigger event will be closed, thus allowing another trigger for this
queue to be activated.

Chapter 7. Application programming interface 109

110

Trigger conditions
The queue manager will activate a trigger event based on the event type defined for the current
gueue against which the MQPUT operation has been requested.

Note: The trigger condition suffices automatically if a non-empty queue is stopped then
restarted, regardless of the trigger event type.

The Trigger APl handler will wait until this MQPUT request has been completed. This implies that
the MQPUT could have been successful or unsuccessful (that is, rolled back). The activated
trigger application program should perform an MQGET call. If the result of this MQGET is an empty
condition (that is, MQRC_NO_MSG_AVAILABLE), then the original application current logical-unit- of
work has been rolled back. It is up to the application trigger program to determine whether to
continue to wait or just terminate.

A trigger event type of “FIRST” will generate a trigger event to be performed after the queue
goes from an empty status to a non-empty one. Therefore, any application triggered in this
manner must process the queue until the queue is empty.

A trigger event of “EVERY” will generate a trigger event to be performed after every MQPUT has
been completed, up to the maximum number of trigger events specified on the Extended Local
Queue Configuration Screen.

Defining a sender channel component
A sender channel component will cause the channel to be started if there are messages on the
transmission queue to be sent to the remote node. (A server channel component, by contrast,
will not start unless started by a remote requester component, or by manual intervention, even
when there are messages to be sent.) On the transmission queue for the sender channel, code
the fields as follows:

®* Usage Mode: T
Trigger Enable: Y
Trigger Type: E
Max Trigger Starts: 1
Transaction ID: <blanks>
Program ID: MQPSEND
Remote CID: <the name of the channel>

Note: MQSeries for VSE does not support requester component.

Defining a program to be triggered
This technique is used when an application program is to receive messages from the MQSeries
System Queue Manager in the manner described in “Overview of trigger facility” on page 109
for a CICS LINK.
®* Usage Mode: N
Trigger Enable: Y
Trigger Type: E or F
Max Trigger Starts: 1
Transaction ID: <blanks>
Program ID: <application program name>
Remote CID: <blanks>

IBM MQSeries for VSE/ESA User's Guide

Defining a transaction to be triggered
“Overview of trigger facility” on page 109, for CICS START, provides details of how to trigger a
program based on its transaction ID. Note that the transaction should not also be invoked
outside the trigger mechanism; however, by defining a different transaction name with the same
program name, the program may be invoked outside of the trigger environment. Code as
follows in the queue definition:

®* Usage Mode: N
Trigger Enable: Y
Trigger Type: E or F
Max Trigger Starts: 1
Transaction ID: <user Transaction>
Program ID: <blanks>
Remote CID: <blanks>

Message batch processing
Message batch processing is not supported on IBM MQSeries for VSE/ESA.

Chapter 7. Application programming interface 111

MQI calls reference

For each of the MQI functions, this section presents the detailed call format, parameters, and
guidelines in the following format:

The API calls are described using the following conventions:

MQAPINAME - Call Name
CALL °MQAPINAME® using Parameterl Parameter2 Parameter3 ... ParameterN.

Description of how and when to use the API call.

Parameters
Parameter 1 - Parameter Type (see below)
Description of Parameter.

Instructions for using the parameter.

PARAMETER_OPTION - description
* PARAMETER_OPTION_2 - description.

Guidelines

Guidelines and tips for using the call.

Parameters :

Parameters are variables having particular data types or mapping particular data stuctures.The
name of the associated data type, or structure is shown between parenthesis. Refer to “MQI
data types and structures” on page 130 for detailed information.

Parameter types:
® Input - Parameter set by the application for use by the queue manager.

® Output - Parameter set by the queue manager for use by the application on return from the
call.

® Input/Output - Set by the application for use by the queue manager, and modified by the
gueue manager for use by the application on return from the call.

Notes: Features of the full MQI that are not supported in IBM MQSeries for VSE/ESA are so
noted in the following sections.
API functions must be called by using “STATIC CALLS”, otherwise program abends
will likely occur. Static calls implies that the module name being enclosed between
quotes. Example:

CALL 'MQOPEN' USING

MQCONN - connect queue manager

CALL °MQCONN’ USING Name
Hconn
CompCode
Reason

END-CALL.

The MQCONN call connects an application program to a queue manager. It provides a queue
manager handle, which is used by the application on subsequent message-queuing calls.

112 1BM MQSeries for VSE/ESA User’s Guide

Before any of the message-queuing services can be used, the application must establish a
connection to a queue manager. The application does this by means of the MQCONN call.

The application provides the name of the queue manager required (Name), and receives in return
a handle (Hconn) that represents the connection to that queue manager. Only the Local Queue
Manager can be used. No substitution via an Alias Queue Manager can be used.

The returned handle is needed for all subsequent calls on that connection.
CompCode and Reason are returned parameters that indicate the success or failure of the call.

The application can connect either to a specified queue manager, or to the default queue
manager.

The default queue manager is requested by specifying a name consisting entirely of blanks or
null bytes. The queue manager specified must be local to the application.

Parameters
Name (MQCHARA48) - input
Name of the queue manager.

The name specified must be the name of the local queue manager; if the name consists entirely
of blanks, the name of the default queue manager is used (in VSE, there is only one queue
manager in a CICS partition).

The name must not contain leading or embedded blanks, but may contain trailing blanks or null
bytes; the first null character and characters following it are treated as blanks.

Hconn (MQHCONN) - output
Connection handle.

This handle represents the connection to the queue manager. It must be specified on all
subsequent message-queuing call issued by the application. It ceases to be valid when the
MQDISC call is issued, or when the application ends.

CompCode (MQLONG) - output
Completion code.

It is one of the following:

® MQCC_OK - Successful completion.
® MQCC_WARNING - Warning (partial completion).
® MQCC_FAILED - Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:
® MQRC_ALREADY_CONNECTED - Application already connected.

If CompCode is MQCC_FAILED:

MQRC_MAX_CONNS_LIMIT_REACHED - Maximum number of connections reached.
MQRC_Q_MGR_NAME_ERROR - Queue manager name is not Local Queue Manager Name.
MQRC_Q_MGR_NOT_AVAILABLE - Queue manager not available for connection.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

Chapter 7. Application programming interface 113

See “MQI return codes” on page 141, for more details.

Guidelines

1. Only a local queue manager can be connected using this call; it is not possible to connect
to a remote queue manager. Queues which belong to the connected queue manager
appear to the application as local queues. Queues belonging to local queue managers
other than the connected queue manager appear as remote queues. Queues belonging to
remote queue managers also appear as remote queues.

2. After a failure of a connection to the queue manager, this call must be reissued. The
application program can keep reissuing MQCONN calls until it finds that the queue manager
has been restarted. If an application is not sure whether or not it is connected to the queue
manager, it can safely reissue an MQCONN call. If it is already connected, the same handle is
returned as was returned for the previous MQCONN call.

3. The MQDISC call is used to disconnect from the queue manager.

MQOPEN - open message queue

CALL °MQOPEN’ USING Hconn
ObjDesc
Options
Hobj
CompCode
Reason
END-CALL.

The MQOPEN call establishes access to a queue object.

When a connection to the queue manager has been established, the application can open one
or more queues for putting or getting messages. A queue is opened by means of the MQOPEN
call.

The application specifies the queue to be opened (0bjDesc), and options (Options) that indicate
whether the queue is opened for putting or getting messages.

The application receives in return a handle (Hobj) to the opened queue. The returned handle is
used on subsequent calls to access the queue.

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

ObjDesc (MQOD) - input/output
Object descriptor.

This is the structure that identifies the object to be opened; see MQOD in “MQOD - MQ object
descriptor structure” on page 132, for details.

Options (MQLONG) - input
Options that control the action of the MQOPEN call.

One or more of the following must be specified. If more than one is required, the values are
added together.2 Combinations that are not valid are noted; all other combinations are valid.
Only options that are applicable to the type of object specified by ObjDesc are allowed.

2.

114

Do not add the same constant more than once.

IBM MQSeries for VSE/ESA User's Guide

The options for controlling the action of MQOPEN are as follows:

Only one of MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE options can be specified.

MQOO_INPUT_SHARED - Open to get messages with shared access. The queue is opened for
use with subsequent MQGET calls. The call can succeed if this queue is currently open, by
this or another application, with MQOO_INPUT_SHARED, but fails if it is currently open with
MQOO_INPUT_EXCLUSIVE.

MQOO_INPUT_EXCLUSIVE - Open to get messages with exclusive access. The queue is
opened for use with subsequent MQGET calls. The call fails if this queue is currently open, by
this or another application, for input of any type (MQO0_INPUT_SHARED or
MQOO_INPUT_EXCLUSIVE). Only one of MQOO_INPUT_SHARED and MQOO_INPUT_EXCLUSIVE
options can be specified.

MQOO_BROWSE - Open to browse messages. The queue is opened for use with subsequent
MQGET calls with the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option. This is allowed even
if the queue is currently open for MQOO_INPUT_EXCLUSIVE. An MQOPEN call with the
MQOO_BROWSE option establishes a browse cursor, and positions it logically before the first
message on the queue.

MQOO_OUTPUT - Open to put messages. The queue is opened for use with subsequent MQPUT
calls.

MQOO_INQUIRE Open to inquire object attributes. The queue is opened for use with
subsequent MQINQ calls.

Notes:

1. MQOO_OUTPUT cannot be used with an input option(s) (e.g. MQOO_INPUT_
SHARED, MQOO_INPUT_EXCLUSIVE, or MQOO_BROWSE). Another
MQOPEN must be used instead.

2. Queue(s) opened with MQOO_BROWSE and/or MQOO_INQUIRE options only
will not affect the Queue Outbound Status on the Monitor Queue Definition
Screen.

Table 33. Valid open options for each queue type

Option Alias 2 Local Remote
MQOO_INPUT_SHARED X X
MQOO_INPUT_EXCLUSIVE X X
MQOO_BROWSE X X
MQOO_OUTPUT X X X
MQOO_INQUIRE X X X

a.

The validity of an alias depends on the validity of the queue to which the alias resolves.

If an alias queue is being opened for input (browse does not count as input), the test for
exclusive use (or for whether another application has exclusive use) is against the base queue
to which the alias queue resolves.

Hobj (MQHOBJ) - output

Object handle.

This handle represents the access that has been established to the object. It must be specified
on subsequent message-queuing calls, such as MQGET, MQINQ and MQPUT, that operate on the
object. It ceases to be valid when the MQCLOSE call is issued, or when the application ends.

Chapter 7. Application programming interface 115

116

CompCode (MQLONG) - output
Completion Code.

It is one of the following:

® MQCC_OK - Successful completion.
® MQCC_FAILED - Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_FAILED:

MQRC_ALIAS_BASE_Q_TYPE_ERROR - Alias base queue not a valid type.
MQRC_CONNECTION_BROKEN - Connection lost.
MQRC_HANDLE_NOT_AVAILABLE - No more handles available.
MQRC_HCONN_ERROR - Connection handle not valid.
MQRC_OBJECT_IN_USE - Object already open with conflicting options.
MQRC_OBJECT_TYPE_ERROR - Object type not valid.

MQRC_OD_ERROR - Object descriptor structure not valid.
MQRC_OPTION_NOT_VALID_FOR _TYPE - Options not valid for object type.
MQRC_OPTIONS_ERROR - Options not valid or not consistent.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
MQRC_UNEXPECTED_ERROR - Unexpected error occurred.
MQRC_UNKNOWN_ALIAS BASE_Q - Unknown alias base queue.
MQRC_UNKNOWN_OBJECT_NAME - Unknown object name.
MQRC_UNKNOWN_OBJECT_Q_MGR - Unknown object queue manager.
MQRC_UNKNOWN_REMOTE_Q_MGR - Unknown remote queue manager.

See “MQI return codes” on page 141, for more details

Guidelines

1. This call is used to open a queue in order to:

® Get messages (using MQGET call).
® Put messages (using the MQPUT call).
® Inquire about the attributes of the queue (using the MQINQ call).

2. ltis valid for an application to open the same object more than once. Each handle that is
returned can be used for the functions for which the corresponding open was performed.

3. All name resolution within the local queue manager instance takes place at the time of the
MQOPEN call. This may include one or more of the following for a given MQOPEN call:

® Alias resolution to base queue name.

® Resolution of remote queue name to remote queue manager name, and the local
queue name by which it is known at the remote queue manager.

However, be aware that subsequent MQINQ calls for the handle relate solely to the name

that has been opened, and not to the object resulting after name resolution has occurred.
For example, if the object opened is an alias, the attributes returned by the MQINQ call are
the attributes of the alias, not the attributes of the base queue to which the alias resolves.

4. The attributes of an object (including the result of name resolution) can change while an
application has the object open.

5. A remote queue can be specified in one of two ways in the ObjDesc parameter of this call
(see the ObjectName field in “MQOD - MQ object descriptor structure” on page 132).

IBM MQSeries for VSE/ESA User's Guide

® By specifying ObjectName as the local resource-name of the remote queue, as known
to the local queue manager. In this case, ObjectQMgrName refers to the connected
queue manager. See “Queue name format” on page 24, for details.

® By specifying ObjectName as the local resource-name of the remote queue, as known
to the remote queue manager. In this case, 0bjectQMgrName is the name of the remote
gueue manager.

In either case:

®* No message flows occur at the time of an MQOPEN call to the remote queue manager to
perform authorization checks.

6. An MQOPEN call with the MQOO_BROWSE option establishes a browse cursor, for use with the
MQGET calls that specify the object handle and one of the browse options. This allows the
queue to be scanned without altering its contents. A message that has been found by
browsing can subsequently be removed from the queue using the MQGMO_MSG_UNDER_CURSOR
option.

Each established browse cursor adversely impacts the performance of non-browse MQGET
calls. It is recommended therefore that browse operations should be completed as rapidly
as possible, and the cursor destroyed by closing the queue. If further browse operations
are required later, it is better to close the queue and reopen it when needed, in order to
establish a new browse cursor.

Multiple browse cursors can be active for a single application issuing several MQOPEN
requests for the same queue.

MQGET - get message

CALL °MQGET’ USING Hconn
Hobj
MQMD
GetMsgOpts
BufferLength
Buffer
DatalLength
CompCode
Reason

END-CALL.

The MQGET call retrieves a message from a local queue that has been opened using an MQOPEN
call.

For a queue that has been opened for getting, the application can get messages from that
queue by means of the MQGET call.

The application specifies a partially filled-in message descriptor (MsgDesc), some options that
control the action of the call (GetMsgOpts), an empty buffer (Buffer), and the length of the buffer
(BufferLength).

The application receives in return the message data in the buffer (Buffer), and the total length
of the message data (DataLength). The message descriptor (MsgDesc) is completed with
information about the message just retrieved.

The MQGET call can be used repeatedly to get many messages from the same queue, without the
intervening use of the MQOPEN and MQCLOSE calls.

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

Chapter 7. Application programming interface 117

118

Hobj (MQHOBJ) - input
Object handle.

This handle represents the queue from which a message is to be read. The queue must have
been opened with one or more of the following options (see the MQOPEN call for details):

* MQOO_INPUT_SHARED
* MQOO_INPUT_EXCLUSIVE
* MQOO_BROWSE

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message required, and the attributes of the
message retrieved. See MQMD, “MQMD - MQ message descriptor structure” on page 133, for the
format of the message descriptor.

If BufferLength is less than the message length, MsgDesc is still filled in by the queue manager,
whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts parameter (see
the Options field in “MQGMO - MQ get message options structure” on page 139, for more
information).

GetMsgOpts (PMQGMO) - input/output

Options that control the action of an MQGET call.

See MQGMO in “MQGMO - MQ get message options structure” on page 139, for details.
BufferLength (MQLONG) - input

Length in bytes of the Buffer area.

Maximum message size is defined by the access queue manager parameters.

Buffer (MQBY TExBufferLength) - output

Area to contain the message data.

If BufferLength is defined as less than the message length, as much of the message as
possible is moved into Buffer, whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the
GetMsgOpts parameter.

If character data is used within the application message text, the coded character set identifier
has to be agreed between the sending and receiving applications, or else the character set has
to be limited to the subset that is known to occupy the same code points for both the sender and
receiver.

Datal.ength (MQLONG) - output
Length of the message.

This is the length of the application data in the message. If this is greater than BufferLength,
only BufferLength bytes are returned in the Buf fer parameter (the message is truncated). If the
value is zero, it means that the message contains no application data.

If BufferLength is less than the message length, DataLength is still filled in by the queue
manager, whether or not MQGMO_ACCEPT_TRUNCATED_MSG is specified on the GetMsgOpts
parameter (see the Options field in “MQGMO - MQ get message options structure” on

page 139, for more information). This allows the application to determine the size of the buffer
required to accommodate the message data, and then reissue the call with a buffer of the
appropriate size.

IBM MQSeries for VSE/ESA User's Guide

CompCode (MQLONG) - output

Completion code.

It is one of the following:

MQCC_OK - Successful completion.
MQCC_WARNING - Warning (partial completion).
MQCC_FAILED - Call failed.

Reason (MQLONG) - output

Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

MQRC_TRUNCATED_MSG_ACCEPTED - Truncated message returned (message deleted from
queue).

MQRC_TRUNCATED_MSG_FAILED - Truncated message returned (message not deleted from
queue).

If CompCode is MQCC_FAILED:

MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN - Connection lost.

MQRC_CORREL_ID_ERROR - CorrelId must be LOW-VALUES
MQRC_FILE_SYSTEM_ERROR - Queuer received file error. See system log for details.
MQRC_GET_INHIBITED - Gets inhibited for the queue.

MQRC_GMO_ERROR - Get options are invalid.

MQRC_HCONN_ERROR - Connection handle not valid.

MQRC_HOBJ_ERROR - Object handle not valid.

MQRC_MD_ERROR - Message descriptor not valid.

MQRC_MSG_ID_ERROR - MsgId must be LOW-VALUES

MQRC_NO_MSG_AVAILABLE - No message available to satisfy specified operation.
MQRC_NO_MSG_ID_ERROR - An unlock request was rejected.
MQRC_NO_MSG_UNDER_CURSOR - Browse cursor not positioned on message.
MQRC_NOT_OPEN_FOR_BROWSE - Queue object not open for browse.
MQRC_NOT_OPEN_FOR_INPUT - Queue object not open for input.
MQRC_OPTIONS_ERROR - Options not valid or consistent.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
MQRC_WAIT_INTERVAL_ERROR - Negative wait interval in MQGMO.

See “MQI return codes” on page 141, for more details

1.

2.

Guidelines

The message retrieved is normally deleted from the queue as part of the MQGET call.
Message deletion does not occur if an MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option is
specified on the GetMsgOpts parameter.

Applications should look for the feedback code MQFB_QUIT (on the MsgDesc parameter) and
end if they get such a message - see the Feedback field for more information.

Chapter 7. Application programming interface 119

MQPUT - put message

120

CALL “MQPUT’ USING Hconn
Hobj
MsgDesc
PutMsgOpts
BufferLength
Buffer
CompCode
Reason

END-CALL.

The MQPUT call puts a message on a queue; the queue must already be open.

When the queue has been opened for putting, the application can put messages to that queue
by means of the MQPUT call.

The application specifies information about the message to be put (MsgDesc), options that
control the action of the put (PutMsgOpts), the length of the data (BufferLength), and the
message itself (Buffer).

The MQPUT call can be used repeatedly to put many messages on the same queue, without
intervening use of the MQOPEN and MQCLOSE calls.

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the queue to which the message is added. The queue must be opened
for MQOO_OUTPUT (see the MQOPEN call).

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message being sent, and receives feedback
information after the put request is complete. See MQMD in “MQMD - MQ message descriptor
structure” on page 133, for the format of the message descriptor.

PutMsgOpts (MQPMOQO) - input/output

Options that control the action of the MQPUT call.

See MQPMO in “MQI data types and structures” on page 130, for details.
BufferLength (MQLONG) - input

Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.
Buffer (MQBY TExBufferLength) - input

This is a buffer containing the application data to be sent.

CompCode (MQLONG) - output

Completion Code.

IBM MQSeries for VSE/ESA User's Guide

It is one of the following:

® MQCC_OK - Successful completion.
® MQCC_FAILED - Call failed.
® MQCC_WARNING - Warning (partial completion).

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

® MQRC_PRIORTY_EXCEEDS_MAXIMUM - A priority > 0 was specified and is ignored by MQSeries
System.

If CompCode is MQCC_FAILED:

MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN - Connection lost.

MQRC_EXPIRY_ERROR - Expiry time not valid.

MQRC_FEEDBACK_ERROR - Feedback code not valid.

MQRC_HCONN_ERROR - Connection handle not valid.

MQRC_HOBJ_ERROR - Object handle not valid.

MQRC_MD_ERROR - Message descriptor not valid.
MQRC_MISSING_REPLY_TO_Q - Missing reply-to-queue.
MQRC_MSG_T00_BIG_FOR_Q - Message length greater than maximum for queue.
MQRC_MSG_TYPE_ERROR - Message type in message descriptor not valid.
MQRC_NOT_OPEN_FOR_OUTPUT - Queue object not open for output.
MQRC_OPTIONS_ERROR - Options not valid or not consistent.
MQRC_PERSISTENCE_ERROR - Persistence not valid.

MQRC_PMO_ERROR - Put-message-options structure not valid.
MQRC_PRIORITY_ERROR - Priority not valid.

MQRC_PUT_INHIBITED - Puts inhibited for queue.

MQRC_Q_FULL - Queue already at maximum depth.
MQRC_Q_SPACE_NOT_AVAILABLE - No space available on disk for queue.
MQRC_REPORT_OPTIONS_ERROR - Report options in message descriptor not valid.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 141, for more details.

Guidelines

1. The MQPUT call should be used when multiple messages are to be placed on a queue. An
MQOPEN call, with the MQOO_OUTPUT attribute, is first issued, followed by one or more MQPUT
requests to add messages to the queue. The queue is then closed with an MQCLOSE call.

2. If only one message is to be put on the queue, the MQPUT1 call can be used.

Chapter 7. Application programming interface 121

MQCLOSE - close object

122

CALL “MQCLOSE’ USING Hconn
Hobj

Options

CompCode

Reason

END-CALL.

The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN call.

When the application has finished putting messages on a queue, or getting messages from a
queue, the application must close the queue by means of the MQCLOSE call.

The application specifies the handle of the queue to be closed (Hobj), and some options that
control the action of the call (Options). After the call, the queue handle (Hobj) is no longer valid,
and messages cannot be put to the queue or removed from the application unless it performs
another MQOPEN call.

An application that is reading from a queue does not have to empty the queue before closing it.
Messages left on a queue are retained by the queue manager, and may be accessed later by
the same or another application.

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

Hobj(MQHOBJ) - input/output
Object Handle.

This handle represents the object which is being closed. The value of Hobj was returned by a
previous MQOPEN call.

On successful completion of the call, the queue manager sets this parameter to a value that is
not a valid handle.

Options (MQLONG) - input

Options that control the action of an MQCLOSE call.
The following must be specified:

MQCO_NONE - No optional close processing required.
CompCode (MQLONG) - input

Completion Code.

Itis one of the following:

® MQCC_OK - Successful completion.
® MQCC_FAILED - Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_FAILED:

IBM MQSeries for VSE/ESA User's Guide

MQRC_CONNECTION_BROKEN - Connection lost.
MQRC_HCONN_ERROR - Connection handle not valid.
MQRC_HOBJ_ERROR - Object handle not valid.
MQRC_OPTIONS_ERROR - Option(s) are not valid.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.

See “MQI return codes” on page 141, for more details

Guidelines

1. When an application issues the MQDISC call, or ends either normally or abnormally, any
objects which were opened by the application and which are still open are closed
automatically with the MQCO_NONE option.

2. If operations on a queue were performed under syncpoint control, the queue can be closed
before or after the syncpoint occurs without affecting the outcome of the syncpoint.

If the queue was opened with the MQOO_BROWSE option, the browse cursor is destroyed by
MQCLOSE. If the queue is subsequently reopened with the MQOO_BROWSE option, a new browse
cursor is created (see the MQO0_BROWSE option in “MQI data types and structures” on page 130).

MQDISC - disconnect queue manager

CALL “MQDISC’> USING Hconn
CompCode
Reason

END-CALL.

The MQDISC call breaks the connection between the queue manager and the application
program, and is the inverse of MQCONN.

When the application has finished all interaction with the queue manager, the application must
sever the connection by means of the MQDISC call.

After the call, the connection handle (Hconn) is no longer valid, and message-queuing calls
cannot be issued by the application unless it performs another MQCONN call.

Parameters
Hconn (MQHCONN) - input/output
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

On successful completion of the call, the queue manager sets this parameter to a value that is
not a valid handle.

CompCode (MQLONG) - output
Completion code.

It is one of the following:

® MQCC_OK - Successful completion.
® MQCC_FAILED - Call failed.

Chapter 7. Application programming interface 123

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_FAILED:

® MQRC_CONNECTION_BROKEN - Connection lost.
® MQRC_HCONN_ERROR - Connection handle not valid.
® MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.

See “MQI return codes” on page 141, for more details

Guidelines

If an MQDISC call is issued when an application still has objects open, these objects are implicitly
closed (with MQCO_NONE).

MQPUT1 - put one message

124

CALL “MQPUT1’ USING Hconn
ObjDesc
MsgDesc
PutMsgOpts
BufferLength
Buffer
CompCode
Reason

END-CALL.

The MQPUT1 call puts one message on a queue; the queue need not be open.

For some applications, the typical sequence of calls to MQOPEN, multiple MQPUTS, and finally
MQCLOSE is an efficient method for putting many messages onto a queue. For applications where
only a single put is required, such as a remote database update for a single record, the MQPUT1
call can be used.

The MQPUTL1 call is equivalent in function to the sequence of an MQOPEN call, followed by an MQPUT,
and finally an MQCLOSE call, but only requires a single call.

The application specifies the handle for the queue manager (Hconn), the queue to put the
information (ObjDesc), information about the message to be put (MsgDesc), options that control
the action of the put (PutMsgOpts), the length of the data (Buf ferLength), and the message itself
(Buffer).

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

ObjDesc (MQOD) - input
Object descriptor.

This is a structure which identifies the queue to which the message is added. See MQOD in
“MQOD - MQ object descriptor structure” on page 132, for the format of the object descriptor.

The application must be authorized to open the queue for output.

IBM MQSeries for VSE/ESA User's Guide

MsgDesc (MQMD) - input/output
Message descriptor.

This structure describes the attributes of the message being sent, and receives feedback
information after the put request is complete. See MQMD in “MQMD - MQ message descriptor
structure” on page 133, for the format of the message descriptor.

PutMsgOpts (MQPMOQO) - input/output

Options that control the action of the MQPUT1 call.

See MQPMO in “MQPMO - MQ put message options structure” on page 138, for details.
BufferLength (MQLONG) - input

Length of the message in Buffer.

Zero is valid, and indicates that the message contains no application data.

Buffer (MQBY TExBufferLength) - input

This is a buffer containing the application data to be sent.

CompCode (MQLONG) - output

Completion Code.

It is one of the following:

® MQCC_OK - Successful completion.
® MQCC_WARNING - Warning (partial completion).
® MQCC_FAILED - Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

® MQRC_PRIORTY_EXCEEDS_MAXIMUM - A priority > 0 was specified and is ignored by MQSeries
System.

Chapter 7. Application programming interface 125

If CompCode is MQCC_FAILED:

MQRC_ALIAS_BASE_Q_TYPE_ERROR - Alias base queue not a valid type.
MQRC_BUFFER_LENGTH_ERROR - Buffer length parameter not valid.
MQRC_CONNECTION_BROKEN - Connection lost.

MQRC_EXPIRY_ERROR - Expiry time not valid.

MQRC_FEEDBACK_ERROR - Feedback code not valid.
MQRC_HANDLE_NOT_AVAILABLE - No more handles available.
MQRC_HCONN_ERROR - Connection handle not valid.

MQRC_MD_ERROR - Message descriptor not valid.
MQRC_MISSING_REPLY_TO_Q - Missing reply-to-queue.
MQRC_MSG_T00_BIG_FOR_Q - Message length greater than maximum for queue.
MQRC_MSG_TYPE_ERROR - Message type in message descriptor not valid.
MQRC_OBJECT_TYPE_ERROR - Object type not valid.

MQRC_OD_ERROR - Object descriptor structure not valid.
MQRC_OPTIONS_ERROR - Options not valid or not consistent.
MQRC_PERSISTENCE_ERROR - Persistence not valid.

MQRC_PMO_ERROR - Put-message-options structure not valid.
MQRC_PRIORITY_ERROR - Priority not valid.

MQRC_PUT_INHIBITED - Puts inhibited for queue.

MQRC_Q_FULL - Queue already at maximum depth.
MQRC_Q_SPACE_NOT_AVAILABLE - No space available on disk for queue.
MQRC_REPORT_OPTIONS_ERROR - Report options in message descriptor not valid.
MQRC_STORAGE_NOT_AVAILABLE - Insufficient storage available.
MQRC_UNEXPECTED_ERROR - Unexpected error occurred.
MQRC_UNKNOWN_ALIAS BASE_Q - Unknown alias base queue.
MQRC_UNKNOWN_OBJECT_NAME - Unknown object name.
MQRC_UNKNOWN_OBJECT_Q_MGR - Unknown object queue manager.
MQRC_UNKNOWN_REMOTE_Q_MGR - Unknown remote queue manager.

See “MQI return codes” on page 141, for more details

Guidelines

1. The MQPUT1 call can be used when a single message is to be added to a queue. Itis
functionally equivalent to the MQOPEN, MQPUT, MQCLOSE sequence of calls.

2. If several messages are to be added to the same queue, it is advisable to open the queue
explicitly using an MQOPEN, and then use repeated MQPUT calls before closing the queue
using an MQCLOSE. This gives better performance than repeated use of the MQPUT1.

MQINQ - inquire about object attributes

126

CALL °MQINQ’ USING Hconn
Hobj
SelectorCount
Selectors
IntAttrCount
IntAttrs
CharAttrLength

CharAttrs

CompCode

Reason
END-CALL.

The MQINQ call returns an array of integers and a set of character strings that contain the
attributes of a specified queue.

Sometimes an application needs to determine one or more of the properties of a queue, in order
to take appropriate action. For example, a load-balancing program might want to determine the
current depth of the queue (that is the number of messages on the queue), so that the
application could start another task if the number of queued messages has exceeded the
capacity of the current number of tasks.

IBM MQSeries for VSE/ESA User's Guide

The attributes of the queue can be determined by means of the MQINQ call.

The application specifies the queue whose attributes are to be queried (Hobj), the number of
attributes required (SelectorCount), and the selector codes for those attributes (Selectors).
The application receives in return the values for those attributes (IntAttrs and CharAttrs).

In order to use the MQINQ call, the queue must first be opened for inquiry using the MQOPEN call.

Parameters
Hconn (MQHCONN) - input
Connection handle.

This handle represents the connection to the queue manager, and is returned by the MQCONN
call.

Hobj (MQHOBJ) - input
Object handle.

This handle represents the object whose attributes are required. The handle must have been
returned by an MQOPEN call with the MQOO_INQUIRE option.

SelectorCount (MQLONG) - input
Count of selectors.

This is the count of selectors that are supplied in the Selectors array. It is the number of
attributes that are to be returned. Zero is a valid value. The maximum value allowed is 256.

Selectors (MQLONGxSelectorCount) - input
Array of attribute selectors.

This is an array of SelectorCount attribute selectors; each selector identifies an attribute
(integer or character) whose value is required.

Each selector must be valid for the type of object that Hobj represents. If the object is a queue,
and the selector is:

* Not a valid selector for queues of any type, an error is raised.

® Only applicable to queues of type, or types, other than that of the object, the call completes
with a warning.

Selectors can be specified in any order. Attribute values that correspond to integer attribute
selectors (MQIA_* selectors) are returned in IntAttrs in the same order in which these selectors
occur.

Attribute values that correspond to character attribute selectors (MQCA_* selectors) are returned
in CharAttrs in the same order in which those selectors occur. MQIA_* selectors can be
interleaved with the MQCA_* selectors; only the relative order within each type is important.

If all the MQIA_* selectors occur first, the same element numbers can be used to address
corresponding elements in the Selectors and IntAttrs arrays.

For each MQCA_* selector in the following descriptions, the constant that defines the length in
bytes of the resulting string CharAttrs is given.

The following are valid for any queue type:

MQIA_DEF_PERSISTENCE - Default persistence.
MQIA_INHIBIT_PUT - Whether put operations are allowed.
MQCA_Q_DESC - Queue description (MQ_Q_DESC_LENGTH).
MQCA_Q_NAME - Queue name (MQ_Q_NAME_LENGTH).
MQIA_Q_TYPE - Queue type.

Chapter 7. Application programming interface 127

128

The following are valid for local queues:

MQCA_CREATION_DATE - Queue creation date (MQ_CREATION_DATE_LENGTH).
MQCA_CREATION_TIME - Queue creation time (MQ_CREATION_TIME_LENGTH).
MQIA_CURRENT_Q_DEPTH - Current queue depth.

MQIA_DEFINITION_TYPE - Queue definition type.

MQIA_INHIBIT_GET - Whether GET operations are allowed.

MQCA_INITIATION_Q_NAME - Initiation queue name (MQ_Q_NAME_LENGTH)
MQIA_MAX_MSG_LENGTH - Maximum message length.

MQIA_MAX_Q_DEPTH - Maximum queue depth.

MQIA_OPEN_INPUT_COUNT - Number of MQOPEN calls that have a queue open for input.
MQIA_OPEN_OUTPUT_COUNT - Number of MQOPEN calls that have the queue open for output.
MQCA_PROCESS_NAME - Name of process definition for queue (MQ_PROCESS_NAME_LENGTH).
MQIA_SHAREABILITY - Whether queue can be shared.

MQIA_TRIGGER_CONTROL - Trigger control.

MQIA_TRIGGER_TYPE - Trigger type.

MQIA_USAGE - Usage.

The following are valid for remote queues:
® MQCA_REMOTE_Q_MGR_NAME - Name of remote queue manager (MQ_Q_MGR_NAME_LENGTH).

® MQCA_REMOTE_Q_NAME - Name of remote queue as known on remote queue manager
(MQ_Q_NAME_LENGTH).

The following is valid for alias queues:

® MQCA_BASE_Q_NAME - Name of queue resolved to (MQ_Q_NAME_LENGTH).
® MQIA_INHIBIT_GET - Whether GET operation are allowed.

The following is valid for transmission queues:

® MQCA_XMIT_Q_NAME - Name of local transmission queue.
IntAttrCount (MQLONG) - input
Count of integer attributes.

This is the number of elements in the IntAttrs array. Zero is a valid value if there are no MQIA_*
selectors in Selectors.

If this is at least the number of MQIA_* selectors in the Selectors parameter, all integer attributes
requested are returned.

IntAttrs (MQLONGXxIntAttrCount) - output
This is an array of IntAttrCount integer attribute values.

Integer attribute values are returned in the same order as the MQIA_* selectors in the Selectors
parameter. If the array contains more elements than the number of MQIA_* selectors, the excess
elements are unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to that type of queue, the
specific value MQIAV_NOT_APPLICABLE is returned for the corresponding element in the IntAttrs
array.

If the IntAttrCount or SelectorCount parameter is zero, IntAttrs is not referenced; in this
case, the parameter address passed by programs written in C may be null.

CharAttrLength (MQLONG) - input
Length of character-attributes buffer.
This is the length in bytes of the CharsAttrs parameter.

This must be at least the sum of the lengths required to hold each attribute string (see
Selectors). Zero is a valid value if there are no MQCA_* selectors in Selectors.

IBM MQSeries for VSE/ESA User’s Guide

CharAttrs (MQCHARXxCharAttrLength) - output
Character attributes.

This is the buffer in which the character attributes are returned, concatenated together. The
length of the buffer is given by the CharAttrLength parameter.

Character attributes are returned in the same order as the MQCA_* selectors in the Selectors
parameter. The length of each attribute string is fixed for each attribute (see Selectors), and the
value in it is padded to the right with blanks if necessary.

If the buffer is larger than is needed to contain all of the requested character attributes
(including padding), the excess, beyond the last attribute returned, is unchanged.

If Hobj represents a queue, but an attribute selector is not applicable to that type of queue, a
character string consisting entirely of asterisks (*) is returned as the value of that attribute in
CharAttr.

If the CharAttrLength or SelectorCount parameter is zero, CharAttrs is not referenced; in this
case, the parameter address passed by programs written in C may be null.

CompCode (MQLONG) - output
Completion code.

It is one of the following:

® MQCC_OK - Successful completion.
MQCC_WARNING - Warning (partial completion).
® MQCC_FAILED - Call failed.

Reason (MQLONG) - output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:
® MQRC_NONE - No reason to report.

If CompCode is MQCC_WARNING:

® MQRC_SELECTOR_NOT_FOR_TYPE - Selector not applicable for queue type.
® MQRC_INT_ATTR_COUNT_TOO_SMALL - Not enough space allowed for integer attributes.
® MQRC_CHAR_ATTRS_TO00_SMALL - Not enough space allowed for character attributes.

These reason codes are returned in the above order of preference if more than one applies.

If CompCode is MQCC_FAILED:

MQRC_CHAR_ATTR_LENGTH_ERROR - Length of character attributes not valid.
*MQRC_CHAR_ATTRS_ERROR - Character Attribute string not valid.
MQRC_CONNECTION_BROKEN - Connection lost.

MQRC_HCONN_ERROR - Connection handle not valid.
MQRC_HOBJ_ERROR - Object handle not valid.
MQRC_INT_ATTR_COUNT_ERROR - Count of integer attributes not valid.
*MQRC_INT_ATTRS_ARRAY_ERROR - Integer attributes array not valid.
MQRC_NOT_OPEN_FOR_INQUIRE - Queue object not open for inquire.
MQRC_SELECTOR_COUNT_ERROR - Count of selectors not valid.
MQRC_SELECTOR_ERROR - Attribute selector not valid.
MQRC_SELECTOR_LIMIT_EXCEEDED - Count of selectors too big.
MRQC_STORAGE_NOT_AVAILABLE - Storage not available
MQRC_UNEXPECTED_ERROR - Unexpected error occurred.

See “MQI return codes” on page 141, for more details

Chapter 7. Application programming interface 129

Guidelines
1. The values returned are a snapshot of the selected attributes. There is no guarantee that
the attributes will not change before the application can act upon the returned values.

2. See “MQSeries System configuration elements” on page 23, for more information about
gueue types and attributes.

MQI data types and structures

Data types

This section will examine the data types used by the MQI and will then present the primary data
structures important to the MQI functions.

The following data types are used by the message queuing services in the MQSeries System:
® Elementary
® Structure

All user-defined data types ultimately resolve to elementary data types, or to aggregates of
elementary types (arrays or structures).

Elementary data types
Message queuing uses the following elementary data types:

® MQBYTE - A single byte (string of eight bits)
® MQCHAR - A single character in a defined character set
® MQLONG - A four-byte signed binary integer

MQBYTE - Byte

The MQBYTE data type represents a single byte of data. No particular interpretation is placed on
the byte. The byte is treated as a string of bits, and not as a character or binary number. No
special alignment is required.

An array of MQBYTE is sometimes used to represent an area of main storage whose nature is not
known to the queue manager. For example, the area may contain application message data or
a structure. The boundary alignment of this area must be compatible with the nature of the data
it contains.

MQBYTE24 - String of 24 Bytes
A string of 24 bytes. Each byte is described by the MQBYTE data type.

MQBYTE 32 - String of 32 Bytes
A string of 32 bytes. Each byte is described by the MQBYTE data type.

MQCHAR - Character

The MQCHAR data type represents a single character. The coded character set identifier of the
character is that of the queue manager. No special alignment is required.

Note: Application message data specified on MQGET, MQPUT, and MQPUT1 calls is described by
the MQBYTE data type.
MQCHARn - String of n Characters

Each MQCHARn data type represents a string of n characters, where n can take one of the
following values:

4,8, 12, 16, 28, 32, 48, 64, 128, 256

Each character is described by the MQCHAR data type. No special alignment is required.

130 IBM MQSeries for VSE/ESA User’s Guide

If the data in the string is shorter than the defined length of the string, the data must be padded
with blanks to fill the string. In some cases, a null character can be used to end the string
prematurely, instead of padding with blanks.

Characters beyond the null character, up to the defined length of the string, are ignored. Cases
where null characters may be used are identified in the call and data type descriptions.

When the queue manager returns character strings to the application (for example, on the MQGET
call), the queue manager always pads with blanks to the defined length of the string.

Constants are available that define the lengths of the character string fields.

MQHCONN - Connection Handle

The MQCONN data type represents a queue manager connection handle. The MQCONN data type is
defined as an MQLONG, and must be aligned on a 4-byte boundary.

Applications must only test variables of this type for equality.

MQHOBJ - Object Handle
The MQHOBJ data type represents an object, (queue) handle. The MQHOBJ is defined as an MQLONG,
and must be aligned on a 4-byte boundary.

Applications must only test variables of this type for equality.

MQLONG - Long Integer

The MQLONG data type is a 32-bit signed binary integer that can take any value in the range
-2147483648 through +2147483647, unless otherwise restricted by the context.

For COBOL, the valid range is limited to -999 999 999 through +999 999 999.

An MQLONG must be aligned on a 4-byte boundary.

Structure data types

The supported programming languages vary in their functionality with respect to structures, and
certain rules and conventions are adopted in mapping the message-queuing structure data
types of each programming language.

Boundary alignments
1. Structures are aligned on their natural boundaries. All message-queuing structures require
4-byte alignment.

2. Each field in the structure is aligned on its natural boundary. Fields of type MQLONG are
aligned on 4-byte boundaries. Other fields are aligned on 1-byte boundaries.

3. The length of a structure is a multiple of its boundary requirement. All message-queuing
structures have lengths that are multiples of four bytes.

4. Padding fields are declared explicitly where necessary to ensure compliance with rules 2
and 3.

References to structure components

The supported programming languages allow references to structure components to be
qualified with the name of the structure. Multiple instances of the structure may be declared:

® COBOL has the IN keyword

Chapter 7. Application programming interface 131

Characters in names
The supported programming languages accept mixed case, however, the following points
should be noted:

®* The COBOL language is not case sensitive, and so the names may be coded in lowercase,
mixed case, or all uppercase. However, the following changes must be made:

® The underscore character () used in the names of constants must be replaced by the
hyphen (-) character.

® The names of structure fields must be prefixed with the name of the structure followed
by a hyphen.

MQOD - MQ object descriptor structure

132

The MQOD structure is used to specify a queue object.
This structure is passed as a parameter to the MQOPEN and MQPUT1 calls.

Strucld (MQCHAR4)
Structure identifier.

The value must be:
MQOD_STRUC_ID
Structure identifier for Object Descriptor.

This is always an input field.

Version (MQLONG)
Structure version number.

The value must be:
MQOD_VERSION_1
Structure version number for Object Descriptor.

This is always an input field.

ObjectType (MQLONG)
Object type.
Type of object being named in ObjectName. This must be:
MQOT_Q
Queue.

This is an input field.

ObjectName (MQCHAR48)
Object name.

The local name of the object as defined on the queue manager identified by
ObjectQMgrName.

The name must not contain leading or embedded blanks, but may contain trailing blanks.
The first null character and characters following it are treated as blanks.

This is an input field.

ObjectQMgrName (MQCHAR48)
Object queue manager name.
The name of the queue manager on which the ObjectName object is defined.

If the name is specified, it must not contain leading or embedded blanks, but may contain
trailing blanks. The first null character and characters following it are treated as blanks.

A name which is entirely blank up to the first null character or the end of the field denotes
the queue manager to which the application is connected.

IBM MQSeries for VSE/ESA User’s Guide

This is an input field.

DynamicQName (MQCHAR48)
This is a reserved field.

AlternateUserld (MQCHAR12)
This is a reserved field.

MQMD - MQ message descriptor structure

The MQMD structure is used to describe the attributes of a message. It is an input/output variable
for MQGET, MQPUT, and MQPUT1 calls.
Strucld (MQCHAR4)

Structure identifier.

The value must be:
MQMD_STRUC_ID
Structure identifier for Message Descriptor.

This is always an input field.

Version (MQLONG)
Structure version number.

The value must be:
MQMD_VERSION_1
Structure version number for Message Descriptor.

This is always an input field.

Report (MQLONG)
Reserved.

This is a reserved field. The value must be 0 (zero).

MsgType (MQLONG)
Message type.
This indicates the type of the message. It must be one of the following:

MQMT_REQUEST - Message requiring reply.
MQMT_REPLY - A reply to earlier request message.
MQMT_DATAGRAM - A message not requiring a reply.
MQMT_REPORT - A report message.

The description for these options follow.
MQMT_REQUEST

This message is one requiring a reply.
MQMT_REPLY

This message is the reply to an earlier request message (MQMT_REQUEST). The
message should be sent to the queue indicated by the Rep1yToqQ field of the request
message.

Note: The queue manager does not enforce the request-reply relationship. The
request-reply relationship is the responsibility of the application.

MQMT_DATAGRAM
The message is one which does not require a reply.

MQMT_REPORT
The message is reporting on some unexpected occurrence (for example, a request
message was received which contained data which was not valid).

The message should be sent to the queue indicated by Rep1yToqQ field of the message
descriptor of the message which caused the error.

Chapter 7. Application programming interface 133

The Feedback field should be set to indicate the nature of the report. In addition, the
Correlld field of the report message should be set to the message identifier of the
message which caused the error.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

Expiry (MQLONG)
Reserved.

This is a reserved field. The value must be -1.

Feedback (MQLONG)
Feedback code.

This is used with a message of type MQMT_REPORT to indicate the nature of the report, and is
only meaningful with that type of message.

Feedback codes are grouped as follows:

MQFB_NONE - No feedback provided.

MQFB_SYSTEM_FIRST - Lowest value for system-generated feedback.
MQFB_SYSTEM_LAST - Highest value for system-generated feedback.
MQFB_APPL_FIRST - Lowest value for application-generated feedback.
MQFB_APPL_LAST - Highest value for application-generated feedback.

Applications which generate report messages should not use feedback codes in the
system range, other than MQFB_QUIT.

On MQPUT or MQPUT1 calls, the value specified must be within either the system range or the

user range.

A special feedback code is:

MQFB_QUIT
Application should end. This can be used by a workload scheduling program to control
the number of instances of an application program that are running. Sending an
MQMT_REPORT message with this feedback code to an instance of the application
program indicates to that instance that it should stop processing. However, adherence
to this convention is a matter for the application. It is not enforced by the queue
manager.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1
calls.
Encoding (MQLONG)
Data encoding.

This identifies the representation used for the numeric values in the application message
data. This applies to binary integer data, packed-decimal integer data, and floating-point
data.

The following value is defined:
MQENC_NATIVE
Native machine encoding.

The encoding is the same as that of the machine on which the application is running.
Note: The value of this constant is environment-specific.

Applications should normally specify the MQENC_NATIVE.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

CodedCharSetld (MQLONG)
Coded character-set identifier.

This specifies the coded character-set identifier of character data in the user message
data.

134 IBM MQSeries for VSE/ESA User’s Guide

Note that character data in the message descriptor and the other message queuing data
structures must be in the character set used by the queue manager.
The following special value may be specified:
MQCCSI_Q_MGR
Queue manager’s coded character-set identifier.
Character data in the user message data is in the queue manager’'s character set.
On MQPUT and MQPUT1 calls, the queue manager changes the value MQCCSI_Q_MGR to the

value of the queue manager’s CodedCharSetld attribute. MQCCSI_Q_MGR is never
returned by the MQGET call.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls.

Format (MQCHARS)
Format name.
This is the name that the sender of the message may use to indicate to the receiver the
nature of the data in the message. Any characters that are in the queue manager’s
character set may be specified for the name, but it is recommended that the name be
restricted to the following:

Uppercase A through Z
Numeric digits 0 through 9
Blank

Null Character

If other characters are used, it may not be possible to translate the name between the
character sets of the sending and receiving queue managers.

If there is a null character, it and any subsequent characters are treated as blanks. For the
MQGET call, the queue manager returns the name padded with blanks to the length of the
field.

Do not use names beginning with “MQ". Names beginning with “MQ” are reserved for use by
the queue manager.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

Priority (MQLONG)
Message priority.

The MQSeries System ignores priority. However, positive values for this parameter may be
specified and the MQSeries System will propagate the value along with the message to the
destination. Use of values greater than zero in this field will generate an MQCC_WARNING.

Persistence (MQLONG)
Message persistence.
For MQPUT and MQPUT1 calls, the value must be one of the following:

® MQPER_PERSISTENT - Message is persistent. The message survives restarts of the
gueue manager. When a persistent message is sent to a remote queue, a
store-and-forward mechanism is used to hold the message on a local queue manager
instance until it is known to have arrived at the next destination (input and output
values).

® MQPER_NOT_PERSISTENT - Message not persistent. The message does not survive
restarts of the queue manager. This option is not supported by the MQSeries System.

For an MQGET call, the value returned is either MQPER_PERSISTENT or MQPER_NOT_PERSISTENT.

This is an output field for the MQGET call, and an input field for MQPUT and MQPUT1 calls (only
MQPER_PERSISTENT can be set).

Chapter 7. Application programming interface 135

Msgld (MQBYTE24)3
Message identifier.
On return from an MQGET call, the MsgId field is set to the message identifier of the message
returned (if any).

For MQPUT and MQPUT1 calls, if MQMI_NONE is specified by the application, the queue manager
generates a unique message identifier that it places in the message descriptor sent with
the message.

The queue manager also returns this message identifier in the message descriptor
belonging to the sending application. The application can use this value to record
information about particular messages, and to respond to queries from other parts of the
application.

The sending application can also specify a particular value for the message identifier, other
than MQMI_NONE. This stops the queue manager generating a uniqgue message identifier.
This facility can be used by an application that is forwarding a message, to propagate the
message identifier of the original message.

The queue manager does not itself make any use of this field except to:

® Generate a unique value if requested.
* Deliver the value to the application that issued the get request for the message.

This field is not subject to any translation based on the character set of the queue manger.
The field is treated as a string of bits.

The following special value may be used:
MQMI_NONE
No message identifier is specified. The value is binary zero for the length of the field.

For the MQGET call, MQMI_NONE must be specified, and the first available message on
the queue will be returned.

This is an input/output field for MQGET, MQPUT and MQPUT1 calls.

Correlld (MQBYTE24)
Correlation identifier.

On return from an MQGET call, the CorrelId field is set to the correlation identifier of the
message returned (if any).

For MQPUT and MQPUT1 calls, the application can specify any value. The queue manager
transmits this value with the message and delivers it to the application that issued the get
request for the message.

The field is not subject to any translation based on the character set of the queue manager.
The field is treated as a string of bits.

The following special value may be used:
MQCI_NONE
No correlation identifier is specified.

The value is binary zero for the length of the field. For the MQGET call, MQCI_NONE
must be specified, and the first available message on the queue will be returned.

This is an input/output field for MQGET calls, and an input field for MQPUT and MQPUT1
calls.
BackoutCount (MQLONG)
This is a reserved field.

3. Agenerated MsgId consists of a 4-byte product identifier followed by a product-specific implementation of a unique number. There
is no guarantee that queue manager-generated MsgId values do not clash with application-generated ones.

136 IBM MQSeries for VSE/ESA User’s Guide

ReplyToQ (MQCHAR48)*
Name of reply queue.

The name of the message queue to which the application that issued the get request for
the message should send MQMT_REPLY and MQMT_REPORT messages. The name is the local
name of a queue that is defined on the queue manager identified by Rep1yToQMgr.

For MQPUT and MQPUT1 calls, this field is required if an MQMT_REQUEST type message is
specified in the message descriptor. However, the value specified is passed on to the
application that issued the get request for the message, whatever the message type.

No check is made at the time of the MQPUT and MQPUT1 call that this name is known to the
gueue manager, or satisfies the naming rules for queues. Otherwise the only check made
is that the name is not null, if it is required.

If the name is specified, it should not contain leading or embedded blanks, but it may
contain trailing blanks. The first null character and characters following the null, are treated
as blanks. A name that is entirely blank up to the first null character or the end of the field
indicates that there is no reply-to-queue.

For the MQGET call, the queue manager always returns the name padded with blanks to the
length of the field.

The queue specified must be able to be opened for output by the application that receives
the request message. The application design must ensure that the necessary queues exist
and are appropriately authorized.

This is an output field for the MQGET call, and an input field for the MQPUT and MQPUT1 calls.

ReplyToQMgr (MQCHAR48)®
Name of the reply queue manager.

The name of the queue manager to which the reply message is sent. ReplyToQ is the local
name of a queue that is defined to that queue manger.

No check is made at the time of the MQPUT or MQPUT1 call that this name is known to the
gueue manager, or satisfies the naming rules for queue managers.

If the name is specified, it should not contain leading or embedded blanks, but it may
contain trailing blanks. The first null character and characters following it are treated as
blanks. A name that is entirely blank up to the first null character or the end of the field
denotes the queue manager to which the application is connected.

For an MQGET call, the queue manager always returns the name padded with blanks to the
length of the field.

This is an output field for the MQGET call, and an input field for the MQPUT and calls.

Userldentifier (MQCHAR12)
This is a reserved field.

AccountingToken (MQBYTE32)

This is a reserved field.

ApplldentityData (MQCHAR36)
This is a reserved field.

PutApplType (MQLONG)
This is a reserved field.

PutAppIName (MQCHAR28)
This is a reserved field.

4. These may be defined as Alias Reply Queue via Queue Definition screen in the Configuration Section.
5. These may be defined as Alias Reply Queue via Queue Definition screen in the Configuration Section.

Chapter 7. Application programming interface 137

PutDate (MQCHARS)
This is a reserved field.

PutTime (MQCHARS)
This is a reserved field.

ApplOriginData (MQCHAR4)
This is a reserved field.

MQPMO - MQ put message options structure
Strucld (MQCHAR4)

Structure identifier.

The value must be:
MQPMO_STRUC_ID
Structure identifier for Put-Message Options.

This is always an input field.

Version (MQLONG)
Structure version number.

The value must be:
MQPMO_VERSION_1
Structure version number for Put-Message Options.

This is always an input field.
Options (MQLONG)
Options.
There is only one option supported:
® MQPMO_SYNCPOINT - This option implies that this platform supports syncpointing.
The description of this option follows.
MQPMO_SYNCPOINT
This option is implied because CICS/VSE only supports message syncpointing.
Timeout (MQLONG)
This is a reserved field.

Context (MQHOBJ)
This is a reserved field.

KnownDestCount (MQLONG)
This is a reserved field.

UnknownDestCount (MQLONG)
This is a reserved field.

InvalidDestCount (MQLONG)
This is a reserved field.

ResolvedQName (MQCHAR48)
Resolved name of the destination queue.

This is an output field that is set by the queue manager to the name of the queue that
received the message after alias resolution. This can be either a local queue name or a
remote queue name.

138 IBM MQSeries for VSE/ESA User’s Guide

In each case the name is the local name of a queue that is defined on the queue manager
identified by ResolvedQMgrName.

ResolvedQMgrName (MQCHAR48)
Resolved name of destination queue manager.

The name of the queue manager that received the message after alias resolution.
ResolvedQName is the local name of a queue that is defined on that queue manager.

This is an output field

MQGMO - MQ get message options structure

The MQGMO structure is an input variable for passing the MQGET call.

Strucld (MQCHAR4)
Structure identifier.
The value must be:
MQGMO_STRUC_ID
Structure identifier for Get-Message Options.
This is always an input field.

Version (MQLONG)
Structure version number.

The value must be:
MQGMO_VERSION_1
Structure version number for Get-Message Options.

This is always an input field.

Options (MQLONG)
Options.

Any or none of the following can be specified. If more than one is required, the values are
added together.6 Combinations that are not valid are noted. All other combinations are
valid. The following options are supported:

MQGMO_WAIT - Wait for message to arrive.

MQGMO_NO_WAIT - Return immediately if no suitable message.
MQGMO_BROWSE_FIRST - Browse from start of queue.

MQGMO_BROWSE_NEXT - Browse from current position.
MQGMO_ACCEPT_TRUNCATED_MSG - Allow truncation of message data.
MQGMO_MSG_UNDER_CURSOR - Get message under browse cursor.
MQGMO_SYNCPOINT - This option implies that this platform supports syncpointing.
MQGMO_LOCK - Perform Browse message lock on MQGET.

MQGMO_UNLOCK - Unlock prior lock record.

The description of these options follows.
MQGMO_WAIT

The application is to wait until a message arrives. The maximum time the application
waits is specified in Waitinterval.

If get requests are inhibited, this call returns with an error, whether or not there are any
messages on the queue. If get requests become inhibited while this call is waiting, it
returns immediately with an error.

This option can be used with the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT options.

If several applications are waiting on the same shared queue, all the applications are
activated when a suitable message arrives.

MQGMO_NO_WAIT

6. Do not add the same constant more than once.

Chapter 7. Application programming interface 139

The application is not to wait if no suitable message is available. This is the opposite of
the MQGMO_WAIT option, and is defined to aid program documentation. It is the default if
neither is specified.

MQGMO_BROWSE_FIRST
The MQGET call is the first in a browse sequence. This can be used in the middle of a
browse sequence to reset the browse cursor to the start of the queue.

The first message in the queue, satisfying any conditions specified in the message
descriptor, is returned to the application, but the message remains in the queue.

If the message is removed from the queue before the next MQGET call with the
MQGMO_BROWSE_NEXT is issued, the browse cursor logically remains at the position in the
gueue that the message occupied, even though that position is now empty.

If the MQGET call is issued immediately after the MQOPEN call, this option has the same
effect as MQGMO_BROWSE_NEXT.

After this call, the browse cursor is positioned logical on the message that has been
returned.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be used with a non-browse
MQGET call is required, to remove the message from the queue.

Note that the browse cursor is not moved by non-browse MQGET calls using the same
Hobj handle.

MQGMO_BROWSE_NEXT
The browse cursor is advanced to the next message on the queue, that satisfies any
conditions specified in the message descriptor. The message is returned to the
application, but remains on the queue.

If the message is removed from the queue before the next MQGET call with
MQGMO_BROWSE_NEXT is issued, the browse cursor logically remains at the position in the
queue that the message occupied, even though that position is now empty.

The MQGMO_MSG_UNDER_CURSOR option can subsequently be used with a non-browse
MQGET call if required, to remove the message from the queue.

Note that the browse cursor is not moved by non-browse MQGET calls using the same
Hobj handle.

MQGMO_ACCEPT_TRUNCATED_MSG
The MQGET operation completes successfully, with a warning. The message is removed
from the queue if on a non-Browse request specifying MQGMO_MSG_UNDER_CURSOR(at the
syncpoint, if applicable), even though the BufferLength is shorter than the message.
Without this option, a buffer which is too small causes the MQGET to complete
unsuccessfully.

MQGMO_SET_SIGNAL
Not Used.

MQGMO_MSG_UNDER_CURSOR
This option causes the message pointed to by the browse cursor to be retrieved,
regardless of the values specified in the MsgId and CorrelId fields in the MsgDesc
parameter.

The message pointed to by the browse cursor is the one that was last retrieved using
either the MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT option.

Note: This option must not be specified with either the MQGMO_BROWSE_FIRST
or the MQGMO_BROWSE_NEXT option. It is also an error if the queue was
not opened both for browse for input. If the browse cursor is not currently
pointing to a retrievable message, an error is returned by the MQGET call.

MQGMO_SYNCPOINT
This option is implied because CICS/VSE only supports message syncpointing.

140 IBM MQSeries for VSE/ESA User’s Guide

MQGMO_LOCK

This option can be used with Browse FIRST or NEXT and will cause a lock to be
placed on the record given back to the application. This record will be under exclusive
control by the application. This lock stays in effect until one of the following happens:

(1). An EXEC CICS syncpoint
(2). The application task ends
(3). A MQGET with just a MQGMO_UNLOCK option

MQGMO_UNLOCK
This option will unlock a prior MQGMO_LOCK request that was successful.

WaitInterval (MQLONG)
Wait interval.

The maximum time, expressed in milliseconds, that the MQGET call waits for a message to
arrive. After this time, the call completes with an error (MQRC_NO_MSG_AVAILABLE).

MQWI_UNLIMITED specifies an infinite wait and in the absence of any message will terminate
only at system shutdown.

This field is used in conjunction with the MQGMO_WAIT option. It is ignored if this option is not
specified.
Signall (PMQLONG)

This is a reserved field its value is not significant.

Signal2 (MQLONG)

This is a reserved field its value is not significant.

ResolvedQName (MQCHAR48)
Resolved name of the destination queue.

This is an output field which is set by the queue manager to the local name of the queue
from which the message was retrieved, as defined to the connected queue manager.

The resolved name is different from the name used to open the queue if an alias name was
used. For the case of an alias queue, the name of the local queue is returned.

MQI return codes

For each MQI call, a completion code and a reason code are returned by the MQSeries System
to indicate the success or failure of the MQI function. This section lists the possible codes.

MQI completion codes

| The completion code CompCode) parameter informs the application making an MQI call
whether or not the call completed successfully, completed partially, or failed.

The possible completion codes are as follows:

0 MQCC_OK
Successful completion.
The call completed fully. All output parameters have been set.

The Reason parameter always has the value MQRC_NONE in this case.

1 MQCC_WARNING

Warning of partially completed call.

Chapter 7. Application programming interface 141

MQI reason codes

142

2000

2001

The call completed partially. Some output parameters may have been set in addition to the
CompCode and Reason output parameters.

The Reason parameter gives additional information.

MQCC_FAILED
Call failed.

The processing of the call did not complete. The state of the queue manager is normally
unchanged (exceptions are specifically noted). Only the CompCode and Reason output
parameters have been set.

The reason may be a fault in the application program, or the reason may be a result of some
situation outside the application, for example the application’s authority may have been
revoked.

The Reason parameter gives additional information.

The reason code (Reason) parameter is a qualification to the CompCode.

If there is no special reason to report, MQRC_NONE is returned. A successful call typically returns
MQCC_OK and MQRC_NONE.

If the CompCode is either MQCC_WARNING or MQCC_FAILED, the queue manager always reports a
qualifying reason. Details are provided under each call description.

An alphabetical listing of all reason codes and descriptions follows.
Note: Reason codes marked with an asterisk (*) are not currently implemented.

MQRC_NONE
No reason to report.
The call completed normally (CompCode is MQCC_0K).

Corrective action: None.

*MQRC_ACCESS_RESTRICTED
Queue manager in restricted access mode.

The MQCONN call was rejected because the queue manager has been started in restricted access
mode.

Corrective action: Contact your system administrator.

MQRC_ALIAS_BASE_Q_TYPE_ERROR
Alias base queue not a valid type.

An MQOPEN or MQPUT1 request was issued, specifying an alias queue as the target, but the
BaseQName in the alias queue attributed resolves to a queue that is not predefined local or
remote queue.

Corrective action: Correct the queue definitions.

IBM MQSeries for VSE/ESA User’s Guide

2002

2004

2005

2006

2007

MQRC_ALREADY_CONNECTED

Application already connected.
An MQCONN call was issued, but the application is already connected to the queue manager.

Corrective action: None. The Hconn parameter returned has the same value as was returned for
the previous MQCONN call.

*MQRC_BUFFER_ERROR
Buffer parameter not valid.

Buffer is not valid. The parameter pointer is not valid, or points to read-only storage for MQGET
calls, or to storage that cannot be accessed for the entire length specified by BufferLength. (Itis
not always possible to detect parameter pointers which are not valid; if it is not detected,
unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_BUFFER_LENGTH_ERROR

Buffer length parameter not valid.

BufferLength is not valid. The reason may also be returned if the parameter pointer is not valid.
(It is not always possible to detect parameter pointers which are not valid; if it is not detected,
unpredictable results occur.)

Corrective action: Specify a nonnegative value.

MQRC_CHAR_ATTR_LENGTH_ERROR

Length of character attributes not valid.

CharAttrLength is negative (for MQINQ calls) or is not large enough to hold all selected attributes.
This reason also occurs if the parameter pointer is not valid. (It is not always possible to detect
parameter pointers which are not valid; if it is not detected, unpredictable results occur.)

*MQRC_CHAR_ATTRS_ERROR
Character attributes string not valid.

CharAttrs is not valid. The parameter pointer is not valid, or points to read-only storage from
MQINQ calls or to storage that is not as long as implied by CharAttrLength. (It is not always
possible to detect parameter pointers which are not valid; if it is not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

Chapter 7. Application programming interface 143

144

2008

2009

2010

2013

2014

2016

MQRC_CHAR_ATTRS_T0O_SHORT

Not enough space allowed for character attributes.

For MQINQ calls, CharAttrLength is not large enough to contain all of the character attributes for
which MQCA_* selectors are specified in the Selectors parameter.

The call still completes, with the CharAttrs parameter string is filled in with as many character
attributes as there is room for. Only complete attribute strings are

returned. Space at the end of the string that is not large enough to hold the next attribute is
unchanged.

Corrective action: Specify a large enough value, unless only a subset of the values is needed.

MQRC_CONNECTION_BROKEN

Connection not established.

Connection to the queue manager has been lost or was not established. This can occur
because the MQCONN call was not executed.

Corrective action: Applications must establish connection by issuing the MQCONN call.

*MQRC_DATA_LENGTH_ERROR
Data length parameter not valid.

DatalLength is not valid. The parameter pointer is not valid, or points to read-only from storage.
(It is not always possible to detect parameter pointers which are not valid; if it is not detected,
unpredictable results occur.)

Corrective action: Correct the parameter.

MQRC_EXPIRY_ERROR
Expiry time not valid.
The Expiry field is reserved, and must have a value of -1.

Corrective action: Specify -1.

MQRC_FEEDBACK_ERROR

Feedback code not valid.

A feedback code (Feedback) was specified in MQMD that is outside both the range defined for
system feedback codes and that defined for application feedback codes.

Corrective action: Specify a valid value.

MQRC_GET_INHIBITED

Gets failed for the queue.

MQGET calls have failed for the queue because the InhibitGet attribute has been set for the
queue.

Corrective action: Clear the InhibitGet attribute via the administration screens.

IBM MQSeries for VSE/ESA User’s Guide

2017

2018

2019

2021

2022

MQRC_HANDLE_NOT_AVAILABLE

No more handles available.

An MQOPEN or MQPUT1 request was issued, but the maximum number of open handles allowed
has already been reached.

Corrective action: Check whether the application is looping. Otherwise, reduce the complexity
of the application. Check the maximum number of open handles that the system can have in the
queue-manager attribute (Maximum Open Queues).

MQRC_HCONN_ERROR

Connection handle not valid.

Hconn is not valid. This reason occurs if the parameter pointer is not valid, or points to read-only
storage for the MQCONN call. (It is not always possible to detect parameter pointers which are not
valid; if it is not detected, unpredictable results occur.)

Corrective action: Ensure that a successful MQCONN call is performed for the queue manager
instance, and that an MQDISC call has not already been performed for it. Check that the handle is
being used within its valid scope. See “MQCONN - connect queue manager” on page 112.

MQRC_HOBJ_ERROR

Object handle not valid.

Hobj is not valid. This reason also occurs if the supplied value is incorrect, the parameter pointer
is not valid, or points to a read-only storage for an MQOPEN call. (It is not always possible to detect
parameter pointers which are not valid; if it is not detected, unpredictable results occur.)

Corrective action: Ensure that a successful MQOPEN call is performed for this object, and that an
MQCLOSE call has not already been performed for it. For MQGET and MQPUT calls, also ensure that
the handle represents a queue object. Check that the handle is being used within its valid
scope. See “MQOPEN - open message queue” on page 114.

MQRC_INT_ATTR_COUNT_ERROR

Count of integer attributes not valid.

IntAttrCount is negative (for MQINQ calls), or is not large enough to hold all selected attributes.
This reason also occurs if the parameter pointer is not valid. (It is not always possible to detect
parameter pointers which are not valid; if it is not detected, unpredictable results occur.)

Corrective action: Specify a value large enough for all selected integer attributes.

MQRC_INT_ATTR_COUNT_T0O_SMALL

Not enough space allowed for integer attributes.

For MQINQ calls, IntAttrsCount is not as large as the number of integer attribute selectors
(MQIA_*) specified in the Selectors parameter.

The call still completes, with the IntAttrs array filled with as many integer attributes as there is
room for.

Corrective action: Specify a large enough value, unless only a subset of the values is needed.

Chapter 7. Application programming interface 145

146

2023

2025

2026

2027

2029

2030

*MQRC_INT_ATTRS_ARRAY_ERROR

Integer attributes array not valid.

IntAttrs is not valid. The parameter pointer is not valid, or points to read-only storage for an
MQINQ call or to storage that is not as long as indicated by IntAttrCount. (It is not always
possible to detect parameter pointers which are not valid; if it is not detected, unpredictable
results occur.)

Corrective action: Correct the parameter.

MQRC_MAX_CONNS_LIMIT REACHED

Connection initialization failure.

The MQCONN call was rejected because the maximum number of connects has already been
reached.

Corrective action: Check to make sure that the program is not looping or check the Queue
Manager Attribute (Maximum number of MQCONN).

MQRC_MD_ERROR
Message descriptor not valid.

MQMD control block is not valid. Either the StrucId mnemonic eye-catcher is not valid, or the
Version is not recognized. This reason also occurs if the parameter pointer is not valid, or points
to read only storage. (It is not always possible to detect parameter pointers which are not valid,;
if it is not detected, unpredictable results occur.)

Corrective action: Correct the definition of the message descriptor. Ensure that the required
input fields are correctly set.

MQRC_MISSING_REPLY_TO_Q
Missing reply-to-queue.

The reply-to-queue name (ReplyToQ) in MQMD is not specified (that is, it is all blanks), but a reply
was requested (MQMT_REQUEST was specified in the MsgType field of the message descriptor).

Corrective action: Specify the name of the queue to which the reply is to be sent.

MQRC_MSG_TYPE_ERROR
Message type in message descriptor not valid.
Message type (MsgType) in the message descriptor (MQMD) is not valid.

Corrective action: Ensure that a valid type is specified.

MQRC_MSG_T00_BIG_FOR_Q
Message length greater than maximum for queue.
An attempt was made to put a message that is bigger than allowed by the queue.

Corrective action: Check whether BufferLength was correctly specified. If so, either break the
message into several smaller messages, or increase MaxMsgLength for the queue.

IBM MQSeries for VSE/ESA User’s Guide

2033

2034

2035

2036

2037

2038

MQRC_NO_MSG_AVAILABLE

No message available.

An MQGET call was issued, on the queue, but there is no message that satisfies the request.
Either the MQGMO_WAIT option was not specified or it was specified but the timeout interval has
expired with no message arriving on the queue.

This message is also returned for an MQGET call for browse, if the browse sequence has been
reached.

Corrective action: If this is an unexpected condition, check whether the message was
successfully put on the queue.

Consider waiting longer for the message.

MQRC_NO_MSG_UNDER_CURSOR

No message under cursor.

An MQGET was performed with the option MQGMO_MSG_UNDER_CURSOR but had not been preceded
by a browse operation.

Corrective action: Establish the browse cursor by issuing MQGET with option MQGMO_BROWSE_*
prior to issuing the MQGET which failed.

*MQRC_NOT_AUTHORIZED

Not authorized for access.

On the MQCONN call, the application is not authorized to connect to the queue manager. On
MQOPEN or MQPUT1 calls, the application is not authorized to open the object for the option, or
options, specified.

Corrective action: Ensure that the correct queue manager or object was specified, and that
appropriate authority exists.

MQRC_NOT_OPEN_FOR_BROWSE
Queue object not open for browse.

An MQGET call was issued to a queue not opened for browse with one of the following options:
® MQGMO_BROWSE_FIRST
® MQGMO_BROWSE_NEXT
® MQGMO_MSG_UNDER_CURSOR

Corrective action: Specify MQO0_BROWSE when the queue is opened.

MQRC_NOT_OPEN_FOR_INPUT

Queue object not open for input.

Corrective action: Specify MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED when the queue is
opened.

MQRC_NOT_OPEN_FOR_INQUIRE
Queue object not open for inquire.

Corrective action: Specify MQO0_INQUIRE when the queue is opened.

Chapter 7. Application programming interface 147

148

2039

2041

2042

2043

2044

2045

MQRC_NOT_OPEN_FOR_OUTPUT

Queue object not open for output.

Corrective action: Specify MQOO_OUTPUT when the queue is opened.

*MQRC_OBJECT_CHANGED
Object definition changed since opened.

Since the Hobj handle used in this call was opened, object definitions that affect this object have
been changed. See the MQOPEN call, in this chapter, for more information.

Corrective action: Issue an MQCLOSE call to return the handle to the system. Reopen the object,
obtaining a new handle, and retry the operation.

If object definitions are critical to the application logic, an MQINQ call can be used to find out what
has changed. See the MQINQ call, in this chapter, for more information.

MQRC_OBJECT_IN_USE
Object already open with conflicting options.

An MQOPEN call has been issued, but the object in question has already been opened (by this or
an other application), with options that conflict with those specified in the Options parameter.
This arises if the request is for shared input, but the object is already open for exclusive input,
and also if the request is for exclusive input, but the object is already open for input.

Corrective action: System design should specify whether an application is to wait and retry, or
take other action.

MQRC_OBJECT_TYPE_ERROR
Object type not valid.

ObjectType (in MQOD) is not valid because the field specifies an unrecognized value. The object
type must be MQOT_Q.

Corrective action: Specify a valid object type.

MQRC_OD_ERROR
Object descriptor structure not valid.

MQOD control block is not valid. Either the StrucId mnemonic eye-catcher is not valid, or the
Version is not recognized. This reason also occurs if the parameter pointer is not valid, or points
to read-only storage for an MQOPEN call for a dynamic queue. (It is not always possible to detect
parameter pointers which are not valid; if it is not detected, unpredictable results may occur.)

Corrective action: Correct the definition of the object descriptor. Ensure that required input fields
are correctly set.

MQRC_OPTION_NOT_VALID FOR TYPE

Option not valid for object type.

Option not valid for the type of queue being opened or closed, for example, MQOO_INQUIRE to a
MQQT_REMOTE queue.

Corrective action: Specify the correct option.

IBM MQSeries for VSE/ESA User’s Guide

2046

2047

2049

2050

2051

MQRC_OPTIONS_ERROR

Options not valid nor consistent.

The Options field or parameter is unrecognized, or contains a combination that is not valid.

For MQGET, MQPUT, or MQPUT1 calls, this field is in the options structure (MQGMO or MQPMO) for the call.

This reason also occurs if the Options parameter pointer is not valid for MQOPEN or MQCLOSE calls.
(It is not always possible to detect parameter pointers which are not valid; if it is not detected,
unpredictable results may occur.)

Corrective action: Specify valid options. Check under the description of Options for the
particular call, to see which option combinations are not valid.

MQRC_PERSISTENCE_ERROR
Persistence not valid.
Persistence value in the message descriptor (MQMD) is not valid.

Corrective action: Specify a valid value.

MQRC_PRIORITY_EXCEEDS_MAXIMUM
Put-message operation has specified a priority greater than zero.

This reason code is returned as a warning since the MQSeries System does not support
message priorities. The priority value may be recognized by other MQSeries platforms.

Corrective action: As this is a warning, no corrective action is required. But, ensure the priority
field is being properly initialized.

MQRC_PRIORITY_ERROR’

Priority was negative value.

The Priority value in the message descriptor (MQMD) field has no effect, and must be specified
as 0 or greater.

Corrective action: Specify a value greater than or equal to O.

MQRC_PUT_INHIBITED
Puts inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue (InhibitPut), or for the queue to
which the alias queue resolves.

Corrective action: If the system design allows applications to inhibit put requests for short
periods, retry the operation later.

7. Anyvalue greater than zero will call the MQRC_PRIORITY_EXCEEDS_MAXIMUM warning.

Chapter 7. Application programming interface 149

150

2053

2056

2058

2059

2061

2063

2065

MQRC_Q_FULL
Queue already at maximum depth.
The MaxQDepth limit setting has been reached.

Corrective action: Retry the operation later. Consider increasing the maximum depth for the
gueue, or arranging for additional instances of the application servicing the queue.

MQRC_Q_SPACE_NOT_AVAILABLE
No space available on disk for queue.
An MQPUT or MQPUT1 request was issued, but the request failed.

Corrective action: Review the error log for additional information.

MQRC_Q_MGR_NAME_ERROR
Queue manager name not valid or not known.

The queue manager name specified for the MQCONN call is not valid. This reason also occurs if
the parameter pointer is not valid. (It is not always possible to detect parameter pointers which
are not valid; if it is not detected, unpredictable results may occur.)

Corrective action: Use an all-blank name if possible, or verify the name used is valid.

MQRC_Q_MGR_NOT_AVAILABLE
Queue manager initialization failed.

Corrective action: Review the error log for additional information.

MQRC_REPORT_OPTIONS_ERROR
Report options in message descriptor not valid.
The Report field in the message descriptor (MQMD) is not valid.

Corrective action: Set the field to 0 (zero).

*MQRC_SECURITY_ERROR

Security error occurred.
The MQCONN call was rejected because a security error occurred.

Corrective action: Note the error from the security manager, and contact your system
programmer.

MQRC_SELECTOR_COUNT_ERROR
Count of selectors not valid.

The SelectorCount parameter specifies a value which is not valid. This reason also occurs if the
parameter pointer is not valid. (It is not always possible to detect parameter pointers which are
not valid; if it is not detected, unpredictable results may occur.)

Corrective action: Specify a value in the range 0 to 256.

IBM MQSeries for VSE/ESA User’s Guide

2066

2067

2068

2069

2070

2071

MQRC_SELECTOR_LIMIT_EXCEEDED

Count of selectors too big.
The SelectorCount parameter specifies a value larger than the maximum supported (256).

Corrective action: Reduce the number of selectors specified on the call. The valid range is 0
through 256.

MQRC_SELECTOR_ERROR
Attribute selector not valid.

A selector in the Selectors array is not valid. This reason occurs if the parameter pointer is not
valid. (It is not always possible to detect parameter pointers which are not valid; if it is not
detected, unpredictable results may occur.)

Corrective action: Ensure that the value specified for the selector is valid for the object type
represented by Hobj.

MQRC_SELECTOR_NOT_FOR_TYPE

Selector not applicable for queue type.

On the MQINQ call a selector in the Selectors array is not applicable to the type of queue whose
attributes are being queried.

The call still completes, with the corresponding element, or elements, of IntAttrs set to
MQIAV_NOT_APPLICABLE for an integer attribute, or the appropriate portion, or portions, of the
CharAttrs string set to a character string of all asterisks (*).

Corrective action: Check the value specified in the selector.

*MQRC_SIGNAL_OUTSTANDING

Signal outstanding for this handle.

An MQGET request was issued, with either the MQGMO_SET_SIGNAL or MQGMO_WAIT option, but there
is already a signal outstanding for this object handle Hobj.

Corrective action: Check the application logic. If it is necessary to set a signal or wait when
there is a signal outstanding for the same queue, a different object handle must be used.

*MQRC_SIGNAL_REQUEST_ACCEPTED

No message returned, but signal request was accepted.

An MQGET request was issued, specifying MQGMO_SET_SIGNAL in the GetMsgOpts parameter. No
suitable message is currently available. The application can now wait on the Signall field.

Corrective action: Wait on the Signall field and when the signal is delivered, check this field to
ensure that a message is now available. If it is, reissue the MQGET request.

MQRC_STORAGE_NOT_AVAILABLE

Internal error.

Corrective action: Review the error log for additional information.

Chapter 7. Application programming interface 151

152

2079

2080

2082

2085

2086

2087

MQRC_TRUNCATED_MSG_ACCEPTED

Truncated message returned (message deleted from queue).

On an MQGET call, the message length was too large to fit in the supplied buffer.
MQGMO_ACCEPT_TRUNCATED_MSG was specified, so the call completes. The message is removed
from the queue (subject to syncpoint considerations), or, if this was a browse operation, the
browse cursor advanced to this message.

The Datalength field is set by the system, and Buffer contains as much of the message as fits.

Corrective action: None, because the application expected this situation.

MQRC_TRUNCATED_MSG_FAILED

Truncated message returned (message not deleted from queue).

On an MQGET call, the message length was too large to fit in the supplied buffer.
MQGMO_ACCEPT_TRUNCATED_MSG was not specified, so the call fails. The message is not removed
from the queue. If this was a browse operation, the browse cursor remains where it was before
this call.

The DatalLength field is set by the system, and Buffer contains as much of the message as fits.

Corrective action: Supply a large enough buffer, or specify MGMO_ACCEPT_TRUNCATED_MSG if not all
of the message data is required.

MQRC_UNKNOWN_ALIAS_BASE_Q
Unknown alias base queue.

An MQOPEN or MQPUT1 request was issued, specifying an alias queue as the target, but the
BaseQName in the alias queue attributes is not recognized as a queue name.

Corrective action: Correct the queue definitions.

MQRC_UNKNOWN_OBJECT_NAME

Unknown object name.
The 0bjectName in the object descriptor (MQOD) is not recognized for the specified object type.

Corrective action: Specify a valid object name. Ensure that the name is padded to the right with
blanks if necessary.

MQRC_UNKNOWN_OBJECT_Q_MGR
Unknown object queue manager.
The 0bjectQMgrName in the object descriptor (MQOD) is not valid for MQOPEN or MQPUT1.

Corrective action: Specify a valid queue manager name (or all blanks or an initial null character
to refer to the connected queue manager instance).

MQRC_UNKNOWN_REMOTE_Q_MGR
Unknown remote queue manager

An MQOPEN or MQPUT1 request was issued, specifying a remote queue as the target, but no
suitable transmission queue has been defined.

Corrective action: Correct the queue definitions

IBM MQSeries for VSE/ESA User’s Guide

2090

2091

2092

2173

2186

MQRC_WAIT INTERVAL_ERROR

Negative wait interval in MQGMO.

A negative time-out (WaitInterval) value was specified in MQGMO (other than the special value
MQWI_UNLIMITED).

Corrective action: Specify a value greater than or equal to zero, or MQWI_UNLIMITED.

*MQRC_XMIT_Q_TYPE_ERROR
Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue manager and remote
queue or alias queue manager. There is a queue defined on the connected queue manager with
the same name as the remote queue manager, but this is not a local queue.

Corrective action: If a nonblank ObjectQMgrName was specified in the ObjDesc parameter, ensure
that is was correct. Otherwise, correct the queue definitions.

*MQRC_XMIT_Q_USAGE_ERROR

Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be sent to a remote queue manager and remote
queue or alias queue manager. There is a local queue defined on the connected queue
manager with the same name as the remote queue manager, but the local queue does not have
a Usage of MQUS_TRANSMISSION.

Corrective action: Correct the queue definition.

MQRC_PMO_ERROR
Put-message options structure not valid.

On an MQPUT or MQPUT1 call, the MQPMO structure is not valid. Either the StrucId mnemonic
eye-catcher is not valid or the Version is not recognized. This reason also occurs if the
parameter pointer is not valid, or points to read-only storage. (It is not always possible to detect
an invalid parameter pointer, and if one is not detected, unpredictable results occur.)

Corrective action: Correct the definition of the MQPMO structure. Ensure that required input fields
are correctly set.

MQRC_GMO_ERROR
Get-message options structure not valid.

On an MQGET call, the MQGMO structure is not valid. Either the StrucId mnemonic eye-catcher is
not valid, or the Version is not recognized. This reason also occurs if the parameter pointer is
not valid, or points to read-only storage. (It is not always possible to detect parameter pointers
which are not valid; if it is not detected, unpredictable results occur.)

Corrective action: Correct the definition of the MQGMO structure. Ensure that required input fields
are correctly set.

Chapter 7. Application programming interface 153

154

2195

2206

2207

2208

2209

2210

MQRC_UNEXPECTED_ERROR

Unexpected error occurred.

An error related to internal MQSeries System data structures has occurred. This is most likely
due to trashing of memory due to an external hardware or software problem.

Corrective action: Contact your system administrator.

MQRC_MSG_ID_ERROR

A MQGET call was issued with MQMD_MSGID having a search value other than LOW-VALUES. This
is not supported.

Corrective action: MQMD_MSGID value should be cleared to LOW-VALUES before each MQGET.

MQRC_CORREL_ID_ERROR

A MQGET call was issued with MQMD_CORRELID having a search value other than
LOW-VALUES. This is not supported.

Corrective action: Move LOW-VALUES to MQMD_CORRELID field before each MQGET call.

MQRC_FILE_SYSTEM_ERROR

An internal file error has occurred.
An internal file error has occurred while the Queue Manager was performing a request.

Corrective action: Get the error results from the error log, if present, and review the problem.

MQRC_NO_MSG_LOCKED
A MQGET was issued with the MQGMO_UNLOCK option while no lock was being held for that Hobj.

Corrective action: Review application logic for possible prior error that caused a lock to not be
held (i.e.: no more messages).

*MQRC_LOCK_NOT_AVAILABLE
An internal MQI error has occurred.

This error is implementation specific. Examine the error log for additional information. An
MQOPEN, MQGET, MQPUT, or MQPUT1 request was issued, and it was necessary to acquire a lock, but
an internal error occurred.

Corrective action: Get the error code from the error log, if present, and review the problem.

IBM MQSeries for VSE/ESA User’s Guide

Appendix A. System messages

The MQSeries system generates both internal and external messages. Internal messages are
generated when an application program has activated the MQSeries system and an abnormal
condition has occurred. These messages are stored on the System Log queue when it is
available, otherwise, the CICS CSMT Transient Data Queue (TD) is used instead.

API| system messages

The message structure of these messages comprise five 78-character lines of text.

Line 1 - “MQInnnnnn PRG:pppppppp TRN:tttt TRM:rrrr TSK:ccccc mm/dd/yy hh:mm:ss”

Where:
nnnnnn MQSeries System message code
PPPPPPPP CICS Program name?l
tttt CICS Transaction code
reer CICS Term id
cceee CICs Taskid
mm/...:ss Date and time

Line 2 - Textual description of message
Line 3 - Queue name - if available

Line 4 - Channel name - if available
Line 5 - Detail of message (optional)

Line 6 - “EIBFN:fff EIBRCODE:rrrrrrrrrrrr EXEC LINE: 111117

Where:
fff EIBFN value at time of condition
rrreerrer EIBRCODE

1111} The DEBUG CICS Command Number

Line 7 - “EIBRESP: rrrrrrrr EIBRESP2: ssssssss EIBRSRCE:cccccccc ABCODE: aaaa”

Where:
rrererer EIBRESP
SSSSSSSS EIBRESP2
cceececce EIBRSRCE
aaaa CICS ABENDCODE

1. For CICS Program name and CICS Transaction code, see “Programs and transactions” on page 186.

© Copyright IBM Corp. 1993, 1997 155

MQSeries System message definitions

Note: In the following explanations of the messages, the message code and the textual
description of the message, which normally appear on separate lines in the message,
are shown on the same line for ease of use.

Each MQSeries System message listed below, alphabetically by message code, provides the

following information:

— Explanation : This section tells what the message or code means, why it occurred and
what caused it.

— Function : This section indicates which modules issued the message, to assist in
diagnosing problems.

— Severity : Severity values have the following meanings:
0 An information message. No error has occurred.

4 A warning message. A condition has been detected of which the user
should be aware. The user may need to take further action.

8 An error message. An error has been detected and typically self
correcting by the system but may require operator intervention.

10 A severe error message. An error has been detected which may
severely affect user or system operation and requires immediate
operator intervention.

12 A fatal error message. A error has been detected that is so severe
that it causes one of the system components to terminate and
requires immediate operator intervention.

— Operator action : If an operator response is necessary, this section tells what the
appropriate responses are, and what their effect is. If this information is not shown, no
operator response is required.

— System action : This part tells what is happening as a result of the condition causing
the message or code. If this information is not shown, no system action is taken.

Message code (nnn):

156

000000 SYSTEM STARTED

Explanation : System has been Initialized.
Function : Master Terminal, Sender, Receiver
Severity : 0

Operator Action : none

System Action : none

000003 CHANNEL MESSAGE SEQUENCE NUMBER ERROR

Explanation : The received MSN does not match the expected MSN.
Function : Receiver

Severity : 8

Operator Action : 1. Review the EXPECT MSN and the RECEIVED MSN in

the detail portion of the message.
2. Identify the cause (proper running should preclude this
occurrence).

IBM MQSeries for VSE/ESA User’s Guide

3. Reset the appropriate MSN so that the sender and
receiver channel MSNs are equal.
4. Restart communication.

System Action : Fatal error - Communication is terminated.

000004 SYNCH MSG DUP

Explanation : The received message may be duplicated.
Function : Receiver

Severity : 0

Operator Action : none

System Action : Continue on negotiating.

000007 LU62 SESSION STARTED

Explanation : A communication session was established by MQPRECYV.
Function : Receiver

Severity : 0

Operator Action : none

System Action : None.

000010 LU62 FREE ERROR

Explanation : For Program MQPRECYV - Upon completion of a RECEIVE
command the EIBFREE and the EIBERR fields are both
not equal to low values.

For Program MQPSEND - As a Server upon completion of
a RECEIVE command at least one of EIBERR, EIBRECV
and EIBFREE does not equal to low values. As a Server or
Sender upon receipt of an acknowledgment of messages
sent the EIBFREE is not equal to low values and the
EIBERR is equal to low values.

Function : Sender, Receiver
Severity : 12
Operator Action : 1. Review System log or error TD queue for messages

prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

System Action : Fatal error - Communication is terminated.

Appendix A. System messages 157

000011 LU6G2 EIB ERROR

Explanation : 1. As a Server upon completion of a RECEIVE the EIBERR
not equal to low values.
2. As a Server or Sender upon receipt of an
acknowledgment of messages sent, the EIBERR is not
equal to low values.

Function : Sender, Server
Severity : 12
Operator Action : 1. Review System log or error TD queue for messages

prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

System Action : Fatal error - Communication is terminated.
000012 LU62 STAT ERROR

Explanation : As a Server or Sender upon receipt of an acknowledgment
of messages sent, the EIBRECYV is not equal to low values.

Function : Sender, Server
Severity : 12
Operator Action : 1. Review System log or error TD queue for messages

prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

System Action : Fatal error - Communication is terminated.

000013 LU62 ALLOC ERROR

Explanation : As a Sender upon completion of an ALLOCATE command,
EIBRCODE is not equal to low values and all retries have
been performed.

Function : Sender
Severity : 12
Operator Action : 1. Review System log or error TD queue for messages

prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2

158 IBM MQSeries for VSE/ESA User’s Guide

System Action :

fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

Fatal error - Communication is terminated.

000014 LU62 ALLOC RETRY ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

As a Sender upon completion of an ALLOCATE command,
EIBRCODE is not equal to low values and all retry attempts
have not been performed.

Sender
12

1. Review System log or error TD queue for messages
prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

Non-Fatal error - Allocation is retried until allocation is
successful or the retry count equals zero.

000015 LU62 CONN ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

As a Sender upon completion of a CONNECT PROCESS
command, EIBRCODE is not equal to low values.

Sender
12

1. Review System log or error TD queue for messages
prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

Fatal error - Communication is terminated.

Appendix A. System messages 159

000016 LU62 SEND ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

As a Sender or Server upon completion of a SEND
command, EIBRCODE is not equal to low values.

Sender, Server
12

1. Review System log or error TD queue for messages
prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

Fatal error - Communication is terminated.

000017 REMOTE SITE DEALLOCATED CONVERSATION

Explanation :

Function :
Severity :

Operator Action :

System Action :

000023 INVLD RESP TYPE

Explanation :

Function :
Severity :

Operator Action :

System Action :

000024 INVLD RESP MSN

Explanation :

160 IBM MQSeries for VSE/ESA User’s Guide

As a Server, if a get request returns a no message
available response, a RECEIVE command is executed.
Any of the following conditions will cause this response
1. EIBRECV is equal low values or

2. EIBFREE is equal low values or

3. EIBERR is equal low values.

Sender
8

This is an informational message and no additional user
action is normally required. The requester by deallocating
the conversation (in response to ho messages being
available) has caused the server to terminate
communication.

Communication is terminated.

The SENDER received a response message that doesn't
conform to expected format.

Sender
8

Review System log or error TD queue for messages prior
to this message. Proper running should preclude this
occurrence. Investigate receiver/requester process for
programming error.

Fatal error - Communication is terminated.

(Reserved)

000025 FATAL RESP TYPE

Explanation : (Reserved)

000026 RECOVERABLE RESP TYPE

Explanation : (Reserved)

000029 PARSER MSN ERROR

Explanation : (Reserved)

000030 PARSER TYPE ERROR

Explanation : (Reserved)

000031 PARSER PDM ERROR

Explanation : (Reserved)

000032 PARSER SID ERROR

Explanation : (Reserved)

000033 PARSER PN ERROR

Explanation : (Reserved)

000034 PARSER KEY ERROR

Explanation : (Reserved)

000035 PARSER APID ERROR

Explanation : (Reserved)

000038 PARSER ORG DT ERROR

Explanation : (Reserved)

000039 PARSER ORIG MSN ERROR

Explanation : (Reserved)

000040 PARSER BODY ERROR

Explanation : (Reserved)

000041 PARSER STATUS ERROR

Explanation : The received message does not have the proper status
value.

Function : Sender, Receiver

Severity : 8

Operator Action : Review System log or error TD queue for messages prior

to this message. Proper running should preclude this
occurrence. Investigate sender process for programming

error.

System Action : Fatal error - Communication is terminated.

Appendix A. System messages 161

000042 PARSER LENGTH ERROR

Explanation : The received message does not have the proper length
value.

Function : Sender, Server

Severity : 8

Operator Action : Review System log or error TD queue for messages prior

to this message. Proper running should preclude this
occurrence. Investigate sender process for programming
error.

System Action : Fatal error - Communication is terminated.

000051 QUEUE CONNECTION ERROR

Explanation : The QM cannot be connected to.

Function : Sender, Server

Severity : 12

Operator Action : Review System log or error TD queue for messages prior

to this message. Proper running should preclude this
occurrence. Investigate sender process for programming
error.

System Action : Fatal error - Communication is terminated.
000052 QUEUE OPEN ERROR

Explanation : The Server or Sender could not open the associated
transmission queue.

Function : Sender, Server
Severity : 12
Operator Action : 1. Review the following fields in the error message:

QUEUE ID - Transmission queue name that failed.
CHANNEL ID - channel name that was connected. This
channel identifies the corresponding transmission queue.
Last line of error message - Reason code returned from
queuer and corresponding description.

2. Correct problem and restart communication.

System Action : Fatal error - Communication is terminated.

000053 QUEUE GET ERROR

Explanation : The Server or Sender could not get a message from the
associated transmission queue even if there is (are)
message(s) in the transmission queue.

Function : Sender, Server
Severity : 12
Operator Action : 1. Review the following fields in the error message:

QUEUE ID - Transmission queue name that failed.
CHANNEL ID - channel name that was connected. This
channel identifies the corresponding transmission queue.

162 IBM MQSeries for VSE/ESA User’s Guide

System Action :

Last line of error message - Reason code returned from
queuer and corresponding description.
2. Correct problem and restart communication.

Fatal error - Communication is terminated.

000054 QUEUE PUT ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

The RECEIVER could not put a message to an application
queue.

Receiver
12

1. Review the following fields in the error message:
QUEUE ID - Application queue name that failed.
CHANNEL ID - channel name that was connected.

Last line of error message - Reason code returned from
queuer and corresponding description.

2. User action is based upon returned reason code: -
Reason code equals MQRC-Q-FULL (2053) or
MQRC-Q-SPACE-NOT-AVAILABLE (2056):

destination application queue was full and the message
was placed on the dead letter queue. Determine if
destination queue should be expanded to accommodate
more messages or an alternate destination used.

All other reason codes:

correct problem and restart communication.

There are two possible system actions based upon reason
code returned from queuer:-

1. Reason code equals MQRC-Q-FULL or
MQRC-Q-SPACE-NOT-AVAILABLE:

Non-Fatal error - communication will proceed normally
after first putting failed put message on dead letter queue.
2. All other reason codes:

Fatal error - Communication is terminated.

000055 QUEUE PUT1 ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

The RECEIVER could not put a message to the dead letter
queue.

Receiver
12

1. Review the following fields in the error message:
QUEUE ID - The dead letter queue name that failed.
CHANNEL ID - channel name that was connected.
Last line of error message - Reason code returned from
queuer and corresponding description.

2. Correct problem and restart communication.

Fatal error - Communication is terminated.

Appendix A. System messages 163

000056 QUEUE CLOSE ERROR

Explanation : The RECEIVER could not close an application queue.
Function : Receiver

Severity : 0

Operator Action : 1. Review the following fields in the error message:

QUEUE ID - Application queue name that failed.
CHANNEL ID - channel name that was connected.
Last line of error message - Reason code returned from
queuer and corresponding description.

2. Investigate problem

System Action : Non-Fatal error - communication will proceed normally.
(The unclosed resources, however, will result in a “garbage
collection” mechanism be triggered at a proper time to
close the unclosed resources).

000057 QUEUE DISC ERROR
Explanation : An error has occurred to DISCONNECT the connecting
Queue Manager.

Function : Sender, Receiver
Severity : 12
Operator Action : Review System log or error TD queue for messages prior

to this message. Proper running should preclude this
occurrence. Investigate sender process for program error.

System Action : Fatal error - Communication is terminated.

000060 UNDEFINED QUEUE ERROR

Explanation : (Reserved)

000080 RECV RETURN LON STATUS

Explanation : (Reserved)

000081 RECV RETURN LON TYPE

Explanation : (Reserved)

000091 SIDRC RETURN FORMAT

Explanation : (Reserved)

000100 FUNCTION STARTED

Explanation : The requested function has been started
Function : Master Terminal

Severity : 0

Operator Action : none

System Action : Function is started

164 IBM MQSeries for VSE/ESA User’s Guide

001000 FUNCTION DONE

Explanation : The requested function has been completed
Function : Master Terminal

Severity : 0

Operator Action : none

System Action : Function is completed.

001090 FUNCTION NOT DONE

Explanation : The requested function was terminated because of error.
The function was not completed.

Function : Master Terminal

Severity : 0

Operator Action : Review the associated message prior to this one.
System Action : Function is terminated with error.

005000 CHANNEL CONNECTED

Explanation : Channel connection is successful.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Platform negotiation will begin.

005001 CHANNEL NEGOTIATIONS ACCEPTED

Explanation : Channel has completed negotiation with the other platform.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Message queue will be opened.

005002 CHANNEL QUEUE OPENED

Explanation : Channel queue has been opened successfully.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Message transfer will begin.

Appendix A. System messages 165

005003 CHANNEL LU 6.2 CONNECTED

Explanation : LU 6.2 connection established.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : LU 6.2 conversation will begin.

005004 CHANNEL RECEIVER ALLOCATED

Explanation : (Reserved)

005005 CHANNEL QUEUE EMPTY.

Explanation : (Reserved)

005006 CHANNEL QUEUE CLOSED

Explanation : Channel has successfully closed queue.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Channel will be disconnected.

005007 CHANNEL DISCONNECTED

Explanation : Channel has been disconnected from the other platform.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Channel will be shutdown.

005008 CHANNEL SHUTDOWN

Explanation : Channel has been completely shutdown.
Function : Sender, Receiver

Severity : 0

Operator Action : none

System Action : Channel is marked INACTIVE.

005009 CHANNEL SHUTDOWN REQUEST SEND

Explanation : (Reserved)

166 IBM MQSeries for VSE/ESA User’s Guide

010000 SYSTEM STARTED W/ ERRORS

Explanation :

Function :
Severity :

Operator Action :

System Action :

System being initialized but some queue / channel
definition(s) had error(s).

Initialization of system
12

1. Review System log or error TD queue for messages
prior to this message to identify problem definition.

2. Correct definition(s).

3. Shut down and then re-initialize system.

Erroneous queues / channels are marked as DISABLED.

010001 SYSTEM STARTED W/ FILE ERRORS

Explanation :

Function :
Severity :

Operator Action :

System Action :

System being initialized but some queue(s) file(s) had
error(s).

Initialization of system
12

1. Review System log or error TD queue for messages
prior to this message to identify problem definition.

2. Correct definition(s).

3. Shut down and then re-initialize system.

Erroneous queues are marked DISABLED.

010002 SYSTEM STARTED W/ CHANNEL ERRORS

Explanation :

Function :
Severity :

Operator Action :

System Action :

System being initialized but some channel definition(s) had
error(s).

Initialization of system
12

1. Review System log or error TD queue

for messages prior to this message to identify problem
definition.

2. Correct definition(s).

3. Shut down and then re-initialize system.

Erroneous channel(s) are marked DISABLED.

010003 SYSTEM STARTED BUT SYSTEM CHANGED

Explanation :

Function :
Severity :

Operator Action :

System Action :

System being initialized but definitions have been added /
deleted while initialization was being performed.

Initialization of system
8

Do not perform configuration changes while system is
being initialized. Shut down and then re-initialize system.

If definitions were added then some definition(s) may have
been not used.

Appendix A. System messages 167

100000 SYSTEM STOPPED

Explanation :
Function :
Severity :

Operator Action :

System Action :

100010 SYSTEM ACTIVE

Explanation :
Function :
Severity :

Operator Action :

System Action :

100011 SYSTEM STARTED

Explanation :

Function :
Severity :
Operator Action :
System Action :

100012 SYSTEM STARTED

Explanation :

Function :
Severity :
Operator Action :
System Action :

100013 SYSTEM STARTED

Explanation :

Function :
Severity :
Operator Action :

System Action :

168 IBM MQSeries for VSE/ESA User’s Guide

System being stopped while application is running.
System Shutdown
0

All applications and channel should be terminated before
System is shutdown.

Terminate request.

System being initialized but System is already active.
Initialization of system
0

1. Shut down System.
2. Re-initialize System.

System initialization not performed.

W/ NO QUEUES

System being initialized but no queue definitions where
found.

Initialization of system

4

Add queue definitions and re-initialize system.
System initialized.

W/ TOO MANY QUEUES

System being initialized but too many queues have been
defined.

Initialization of system

12

Delete some queue definitions and re-initialize system.
System initialized with some queue definitions.

W/ TOO MANY CHANNELS

System being Initialized but too many channel definitions
where found.

Initialization of system
12
Delete some channel definitions and re-initialize system.

System initialized with some Channels.

100090 SYSTEM STARTED W/ NO SYSTEM DEFINITION

Explanation :

Function :
Severity :

Operator Action :

System Action :

System being Initialized but no System Definition was
found.

Initialization of system
12

Define Global System Definition and then initialize the
system.

System initialization is terminated.

101000 QUEUE QDEPTH EXCEEDED

Explanation :

Function :
Severity :

Operator Action :

System Action :

The queue QDEPTH would have been exceeded if the
PUT request had been performed.

General (/O modules MQPQUE1 and MQPQUE?2)
8

Perform one of the following :

1. Drain this queue either through an application or the
gueue maintenance facility.

2. Expand the QDEPTH number in the QUEUE definition
and refresh this queue's information.

PUT request is terminated and the problem queue is
marked as “MAX”.

101010 QUEUE CONCURRENT UPDATE HAS OCCURED

Explanation :

Function :
Severity :

Operator Action :

System Action :

Two or more update requests were being received at one
time for the same QSN record.

General (/O modules MQPQUE1 and MQPQUE?2)
8

1. Review all terminated requests.
2. Re-execute any legitimate requests.

The first request is served while the rest of other requests
are rejected.

101015 QUEUE NOT FOUND

Explanation :

Function :
Severity :
Operator Action :

System Action :

MQPSSQ, a subroutine to start / stop a queue, reports that
the queue to be processed is not defined in the system.

Start/stop queue
8
Re-execute any terminated requests.

The request is terminated unsuccessfully.

Appendix A. System messages 169

101090 QUEUE STOPPED

Explanation : A request has been executed against a STOPPED queue.
Function : Start/stop queue

Severity : 4

Operator Action : START the problem queue

System Action : Terminate the request.

101091 QUEUE DISABLED

Explanation : Queue had errors during initialization.

Function : Initialization of system

Severity : 8

Operator Action : 1. Examine queue definition and file allocation for
problem(s).

2. Re-initialize System.

System Action : The problem queue is marked STOPPED.

102090 QUEUE QSN NUMBER LIMIT HAS BEEN REACHED

Explanation : MQPQUE1, a subroutine serving all I/O requests for
queues, detects that QSN will exceed the full word
limitation of 99,999,999.

Function : General (/O modules MQPQUE1 and MQPQUE?2)
Severity : 8
Operator Action : Perform one of the following :

1. Do file maintenance on this problem queue such as
running the batch job MQPREORG.

2. Execute on/line queue maintenance to delete messages
via “Delete by Date/time”.

System Action : The PUT request for this queue is rejected.

102091 QUEUE NO SPACE AVAILABLE FOR PUT

Explanation : Queue encounters NOSPACE condition for a PUT request.
Function : General (/O modules MQPQUE1 and MQPQUE?2)
Severity : 8

Operator Action : Perform one of the following :

1. Do file maintenance on this problem queue such as
running the batch job MQPREORG.

2. Execute on/line queue Maintenance to delete messages
via “Delete by Date/Time”.

System Action : Terminate the request and mark queue “FULL".

170 IBM MQSeries for VSE/ESA User’s Guide

102092 QUEUE NO SPACE AVAILABLE
Explanation : Queue encounters errors for an UPDATE request,
NOSPACE condition occurred.

Function :

Severity : 8

Operator Action : Perform one of the following :
1. Do file maintenance on this problem queue such as
running the batch job MQPREORG.
2. Execute on/line queue Maintenance to delete messages
via “Delete by Date/Time”.

System Action : Terminate the request and mark queue “FULL".

104021 DUAL QUEUE ERROR
Explanation : Dual destination queue has been STOPPED or was not
initialized properly.

Function : General (/O modules MQPQUE1 and MQPQUE?2)
Severity : 8
Operator Action : Perform one of the following :

1. Try to re-START the dual queue.
2. Examine and fix the queue and file definition for this
gueue. Refresh queue or re-initialize system.

System Action : Marked dual queue as “recovery needed”.

104022 DUAL QUEUE FILE ERROR

Explanation : Dual destination queue had file error or was not initialized
properly.

Function : General (/O modules MQPQUE1 and MQPQUE?2)

Severity : 8

Operator Action : Perform one of the following :

1. Try to re-START the dual queue.
2. Examine and fix the queue and file definition for this
gueue. Refresh queue or re-initialize system.

System Action : Marked dual queue as “recovery needed”.

104023 DUAL QUEUE LOGIC ERROR

Explanation : Dual destination queue does not match Source queue.
Function : Master Terminal

Severity : 8

Operator Action : Examine and fix the queue and file definition for this queue.

Refresh queue or re-initialize system.

System Action : Marked dual queue as “recovery needed”.

Appendix A. System messages 171

105090 QUEUE TRIGGER ERROR

Explanation :

Function :
Severity :
Operator Action :

System Action :

MQPSSQ, a subroutine to start / stop a queue, encounters
error to start MQO2, a transaction that handles trigger
function.

Start/stop queue
12
Examine CICS tables to fix the problem.

The request is terminated unsuccessfully.

105091 QUEUE TRIGGER DATA ERROR

Explanation :

Function :
Severity :
Operator Action :

System Action :

MQPAIP2, a program handling trigger function, receives
erroneous data and cannot fulfill the request.

Application Interface
12
Contact support for MQSeries for VSE.

The request is terminated unsuccessfully.

109000 ACTION NOT AUTHORIZED

Explanation :

Function :
Severity :
Operator Action :

System Action :

NOAUTH condition flagged by CICS when a resource
security check has failed.

General (CICS Interface)
12
Review security mechanism.

The request is terminated unsuccessfully.

300000 ACTION NOT SUPPORTED

Explanation :
Function :
Severity :
Operator Action :

System Action :

Module has been LINKed to with incorrect function.
General (CICS Interface)

12

Review application for call format.

Terminate the request.

300010 PROGRAM STARTED INCORRECTLY

Explanation :
Function :
Severity :
Operator Action :

System Action :

172 IBM MQSeries for VSE/ESA User’s Guide

Module has been STARTed with incorrect function.
General (CICS Interface)

12

Review application for call format.

Terminate the request.

300020 PROGRAM HAS REPEATED ERRORS
Explanation : MAPFAIL condition raised in Master Terminal panel(s)
(MQMT and its derivatives)

Function : General (CICS Interface)

Severity : 12

Operator Action : Review PPT for MAP modules (MQM????) and fix the
problem.

System Action : Terminate the request.

300030 QUEUE LOCK TABLE IS FULL

Explanation : Not enough queue lock entries present to insert a new
entry.

Function : General (Control Module MQPLOCK)

Severity : 12

Operator Action : Review application for multiple message retrieval without a

SYNCPOINT. If no application problem is present then
increase queue lock count to higher value. Note this value
is used to calculate an incore table. So precaution should
be used.

System Action : Terminate the request.
301000 EXPECTED RECORD IS MISSING

Explanation : An expected message was found missing. This is normally
occurs under a Delete request.

Function : Master Terminal
Severity : 8

Operator Action : Restart the application.
System Action : Terminate the request.

301010 DUPLICATE RECORD HAS OCCURRED
Explanation : An duplicate message was found. This is normally occurs
under a PUT condition.

Function : General (MQPQUEZ1)
Severity : 8

Operator Action : Restart the application.
System Action : Terminate the request.

Appendix A. System messages 173

309010 QUEUE CHECKPOINT RECORD MISSING

Explanation :

Function :
Severity :
Operator Action :

System Action :

400000 LINK ERROR

Explanation :
Function :
Severity :
Operator Action :

System Action :

An checkpoint of a queue was requested and no
checkpoint record was found on this queue.

Master Terminal
12
Re-initialize system and restart the application.

Terminate the request.

Unable to perform a LINK request.

General (CICS Interface)

12

Examine any prior messages for actual problem.

Terminate the request.

400001 LINK DFHCOMMAREA SIZE INCORRECT

Explanation :
Function :
Severity :
Operator Action :

System Action :

Expected DFHCOMMAREA length is incorrect.
General (CICS Interface)

12

Examine any prior messages for actual problem.

Terminate the request.

400002 LINK DFHCOMMAREA DATA INCORRECT

Explanation :
Function :
Severity :
Operator Action :

System Action :

Expected DFHCOMMAREA data is incorrect.
General (CICS Interface)

12

Examine any prior messages for actual problem.

Terminate the request.

400003 RETURN FROM LINK ERROR

Explanation :
Function :
Severity :
Operator Action :

System Action :

174 1BM MQSeries for VSE/ESA User’s Guide

A LINK request ended in an abnormal condition.
General (CICS Interface)

12

Examine any prior messages for actual problem.

Terminate the request.

400010 MOVE ERROR

Explanation : Internal MOVE of data has found corrupt data.
Function : General

Severity : 12

Operator Action : Examine any prior messages for actual problem.
System Action : Terminate the request.

402000 INTERNAL STRUCTURE MISSING

Explanation : Internal Structure was found missing.

Function : General

Severity : 12

Operator Action : Examine any prior messages for actual problem.
System Action : Terminate the request.

402090 INTERNAL STRUCTURE HAS ERRORS

Explanation : Internal Structure was found corrupted.

Function : General

Severity : 12

Operator Action : Examine any prior messages for actual problem.
System Action : Terminate the request.

501001 CHANNEL FREE ERROR

Explanation : (Reserved)

501002 EIB ERROR
Explanation : RECEIVER encounters an error -
1. upon completion of a GETMAIN command EIBRCODE
not equal to low values or
2. upon completion of a RECEIVE command -
RESP not equal to TERMERR and
EIBFREE equal low values and
EIBERR not equal low values.

Function : Receiver
Severity : 8
Operator Action : 1. Review System log or error TD queue for messages

prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

System Action : Fatal error - Communication is terminated.

Appendix A. System messages 175

501003 CHANNEL STAT ERROR

Explanation :

(Reserved)

501004 CHANNEL ALLOC ERROR

Explanation :

(Reserved)

501005 CHANNEL ALLOC RETRY ERROR

Explanation :

(Reserved)

501006 CHANNEL CONNECT ERROR

Explanation :
Function :
Severity :

Operator Action :

System Action :

RECEIVER or SENDER cannot connect a channel.
Sender, Receiver
8

1. Review the following fields in the error message:
CHANNEL ID - channel name that was being connected.
Last line of error message - Reason code returned from
queuer and corresponding description.

2. Correct problem and restart communication.

Fatal error - Communication is terminated.

501008 CHANNEL SEND ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

RECEIVER issued a SEND command and its EIBRCODE
is not normal (zeros).

Receiver
12

1. Review System log or error TD queue for messages
prior to this message. TRM in the error message contains
the EIBTRMID which is the principal facility associated with
this error. Locate any messages associated with this
principal facility.

2. Review the EIBRCODE, EIBRESP, and EIBRESP2
fields in the detail portion of the message. They contain
information about the cause of the problem. Refer to the
CICS/ESA Application Programming Reference manual for
an explanation of these values.

3. Correct problem and restart communication.

Fatal error - Communication is terminated.

501009 RECEIVER RESPONSES WITH ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

176 IBM MQSeries for VSE/ESA User’s Guide

SENDER receives a rejection from RECEIVER to
terminate communication.

Sender
8

Review the error reason code to determine the reason of
the rejection and restart the communication after
correction.

Fatal error - Communication is terminated.

501010 INVALID RESPONSE TYPE

Explanation :
Function :
Severity :

Operator Action :

System Action :

Unsupported Message Segment Type received.
Sender
8

Review the Segment type and restart communication
without the problem type.

Fatal error - Communication is terminated.

501011 CHANNEL RESPONSE MSN ERROR

Explanation :

(Reserved)

501012 CHANNEL RESPONSE HAS FATAL ERROR

Explanation :

(Reserved)

501013 CHANNEL RE-NEGOTIATION

Explanation :

Function :
Severity :

Operator Action :

System Action :

RECEIVER rejects a channel parameter and makes a
counterproposal for renegotiation

Receiver
4

No action is needed unless remote platform can not accept
the conflicting parameter. If this happens then the
conflicting parameter must be changed on this or the
remote platform.

Reject this proposal and continue on negotiation.

501014 UNKNOWN ENCODING

Explanation :

Function :
Severity :
Operator Action :

System Action :

Transmission Segment Header contains unknown
encoding.

Sender, Receiver
4
none

Disregard the error and continue on initiation.

501015 INVALID TRANSMISSION SEGMENT HEADER

Explanation :

Function :
Severity :
Operator Action :

System Action :

Transmission Segment Header contains either wrong type
or invalid format.

Sender, Receiver
4
none

Disregard the error and continue on initiation.

Appendix A. System messages 177

501016 UNSUPPORTED CODED CHARACTER SET ID (CCSID)

Explanation : Coded character set ID in used is not supported.
Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Disregard the error and try another CCSID if any.

501017 INVALID MESSAGE SEGMENT HEADER

Explanation : Message Segment Header is invalid.
Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Disregard the error and re-try.

501018 INVALID TRANSMISSION QUEUE HEADER

Explanation : Transmission queue header is invalid.
Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Disregard the error and re-try.

501019 INITIATION ERROR

Explanation : Error encountered during initiation.

Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Disregard the error and continue on initiation.

501020 INVALID FAP LEVEL

Explanation : The protocol in used is not supported.
Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Disregard the error and continue on initiation.

178 IBM MQSeries for VSE/ESA User’s Guide

501021 MESSAGE SIZE TOO BIG

Explanation : The message size is too big to be handled.

Function : Receiver

Severity : 4

Operator Action : none

System Action : Suggest a smaller message size and continue on
negotiation.

501022 MESSAGE WRAP ERROR
Explanation : The message sequence number wrap around value cannot
be accepted.

Function : Sender, Receiver

Severity : 4

Operator Action : none

System Action : Suggest a smaller value and continue on negotiation.

501023 QUEUE MANGER IS DOWN DURING ACCESSING DLQ

Explanation : The message is not able to put into the Dead Letter Queue
because the System is not up.

Function : Receiver

Severity : 8

Operator Action : Initiate System by MQIT or via MQMT.
System Action : Process is terminated.

501024 QUEUE MANAGER IS DOWN

Explanation : The communication cannot be established because the Q
Manager is down.

Function : Sender, Receiver

Severity : 8

Operator Action : Initiate System by MQIT or via MQMT.
System Action : Process is terminated.

501025 UNKNOWN CHANNEL ID (INBOUND)

Explanation : The communication cannot be established because the
channel id received from the remote system is not defined
locally.

Function : Sender, Receiver

Severity : 8

Operator Action : Check the channel id to see if it is correct. Define this in the
local definitions or correct the remote system as
necessary.

System Action : The communication session is terminated.

Appendix A. System messages 179

501026 CHANNEL ERROR

Explanation :

501027 CHANNEL BUSY

Explanation :

Function :
Severity :

Operator Action :

System Action :

(Reserved)

SENDER reports there is an outstanding enqueue on the
channel name.

Sender
8

1. Review the following fields in the error message:
CHANNEL ID - channel name that was connected.
2. Determine why second channel was started.

3. Validate channel configuration.

Fatal error - Communication is terminated.

501028 CHANNEL RE-SYNC ERROR

Explanation :

Function :
Severity :
Operator Action :

System Action :

Expected TCF-Confirm-Request flag is not turned on in the
received initiation message.

Sender, Receiver
4
none

Disregard the error and continue on initiation.

501029 CHANNEL STATUS ERROR

Explanation :

(RESERVED)

501030 MESSAGE LENGTH ERROR

Explanation :

Function :
Severity :

Operator Action :

System Action :

180 IBM MQSeries for VSE/ESA User’s Guide

RECEIVER encounters -

1. The length of the application portion of the message
specified in the header exceeds the maximum length
defined for this channel.

2. The length of the application portion of the message
received is not equal to the length specified in the header.

Receiver
8

For explanation #1. -

1. Review the Max Transmission Size and the Max
Message Size in the detail portion of the message.

2. Check the configuration of the Receiver channel to
insure the maximum message size is set up correctly.
3. Check the configuration of the Sender.

4. Reconfigure if necessary and restart communication.
For explanation #2. -

1. Review the Max Transmission Size and the Max
Message Size in the detail portion of the message.

2. Proper running should preclude this occurrence.
Investigate sender/server process for program error.
3. Correct problem and restart communication.

Fatal error - Communication is terminated.

501031 MESSAGE-PER-BATCH TOO BIG

Explanation :

Function :
Severity :
Operator Action :

System Action :

The maximum number of messages allowed in a batch is
too big to be handled.

Sender, Receiver
4
none

Suggest a smaller size and continue on negotiation.

501032 MAX TRANSMISSION SIZE TOO BIG

Explanation :
Function :
Severity :
Operator Action :
System Action :

501050 RESET MSN

Explanation :

Function :
Severity :
Operator Action :

System Action :

The maximum transmission size is too big to be handled.
Sender, Receiver

4

none

Suggest a smaller size and continue on negotiation.

Remote platform MSN (Message Sequence Number) was
reset.

Sender, Receiver
4
none

Validate that MSN is within one of this platforms current
MSN.

Appendix A. System messages 181

182

All messages starting with 6000 are severe messages displayed on the CICS terminals from
which MQSeries Administrator Dialogs (MQMT) have been started. They indicate failures in the
MQSeries code itself. Each message number is followed by the program name in which the
failure occurred. If after checking, (and correction) the problem persists, please, report this to
your IBM support organization.

600001 - Prog: xxxxxxxx Error detected. Contact Support.
Explanation: CICS has detected an error condition not handled by a
specific routine.

Severity: 8
Operator Action: Report to IBM
System Action: The dialog is terminated.

600005 - Prog: xxxxxxxx ABEND Code zzzz Contact Support.

Explanation: The program terminates due to CICS problem and the
ABEND code zzzz is returned to an HANDLE ABEND
routine.

Severity: 8

Operator Action: Report to IBM

System Action: The dialog is terminated.

600007 - Prog: xxxxxxxx File: yyyyyyy Not Found. Contact Support.
Explanation: A request has been issued against the file yyyyyyyy, but it
is not defined in the FCT

Severity: 8

Operator Action: Contact your system administrator and check whether all
MQSeries files were defined in the CICS File Control Table
(FCT), and physically allocated by VSAM.

System Action: The dialog is terminated.

600009 - Prog: xxxxxxxx File: yyyyyyy DISABLED. Contact Support.

Explanation: CICS tried to access the file yyyyyyy which was found
disabled.

Severity: 8

Operator Action: Use “CEMT S DATA” to set the file ENABLED If the

DISABLED status persists, check with the System
Administrator. This has nothing to do with MQSeries.

System Action: The dialog is terminated.

600011 - Prog: xxxxxxxx File: yyyyyyy ILLOGIC error. Contact Support.

Explanation: Usually this is related to file I/Os. This condition is returned
by CICS when the error does not fall within one of the other
CICS response categories.

Severity: 8
Operator Action: Report to IBM
System Action: The dialog is terminated.

IBM MQSeries for VSE/ESA User’s Guide

600017 - Prog: xxxxxxxx File: yyyyyyy I/O error. Contact Support.

Explanation: Normally this is due to hardware errors.
Severity: 8

Operator Action: Check the System console for more details.
System Action: The dialog is terminated.

600019 - Prog: xxxxxxxx File: yyyyyyy Record not found. Contact

Support.
Explanation: The program tried to read a record but the request failed.
Severity: 8
Operator Action: Report to IBM.
System Action: The dialog is terminated.

600021 - Prog: xxxxxxxx File: yyyyyyy is not open. Contact Support.

Explanation: CICS tried to access a file which was not opened yet, and
was unable to open it. This may happen when the file is
already in use by another partition.

Severity: 8
Operator Action: Use “CEMT | DATA” and try to open it manually.
System Action: The dialog is terminated.

600023 - Prog: xxxxxxxx INVREQ error Contact Support.
Explanation: An request was received by CICS and may not be
processed for various reasons.

Severity: 8
Operator Action: Report to IBM
System Action: The dialog is terminated.

600025 - Prog: xxxxxxxx MAPFAIL error Contact Support.

Explanation: CICS was unable to display a BMS map on the terminal.
Severity: 8

Operator Action: Report to IBM

System Action: The dialog is terminated.

600027 - Prog: xxxxxxxx TRANSID error Contact Support.
Explanation: MQseries tried to initiate a transaction, but this transaction
was not found in CICS tables.

Severity: 8

Operator Action: This is likely an installation error. Check whether the
MQSeries group has been correctly installed in the
DFHCSD file, and activated. Use CEMT | TRAN(MQ*) to
verify this. If everything looks good, report the problem to
IBM.

System Action: The dialog is terminated.

Appendix A. System messages 183

800000 CICS ERROR CONDITION REACHED

Explanation :
Function :
Severity :
Operator Action :

System Action :

ERROR condition of CICS occurred.
General (CICS Interface)

12

Investigate the error.

Terminate the request.

800010 INVALID REQUEST CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

INVREQ (Invalid Request) condition of CICS reached.
General (CICS Interface)

12

Investigate the error.

Terminate the request.

800011 ILLOGIC CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

ILLOGIC condition of CICS occurred.
General (CICS Interface)

12

Investigate the error.

Terminate the request.

800090 ERROR CONDITION DURING CHECKPOINT PROCESSING

Explanation :

Function :
Severity :

Operator Action :

System Action :

A general error occurred while processing the checkpoint
record of a queue file.

General (/O modules MQPQUE1 and MQPQUE?2)
12

Use LISTCAT to review the VSAM file containing this
queue file.

Terminate the request.

800099 CICS ABEND CONDITION REACHED

Explanation :
Function :
Severity :
Operator Action :

System Action :

184 IBM MQSeries for VSE/ESA User’s Guide

ABEND condition of CICS occurred.
General (CICS Interface)

12

Investigate the error.

Terminate the request.

801012 FILE NOTOPEN CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

A CICS file entry has been CLOSED.
General (CICS Interface)

12

Check install of CICS table.

Terminate the request.

801019 DISABLE CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

A CICS table entry has been DISABLED.
General (CICS Interface)

12

Check install of CICS table.

Terminate the request.

802000 NO STORAGE CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

A CICS storage is not available.

General (CICS Interface)

12

Check that runaway user task has not freeing storage.

Terminate the request.

803001 LENGTH ERROR CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

A record was larger than expected.
General (CICS Interface)

12

Check install was done properly.

Terminate the request.

808000 MAPFAIL CONDITION

Explanation :
Function :
Severity :
Operator Action :

System Action :

A CICS transaction is missing.

General (CICS Interface)

12

Check install of CICS PPT table for maps.

Terminate the request.

Appendix A. System messages 185

809000 PGMIDERR CONDITION

Explanation : A CICS program id is missing.
Function : General (CICS Interface)
Severity : 12

Operator Action : Check install of CICS PPT table.
System Action : Terminate the request.

809010 FILEID CONDITION

Explanation : No file was available to process.
Function : General (CICS Interface)
Severity : 12

Operator Action : Check install for CICS FCT table.
System Action : Terminate the request.

809011 NOFILE CONDITION

Explanation : No file was available to process.
Function : General (CICS Interface)
Severity : 12

Operator Action : Check install for CICS FCT table.
System Action : Terminate the request.

809012 10 ERROR CONDITION

Explanation : An CICS 1I/O error has occurred.
Function : General (CICS Interface)
Severity : 12

Operator Action : Check CICS log and EIB codes.
System Action : Terminate the request.

809050 TRANIDERR CONDITION

Explanation : A CICS transaction is missing.
Function : General (CICS Interface)
Severity : 12

Operator Action : Check install of CICS PCT table.
System Action : Terminate the request.

186 IBM MQSeries for VSE/ESA User’s Guide

900000 NO ENVIRONMENT RECORD

Explanation : Setup of Environment has not been performed.
Function : Set up system

Severity : 8

Operator Action : Execute Transaction MQSE to setup Environment.
System Action : Terminate the request.

Appendix A. System messages 187

Console Messages

Start up messages
The following messages are informational, no operator action required.

MQIO0011! -

MQSeries for VSE/ESA starting initialization.

MQIO003I -

MQSeries initialization is complete.

MQIO005I -

FILE : QUEUE : (may have one of the following values:)
not found.

cannot enable.

cannot open.

MQIO011] -

MQSeries for VSE/ESA terminating.

MQIO013I -

MQSeries termination is complete.

MQI00211 -

MQSeries for VSE/ESA environment initializing.

MQI0023I -

MQSeries for VSE/ESA environment complete.

MQI0025I -

MQSeries for VSE/ESA shutdown complete.

188 IBM MQSeries for VSE/ESA User’s Guide

Appendix B. COBOL programming language examples

This section contains:
® “Language considerations”
* “Calls”
* “Elementary data types”
® “Structure data types”

Language considerations

Copy files
Various COPY files are provided as part of the definition of the message queue interface. These
files are used to assist in writing COBOL application programs that use message queuing.
Table 34. Copy files
File name Contents
CMQGMOV Get-message options structure
CMQMDV Message descriptor
CMQODV Object descriptor
CMQPMOV Put-message options structure
CMQTMV Trigger-message structure
CMQV Named constants
Structures

Each structure declaration begins with a level-10 item. This enables several instances of the
structure to be declared, by coding the level-01 declaration and using the COPY statement to
copy in the remainder of the structure declaration.

The structures should be aligned on 4-byte boundaries. If the COPY statement is used to
include a structure, following an item which is not the level-01 item, try to ensure that the
structure is a multiple of 4-bytes from the start of the level-01 item. Failure to do this may result
in a performance degradation.

Notational conventions
The sections that follow show how the:

® Calls should be invoked
Parameters should be declared
® Various data types should be declared.

In a number of cases, parameters are tables or character strings whose size is not fixed. For
these, a lower case “n” is used to represent a numeric constant. When the declaration for that
parameter is coded, the “n” must be replaced by the numeric value required.

© Copyright IBM Corp. 1993, 1997 189

Calls
MQCLOSE

CALL “MQCLOSE” USING HCONN, HOBJ, OPTIONS, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Object handle

01 HOBJ PIC S9(9) BINARY.

** Options that control the action of MQCLOSE
01 OPTIONS PIC S9(9) BINARY.

** Completion code

01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying CompCode

01 REASON PIC S9(9) BINARY.

MQCONN

CALL “MQCONN” USING NAME, HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Name of queue manager

01 NAME PIC X(48).

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Completion code

01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying CompCode
01 REASON PIC S9(9) BINARY.

MQDISC

CALL “MQDISC” USING HCONN, COMPCODE, REASON.

Declare the parameters as follows:

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Completion code

01 COMPCODE PIC S9(9) BINARY.
** Reason code qualifying CompCode
01 REASON PIC S9(9) BINARY.

MQGET

CALL “MQGET” USING HCONN, HOBJ, MSGDESC, GETMSGOPTS, BUFFERLENGTH
BUFFER, DATALENGTH, COMPCODE, REASON.

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Object handle

01 HOBJ PIC S9(9) BINARY.

** Message descriptor

01 MSGDESC.

COPY MQIMQMD.

** Options that control the action of MQGET
01 GETMSGOPTS.

COPY MQIMQGM.

** Length in bytes of the Buffer area
01 BUFFERLENGTH PIC S9(9) BINARY.
** Area to contain the message data
01 BUFFER PIC X(n).

** Length of the message

190 IBM MQSeries for VSE/ESA User’s Guide

01

**

01

*%

01

MQINQ

DATALENGTH PIC S9(9) BINARY.
Completion code

COMPCODE PIC S9(9) BINARY.
Reason code qualifying CompCode
REASON PIC S9(9) BINARY.

CALL “MQINQ” USING HCONN, HOBJ, SELECTORCOUNT, SELECTORS-TABLE,
INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH, CHARATTRS, COMPCODE,
REASON.

*%

01

*%

01

*%

01
%
01
02

*%

01
%
01
02

*%

01

*%

01

*%

01

*%

01

Connection handle

HCONN PIC S9(9) BINARY.

Object handle

HOBJ PIC S9(9) BINARY.

Count of selectors

SELECTORCOUNT PIC S9(9) BINARY.
Array of attribute selectors
SELECTORS-TABLE

SELECTORS PIC S9(9) BINARY OCCURS n TIMES.
Count of integer attributes
INTATTRCOUNT PIC S9(9) BINARY.
Array of integer attributes
INTATTRS-TABLE

INTATTRS PIC S9(9) BINARY OCCURS n TIMES.
Length of character attributes buffer
CHARATTRLENGTH PIC S9(9) BINARY.
Character attributes

CHARATTRS PIC X(n).

Completion code

COMPCODE PIC S9(9) BINARY.

Reason code qualifying CompCode
REASON PIC S9(9) BINARY.

MQOPEN

CALL “MQOPEN" USING HCONN, OBJDESC, OPTIONS, HOBJ, COMPCODE, REASON.

**

01

*%

01

Connection handle

HCONN PIC S9(9) BINARY.
Object descriptor
OBJDESC.

COPY MQIMQOD.

*%

01

*%

01

*%

01

*%

01

Options that control the action of MQOPEN
OPTIONS PIC S9(9) BINARY.
Object handle

HOBJ PIC S9(9) BINARY.

Completion code

COMPCODE PIC S9(9) BINARY.

Reason code qualifying CompCode

REASON PIC S9(9) BINARY.

MQPUT

CALL “MQPUT” USING HCONN, HOBJ, OBJDESC, MSGDESC, PUTMSGOPTS
BUFFERLENGTH, BUFFER, COMPCODE, REASON.

*%

01

*%

01

*%

01

Connection handle

HCONN PIC S9(9) BINARY.
Object handle

HOBJ PIC S9(9) BINARY.
Message descriptor
MSGDESC.

Appendix B. COBOL programming language examples 191

COPY MQIMQMD.

** Options that control the action of MQPUT
01 PUTMSGOPTS.

COPY MQIMQPM.

** Length of the message in Buffer
01 BUFFERLENGTH PIC S9(9) BINARY.
** Message data

01 BUFFER PIC X(n).

** Completion code

01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying CompCode
01 REASON PIC S9(9) BINARY.

MOQPUTI

CALL “MQPUT1” USING HCONN, OBJDESC, MSGDESC, PUTMSGOPTS
BUFFERLENGTH, BUFFER, COMPCODE, REASON.

** Connection handle

01 HCONN PIC S9(9) BINARY.

** Object descriptor

01 OBJDESC.

** Message descriptor

01 MSGDESC.

COPY MQIMQMD.

** Options that control the action of MQPUT
01 PUTMSGOPTS.

COPY MQIMQPM.

** Length of the message in Buffer
01 BUFFERLENGTH PIC S9(9) BINARY.
** Message data

01 BUFFER PIC X(n).

** Completion code

01 COMPCODE PIC S9(9) BINARY.

** Reason code qualifying CompCode
01 REASON PIC S9(9) BINARY.

192 IBM MQSeries for VSE/ESA User’s Guide

Elementary data types

Table 35. Elementary data types

Data type Representation
MQBYTE PIC X
MQBYTE24 PIC X(24)
MQBYTE32 PIC X(34)
MQCHAR PIC X
MQCHAR4 PIC X(4)
MQCHARS PIC X(8)
MQCHAR12 PIC X(12)
MQCHAR28 PIC X(28)
MQCHAR32 PIC X(32)
MQCHARA48 PIC X(48)
MQCHARG64 PIC X(64)
MQCHAR128 PIC X(128)
MQCHAR256 PIC X(256)
MQHCONN PIC S(9) BINARY
MQHOBJ PIC S(9) BINARY
MQLONG PIC S(9) BINARY

Structure data types

MQGMO in Copybook CMQGMOV

** MQGMO structure

10 MQGMO.

** Structure identifier

15 MQGMO-STRUCID PIC X(4).

** Structure version number

15 MQGMO-VERSION PIC S9(9) BINARY.
** Options

15 MQGMO-OPTIONS PIC S9(9) BINARY.
** Wait interval

15 MQGMO-WAIT-INTERVAL PIC S9(9) BINARY.

** Signal

15 MQGMO-SIGNAL1 PIC S9(9) BINARY.
** Reserved

15 MQGMO-SIGNAL2 PIC S9(9) BINARY.
** Resolved name of destination queue

15 MQGMO-RESOLVED-QNAME PIC S9(9) BINARY.

Appendix B. COBOL programming language examples 193

MQMD in Copybook CMQMDV

** MQMD structure

10 MQMD.

** Structure identifier

15 MQMD-STRUCID PIC X(4).

** Structure version number

15 MQMD-VERSION PIC S9(9) BINARY.

** Reports

15 MQMD-REPORT PIC S9(9) BINARY.

** Message type

15 MQMD-MSGTYPE PIC S9(9) BINARY.

** Reserved

15 MQMD-EXPIRY PIC S9(9) BINARY.

** Feedback code

15 MQMD-FEEDBACK PIC S9(9) BINARY.

** Data encoding

15 MQMD-ENCODING PIC S9(9) BINARY.

** Coded character set identifier

15 MQMD-CODED-CHAR-SET-ID PIC S9(9) BINARY.
** Format name

15 MQMD-FORMAT PIC X(8).

** Message priority

15 MQMD-PRIORITY PIC S9(9) BINARY.

** Message persistence

15 MQMD-PERSISTENCE PIC S9(9) BINARY.
** Message identifier

15 MQMD-MSGID PIC X(24).

** Correlation identifier

15 MQMD-CORRELID PIC X(24).

** Backout counter

15 MQMD-BACKOUT-COUNT PIC S9(9) BINARY.
** Name of reply-to queue

15 MQMD-REPLYTOQ PIC X(48).

** Name of reply queue manager

15 MQMD-REPLY-TO-QMGR PIC X(48).

** User identifier

15 MQMD-USERIDENTIFIER PIC X(12).

** Accounting token

15 MQMD-ACCOUNTING-TOKEN PIC X(32).

** Application data relating to identity
15 MQMD-APPL-IDENTITY-DATA PIC X(32).
** Type of application that put the message
15 MQMD-PUT-APPL-TYPE PIC S9(9) BINARY.
** Name of application that put the message
15 MQMD-PUT-APPL-NAME PIC X(28).

** Date when message was put

15 MQMD-PUTDATE PIC X(8).

** Time (GMT) when message was put

15 MQMD-PUTTIME PIC X(8).

** Application data relating to origin

15 MQMD-APPL-ORIGIN-DATA PIC X(4).

194 IBM MQSeries for VSE/ESA User’s Guide

MQOD in Copybook CMQODV

** MQOD structure

10 MQOD.

** Structure identifier

15 MQOD-STRUCID PIC X(4).

** Structure version number

15 MQOD-VERSION PIC S9(9) BINARY.
** Object type

15 MQOD-OBJECTTYPE PIC S9(9) BINARY.
** Object name

15 MQOD-0BJECTNAME PIC X(48).

** Object queue manager name

15 MQOD-0BJECTQMGRNAME PIC X(48).
** Dynamic queue name

15 MQOD-DYNAMICQNAME PIC X(48).

** Alternate user identifier

15 MQOD-ALTERNATEUSERID PIC X(12).

MQPMO in Copybook CMQPMOV

** MQPMO structure

10 MQPMO.

** Structure identifier

15 MQPMO-STRUCID PIC X(4).

** Structure version number

15 MQPMO-VERSION PIC S9(9) BINARY.

** Options

15 MQPMO-OPTIONS PIC S9(9) BINARY.

** Reserved

15 MQPMO-TIMEOUT PIC S9(9) BINARY.

** Object handle of input queue

15 MQPMO-CONTEXT PIC S9(9) BINARY.

** Reserved

15 MQPMO-KNOWNDESTCOUNT PIC S9(9) BINARY.
** Reserved

15 MQPMO-UNKNOWNDESTCOUNT PIC S9(9) BINARY.
** Reserved

15 MQPMO-INVALIDDESTCOUNT PIC S9(9) BINARY.
** Resolved name of destination queue

15 MQPMO-RESOLVEDQNAME PIC X(48).

** Resolved name of destination queue manager
15 MQPMO-RESOLVEDQMGRNAME PIC X(48).

Appendix B. COBOL programming language examples 195

196 IBM MQSeries for VSE/ESA User’s Guide

Appendix C. CICS control table definitions

The following sub-appendices contain sample entries for the CICS control tables, including:

® File Control Table (FCT)
® Destination Control Table (DCT)
® Programs and Transactions

Sample FCT entries
Note: Entry named MQFCNFG is required.

K e e e e e e e e e e e e
* Licensed Materials - Property of IBM

*

* 5787-ECX

* (C) Copyright IBM Corp. 1993, 1996

*

* S Government Users Restricted Rights - Use, duplication or

* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

K e e e e e e e e e
*

K e e e e e e e e o e
* Start of MQ/Series VSAM cluster definitions

*

* For performance reasons entries may be modified to add LSRPOOL

* explicit specifications.

K e e e e e e e
*

*

system ssetup file
MQFSSET DFHFCT TYPE=DATASET,DATASET=MQFSSET,
ACCMETH=VSAM,
SERVREQ= (READ,BROWSE) ,
LOG=NO,
RSL=PUBLIC,
BUFND=5,STRNO=5,
RECFORM=(FIXED,BLOCKED)
* configuration file
MQFCNFG DFHFCT TYPE=DATASET,DATASET=MQFCNFG,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE ,ADD,BROWSE ,DELETE),
LOG=YES,
RSL=PUBLIC,
BUFND=5,BUFNI=10,STRNO=20,
RECFORM=(FIXED,BLOCKED)
*--example of queues (input followed by output)
MQFIO01 DFHFCT TYPE=DATASET,DATASET=MQFIOO01,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE ,ADD,BROWSE ,DELETE),
RSL=PUBLIC,
LOG=YES,
BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)
MQFO001 DFHFCT TYPE=DATASET,DATASET=MQF0001,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE ,ADD, BROWSE ,DELETE),
LOG=YES,
RSL=PUBLIC,
BUFND=16,BUFNI=16,STRNO=16,

© Copyright IBM Corp. 1993, 1997

EE I R

R S

L N S R * %k X F X X L S

L

197

RECFORM=(VARIABLE,BLOCKED)

MQFIO02 DFHFCT TYPE=DATASET,DATASET=MQFI002,
ACCMETH=VSAM,

SERVREQ=(READ,UPDATE ,ADD,BROWSE ,DELETE),
RSL=PUBLIC,

LOG=YES,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)

MQF0002 DFHFCT TYPE=DATASET,DATASET=MQF0002,
ACCMETH=VSAM,

SERVREQ=(READ,UPDATE ,ADD,BROWSE ,DELETE),
LOG=YES,

RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)

MQFI003 DFHFCT TYPE=DATASET,DATASET=MQFIO0O03,
ACCMETH=VSAM,

SERVREQ= (READ,UPDATE ,ADD, BROWSE ,DELETE),
LOG=YES,

RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)

MQFO003 DFHFCT TYPE=DATASET,DATASET=MQF0003,
ACCMETH=VSAM,

SERVREQ= (READ,UPDATE ,ADD, BROWSE ,DELETE),
LOG=YES,

RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)

*--SYSTEM DEFINITIONS

MQFLOG ~ DFHFCT TYPE=DATASET,DATASET=MQFLOG,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE ,ADD, BROWSE ,DELETE),
RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM=(VARIABLE,BLOCKED)

MQFERR DFHFCT TYPE=DATASET,DATASET=MQFERR,
ACCMETH=VSAM,
SERVREQ=(READ,UPDATE,ADD, BROWSE ,DELETE),
RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,
RECFORM= (VARIABLE,BLOCKED)

MQFMON DFHFCT TYPE=DATASET,DATASET=MQFMON,
ACCMETH=VSAM,

SERVREQ= (READ,UPDATE ,ADD, BROWSE ,DELETE),
RSL=PUBLIC,

BUFND=16,BUFNI=16,STRNO=16,

RECFORM= (VARIABLE,BLOCKED)

198 IBM MQSeries for VSE/ESA User’s Guide

* ok ok * * * ok ok ok * * ok ok ok ok * * ok ok k¥ % L I L I

* ok X X *

Sample DCT entry

Note: Entry named MQER is required in order for MQSeries System error messages to be
logged to the SYSTEM.LOG queue.

K e e e e e e e e o e *

* Licensed Materials - Property of IBM *

* *

* 5787-ECX *

* (C) Copyright IBM Corp. 1993, 1996 *

* *

* US Government Users Restricted Rights - Use, duplication or *

* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *

K e e e e e e e e o — — — — — — — — — — — — — —— — — — — —— — — ——— —— — — —— — —— *

*

K e e e e e e e *

* START OF MQSERIES DCT ENTRIES

K e e e e o e e e o e *

MQER DFHDCT TYPE=INTRA, *
RSL=PUBLIC, *
DESTID=MQER, *
DESTFAC=FILE, *
TRANSID=MQER, *
TRIGLEV=1

K e e e e e e e e *

END OF MQSERIES DCT ENTRIES
*

Appendix C. CICS control table definitions 199

Sample JCL to execute MQPUTIL

* %% JOB JNM=MQJUTILY,DISP=D,CLASS=A
* *x | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJUTILY - Execute VSE/ESA MQ/Series Batch Utility Program.

*

IMPORTANT IMPORTANT IMPORTANT

Please change :
"k k% JOB" to "* $$ JOB"
"kokx |ST" to "* $§$ LST"
"kookx EQJ" to "* $$ EOJ"

This job executes MQPUTIL to access the CONFIGURATION file

This file is a sample and needs modification to suit the
users environment.

Licensed Materials - Property of IBM

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

L T N A SR R T S R N N B

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

K e e e e e e e o e

// DLBL CONFIG, '"MQSERIES.MQFCNFG',,VSAM,CAT=MQMCAT

// EXEC IDCAMS,SIZE=AUTO

/* */
/* VERIFY VSAM FILE */
/* */

VERIFY FILE(CONFIG)
/*
// LIBDEF PHASE,SEARCH=(PRD2.MQSERIES,PRD2.SCEEBASE)
// ASSGN SYS004,SYSIPT
// ASSGN SYS005,SYSLST
// EXEC MQPUTIL,SIZE=AUTO
*RESET MSN 00000002
*RESET CHECKPOINT 00000002
*PRINT RESOLUTIONS
*PRINT CONFIG
*PRINT LOG
/*
/&
* k% EOJ

200 IBM MQSeries for VSE/ESA User's Guide

E I T T R S T T R R R R S R

Sample JCL file definition for CICS deck

Licensed Materials - Property of IBM

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Sample JCL file definition for CICS deck
The DLBL statements in this JCL correspond to entries in CICSFCT*
therefore if there are any new file ids to be added in here,
it must also be added into the corresponding JCL

L N S I

Fields filed with ?volid? have to be modified to suit the user
specifications.

*

// DLBL MQFSSET, 'MQSERIES.MQFSSET',0,VSAM, CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFCNFG, 'MQSERIES.MQFCNFG',0,VSAM, CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFIOO01, 'MQSERIES.MQFIO01',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFIO002,'MQSERIES.MQFI002',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFIO003, 'MQSERIES.MQFI003',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQF0001, 'MQSERIES.MQF0001',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQF0002, 'MQSERIES.MQF0002',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQF0003, 'MQSERIES.MQF0003',0,VSAM,CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFERR, '"MQSERIES.MQFERR',0,VSAM, CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFLOG, '"MQSERIES.MQFLOG',0,VSAM, CAT=MQMCAT

// EXTENT ,?volid?

// DLBL MQFMON, '"MQSERIES.MQFMON',0,VSAM, CAT=MQMCAT

// EXTENT ,?volid?

L T T D S T R N

Appendix C. CICS control table definitions 201

Sample JCL to create CICS CSD group

202

* %% JOB JNM=MQJCSD,CLASS=0,DISP=D
* %% | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJCSD Define resources for MQ/Series for VSE/ESA to CICS CSD.

K o e e e e e e o e — — — — — — — — — — — — — — —— — — — — —— — — — — — —— — — — — — —— — — ——— — *
* Please change *
* " %% JOB" to "* §$ JoOB" *
* "kokx |ST" to "* $§$ LST" *
* "k %% EQJ" to "* §$ EOJ" *
K o e e e e e e e o e — — — — — — — — — — — — — — — — — — — —— — — — — — —— — — — — — —— — — ———— *
* Create CICS CSD group for MQ/Series VSE/ESA *
* *
* This file is a sample and may need modifications to suit the *
* users environment (eg. Group name, or list name). *
K o e e e e e *
* Licensed Materials - Property of IBM *
* *
* 5787-ECX *
* (C) Copyright IBM Corp. 1993, 1996 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp. *
K o e e e e e e e *
// EXEC DFHCSDUP
K o e e e e e o o e *
* Definitions for MQ/Series VSE/ESA *
K o e e e e e o o i *
*
DELETE GROUP (MQM)
*
*em Definitions of MQ/Series Programs
*
DEFINE PROGRAM(MQPMTP) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMCFG) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMMON) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMOPR) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPDISP) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMSYS) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMQUE) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMCHN) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMSS) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMSC) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMMSN) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMSI) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMDEL) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMMOQ) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPMMOC) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
*-- NON-ADMINISTRATOR
DEFINE PROGRAM(MQPAIPO) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPAIP1) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPAIP2) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSEND) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPRECV) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPCCKPT) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPQUE1) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPQUE2) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPECHO) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPINIT1) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPINIT2) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)

IBM MQSeries for VSE/ESA User’s Guide

00001300

00001300

00001300

00001300
00002110
00002100

00002100
00002200
00056000

DEFINE PROGRAM(MQPSSQ) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSCHK) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPERR) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPFINDQ) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPQDEL) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSTOP) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSTART) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSREC) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPQREC) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSMAP) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSSET) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPSENV) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(MQPCMD) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
*-- MAPS
DEFINE PROGRAM(MQMMTP
DEFINE PROGRAM(MQMMCFG
DEFINE PROGRAM(MQMMMON) GROUP(MQM
DEFINE PROGRAM(MQMMOPR) GROUP(MQM

) GROUP (MQM

)

)

)
DEFINE PROGRAM(MQMDISP) GROUP(MQM

)

)

)

GROUP (MQM

(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMSYS) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMQUE) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMCHN) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMSS) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMSC) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMMSN) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMSI) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMDEL) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMMOQ) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
DEFINE PROGRAM(MQMMMOC) GROUP(MQM)
*-- TEST PROGRAMS
DEFINE PROGRAM(TTPTST1
DEFINE PROGRAM(TTPTST2

LANGUAGE (ASSEMBLER) RSL(PUBLIC)

GROUP (MQM

(LANGUAGE (COBOL) RSL(PUBLIC)
GROUP (MQM

(

(

))
)) LANGUAGE (COBOL) RSL(PUBLIC)
))
))

DEFINE PROGRAM(TTPTST3) GROUP(MQM) LANGUAGE (COBOL) RSL(PUBLIC)
DEFINE PROGRAM(TTMTST3) GROUP(MQM) LANGUAGE (ASSEMBLER) RSL(PUBLIC)
*
*em Definitions of MQ/Series Transactions

*

DEFINE TRANSACTION(MQMT) GROUP(MQM
DEFINE TRANSACTION(MQMC) GROUP(MQM
DEFINE TRANSACTION(MQMO) GROUP(MQM
DEFINE TRANSACTION(MQMM) GROUP(MQM
DEFINE TRANSACTION(MQBQ) GROUP(MQM
DEFINE TRANSACTION(MQMS) GROUP(MQM
DEFINE TRANSACTION(MQDS) GROUP(MQM
DEFINE TRANSACTION(MQMQ) GROUP(MQM) PROGRAM(MQPMQUE
DEFINE TRANSACTION(MQDQ) GROUP(MQM) PROGRAM(MQPMQUE

(

(

(

(

(

(

(

(

) PROGRAM (MQPMTP)

)

)

)

)

)

)

)

)
DEFINE TRANSACTION(MQMH) GROUP(MQM) PROGRAM(MQPMCHN

)

)

)

)

)

)

)

)

PROGRAM (MQPMCFG)
PROGRAM (MQPMOPR)
PROGRAM (MQPMMON)
PROGRAM(MQPDISP)
PROGRAM (MQPMSYS)
PROGRAM (MQPMSYS)
)
)
)

DEFINE TRANSACTION(MQDH) GROUP(MQM

(
(
(
(
(
(
(
(
(
(
(PROGRAM (MQPMCHN)
DEFINE TRANSACTION(MQMA) GROUP(MQM

(

(

(

(

(

(

(

(

(

(

(

PROGRAM(MQPMSS)
PROGRAM(MQPMSC)
PROGRAM (MQPMMSN)
PROGRAM(MQPMST)
PROGRAM (MQPMDEL)

DEFINE TRANSACTION(MQMB) GROUP(MQM
DEFINE TRANSACTION(MQMR) GROUP(MQM
DEFINE TRANSACTION(MQMI) GROUP(MQM
DEFINE TRANSACTION(MQMD) GROUP(MQM
DEFINE TRANSACTION(MQQM) GROUP(MQM) PROGRAM(MQPMMOQ)
DEFINE TRANSACTION(MQCM) GROUP(MQM) PROGRAM(MQPMMOC)
DEFINE TRANSACTION(MQIT) GROUP(MQM) PROGRAM(MQPINIT1)
DEFINE TRANSACTION(MQO2) GROUP(MQM) PROGRAM(MQPAIP2)
DEFINE TRANSACTION(MQO1) GROUP(MQM) PROGRAM(MQPRECV)
DEFINE TRANSACTION(MQO3) GROUP(MQM) PROGRAM(MQPSEND)
DEFINE TRANSACTION(MQSS) GROUP(MQM) PROGRAM(MQPSSQ)

Appendix C. CICS control table definitions 203

204

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
*-- Test
DEFINE
DEFINE
DEFINE

TRANSACTION (MQSM)
TRANSACTION (MQER)
TRANSACTION(MQQD)
TRANSACTION (MQQA)
TRANSACTION (MQST)
TRANSACTION (MQSU)
TRANSACTION (MQSE)
TRANSACTION (MQSR)
TRANSACTION(MQSQ)
Transactions

TRANSACTION(TST1)
TRANSACTION(TST2)
TRANSACTION(TST3)

GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)
GROUP (MQM)

GROUP (MQM)
GROUP (MQM)
GROUP (MQM)

PROGRAM (MQPSCHK)
PROGRAM (MQPERR)
PROGRAM (MQPQDEL)
PROGRAM (MQPQDEL)
PROGRAM (MQPSTOP)
PROGRAM (MQPSSET)
PROGRAM (MQPSENV)
PROGRAM (MQPSREC)
PROGRAM (MQPQREC)

PROGRAM(TTPTST1)
PROGRAM(TTPTST2)
PROGRAM(TTPTST3)

*-- Add MQ/Series group to the standard VSE/ESA list.
ADD GROUP(MQM) LIST(VSELIST)

/*
/&
* *% EOJ

IBM MQSeries for VSE/ESA User’s Guide

Programs and transactions

The following programs and transactions must be defined for CICS using PCT and PPT entries
or via RDO.

BMS maps
MQMDISP, MQMMDEL, MQMMCFG, MQMMCHN, MQMMMOC, MQMMMON,
MQMMMOQ, MQMMMSN, MQMMOPR, MQMMQUE, MQMMSC, MQMMSI,
MQMMSS, MQMMSYS, MQMMTP, TTMTST3.

COBOL for VSE programs and transactions
TRANIDs Program Description

MQMT MQPMTP Master Terminal Main Program

mMQmc MQPMCFG " " Configuration Main Program
MQMQ/MQDQ MQPMQUE " " Queue definition program.
MQMS/MQDS MQPMSYS " " Global System definition.
MQMH/MQDH MQPMCHN " " Channel definition.

MQMo MQPMOPR " " Operations Main program.
MQMA MQPMSS " " Start/Stop Queue

MQMB MQPMSC " ! Open/Close Channel

MQMR MQPMMSN " " Message Reset

MQMI MQPMSI " " Initialize System

MQMM MQPMMON " " Monitor Main program

mMQQM MQPMMOQ " " Monitor Queue

MQCM MQPMMOC " " Monitor Channel

MQMD MQPMDEL " " Queue Records Maintenance

MQPSTART PLT post initialization transaction to invoke
transaction MQIT

MQIT MQPINIT1 System Initialization
MQPINIT2 Channel Initialization
MQSS MQPSSQ Start/Stop Queue

MQPAIPO Application Interface Program (AIP) for MQM Stub’s
and System AIP.
MQPAIP1 System AIP.
MQPQUE1 Queue Manager
MQPQUE2 Internal Queue Manager
MQQD/MQQA MQPQDEL Update of queue records

MQER MQPERR System error program

MQPECHO Test ECHO program (see page 255)
MQSE MQPSENV ~ Setup environment
MQSM MQPSCHK System Monitor

MQPFINDQ Performs Queue/Queue Manager Tlookup
MQST MQPSTOP System Shutdown Task
MQSU MQPSSET Setup System configuration file
MQO1 MQPRECV ~ Channel Receiver
MQ02 MQPAIP2 Trigger AIP Handler
MQO3 MQPSEND Channel Sender

MQPCCKPT Channel Checkpoint
TST1 TTPTST1 Test 1 program (see page 207)
TST2 TTPTST2 Test 2 program (see page 221)
TST3 TTPTST3 Test 3 program (see page 239)

Appendix C. CICS control table definitions 205

206 IBM MQSeries for VSE/ESA User's Guide

Appendix D. Sample programs

Sample program TTPTST1.Z

This program is a test facility for sending/receiving messages. It must be invoked by terminal
input format as:

TST1 func nn queue-name
Where:

TST1 is the transaction id
func is any of the following functions:

BOTH put and get message(s)

GET get message(s)

GETD get and delete message(s)

INQ invoke MQINQ about queue’s attributes
PUT put message(s)

PUTR put message(s) and send reply

PUT1 put and delete messages

nn is the number of messages to be processed (01 through 99)
queue-name is the name of the local or transmission queue to be processed.

For example, “TST1 PUT 99 QUEL" will put 99 messages into a transmission queue named
QUEL1 (the messages will read “THIS IS A MESSAGE TEXT"). Typing TST1 alone will display
help instructions.

For each function, there is a corresponding set of MQCONN, MQOPEN, MQCLOSi#Hd MQDISC
In the above example, there would be 99 connections and disconnections to the Queue
Manager and 99 opens and closes to QUEL1.

*/INCLUDE COPYRSAP * COPYBOOKS: MQIVALUE - MQI RETURN CODES. *
* *
* Licensed Materials - Property of IBM * * CALLS : MQCONN - CONNECT *
* * * MQOPEN - OPEN *
* 5787-ECX * * MQPUT - PUT *
* (C) Copyright IBM Corp. 1993, 1996 * * MQGET - GET *
* * * MQCLOSE - CLOSE *
* US Government Users Restricted Rights - Use, duplication or * * MQDISC - DISCONNECT *
* disclosure restricted by GSA ADP Schedule Contract with IBM * * *
* Corp. * * CALLED BY: -- NONE -- *
* *
IDENTIFICATION DIVISION. * CHANGE SUMMARY : *
PROGRAM-ID. TTPTSTL. * *
AUTHOR. IBM. K e e e e e e e s *
/
DATE-WRITTEN. 12/15/92. ENVIRONMENT DIVISION.
DATE-COMPILED. CONFIGURATION SECTION.
*_AST-MODIFIED. 3/21/96. DATA DIVISION.
WORKING-STORAGE SECTION.
K e e o e * * COPY COPYRWS.
K e e e e e e ——— ———— ———— * K e e e e e e o *
* TEST * * COPYRIGHT WORKING STORAGE FOR COBOL MODULES *
* * K e e e e e e o o o o *
* APPLICATION INTERFACE * 01 FILLER.
* * 05 FILLER PIC X(80) VALUE
* IBM MQI * 'Licensed Materials - Property of IBM'.
* * 05 FILLER PIC X(80) VALUE SPACES.
K e e e e * 05 FILLER PIC X(80) VALUE
* TTPTST1 - MQI APPLICATION TEST PROGRAM * '5787-ECX .
* * 05 FILLER PIC X(80) VALUE SPACES.
* FUNCTIONS: 1. PERFORM NORMAL QUEUE PUT * 05 FILLER PIC X(80) VALUE
* 2. TRY TO GET QUEUE INFO BACK * '(C) Copyright IBM Corp. 1993, 1996 A1l Rights
* * Reserved'.

© Copyright IBM Corp. 1993, 1997 207

01 FILLER PIC X(40) VALUE
"TTPTST1 WORKING STORAGE STARTS HERE ==>'.
01 WS-VERSION.
05 FILLER PIC X(30) VALUE
'TTPTSTL VERSION 1.4'.
01 WS-WORK-FIELDS.
05 WS-IDX PIC S9(4) COMP VALUE ZERO.
05 WS-PROCESS-TIMES PIC 9(4) VALUE
ZERO.
05 WS-DURATION-SECS PIC X(8) VALUE
SPACES.
05 WS-APPL-MSG-LENGTH PIC S9(8) COMP VALUE
ZERO.
05 WS-ABSTIME PIC S9(15) COMP-3 VALUE
ZERO.
05 WS-ABSTIME2 PIC S9(15) COMP-3 VALUE
ZERO.
05 WS-DATE.
10 WS-DATE-CC PIC 99 VALUE ZERO.
10 WS-DATE-YY PIC 99 VALUE ZERO.
10 WS-DATE-MM PIC 99 VALUE ZERO.
10 WS-DATE-DD PIC 99 VALUE ZERO.
05 WS-TIME-9 PIC 9(7) VALUE ZERO.
05 WS-TIME.
10 FILLER PIC 9 VALUE ZERO.
10 WS-TIME-HH PIC 99 VALUE ZERO.
10 WS-TIME-MM PIC 99 VALUE ZERO.
10 WS-TIME-SS PIC 99 VALUE ZERO.
05 WS-QM-Q-NAME.
10 WS-QM-NAME PIC X(48) VALUE 'QM1 .
10 WS-Q-NAME PIC X(48) VALUE 'QUEUE'.
05 WS-REPLY-Q PIC X(48) VALUE 'QUEL'.
05 WS-END-OF-MESSAGES-FLAG ~ PIC X VALUE SPACES.
88 WS-END-OF-MESSAGES VALUE 'Y'.
05 WS-TRUNCATED-MESSAGES-F PIC X VALUE SPACES.
88 WS-TRUNCATED-MESSAGES VALUE 'Y'.
___ *
EJECT
___ *
___ *
77 WS-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 WS-DATA-ALL.

05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE
'US Government Users Restricted Rights - Use,
duplication '.
05 FILLER PIC X(80) VALUE
‘or discllosure restricted by GSA ADP Schedule Contract

05 FILLER PIC X(80) VALUE

'with IBM Corp.'.

05 WS-DATA-WITH-QUEUE.
10 WS-DATA-WITH-TIMES.
12 WS-DATA-WITH-FUNCTION.

15 FILLER PIC X(5) VALUE 'TST1 '.
15 WS-DATA-FUNCTION PIC XXXX VALUE 'PUT'.
88 WS-PUT VALUE 'PUT'.
88 WS-INQ VALUE 'INQ'.
88 WS-GET VALUE 'GET'.
88 WS-BOTH VALUE 'BOTH'.
88 WS-PUT1 VALUE 'PUT1'.
88 WS-PUT-WITH-REPLY VALUE 'PUTR'.
88 WS-GET-WITH-DELETE VALUE 'GETD'.

12 FILLER PIC X VALUE ' '.

208 IBM MQSeries for VSE/ESA User's Guide

01

01

PIC 99 VALUE zeros.
PIC X VALUE ' '.
PIC X(48) VALUE SPACES.

12 WS-DATA-TIMES
10 FILLER
10 WS-DATA-QUEUE

WS-NEED-REPLY.
05 FILLER PIC X(80) VALUE

'Please enter REPLY QUEUE name with trailing blanks or
ErsEOF

' (e.g. Ctrl - Del)'.

WS-HELP.
05 FILLER PIC X(80) VALUE
' TST1 is a test facility for SENDING / RECEIVING

messages'.
05 FILLER PIC X(80) VALUE
' The format of command is as follows:'.
05 FILLER PIC X(80) VALUE

' TST1 XXXX NN
QQQQQQQQQQQRQQQQQQQQAQQQAQAQQAQAQAQRQRQAQGARAAQRAAAQRQAQAQ

Q.
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE

'(NOTE a single space or comma separates the params)'.

05 FILLER PIC X(80) VALUE
' XXXX 4-character function code, pad with trailing
blank'.

05 FILLER PIC X(80) VALUE

! PUT - MQPUT MESSAGES'.

05 FILLER PIC X(80) VALUE

! PUT1 - MQPUT1 MESSAGES'.

05 FILLER PIC X(80) VALUE

! INQ - MQINQ ALL INFO.'.

05 FILLER PIC X(80) VALUE

! PUTR - MQPUT W/ REPLY MESSAGE'.
05 FILLER PIC X(80) VALUE

! GET - MQGET MESSAGES'.

05 FILLER PIC X(80) VALUE

! GETD - MQGET W/ BROWSE & DELETE'.
05 FILLER PIC X(80) VALUE

! BOTH - MQPUT FOLLOWED BY MQGET'.
05 FILLER PIC X(80) VALUE

NN 2-digit number with Teading zero (01 TO 99)'.

05 FILLER PIC X(80) VALUE

' QQQQ A 48-character field giving the name of a
queue.'.

05 FILLER PIC X(80) VALUE

' An additional prompt will ask for the name of the
reply qu
'eue for PUTR option.'.

01 WS-HELP-RED REDEFINES WS-HELP.
05 WS-HELP-LINE OCCURS 16 TIMES
PIC X(80).
EJECT
01 WS-0K-MSG.
05 WS-0K-MSG-0 PIC X(80) VALUE
' FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY'.
05 WS-0K-MSG-1 PIC X(80) VALUE SPACES.
05 WS-0K-MSG-2 PIC X(80) VALUE SPACES.
05 WS-0K-MSG-3 PIC X(80) VALUE SPACES.
05 WS-0K-MSG-4 PIC X(80) VALUE SPACES.
05 WS-0K-MSG-5 PIC X(80) VALUE SPACES.
05 WS-0K-MSG-6 PIC X(80) VALUE SPACES.
01 WS-INVALID-MSG.
05 FILLER PIC X(40) VALUE
'QUEUE NAME MISSING, PROCESS TERMINATED'.
01 WS-OK-STATS-LINE-1.

05 FILLER PIC X(20) VALUE
! QUEUE USED -'.
05 WS-O0K-QUEUE PIC X(48).

01 WS-OK-STATS-LINE-2.

05 FILLER PIC X(20) VALUE
" REPLY Q-'.
05 WS-OK-QUEUE-REPLY PIC X(48).

01 WS-OK-STATS-LINE-3.
05 FILLER PIC X(40) VALUE
! NUMBER OF MESSAGES PROCESSED -'.
05 WS-OK-MESSAGES PIC 799.

01 WS-OK-STATS-LINE-4.
05 FILLER PIC X(40) VALUE

! TOTAL SECONDS -
05 WS-OK-TIME

01 WS-ERROR-MESSAGES.
05 WS-ERR-DATA.

10 FILLER PIC X(13) VALUE

' DATA ERROR:'.

10 FILLER PIC X(9) VALUE

' LENGTH='.

10 WS-ERR-DATA-LENGTH PIC 9(8) VALUE ZERO.
10 FILLER PIC X(9) VALUE

', DATA ='.
10 WS-ERR-DATA-AREA PIC X(200) VALUE SPACES.
10 FILLER PIC X(4) VALUE

Tkkdkok |

05 WS-ERR-DISPLAY.

10 FILLER PIC X(13) VALUE
' MQ ERROR:'.
10 FILLER PIC X(9) VALUE
' LEVEL ='.
10 WS-LEVEL PIC X(8) VALUE SPACES.
10 FILLER PIC X(9) VALUE
', FUNC ='.
10 WS-FUNCTION PIC X(8) VALUE SPACES.
10 FILLER PIC X(9) VALUE
', CC ='.
10 WS-ERR-DISPLAY-CCODE PIC 9(4) VALUE ZERO.
10 FILLER PIC X(9) VALUE
', RC ='.
10 WS-ERR-DISPLAY-RCODE PIC 9(4) VALUE ZERO.
10 FILLER PIC X(4) VALUE
Thkdkk ! .
EJECT
K L e e e e e ——— *
01 FILLER.
* COPY CMQV.
*/INCLUDE CMQV
*/INCLUDE COPYR
Fk *%
** FILE NAME: CMQV *x
Fk *%
** DESCRIPTIVE NAME: COBOL copy file for MQI constants *x
Fk *%
** VERSION 1.4.0 *x
*k *%
** FUNCTION: This file declares the constants *x
*x which form part of the IBM Message wx
*x Queue Interface (MQI). **

*%

*%

*%

Values Related to MQDLH Structure **

*%

*%

Structure Identifier
10 MQDLH-STRUC-ID PIC X(4) VALUE 'DLH '.

Structure Version Number
10 MQDLH-VERSION-1 PIC S9(9) BINARY VALUE 1.

*%

Values Related to MQGMO Structure **

*%

*%

*%

*%

Structure Identifier
10 MQGMO-STRUC-ID PIC X(4) VALUE 'GMO '.

Structure Version Number
10 MQGMO-VERSION-1 PIC S9(9) BINARY VALUE 1.

Get-Message Options
10 MQGMO-WAIT
10 MQGMO-NO-WAIT
10 MQGMO-%EPWSE-FIRST

PIC S9(9) BINARY VALUE 1.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE

10 MQGMO-BROWSE-NEXT PIC S9(9) BINARY VALUE
32.

10 MQGMO-ACCEPT-TRUNCATED-MSG PIC S9(9) BINARY VALUE
64.

10 MQGMO-SET-SIGNAL

10 MQGMO-SYNCPOINT

10 MQGMO-NO-SYNCPOINT

10 MQGMO-MSG-UNDER-CURSOR
256.

PIC S9(9) BINARY VALUE 8.

PIC S9(9) BINARY VALUE 2.

PIC S9(9) BINARY VALUE 4.

PIC S9(9) BINARY VALUE

10 MQGMO-LOCK PIC S9(9) BINARY VALUE
512.

10 MQGMO-UNLOCK
1024.

PIC S9(9) BINARY VALUE

Wait Interval
10 MQWI-UNLIMITED PIC S9(9) BINARY VALUE -1.

*%

Values Related to MQMD Structure **

*%

*%

*%

*%

*%

*%

Structure Identifier
10 MQMD-STRUC-ID PIC X(4) VALUE '‘MD ‘.

Structure Version Number
10 MQMD-VERSION-1 PIC S9(9) BINARY VALUE 1

Report Options
10 MQRO-NONE PIC S9(9) BINARY VALUE 0.

Message Types
10 MQMT-REQUEST PIC S9(9) BINARY
10 MQMT-REPLY PIC S9(9) BINARY
10 MQMT-DATAGRAM PIC S9(9) BINARY
10 MQMT-REPORT PIC S9(9) BINARY

VALUE 1.
VALUE 2.
VALUE 8.
VALUE 4.

Expiry Value
10 MQEI-UNLIMITED PIC S9(9) BINARY VALUE -1.

Feedback Values

10 MQFB-NONE PIC S9(9) BINARY VALUE 0.

10 MQFB-QUIT PIC S9(9) BINARY VALUE 256.

10 MQFB-SYSTEM-FIRST PIC S9(9) BINARY VALUE 1.

10 MQFB-SYSTEM-LAST PIC S9(9) BINARY VALUE 65535.

10 MQFB-APPL-FIRST PIC S9(9) BINARY VALUE 65536.

10 MQFB-APPL-LAST PIC S9(9) BINARY VALUE 999999999.
* format

10 MQFMT-NONE PIC X(8) VALUE SPACES.

Appendix D. Sample programs 209

*k

*%

*%

*%

*%

*%

*%

*%

*%

10 MQFMT-DEAD-LETTER-Q-HEADER PIC X(8) VALUE 'MQDLQH'.
10 MQFMT-TRIGGER PIC X(8) VALUE 'MQTRIG'.
10 MQFMT-XMIT-Q-HEADER PIC X(8) VALUE 'MQXMIT'.

Encoding Value
10 MQENC-NATIVE PIC S9(9) BINARY VALUE 785.

Encoding Masks
10 MQENC-INTEGER-MASK PIC S9(9) BINARY VALUE 15.
10 MQENC-DECIMAL-MASK PIC S9(9) BINARY VALUE 240.
10 MQENC-FLOAT-MASK PIC S9(9) BINARY VALUE 3840.
10 MQENC-RESERVED-MASK PIC S9(9) BINARY VALUE -4096.

Encodings for Binary Integers
10 MQENC-INTEGER-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC- INTEGER-NORMAL PIC S9(9) BINARY VALUE 1.
10 MQENC-INTEGER-REVERSED PIC S9(9) BINARY VALUE 2.

Encodings for Packed-Decimal Integers
10 MQENC-DECIMAL-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC-DECIMAL-NORMAL PIC S9(9) BINARY VALUE 16.
10 MQENC-DECIMAL-REVERSED PIC S9(9) BINARY VALUE 32.

Encodings for Floating-Point Numbers
10 MQENC-FLOAT-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC-FLOAT-IEEE-NORMAL PIC S9(9) BINARY VALUE 256.
10 MQENC-FLOAT-IEEE-REVERSED PIC S9(9) BINARY VALUE 512.
10 MQENC-FLOAT-S390 PIC S9(9) BINARY VALUE 768.

Coded Character-Set Identifier
10 MQCCSI-Q-MGR PIC S9(9) BINARY VALUE 0.

Persistence Values
10 MQPER-PERSISTENT PIC S9(9) BINARY VALUE 1.
10 MQPER-PERSISTENCE-AS-Q-DEF PIC S9(9) BINARY VALUE 2.

Message Id Value
10 MQMI-NONE PIC X(24) VALUE LOW-VALUES.

Correlation Id Value
10 MQCI-NONE PIC X(24) VALUE LOW-VALUES.

*%

Values Related to MQOD Structure *x

*%

*%

*%

Structure Identifier
10 MQOD-STRUC-ID PIC X(4) VALUE 'OD '.

Structure Version Number
10 MQOD-VERSION-1 PIC S9(9) BINARY VALUE 1.

Object Types
10 MQOT-Q PIC S9(9) BINARY VALUE 1

*%

Values Related to MQPMO Structure *x

*%

*%

*%

Structure Identifier
10 MQPMO-STRUC-ID PIC X(4) VALUE 'PMO '.

Structure Version Number
10 MQPMO-VERSION-1 PIC S9(9) BINARY VALUE 1

Put-Message Options
10 MQPMO-SYNCPOINT
10 MQPMO-NO-SYNCPOINT

PIC S9(9) BINARY VALUE 2.
PIC S9(9) BINARY VALUE 4.

*%

Values Related to MQTM Structure *x

210 IBM MQSeries for VSE/ESA User's Guide

*%

*%

Structure Identifier

10 MQTM-STRUC-ID PIC X(4) VALUE 'TM '.

Structure Version Number

10 MQTM-VERSION-1 PIC S9(9) BINARY VALUE 1.

*%

Values Related to MQCLOSE Call

*k

*%

Close Options
10 MQCO-NONE PIC S9(9) B

INARY

VALUE 0.

*%

Values Related to MQINQ Call

*k

*%

*%

*%

Character-Attribute Selecto
10 MQCA-BASE-Q-NAME
10 MQCA-CREATION-DATE
10 MQCA-CREATION-TIME
10 MQCA-FIRST
10 MQCA-INITIATION-Q-NAM
10 MQCA-LAST
10 MQCA-PROCESS-NAME
10 MQCA-Q-DESC
10 MQCA-Q-NAME
10 MQCA-REMOTE-Q-MGR-NAM
10 MQCA-REMOTE-Q-NAME

Integer-Attribute Selectors
10 MQIA-CURRENT-Q-DEPTH
10 MQIA-DEF-PERSISTENCE
10 MQIA-DEFINITION-TYPE
10 MQIA-FIRST
10 MQIA-INHIBIT-GET
10 MQIA-INHIBIT-PUT
10 MQIA-LAST
10 MQIA-MAX-MSG-LENGTH
10 MQIA-MAX-Q-DEPTH
10 MQIA-OPEN-INPUT-COUNT

rs
PIC
PIC
PIC
PIC

E PIC
PIC
PIC
PIC
PIC

E PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

10 MQIA-OPEN-OUTPUT-COUNT PIC

10 MQIA-Q-TYPE

10 MQIA-SHAREABILITY

10 MQIA-TRIGGER-CONTROL
10 MQIA-TRIGGER-TYPE

10 MQIA-USAGE

Integer Attribute Value Den

PIC
PIC
PIC
PIC
PIC

oting

S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY

S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
9) BINARY
9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY
S9(9) BINARY

'Not Applica

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

ble'

2002.
2004.
2005.
2001.
2008.
4000.
2012.
2013.
2016.
2017.
2018.

10 MQIAV-NOT-APPLICABLE PIC S9(9) BINARY VALUE -1.

*%

Values Related to MQOPEN Call

*%

*%

Open Options
10 MQOO-INPUT-SHARED

PIC S9

9) BINARY

10 MQOO-INPUT-EXCLUSIVE PIC S9(9) BINARY

10 MQOO-BROWSE
10 MQOO-OUTPUT
10 MQOO-INQUIRE

PIC S9
PIC S9
PIC S9

9) BINARY

(
(
(9) BINARY
(
(9) BINARY

VALUE 2.
VALUE 4.
VALUE 8.

VALUE 16.
VALUE 32.

*%

Values Related to A1l Calls

*%

*%

String Lengths

10 MQ-CREATION-DATE-LENGTH PIC S9(9) BINARY VALUE 12. 10 MQRC-NOT-OPEN-FOR-INQUIRE PIC $9(9) BINARY VALUE
10 MQ-CREATION-TIME-LENGTH PIC S9(9) BINARY VALUE 8. 2038.
10 MQ-PROCESS-APPL-ID-LENGTH PIC S9(9) BINARY VALUE 256. 10 MQRC-Ng;;ngN-FOR-OUTPUT PIC S9(9) BINARY VALUE
10 MQ-PROCESS-DESC-LENGTH PIC S9(9) BINARY VALUE 64. .
10 MQ-PROCESS-ENV-DATA-LENGTH PIC S9(9) BINARY VALUE 128. 10 MQRC- 0B, ECT-CHANGED PIC S9(9) BINARY VALUE
10 MQ-PROCESS-NAME-LENGTH PIC S9(9) BINARY VALUE 48. 10 MQRC-OBJECT- IN-USE PIC $9(9) BINARY VALUE
10 MQ-PROCESS-USER-DATA-LENGTH PIC $9(9) BINARY VALUE
128. 10 MQRC-OBJECT-TYPE-ERROR PIC S9(9) BINARY VALUE
10 MQ-Q-DESC-LENGTH PIC $9(9) BINARY VALUE 64. 2043.
10 MQ-Q-NAME-LENGTH PIC S9(9) BINARY VALUE 48. 10 MQRC-0D-ERROR PIC S9(9) BINARY VALUE
10 MQ-Q-MGR-DESC- LENGTH PIC S9(9) BINARY VALUE 64.
10 MQ-Q-MGR-NAME- LENGTH PIC S9(9) BINARY VALUE 48. 10 MQRC-OPTION-NOT-VALID-FOR-TYPE PIC S9(9) BINARY VALUE
10 MQ-TRIGGER-DATA-LENGTH PIC S9(9) BINARY VALUE 64.
10 MQRC-OPT IONS -ERROR PIC S9(9) BINARY VALUE
2046.
*%k i
Completion Codes 10 MQRC-PERS ISTENCE-ERROR PIC S9(9) BINARY VALUE
10 MQCC-0K PIC $9(9) BINARY VALUE 0. 2047
10 MQCC-WARNING PIC S9(9) BINARY VALUE 1. 10 MQRC-PRIORITY-EXCEEDS-MAXIMUM PIC S9(9) BINARY VALUE
10 MQCC-FAILED PIC S9(9) BINARY VALUE 2. 2049.
10 MQRC-PRIORITY-ERROR PIC S9(9) BINARY VALUE
** Reason Codes 2050.
10 MQRC-NONE PIC S9(9) BINARY VALUE 0. 10 MQRC-PUT-INHIBITED PIC S9(9) BINARY VALUE
2051.
10 MQRC-ACCESS-RESTRICTED PIC S9(9) BINARY VALUE
RC-ACCES ©) 10 MQRC-Q-FULL PIC S9(9) BINARY VALUE
10 MQRC-ALIAS-BASE-Q-TYPE-ERROR PIC S9(9) BINARY VALUE 2053.
2001. 10 MQRC-Q-SPACE-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-ALREADY - CONNECTED PIC S9(9) BINARY VALUE 2056.
2002 10 MQRC-Q-MGR-NAME-ERROR PIC S9(9) BINARY VALUE
10 MQRC-BUFFER-ERROR PIC S9(9) BINARY VALUE 2058.
2004. 10 MQRC-Q-MGR-NOT-AVATLABLE PIC S9(9) BINARY VALUE
10 MQRC-BUFFER-LENGTH- ERROR PIC S9(9) BINARY VALUE 2059.
2005. 10 MQRC-REPORT-OPTIONS-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CHAR-ATTR-LENGTH-ERROR PIC S9(9) BINARY VALUE 2061.
5006, 10 MQRC-SECURITY-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CHAR-ATTRS-ERROR PIC S9(9) BINARY VALUE 2063.
2007 . 10 MQRC-SELECTOR-COUNT -ERROR PIC S9(9) BINARY VALUE
10 MQRC-CHAR-ATTRS-TOO-SHORT PIC $9(9) BINARY VALUE 2065.
5008 10 MQRC-SELECTOR-LIMIT-EXCEEDED PIC S9(9) BINARY VALUE
10 MQRC-CONNECT ION-BROKEN PIC S9(9) BINARY VALUE 2066.
2009 10 MQRC-SELECTOR-ERROR PIC S9(9) BINARY VALUE
10 MQRC-DATA-LENGTH- ERROR PIC S9(9) BINARY VALUE 2067.
2010 10 MQRC-SELECTOR-NOT-FOR-TYPE PIC S9(9) BINARY VALUE
10 MQRC-EXPIRY-ERROR PIC S9(9) BINARY VALUE 2068.
5013 10 MQRC-SIGNAL-OUTSTANDING PIC S9(9) BINARY VALUE
10 MQRC- FEEDBACK-ERROR PIC $9(9) BINARY VALUE 2069.
201 10 MQRC-SIGNAL-REQUEST-ACCEPTED PIC S9(9) BINARY VALUE
10 MQRC-GET- INHIBITED PIC S9(9) BINARY VALUE 2070.
2016, 10 MQRC-STORAGE-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-HANDLE-NOT-AVAILABLE PIC S9(9) BINARY VALUE 2071.
2017 10 MQRC-SYNCPOINT-NOT-AVAILABLE PIC S9(9) BINARY VALUE
2072.
10 MQRC-HCONN-ERROR PIC S9(9) BINARY VALUE
QRC-HCONN- ©) 10 MQRC-TRUNCATED-MSG-ACCEPTED PIC S9(9) BINARY VALUE
10 MQRC-HOBJ-ERROR PIC $9(9) BINARY VALUE 2079.
2019 10 MQRC-TRUNCATED-MSG-FATLED PIC S9(9) BINARY VALUE
10 MQRC- INT-ATTR-COUNT-ERROR PIC S9(9) BINARY VALUE 2080.
2021.

10 MQRC-UNEXPECTED-CONNECT-ERROR PIC S9(9) BINARY VALUE
2081.

10 MQRC-INT-ATTR-COUNT-TOO-SMALL PIC S9(9) BINARY VALUE
QRC-INT-AT ©) 10 MQRC-UNKNOWN-AL IAS-BASE-Q PIC S9(9) BINARY VALUE
10 MQRC-INT-ATTRS-ARRAY-ERROR PIC S9(9) BINARY VALUE 2082.
2003, 10 MQRC-UNKNOWN-OBJECT-NAME PIC S9(9) BINARY VALUE
10 MQRC-MAX-CONNS-LIMIT-REACHED ~ PIC S9(9) BINARY VALUE 2085.
025 10 MQRC-UNKNOMWN-OBJECT -Q-MGR PIC S9(9) BINARY VALUE
2086.
10 MQRC-MD-ERROR PIC S9(9) BINARY VALUE
QRC-HD- ERR ®) 10 MQRC-UNKNOMWN-REMOTE -Q-MGR PIC S9(9) BINARY VALUE
10 MQRC-MISSING-REPLY-TO-Q PIC S9(9) BINARY VALUE 2087 .
2007 10 MQRC-WAI T INTERVAL-ERROR PIC S9(9) BINARY VALUE
10 MQRC-MSG-TYPE-ERROR PIC S9(9) BINARY VALUE 2090.
2029, 10 MQRC-XMIT-Q-TYPE-ERROR PIC S9(9) BINARY VALUE
2001.
10 MQRC-MSG-T00-BIG- FOR- PIC S9(9) BINARY VALUE
oM Q ©) 10 MQRC-XMIT-Q-USAGE-ERROR PIC S9(9) BINARY VALUE
10 MQRC-NO-MSG-AVATLABLE PIC S9(9) BINARY VALUE 2092.
2033 10 MQRC-PMO-ERROR PIC S9(9) BINARY VALUE
10 MQRC-NO-MSG-UNDER-CURSOR PIC S9(9) BINARY VALUE 2173.
203 10 MQRC-GMO-ERROR PIC S9(9) BINARY VALUE
10 MQRC-NOT-AUTHORIZED PIC S9(9) BINARY VALUE 2186.
2035.
10 MQRC-NOT-OPEN-FOR-BROWSE PIC S9(9) BINARY VALUE 10 MQRC-UﬂﬁﬁﬁfCTED-ERROR PIC $9(9) BINARY VALUE
2036. .
10 MQRC-NOT-OPEN-FOR-INPUT PIC S9(9) BINARY VALUE 10 MQRC-MEEiﬁP-ERROR PIC $9(9) BINARY VALUE
2037. .

Appendix D. Sample programs 211

1

o

MQRC-CORREL-ID-ERROR

10 MQRC-FILE-SYSTEM-ERROR
2208.

1

o

MQRC-NO-MSG-LOCKED
2209.

PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

*%

Values Related to Queue Attributes

*k

*%

*%

*%

*%

*%

*%

*%

*%

*%

Queue Types
10 MQQT-LOCAL PIC S9(9) BINARY VALUE 1.
10 MQQT-ALIAS PIC S9(9) BINARY VALUE 3.
10 MQQT-REMOTE PIC S9(9) BINARY VALUE 6.

Queue Definition Types
10 MQQDT-PREDEFINED PIC S9(9) BINARY VALUE 1.

Inhibit Get
10 MQQA-GET-INHIBITED PIC S9(9) BINARY VALUE

10 MQQA-GET-ALLOWED PIC S9(9) BINARY VALUE
Inhibit Put

10 MQQA-PUT-INHIBITED PIC S9(9) BINARY VALUE

10 MQQA-PUT-ALLOWED PIC S9(9) BINARY VALUE
Queue Shareability

10 MQQA-SHAREABLE PIC S9(9) BINARY VALUE

10 MQQA-NOT-SHAREABLE PIC S9(9) BINARY VALUE

Message Delivery Sequence
10 MQMDS-FIFO PIC S9(9) BINARY VALUE 1.

Trigger Control
10 MQTC-OFF PIC S9(9) BINARY VALUE 0.
10 MQTC-ON PIC S9(9) BINARY VALUE 1

Trigger Types
10 MQTT-NONE PIC S9(9) BINARY VALUE 0.
10 MQTT-FIRST PIC S9(9) BINARY VALUE 1.
10 MQTT-EVERY PIC S9(9) BINARY VALUE 2.

Queue Usage
10 MQUS-NORMAL PIC S9(9) BINARY VALUE 0.
10 MQUS-TRANSMISSION PIC S9(9) BINARY VALUE 1

[=3r

[=Jr

[=3r

*%

Values Related to Process-Definition Attributes

*k

Application Type

10 MQAT-USER-FIRST PIC S9(9) BINARY VALUE 65536.
10 MQAT-USER-LAST PIC S9(9) BINARY VALUE 999999999.

10 MQAT-0S2 PIC S9(9) BINARY VALUE 4.
10 MQAT-DOS PIC S9(9) BINARY VALUE 5.
10 MQAT-AIX PIC S9(9) BINARY VALUE 6.

8.

(

(

(

10 MQAT-0S400 PIC S9(9) BINARY VALUE

10 MQAT-WINDOWS PIC S9(9) BINARY VALUE 9.
10 MQAT-CICS-VSE ~ PIC S9(9) BINARY VALUE 10.
10 MQAT-VMS PIC S9(9) BINARY VALUE 12.
10 MQAT-GUARDIAN PIC S9(9) BINARY VALUE 13.
10 MQAT-VOS PIC S9(9) BINARY VALUE 14.

*%

Values Related to Queue-Manager Attributes

*k

212 IBM MQSeries for VSE/ESA User's Guide

*%

Syncpoint Availability

10 MQSP-AVAILABLE PIC S9(9) BINARY VALUE 1.

* COMMON PARMS

01 FILLER PIC X(8) VALUE 'PARMS:--'.
01 WS-HCONN-ADDR-AREA.
05 WS-HCONN-VALUE USAGE POINTER.
01 WS-HOBJ-ADDR-AREA.
05 WS-HOBJ-VALUE USAGE POINTER.
01 WS-CCODE-ADDR-AREA.
05 WS-CCODE-VALUE PIC S9(8) COMP.
01 WS-RCODE-ADDR-AREA.

05 WS-RCODE-VALUE PIC S9(8) COMP.

*--CONNECT PARM

01 WS-QM-NAME-AREA.

05 WS-QM-NAME-CONNECT PIC X(48).

*--0PEN PARM

*

01 WS-Q-NAME-AREA.

COPY CMQODV.

*/INCLUDE CMQODV
*/INCLUDE COPYR

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME:

FUNCTION:

cmQopv

DESCRIPTIVE NAME: COBOL copy file for MQOD structure

VERSION 1.4.0

which forms part of the IBM Message
Queue Interface (MQI).

This file declares the MQOD structure,

*k

*k

*k

*%

*k

*k

*k

*%

*%

*%

*k

*%

*%

*%

*%

*%

*%

*%

MQOD structure

10 MQOD.
Structure identifier

15 MQOD-STRUCID PIC X(4) VALUE 'OD '.
Structure version number

15 MQOD-VERSION PIC S9(9) BINARY
Object type

15 MQOD-OBJECTTYPE PIC S9(9) BINARY
Object name

15 MQOD-O0BJECTNAME PIC X(48) VALUE SPACES.
Object queue manager name

15 MQOD-OBJECTQMGRNAME ~ PIC X(48) VALUE SPACES.
Dynamic queue name

15 MQOD-DYNAMICQNAME PIC X(48) VALUE '*'.
Alternate user identifier

15 MQOD-ALTERNATEUSERID PIC X(12) VALUE SPACES.

01 WS-Q-OPEN-OPTIONS.
05 WS-Q-OPEN-OPTIONS-VALUE
EJECT

PIC S9(8) COMP.

*--PUT/GET PARM

*

01 WS-MSG-DESCRIPTOR.
COPY CMQMDV.

VALUE 1.

VALUE 1.

*/INCLUDE CMQMDV
*/INCLUDE COPYR

*%

*%k

*K

*Kk

*%

*%

*k

*%

*%

*%

*%

FILE NAME: CMQMDV

*%

*%

*%

DESCRIPTIVE NAME: COBOL copy file for MQMD structure *x

VERSION 1.4.0

*%

*%

*%

FUNCTION: This file declares the MQMD structure, o
which forms part of the IBM Message w*
Queue Interface (MQI). **

*%

*%

MQMD structure
10 MQMD.
Structure identifier

15 MQMD-STRUCID PIC X(4) VALUE 'MD '.
*x Structure version number

15 MQMD-VERSION PIC S9(9) BINARY VALUE 1.
*x Reserved

15 MQMD-REPORT PIC S9(9) BINARY VALUE 0.
*x Message type

15 MQMD-MSGTYPE PIC S9(9) BINARY VALUE 8.
*x Reserved

15 MQMD-EXPIRY PIC S9(9) BINARY VALUE -1.
*x Feedback code

15 MQMD-FEEDBACK PIC S9(9) BINARY VALUE 0.
*x Data encoding

15 MQMD-ENCODING PIC S9(9) BINARY VALUE 785.
*x Coded character set identifier

15 MQMD-CODEDCHARSETID PIC S9(9) BINARY VALUE 0.
*x Format name

15 MQMD-FORMAT PIC X(8) VALUE SPACES.
*x Reserved

15 MQMD-PRIORITY PIC S9(9) BINARY VALUE 0.
*x Message persistence

15 MQMD-PERSISTENCE PIC S9(9) BINARY VALUE 2.
*x Message identifier

15 MQMD-MSGID PIC X(24) VALUE LOW-VALUES.
** Correlation identifier

15 MQMD-CORRELID PIC X(24) VALUE LOW-VALUES.
*x Reserved

15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY VALUE 0.
*x Name of reply queue

15 MQMD-REPLYTOQ PIC X(48) VALUE SPACES.
** Name of reply queue manager

15 MQMD-REPLYTOQMGR PIC X(48) VALUE SPACES.

*x Reserved

15 MQMD-USERIDENTIFIER PIC X(12) VALUE SPACES.
*x Reserved

15 MQMD-ACCOUNTINGTOKEN P
*x Reserved

15 MQMD-APPLIDENTITYDATA P
*x Reserved

—

C X(32) VALUE LOW-VALUES.

—

C X(32) VALUE SPACES.

15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY VALUE 0.
i Reserved

15 MQMD-PUTAPPLNAME PIC X(28) VALUE SPACES.
i Reserved

15 MQMD-PUTDATE PIC X(8) VALUE SPACES.
i Reserved

15 MQMD-PUTTIME PIC X(8) VALUE SPACES.

i Reserved
15 MQMD-APPLORIGINDATA PIC X(4) VALUE SPACES.

01 WS-PUT-OPTIONS.
* COPY CMQPMOV.
*/INCLUDE CMQPMOV
*/INCLUDE COPYR

*k *%k
** FILE NAME: CMQPMOV **
*k *%k

*%

*%

*%

*%

*%

*%

*%

*%

FUNCTION:

VERSION 1.4.0

DESCRIPTIVE NAME: COBOL copy file for MQPMO structure

This file declares the MQPMO structure,

which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*k

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*

MQPMO structure
10 MQPMO.

Structure identifier

15 MQPMO-STRUCID
Structure version number

15 MQPMO-VERSION
Reserved

15 MQPMO-OPTIONS
Reserved

15 MQPMO-TIMEOUT
Reserved

15 MQPMO-CONTEXT
Reserved

15 MQPMO-KNOWNDESTCOUNT
Reserved

15 MQPMO-UNKNOWNDESTCOUNT
Reserved

15 MQPMO-INVALIDDESTCOUNT
Resolved name of destination

15 MQPMO-RESOLVEDQNAME
Resolved name of destination

15 MQPMO-RESOLVEDQMGRNAME

PIC X(4) VALUE 'PMO '.

PIC S9(9) BINARY VALUE 1.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE -1.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
queue

PIC X(48) VALUE SPACES.
queue manager
PIC X(48) VALUE SPACES.

01 WS-GET-OPTIONS.
COPY CMQGMOV.

*/INCLUDE CMQGMOV
*/INCLUDE COPYR

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: CMQGMoV

DESCRIPTIVE NAME: COBOL copy file for MQGMO structure

VERSION 1.4.0

FUNCTION:

This file declares the MQGMO structure,

which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*%

*k

*k

*k

*%

*%

*%

*%

*%

*%

*%

MQGMO structure
10 MQGMO.

Structure identifier

15 MQGMO-STRUCID
Structure version number

15 MQGMO-VERSION
Options

15 MQGMO-OPTIONS
Wait interval

15 MQGMO-WAITINTERVAL
Signal

15 MQGMO-SIGNAL1
Reserved

15 MQGMO-SIGNAL2

PIC X(4) VALUE 'GMO '.

PIC S9(9) BINARY VALUE 1.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.

Resolved name of destination queue
15 MQGMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.

01 WS-DATA-L-AREA.

05 WS-DATA-LENGTH-USER

+200

PIC S9(8) COMP VALUE

Appendix D. Sample programs 213

01 WS-BUFFER-L-AREA.
05 WS-BUFFER-LENGTH

01 WS-BUFFER-AREA.
05 FILLER
'"THIS IS A MESSAGE TEXT'.

PIC X(500) VALUE

01 WS-ORIGINAL-BUFFER-AREA.
05 FILLER
'"THIS IS A MESSAGE TEXT'.

PIC X(200) VALUE
*--INQ FIELDS
01 MQI-SECTOR-COUNT
01 MQI-SECTOR.
05 MQI-SECTOR-ENTRY ~ OCCURS 40 TIMES
PIC S9(8) COMP.
01 MQI-IN-ATTR-COUNT PIC S9(8) COMP VALUE +40.
01 MQI-IN-ATTR.
05 MQI-IN-ATTR-ENTRY ~ OCCURS 40 TIMES
PIC S9(8) COMP.
01 MQI-CHAR-ATTR-LENGTH

01 MQI-CHAR-ATTR.

05 FILLER PIC X(500) VALUE SPACES.

01 DFHCOMMAREA.

05 FILLER PIC X.
01 LK-DATA.
05 FILLER PIC X(1000).
EJECT
* *

0000-MAIN-LINE.

*--INITIALIZE
MOVE 'INIT ' TO WS-LEVEL.
PERFORM 1000-INITIALIZE
THRU 1000-EXIT.

PERFORM ~ WS-PROCESS-TIMES TIMES

*--SEND QUEUE RECORDS
IF WS-PUT OR WS-BOTH
THEN
PERFORM 2000-PUT-MESSAGES
THRU 2000-EXIT
END-IF
*--GET QUEUE RECORDS
IF WS-GET OR WS-BOTH
THEN
PERFORM 3000-GET-MESSAGES
THRU 3000-EXIT
END-IF

IF WS-PUT1
THEN
PERFORM 4000-PUT1-MESSAGES
THRU 4000-EXIT
END-IF

214 1BM MQSeries for VSE/ESA User's Guide

PIC S9(8) COMP VALUE +200.

PIC S9(8) COMP VALUE ZERO.

PIC S9(8) COMP VALUE +500.

IF WS-GET-WITH-DELETE
THEN
PERFORM 5000-GETD-MESSAGES
THRU 5000-EXIT
END-IF

IF WS-PUT-WITH-REPLY
THEN
PERFORM 6000-PUT-WITH-REPLY
THRU 6000-EXIT
END-IF

IF WS-INQ
THEN
PERFORM 7000-INQ-MESSAGES
THRU 7000-EXIT
END-IF

*-- --IF NO MORE MESSAGES ...GET OUT
IF WS-END-OF-MESSAGES
THEN
GO TO 0000-ENDIT
END-IF

END-PERFORM.
*--GET DURACTION TIME
0000-ENDIT.
EXEC CICS ASKTIME
ABSTIME (WS-ABSTIME2)
END-EXEC.

SUBTRACT WS-ABSTIME FROM WS-ABSTIMEZ.
EXEC CICS FORMATTIME
ABSTIME (WS-ABSTIME2)
TIME (WS-DURATION-SECS)
TIMESEP(':")
END-EXEC.

MOVE WS-PROCESS-TIMES TO WS-OK-MESSAGES.

MOVE WS-DURATION-SECS TO WS-OK-TIME.

MOVE WS-DATA-QUEUE TO WS-OK-QUEUE.

IF WS-PUT-WITH-REPLY
MOVE WS-REPLY-Q TO WS-OK-QUEUE-REPLY
MOVE WS-OK-STATS-LINE-2 TO WS-0K-MSG-2

END-IF.
IF WS-OK-QUEUE EQUAL SPACES OR
(WS-PUT-WITH-REPLY AND

WS-0K-QUEUE-REPLY EQUAL SPACES)

MOVE ZEROS TO WS-OK-MESSAGES

MOVE WS-INVALID-MSG TO WS-0K-MSG-0
END-IF.

*-- --MOVE REST
MOVE WS-OK-STATS-LINE-1 TO WS-OK-MSG-1.
MOVE WS-OK-STATS-LINE-3 TO WS-OK-MSG-3.
MOVE WS-OK-STATS-LINE-4 TO WS-OK-MSG-4.

*-- --CHECK IF ANY ERRORS
IF WS-END-OF-MESSAGES
THEN
MOVE 'NO MORE MESSAGES' TO WS-OK-MSG-5.
IF WS-TRUNCATED-MESSAGES
THEN
MOVE 'TRUNCATED MESSAGES' TO WS-OK-MSG-6.

EXEC CICS SEND
FROM (WS-0K-MSG)
LENGTH (LENGTH OF WS-OK-MSG)

ERASE

END- EXEC. IF WS-DATA-LENGTH > 48
THEN
S * MOVE +48 TO WS-DATA-LENGTH.
0000-RETURN.
EXEC CICS RETURN *--D0 VARIABLE MOVE
END-EXEC. CALL 'MQPMOVE' USING WS-REPLY-Q
LK-DATA
GOBACK. WS-DATA-LENGTH.
EJECT
K e e e e * *
1000-INITIALIZE.
K e e e e e * K e e e e e *
* PURPOSE: SETUP DATA AREAS 1000-EXIT.
S * EXIT.
EXEC CICS ASKTIME EJECT
ABSTIME (WS-ABSTIME) S *
END- EXEC. 1100-SEND-HELP.
* K e e e e e e o *
EXEC CICS FORMATTIME *--SEND HELPLIST
ABSTIME (WS-ABSTIME) EXEC CICS SEND
YYMMDD (WS-DATE) FROM (WS-HELP)
END- EXEC. LENGTH (LENGTH OF WS-HELP)
ERASE
IF WS-DATE-YY > 50 END-EXEC.
THEN
MOVE 19 T0 WS-DATE-CC S *
ELSE EJECT
MOVE 20 T0 WS-DATE-CC. K e e e e e e e e e *
* 2000-PUT-MESSAGES.
MOVE EIBTIME TO WS-TIME-9. S *
* * PURPOSE: CONNECT , OPEN
*--GET INPUT INFO... * PUT
EXEC CICS RECEIVE * CLOSE, DISCONNECT
SET(ADDRESS OF LK-DATA) S *
LENGTH (WS-DATA-LENGTH) *
END-EXEC. *--MQCONNECT TO QM
MOVE 'CONNECT' TO WS-FUNCTION.
*--CHECK WHAT WE'RE DOING MOVE SPACES TO WS-QM-NAME-CONNECT.
*-- --COMMAND IS "TST1 GET 01 QUEUENAME" MOVE MQCC-0K TO WS-CCODE-VALUE.
IF (WS-DATA-LENGTH < LENGTH OF WS-DATA-WITH-FUNCTION) MOVE MQRC-NONE TO WS-RCODE-VALUE.
OR (WS-DATA-LENGTH > LENGTH OF WS-DATA-ALL) SET WS-HCONN-VALUE TO NULL.
THEN CALL 'MQCONN' USING WS-QM-NAME-AREA
PERFORM 1100-SEND-HELP WS-HCONN-ADDR -AREA
G0 TO 0000-RETURN. WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.
*--DO VARIABLE MOVE *
CALL 'MQPMOVE' USING WS-DATA-WITH-QUEUE IF WS-CCODE-VALUE NOT EQUAL ZERO
LK-DATA THEN
WS-DATA-LENGTH. G0 TO 9900-ERR-DISPLAY.
*
* *--MQOPEN ~ QUEUE TO QM
MOVE WS-DATA-TIMES TO WS-PROCESS-TIMES. MOVE 'OPEN' TO WS-FUNCTION.
IF WS-PROCESS-TIMES EQUAL ZERO MOVE MQOO-OUTPUT ~ TO WS-Q-OPEN-OPTIONS-VALUE.
THEN MOVE SPACES TO MQOD-0BJECTQMGRNAME.
MOVE 100 TO WS-PROCESS-TIMES. MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
* MOVE MQCC-0K TO WS-CCODE-VALUE.
*--IF REPLY ..SEND AND GET MOVE MQRC-NONE TO WS-RCODE-VALUE.
IF NOT WS-PUT-WITH-REPLY SET WS-HOBJ-VALUE ~TO NULL.
THEN CALL 'MQOPEN' USING WS-HCONN-ADDR-AREA
GO TO 1000-EXIT. WS-Q-NAME-AREA
* WS-Q-OPEN-OPTIONS
*--IF REPLY ..SEND AND GET WS-HOBJ-ADDR-AREA
EXEC CICS SEND WS-CCODE-ADDR-AREA
FROM (WS-NEED-REPLY) WS-RCODE-ADDR-AREA.
LENGTH (LENGTH OF WS-NEED-REPLY) *
ERASE IF WS-CCODE-VALUE NOT EQUAL ZERO
END-EXEC. THEN

GO TO 9900-ERR-DISPLAY.
EXEC CICS RECEIVE
SET (ADDRESS OF LK-DATA) *
LENGTH (WS-DATA-LENGTH) *--MQPUT TO QUEUE TO QM
END-EXEC. MOVE 'PUT' TO WS-FUNCTION.

Appendix D. Sample programs 215

MOVE MQCC-0K TO WS-CCODE-VALUE. *--MQOPEN QUEUE TO QM
MOVE MQRC-NONE TO WS-RCODE-VALUE. MOVE 'OPEN' TO WS-FUNCTION.
CALL "MQPUT' USING WS-HCONN-ADDR-AREA MOVE MQOO-INPUT-SHARED TO WS-Q-OPEN-OPTIONS-VALUE.

WS-HOBJ-ADDR-AREA MOVE SPACES TO MQOD-OBJECTQMGRNAME.
WS-MSG-DESCRIPTOR MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
WS-PUT-OPTIONS MOVE MQCC-0K TO WS-CCODE-VALUE.
WS-BUFFER-L-AREA MOVE MQRC-NONE TO WS-RCODE-VALUE.

WS-BUFFER-AREA
WS-CCODE-ADDR-AREA

WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

SET WS-HOBJ-VALUE TO NULL.

CALL "MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS
WS-HOBJ-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

*IKH *
EXEC CICS SYNCPOINT IF WS-CCODE-VALUE ~ NOT EQUAL ZERO
END-EXEC. THEN
* GO TO 9900-ERR-DISPLAY.
*__MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO WS-FUNCTION. *
MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE. *_-MQGET TO QUEUE TO QM
MOVE MQCC-OK TO WS-CCODE-VALUE. MOVE 'GET' TO WS-FUNCTION.
MOVE MQRC-NONE TO WS-RCODE-VALUE. MOVE MQCC-OK TO WS-CCODE-VALUE.
CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA MOVE MQRC-NONE TO WS-RCODE-VALUE.
WS -HOBJ -ADDR-AREA MOVE 500 TO WS-BUFFER-LENGTH.
WS -Q-OPEN-OPTIONS MOVE MQGMO-ACCEPT-TRUNCATED-MSG
WS -CCODE-ADDR-AREA TO MQGMO-OPTIONS.
WS -RCODE-ADDR-AREA. MOVE SPACES TO MQMD-MSGID
* MQMD-CORRELID.
IF WS-CCODE-VALUE ~ NOT EQUAL ZERO *
THEN CALL 'MQGET' USING WS-HCONN-ADDR-AREA
GO TO 9900-ERR-DISPLAY. WS -HOBJ -ADDR-AREA
WS -MSG-DESCRIPTOR
*__MQDISC FROM QM WS-GET-OPTIONS
MOVE 'DISCONN' TO WS-FUNCTION. WS -BUFFER-L-AREA
MOVE MQCC-OK TO WS-CCODE-VALUE. WS -BUFFER-AREA
MOVE MQRC-NONE TO WS-RCODE-VALUE. WS -DATA-L-AREA
CALL 'MQDISC' USING WS -CCODE-ADDR-AREA
WS -HCONN-ADDR-AREA WS -RCODE-ADDR-AREA.
WS -CCODE-ADDR-AREA *
WS -RCODE-ADDR-AREA. IF WS-CCODE-VALUE ~ NOT EQUAL ZERO
* THEN
IF WS-CCODE-VALUE NOT EQUAL ZERO IF WS-RCODE-VALUE EQUAL 2079
THEN THEN
GO TO 9900-ERR-DISPLAY. SET WS-TRUNCATED-MESSAGES TO TRUE
ELSE
K e e e e * IF WS-RCODE-VALUE EQUAL 2033
2000-EXIT. THEN
EXIT. SET WS-END-OF-MESSAGES TO TRUE
EJECT ELSE
K e e e e * GO TO 9900-ERR-DISPLAY.
3000-GET-MESSAGES. *
K e e e e e e e *
* PURPOSE: CONNECT , OPEN *_-ADDED 4/ 5/93
* GET EXEC CICS SYNCPOINT
* CLOSE, DISCONNECT END-EXEC.
K e e e e e e e * *
* *_-MQCLOSE QUEUE TO QM
*__MQCONNECT TO QM MOVE 'CLOSE' TO WS-FUNCTION.
MOVE 'CONNECT' TO WS-FUNCTION. MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE.

MOVE SPACES TO WS-QM-NAME.
MOVE MQCC-0K TO WS-CCODE-VALUE.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL

CALL "MQCONN' USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA

WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

216 IBM MQSeries for VSE/ESA User's Guide

*--MQDISC

CALL "MQCLOSE' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

FROM QM

MOVE 'DISCONN' TO WS-FUNCTION.

MOVE MQCC-OK TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL 'MQDISC' USING
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

3000-EXIT.

EXIT.

EJECT

* PURPOSE: CONNECT , OPEN

PUT
CLOSE, DISCONNECT

*--MQCONNECT TO QM

*

*--MQPUT1

MOVE 'CONNECT' TO WS-FUNCTION.
MOVE SPACES TO WS-QM-NAME-CONNECT.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL.

CALL 'MQCONN' USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

QUEUE TO QM
MOVE 'PUT1' TO WS-FUNCTION.
MOVE MQOO-OUTPUT TO MQPMO-OPTIONS.

MOVE SPACES TO MQOD-OBJECTQMGRNAME.
MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL 'MQPUT1' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

*--ADDED 4/ 5/93

*--MQDISC

EXEC CICS SYNCPOINT
END-EXEC.

FROM QM

MOVE 'DISCONN' TO WS-FUNCTION.

MOVE MQCC-0K TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL 'MQDISC' USING
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO

THEN

GO TO 9900-ERR-DISPLAY.

4000-EXIT.
EXIT.
EJECT

* PURPOSE: CONNECT , OPEN
* GET
* CLOSE,

*--MQCONNECT TO QM
MOVE 'CONNECT
MOVE SPACES
MOVE MQCC-0K
MOVE MQRC-NONE

DISCONNECT

' TO WS-FUNCTION.

TO WS-QM-NAME.
TO WS-CCODE-VALUE.
TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL

CALL 'MQCONN'

USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO

THEN

GO TO 9900-ERR-DISPLAY.

*

*--MQOPEN QUEUE TO QM
MOVE 'OPEN'

TO WS-FUNCTION.

MOVE MQOO-BROWSE TO WS-Q-OPEN-OPTIONS-VALUE.

MOVE SPACES

TO MQOD-OBJECTQMGRNAME.

MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.

MOVE MQCC-0K
MOVE MQRC-NONE

TO WS-CCODE-VALUE.
TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE TO NULL

CALL 'MQOPEN'

USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS
WS-HOBJ-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO

THEN

GO TO 9900-ERR-DISPLAY.

*

*--MQGET TO QUEUE TO QM
MOVE 'GET'
MOVE MQCC-0K
MOVE MQRC-NONE
MOVE 500 TO

TO WS-FUNCTION.

TO WS-CCODE-VALUE.

TO WS-RCODE-VALUE.
WS-BUFFER-LENGTH.

MOVE MQGMO-BROWSE-FIRST ~ TO MQGMO-OPTIONS.
ADD MQGMO-ACCEPT-TRUNCATED-MSG

MOVE SPACES

CALL 'MQGET'

TO MQGMO-OPTIONS.
TO MQMD-MSGID
MQMD-CORRELID.

USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-DATA-L-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO

Appendix D. Sample programs 217

THEN

IF WS-RCODE-VALUE EQUAL 2079 K e e e e e e e e e e e e e e e e e e e *
THEN 5000-EXIT.
SET WS-TRUNCATED-MESSAGES TO TRUE EXIT.
ELSE EJECT
IF WS-RCODE-VALUE EQUAL 2033 e *
THEN 6000-PUT-WITH-REPLY.
SET WS-END-OF-MESSAGES TO TRUE e *
ELSE * PURPOSE: CONNECT , OPEN
GO TO 9900-ERR-DISPLAY. * PUT
* * CLOSE, DISCONNECT
K e e e e e o o o o o *
*--MQGET TO QUEUE TO QM W/ DELETE UNDER CURSOR *
IF WS-CCODE-VALUE EQUAL ZERO *--MQCONNECT TO QM
THEN MOVE 'CONNECT' TO WS-FUNCTION.
MOVE 'GET' TO WS-FUNCTION MOVE SPACES TO WS-QM-NAME-CONNECT.
MOVE MQCC-OK TO WS-CCODE-VALUE MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE MOVE MQRC-NONE TO WS-RCODE-VALUE.

MOVE MQGMO-MSG-UNDER-CURSOR ~ TO MQGMO-OPTIONS SET WS-HCONN-VALUE TO NULL.
MOVE 500 TO WS-BUFFER-LENGTH CALL "MQCONN' USING WS-QM-NAME-AREA
* WS-HCONN-ADDR-AREA
MOVE SPACES TO MQMD-MSGID WS-CCODE-ADDR-AREA
MQMD-CORRELID WS-RCODE-ADDR-AREA.

CALL 'MQGET' USING WS-HCONN-ADDR-AREA *
WS-HOBJ-ADDR-AREA IF WS-CCODE-VALUE NOT EQUAL ZERO
WS-MSG-DESCRIPTOR THEN
WS-GET-OPTIONS GO TO 9900-ERR-DISPLAY.
WS-BUFFER-L-AREA *
WS-BUFFER-AREA *--MQOPEN QUEUE TO QM
WS-DATA-L-AREA MOVE 'OPEN' TO WS-FUNCTION.
WS-CCODE-ADDR-AREA MOVE MQOO-OUTPUT TO WS-Q-OPEN-OPTIONS-VALUE.
WS-RCODE-ADDR-AREA MOVE SPACES TO MQOD-OBJECTQMGRNAME.
* MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
IF WS-CCODE-VALUE NOT EQUAL ZERO MOVE MQCC-0K TO WS-CCODE-VALUE.
THEN MOVE MQRC-NONE TO WS-RCODE-VALUE.
IF WS-RCODE-VALUE EQUAL 2079
THEN *--SET REPLY QUEUE
NEXT SENTENCE MOVE MQMT-REPLY TO MQMD-MSGTYPE.
ELSE MOVE SPACES TO MQMD-REPLYTOQMGR.

GO TO 9900-ERR-DISPLAY. MOVE WS-REPLY-Q TO MQMD-REPLYTOQ.

SET WS-HOBJ-VALUE TO NULL.

*--ADDED 4/ 5/93 *
EXEC CICS SYNCPOINT CALL "MQOPEN' USING WS-HCONN-ADDR-AREA
END-EXEC. WS-Q-NAME-AREA

* WS-Q-OPEN-OPTIONS
*--MQCLOSE QUEUE TO QM WS-HOBJ-ADDR-AREA
MOVE 'CLOSE' TO WS-FUNCTION. WS-CCODE-ADDR-AREA

MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE. WS-RCODE-ADDR-AREA.
MOVE MQCC-0K TO WS-CCODE-VALUE. *

MOVE MQRC-NONE TO WS-RCODE-VALUE. IF WS-CCODE-VALUE NOT EQUAL ZERO

CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA THEN

WS-HOBJ-ADDR-AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA *
WS-RCODE-ADDR-AREA. *--MQPUT TO QUEUE TO QM
* MOVE 'PUT' TO WS-FUNCTION.
IF WS-CCODE-VALUE NOT EQUAL ZERO MOVE MQCC-0K TO WS-CCODE-VALUE.
THEN MOVE MQRC-NONE TO WS-RCODE-VALUE.
GO TO 9900-ERR-DISPLAY. CALL "MQPUT' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA

GO TO 9900-ERR-DISPLAY.

*--MQDISC

FROM QM

MOVE 'DISCONN' TO
MOVE MQCC-0K T0
MOVE MQRC-NONE TO

CALL 'MQDISC' USING

IF WS-CCODE-VALUE
THEN

WS-FUNCTION.
WS-CCODE-VALUE.
WS-RCODE-VALUE.

WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA

WS-RCODE-ADDR-AREA.

NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY.

218 IBM MQSeries for VSE/ESA User's Guide

WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

*--ADDED 4/ 5/93

EXEC CICS SYNCPOINT
END-EXEC.
*
*--MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO WS-FUNCTION.

MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE.

MOVE MQCC-OK TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA

WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

*--MQDISC FROM QM

MOVE 'DISCONN' TO WS-FUNCTION.

MOVE MQCC-OK TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL 'MQDISC' USING
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

6000-EXIT.
EXIT.
EJECT

* PURPOSE: CONNECT , OPEN
* INQ
* CLOSE, DISCONNECT

*--MQCONNECT TO QM
MOVE 'CONNECT' TO WS-FUNCTION.
MOVE SPACES TO WS-QM-NAME-CONNECT.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL.

CALL 'MQCONN' USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

*

IF WS-CCODE-VALUE
THEN
GO TO 99

*--SETUP INQ PARMS
MOVE MQCA-Q-DESC T
MOVE MQCA-Q-NAME T
MOVE MQIA-INHIBIT-PU
MOVE MQIA-Q-TYPE T
MOVE MQIA-MAX-MSG-LEl
MOVE +5 TO MQI-

*

*--MQPUT TO QUEUE TO QM
MOVE '"INQ' T0
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
CALL 'MQINQ' USING

IF WS-CCODE-VALUE
THEN
GO TO 99
*
*--MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO
MOVE ZERO T0
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
CALL 'MQCLOSE' USING

IF WS-CCODE-VALUE
THEN
GO TO 99

*--MQDISC FROM QM
MOVE 'DISCONN' TO
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
CALL 'MQDISC' USING

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO

00-ERR-DISPLAY.

0 MQI-SECTOR-ENTRY (1).

0 MQI-SECTOR-ENTRY (2).

T TO MQI-SECTOR-ENTRY (3).

0 MQI-SECTOR-ENTRY (4).

NGTH TO MQI-SECTOR-ENTRY (5).
SECTOR-COUNT.

WS-FUNCTION.

WS-CCODE-VALUE.

WS-RCODE-VALUE.
WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
MQI-SECTOR-COUNT
MQI-SECTOR
MQI-IN-ATTR-COUNT
MQI-IN-ATTR
MQI-CHAR-ATTR-LENGTH
MQI-CHAR-ATTR
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

NOT EQUAL ZERO

00-ERR-DISPLAY.

WS-FUNCTION.
WS-Q-OPEN-OPTIONS-VALUE.
WS-CCODE-VALUE.
WS-RCODE-VALUE.
WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

NOT EQUAL ZERO
00-ERR-DISPLAY.
WS-FUNCTION.
WS-CCODE-VALUE.
WS-RCODE-VALUE.
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA

WS-RCODE-ADDR-AREA.

NOT EQUAL ZERO

*--MQOPEN QUEUE TO QM
MOVE 'OPEN' TO
MOVE MQOO-INQUIRE
MOVE SPACES

W
TO
TO

S-FUNCTION.
WS-Q-OPEN-OPTIONS-VALUE.
MQOD-0BJECTQMGRNAME.

GO TO 9900-ERR-DISPLAY.

7000-EXIT.
EXIT.

MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.

MOVE MQCC-0K TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE TO NULL.

CALL 'MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS
WS-HOBJ-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

EJECT

*--ERROR IN "GET" DATA
MOVE WS-DATA-LENGTH-USER TO WS-ERR-DATA-LENGTH.

MOVE WS-BUFFER-AREA

TO WS-ERR-DATA-AREA.

EXEC CICS SEND

FROM (WS-ERR-DATA)
LENGTH (LENGTH OF WS-ERR-DATA)
ERASE

Appendix D. Sample programs 219

END-EXEC.

GO TO 0000-RETURN.

*--ERROR IN "MQ" VERB

*
MOVE WS-CCODE-VALUE TO WS-ERR-DISPLAY-CCODE.
MOVE WS-RCODE-VALUE TO WS-ERR-DISPLAY-RCODE.

EXEC CICS SEND
FROM (WS-ERR-DISPLAY)
LENGTH (LENGTH OF WS-ERR-DISPLAY)
ERASE

END-EXEC.

GO TO 0000-RETURN.

220 IBM MQSeries for VSE/ESA User's Guide

Sample program TTPTST2.Z

This program is a test facility for sending/receiving messages. It can be invoked either by
terminal input or passed data (triggered by CICS “START") format as that for ttptstl

The difference from ttptstl is the usage of MQCONN, MQOPEN, MQCLOSHd MQDISC
Regardless of the number of messages, there are only one connection and disconnection to the
Queue Manager and one open and close of the processing queue.

*/INCLUDE COPYRSAP

Licensed Materials - Property of IBM

*
*
* 5787-ECX

* (C) Copyright IBM Corp. 1993, 1996
*

*

*

*

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM

Corp.

L

IDENTIFICATION DIVISION.
PROGRAM-ID. TTPTST2.
AUTHOR. IBM.

DATE-WRITTEN. 12/15/92.
DATE-COMPILED.
*LAST-MODIFIED. 3/21/96.

APPLICATION INTERFACE

IBM MQI

LI

*

TTPTST2 - MQI APPLICATION TEST PROGRAM

FUNCTIONS: 1. PERFORM NORMAL QUEUE PUT
2. TRY TO GET QUEUE INFO BACK

COPYBOOKS: MQIVALUE - MQI RETURN CODES.
MQIERRWS - ERROR WS
MQIERRCD - ERROR CODE

CALLS : MQCONN - CONNECT
MQOPEN - OPEN
MQPUT - PUT
MQGET - GET
MQCLOSE - CLOSE
MQDISC DISCONNECT

CALLED BY: -- NONE --

CHANGE SUMMARY :

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.

WORKING-STORAGE SECTION.
* COPY COPYRWS.

* COPYRIGHT WORKING STORAGE FOR COBOL MODULES

01 FILLER.

© Copyright IBM Corp. 1993, 1997

TEST 2 - ONLY ONE OPEN AND CLOSE

* %k ok ok %k % F

*

® % sk ok ok ok ok Ok Ok k% ok k% k% % % %k %

01

01

05 FILLER PIC X(80) VALUE

'Licensed Materials - Property of IBM'.

05 FILLER PIC X(80) VALUE SPACES.

05 FILLER PIC X(80) VALUE

'5787-ECX .

05 FILLER PIC X(80) VALUE SPACES.

05 FILLER PIC X(80) VALUE

'(C) Copyright IBM Corp. 1993, 1996 A1l Rights
Reserved'.

05 FILLER PIC X(80) VALUE SPACES.

05 FILLER PIC X(80) VALUE

'US Government Users Restricted Rights - Use,
duplication '.
05 FILLER PIC X(80) VALUE
‘or disclosure restricted by GSA ADP Schedule Contract

05 FILLER
'with IBM Corp.'.

PIC X(80) VALUE

FILLER PIC X(40) VALUE
'TTPTST2 WORKING STORAGE STARTS HERE ==>'.

WS-VERSION.
05 FILLER
'"TTPTST2 VERSION 1.4'.

PIC X(30) VALUE

WS-WORK-FIELDS.

05 WS-IDX PIC S9(4) COMP VALUE ZERO.

05 WS-COUNT PIC S9(4) COMP VALUE
ZERO.

05 WS-PROCESS-TIMES PIC 9(4) VALUE

05 WS-DURATION-SECS PIC X(8) VALUE
SPACES.

05 WS-PASS-MSG-LENGTH PIC S9(4) COMP VALUE
ZERO.

05 WS-APPL-MSG-LENGTH PIC S9(8) COMP VALUE
ZERO.

05 WS-ABSTIME PIC S9(15) COMP-3 VALUE
ZERO.

05 WS-ABSTIMEZ PIC S9(15) COMP-3 VALUE
ZERO.

05 WS-DATE.

10 WS-DATE-CC
10 WS-DATE-YYMMDD.

PIC 99 VALUE ZERO.

12 WS-DATE-YY PIC 99 VALUE ZERO.
12 WS-DATE-MM PIC 99 VALUE ZERO.
12 WS-DATE-DD PIC 99 VALUE ZERO.
05 WS-TIME-9 PIC 9(7) VALUE ZERO.
05 WS-TIME REDEFINES WS-TIME-9.
10 FILLER PIC 9.
10 WS-TIME-HHMMSS.
12 WS-TIME-HH PIC 99.
12 WS-TIME-MM PIC 99.
12 WS-TIME-SS PIC 99.

05 WS-FORMATTED-TIME.

10 WS-FORMAT-TIME-HH PIC X(02) VALUE SPACES.
10 FILLER PIC X(01) VALUE ':'.
10 WS-FORMAT-TIME-MM PIC X(02) VALUE SPACES.
10 FILLER PIC X(01) VALUE ':'.
10 WS-FORMAT-TIME-SS PIC X(02) VALUE SPACES.

221

*

05 WS-FORMATTED-DATE.
10 WS-FORMAT-DATE-MM
10 FILLER
10 WS-FORMAT-DATE-DD
10 FILLER
10 WS-FORMAT-DATE-YY

05 WS-QM-Q-NAME.
10 WS-QM-NAME
10 WS-Q-NAME

05 WS-REPLY-Q

05 WS-ERR-MSG-FLAG
88 WS-ERR-MSG

05 WS-STARTED-FLAG
88 WS-STARTED

05 WS-TIMESTAMP
88 WS-PUT-TIMESTAMP

05 WS-TIMESTAMP-VALUE.
10 WS-TIMESTAMP-DATE
10 WS-TIMESTAMP-TIME

05 WS-STARTCODE
88 START-WITH-DATA
88 START-WITH-NO-DATA

05 WS-END-OF-MESSAGES-FLAG
88 WS-END-OF-MESSAGES

05 WS-TRUNCATED-MESSAGES-F
88 WS-TRUNCATED-MESSAGES

PIC
PIC
PIC
PIC
PIC

X(02)
X(01)
X(02)
X(01)
Xx(02)

VALUE '/'.

VALUE '/'.

PIC X(48) VALUE 'QM1 '.
PIC X(48) VALUE 'QUEUE'.

PIC X(48) VALUE 'QUEl'.

PIC X VALUE SPACES.
VALUE 'Y'.

PIC X VALUE SPACES.
VALUE 'Y'.

PIC X VALUE SPACES.

VALUE 'Y'.

PIC X(6) VALUE SPACES.
PIC X(6) VALUE SPACES.

PIC XX
VALUE 'SD'.
VALUE 'S '.

PIC X VALUE SPACES.
VALUE 'Y'.

PIC X VALUE SPACES.
VALUE 'Y'.

01
CoPY

WS-ERR.
MQIERR.

*/INCLUDE COPYROCO

* Kk

COPYBOOK: MQIERR

02 ERR-HANDLER-COMMAREA.
05 ERR-CURRENT-INFO.
10 ERR-COM-HANDLER
10 ERR-QUEUE
10 ERR-FILE
10 ERR-DETAIL
10 ERR-DETAIL2
10 ERR-Q-CODE
10 FILLER

05 ERR-RESULTS.
10 ERR-CODE
10 FILLER
10 ERR-PROGRAM
10 ERR-TRANID
10 ERR-TERMID

10 ERR-TASKNO
ZERO.

10 ERR-ABSTIME
ZERO

10 ERR-DEBUG-EIBFN

10 ERR-DEBUG-EIBRCODE
LOW-VALUES.

PIC
PIC
PIC
PIC
PIC

X(
X(
X(
X(

PIC X(8) VALUE SPACES.

PIC 9(6) VALUE ZERO.

PIC XX VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC S9(7) COMP-3 VALUE

P

—

C S9(15) COMP-3 VALUE

PIC XX VALUE SPACES.
PIC X(6) VALUE

222 IBM MQSeries for VSE/ESA User's Guide

VALUE SPACES.
VALUE SPACES.

VALUE SPACES.

VALUE SPACE.

48) VALUE SPACES.
48) VALUE SPACES.
8) VALUE SPACES.
80) VALUE SPACES.
X(80) VALUE SPACES.
PIC S9(8) COMP VALUE ZERO.

10 ERR-DEBUG-EIBRSRCE
LOW-VALUES.

10 ERR-DEBUG-EIBRESP
ZEROS.

10 ERR-DEBUG-EIBRESP2
ZEROS.

10 ERR-DEBUG-EIBERRCD
LOW-VALUES.

10 ERR-DEBUG-ABEND
10 FILLER

PIC X(8) VALUE
PIC S9(8) COMP VALUE
PIC S9(8) COMP VALUE
PIC X(4) VALUE

PIC X(4) VALUE SPACES.
PIC X(12) VALUE SPACES.

*okk

COPYBOOK: MQIERR

* CopPY

MQIERRC.

*/INCLUDE COPYROCO

01 MSG-ERROR-MESSAGES.

05

05
0!
05
05
05
05
05
0
0
05
05
05
05
05
05

%3}

GG

05
05
05
0
0
05
05
05
05
05
05
05
05
05
0
05
05
05
05
05
05
05
05
05
05
05
0!
0!
0!
05
05
05

[

a1

GGG

05
05

ERR-NO-ENVIRONMENT

ERR-CICS-ERROR
ERR-CICS-INVALID-REQ
ERR-CICS-ILLOGIC
ERR-CICS-ERROR-CHECKPOINT
ERR-CICS-ABEND
ERR-CICS-FILE-NOTOPEN
ERR-CICS-DISABLE
ERR-CICS-NO-STORAGE
ERR-CICS-LENGTH-ERR
ERR-CICS-MAPFAIL
ERR-CICS-PGMIDERR
ERR-CICS-FILEID
ERR-CICS-NOFILE
ERR-CICS-I0-ERROR
ERR-CICS-TRANIDERR

ERR-COM-FREE-ERROR
ERR-COM-EIB-ERROR
ERR-COM-STAT-ERROR
ERR-COM-ALLOC-ERROR
ERR-COM-ALLOC-RETRY
ERR-COM-CONN-ERROR
ERR-COM-SEND-ERROR
ERR-COM-RECV-RESP-ERR
ERR-COM-RESP-TYPE
ERR-COM-RESP-MSN
ERR-COM-RESP-FATAL
ERR-COM-MSG-ERROR
ERR-COM-BIG-INDIAN
ERR-COM-TSH-ERROR
ERR-COM-CCSID-ERROR
ERR-COM-MSH-ERROR
ERR-COM-MQX-ERROR
ERR-COM-INIT-ERROR
ERR-COM-FAP-ERROR
ERR-COM-MSG-SIZE
ERR-COM-WRAP-ERROR
ERR-COM-MCP-DOWN
ERR-COM-DOWN
ERR-COM-NOT-FOUND
ERR-COM-ERROR
ERR-COM-BUSY
ERR-COM-RESYNC-ERROR
ERR-COM-STATUS-ERROR
ERR-COM-LENGTH-ERROR
ERR-COM-MSG-PER-BATCH
ERR-COM-MAX-TRANSM-SIZE
ERR-COM-RESET-MSN

ERR-INT-LINK-ERROR
ERR-INT-LINK-COM-SIZE

PIC VALUE 900000.
PIC
PIC 9(6)
PIC 9(6)
PIC 9(6)
PIC
PIC 9(6)
PIC
PIC 9
PIC 9
PIC
PIC 9(6)
PIC
PIC
PIC 9(6)
PIC

VALUE 800000.
VALUE 800010.
VALUE 800011.
VALUE 800090.
VALUE 800099.
VALUE 801012.
VALUE 801019.
6) VALUE 802000.
6) VALUE 803001.
VALUE 808000.
VALUE 809000.
VALUE 809010.
VALUE 809011.
VALUE 809012.
VALUE 809050.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

(6) VALUE 501001.
(6) VALUE 501002.
(6) VALUE 501003.
(6) VALUE 501004.
(6) VALUE 501005.
(6) VALUE 501006.
(6) VALUE 501008.
(6) VALUE 501009.
(6) VALUE 501010.
(6) VALUE 501011.
(6) VALUE 501012.
(6) VALUE 501013.
(6) VALUE 501014.
(6) VALUE 501015.
(6) VALUE 501016.
(6) VALUE 501017.
(6) VALUE 501018.
(6) VALUE 501019.
(6) VALUE 501020.
(6) VALUE 501021.
(6) VALUE 501022.
9(6)
9(6)
9(6)
9(6)

O W WWWWWWWYWWWYOWYWWYWYWYWYWWY WYY

VALUE 501023.
VALUE 501024.
VALUE 501025.
VALUE 501026.
9(6) VALUE 501027.
9(6) VALUE 501028.
9(6) VALUE 501029.
9(6) VALUE 501030.
9(6) VALUE 501031.
9(6) VALUE 501032.
9(6) VALUE 501050.
PIC
PIC

9(6) VALUE 400000.
9(6) VALUE 400001.

05
05
05
05
05

05
05
05
05
05
05
05

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

0
05
05
0

G

[

05
05
05
05
05
05
05
05
05
0!

a

0
05
0

a

a

05

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

ERR-INT-LINK-COM-DATA
ERR-INT-RETURN-ERROR
ERR-INT-MOVE-ERROR
ERR-INT-STRUC-MISSING
ERR-INT-STRUC-ERROR

ERR-LOGIC-NOT-SUPPORTED
ERR-LOGIC-STARTED-WRONG
ERR-LOGIC-REPEATED-FAILURE
ERR-LOGIC-LOCKS-EXCEEDED
ERR-LOGIC-MISSING-RECORD
ERR-LOGIC-RECORD-DUPLICATED
ERR-LOGIC-Q-CKP-MISSING

ERR-PROC-SYSTEM-STOPPED
ERR-PROC-SYSTEM-ACTIVE
ERR-PROC-SYS-START-NOQDR
ERR-PROC-SYS-START-MAXQDR
ERR-PROC-SYS-START-MAXCOM
ERR-PROC-SYS-START-NOSYS
ERR-PROC-Q-EXCEEDED-DEPTH
ERR-PROC-Q-CONCURRENT-UPD
ERR-PROC-Q-NOTFOUND
ERR-PROC-Q-STOPPED
ERR-PROC-Q-DISABLED
ERR-PROC-QSN-LIMIT-REACHED
ERR-PROC-FILE-SPACE-PUT
ERR-PROC-FILE-SPACE
ERR-PROC-DUAL-Q-ERROR
ERR-PROC-DUAL-Q-FILE
ERR-PROC-DUAL-Q-LOGIC
ERR-PROC-TRIGGER-ERROR
ERR-PROC-TRIGGER-DATA
ERR-PROC-NOT-AUTHORIZED

ERR-WARN-SYS-STARTED-W-ERR

ERR-WARN-SYS-STARTED-W-FILER
ERR-WARN-SYS-STARTED-W-COMER
ERR-WARN-SYS-STARTED-W-CHANG

ERR-WARN-COM-CONNECT
ERR-WARN-COM-OPENED
ERR-WARN-COM-QUEUE-OPENED
ERR-WARN-COM-LU62-CONNECT
ERR-WARN-COM-RECEIVER-ALLOC
ERR-WARN-COM-QUEUE-EMPTY
ERR-WARN-COM-QUEUE-CLOSED
ERR-WARN-COM-DISC
ERR-WARN-COM-SHUT
ERR-WARN-COM-SHUT-SENT

ERR-FUNCTION-STARTED
ERR-FUNCTION-DONE
ERR-FUNCTION-NOT-DONE

ERR-WARN-SYS-STARTED

SYNCH-MSN-ERROR
SYNCH-MSG-DUP
LU62-FREE-ERROR
LU62-EIB-ERROR
LU62-STAT-ERROR
LU62-ALLOC-ERROR
LU62-ALLOC-RETRY-ERROR
LU62-CONN-ERROR
LU62-SEND-ERROR
LU62-RECV-RESP-ERROR
INVLD-RESP-TYPE
INVLD-RESP-MSN
FATAL-RESP-TYPE
RECOVERABLE-RESP-TYPE
PARSER-MSN-ERROR
PARSER-TYPE-ERROR

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9(6)
9(6)
9(6)
9(6)
9(6)

9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)

9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)

9(6)
9(6)
9(6)
9(6)

9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)

9(6)
9(6)
9(6)

9(6)

9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)
9(6)

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE

VALUE

400002.
400003.
400010.
402000.
402090.

300000.
300010.
300020.
300030.
301000.
301010.
309010.

100000.
100010.
100011.
100012.
100013.
100090.
101000.
101010.
101015.
101090.
101091.
102090.
102091.
102092.
104021.
104022.
104023.
105090.
105091.
109000.

010000.
010001.
010002.
010003.

005000.
005001.
005002.
005003.
005004.
005005.
005006.
005007.
005008.
005009.

000100.
001000.
001090.

000000.

VALUE 3.
VALUE 4.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

10.
11.
12.
13.
14.
15.
16.
17.
23.
24.
25.
26.
29.
30.

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

PARSER-PDM-ERROR
PARSER-SID-ERROR
PARSER-PN-ERROR
PARSER-KEY-ERROR
PARSER-APID-ERROR
PARSER-ORG-DT-ERROR
PARSER-ORIG-MSN-ERROR
PARSER-BODY-ERROR
PARSER-STATUS-ERROR
PARSER-LENGTH-ERROR
MCCONN-ERROR
MQOPEN-ERROR
MQGET-ERROR
MQPUT-ERROR
MQPT1-ERROR
MQCLOSE-ERROR
MQDISC-ERROR
QM-OTHER-ERROR
RECV-RETURN-LON-STATUS
RECV-RETURN-LON-TYPE
SIDRC-RETURN-MLP-FORMAT

PIC 9(6) VALUE 31.
PIC 9(6) VALUE 32.
PIC 9(6) VALUE 33.
PIC 9(6) VALUE 34.
PIC 9(6) VALUE 35.
PIC 9(6) VALUE 38.
PIC 9(6) VALUE 39.
PIC 9(6) VALUE 40.
PIC 9(6) VALUE 41.
PIC 9(6) VALUE 42.
PIC 9(6) VALUE 51.
PIC 9(6) VALUE 52.
PIC 9(6) VALUE 53.
PIC 9(6) VALUE 54.
PIC 9(6) VALUE 55.
PIC 9(6) VALUE 56.
PIC 9(6) VALUE 57.
PIC 9(6) VALUE 60.
PIC 9(6) VALUE 80.
PIC 9(6) VALUE 81.
PIC 9(6) VALUE 91.

77 WS-DATA-LENGTH
01 WS-DATA-ALL.

05

EJ

WS-DATA-WITH-QUEUE.
10 WS-DATA-WITH-TIMES.

PIC S9(4) COMP VALUE ZERO.

12 WS-DATA-WITH-FUNCTION.

15 FILLER

15 WS-DATA-FUNCTION
88 WS-PUT
88 WS-GET

88 WS-BOTH

88 WS-PUT1

88 WS-PUT-WITH-REPLY
88 WS-GET-WITH-DELETE

12 FILLER

12 WS-DATA-TIMES
10 WS-DATA-SYNC-FLAG
10 WS-DATA-QUEUE
ECT

PIC X(5) VALUE 'TST2 '.
PIC XXXX VALUE 'PUT'.
VALUE 'PUT'.
VALUE 'GET'.
VALUE 'BOTH'.
VALUE 'PUT1'.
VALUE 'PUTR'.
VALUE 'GETD'.
PIC X VALUE ' '.
PIC 99 VALUE 01.
PIC X VALUE ' '.
PIC X(48) VALUE SPACES.

* COPY

WS

T

-PASSED-INFO.

TITST2.

*COPY COPYRSAP

Kk

COPYBOOK: TTITST2

05

TST2-PASSED-INFO.

10 TST2-FUNCTION
88 TST2-FUNCT-PUT
88 TST2-FUNCT-GET

10 TST2-PUT-NUM-MSG
ZERO

10 TST2-PUT-QUEUE-NAME

10 TST2-PUT-MSG-SIZE
ZERO.

10 TST2-PUT-MSG
10 TST2-PUT-MSG-TIMESTAMP

88 TST2-PUT-MSG-W-TIMESTAMP

PIC X(4) VALUE 'PUT'.
VALUE 'PUT'.
VALUE 'GET'.

PIC S9(4) COMP VALUE

PIC X(48) VALUE SPACES.
PIC S9(4) COMP VALUE

PIC X(48) VALUE SPACES.
PIC X VALUE SPACES.
VALUE 'Y'.

Appendix D. Sample programs 223

* - END - *%% COPYBOOK: TTITST2 *** - END - *
K e e e e e e o *
EJECT
K e e e e e e *
01 WS-NEED-REPLY.
05 FILLER PIC X(80) VALUE
'Please enter REPLY QUEUE name with trailing blanks or
ErsEOF
- ' (e.g. Ctrl - Del)'.
EJECT
K e e e e e *
01 WS-HELP.
05 FILLER PIC X(80) VALUE
' TST2 is a test facility for SENDING / RECEIVING
messages'.
05 FILLER PIC X(80) VALUE
' The format of command is as follows:'.
05 FILLER PIC X(80) VALUE
' TST2 XXXX NN
QQQQQQQQQQQQAQRAQRAAQRAAQAAQQQQGAARARAAQAAAAAAAARAAQ
- ‘.
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE
'(NOTE a single space or comma separates the params)'.
05 FILLER PIC X(80) VALUE
' XXXX 4-character function code, pad with trailing
blank'.
05 FILLER PIC X(80) VALUE
! PUT - MQPUT MESSAGES'.
05 FILLER PIC X(80) VALUE
! PUT1 - MQPUT1 MESSAGES'.
05 FILLER PIC X(80) VALUE
! PUTR - MQPUT W/ REPLY MESSAGE'.
05 FILLER PIC X(80) VALUE
! GET - MQGET MESSAGES'.
05 FILLER PIC X(80) VALUE
! GETD - MQGET W/ BROWSE & DELETE'.
05 FILLER PIC X(80) VALUE
! BOTH - MQPUT FOLLOWED BY MQGET'.
05 FILLER PIC X(80) VALUE
' NN 2-digit number with Teading zero (01 TO 99)'.
05 FILLER PIC X(80) VALUE
' QQQQ A 48-character field giving the name of a
queue.'.
05 FILLER PIC X(80) VALUE
' An additional prompt will ask for the name of the
reply qu
- ‘eue for PUTR option.'.
01 WS-HELP-RED REDEFINES WS-HELP.
05 WS-HELP-LINE OCCURS 15 TIMES
PIC X(80).
K e e e e e e e *
EJECT
K e e e e e e e *
01 WS-ALL-MSG.
05 WS-0K-MSG.
10 FILLER PIC X(80) VALUE
' FULL CYCLE HAS BEEN PERFORMED SUCCESSFULLY'.
10 WS-0K-MSG-1 PIC X(80) VALUE SPACES.
10 WS-0K-MSG-2 PIC X(80) VALUE SPACES.
10 WS-0K-MSG-3 PIC X(80) VALUE SPACES.
10 WS-0K-MSG-4 PIC X(80) VALUE SPACES.
10 WS-0K-MSG-5 PIC X(80) VALUE SPACES.
10 WS-0K-MSG-6 PIC X(80) VALUE SPACES.
05 WS-ERR-LINES.
10 FILLER PIC X(400) VALUE SPACES.
01 WS-OK-STATS-LINE-1
05 FILLER PIC X(20) VALUE
! QUEUE USED -'.
05 WS-0K-QUEUE PIC X(48).
01 WS-OK-STATS-LINE-2.

224 1BM MQSeries for VSE/ESA User's Guide

05 FILLER
' REPLY Q-'.
05 WS-0K-QUEUE-REPLY

PIC X(20) VALUE

PIC X(48).

01 WS-OK-STATS-LINE-3.
05 FILLER PIC X(40) VALUE
' NUMBER OF MESSAGES PROCESSED -'.
05 WS-OK-MESSAGES PIC 299.
01 WS-OK-STATS-LINE-4.
05 FILLER PIC X(40) VALUE
" TOTAL SECONDSuevunnn... -
05 WS-OK-TIME PIC X(8).
K e e e e e e o o *
EJECT
K e e e e e e o o o o *
01 WS-ERROR-MESSAGES.
05 WS-ERR-DATA.
10 FILLER PIC X(13) VALUE
' DATA ERROR:'.
10 FILLER PIC X(9) VALUE
' LENGTH='.
10 WS-ERR-DATA-LENGTH PIC 9(8) VALUE ZERO.
10 FILLER PIC X(9) VALUE
', DATA ='.
10 WS-ERR-DATA-AREA PIC X(200) VALUE SPACES.
10 FILLER PIC X(4) VALUE
Thkkk! .
05 WS-ERR-DISPLAY.
10 FILLER PIC X(13) VALUE
' MQ ERROR:'.
10 FILLER PIC X(9) VALUE
' LEVEL ='.
10 WS-LEVEL PIC X(8) VALUE SPACES.
10 FILLER PIC X(9) VALUE
', FUNC ='.
10 WS-FUNCTION PIC X(8) VALUE SPACES.
10 FILLER PIC X(9) VALUE
Loeeoo o=,
10 WS-ERR-DISPLAY-CCODE PIC 9(4) VALUE ZERO.
10 FILLER PIC X(9) VALUE
L, RC =",
10 WS-ERR-DISPLAY-RCODE PIC 9(4) VALUE ZERO.
10 FILLER PIC X(4) VALUE
Tkkkx! .
EJECT
K e e e e e = o o o o o o *
01 FILLER.
* COPY CMQV.

*/INCLUDE CMQV
*/INCLUDE COPYR

*%

** FILE NAME:

*%

** DESCRIPTIVE NAME:

*%

** VERSION 1.4.0

* %
*% FUNCTION:
**
**

*%

*%

cMQV *x
*%
COBOL copy file for MQI constants ke
*%
* %
*%
This file declares the constants *x
which form part of the IBM Message ke

Queue Interface (MQI).

*%

*%

** Values Related to MQDLH Structure

*%

** Structure Identifier
10 MQDLH-STRUC-ID PIC X(4) VALUE 'DLH '.

*%

Structure Version Number

10 MQDLH-VERSION-1 PIC S9(9) BINARY VALUE 1.

*k

Values Related to MQGMO Structure

*%

*%k

*Kk

*%

*%

Structure Identifier

10 MQGMO-STRUC-ID PIC X(4) VALUE 'GMO '.

Structure Version Number

10 MQGMO-VERSION-1 PIC S9(9) BINARY VALUE 1.

Get-Message Options
10 MQGMO-WAIT
10 MQGMO-NO-WAIT

10 MQGMO-BROWSE-FIRST
16.

10 MQGMO-BROWSE-NEXT
32.

10 MQGMO-ACCEPT-TRUNCATED-MSG
64.

10 MQGMO-SET-SIGNAL

10 MQGMO-SYNCPOINT

10 MQGMO-NO-SYNCPOINT

10 MQGMO-MSG-UNDER-CURSOR
256.

10 MQGMO-LOCK
512.

10 MQGMO-UNLOCK
1024.

Wait Interval

PIC S9(9) BINARY VALUE 1.
PIC S9(9) BINARY VALUE 0.

PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE 8.
PIC S9(9) BINARY VALUE 2.
PIC S9(9) BINARY VALUE 4.

PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

10 MQWI-UNLIMITED PIC S9(9) BINARY VALUE -1.

*%

Values Related to MQMD Structure

*%

*%

*%

*%

*%

*%

*%

*%

Structure Identifier

10 MQMD-STRUC-ID PIC X(4) VALUE 'MD '.

Structure Version Number

10 MQMD-VERSION-1 PIC S9(9) BINARY VALUE 1.

Report Options

10 MQRO-NONE PIC S9(9) BINARY VALUE 0.

Message Types
10 MQMT-REQUEST PIC S9
10 MQMT-REPLY PIC S9
10 MQMT-DATAGRAM PIC S9
10 MQMT-REPORT PIC S9

Expiry Value

9) BINARY
9) BINARY
9) BINARY
9) BINARY

VALUE 1.
VALUE 2.
VALUE 8.
VALUE 4.

10 MQEI-UNLIMITED PIC S9(9) BINARY VALUE -1.

Feedback Values
10 MQFB-NONE
10 MQFB-QUIT

10 MQFB-APPL-FIRST
10 MQFB-APPL-LAST

10 MQFMT-NONE

10 MQFMT-DEAD-LETTER-Q-HEADER

10 MQFMT-TRIGGER
10 MQFMT-XMIT-Q-HEADER

Encoding Value

PIC S9(9)
PIC S9(9)
10 MQFB-SYSTEM-FIRST PIC S9(9)
10 MQFB-SYSTEM-LAST PIC S9(9)
PIC S9(9)
PIC S9(9)

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY

VALUE 0.

VALUE 256.

VALUE 1.

VALUE 65535.
VALUE 65536.
VALUE 999999999.

PIC
PIC
PIC
PIC

8) VALUE SPACES.
8) VALUE 'MQDLQH'.
8) VALUE 'MQTRIG'.

X(
X(
X(
X(8) VALUE 'MQXMIT'.

*%

*%

*%

*%

10 MQENC-NATIVE PIC S9(9) BINARY VALUE 785.

Encoding Masks
10 MQENC-INTEGER-MASK PIC S9
10 MQENC-DECIMAL-MASK PIC S9
10 MQENC-FLOAT-MASK PIC S9
10 MQENC-RESERVED-MASK PIC S9

9) BINARY
9) BINARY
9) BINARY
9) BINARY

VALUE
VALUE
VALUE
VALUE

Encodings for Binary Integers
10 MQENC-INTEGER-UNDEFINED PIC S9(9) BINARY
10 MQENC-INTEGER-NORMAL PIC S9(9) BINARY
10 MQENC-INTEGER-REVERSED PIC S9(9) BINARY

Encodings for Packed-Decimal Integers
10 MQENC-DECIMAL-UNDEFINED PIC S9(9) BINARY
10 MQENC-DECIMAL-NORMAL PIC S9(9) BINARY
10 MQENC-DECIMAL-REVERSED PIC S9(9) BINARY

Encodings for Floating-Point Numbers

15.
240.
3840.
-4096.

VALUE 0.
VALUE 1.
VALUE 2.

VALUE 0.
VALUE 16.
VALUE 32.

10 MQENC-FLOAT-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC-FLOAT-IEEE-NORMAL PIC S9(9) BINARY VALUE 256.
10 MQENC-FLOAT-IEEE-REVERSED PIC S9(9) BINARY VALUE 512.
10 MQENC-FLOAT-S390 PIC S9(9) BINARY VALUE 768.
** Coded Character-Set Identifier
10 MQCCSI-Q-MGR PIC S9(9) BINARY VALUE 0.
** Persistence Values
10 MQPER-PERSISTENT PIC S9(9) BINARY VALUE 1.
10 MQPER-PERSISTENCE-AS-Q-DEF PIC S9(9) BINARY VALUE 2.
** Message Id Value
10 MQMI-NONE PIC X(24) VALUE LOW-VALUES.
** Correlation Id Value
10 MQCI-NONE PIC X(24) VALUE LOW-VALUES.
** Values Related to MQOD Structure **
** Structure Identifier
10 MQOD-STRUC-ID PIC X(4) VALUE 'OD ‘.
** Structure Version Number
10 MQOD-VERSION-1 PIC S9(9) BINARY VALUE 1
** QObject Types
10 MQOT-Q PIC S9(9) BINARY VALUE 1.
** Values Related to MQPMO Structure **
** Structure Identifier
10 MQPMO-STRUC-ID PIC X(4) VALUE 'PMO '.
** Structure Version Number
10 MQPMO-VERSION-1 PIC S9(9) BINARY VALUE 1.
** Put-Message Options
10 MQPMO-SYNCPOINT PIC S9(9) BINARY VALUE 2.
10 MQPMO-NO-SYNCPOINT PIC S9(9) BINARY VALUE 4.

*%

Values Related to MQTM Structure

*%

*%

Structure Identifier
10 MQTM-STRUC-ID PIC X(4) VALUE 'TM '.

Appendix D. Sample programs 225

** Structure Version Number
10 MQTM-VERSION-1 PIC S9(9) BINARY VALUE 1.

** Values Related to MQCLOSE Call ik

** (Close Options
10 MQCO-NONE PIC S9(9) BINARY VALUE 0.

** Values Related to MQINQ Call ik

** Character-Attribute Selectors
10 MQCA-BASE-Q-NAME PIC S9(9) BINARY VALUE 2002.
10 MQCA-CREATION-DATE PIC S9(9) BINARY VALUE 2004.
10 MQCA-CREATION-TIME PIC S9(9) BINARY VALUE 2005.

10 MQCA-FIRST PIC S9(9) BINARY VALUE 2001.
10 MQCA-INITIATION-Q-NAME PIC S9(9) BINARY VALUE 2008.
10 MQCA-LAST PIC S9(9) BINARY VALUE 4000.
10 MQCA-PROCESS-NAME PIC S9(9) BINARY VALUE 2012.
10 MQCA-Q-DESC PIC S9(9) BINARY VALUE 2013.
10 MQCA-Q-NAME PIC S9(9) BINARY VALUE 2016.

10 MQCA-REMOTE-Q-MGR-NAME PIC S9(9) BINARY VALUE 2017.
10 MQCA-REMOTE-Q-NAME PIC S9(9) BINARY VALUE 2018.

** Integer-Attribute Selectors

10 MQIA-CURRENT-Q-DEPTH PIC S9(9) BINARY VALUE 3.
10 MQIA-DEF-PERSISTENCE ~ PIC S9(9) BINARY VALUE 5.
10 MQIA-DEFINITION-TYPE PIC S9(9) BINARY VALUE 7.
10 MQIA-FIRST PIC S9(9) BINARY VALUE 1.
10 MQIA-INHIBIT-GET PIC S9(9) BINARY VALUE 9.
10 MQIA-INHIBIT-PUT PIC S9(9) BINARY VALUE 10.
10 MQIA-LAST PIC S9(9) BINARY VALUE 2000.
10 MQIA-MAX-MSG-LENGTH PIC S9(9) BINARY VALUE 13.
10 MQIA-MAX-Q-DEPTH PIC S9(9) BINARY VALUE 15.

10 MQIA-OPEN-INPUT-COUNT PIC S9(9) BINARY VALUE 17.
10 MQIA-OPEN-OUTPUT-COUNT PIC S9(9) BINARY VALUE 18.

10 MQIA-Q-TYPE PIC S9(9) BINARY VALUE 20.
10 MQIA-SHAREABILITY PIC S9(9) BINARY VALUE 23.
10 MQIA-TRIGGER-CONTROL ~ PIC S9(9) BINARY VALUE 24.
10 MQIA-TRIGGER-TYPE PIC S9(9) BINARY VALUE 28.
10 MQIA-USAGE PIC S9(9) BINARY VALUE 12.

** Integer Attribute Value Denoting 'Not Applicable’
10 MQIAV-NOT-APPLICABLE PIC S9(9) BINARY VALUE -1.

** Values Related to MQOPEN Call okl

** QOpen Options
10 MQOO-INPUT-SHARED PIC S9(9) BINARY VALUE 2.
10 MQOO-INPUT-EXCLUSIVE PIC S9(9) BINARY VALUE 4.
8

10 MQOO-BROWSE PIC S9(9) BINARY VALUE 8.
10 MQO0-OUTPUT PIC S9(9) BINARY VALUE 16.
10 MQOO-INQUIRE PIC S9(9) BINARY VALUE 32.
** Values Related to A1l Calls **

** String Lengths
10 MQ-CREATION-DATE-LENGTH PIC S9(9) BINARY VALUE 12.
10 MQ-CREATION-TIME-LENGTH PIC S9(9) BINARY VALUE 8.
10 MQ-PROgEES-APPL-ID-LENGTH PIC S9(9) BINARY VALUE

10 MQ-PROCESS-DESC-LENGTH PIC S9(9) BINARY VALUE 64.

226 IBM MQSeries for VSE/ESA User's Guide

10 MQ-PROCESS-ENV-DATA-LENGTH PIC S9(9) BINARY VALUE
128.

10 MQ-PROCESS-NAME-LENGTH PIC S9(9) BINARY VALUE 48.
10 MQ-PROCESS-USER-DATA-LENGTH PIC S9(9) BINARY VALUE
128.

10 MQ-Q-DESC-LENGTH
10 MQ-Q-NAME-LENGTH

PIC S9(9) BINARY VALUE 64.
PIC S9(9) BINARY VALUE 48.
10 MQ-Q-MGR-DESC-LENGTH PIC S9(9) BINARY VALUE 64.
10 MQ-Q-MGR-NAME-LENGTH PIC S9(9) BINARY VALUE 48.
10 MQ-TRIGGER-DATA-LENGTH PIC S9(9) BINARY VALUE 64.

Completion Codes

10 MQCC-0K PIC S9(9) BINARY VALUE 0.
10 MQCC-WARNING PIC S9(9) BINARY VALUE 1.
10 MQCC-FAILED PIC S9(9) BINARY VALUE 2.

Reason Codes

10 MQRC-NONE PIC S9(9) BINARY VALUE 0.
10 MQRC-A%CO%SOS.-RESTRICTED PIC S9(9) BINARY VALUE
10 MQRC-AITZI(;)AOSI-BASE-Q-TYPE-ERROR PIC S9(9) BINARY VALUE
10 MQRC-ALZRO%AZD'Y-CONNECTED PIC S9(9) BINARY VALUE
10 MQRC-B%I:)IBE[lR'-ERROR PIC S9(9) BINARY VALUE
10 MQRC-B%%%%R'-LENGTH-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CHZA(;?O-(;\:[TR-LENGTH-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CI—;AJB;ATTRS-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CI-‘IZAOFB-éA'TTRS-TOO-SHORT PIC S9(9) BINARY VALUE
10 MQRC-C%NOIBEQC"I'ION-BROKEN PIC S9(9) BINARY VALUE
10 MQRC-DgTol\l-OLENGTH-ERROR PIC S9(9) BINARY VALUE
10 MQRC-E);IBIIR;'-ERROR PIC S9(9) BINARY VALUE
10 MQRC-F%%DIEAA'CK-ERROR PIC S9(9) BINARY VALUE
10 MQRC-G%];)—I%N.HIBITED PIC S9(9) BINARY VALUE
10 MQRC-H/TZNODII}E.-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-H(?Z%I\III\:}-'ERROR PIC S9(9) BINARY VALUE
10 MQRC-H(.)Z%%-QéRROR PIC S9(9) BINARY VALUE
10 MQRC-Il\sz()-ZAl'f.TR-COUNT-ERROR PIC S9(9) BINARY VALUE

10 MQRC-INT-ATTR-COUNT-TOO-SMALL PIC S9(9) BINARY VALUE
2022.

10 MQRC-INT-ATTRS-ARRAY-ERROR PIC S9(9) BINARY VALUE
2023.

10 MQRC-MAX-CONNS-LIMIT-REACHED ~ PIC S9(9) BINARY VALUE
2025.

10 MQRC-M[;—OE%ROR PIC S9(9) BINARY VALUE
10 MQRC-MIZSOSZI7N.G-REPLY-T0-Q PIC S9(9) BINARY VALUE
10 MQRC-MSZ%-ZEY.PE-ERROR PIC S9(9) BINARY VALUE
10 MQRC-MSZGO-3TOO'O-BIG-F0R-Q PIC S9(9) BINARY VALUE
10 MQRC-NOZ-OI‘gS3G.-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-NOZ-OI\43$f.-UNDER-CURSOR PIC S9(9) BINARY VALUE
10 MQRC-N()21;)-3A5U‘TH0RIZED PIC S9(9) BINARY VALUE
10 MQRC-NOZTO-306P.EN-FOR-BRONSE PIC S9(9) BINARY VALUE
10 MQRC-N()ZT()-3()7I;EN-FOR-INPUT PIC S9(9) BINARY VALUE
10 MQRC-N02T0-3%P.EN-FOR-INQUIRE PIC S9(9) BINARY VALUE
10 MQRC-NOZTO-309P.EN-FOR-OUTPUT PIC S9(9) BINARY VALUE

10

10

10

—

0

—

0

—

0

10

10

10

10

10

10

10

10

—

0

10

—

0

—

0

10

10

10

10

1

o

1

o

10

1

o

10

10

10

1

o

10

1

o

10

MQRC-0BJECT-CHANGED

MQRC-0BJECT-IN-USE
2042.

MQRC-0BJECT-TYPE-ERROR
2043.

MQRC-0D-ERROR
2044.

MQRC-OPTION-NOT-VALID-FOR-TYPE

MQRC-OPTIONS-ERROR
2046.

MQRC-PERSISTENCE-ERROR
2047.

MQRC-PRIORITY-EXCEEDS-MAXIMUM
2049.

MQRC-PRIORITY-ERROR
2050.
MQRC-PUT-INHIBITED
2051.
MQRC-Q-FULL
2053.
MQRC-Q-SPACE-NOT-AVAILABLE
2056.
MQRC-Q-MGR-NAME-ERROR
2058.
MQRC-Q-MGR-NOT-AVAILABLE
2059.
MQRC-REPORT-OPTIONS-ERROR
2061.
MQRC-SECURITY-ERROR
2063.

MQRC-SELECTOR-COUNT-ERROR
2065.

MQRC-SELECTOR-LIMIT-EXCEEDED
2066.

MQRC-SELECTOR-ERROR
2067.
MQRC-SELECTOR-NOT-FOR-TYPE
2068.

MQRC-SIGNAL-OUTSTANDING
2069.

MQRC-SIGNAL-REQUEST-ACCEPTED
2070.

MQRC-STORAGE-NOT-AVAILABLE
2071.

MQRC-SYNCPOINT-NOT-AVAILABLE
2072.

MQRC-TRUNCATED-MSG-ACCEPTED
2079.

MQRC-TRUNCATED-MSG-FAILED
2080.

MQRC-UNEXPECTED-CONNECT-ERROR
2081.

MQRC-UNKNOWN-ALIAS-BASE-Q
2082.

MQRC- UNKNOWN-0BJECT -NAME
2085.

MQRC-UNKNOWN-0BJECT-Q-MGR
2086.

MQRC - UNKNOWN -REMOTE-Q-MGR
2087.

MQRC-WAIT-INTERVAL-ERROR
2090.

MQRC-XMIT-Q-TYPE-ERROR
2091.

MQRC-XMIT-Q-USAGE-ERROR
2092.

MQRC-PMO-ERROR
2173.

MQRC-GMO-ERROR
2186.

MQRC-UNEXPECTED-ERROR
2195.

MQRC-MSG-1ID-ERROR
2206.

MQRC-CORREL-ID-ERROR
2207.

MQRC-FILE-SYSTEM-ERROR
2208.

PIC

PIC

PIC

PIC

P

—
o

PIC

PIC

P

—
o

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

P

—
o

PIC

PIC

PIC

P

—
o

PIC

P

—
o

PIC

PIC

P

—
o

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)
$9(9)

$9(9)

S9(9)
S9(9)

$9(9)

S9(9)

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

10 MQRC-NO-MSG-LOCKED
2209.

PIC S9(9) BINARY

VALUE

*%

Values Related to Queue Attributes

*k

*%

*%

*%

*%

*%

*%

*%

*%

*%

Queue Types

10 MQQT-LOCAL PIC S9(9) BINARY VALUE 1.
10 MQQT-ALIAS PIC S9(9) BINARY VALUE 3.
10 MQQT-REMOTE PIC S9(9) BINARY VALUE 6.

Queue Definition Types

10 MQQDT-PREDEFINED PIC S9(9) BINARY VALUE 1.

Inhibit Get

10 MQQA-GET-INHIBITED PIC S9(9)
PIC S9(9)

10 MQQA-GET-ALLOWED

Inhibit Put

10 MQQA-PUT-INHIBITED PIC S9(9)
PIC S9(9)

10 MQQA-PUT-ALLOWED

Queue Shareability
10 MQQA-SHAREABLE

Message Delivery Sequence

PIC S9(9)
10 MQQA-NOT-SHAREABLE PIC S9(9)

BINARY
BINARY

BINARY
BINARY

BINARY
BINARY

VALUE
VALUE

o =

VALUE
VALUE

(=3

VALUE
VALUE

o =

10 MQMDS-FIFO PIC S9(9) BINARY VALUE 1.

Trigger Control

10 MQTC-OFF PIC S9(9) BINARY VALUE 0.
10 MQTC-ON PIC S9(9) BINARY VALUE 1.

Trigger Types

10 MQTT-NONE PIC S9(9) BINARY VALUE 0.
10 MQTT-FIRST PIC S9(9) BINARY VALUE 1.
10 MQTT-EVERY PIC S9(9) BINARY VALUE 2.

Queue Usage
10 MQUS-NORMAL

PIC S9(9) BINARY VALUE 0.

10 MQUS-TRANSMISSION PIC S9(9) BINARY VALUE 1.

*%

Values

Related to Process-Definition Attributes

*%

*%

Application Type

10 MQAT-USER-FIRST PIC S9(9) BINARY VALUE 65536.

10 MQAT-USER-LAST PIC S9(9) BINARY VALUE 999999999.
*

10 MQAT-0S2 PIC S9(9) BINARY VALUE 4

10 MQAT-DOS PIC S9(9) BINARY VALUE 5.

10 MQAT-AIX PIC S9(9) BINARY VALUE 6.

10 MQAT-0S400 PIC S9(9) BINARY VALUE 8

10 MQAT-WINDOWS PIC S9(9) BINARY VALUE 9.

10 MQAT-CICS-VSE PIC S9(9) BINARY VALUE 10.

10 MQAT-VMS PIC S9(9) BINARY VALUE 12.

10 MQAT-GUARDIAN PIC S9(9) BINARY VALUE 13.

10 MQAT-VOS PIC S9(9) BINARY VALUE 14.
** Values Related to Queue-Manager Attributes **

*%

Syncpoint Availability

10 MQSP-AVAILABLE PIC S9(9) BINARY VALUE

—

Appendix D. Sample programs 227

EJECT 10 ENV-II-TRAN-QUE-DELETE PIC X(4) VALUE

K e e e e e e e e e e e * 'MQQD'.
* ENVIRONMENT VALUES 10 ENV-II-TRAN-QUE-DEL-ALL PIC X(4) VALUE
e . 'MQQA' .
* COPY MQICENV 10 FILLER PIC X(4) VALUE SPACES.
«JINCLUDE COPYROCO 10 FILLER PIC X(4) VALUE SPACES.
o . 10 FILLER PIC X(4) VALUE SPACES.
* - BEGIN - *%% COPYBOOK: MQICENV ~ *¥* - BEGIN - *
K e e e e e *
* ENVIRONMENT VALUE - SYSTEM (ENV) * 03 ENV-DATA-FOR-PROGRAMS .
K e e e e e *
05 ENV-MASTER-TERMINAL-PROGRAMS.
02 ENV-DEFINITION 10 ENV-MT-MASTER-PROGRAM ~ PIC X(8) VALUE
- . "MQPMTP' .
03 ENV-DATA-FOR-SYSTEM. 10 ENV-MT-CONFIG-PROGRAM PIC X(8) VALUE
05 ENV-PRODUCT-INSTALLED PIC X(4) VALUE 'MQM “MQPMCFG'.
: 10 ENV-MT-MONITOR-PROGRAM PIC X(8) VALUE
88 ENV-PRODUCT-EZBRIDGE ~ VALUE 'EZB '. “MQPMMON ' .
88 ENV-PRODUCT-MQM VALUE 'MQM '. 10 ENV-MT-OPER-PROGRAM PIC X(8) VALUE
'MQPMOPR ' .
05 ENV-PRODUCT-RUNTIME PIC X(4) VALUE 'BOTH'. 10 ENV-MT-DISP-PROGRAM PIC X(8) VALUE
88 ENV-PRODUCT-RT-EZBRIDGE VALUE 'EZB '. MQPDISP".
88 ENV-PRODUCT-RT-MQM VALUE 'MQM 10 ENV-MT-QUEUE-PROGRAM PIC X(8) VALUE
CRaTH 'MQPMQUE'.

88 ENV-PRODUCT-RT-BOTH VALUE 'BOTH'. 10 ENV-MT-QUEUEI-PROGRAM PIC X(8) VALUE
'MQPMQUE'.

05 ENV-LANG-INFO. 10 ENV-MT-COM-PROGRAM PIC X(8) VALUE
10 ENV-LANGUAGE-FILE-CODE PIC 99 VALUE 01. 'MQPMCOM ' .

10 ENV-LANGUAGE PIC X(24) 10 ENV-MT-COMI-PROGRAM PIC X(8) VALUE
VALUE 'ENGLISH'. 'MQPMCOM' .

05 ENV-DATE-FORMAT PIC 99 VALUE 01. 10 ENV-MT-SYS-PROGRAM PIC X(8) VALUE

88 ENV-DATE-MMDDYY VALUE 01. MQPMSYS "

85 ENV-DATE-YYNMDD VALUE 02 10 ENV-MT-SYSI-PROGRAM PIC X(8) VALUE

-DATE- . 'MQPMSYS .

88 ENV-DATE-YYDDMM VALUE 03. 10 ENV-MT-MONQ-PROGRAM PIC X(8) VALUE

88 ENV-DATE-YYDDD VALUE 04. “MQPMMOQ ' .

88 ENV-DATE-DDMMYY VALUE 05. 10 ENV-MT-MONC-PROGRAM PIC X(8) VALUE

'MQPMMOC ' .
10 ENV-MT-SS-PROGRAM PIC X(8) VALUE
03 ENV-DATA-FOR-TRAN. MQPMSS' .
10 ENV-MT-SC-PROGRAM PIC X(8) VALUE
'MQPMSC' .
05 ENV-MASTER-TERMINAL-TRAN. IOQENV-MT-SI-PROGRAM PIC X(8) VALUE
10 ENV-MT-MASTER-TASK-ID PIC X(4) VALUE "MQPMSI ' .
TMQMT' .
10 ENV-MT-SR-PROGRAM PIC X(8) VALUE
10 ENV-MT-CONFIG-TASK-ID PIC X(4) VALUE 'MQPMMSN ' . ()
"MQMC' .
10 ENV-MT-SD-PROGRAM PIC X(8) VALUE
10 ENV-MT-MONITOR-TASK-ID PIC X(4) VALUE 'MQPMDEL ' . ()
MQMM' .
10 ENV-MT-CMD-PROGRAM PIC X(8) VALUE

10 ENV-MT-OPER-TASK-ID PIC X(4) VALUE 'MQMO'. "MQPCMD" . (8)

10 ENV-MT-DISP-TASK-ID PIC X(4) VALUE 'MQBQ'. 10 FILLER PIC X(8) VALUE SPACES.
}%Q%‘{-MT-QUEUE-TASK-ID PIC X(4) VALUE 10 FILLER PIC X(8) VALUE SPACES.
1.?4QED'\$‘{'_MT'QUEUEI'TASK'ID PIC X(4) VALUE 05 ENV-INTERNAL-ITEMS-PROGRAMS .

10 ENV-MT -COM-TASK-1D PIC X(4) VALUE 'MQMH' . 10 ENV-IT-LINK-ERROR PIC X(8) VALUE 'MQPERR

10 ENV-MT-COMI-TASK-ID PIC X(4) VALUE 'MQDH'. 10 ENV-II-LINK-EIB1 PIC X(8) VALUE

10 ENV-MT-SYS-TASK-1ID PIC X(4) VALUE 'MQMS'. 'MQPEIBI '.

10 ENV-MT-SYSI-TASK-ID PIC X(4) VALUE 'MQDS'. 10 ENV-II-LINK-AIPO PIC X(8) VALUE

10 ENV-MT-MONQ-TASK-ID PIC X(4) VALUE 'MQQM'. 'MQPAIPO '.

10 ENV-MT-MONC-TASK-ID PIC X(4) VALUE 'MQCM'. 10 ENV-II-LINK-AIP1 PIC X(8) VALUE

10 ENV-MT-SS-TASK-ID PIC X(4) VALUE 'MQMA'. ‘MQPAIPL *.

10 ENV-MT-SC-TASK-1D PIC X(4) VALUE 'MQMB'. 1'?4 EPA\{%I-ILINK-AIPZ PIC X(8) VALUE

10 ENV-MT-SI-TASK-ID PIC X(4) VALUE 'MQMI'. Q :

10 ENV-MT-SR-TASK-ID PIC X(4) VALUE 'MQMR'. 10 ENV-11-LINK-ECHO PIC X(8) VALUE

10 ENV-MT-SD-TASK-1D PIC X(4) VALUE 'MQMD'. 'MQPECHO .

10 FILLER PIC X(4) VALUE SPACES. 10 ENV-II-LINK-FINDQ PIC X(8) VALUE

10 FILLER PIC X(4) VALUE SPACES. "MQPFINDQ' .

10 FILLER PIC X(4) VALUE SPACES. 10 ENV-II-LINK-QUE1 PIC X(8) VALUE

'MQPQUEL '.
05 ENV-INTERNAL-ITEMS-TRAN. 10 ENV-II-LINK-QUE2 PIC X(8) VALUE

10 ENV-II-MONITOR PIC X(4) VALUE 'MQSM'. MQPQUEZ *.

10 ENV-II-M-RECOVERY PIC X(4) VALUE 'MQSR'. }%QE”}K'I%IITUNK'INIU PIC X(8) VALUE

10 ENV-II-Q-RECOVERY PIC X(4) VALUE 'MQSQ'. 10 ENV-T1-L INK-INIT2 PIC X(8) VALUE

10 ENV-II-START-STOP PIC X(4) VALUE 'MQSS'. 'MQPINITZ' .

10 ENV-II-TRAN-AIP2 PIC X(4) VALUE 'MQO02'. 10 ENV-II-LINK-SSQ PIC X(8) VALUE 'MQPSSQ
10 ENV-II-TRAN-COM-CHECKP PIC X(4) VALUE .

‘MQcP'. 10 ENV-II-LINK-SCHK PIC X(8) VALUE
'MQPSCHK '.

228 IBM MQSeries for VSE/ESA User's Guide

10 ENV-II-LINK-SREC
'MQPSREC '.
10 ENV-II-LINK-QRECOVERY
'MQPQREC '.
10 ENV-II-LINK-SENDER
'MQPSEND '.
10 ENV-II-LINK-RECIEVER
'MQPRECV '.
10 ENV-II-LINK-COM-CHECKP
"MQPCCKPT".
10 ENV-II-LINK-QUE-DELETE
"MQPQDEL" .
10 ENV-II-LINK-SET-MAP
'MQPSMAP " .
10 ENV-II-LINK-LU2L
'MQPLU21" .
10 ENV-II-LINK-LU33
'MQPLU33".

10 FILLER

10 FILLER

10 FILLER

03 ENV-DATA-FOR-MAPS.

05 ENV-MASTER-TERMINAL-MAPS.

10 ENV-MT-MASTER-MAPSCREEN
'MQMMTP'

10 ENV-MT-CONFIG-MAPSCREEN
'MQMMCFG " .

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

10 ENV-MT-MONITOR-MAPSCREEN PIC

"MQMMMON ' .
10 ENV-MT-OPER-MAPSCREEN
'MQMMOPR ' .

10 ENV-MT-DISP-MAPSCREEN
'MQMDISP '

10 ENV-MT-QUEUE-MAPSCREEN
'MQMMQUE ' .

10 ENV-MT-QUEUEI-MAPSCREEN
'MQMMQUE ' .

10 ENV-MT-COM-MAPSCREEN
"MQMMCOM ' .

10 ENV-MT-COMI -MAPSCREEN
'MQMMCOM ' .

10 ENV-MT-SYS-MAPSCREEN
'MQMMSYS '

10 ENV-MT-SYSI-MAPSCREEN
'MQMMSYS '

10 ENV-MT-MONQ-MAPSCREEN
'MQMMMOQ ' .

10 ENV-MT-MONC-MAPSCREEN
"MQMMMOC ' .

10 ENV-MT-SS-MAPSCREEN
'MQMMSS ' .

10 ENV-MT-SC-MAPSCREEN
'MQMMSC' .

10 ENV-MT-SI-MAPSCREEN
'MQMMST' .

10 ENV-MT-SR-MAPSCREEN
'MQMMMSN ' .

10 ENV-MT-SD-MAPSCREEN
'MQMMDEL ' .

10 FILLER

10 FILLER

10 FILLER

03 ENV-DATA-FOR-CONSTANTS.

05 ENV-CONFIG-DDNAME

'MQFCNFG'.

05 ENV-SYSTEM-NUMBER
05 ENV-MASTER-TERMINAL-CONS.

10 ENV-MT-TITLE

05 ENV-INTERNAL-ITEMS-CONS.

10 ENV-II-ERROR-TD
10 ENV-II-ERROR-CSMT

10 ENV-II-SYSTEM-ANCHOR
'MQTAQM'.

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)

X(8)

X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)
X(8)

X(8)

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.

PIC X(8) VALUE

PIC 9(4) VALUE 1.

PIC X(40) VALUE
IBM MQSeries for VSE/ESA Version 1 '.

PIC X(4) VALUE 'MQER'.
PIC X(4) VALUE 'CSMT'.

PIC X(8) VALUE

10 ENV-II-SYSTEM-PREFIX
10 ENV-II-DUMPCODE
10 ENV-TI-ENQ-INIT1

'MQPINITL'.

10 ENV-II-SYSTEM-ENVIR

PIC X(4) VALUE 'MQI '.
PIC X(4) VALUE 'MQ??'.

PIC X(8) VALUE

PIC X(8) VALUE 'MQTENV

10 ENV-IT-UN-INIT-MSG
'MQ900000: MQSERIES VSE ENVIRONMENT not initialized.'.
PIC X(80) VALUE SPACES.

10 FILLER

PIC X(80) VALUE

*kk

COPYBOOK: MQICENV

* COMMON PARMS

01 FILLER
01 WS-HCONN-ADDR-AREA.
05 WS-HCONN-VALUE

01 WS-HOBJ-ADDR-AREA.
05 WS-HOBJ-VALUE

01 WS-HOBJ-ADDR-AREA-REPLY.
05 WS-HOBJ-VALUE-REPLY

01 WS-CCODE-ADDR-AREA.
05 WS-CCODE-VALUE

01 WS-RCODE-ADDR-AREA.
05 WS-RCODE-VALUE

PIC X(8) VALUE

'PARMS:--".

USAGE POINTER.

USAGE POINTER.

USAGE POINTER.

PIC S9(8) COMP.

PIC S9(8) COMP.

*--CONNECT

*--0PEN

*

PARM
01 WS-QM-NAME-AREA.

05 WS-QM-NAME-CONNECT

PARM
01 WS-Q-NAME-AREA.
COPY CMQODV.

*/INCLUDE CMQODV
*/INCLUDE COPYR

PIC X(48).

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: cmQopv
DESCRIPTIVE NAME:
VERSION 1.4.0

FUNCTION:

COBOL copy file for MQOD structure

This file declares the MQOD structure,

which forms part of the IBM Message
Queue Interface (MQI).

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

MQOD structure
10 MQOD.

Structure identifier

15 MQOD-STRUCID
Structure version number

15 MQOD-VERSION
Object type

15 MQOD-OBJECTTYPE
Object name

15 MQOD-0BJECTNAME
Object queue manager name

15 MQOD-OBJECTQMGRNAME
Dynamic queue name

15 MQOD-DYNAMICQNAME
Alternate user identifier

PIC

PIC

PIC

PIC

P

—_

[

PIC

15 MQOD-ALTERNATEUSERID PIC

X(4) VALUE 'OD

$9(9)
S9(9)
X(48)
X(48)
X(48)

X(12)

BINARY

BINARY

VALUE 1.

VALUE 1.

VALUE SPACES.

VALUE SPACES.

VALUE

Tkl

VALUE SPACES.

Appendix D. Sample programs 229

01 WS-Q-OPEN-OPTIONS.
05 WS-Q-OPEN-OPTIONS-VALUE
EJECT

*_-INQ

01 MQI-SECTOR-COUNT.
05 WS-SECTOR-COUNT
01 MQI-SECTOR.
05 WS-SECTOR

01 MQI-IN-ATTR-COUNT.
05 WS-IN-ATTR-COUNT
01 MQI-IN-ATTR.
05 WS-IN-ATTR

01 MQI-CHAR-ATTR-LENGTH.
05 WS-CHAR-ATTR-LENGTH
01 MQI-CHAR-ATTR.
05 WS-CHAR-ATTR

*--PUT/GET PARM

*

01 WS-MSG-DESCRIPTOR.
COPY CMQMDV.

*/INCCLUDE CMQMDV
*/INCLUDE COPYR

PI

o

S9(8) COMP.

PI

o

$9(8) COMP.

PIC XXXX.

PI

o

S9(8) CoMP.

PIC XXXX.

PI

o

S9(8) CoMP.

PIC XXXX.

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: CcmQMbyV
DESCRIPTIVE NAME:
VERSION 1.4.0

FUNCTION:

COBOL copy file for MQMD structure

This file declares the MQMD structure,

which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

MQMD structure
10 MQMD.
Structure identifier
15 MQMD-STRUCID PIC
Structure version number

15 MQMD-VERSION PIC
Reserved

15 MQMD-REPORT PIC
Message type

15 MQMD-MSGTYPE PIC
Reserved

15 MQMD-EXPIRY PIC
Feedback code

15 MQMD-FEEDBACK PIC
Data encoding

15 MQMD-ENCODING PIC

Coded character set identifier

15 MQMD-CODEDCHARSETID PIC
Format name
15 MQMD-FORMAT PIC

Reserved

15 MQMD-PRIORITY PIC
Message persistence

15 MQMD-PERSISTENCE PIC
Message identifier

15 MQMD-MSGID PIC
Correlation identifier

15 MQMD-CORRELID PIC
Reserved

15 MQMD-BACKOUTCOUNT PIC
Name of reply queue

15 MQMD-REPLYTOQ PIC

X(4) VALUE 'MD .

S9(9) BINARY VALUE 1.

S9(9) BINARY VALUE 0.

S9(9) BINARY VALUE 8.

S9(9) BINARY VALUE -1.

S9(9) BINARY VALUE 0.

S9(9) BINARY VALUE

S9(9) BINARY VALUE 0.

X(8) VALUE SPACES.
S9(9) BINARY VALUE 0.
S9(9) BINARY VALUE 2.
X(24) VALUE LOW-VALUES.
X(24) VALUE LOW-VALUES.
S9(9) BINARY VALUE 0.

X(48) VALUE SPACES.

230 IBM MQSeries for VSE/ESA User's Guide

** Name of reply queue manager
15 MQMD-REPLYTOQMGR
** Reserved
15 MQMD-USERIDENTIFIER
** Reserved
15 MQMD-ACCOUNTINGTOKEN
xk Reserved
15 MQMD-APPLIDENTITYDATA
xk Reserved
15 MQMD-PUTAPPLTYPE
xk Reserved
15 MQMD-PUTAPPLNAME
xk Reserved
15 MQMD-PUTDATE
xk Reserved
15 MQMD-PUTTIME
xk Reserved
15 MQMD-APPLORIGINDATA

01 WS-PUT-OPTIONS.
* COPY CMQPMOV.
*/INCLUDE CMQPMOV
*/INCLUDE COPYR

PIC

PIC

PIC

PIC

PIC

PIC

PI

o

PI

o

PI

o

X(48) VALUE SPACES.

X(12) VALUE SPACES.
X(32) VALUE LOW-VALUES.
X(32) VALUE SPACES.
S9(9) BINARY VALUE 0.
X(28) VALUE SPACES.
X(8) VALUE SPACES.
X(8) VALUE SPACES.

X(4) VALUE SPACES.

*%

** FILE NAME:

*%

** DESCRIPTIVE NAME:

*%

** VERSION 1.4.0

*%

** FUNCTION:

CMQPMOV

COBOL copy file for MQPMO structure

This file declares the MQPMO structure,

o which forms part of the IBM Message
ol Queue Interface (MQI).

*%

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

** MQPMO structure
10 MQPMO.
xk Structure identifier
15 MQPMO-STRUCID
*k Structure version number
15 MQPMO-VERSION
xk Reserved
15 MQPMO-OPTIONS
xk Reserved
15 MQPMO-TIMEOUT
xk Reserved
15 MQPMO-CONTEXT
xk Reserved
15 MQPMO-KNOWNDESTCOUNT
xk Reserved
15 MQPMO-UNKNOWNDESTCOUNT
xk Reserved
15 MQPMO-INVALIDDESTCOUNT

PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

X(4) VALUE 'PMO '.

S9(9) BINARY VALUE 1.
S9(9) BINARY VALUE 0.
S9(9) BINARY VALUE -1.
S9(9) BINARY VALUE 0.
S9(9) BINARY VALUE 0.
S9(9) BINARY VALUE 0.
S9(9) BINARY VALUE 0.

e Resolved name of destination queue

15 MQPMO-RESOLVEDQNAME

PIC

X(48) VALUE SPACES.

e Resolved name of destination queue manager
15 MQPMO-RESOLVEDQMGRNAME PIC X(48) VALUE SPACES.

01 WS-GET-OPTIONS.
* COPY CMQGMOV.
*/INCLUDE CMQGMOV
*/INCLUDE COPYR

*%

** FILE NAME:

*%

CMQGMOV

*

*%

** VERSION 1.4.0

* DESCRIPTIVE NAME: COBOL copy file for MQGMO structure

*k

*%

*%

*%

*%

*% *%

**% FUNCTION: This file declares the MQGMO structure, **

*x which forms part of the IBM Message wx
*x Queue Interface (MQI). **
*k *k

** MQGMO structure

10 MQGMO.
*x Structure identifier

15 MQGMO-STRUCID PIC X(4) VALUE 'GMO '.
*x Structure version number

15 MQGMO-VERSION PIC S9(9) BINARY VALUE 1.
i Options

15 MQGMO-OPTIONS PIC S9(9) BINARY VALUE 0.
*x Wait interval

15 MQGMO-WAITINTERVAL PIC S9(9) BINARY VALUE 0.
*x Signal

15 MQGMO-SIGNAL1 PIC S9(9) BINARY VALUE 0.
*x Reserved

15 MQGMO-SIGNAL2 PIC S9(9) BINARY VALUE 0.

*x Resolved name of destination queue
15 MQGMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.

01 WS-DATA-L-AREA.

05 WS-DATA-LENGTH-USER
+200.

PIC S9(8) COMP VALUE

01 WS-BUFFER-L-AREA.
05 WS-BUFFER-LENGTH

77 WS-MSG-LENGTH
01 WS-MSG-AREA.
05 FILLER

PIC S9(8) COMP VALUE +200.
PIC S9(8) COMP VALUE +200.

PIC X(500) VALUE

'THIS IS A MESSAGE TEXT'.

01 WS-BUFFER-AREA.
05 WS-BUFFER-TS
05 WS-BUFFER-TEXT

PIC X(16) VALUE SPACES.
PIC X(500) VALUE SPACES.

01 WS-ORIGINAL-BUFFER-AREA.
05 FILLER
'THIS IS A MESSAGE TEXT'.

PIC X(200) VALUE

K e e e *
EJECT
K e e o o *
LINKAGE SECTION.
K e e e e o o o *
01 LK-DATA.
05 FILLER PIC X(1000).
EJECT
K e e e o *
PROCEDURE DIVISION.
* *

0000-MAIN-LINE.

*--INITIALIZE
MOVE 'INIT ' TO WS-LEVEL.
PERFORM 1000-INITIALIZE
THRU 1000-EXIT.

PERFORM 1 TIMES

*--SEND QUEUE RECORDS
IF WS-PUT OR WS-BOTH
THEN
PERFORM 2000-PUT-MESSAGES
THRU 2000-EXIT

END-IF
*--GET QUEUE RECORDS
IF WS-GET OR WS-BOTH
THEN
PERFORM 3000-GET-MESSAGES
THRU 3000-EXIT
END-IF

IF WS-PUT1
THEN
PERFORM 4000-PUT1-MESSAGES
THRU 4000-EXIT
END-IF

IF WS-GET-WITH-DELETE
THEN
PERFORM 5000-GETD-MESSAGES
THRU 5000-EXIT
END-IF

IF WS-PUT-WITH-REPLY
THEN
PERFORM 6000-PUT-WITH-REPLY
THRU 6000-EXIT
END-IF

END-PERFORM.
0000-SEND-TOTALS.
IF NOT WS-STARTED
THEN
PERFORM 7000-SEND-TOTALS.

0000-RETURN.
EXEC CICS RETURN

END-EXEC.
GOBACK.

EJECT
K e e e e e o o o *

1000-INITIALIZE.
K e e e e o o o o *
* PURPOSE: SETUP DATA AREAS
* *

*--GET STARTED CICS CODE
EXEC CICS ASSIGN
STARTCODE (WS-STARTCODE)
END-EXEC.
*
*--SET TIME/DATE
EXEC CICS ASKTIME
ABSTIME (WS-ABSTIME)
END-EXEC.

EXEC CICS FORMATTIME
ABSTIME (WS-ABSTIME)
YYMMDD (WS-DATE-YYMMDD)
END-EXEC.

IF WS-DATE-YY > 50
THEN
MOVE 19 TO WS-DATE-CC
ELSE
MOVE 20 TO WS-DATE-CC.
MOVE EIBTIME TO WS-TIME-9.
EXEC CICS FORMATTIME
ABSTIME (WS-ABSTIME)
MMDDYY (WS-FORMATTED-DATE)
DATESEP ('/')
TIME (WS-FORMATTED-TIME)

Appendix D. Sample programs 231

TIMESEP (':') GO TO 0000-RETURN.

END-EXEC.
* *--D0 VARIABLE MOVE
*_-GET INPUT INFO... CALL 'MQPMOVE' USING WS-DATA-WITH-QUEUE
IF START-WITH-DATA LK-DATA
THEN WS-DATA-LENGTH.
PERFORM 1100-PASSED-INFO
ELSE *
PERFORM 1200-SETUP-INPUT. MOVE WS-DATA-TIMES TO WS-PROCESS-TIMES.
IF WS-PROCESS-TIMES EQUAL ZERO
*_-SET COMMON ERROR INFO THEN
MOVE ZERD TO ERR-CODE. MOVE 100 TO WS-PROCESS-TIMES.
MOVE 'TTPTST2' TO ERR-PROGRAM. *
* *--IF REPLY ..SEND AND GET
IF NOT WS-PUT-WITH-REPLY
S * THEN
1000-EXIT. 60 TO 1000-EXIT.
EXIT. *
*--IF REPLY ..SEND AND GET
EJECT EXEC CICS SEND
S * FROM (WS-NEED-REPLY)
1100-PASSED- INFO. LENGTH (LENGTH OF WS-NEED-REPLY)
S * ERASE
* PURPOSE: SETUP PASSED DATA AREAS END-EXEC.
K e e e e e e ———— ———— *
*--GET PASSED DATA EXEC CICS RECEIVE
MOVE LENGTH OF WS-PASSED-INFO TO WS-PASS-MSG-LENGTH. SET (ADDRESS OF LK-DATA)
EXEC CICS RETRIEVE LENGTH (WS-DATA-LENGTH)
INTO (WS-PASSED-INFO) END-EXEC.
LENGTH (WS-PASS-MSG-LENGTH)
END-EXEC. IF WS-DATA-LENGTH > 48
THEN
IF WS-PASS-MSG-LENGTH < LENGTH OF WS-PASSED-INFO MOVE +48 TO WS-DATA-LENGTH.
THEN
GO TO 0000-RETURN. *--D0 VARIABLE MOVE
* CALL 'MQPMOVE' USING WS-REPLY-Q
SET WS-STARTED TO TRUE. LK-DATA
MOVE TST2-FUNCTION TO WS-DATA-FUNCTION. WS-DATA-LENGTH.
MOVE TST2-PUT-NUM-MSG TO WS-PROCESS-TIMES.
MOVE TST2-PUT-QUEUE-NAME TO WS-DATA-QUEUE. *
MOVE TST2-PUT-MSG-SIZE TO WS-MSG-LENGTH. K e e e o o e e
MOVE TST2-PUT-MSG TO WS-MSG-AREA. EJECT
MOVE TST2-PUT-MSG-TIMESTAMP TO WS-TIMESTAMP. K e e e o e e e
2000-PUT-MESSAGES.
K e e e e e e e * K e e e e e e o o o o o o o
EJECT * PURPOSE: CONNECT , OPEN
K e e e e e e e * * PUT
1100-SEND-HELP. * CLOSE, DISCONNECT
K e e e e e e * K e e e e e e o o o o o o o o
*_-SEND HELPLIST *
EXEC CICS SEND *--MQCONNECT TO QM
FROM (WS-HELP) MOVE 'CONNECT' TO WS-FUNCTION.
LENGTH (LENGTH OF WS-HELP) MOVE SPACES TO WS-QM-NAME-CONNECT.
ERASE MOVE MQCC-0K TO WS-CCODE-VALUE.
END-EXEC. MOVE MQRC-NONE TO WS-RCODE-VALUE.
SET WS-HCONN-VALUE TO NULL.
S * CALL 'MQCONN' USING WS-QM-NAME-AREA
EJECT WS -HCONN-ADDR-AREA
S S * WS -CCODE-ADDR-AREA
1200-SETUP-INPUT. WS-RCODE-ADDR-AREA .
K e e e e e e e * *
*--GET DATA IF WS-CCODE-VALUE ~ NOT EQUAL ZERO
EXEC CICS RECEIVE THEN
SET (ADDRESS OF LK-DATA) GO TO 9900-ERR-DISPLAY.
LENGTH (WS-DATA-LENGTH) *
END-EXEC. *--MQOPEN QUEUE TO QM
MOVE 'OPEN' TO WS-FUNCTION.
*_-CHECK WHAT WE'RE DOING MOVE MQOO-OUTPUT ~ TO WS-Q-OPEN-OPTIONS-VALUE.
*.- --COMMAND IS "TST2 GET 01 QUEUENAME" MOVE SPACES TO MQOD-OBJECTQMGRNAME.
IF (WS-DATA-LENGTH < LENGTH OF WS-DATA-WITH-FUNCTION) MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
OR (WS-DATA-LENGTH > LENGTH OF WS-DATA-ALL) MOVE MQCC-OK TO WS-CCODE-VALUE.
THEN MOVE MQRC-NONE TO WS-RCODE-VALUE.
PERFORM 1100-SEND-HELP SET WS-HOBJ-VALUE TO NULL.

232 IBM MQSeries for VSE/ESA User's Guide

CALL 'MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA *--MQDISC FROM QM
WS-Q-OPEN-OPTIONS MOVE 'DISCONN' TO WS-FUNCTION.
WS-HOBJ-ADDR-AREA MOVE MQCC-0K TO WS-CCODE-VALUE.
WS-CCODE-ADDR-AREA MOVE MQRC-NONE TO WS-RCODE-VALUE.
WS-RCODE-ADDR-AREA. CALL 'MQDISC' USING

* WS-HCONN-ADDR-AREA
IF WS-CCODE-VALUE NOT EQUAL ZERO WS-CCODE-ADDR-AREA
THEN WS-RCODE-ADDR-AREA.

GO TO 9900-ERR-DISPLAY. *

IF WS-CCODE-VALUE NOT EQUAL ZERO
S * THEN

PERFORM ~ WS-PROCESS-TIMES TIMES GO TO 9900-ERR-DISPLAY.

*--CHECK IF MUST PUT TIME STAMP ON MESSAGE K e e e e o e e e e *
IF WS-PUT-TIMESTAMP 2000-EXIT.
THEN EXIT.
PERFORM 8000-GET-TIME-STAMP EJECT
MOVE WS-TIMESTAMP-VALUE TO WS-BUFFER-TS e e e e o e e e *

MOVE LENGTH OF WS-BUFFER-TS
TO WS-BUFFER-LENGTH S *

ADD WS-MSG-LENGTH TO WS-BUFFER-LENGTH * PURPOSE: CONNECT , OPEN

MOVE WS-MSG-AREA TO WS-BUFFER-TEXT * GET
ELSE * CLOSE, DISCONNECT
MOVE WS-MSG-LENGTH TO WS-BUFFER-LENGTH K e e e e e e e e e *
MOVE WS-MSG-AREA TO WS-BUFFER-AREA *
END- IF *--MQCONNECT TO QM

MOVE 'CONNECT' TO WS-FUNCTION.
MOVE SPACES TO WS-QM-NAME.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.
SET WS-HCONN-VALUE TO NULL

CALL 'MQCONN' USING WS-QM-NAME-AREA

*--MQPUT TO QUEUE TO QM
MOVE 'PUT' TO WS-FUNCTION
MOVE MQCC-O0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE
CALL 'MQPUT' USING WS-HCONN-ADDR-AREA

WS-HOBJ-ADDR-AREA
WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS

WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

WS-BUFFER-L-AREA *
WS-BUFFER-AREA IF WS-CCODE-VALUE NOT EQUAL ZERO
WS-CCODE-ADDR-AREA THEN
WS-RCODE-ADDR-AREA GO TO 9900-ERR-DISPLAY.
* *
IF WS-CCODE-VALUE NOT EQUAL ZERO *--MQOPEN QUEUE TO QM
THEN MOVE 'OPEN' TO WS-FUNCTION.
GO TO 9900-ERR-DISPLAY MOVE MQOO-INPUT-SHARED TO WS-Q-OPEN-OPTIONS-VALUE.
END-IF MOVE SPACES TO MQOD-OBJECTQMGRNAME.
ADD +1 TO WS-COUNT MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE TO NULL
CALL 'MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA

*--SYNPOINT PUT SO ECHO CAN GET IT
*-- --CHECK IF "NEGATIVE " PROCESSING OPTION SPECIFIED
IF WS-DATA-SYNC-FLAG NOT EQUAL '-

THEN WS-Q-OPEN-OPTIONS
EXEC CICS SYNCPOINT WS-HOBJ-ADDR-AREA
END- EXEC WS-CCODE-ADDR-AREA
END- IF WS-RCODE-ADDR-AREA.
*
END-PERFORM. IF WS-CCODE-VALUE NOT EQUAL ZERO
S * THEN

GO TO 9900-ERR-DISPLAY.
*--MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO WS-FUNCTION.

MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE. K e e e o e e o e o e *
MOVE MQCC-OK TO WS-CCODE-VALUE. PERFORM WS-PROCESS-TIMES ~ TIMES
MOVE MQRC-NONE TO WS-RCODE-VALUE. *
CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA *--MQGET TO QUEUE TO QM
WS-HOBJ-ADDR-AREA MOVE 'GET' TO WS-FUNCTION

WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

MOVE MQCC-0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE
MOVE 500 TO WS-BUFFER-LENGTH

* MOVE MQGMO-ACCEPT-TRUNCATED-MSG
IF WS-CCODE-VALUE NOT EQUAL ZERO TO MQGMO-OPTIONS
THEN MOVE SPACES TO MQMD-MSGID

GO TO 9900-ERR-DISPLAY. MQMD-CORRELID

Appendix D. Sample programs 233

USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-DATA-L-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

CALL 'MQGET'

IF (WS-CCODE-VALUE
THEN
IF WS-RCODE-VALUE EQUAL 2079
THEN
SET WS-TRUNCATED-MESSAGES TO TRUE
ELSE
IF WS-RCODE-VALUE EQUAL 2033
THEN
SET WS-END-OF-MESSAGES TO TRUE
GO TO 3000-GET-EOF
ELSE
GO TO 9900-ERR-DISPLAY
END-IF
END-IF

NOT EQUAL ZERO)

END-IF

*-- --CHECK IF "NEGATIVE " PROCESSING OPTION SPECIFIED

IF WS-DATA-SYNC-FLAG NOT EQUAL '-'

THEN
EXEC CICS SYNCPOINT
END-EXEC
END-IF
ADD +1 TO WS-COUNT

END-PERFORM.

3000-GET-EQF.
*--MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO
MOVE ZERO T0
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.
CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

WS-FUNCTION.
WS-Q-OPEN-OPTIONS-VALUE.

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO
GO TO 9900-ERR-DISPLAY.

*--MQDISC FROM QM
MOVE 'DISCONN' TO
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
CALL 'MQDISC' USING

WS-FUNCTION.
WS-CCODE-VALUE.
WS-RCODE-VALUE.

WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO
GO TO 9900-ERR-DISPLAY.

3000-EXIT.
EXIT.
EJECT

4000-PUT1-MESSAGES.

234 1BM MQSeries for VSE/ESA User's Guide

* PURPOSE: CONNECT , OPEN

*--MQCONNECT TO QM

PUT

CLOSE, DISCONNECT
___ *

MOVE 'CONNECT' TO WS-FUNCTION.

PERFORM

MOVE SPACES T0

WS-QM-NAME-CONNECT.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.
SET WS-HCONN-VALUE TO NULL.

CALL "MQCONN'

IF WS-CCODE-VALUE

THEN

USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY.

WS-PROCESS-TIMES ~ TIMES

*--CHECK IF MUST PUT TIME STAMP ON MESSAGE
IF WS-PUT-TIMESTAMP
THEN

*--MQPUT1

*--MQDISC

PERFORM 8000-GET-TIME-STAMP

MOVE WS-TIMESTAMP-VALUE TO WS-BUFFER-TS

MOVE LENGTH OF WS-BUFFER-TS

TO WS-BUFFER-LENGTH

TO WS-BUFFER-LENGTH
TO WS-BUFFER-TEXT

ADD WS-MSG-LENGTH
MOVE WS-MSG-AREA

ELSE

MOVE WS-MSG-LENGTH
MOVE WS-MSG-AREA

TO WS-BUFFER-LENGTH
TO WS-BUFFER-AREA

END-IF

QUEUE TO QM
MOVE 'PUTL' TO WS-FUNCTION
MOVE MQOO-OUTPUT TO MQPMO-OPTIONS

MOVE SPACES TO MQOD-OBJECTQMGRNAME
MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME
MOVE MQCC-O0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE

USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

CALL 'MQPUTI'

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY
END-IF

END-PERFORM.

FROM QM

MOVE 'DISCONN' TO
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
CALL "MQDISC' USING

WS-FUNCTION.
WS-CCODE-VALUE.
WS-RCODE-VALUE.

WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY.

4000-EXIT.

EXIT.

EJECT

* PURPOSE:

*

*

*

*

CONNECT , OPEN
GET

CLOSE, DISCONNECT

*--MQCONNECT TO QM

*

*--MQOPEN

MOVE 'CONNECT' TO

MOVE SPACES T0

MOVE MQCC-O0K TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL.

CALL 'MQCONN' USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

WS-FUNCTION.
WS-QM-NAME.

IF WS-CCODE-VALUE NOT EQUAL ZERO

THEN
GO TO 9900-ERR-DISPLAY.
QUEUE TO QM
MOVE 'OPEN' TO WS-FUNCTION.
MOVE MQOO-BROWSE TO WS-Q-OPEN-OPTIONS-VALUE.
MOVE SPACES TO MQOD-OBJECTQMGRNAME.
MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME.
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE ~TO NULL.

CALL 'MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS
WS-HOBJ-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE
THEN

NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY.

PERFORM ~ WS-PROCESS-TIMES ~ TIMES

*--MQGET TO QUEUE TO QM

MOVE 'GET' TO
MOVE MQCC-OK TO WS-CCODE-VALUE

MOVE MQRC-NONE TO WS-RCODE-VALUE

MOVE 500 TO WS-BUFFER-LENGTH

MOVE MQGMO-BROWSE-FIRST ~ TO MQGMO-OPTIONS
ADD MQGMO-ACCEPT-TRUNCATED-MSG

TO MQGMO-OPTIONS
TO MQMD-MSGID
MQMD-CORRELID

WS-FUNCTION

MOVE SPACES

CALL 'MQGET' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-DATA-L-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

*-- --CHECK RC
IF (WS-CCODE-VALUE
THEN
IF WS-RCODE-VALUE EQUAL 2079
THEN

NOT EQUAL ZERO)

SET WS-TRUNCATED-MESSAGES TO TRUE

ELSE
IF WS-RCODE-VALUE EQUAL 2033
THEN

SET WS-END-OF-MESSAGES TO TRUE

GO TO 5000-GET-EOF
ELSE
GO TO 9900-ERR-DISPLAY
END-IF
END-IF
END-IF

*--MQGET TO QUEUE TO QM W/ DELETE UNDER CURSOR
MOVE 'GET' TO WS-FUNCTION
MOVE MQCC-0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE
MOVE MQGMO-MSG-UNDER-CURSOR
MOVE 500 TO WS-BUFFER-LENGTH
MOVE SPACES TO MQMD-MSGID
MQMD-CORRELID
CALL "MQGET' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-DATA-L-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

IF (WS-CCODE-VALUE
THEN
IF WS-RCODE-VALUE EQUAL 2079
THEN

NOT EQUAL ZERO)

SET WS-TRUNCATED-MESSAGES TO TRUE

ELSE
GO TO 9900-ERR-DISPLAY
END-IF
END-IF

*--ADDED 4/ 5/93
*-- --CHECK IF "NEGATIVE " PROCESSING OPTION SPECIFIED
IF WS-DATA-SYNC-FLAG NOT EQUAL '-'

THEN
EXEC CICS SYNCPOINT
END-EXEC
END-IF
ADD +1 TO WS-COUNT

END-PERFORM.

5000-GET-EOF .
*
*-_MQCLOSE QUEUE TO QM
MOVE 'CLOSE' TO
MOVE ZERO T0
MOVE MQCC-OK TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.
CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR- AREA
WS-Q-OPEN-OPTIONS
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

WS-FUNCTION.

IF WS-CCODE-VALUE NOT EQUAL ZERO

Appendix D. Sample programs 235

TO MQGMO-OPTIONS

WS-Q-OPEN-OPTIONS-VALUE.

THEN PERFORM 8000-GET-TIME-STAMP
GO TO 9900-ERR-DISPLAY. MOVE WS-TIMESTAMP-VALUE TO WS-BUFFER-TS
ADD WS-MSG-LENGTH LENGTH OF WS-BUFFER-TS
GIVING WS-BUFFER-LENGTH
TO WS-BUFFER-TEXT

*--MQDISC FROM QM
MOVE 'DISCONN' TO WS-FUNCTION.
MOVE MQCC-0K TO WS-CCODE-VALUE. ELSE
MOVE MQRC-NONE TO WS-RCODE-VALUE.
CALL "MQDISC' USING

MOVE WS-MSG-AREA

MOVE WS-MSG-LENGTH
MOVE WS-MSG-AREA

TO WS-BUFFER-LENGTH
TO WS-BUFFER-AREA

WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO

THEN
GO TO 9900-ERR-DISPLAY.
K e e e e o o *
5000-EXIT.
EXIT.
EJECT
* *

* PURPOSE: CONNECT , OPEN

* PUT
* CLOSE, DISCONNECT
* *

*--MQCONNECT TO QM
MOVE 'CONNECT' TO WS-FUNCTION.
MOVE SPACES TO WS-QM-NAME-CONNECT.

MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HCONN-VALUE TO NULL

CALL "'MQCONN' USING WS-QM-NAME-AREA
WS-HCONN-ADDR-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

*--MQOPEN QUEUE FOR REPLY QUEUE
MOVE 'OPEN' TO WS-FUNCTION.
MOVE MQOO-INPUT-SHARED TO WS-Q-OPEN-OPTIONS-VALUE.
MOVE MQMT-REQUEST TO MQMD-MSGTYPE.
MOVE SPACES TO MQMD-REPLYTOQMGR.
MOVE SPACES TO MQMD-REPLYTOQ.

MOVE SPACES TO MQOD-OBJECTQMGRNAME.
MOVE WS-REPLY-Q TO MQOD-OBJECTNAME.
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE-REPLY TO NULL.

CALL "MQOPEN' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS
WS-HOBJ-ADDR-AREA-REPLY
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA.

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN
GO TO 9900-ERR-DISPLAY.

PERFORM ~ WS-PROCESS-TIMES TIMES
*--CHECK IF MUST PUT TIME STAMP ON MESSAGE
IF WS-PUT-TIMESTAMP
THEN

236 IBM MQSeries for VSE/ESA User's Guide

END-IF

*

*--MQPUT1 QUEUE TO QM
MOVE 'PUTL' TO WS-FUNCTION
MOVE MQMT-REPLY TO MQMD-MSGTYPE
MOVE SPACES TO MQMD-REPLYTOQMGR
MOVE WS-REPLY-Q TO MQMD-REPLYTOQ

MOVE MQOO-OUTPUT TO MQPMO-OPTIONS

MOVE SPACES TO MQOD-OBJECTQMGRNAME
MOVE WS-DATA-QUEUE TO MQOD-OBJECTNAME
MOVE MQCC-0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE

CALL 'MQPUT1' USING WS-HCONN-ADDR-AREA
WS-Q-NAME-AREA
WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

IF WS-CCODE-VALUE NOT EQUAL ZERO
THEN

GO TO 9900-ERR-DISPLAY
END-IF

*--SYNPOINT PUT SO ECHO CAN GET IT
EXEC CICS SYNCPOINT
END-EXEC

*--MQGET TO QUEUE TO QM

MOVE 'GET' TO WS-FUNCTION

MOVE MQMT-REQUEST TO MQMD-MSGTYPE

MOVE SPACES TO MQMD-MSGID
MQMD-CORRELID

MOVE SPACES TO MQMD-REPLYTOQMGR

MOVE SPACES TO MQMD-REPLYTOQ

MOVE MQCC-O0K TO WS-CCODE-VALUE
MOVE MQRC-NONE TO WS-RCODE-VALUE
MOVE 500 TO WS-BUFFER-LENGTH
MOVE MQGMO-ACCEPT-TRUNCATED-MSG
TO MQGMO-OPTIONS
ADD MQGMO-WAIT
TO MQGMO-OPTIONS
MOVE SPACES TO MQMD-MSGID
MQMD-CORRELID
*--WAIT 30 SECONDS (IE, 30,000 MILL-SECONDS)
MOVE +30000 TO MQGMO-WAITINTERVAL
*
CALL 'MQGET' USING WS-HCONN-ADDR-AREA
WS-HOBJ-ADDR-AREA-REPLY
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-L-AREA
WS-BUFFER-AREA
WS-DATA-L-AREA
WS-CCODE-ADDR-AREA
WS-RCODE-ADDR-AREA

IF (WS-CCODE-VALUE NOT EQUAL ZERO)
THEN

IF WS-RCODE-VALUE EQUAL 2079

THEN MOVE WS-COUNT TO WS-OK-MESSAGES.
SET WS-TRUNCATED-MESSAGES TO TRUE MOVE WS-DURATION-SECS TO WS-OK-TIME.
ELSE MOVE WS-DATA-QUEUE TO WS-OK-QUEUE.
IF WS-RCODE-VALUE EQUAL 2033 IF WS-PUT-WITH-REPLY
THEN THEN
SET WS-END-OF-MESSAGES TO TRUE MOVE WS-REPLY-Q TO WS-0K-QUEUE-REPLY
GO TO 6000-PUT-WITH-EOF MOVE WS-OK-STATS-LINE-2 TO WS-OK-MSG-2.
ELSE
GO TO 9900-ERR-DISPLAY *-- --MOVE REST
END-IF MOVE WS-OK-STATS-LINE-1 TO WS-OK-MSG-1.
END-IF MOVE WS-OK-STATS-LINE-3 TO WS-OK-MSG-3.
END- IF MOVE WS-OK-STATS-LINE-4 TO WS-OK-MSG-4.
*-- --CHECK IF ANY ERRORS
ADD 41 T0 WS-COUNT IF WS-END-OF -MESSAGES
THEN
*--SYNPOINT PUT SO ECHO CAN GET IT MOVE 'NO MORE MESSAGES' TO WS-OK-MSG-5.
EXEC CICS SYNCPOINT *
END-EXEC IF WS-TRUNCATED-MESSAGES
THEN
MOVE ' TRUNCATED MESSAGES' TO WS-OK-MSG-6.
END-PERFORM. *
K e e e e e o *
6000-PUT-WITH-EOF. IF WS-ERR-MSG
EXEC CICS SEND
*-_MQCLOSE QUEUE TO QM FROM (WS-ALL-MSG)
MOVE 'CLOSE' TO WS-FUNCTION. LENGTH (LENGTH OF WS-ALL-MSG)
MOVE ZERO TO WS-Q-OPEN-OPTIONS-VALUE. ERASE
MOVE MQCC-OK TO WS-CCODE-VALUE. END-EXEC
MOVE MQRC-NONE TO WS-RCODE-VALUE. ELSE
CALL 'MQCLOSE' USING WS-HCONN-ADDR-AREA EXEC CICS SEND
WS-HOBJ-ADDR-AREA-REPLY FROM (WS-OK-MSG)
WS-Q-OPEN-OPTIONS LENGTH (LENGTH OF WS-OK-MSG)
WS-CCODE-ADDR-AREA ERASE
WS-RCODE-ADDR-AREA. END-EXEC.
*
IF WS-CCODE-VALUE ~ NOT EQUAL ZERO S *
THEN EJECT
GO TO 9900-ERR-DISPLAY. S *
8000-GET-TIME-STAMP.
K e e e e e e *
*--MQDISC FROM QM EXEC CICS ASKTIME
MOVE 'DISCONN' TO WS-FUNCTION. ABSTIME (WS-ABST IME)
MOVE MQCC-OK TO WS-CCODE-VALUE. END-EXEC.
MOVE MQRC-NONE TO WS-RCODE-VALUE. *
CALL 'MQDISC' USING EXEC CICS FORMATTIME
WS-HCONN-ADDR-AREA ABSTIME (WS-ABSTIME)
WS-CCODE-ADDR-AREA YYMMDD (WS -DATE-YYMMDD)
WS-RCODE-ADDR-AREA. END-EXEC.
*
IF WS-CCODE-VALUE ~ NOT EQUAL ZERO *
THEN MOVE EIBTIME TO WS-TIME-9.
GO TO 9900-ERR-DISPLAY. *
MOVE WS-DATE-YYMMDD TO WS-TIMESTAMP-DATE.
S * MOVE WS-TIME-HHMMSS TO WS-TIMESTAMP-TIME.
6000-EXIT.
EXIT. K e e e o e e o o e e e *
EJECT EJECT
2, * K e e e e e o = o o o o o *
7000-SEND-TOTALS. 9900-ERR-DATA.
2, * K e e e e e o = o o o o o o o o *
*--GET DURACTION TIME *--ERROR IN "GET" DATA
EXEC CICS ASKTIME SET WS-ERR-MSG TO TRUE.
ABSTIME (WS-ABSTIME2) MOVE WS-DATA-LENGTH-USER TO WS-ERR-DATA-LENGTH.
END-EXEC. MOVE WS-BUFFER-AREA TO WS-ERR-DATA-AREA.

MOVE WS-ERR-DATA TO WS-ERR-LINES.
SUBTRACT WS-ABSTIME FROM WS-ABSTIMEZ.

EXEC CICS FORMATTIME *--IF STARTED..SEND MESSAGE
ABSTIME (WS-ABSTIME2) IF WS-STARTED
TIME (WS-DURATION-SECS) THEN
TIMESEP(':"') PERFORM 9999-ERROR-WRITE.
END-EXEC. *
* GO TO 0000-SEND-TOTALS.

Appendix D. Sample programs 237

9999-ABEND-USER-CODE.

9900-ERR-DISPLAY. GO TO 0000-RETURN.

*--ERROR IN "MQ" VERB

*
SET WS-ERR-MSG TO TRUE.
MOVE WS-CCODE-VALUE TO WS-ERR-DISPLAY-CCODE.
MOVE WS-RCODE-VALUE TO WS-ERR-DISPLAY-RCODE.

MOVE WS-ERR-DISPLAY TO WS-ERR-LINES.
*
*--IF STARTED..SEND MESSAGE
IF WS-STARTED
THEN
PERFORM 9999-ERROR-WRITE.

GO TO 0000-SEND-TOTALS.

EJECT
K e e e e o o *
* ERROR HANDLING
* *

* COPY MQIERRCD.
*/INCLUDE MQIERRCD

K e e e e *
* ERROR PROCESSING - CODE PROCESSING - MQIERRCD
* *

9999-ERROR-WRITE.
EXEC CICS WRITEQ TD
QUEUE (ENV-II-ERROR-TD)
FROM (ERR-HANDLER-COMMAREA)

LENGTH (LENGTH OF ERR-HANDLER-COMMAREA)
NOHANDLE

END-EXEC.

*--IF ERROR IN ERROR TD .. PUT TO CSMT
*WKH IF EIBRCODE NOT EQUAL LOW-VALUES

K e e e e *
EJECT
K e e e e o *
9999-CONVERT-ERROR-INFO.
K e e e e o o *
MOVE EIBTRNID TO ERR-TRANID.
MOVE EIBTRMID TO ERR-TERMID.
MOVE EIBTASKN TO ERR-TASKNO.
MOVE WS-ABSTIME TO ERR-ABSTIME.
MOVE EIBFN TO ERR-DEBUG-EIBFN.
MOVE EIBRCODE TO ERR-DEBUG-EIBRCODE.
MOVE EIBRSRCE TO ERR-DEBUG-EIBRSRCE.
MOVE EIBRESP TO ERR-DEBUG-EIBRESP.
MOVE EIBRESP2 TO ERR-DEBUG-EIBRESPZ.
MOVE EIBERRCD TO ERR-DEBUG-EIBERRCD.
K e e e e e o *
K e e e e e o *
EJECT

9999-ABEND-CONDITION.
MOVE ERR-CICS-ABEND TO ERR-CODE.
PERFORM 9999-CONVERT-ERROR-INFO.

*--ASSIGN INFO
EXEC CICS ASSIGN ABCODE (ERR-DEBUG-ABEND)
END-EXEC.

*--USER CODE MUST FOLLOW THIS STATEMENT **¥*%*

238 IBM MQSeries for VSE/ESA User's Guide

Sample program TTPTST3.Z

This program is a test facility for putting/getting messages by starting a transaction TST2
(program id TTPTST2). It can be invoked either by terminal input or passed data (triggered by

CICS “START").

The terminal input is “TST3” and the response is a screen requesting more input:

ﬂe/zz/%
14:43:13

PUT TimeStamp
ENTER START VALUES.

\\\‘FNTER = Process

IBM MQSeries for VSE/ESA Version 1
% Test System Programs 3 - STARTS *

Number of tasks
Message Processing Information

Number of messages..:

Function......

PUT queue name...

PUT message size.

PUT message...

IYZFZSI3\
1SC2
A803

Async TASK Information

P=PUT, or G= GET

Y=Yes, N=No

PF3=Quit)

Figure 38.

On this screen the fields are:
Async TASK Information
Number of tasks:

Message Processing Information

Test System Programs 3 - start

The number of asynchronized tasks (TST2 transactions).

Number of messages:
Function:

PUT queue name:
PUT message size:

PUT message:
PUT TimeStamp:

*/INCLUDE COPYRSAP

Licensed Materials - Property of IBM

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

L

IDENTIFICATION DIVISION.
PROGRAM-1ID. TTPTST3.
AUTHOR. IBM.

DATE-WRITTEN.
DATE-COMPILED.
*LAST-MODIFIED.

2/23/93.

9/ 1/95.

© Copyright IBM Corp. 1993, 1997

The number of messages to be sent/received.

Specify “P” to put message, “G” to get message.

The queue name to be PUT or GET.

For PUT function only, to specify the size of the message. If
the PUT timestamp option is selected, the message will be
16 characters greater than the PUT message size.

The content of the message.

For PUT function only, to put time stamp in the message,
format as YYMMDDHHMMSS. If “Y” is specified, the actual
message size will be 16 characters greater than the size
specified in the PUT message size.

K e e e e o o o *
* *
K e e e e o *
* *
* TEST PROGRAMS TO START ASYNC TASKS *
* *
* IBM MQI SYSTEM *
* *
K e e e e o *
* PURPOSE: START ASYNC TASK DEFINITION *
K e e e e o o *
* *
* COPYBOOKS: TTMTST3 - COBOL MAP SYMBOLIC *
* MQIMTP - MASTER TERMINAL COMMAREA *
* TTITST2 - TTPTST2 COMMAREA FOR STARTS *
* MQIERRWS - ERROR VALUES *
* MQIERRCD - ERROR CODE *
* TTETST3 - ERROR MESSAGES *
* MQIENV - ENVIRONMENT *
* DFHAID - 3270 AID DEFINITION *

239

* DFHBMSCA - 3270 BMS CONTROL CHARACTERS * 12 WS-TIME-SS PIC X(02).
* * 05 WS-FORMATTED-TIME.
* TRANSACTION: TST3 - MASTER TERMINAL (UPDATE) * 10 WS-FORMAT-TIME-HH PIC X(02) VALUE SPACES.
* * 10 FILLER PIC X(01) VALUE ':'.
* MAPSET: TTMTST3 * 10 WS-FORMAT-TIME-MM PIC X(02) VALUE SPACES.
* MAPS: MAIN - MAIN * 10 FILLER PIC X(01) VALUE ':'.
* * 10 WS-FORMAT-TIME-SS PIC X(02) VALUE SPACES.
* SUMMARY CHANGES: * 05 WS-FORMATTED-DATE.
* * 10 WS-FORMAT-DATE-MM PIC X(02) VALUE SPACES.
K e e e * 10 FILLER PIC X(01) VALUE '/'.
EJECT 10 WS-FORMAT-DATE-DD PIC X(02) VALUE SPACES.
K e e * 10 FILLER PIC X(01) VALUE '/'.
ENVIRONMENT DIVISION. 10 WS-FORMAT-DATE-YY PIC X(02) VALUE SPACES.
DATA DIVISION. 05 WS-TRAN-ID PIC X(4) VALUE SPACES.
WORKING-STORAGE SECTION. 05 WS-EDIT-ERR-FLAG PIC X(1) VALUE 'N'.
K e e e e * 88 WS-EDIT-ERR VALUE 'Y'.
* COPY COPYRWS.
K * 05 WS-RECORD-FLAG PIC X VALUE SPACES.
* COPYRIGHT WORKING STORAGE FOR COBOL MODULES * 88 WS-RECORD-FOUND VALUE 'T'.
K e * 88 WS-RECORD-NOT-FOUND VALUE 'F'.
01 FILLER.
05 FILLER PIC X(80) VALUE 05 WS-ERROR-MESSAGE PIC X(79) VALUE SPACES.
"Licensed Materials - Property of IBM'. 05 WS-ERR-COUNT PIC S9(4) COMP VALUE ZEROS.
05 FILLER PIC X(80) VALUE SPACES. 05 WS-ERR-MAX PIC S9(4) COMP VALUE +20.
05 FILLER PIC X(80) VALUE 05 WS-ERR-MESSAGE VALUE SPACES.
'5787-ECX . 10 WS-ERR-MSG PIC X(79) OCCURS 20 TIMES.
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE K e e e *
'(C) Copyright IBM Corp. 1993, 1996 All Rights EJECT
Reserved'. K L e e e e e e e e e e e e e *
05 FILLER PIC X(80) VALUE SPACES. COPY DFHAID.
05 FILLER PIC X(80) VALUE EJECT
'Us Goverr_nment. Users Restricted Rights - Use, K e e e e e e e *
duplication *. COPY DFHBMSCA.
05 FILLER PIC X(80) VALUE
‘or discllosure restricted by GSA ADP Schedule Contract EJECT
05 FILLER PIC X(80) VALUE oo omos oo msossossooossososooosoosooooosseoooooes *
"with IBM Corp.'. * BMS MAP
K e e e e e e o o o o o o o o *
- . COPY TTMTST3.
EJECT
01 WS-VERSION. T e e e *
05 FILLER PIC X(30) VALUE . TSTZ COMMAREA X
CTTPTST3 VERSION 1.4'. e ems o eoos oo oooosooooo oo
01 WS-TST2-COMMAREA.
01 WS-VALUES. * COPY TTITST2.
05 WS-CONFIGURATION-ADDRESS USAGE IS POINTER VALUE -COPY COPYRSAP X
05 WS-REC-SIZE PIC S9(4) COMP VALUE ZERO. * - BEGIN - *%% COPYBOOK: TTITST2 — **+ - BEGIN - *
05 WS-SS-STARTS PIC 9(4) VALUE ZERO. K e e e e e e e e e e e *
05 WS-NUM PIC 9(8) VALUE ZERO. * 3/ 4/93 REV: *
05 WS-NUM4 PIC 9(4) VALUE ZERO. K e e e e e e e e e e e e *
* MQPINITL COMMAREA *
05 WS-APPLID PIC X(8) VALUE SPACES. T T *
05 WS-SYSID PIC X(4) VALUE SPACES.
05 WS-STARTCD PIC XX VALUE SPACES. 05 TST2-PASSED-INFO.
88 WS-STARTED VALUE 'SD'. 10 TST2-FUNCTION PIC X(4) VALUE 'PUT'.
88 TST2-FUNCT-PUT VALUE 'PUT.
05 WS-ABSTIME PIC S9(15) COMP-3. 88 TST2-FUNCT-GET VALUE 'GET'.
05 WS-DATE-CCYYMMDD.
10 WS-DATE-CC PIC 99 VALUE ZERO. 10 TST2-PUT-NUM-MSG PIC S9(4) COMP VALUE
10 WS-DATE-YYMMDD. ZERO.
12 WS-DATE-YY PIC 99 VALUE ZERO. 10 TST2-PUT-QUEUE-NAME PIC X(48) VALUE SPACES.
12 WS-DATEMM PIc 99 VALUE ZERD. 10_TST2-PUT-HSG-S12E PIC S9(4) COMP VALUE
12 WS-DATE-DD PIC 99 VALUE ZERO. 10 TST2-PUT-MSG PIC X(48) VALUE SPACES.
12 FILLER PIC XX VALUE ZERO. 10 TST2-PUT-MSG-TIMESTAMP PIC X VALUE SPACES.
88 TST2-PUT-MSG-W-TIMESTAMP VALUE 'Y'.
05 WS-UNPACK-TIME-9 PIC 9(07) VALUE ZEROES.
05 WS-UNPACK-TIME-X REDEFINES WS-UNPACK-TIME-9. .- .
10 FILLER PIC X(01). * _END - xxx COPYBOOK: TTITST2 %% < END - *
10 WS-TIME-HHMMSS. e R e e T .
12 WS-TIME-HH PIC X(02).
12 WS-TIME-MM PIC X(02).

240 IBM MQSeries for VSE/ESA User's Guide

K e e e e e e e e e e * 10 FILLER PIC X(4) VALUE SPACES.

* ENVIRNOMENT VALUES 10 FILLER PIC X(4) VALUE SPACES.
K e e e e e e *
01 FILLER.
* COPY MQICENV. 03 ENV-DATA-FOR-PROGRAMS.
*/INCLUDE COPYROCO
K e e e e e * 05 ENV-MASTER-TERMINAL-PROGRAMS.
* - BEGIN - *%% COPYBOOK: MQICENV ~ *** - BEGIN - * 10 ENV-MT-MASTER-PROGRAM PIC X(8) VALUE
e e * 'MQPMTP .
* ENVIRONMENT VALUE - SYSTEM (ENV) * 10 ENV-MT-CONFIG-PROGRAM PIC X(8) VALUE
o o meE e . 'MQPMCFG' .
10 ENV-MT-MONITOR-PROGRAM ~ PIC X(8) VALUE
"MQPMMON' .
02 ENV-DEFINITION. 10 ENV-MT-OPER-PROGRAM PIC X(8) VALUE
03 ENV-DATA-FOR-SYSTEM. 'MQPMOPR" .
05 ENV-PRODUCT-INSTALLED PIC X(4) VALUE 'MQM '. 10 ENV-MT-DISP-PROGRAM PIC X(8) VALUE
88 ENV-PRODUCT-EZBRIDGE ~ VALUE 'EZB '. 'MQPDISP'.
88 ENV-PRODUCT -MQM VALUE 'MQM '. 10 ENV-MT-QUEUE -PROGRAM PIC X(8) VALUE
'MQPMQUE' .
05 ENV-PRODUCT -RUNT IME PIC X(4) VALUE 'BOTH'. %aoiu‘(’)abg'QUE”“'PROGRAM PIC X(8) VALUE
88 ENV-PRODUCT-RT-EZBRIDGE VALUE 'EZB '. 10 ENV_HT- COM-PROGRAM PIC X(8) VALUE
88 ENV-PRODUCT-RT-MQM VALUE 'MQM '. 'MQPMCOM' .
88 ENV-PRODUCT-RT-BOTH ~ VALUE 'BOTH'. 10 ENV-MT-COMI-PROGRAM PIC X(8) VALUE
'MQPMCOM' .
05 ENV-LANG-INFO. 10 ENV-MT-SYS-PROGRAM PIC X(8) VALUE
10 ENV-LANGUAGE-FILE-CODE ~ PIC 99 VALUE 01. ‘MQPMSYS' .
10 ENV-LANGUAGE PIC X(24) 10 ENV-MT-SYSI-PROGRAM PIC X(8) VALUE
, , 'MQPMSYS' .
VALUE "ENGLISH'. 10 ENV-MT-MONQ-PROGRAM PIC X(8) VALUE
05 ENV-DATE-FORMAT PIC 99 VALUE 01. .MQPMME)Q." Q- (8)
88 ENV-DATE-MHMDDYY VALUE O1. 10 ENV-MT-MONC-PROGRAM PIC X(8) VALUE
88 ENV-DATE-YYMMDD VALUE 02. 'MQPMMOC' .
88 ENV-DATE-YYDDMM VALUE 03. 10 ENV-MT-SS-PROGRAM PIC X(8) VALUE
88 ENV-DATE-YYDDD VALUE 04. 'MQPMSS '
88 ENV-DATE-DDMMYY VALUE 05. 10 ENV-MT-SC-PROGRAM PIC X(8) VALUE
'MQPMSC ' .
10 ENV-MT-SI-PROGRAM PIC X(8) VALUE
'MQPMST '
03 ENV-DATA-FOR-TRAN. 10 ENV-MT-SR-PROGRAM PIC X(8) VALUE
'MQPMMSN' .
05 ENV-MASTER-TERMINAL-TRAN. 10 ENV-MT-SD-PROGRAM PIC X(8) VALUE
10 ENV-MT-MASTER-TASK-ID ~ PIC X(4) VALUE 'MQMT'. 'MQPMDEL' .
10 ENV-MT-CONFIG-TASK-ID ~ PIC X(4) VALUE 'MQMC'. 10 ENV-MT-CMD-PROGRAM PIC X(8) VALUE
10 ENV-MT-MONITOR-TASK-ID ~ PIC X(4) VALUE ‘MQPCMD" .
MQMM' . 10 FILLER PIC X(8) VALUE SPACES.
10 ENV-MT-OPER-TASK-1D PIC X(4) VALUE 'MQMO'. 10 FILLER PIC X(8) VALUE SPACES.
10 ENV-MT-DISP-TASK-1ID PIC X(4) VALUE 'MQBQ'.
10 ENV-MT-QUEUE-TASK-ID PIC X(4) VALUE 'MQMQ'. 05 ENV-INTERNAL-ITEMS-PROGRAMS.
10 ENV-MT-QUEUEI-TASK-ID PIC X(4) VALUE 'MQDQ'. 10 ENV-II-LINK-ERROR PIC X(8) VALUE 'MQPERR
10 ENV-MT-COM-TASK-ID PIC X(4) VALUE 'MQMH'. "
10 ENV-MT-COMI-TASK-1D PIC X(4) VALUE 'MQDH'. 1'?4 E’é\géIII-ILINK-EIBl PIC X(8) VALUE
10 ENV-MT-SYS-TASK-ID PIC X(4) VALUE 'MQMS'. IOQENV LI INKCATPO PIC X(8) VALUE
10 ENV-MT-SYSI-TASK-1D PIC X(4) VALUE 'MQDS'. MQPATPO . (8)
10 ENV-MT -MONQ-TASK-1D PIC X(4) VALUE 'MQQM'. 10 ENV-II-LINK-AIP1 PIC X(8) VALUE
10 ENV-MT -MONC-TASK-1D PIC X(4) VALUE 'MQCM'. 'MQPAIPT '.
10 ENV-MT-SS-TASK-ID PIC X(4) VALUE 'MQMA'. 10 ENV-TI-LINK-AIP2 PIC X(8) VALUE
10 ENV-MT-SC-TASK-ID PIC X(4) VALUE 'MQMB'. 'MQPAIPZ .
10 ENV-MT-SI-TASK-ID PIC X(4) VALUE 'MQMI'.
10 ENV-MT-SR-TASK-ID PIC X(4) VALUE 'MQMR'. 10 ENV-IT-LINK-ECHO PIC X(8) VALUE
10 ENV-MT-SD-TASK-ID PIC X(4) VALUE 'MQMD'. MQPECHO *.
10 FILLER PIC X(4) VALUE SPACES. %aQ%';‘g&BéjLINK'FINDQ PIC X(8) VALUE
10 FILLER PIC X(4) VALUE SPACES. 10 ENV-I1-LINK-QUEL PIC X(8) VALUE
10 FILLER PIC X(4) VALUE SPACES. 'MQPQUEL .
10 ENV-II-LINK-QUE2 PIC X(8) VALUE
05 ENV-INTERNAL-ITEMS-TRAN. 'MQPQUE2 '.
10 ENV-II-MONITOR PIC X(4) VALUE 'MQSM'. 10 ENV-II-LINK-INITL PIC X(8) VALUE
10 ENV-II-M-RECOVERY PIC X(4) VALUE 'MQSR'. ‘MQPINIT1'.
10 ENV-11-Q-RECOVERY PIC X(4) VALUE 'MQSQ'. 1,?4 %’}"’J-IIT;UNK-INIT? PIC X(8) VALUE
10 ENV-II-START-STOP PIC X(4) VALUE 'MQSS'. 10 EN?/ TLLINGSS PIC X(8) VALUE 'MQPSS
10 ENV-II-TRAN-AIP2 PIC X(4) VALUE 'MQO2'. o -55Q QPSSQ
10 ENV-II-TRAN-COM-CHECKP PIC X(4) VALUE 10 ENV-II-LINK-SCHK PIC X(8) VALUE
MQCP'. 'MQPSCHK '.
10 ENV-II-TRAN-QUE-DELETE PIC X(4) VALUE 10 ENV=II-L INK-SREC PIC X(8) VALUE
MQQD". 'MQPSREC .
10 ENV-II-TRAN-QUE-DEL-ALL PIC X(4) VALUE 10 ENV-II-LINK-QRECOVERY ~ PIC X(8) VALUE
MQQA” - 'MQPQREC .
10 FILLER PIC X(4) VALUE SPACES.

Appendix D. Sample programs 241

10 ENV-II-LINK-SENDER
"MQPSEND '.
10 ENV-II-LINK-RECIEVER
"MQPRECV '.
10 ENV-II-LINK-COM-CHECKP
"MQPCCKPT' .
10 ENV-II-LINK-QUE-DELETE
"MQPQDEL'.
10 ENV-II-LINK-SET-MAP
"MQPSMAP .
10 ENV-II-LINK-LUZ1
'MQPLU21'.
10 ENV-II-LINK-LU33
"MQPLU33'.

10 FILLER

10 FILLER

10 FILLER

03 ENV-DATA-FOR-MAPS.

05 ENV-MASTER-TERMINAL-MAPS.

PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE

PIC X(8) VALUE

PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.

10 ENV-MT-MASTER-MAPSCREEN PIC X(8) VALUE

'MQMMTP' .

10 ENV-MT-CONFIG-MAPSCREEN PIC X(8) VALUE

'MQMMCFG'.

10 ENV-MT-MONITOR-MAPSCREEN PIC X(8) VALUE

'MQMMMON * .
10 ENV-MT-OPER-MAPSCREEN
'MQMMOPR" .
10 ENV-MT-DISP-MAPSCREEN
'MQMDISP'.
10 ENV-MT-QUEUE-MAPSCREEN
'MQMMQUE * .

PIC X(8) VALUE
PIC X(8) VALUE

PIC X(8) VALUE

10 ENV-MT-QUEUEI-MAPSCREEN PIC X(8) VALUE

"MQMMQUE ' .
10 ENV-MT-COM-MAPSCREEN
"MQMMCOM ' .

10 ENV-MT-COMI-MAPSCREEN
"MQMMCOM ' .

10 ENV-MT-SYS-MAPSCREEN
"MQMMSYS '

10 ENV-MT-SYST-MAPSCREEN
"MQMMSYS '

10 ENV-MT-MONQ-MAPSCREEN
"MQMMMOQ ' .

10 ENV-MT-MONC-MAPSCREEN
"MQMMMOC ' .

10 ENV-MT-SS-MAPSCREEN
"MQMMSS ' .

10 ENV-MT-SC-MAPSCREEN
"MQMMSC' .

10 ENV-MT-SI-MAPSCREEN
MQMMST ' .

10 ENV-MT-SR-MAPSCREEN
"MQMMMSN ' .

10 ENV-MT-SD-MAPSCREEN
"MQMMDEL ' .

10 FILLER

10 FILLER

10 FILLER

03 ENV-DATA-FOR-CONSTANTS.

05 ENV-CONFIG-DDNAME
'MQFCNFG'.

05 ENV-SYSTEM-NUMBER

05 ENV-MASTER-TERMINAL-CONS.
10 ENV-MT-TITLE

! IBM MQSeries for VSE/ESA

05 ENV-INTERNAL-ITEMS-CONS.
10 ENV-II-ERROR-TD
10 ENV-II-ERROR-CSMT
10 ENV-II-SYSTEM-ANCHOR
'MQTAQM' .
10 ENV-II-SYSTEM-PREFIX
10 ENV-II-DUMPCODE

PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE
PIC X(8) VALUE

PIC X(8) VALUE

PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(8) VALUE SPACES.

PIC X(8) VALUE

PIC 9(4) VALUE 1.

PIC X(40) VALUE
Version 1 '.

PIC X(4) VALUE 'MQER'.
PIC X(4) VALUE 'CSMT'.

PIC X(8) VALUE

PIC X(4) VALUE 'MQI '.
PIC X(4) VALUE 'MQ??'.

242 1BM MQSeries for VSE/ESA User's Guide

10 ENV-II-ENQ-INIT1
'"MQPINIT1'.

10 ENV-II-SYSTEM-ENVIR

PIC X(8) VALUE
PIC X(8) VALUE 'MQTENV

10 ENV-IT-UN-INIT-MSG PIC X(80) VALUE
'MQ900000: MQSERIES VSE ENVIRONMENT not initialized.'.

10 FILLER PIC X(80) VALUE SPACES.
K e e e e e o o *
* - END - **% COPYBOOK: MQICENV ~ *** - END -
K e e e e e o *
EJECT
K e e e e e o o *
* FINDQ COMMAREA
K e e e e o o *
01 WS-FINDQ.
* COPY MQIFINDQ.
*/INCLUDE COPYROCO
K e e e e e o o o *
* - BEGIN - **% COPYBOOK: MQIFINDQ *** - BEGIN -
K e e e e e o o o o *
* 9/1/93 REV
K e e e e e o o o o *
* FIND QUEUE CALL PARAMETERS.
* *

02 FINDQ-CALL-PARAMETERS.

*--PASSED INFO...
03 FINDQ-PASSED-PARAMETERS.
05 FINDQ-CALL-TYPE
88 FINDQ-QUEUE-LOOKUP
88 FINDQ-SYSTEM-STATUS-ONLY

PIC X VALUE SPACES.
VALUE 'Q'.

VALUE 'S'.

05 FILLER
05 FINDQ-CALL-SYSTEM-NUM

PIC X
PIC 99

VALUE SPACES.
VALUE ZERO.

*-- --QUEUE INFO
05 FINDQ-QM-QUEUE-NAME.
10 FINDQ-QM-NAME
10 FINDQ-QUEUE-NAME

PIC X(48) VALUE SPACES.
PIC X(48) VALUE SPACES.

*--RETURN INFO
*-- --SYSTEM RETURN (ALWAYS RETURNED)
03 FINDQ-RETURNED-PARAMETERS.
05 FINDQ-SYSTEM-CODE PIC X
88 FINDQ-SYSTEM-ACTIVE
88 FINDQ-SYSTEM-INACTIVE
88 FINDQ-SYSTEM-UN-INIT

VALUE SPACES.
VALUE 'A'.
VALUE 'I'.
VALUE SPACE.

05 FILLER PIC XXX VALUE SPACES.
*-- -~ --SYSTEM INFO (NOT SET IF SYSTEM UN-INIT)
05 FINDQ-DEFAULT-QM-INFO.
10 FINDQ-DEFAULT-NAME PIC X(48).
10 FINDQ-QM-DESCRIPTION PIC X(64).

10 FINDQ-DEFAULT-MAX-MSG
10 FINDQ-DEFAULT-MAX-CONN
10 FINDQ-DEFAULT-MAX-HANDLES
10 FINDQ-DEFAULT-MAX-WAIT-MON
10 FINDQ-DEFAULT-MAX-WAIT-REC
10 FINDQ-DEFAULT-MAX-REC-TASKS

10 FILLER

10 FINDQ-CONFIG-FILE

88 FINDQ-CONFIG-FILE-OK

PIC S9(8) COMP.
PIC S9(8) COMP.
PIC S9(8) COMP.
PIC S9(8) COMP.
PIC S9(8) COMP.
PIC S9(4) COMP.
PIC XX.
PIC X(8).
VALUE 'MQFCNFG'.

10 FINDQ-DEADLETTER-NAME PIC X(48).
10 FINDQ-LOG-NAME PIC X(48).
10 FINDQ-AUDIT-NAME PIC X(48)
10 FINDQ-MONITOR-NAME PIC X(48).
10 FINDQ-ERROR-NAME PIC X(48).
10 FINDQ-MONITOR-SYS-FLAG PIC X.

88 FINDQ-MONITOR-ON VALUE 'Y'.
10 FINDQ-ERROR-TO-CSMT-FLAG PIC X.

88 FINDQ-ERROR-TO-CSMT VALUE 'Y', 'B'.

88 FINDQ-ERROR-TO-BOTH VALUE 'B'.

10 FILLER PIC XX.

*-- --QUEUE RETURN (ONLY RETURNED IF QUEUE REQUESTED)
VALUE SPACES.

05 FINDQ-QUEUE-CODE
88 FINDQ-QUEUE-OK
88 FINDQ-QUEUE-NOT-FOUND

PIC X
VALUE 'Y'.
VALUE SPACES.

05 FILLER PIC XXX

*-- -- --ACTUAL MQI RETURN CODE

05 FINDQ-QUEUE-ERROR-CODE PIC S9(8) COMP VALUE
ZERO.

*-- -- --QUEUE INFO (NOT RETURNED IF QUEUE NOT-FOUND)

05 FINDQ-RESOLVED-QM-QUEUE-NAME.
10 FINDQ-R-QM-NAME
10 FINDQ-R-QUEUE-NAME

05 FINDQ-RESOLVED-LOCAL-NAME

PIC X(48) VALUE SPACES.

05 FINDQ-QUEUE-DRQ-ITEM PIC S9(4) COMP VALUE
ZERO.

*-- -- -- --STATUS FROM DRQ

05 FILLER PIC XX VALUE SPACES.
05 FINDQ-RESOLVE-STATUS.
10 FINDQ-R-INBOUND-STAT ~ PIC XX VALUE SPACES.

10 FINDQ-R-OUTBOUND-STAT PIC XX

*-- -- -- --ORIGINAL QUEUE VALUES

05 FINDQ-QUEUE-DATA.
10 FINDQ-ADDED-DATA.

15 FINDQ-ADDED-TIME PIC X(6).
15 FILLER PIC XX.
15 FINDQ-ADDED-DATE PIC X(8).
15 FINDQ-ADDED-TERMID PIC X(8).
15 FINDQ-ADDED-USERID PIC X(3).
15 FILLER PIC X.
10 FINDQ-DESCRIPTION PIC X(64).
10 FINDQ-TYPE PIC X.
88 FINDQ-QUEUE-DEFINITION VALUE
L, X', 'AY, 'R, M.
88 FINDQ-LOCAL-Q-ENTRY VALUE
L.
88 FINDQ-LOCAL-AIX-Q VALUE
X'
88 FINDQ-ALIAS-Q-ENTRY VALUE
‘At
88 FINDQ-REMOTE-Q-ENTRY VALUE
'‘R'.
88 FINDQ-MODEL-Q-ENTRY VALUE
‘M.
10 FINDQ-TYPE-ALIAS PIC X.
88 FINDQ-ALIAS-QUEUE VALUE
Q.
88 FINDQ-ALIAS-MANAGER VALUE
M.
88 FINDQ-ALIAS-REPLY VALUE
'R".
10 FILLER PIC XX.
10 FINDQ-ATTR-FLAGS.
15 FINDQ-INHIBIT-PUT-FLAG PIC X.
88 FINDQ-INHIBIT-PUT VALUE
Y'.
15 FINDQ-INHIBIT-GET-FLAG PIC X.
88 FINDQ-INHIBIT-GET VALUE
15 FINDQ-PERSIST-FLAG PIC X.

VALUE SPACES.

PIC X(48) VALUE SPACES.
PIC X(48) VALUE SPACES.

VALUE SPACES.

88 FINDQ-PERSIST-DEFAULT VALUE
v
10 FILLER PIC X.
05 FINDQ-LOCAL-INFO.
10 FINDQ-DEFINITION-FLAG PIC X.
88 FINDQ-DEF-PERM VALUE 'Y'.
88 FINDQ-DEF-NOT-PERM VALUE 'N'.
10 FINDQ-USAGE-MODE-FLAG PIC X.
88 FINDQ-U-MODE -NORMAL VALUE 'N'.
88 FINDQ-U-MODE-TRANSM VALUE 'Y'.
10 FINDQ-SHAREABLE-FLAG PIC X.
88 FINDQ-SHARE-QUEUE VALUE 'Y'.
88 FINDQ-NON-SHARE-QUEUE VALUE 'N'.
10 FINDQ-TRIGGER-TYPE PIC X.
88 FINDQ-NO-TRIGGER VALUE SPACE.
88 FINDQ-TRIGGER-ON VALUE 'Y'.
K e e e e e e *
* _ END - #+% COPYBOOK: MQIFINDQ *** - END - *
K e e e e e e *
EJECT
K e e e e e e e o o *
* COMMAREA
K e e e e e e *
* COPY MQIMTP.
*/INCLUDE COPYROCO
K e e e e e e o o o o *
K e e e e e e o o o o *
* COPYBOOK: MQIMTP *
* *
* FUNCTION: COMMAREA FOR MASTER TERMINAL TASK *
*

01 MTP-COMMAREA.

05

05

88 MTP-NO-RETURN-TASK

05

05

05

05

05
05

MTP-HEADER-FLAG
88 MTP-HEADER-0K

PIC X(4) VALUE 'MQI '.
VALUE 'MQI '.

MTP-MAIN-TASK PIC X(4) VALUE SPACES.
VALUE SPACES.

MTP-ACTIVE-TASK PIC X(4) VALUE SPACES.

MTP-MAP-VALUE

88 MTP-MAP-MAIN

88 MTP-MAP-OPTIONS

88 MTP-MAP-QUEUE

88 MTP-MAP-LOCAL

88 MTP-MAP-QLIST

PIC X(8) VALUE 'MAIN'.
VALUE 'MAIN'.
VALUE 'OPTIONS'.
VALUE 'QUEUE ‘.
VALUE 'LOCAL '.
VALUE 'QLIST ‘.

MTP-SCREEN-IND
88 MTP-SCREEN-FIRST

PIC X VALUE SPACE.

VALUE 'F'.

88 MTP-SCREEN-RETURN VALUE SPACE.
88 MTP-SCREEN-SEND VALUE 'S'.
88 MTP-SCREEN-RECEIVE VALUE 'R'.

MTP-MAP-FUNCTION
88 MTP-MAP-DISPLAY
88 MTP-MAP-LIST
88 MTP-MAP-ADD

88 MTP-MAP-UPDATE
88 MTP-MAP-DELETE

PIC X(8) VALUE 'DISPLAY'.
VALUE 'DISPLAY'.
VALUE 'LIST'.
VALUE 'ADD .
VALUE 'UPDATE '.
VALUE 'DELETE '.

MTP-CONFIG-FILE PIC X(8) VALUE SPACE.
MTP-SYSTEM-REC-FLAG PIC X VALUE SPACE.
88 MTP-SYSTEM-REC-FOUND VALUE 'Y'.

88 MTP-SYSTEM-REC-NOTFOUND VALUE 'N'.

Appendix D. Sample programs 243

05

05

MTP-CONFIRM-IND
88 MTP-CONFIRM
88 MTP-NO-CONFIRM

FILLER

*--CONFIGURATION DATA

05

MTP-CONFIG-DATA

*--GENERAT EXTENDED DATA

05

MTP-EXTENDED-COMMAREA.
10 FILLER

PIC XX

PIC X VALUE SPACE.
VALUE 'Y'.
VALUE 'N'.

VALUE SPACE.

PIC X(4) VALUE SPACES.

PIC X(2000) VALUE SPACES.

* COPY MQICONFG.
*/INCLUDE COPYROCO

*** COPYBOOK: MQICONFG

* - BEGIN -

01 CONFIGURATION-RECORD VALUE SPACES.

03

FILLER

PIC

X(2048).

* ENVIRONMENT VALUE

01 ENVIRONMENT-RECORD

REDEFINES CONFIGURATION-RECORD.

03

03

03

03

244 \BM MQSeries for VSE/ESA User's Guide

ENV-RECORD-KEY .
05 ENV-RECORD-ID
88 RECORD-TYPE-IS-ENV
05 ENV-RECORD-VERSION
05 ENV-RECORD-TYPE
88 ENV-TYPE-SYSTEM
88 ENV-TYPE-TRANACTION
88 ENV-TYPE-PROGRAM
88 ENV-TYPE-MAPS
88 ENV-TYPE-CONSTANTS
05 ENV-FILLER

ENV-LAST-MAINTAINED-DATA.
05 ENV-LAST-TIME

05 FILLER

05 ENV-LAST-DATE

05 ENV-LAST-TERMID

05 ENV-LAST-USERID

05 FILLER

ENV-ADDED-MAINTAINED-DATA.

05 ENV-ADDED-TIME
05 FILLER

05 ENV-ADDED-DATE
05 ENV-ADDED-TERMID
05 ENV-ADDED-USERID
05 FILLER

ENV-DATA-AREA.
05 FILLER

PIC

PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

X(4).

VALUE 'ENV'.

9(4).
X(4).

VALUE 'SYS'.
VALUE 'TRAN'.
VALUE 'PROG'.
VALUE 'MAPS'.
VALUE "CONS'.

X(88).

9(6) .
XX.
X(8).
X(8).
X(3).
X.

9(6) .
XX.
X(8).
X(8).
X(3).
X.

X(1892).

01

SYSTEM-DESCRIPTOR-RECORD

REDEFINES CONFIGURATION-RECORD.

03

03

03

03

SYS-RECORD-KEY.
05 SYS-RECORD-1ID
88 RECORD-TYPE-IS-SYS
05 SYS-RECORD-SYSTEM-NUMBER
05 SYS-RECORD-TYPE
88 SYS-TYPE-SYS
88 SYS-TYPE-QUE-MAX
88 SYS-TYPE-QUE-DEFAULT
88 SYS-TYPE-COM-MAX
88 SYS-TYPE-COM-DEFAULT
88 SYS-TYPE-COM-PARM
05 SYS-FILLER

SYS-LAST-MAINTAINED-DATA.
05 SYS-LAST-TIME

05 FILLER

05 SYS-LAST-DATE

05 SYS-LAST-TERMID

05 SYS-LAST-USERID

05 FILLER

SYS-ADDED-MAINTAINED-DATA.
05 SYS-ADDED-TIME

05 FILLER

05 SYS-ADDED-DATE

05 SYS-ADDED-TERMID

05 SYS-ADDED-USERID

05 FILLER

SYS-DATA.
05 FILLER

PIC

PIC
PIC

PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

X(4).
VALUE 'SYS'.
9(4).
X(4).
VALUE 'SYS'.
VALUE 'QUEM'.
VALUE 'QUED'.
VALUE 'COMM'.
VALUE 'COMD'.
VALUE 'COMP'.
X(88).

9(6) .
XX.
X(8).
X(8).
X(3).
X.

9(6) .
XX.

X(8).
X(8).
X(3).

X(1892).

01

QUEUE-DESCRIPTOR-RECORD

REDEFINES CONFIGURATION-RECORD.

03

03

03

03

QDR-RECORD-KEY .
05 QDR-RECORD-ID
88 RECORD-TYPE-IS-QDR
"QDR'.
05 QDR-RECORD-SYSTEM-NUMBER
05 QDR-0BJ-NAME
05 FILLER

QDR-LAST-MAINTAINED-DATA.
05 QDR-LAST-TIME

05 FILLER

05 QDR-LAST-DATE

05 QDR-LAST-TERMID

05 QDR-LAST-USERID

05 FILLER

QDR-ADDED-MAINTAINED-DATA.
05 QDR-ADDED-TIME

05 FILLER

05 QDR-ADDED-DATE

05 QDR-ADDED-TERMID

05 QDR-ADDED-USERID

05 FILLER

QDR-DATA.
05 FILLER

PIC

PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

X(4).
VALUE

9(4).
X(48).
X(44).

9(6) .
XX.

X(8).
X(8).
X(3).

9(6) .
XX.

X(8).
X(8).
X(3).

X(1892).

* COMMUNICATION

(com)

01

COMMUNICATION-RECORD
REDEFINES CONFIGURATION-RECORD.
03 COM-RECORD-KEY.

05 COM-RECORD-ID

88 RECORD-TYPE-IS-COM
‘COM".

05 COM-RECORD-SYSTEM-NUMBER

05 COM-NAME

05 COM-KEY-TYPE

05 FILLER

03 COM-LAST-MAINTAINED-DATA.
05 COM-LAST-TIME
05 FILLER
05 COM-LAST-DATE
05 COM-LAST-TERMID
05 COM-LAST-USERID
05 FILLER

03 COM-ADDED-MAINTAINED-DATA.
05 COM-ADDED-TIME
05 FILLER
05 COM-ADDED-DATE
05 COM-ADDED-TERMID
05 COM-ADDED-USERID
05 FILLER

03 COM-DATA.
05 FILLER

PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

X(4).
VALUE

9(4).
X(20).

Xi71).

9(6) .
XX.

X(8) .
X(8) .
X(3).

9(6) .
XX.

X(8) .
X(8).
X(3).

X(1892) .

TEXT-RECORD
REDEFINES CONFIGURATION-RECORD.
03 TEXT-RECORD-KEY.
05 TEXT-RECORD-ID
88 RECORD-TYPE-IS-TEXT

05 TEXT-RECORD-SYSTEM-NUMBER
05 TEXT-RECORD-TYPE

88 TEXT-TYPE-MESSAGES

88 TEXT-TYPE-MAPS

88 TEXT-TYPE-HELP

05 TEXT-HELP-KEY.
10 TEXT-HELP-SCREEN
10 TEXT-HELP-FUNCTION
10 TEXT-HELP-FUNCT-SCREEN-NUM

05 TEXT-MAPS-KEY
REDEFINES TEXT-HELP-KEY.
10 TEXT-MAPS-SCREEN
88 TEXT-MAPS-MAIN-TITLE

10 TEXT-MAPS-MAPSET

10 TEXT-MAPS-MAPSET-TYPE

88 TEXT-MAPS-MAPSET-HEADER
88 TEXT-MAPS-MAPSET-DATA
88 TEXT-MAPS-MAPSET-MSGS

10 TEXT-MAPS-SCREEN-DATA-NUM

PIC
VALUE

PIC
PIC
VALUE
VALUE
VALUE

PIC
PIC
PIC

PIC

X(4).
'TEXT'.

9(4).
X(4).
'MSGS'.
'MAPS'.
"HELP'.

X(8).
X(40) .

S9(4) COMP.

X(8).

VALUE 'ALL'.

PIC
PIC

X(8).
X(4).

VALUE 'HEAD'.
VALUE 'DATA'.
VALUE 'MSGS'.

PIC S9(4) COMP.

0

(&2

TEXT-MESSAGE-KEY

REDEFINES TEXT-HELP-KEY.

10 TEXT-MESS-NUMBER PIC 9(6).
10 TEXT-MESS-RECORD-NUM PIC S9(4) COMP.
05 FILLER PIC X(38).
03 TEXT-LAST-MAINTAINED-DATA.
05 TEXT-LAST-TIME PIC 9(6).
05 FILLER PIC XX.
05 TEXT-LAST-DATE PIC X(8).
05 TEXT-LAST-TERMID PIC X(8).
05 TEXT-LAST-USERID PIC X(3).
05 FILLER PIC X.
03 TEXT-ADDED-MAINTAINED-DATA.
05 TEXT-ADDED-TIME PIC 9(6).
05 FILLER PIC XX.
05 TEXT-ADDED-DATE PIC X(8).
05 TEXT-ADDED-TERMID PIC X(8).
05 TEXT-ADDED-USERID PIC X(3).
05 FILLER PIC X.

03 TEXT-DATA-AREA.
05 FILLER

COPYBOOK: MQICONFG

* _ END - KK

01 WS-ERR.
* COPY MQIERR.
*/INCLUDE COPYROCO

* - BEGIN - *** COPYBOOK: MQIERR

02 ERR-HANDLER-COMMAREA.
05 ERR-CURRENT-INFO.
10 ERR-COM-HANDLER
10 ERR-QUEUE
10 ERR-FILE
10 ERR-DETAIL
10 ERR-DETAIL2
10 ERR-Q-CODE
10 FILLER

05 ERR-RESULTS.
10 ERR-CODE
10 FILLER
10 ERR-PROGRAM
10 ERR-TRANID
10 ERR-TERMID

10 ERR-TASKNO
ZERO.

10 ERR-ABSTIME
ZERO.

10 ERR-DEBUG-EIBFN

10 ERR-DEBUG-EIBRCODE
LOW-VALUES.

10 ERR-DEBUG-EIBRSRCE
LOW-VALUES.

* KKk - END - *

PIC X(48) VALUE SPACES.
PIC X(48) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(80) VALUE SPACES.
PIC X(80) VALUE SPACES.
PIC S9(8) COMP VALUE ZERO.
PIC X(8) VALUE SPACES.

PIC 9(6) VALUE ZERO.

PIC XX VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC S9(7) COMP-3 VALUE

P

—

C S9(15) COMP-3 VALUE

PIC XX VALUE SPACES.
PIC X(6) VALUE

PIC X(8) VALUE

Appendix D. Sample programs 245

10 ERR-DEBUG-EIBRESP PIC S9(8) COMP VALUE 05 ERR-INT-MOVE-ERROR PIC 9(6) VALUE 400010.

ZEROS. 05 ERR-INT-STRUC-MISSING PIC 9(6) VALUE 402000.
1‘%EE%§'DEBUG'EIBRESP2 PIC $9(8) COMP VALUE 05 ERR-INT-STRUC-ERROR PIC 9(6) VALUE 402090.
l(ﬂoﬁ'f?,]\[ﬂﬁigﬁ'“BERRCD PIC X(4) VALUE 05 ERR-LOGIC-NOT-SUPPORTED PIC 9(6) VALUE 300000.
10 ERR-DEBUG-ABEND PIC X(4) VALUE SPACES. 05 ERR-LOGIC-STARTED-WRONG PIC 9(6) VALUE 300010.
10 FILLER PIC X(12) VALUE SPACES. 05 ERR-LOGIC-REPEATED-FAILURE PIC 9(6) VALUE 300020.

05 ERR-LOGIC-LOCKS-EXCEEDED ~ PIC 9(6) VALUE 300030.

K e e e e e e e e e . 05 ERR-LOGIC-MISSING-RECORD PIC 9(6) VALUE 301000.

* _ END - **% COPYBOOK: MQIERR o - END - * 05 ERR-LOGIC-RECORD-DUPLICATED PIC 9(6) VALUE 301010.

K e e e e e e e e . 05 ERR-LOGIC-Q-CKP-MISSING PIC 9(6) VALUE 309010.

£ CoPY MQIERRC. 05 ERR-PROC-SYSTEM-STOPPED PIC 9(6) VALUE 100000.

*/INCLUDE COPYROCO 05 ERR-PROC-SYSTEM-ACTIVE PIC 9(6) VALUE 100010.

e e e e e e e . 05 ERR-PROC-SYS-START-NOQDR PIC 9(6) VALUE 100011.

* IBM MQSERTES COMMON ERROR CODES 05 ERR-PROC-SYS-START-MAXQDR ~ PIC 9(6) VALUE 100012.

e e e e e . 05 ERR-PROC-SYS-START-MAXCOM PIC 9(6) VALUE 100013.

01 MSG-ERROR-MESSAGES. 05 ERR-PROC-SYS-START-NOSYS ~ PIC 9(6) VALUE 100090.
05 ERR-NO-ENVIRONMENT PIC 9(6) VALUE 900000. 05 ERR-PROC-Q-EXCEEDED-DEPTH ~ PIC 9(6) VALUE 101000.
05 ERR-PROC-Q-CONCURRENT-UPD PIC 9(6) VALUE 101010.
05 ERR-CICS-ERROR PIC 9(6) VALUE 800000. 05 ERR-PROC-Q-NOTFOUND PIC 9(6) VALUE 101015.
05 ERR-CICS- INVALID-REQ PIC 9(6) VALUE 800010. 05 ERR-PROC-Q-STOPPED PIC 9(6) VALUE 101090.
05 ERR-CICS-TLLOGLC PIC 9(6) VALUE 80001L. 05 ERR-PROC-Q-DISABLED PIC 9(6) VALUE 101091.
05 ERR-CICS-ERROR-CHECKPOINT ~ PIC 9(6) VALUE 800090. 05 ERR-PROC-QSN-LIMIT-REACHED = PIC 9(6) VALUE 102090.
05 ERR-CICS-ABEND PIC 9(6) VALUE 800099. 05 ERR-PROC-FILE-SPACE-PUT PIC 9(6) VALUE 102091.
05 ERR-CICS-FILE-NOTOPEN PIC 9(6) VALUE 801012. 05 ERR-PROC-FILE-SPACE PIC 9(6) VALUE 102092.
05 ERR-CICS-DISABLE PIC 9(6) VALUE 801019, 05 ERR-PROC-DUAL-Q-ERROR PIC 9(6) VALUE 104021.
05 ERR-CICS-NO-STORAGE PIC 9(6) VALUE 802000. 05 ERR-PROC-DUAL-Q-FILE PIC 9(6) VALUE 104022.
05 ERR-CICS-LENGTH-ERR PIC 9(6) VALUE 803001. 05 ERR-PROC-DUAL-Q-LOGIC PIC 9(6) VALUE 104023.
05 ERR-CICS-MAPFATL PIC 9(6) VALUE 808000 05 ERR-PROC-TRIGGER-ERROR PIC 9(6) VALUE 105090.
05 ERR-CICS-PGMIDERR PIC 9(6) VALUE 809000. 05 ERR-PROC-TRIGGER-DATA PIC 9(6) VALUE 105091.
05 ERR-CICS-FILEID PIC 9(6) VALUE 809010. 05 ERR-PROC-NOT-AUTHORIZED PIC 9(6) VALUE 109000.
05 ERR-CICS-NOFILE PIC 9(6) VALUE 809011.
05 ERR-CICS-10-ERROR PIC 9(6) VALUE 809012. 05 ERR-WARN-SYS-STARTED-W-ERR PIC 9(6) VALUE 010000.
05 ERR-CICS-TRANIDERR PIC 9(6) VALUE 809050. 05 ERR-WARN-SYS-STARTED-W-FILER PIC 9(6) VALUE 010001.
05 ERR-WARN-SYS-STARTED-W-COMER PIC 9(6) VALUE 010002.
05 ERR-COM-FREE-ERROR PIC 9(6) VALUE 501001. 05 ERR-WARN-SYS-STARTED-W-CHANG PIC 9(6) VALUE 010003.
05 ERR-COM-EIB-ERROR PIC 9(6) VALUE 501002.
05 ERR-COM-STAT-ERROR PIC 9(6) VALUE 501003. 05 ERR-WARN-COM-CONNECT PIC 9(6) VALUE 005000.
05 ERR-COM-ALLOC-ERROR PIC 9(6) VALUE 501004. 05 ERR-WARN-COM-OPENED PIC 9(6) VALUE 005001.
05 ERR-COM-ALLOC-RETRY PIC 9(6) VALUE 501005. 05 ERR-WARN-COM-QUEUE-OPENED ~ PIC 9(6) VALUE 005002.
05 ERR-COM-CONN-ERROR PIC 9(6) VALUE 501006. 05 ERR-WARN-COM-LU62-CONNECT ~ PIC 9(6) VALUE 005003.
05 ERR-COM-SEND-ERROR PIC 9(6) VALUE 501008. 05 ERR-WARN-COM-RECEIVER-ALLOC PIC 9(6) VALUE 005004.
05 ERR-COM-RECV-RESP-ERR PIC 9(6) VALUE 501009. 05 ERR-WARN-COM-QUEUE-EMPTY PIC 9(6) VALUE 005005.
05 ERR-COM-RESP-TYPE PIC 9(6) VALUE 501010. 05 ERR-WARN-COM-QUEUE-CLOSED ~ PIC 9(6) VALUE 005006.
05 ERR-COM-RESP-MSN PIC 9(6) VALUE 501011. 05 ERR-WARN-COM-DISC PIC 9(6) VALUE 005007.
05 ERR-COM-RESP-FATAL PIC 9(6) VALUE 501012. 05 ERR-WARN-COM-SHUT PIC 9(6) VALUE 005008.
05 ERR-COM-MSG-ERROR PIC 9(6) VALUE 501013. 05 ERR-HARN-COM-SHUT-SENT PIC 9(6) VALUE 005009.
05 ERR-COM-BIG-INDIAN PIC 9(6) VALUE 501014.
05 ERR-COM-TSH-ERROR PIC 9(6) VALUE 501015. 05 ERR-FUNCTION-STARTED PIC 9(6) VALUE 000100.
05 ERR-COM-CCSID-ERROR PIC 9(6) VALUE 501016. 05 ERR-FLNCTION-DONE PIC 9(6) VALUE 001000.
05 ERR-COM-MSH-ERROR PIC 9(6) VALUE 501017. 05 ERR-FUNCTION-NOT-DONE PIC 9(6) VALUE 001090.
05 ERR-COM-MQX-ERROR PIC 9(6) VALUE 501018.
05 ERR-COM-INIT-ERROR PIC 9(6) VALUE 501019. 05 ERR-WARN-SYS-STARTED PIC 9(6) VALUE 000000.
05 ERR-COM-FAP-ERROR PIC 9(6) VALUE 501020.
05 ERR-COM-MSG-SIZE PIC 9(6) VALUE 501021. 05 SYNCH-MSN-ERROR PIC 9(6) VALUE 3.
05 ERR-COM-WRAP-ERROR PIC 9(6) VALUE 501022. 05 SYNCH-MSG-DUP PIC 9(6) VALUE 4.
05 ERR-COM-MCP-DOWN PIC 9(6) VALUE 501023. 05 LU62-FREE-ERROR PIC 9(6) VALUE 10.
05 ERR-COM-DOKN PIC 9(6) VALUE 501024. 05 LU62-EIB-ERROR PIC 9(6) VALUE 11.
05 ERR-COM-NOT-FOUND PIC 9(6) VALUE 501025. 05 LU62-STAT-ERROR PIC 9(6) VALUE 12.
05 ERR-COM-ERROR PIC 9(6) VALUE 501026. 05 LU62-ALLOC-ERROR PIC 9(6) VALUE 13.
05 ERR-COM-BUSY PIC 9(6) VALUE 501027. 05 LU62-ALLOC-RETRY-ERROR PIC 9(6) VALUE 14.
05 ERR-COM-RESYNC-ERROR PIC 9(6) VALUE 501028. 05 LU62-CONN-ERROR PIC 9(6) VALUE 15.
05 ERR-COM-STATUS-ERROR PIC 9(6) VALUE 501029. 05 LU62-SEND-ERROR PIC 9(6) VALUE 16.
05 ERR-COM-LENGTH-ERROR PIC 9(6) VALUE 501030. 05 LU62-RECV-RESP-ERROR PIC 9(6) VALUE 17.
05 ERR-COM-MSG-PER-BATCH PIC 9(6) VALUE 501031. 05 INVLD-RESP-TYPE PIC 9(6) VALUE 23.
05 ERR-COM-MAX-TRANSM-SIZE PIC 9(6) VALUE 501032. 05 INVLD-RESP-MSN PIC 9(6) VALUE 24.
05 ERR-COM-RESET-MSN PIC 9(6) VALUE 501050. 05 FATAL-RESP-TYPE PIC 9(6) VALUE 25.
05 RECOVERABLE-RESP-TYPE PIC 9(6) VALUE 26.
05 ERR-INT-LINK-ERROR PIC 9(6) VALUE 400000. 05 PARSER-MSN-ERROR PIC 9(6) VALUE 29.
05 ERR-INT-LINK-COM-SIZE PIC 9(6) VALUE 400001. 05 PARSER-TYPE-ERROR PIC 9(6) VALUE 30.
05 ERR- INT-LINK-COM-DATA PIC 9(6) VALUE 400002. 05 PARSER-PDM-ERROR PIC 9(6) VALUE 31.
05 ERR-INT-RETURN-ERROR PIC 9(6) VALUE 400003. 05 PARSER-SID-ERROR PIC 9(6) VALUE 32.

246 IBM MQSeries for VSE/ESA User's Guide

05 PARSER-PN-ERROR PIC 9(6) VALUE 33. 'TASK HAS REPEATED ERRORS - PLEASE CONTACT SUPPORT.'.
05 PARSER-KEY-ERROR PIC 9(6) VALUE 34.
05 PARSER-APID-ERROR PIC 9(6) VALUE 35. *--MAJOR ERROR THAT ARE LOGGED
05 PARSER-ORG-DT-ERROR PIC 9(6) VALUE 38. 05 MSG-ERR-CICS PIC X(60) VALUE
05 PARSER-ORIG-MSN-ERROR PIC 9(6) VALUE 39. 'CICS ERROR - PLEASE CONTACT SUPPORT.'.
05 PARSER-BODY-ERROR PIC 9(6) VALUE 40. 05 MSG-ERR-TRANS-ID PIC X(60) VALUE
05 PARSER-STATUS-ERROR PIC 9(6) VALUE 41. "OPTION NOT AVAILABLE- PLEASE CONTACT SUPPORT.'.
05 PARSER-LENGTH-ERROR PIC 9(6) VALUE 42. 05 MSG-ERR-NOFILE PIC X(60) VALUE
05 MCCONN-ERROR PIC 9(6) VALUE 51. "CICS FILE ERROR - PLEASE CONTACT SUPPORT.'.
05 MQOPEN-ERROR PIC 9(6) VALUE 52. 05 MSG-ERR-DISABLED PIC X(60) VALUE
05 MQGET-ERROR PIC 9(6) VALUE 53. "CICS DISABLE ERROR - PLEASE CONTACT SUPPORT.'.
05 MQPUT-ERROR PIC 9(6) VALUE 54. 05 MSG-ERR-ILLOGIC PIC X(60) VALUE
05 MQPT1-ERROR PIC 9(6) VALUE 55. 'CICS ILLOGIC ERROR - PLEASE CONTACT SUPPORT.'.
05 MQCLOSE-ERROR PIC 9(6) VALUE 56. 05 MSG-ERR-INVREQ PIC X(60) VALUE
05 MQDISC-ERROR PIC 9(6) VALUE 57. 'CICS REQUEST ERROR - PLEASE CONTACT SUPPORT.'.
05 QM-OTHER-ERROR PIC 9(6) VALUE 60. 05 MSG-ERR-IOERR PIC X(60) VALUE
05 RECV-RETURN-LON-STATUS PIC 9(6) VALUE 80. 'CICS 1/0 ERROR - PLEASE CONTACT SUPPORT.'.
05 RECV-RETURN-LON-TYPE PIC 9(6) VALUE 81. 05 MSG-ERR-NOTFOUND PIC X(60) VALUE
05 SIDRC-RETURN-MLP-FORMAT PIC 9(6) VALUE 91. "CICS NOTFOUND ERROR - PLEASE CONTACT SUPPORT.'.
05 MSG-ERR-NOTOPEN PIC X(60) VALUE
R * 'CICS NOTOPEN ERROR - PLEASE CONTACT SUPPORT.'.
05 MSG-ERR-ABENDED PIC X(60) VALUE
* COPY TTETST3. "CICS ABEND ERROR - PLEASE CONTACT SUPPORT.'.
*COPY COPYROCO
S * 05 MSG-ERR-USER-NOT-AUTH PIC X(60) VALUE
* DISPLAY MESSAGES FOR TTPTST3 "USER IS NOT AUTHORIZED TO PERFORM FUNCTION. *.
K e e e e o . *
* NORMAL MESSAGES K e e e e e *

01 MSG-NORMAL.
05 MSG-START PIC X(60) VALUE
'"ENTER START VALUES.'. L *

05 MSG-END PIC X(60) VALUE LINKAGE SECTION.

'TEST3 HAS ENDED.'. Rt R e L L PP *
05 MSG-0K PIC X(60) VALUE 01 DFHCOMMAREA.

'"FUNCTION COMPLETED - ENTER NEW REQUEST.'. 05 FILLER PIC X(400).

05 MSG-RETURNING PIC X(60) VALUE
'"FUNCTION COMPLETED - ENTER NEW REQUEST.'.
*--STARTED DATA

05 MSG-SYSTEM-INACTIVE PIC X(60) VALUE 01 LK-GET-DATA.
! QUEUING SYSTEM IS NOT ACTIVE'. 05 FILLER PIC X(400).
* ERROR MESSAGES
01 MSG-ERROR. H e e e e e e e e e e e e e e e e *
05 MSG-ERR-QUEUE PIC X(60) VALUE PROCEDURE DIVISION.
'QUEUE NME NOT ENTERED.'. R R L L PP *
05 MSG-ERR-TS PIC X(60) VALUE 0000-MAIN.
'TIME STAMP FLAG MUST BE SPACE OR Y.'.
05 MSG-ERR-MSG PIC X(60) VALUE *--SETUP ENVIRONMENT FROM LAST TIME
'TEXT MESSAGE NOT ENTERED.'. PERFORM 1000-INITIAL.
05 MSG-ERR-MSG-SIZE PIC X(60) VALUE
'TEXT MESSAGE SIZE NOT ENTERED.'. *-- --IF RECIEVEING - PROCESS FUNCTION
05 MSG-ERR-MSG-SIZE-VALUE PIC X(60) VALUE IF MTP-SCREEN-RECEIVE
'TEXT MESSAGE SIZE IF INVALID.'. THEN
05 MSG-ERR-NUM-MSG PIC X(60) VALUE PERFORM 2000-SCREEN-FUNCTION

'NUMBER OF MESSAGES TO BE PUT PER TASK NOT ENTERED.'.

05 MSG-ERR-NUM-MSG-VALUE PIC X(60)

'NUMBER OF MESSAGES TO BE PUT PER TASK IS INVALID.'.

VALUE

THRU 2000-SCREEN-EXIT.

05 MSG-ERR-MAX-TASK PIC X(60) VALUE 0000-RETURN-MQMS .
'"NUMBER OF TASKS TO START NOT ENTERED.'. PERFORM 7000-SEND-MAP.
05 MSG-ERR-MAX-TASK-VALUE PIC X(60) VALUE MOVE 'R’ TO MTP-SCREEN-IND.
'NUMBER OF TASKS TO START IS INVALID.'. *
EXEC CICS RETURN TRANSID(MTP-ACTIVE-TASK)
05 MSG-ERR-FUNCTION PIC X(60) VALUE COMMAREA(MTP-COMMAREA)
'"FUNCTION NOT ENTERED.'. LENGTH (LENGTH OF MTP-COMMAREA)
05 MSG-ERR-FUNCTION-VALUE PIC X(60) VALUE END-EXEC.
'"FUNCTION MUST BE A "G" OR "P".'. *
GOBACK.
05 MSG-ERR-PFKEY PIC X(60) VALUE EJECT
"INVALID PFKEY WAS ENTERED - ENTER VALID ONE.'. Rt e e e
05 MSG-ERR-MAPFAIL PIC X(60) VALUE 1000-INITIAL.

'TASK ENTERED IMPROPERLY - TASK RE-STARTED.'. e *
* PURPOSE: SETUP HANDLES
VALUE * CHECK IF ENVIRONMENT EXIST - ALREADY

05 MSG-ERR-MAPFAIL-REPEATED PIC X(60)

Appendix D. Sample programs 247

* IF FIRST TIME - JUST SET MAIN SCREEN AND GET OUT

EXEC CICS HANDLE CONDITION
ERROR (9900-HANDLE-ERROR)

TRANSIDERR ~ (9900-HANDLE-TRANSID)
MAPFAIL (9900-HANDLE-MAPFAIL)
FILENOTFOUND (9900-HANDLE-NOFILE)

DISABLED (9900-HANDLE-DISABLE)

ILLOGIC (9900-HANDLE-ILLOGIC)

INVREQ (9900-HANDLE-INVREQ)

I0ERR (9900-HANDLE-IOERR)

NOTFND (9900-HANDLE-NOTFOUND)

NOTOPEN (9900-HANDLE-NOTOPEN)
END-EXEC.

*--SET ERROR INFO
PERFORM 1050-SET-ERROR-INFO.

*--GET WHAT SYSTEM / APPLIC IS RUNNING
EXEC CICS ASSIGN SYSID (WS-SYSID)
APPLID (WS-APPLID)
STARTCODE (WS-STARTCD)
END-EXEC.

*--CHECK IF SYSTEM EXIST - ALREADY
PERFORM 1100-CHECK-SYSTEM
THRU 1100-EXIT.

*--SETUP ENVIRONMENT
PERFORM 1200-SETUP-ENVIR
THRU 1200-EXIT.

1000-EXIT.
EXIT.
EJECT

*--SET CSMT DATE AND TIME
EXEC CICS ASKTIME
ABSTIME (WS-ABSTIME)
END-EXEC.

MOVE EIBTIME TO WS-UNPACK-TIME-9.
MOVE WS-TIME-HH TO WS-FORMAT-TIME-HH
MOVE WS-TIME-MM TO WS-FORMAT-TIME-MM.
MOVE WS-TIME-SS TO WS-FORMAT-TIME-SS.

EXEC CICS FORMATTIME
ABSTIME (WS-ABSTIME)
MMDDYY (WS-FORMATTED-DATE)
DATESEP ('/')
END-EXEC.

EXEC CICS FORMATTIME
ABSTIME (WS-ABSTIME)
YYMMDD (WS-DATE-YYMMDD)
END-EXEC.

*-- --SET CENTURY
IF WS-DATE-YY > 50
THEN
MOVE 19 TO WS-DATE-CC
ELSE

MOVE 20 TO WS-DATE-CC.

*--SET COMMON ERROR INFO
MOVE ZERO TO ERR-CODE.
MOVE 'TTPTST3' TO ERR-PROGRAM.

248 IBM MQSeries for VSE/ESA User's Guide

*--SET UP COMMAREA
MOVE SPACES TO FINDQ-CALL-PARAMETERS.
MOVE 'S’ TO FINDQ-CALL-TYPE.

*--CALL
EXEC CICS LINK PROGRAM (ENV-II-LINK-FINDQ)
COMMAREA (FINDQ-CALL-PARAMETERS)
LENGTH(LENGTH OF FINDQ-CALL-PARAMETERS)
END-EXEC.

1100-EXIT.
EXIT.
EJECT

*--SETUP NEW COMMON AREA
MOVE LOW-VALUES TO MAINO.

*--IF NOT RE-STARTED
IF NOT WS-STARTED
THEN
*-- --IF NOT STARTED AND NO COMMAREA - JUST SETUP TO MAIN...
IF (EIBCALEN EQUAL ZERO)
THEN
MOVE 'S’ TO MTP-SCREEN-IND
MOVE MSG-START ~ TO WS-ERROR-MESSAGE
ELSE
*-- --MOVE COMMAREA TO WORKING-STORAGE..CONTINUE
MOVE DFHCOMMAREA TO MTP-COMMAREA
MOVE 'R’ TO MTP-SCREEN-IND
END-IF.

*--STARTED - TREAT AS NEW TASK
IF WS-STARTED
THEN
PERFORM 1210-GET-STARTED-DATA
THRU 1210-GET-STARTED-EXIT

*-- --IF RETURNING FROM ANOTHER APPLI. - TREAT AS NEW
MOVE LOW-VALUES TO MAINO
IF MTP-SCREEN-RETURN
THEN
MOVE MSG-RETURNING TO WS-ERROR-MESSAGE
MOVE MTP-CONFIG-DATA
TO MTP-MAIN-TASK

MOVE SPACES TO MTP-CONFIG-DATA
ELSE
MOVE MSG-START TO WS-ERROR-MESSAGE
END-IF
MOVE 'S’ TO MTP-SCREEN-IND.

*--SETUP TASK ID
MOVE EIBTRNID TO MTP-ACTIVE-TASK.

1200-EXIT.
EXIT.
EJECT

1210-GET-STARTED-DATA.

EXEC CICS RETRIEVE
SET (ADDRESS OF LK-GET-DATA)
LENGTH (WS-REC-SIZE)
END-EXEC.

IF WS-REC-SIZE NOT < LENGTH OF MTP-COMMAREA
THEN
*-- --GOT VALID LENGTH- MOVE AND CHECK
MOVE LK-GET-DATA TO MTP-COMMAREA
IF NOT MTP-HEADER-0K
*-- -- --ERROR IN GET DATA - RESET COMMAREA
THEN
MOVE SPACES TO MTP-COMMAREA
SET MTP-HEADER-OK TO TRUE
MOVE 'S’ TO MTP-SCREEN-IND
MOVE 'MAIN' TO MTP-MAP-VALUE.

1210-GET-STARTED-EXIT.
EXIT.
EJECT

* PURPOSE: GET MAIN MAP

* CHECK OPTION KEYS
* CHECK OPTION FIELD
* PROCESS FUNCTION ENTERED

*--PRELIMINARY EDIT OF PF KEYS
PERFORM 2100-MAIN-CHECK-KEYS.
IF NOT WS-EDIT-ERR
THEN

*--GET MAP
PERFORM 7000-RECEIVE-MAP

*--IF RECORD NOT FOUND - SET UP DEFAULT RECORD
IF NOT FINDQ-SYSTEM-ACTIVE
THEN
MOVE MSG-SYSTEM-INACTIVE
TO WS-ERROR-MESSAGE
ELSE
*-- --EDIT MAP
PERFORM 2200-MAIN-EDIT
THRU 2200-MAIN-EXIT

*--PROCESS FUNCTION KEY - IF NO ERRORS
IF NOT WS-EDIT-ERR
THEN
PERFORM 2300-MAIN-FUNCTION
THRU 2300-MAIN-EXIT.

2000-SCREEN-EXIT.
EXIT.
EJECT

*--CHECK AID KEY
*-- --MAIN MENU
IF (EIBAID EQUAL DFHPF2)
AND (MTP-MAIN-TASK NOT EQUAL SPACES)
THEN
GO TO 9000-MAIN-MENU.

*-- --SHUTDOWN
IF ((EIBAID EQUAL DFHCLEAR OR DFHPAl OR DFHPA2)
OR (EIBAID EQUAL DFHPF3))
THEN
GO TO 9000-SHUTDOWN.

*-- --QUEUE KEYS - FIRST INQ THEN UPDATE
IF (EIBAID EQUAL DFHPF4)
OR (EIBAID EQUAL DFHENTER)

THEN
NEXT SENTENCE
ELSE
MOVE -1 TO LTNUML
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-PFKEY TO WS-ERROR-MESSAGE.

*--SET TYPE OF FUNCTION - DEFAULT TO UPDATE
MOVE 'UPDATE' TO MTP-MAP-FUNCTION.

*--FUNCTION
MOVE DFHBMFSE TO LFUNCA.
IF (LFUNCI EQUAL '?Y)
OR (LFUNCI NOT > SPACE)

THEN
MOVE '?' TO LFUNCO
MOVE -1 TO LFUNCL
MOVE DFHUNIMD TO LFUNCA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-FUNCTION
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE

ELSE
IF (LFUNCI ~ EQUAL 'P')
THEN
MOVE 'PUT' TO TST2-FUNCTION
ELSE
IF (LFUNCI ~ EQUAL 'G')
THEN
MOVE 'GET' TO TST2-FUNCTION
ELSE
MOVE -1 TO LFUNCL
MOVE DFHUNIMD TO LFUNCA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-FUNCTION-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE.

*--NUMBER OF STARTS

MOVE DFHBMFSE TO LTNUMA.
IF (LTNUMI EQUAL '?7')
OR (LTNUMI NOT > SPACE)

THEN
MOVE '?' TO LTNUMO
MOVE -1 TO LTNUML
MOVE DFHUNIMD TO LTNUMA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-MAX-TASK
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
IF (LTNUMI NUMERIC)
THEN
MOVE LTNUMI TO WS-NUM

Appendix D. Sample programs 249

IF (WS-NUM < 0)

THEN
MOVE -1 TO LTNUML
MOVE DFHUNIMD TO LTNUMA
MOVE "Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-MAX-TASK-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
MOVE WS-NUM TO WS-SS-STARTS

ELSE
MOVE -1 TO LTNUML
MOVE DFHUNIMD TO LTNUMA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-MAX-TASK-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE.

*--CHECK QUEUE FIELD
MOVE DFHBMFSE TO LPQUEA.
IF (LPQUEI EQUAL '?')
OR (LPQUEI NOT > SPACE)

THEN
MOVE '?' TO LPQUEO
MOVE -1 TO LPQUEL
MOVE DFHUNIMD TO LPQUEA
MOVE "Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-QUEUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
MOVE LPQUEI TO TST2-PUT-QUEUE-NAME.

*--NUM OF MESSAGE PER TASK
MOVE DFHBMFSE ~ TO LMNUMA.
IF (LMNUMI EQUAL '7')
OR (LMNUMI NOT > SPACE)

THEN
MOVE '?' TO LMNUMO
MOVE -1 TO LMNUML
MOVE DFHUNIMD TO LMNUMA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-NUM-MSG
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
IF (LMNUMI NUMERIC)
THEN
MOVE LMNUMI TO WS-NUM
IF (WS-NUM < 0)
THEN
MOVE -1 TO LMNUML
MOVE DFHUNIMD TO LMNUMA
MOVE "Y' TO WS-EDIT-ERR-FLAG
MOVE MSG-ERR-NUM-MSG-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
MOVE WS-NUM TO TST2-PUT-NUM-MSG
ELSE
MOVE -1 TO LMNUML
MOVE DFHUNIMD TO LMNUMA
MOVE 'Y' TO WS-EDIT-ERR-FLAG
MOVE MSG-ERR-NUM-MSG-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE.

*--MESSAGE SIZE
MOVE DFHBMFSE TO LPSIZEA.
IF TST2-FUNCT-PUT
THEN

250 IBM MQSeries for VSE/ESA User's Guide

IF ((LPSIZEI EQUAL '?') OR (LPSIZEI NOT >

SPACE))
THEN
MOVE '?! TO LPSIZEO
MOVE -1 TO LPSIZEL
MOVE DFHUNIMD TO LPSIZEA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-MSG-SIZE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
IF (LPSIZEIL NUMERIC)
THEN
MOVE LPSIZEI TO WS-NUM
IF (WS-NUM < 0
THEN
MOVE -1 TO LPSIZEL
MOVE DFHUNIMD TO LPSIZEA
MOVE 'Y' TO WS-EDIT-ERR-FLAG
MOVE MSG-ERR-MSG-SIZE-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
MOVE WS-NUM TO TST2-PUT-MSG-SIZE
ELSE
MOVE -1 TO LPSIZEL
MOVE DFHUNIMD TO LPSIZEA
MOVE 'Y' TO WS-EDIT-ERR-FLAG
MOVE MSG-ERR-MSG-SIZE-VALUE
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE.

*--CHECK MESSAGE

MOVE DFHBMFSE ~ TO LMSGA.
IF TST2-FUNCT-PUT

THEN
IF (LMSGI EQUAL '?') OR (LMSGI NOT > SPACE)
THEN
MOVE '?' TO LMSGO
MOVE -1 TO LMSGL
MOVE DFHUNIMD TO LMSGA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-MSG
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
MOVE LMSGI TO TST2-PUT-MSG.

*--CHECK TIME STAMP FLAG

MOVE DFHBMFSE TO LTSA.
IF TST2-FUNCT-PUT

THEN
IF (LTSI EQUAL '?') OR (LTSI NOT > SPACE)
THEN
MOVE '?' TO LTSO
MOVE -1 TO LTSL
MOVE DFHUNIMD TO LTSA
MOVE 'Y' TO WS-EDIT-ERR-FLAG

MOVE MSG-ERR-TS
TO WS-ERROR-MESSAGE
PERFORM 8000-MOVE-ERR-MESSAGE
ELSE
IF TST2-PUT-MSG-TIMESTAMP EQUAL SPACE OR 'Y'
THEN
MOVE LTSI TO TST2-PUT-MSG-TIMESTAMP.

2200-MAIN-EXIT.
EXIT.
EJECT

2300-MAIN-FUNCTION.

* PURPOSE: SETUP DEFAULT RECORD AND MESSAGE

* DEFAULT TO QUEUE PROCESSING
S,
*--SET CURSOR

MOVE -1 TO LTNUML.

*--START TASK.
PERFORM WS-SS-STARTS TIMES
EXEC CICS START TRANSID('TST2')
INTERVAL (000000)

FROM (WS-TST2-COMMAREA)
LENGTH (LENGTH OF WS-TST2-COMMAREA)

END-EXEC
END-PERFORM.

*--SAYS 0K
MOVE MSG-OK TO WS-ERROR-MESSAGE.

S,
2300-MAIN-EXIT.
EXIT.
EJECT
EJECT
S,
7000-RECEIVE-MAP.
S,
* PURPOSE: GET USER MAP
S,
EXEC CICS RECEIVE MAP (MTP-MAP-VALUE)
MAPSET ('TTMTST3"')
INTO (MAINO)
END-EXEC.
*
S,
EJECT
S,
7000-SEND-MAP.
S,
* PURPOSE: SETUP HEADER DATA
* SEND SCREEN BASED ON MODE
*

*--SETUP HEADER
PERFORM 7100-SETUP-HEADER.

*--RESET ERROR TO FIRST ONE..IF MORE THAN ONE
IF WS-ERR-COUNT > ZERO
THEN
MOVE WS-ERR-MSG (1)
TO WS-ERROR-MESSAGE.
*
*--SEND SCREEN
IF MTP-SCREEN-SEND
THEN
*-- --NEW MAP - SETUP INFO....
MOVE WS-ERROR-MESSAGE TO LERRO
EXEC CICS SEND MAP (MTP-MAP-VALUE)
MAPSET (' TTMTST3")
FROM (MAINO)
ERASE CURSOR
END-EXEC
ELSE
MOVE WS-ERROR-MESSAGE TO LERRO
EXEC CICS SEND MAP (MTP-MAP-VALUE)
MAPSET (' TTMTST3')
FROM (MAINO)
DATAONLY CURSOR
END-EXEC.

7100-SETUP-HEADER.

*--SETUP HEADER
MOVE WS-FORMATTE
MOVE DFHBMPRF
MOVE WS-FORMATTE

MOVE WS-SYSID
MOVE EIBTRMID
MOVE WS-APPLID

K e e —————————————
EJECT
K e e e e ———————————
8000-MOVE-ERR-MESSAG
*

ADD +1 TO WS-ER
IF WS-ERR-COUNT

THEN
MOVE WS-
K e e e ———————————
EJECT
K e e o ————————————————————
9000-SHUTDOWN.
*

*--IF ORIGIN TRAN WAS ME ..
EXEC CICS SEND F
LENGTH (LENGT

END-
*
EXEC CICS RETURN
END-
K e e e —————————————
EJECT
K e e —————————————
9000-MAIN-MENU.
*

*--RE-START ORIGINAL TASK
MOVE SPACE TO
EXEC CICS START

LENGTH(LE
END-EXEC.
*
EXEC CICS RETURN
END-
K e e e ———————————
EJECT
K e e e —————————————
* PURPOSE: ENVIRONMENT NOT
K e e e ———————————————
9900-NO-ENVIR-SETUP.

EXEC CICS SEND F
LENGTH (LENGT
END-EXEC

___________________________________ *
A
___________________________________ *
D-DATE TO MDATELO.
TO MDATELA.

D-TIME TO MTIMELO.
TO MSYSTLO.
TO MTERMLO.
TO MAPPLLO.
___________________________________ *
___________________________________ *
E.
___________________________________ *
ROR MESSAGES...
___________________________________ *
R-COUNT.
NOT > WS-ERR-MAX
ERROR-MESSAGE

TO WS-ERR-MSG (WS-ERR-COUNT).
___________________________________ *
___________________________________ *
___________________________________ *
___________________________________ *
ROM (MSG-END)
H OF MSG-END) ERASE
EXEC.
EXEC.
___________________________________ *
___________________________________ *
___________________________________ *
ASK
___________________________________ *
MTP-SCREEN-IND.

TRANSID (MTP-MAIN-TASK)

TERMID (EIBTRMID)

FROM (MTP-COMMAREA)
NGTH OF MTP-COMMAREA)
INTERVAL(0)
NOHANDLE
EXEC.
___________________________________ *
___________________________________ *
SETUP
___________________________________ *

ROM (ENV-IT-UN-INIT-MSG)
H OF ENV-IT-UN-INIT-MSG) ERASE

Appendix D. Sample programs 251

EXEC CICS RETURN
END-EXEC.

9900-HANDLE-TRANSID.
MOVE ERR-CICS-TRANIDERR
MOVE WS-TRAN-ID
MOVE MSG-ERR-TRANS-ID
GO TO 9900-ERR-EXIT.

TO ERR-CODE.
TO ERR-DETAIL.
TO WS-ERROR-MESSAGE.

9900-HANDLE-NOTAUTH.
MOVE ERR-PROC-NOT-AUTHORIZED TO ERR-CODE.
MOVE WS-TRAN-ID TO ERR-DETAIL.
MOVE MSG-ERR-USER-NOT-AUTH TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-ERROR.
MOVE ERR-CICS-ERROR TO ERR-CODE.
MOVE MSG-ERR-CICS TO WS-ERROR-MESSAGE.
GO TO 9999-FATAL-ERR-EXIT.

9900-HANDLE-NOFILE.
MOVE ERR-CICS-NOFILE TO ERR-CODE.
MOVE MSG-ERR-NOFILE ~ TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-DISABLE.
MOVE ERR-CICS-DISABLE
MOVE MSG-ERR-DISABLED
GO TO 9900-ERR-EXIT.

TO ERR-CODE.
TO WS-ERROR-MESSAGE.

9900-HANDLE-TILLOGIC.
MOVE ERR-CICS-ILLOGIC TO ERR-CODE.
MOVE MSG-ERR-ILLOGIC TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-INVREQ.
MOVE ERR-CICS-INVALID-REQ TO ERR-CODE.
MOVE MSG-ERR-INVREQ TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-IOERR.
MOVE ERR-CICS-I0O-ERROR TO ERR-CODE.
MOVE MSG-ERR-IOERR TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-NOTFOUND.
MOVE ERR-LOGIC-MISSING-RECORD TO ERR-CODE.
MOVE MSG-ERR-NOTFOUND TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-NOTOPEN.
MOVE ERR-CICS-FILE-NOTOPEN TO ERR-CODE.
MOVE MSG-ERR-NOTOPEN TO WS-ERROR-MESSAGE.
GO TO 9900-ERR-EXIT.

9900-HANDLE-MAPFAIL.
EXEC CICS HANDLE CONDITION
MAPFAIL (9999-FATAL-ERR-PRE-EXIT)
END-EXEC.

MOVE ERR-CICS-MAPFAIL

MOVE MSG-ERR-MAPFAIL

GO TO 9900-ERR-EXIT.
EJECT

9900-ERR-EXIT.

TO ERR-CODE.
TO WS-ERROR-MESSAGE.

252 IBM MQSeries for VSE/ESA User's Guide

* PURPOSE: ERROR CONDITION

* SEND SCREEN
* GO TO CICS RETURN W/ NEXT TRAN ID
* *

*--TRANSLATE ERROR CODE
PERFORM 9999-CONVERT-ERROR-INFO.

*--WRITE ERROR MESSAGE
PERFORM 9999-ERROR-WRITE.

*--RE-SEND MAIN MAP
MOVE LOW-VALUES TO MAINO.
MOVE -1 TO LTNUML.
MOVE 'F' TO MTP-SCREEN-IND.

GO TO 0000-RETURN-MQMS.

EJECT
K e e e e e *
9999-FATAL-ERR-PRE-EXIT.
K e e e e e o *
* PURPOSE: REPEATED MAPFAIL
* *

*--SET ERROR MESSAGE
MOVE MSG-ERR-MAPFAIL-REPEATED TO WS-ERROR-MESSAGE.
GO TO 9999-FATAL-ERR-EXIT.

K e e e e e o *
9999-FATAL-ERR-EXIT.

K e e e e e o *

* PURPOSE: ERROR EXIT - FOR REPEATED MAPFAIL / ABEND

* *

*--SEND MESSAGE
EXEC CICS SEND FROM (WS-ERROR-MESSAGE)
LENGTH (LENGTH OF WS-ERROR-MESSAGE) ERASE NOHANDLE

END-EXEC.

*--GET OUT

EXEC CICS RETURN

END-EXEC.
EJECT

K e e e e e o o o *
* ERROR HANDLING CODE
K e e e e e o o o o o *
* COPY MQIERRCD.
K e e e e e *
* ERROR PROCESSING - CODE PROCESSING - MQIERRCD
* *

9999-ERROR-WRITE.
EXEC CICS WRITEQ TD
QUEUE (ENV-II-ERROR-TD)
FROM (ERR-HANDLER-COMMAREA)

LENGTH (LENGTH OF ERR-HANDLER-COMMAREA)
NOHANDLE

END-EXEC.

*--IF ERROR IN ERROR TD .. PUT TO CSMT
*WKH IF EIBRCODE NOT EQUAL LOW-VALUES

K e e e e e e o *
EJECT
K e e e e e e o o o o o *
9999-CONVERT-ERROR-INFO.
K e e e e e e o o o o o o *
MOVE EIBTRNID TO ERR-TRANID.
MOVE EIBTRMID TO ERR-TERMID.
MOVE EIBTASKN TO ERR-TASKNO.
MOVE WS-ABSTIME TO ERR-ABSTIME.
MOVE EIBFN TO ERR-DEBUG-EIBFN.
MOVE EIBRCODE TO ERR-DEBUG-EIBRCODE.
MOVE EIBRSRCE TO ERR-DEBUG-EIBRSRCE.

MOVE EIBRESP TO ERR-DEBUG-EIBRESP.

MOVE EIBRESP2 TO ERR-DEBUG-EIBRESP2.
MOVE EIBERRCD TO ERR-DEBUG-EIBERRCD.
K e e e e = = = *
K e e e e = = = = = = = *
EJECT

9999-ABEND-CONDITION.
MOVE ERR-CICS-ABEND TO ERR-CODE.
PERFORM ~ 9999-CONVERT-ERROR-INFO.

*--ASSIGN INFO
EXEC CICS ASSIGN ABCODE (ERR-DEBUG-ABEND)
END-EXEC.

*--USER CODE MUST FOLLOW THIS STATEMENT *****x*
9999 -ABEND-USER-CODE.

*--ABEND MESSAGE SENT....JUST GET OUT
MOVE ~ MSG-ERR-ABENDED TO WS-ERROR-MESSAGE.
GO TO 9999-FATAL-ERR-EXIT.

Appendix D. Sample programs 253

254 1BM MQSeries for VSE/ESA User's Guide

Sample program MQPECHO.Z

* COPY COPYRASP.

* COPYBOOK COPYRSAP
* Licensed Materials - Property of IBM *
* *
* 5787-ECX *
* (C) Copyright IBM Corp. 1993, 1994 *
* *
* US Government Users Restricted Rights - Use, duplication or *
* disclosure restricted by GSA ADP Schedule Contract with IBM *
* Corp. *

IDENTIFICATION DIVISION.

PROGRAM-ID. MQPECHO.

AUTHOR. IBM

DATE-WRITTEN. 9/ 1/92.

DATE-COMPILED.

*_AST-MODIFIED. 9/ 1/95.
K e e e e e e e *
K e e e e e e ——— —— —— ———— *
* TEST ECHO *
* *
* APPLICATION INTERFACE *
* *
* MQSeries for VSE/ESA *
* *
K e e e e e e *
* MQPECHO - IBM APPLICATION TEST PROGRAM *
* *
* PREREQUISITE: *
* 1. SENDING QUEUE, A LOCAL QUEUE NAMED XXX, *
* MUST BE DEFINED WITH *
* TRIGGER ENABLE: Y *
* PROGRAM ID MQPECHO *
* 2. SENDING QUEUE MUST BE ABLE TO TRIGGER *
* MQPECHO *
* A. IF XXX HAS MESSAGES, STOP THEN START XXX *
* B. IF XXX DOESN’T HAVE ANY MESSAGES, OR *
* YOU WANT TO ECHO MORE MESSAGES THAN *
* EXISTING ONES, THEN PUT SOME MESSAGES BY,*
* EG, TST1 OUT 99 XXX. *
* C. DEFINE IBM.REPLY.QUEUE IF IT DOES NOT *
* EXIST *
* FUNCTIONS: 1. ACTIVATED VIA TRIGGER MECHANISM BY QUEUE *
* XXX. *
* 2. READ QUEUE XXX TILL THERE IS NO MORE *
* MORE MESSAGE. *
* 3. ECHO READ MESSAGES INTO IBM.REPLY.QUEUE1 *
* *
* COPYBOOKS: MQIVALUE - IBM RETURN CODES. *
* MQIERR - ERROR COMMAREA *
* MQIERRC - ERROR COMMON CODES *
* MQIERRCD - ERROR CODE *
* MQICENV - ENVIRONMENT *
* *
* CALLS MQCONN - CONNECT *
* MQOPEN - OPEN *
* MQPUT - PUT *
* MQGET - GET *
* MQCLOSE - CLOSE *
* MQDISC - DISCONNECT *
* *
* CALLED BY: -- NONE -- *
* *
* *

CHANGE SUMMARY :

© Copyright IBM Corp. 1993, 1997

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.

WORKING-STORAGE SECTION.
* COPY COPYRWS.

* COPYRIGHT WORKING STORAGE FOR COBOL MODULES *
K e e e e e e o o o *
01 FILLER.
05 FILLER PIC X(80) VALUE
'Licensed Materials - Property of IBM'.
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE
'5787-ECX .
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE
'(C) Copyright IBM Corp. 1993, 1996 A1l Rights
Reserved'.
05 FILLER PIC X(80) VALUE SPACES.
05 FILLER PIC X(80) VALUE

01

'US Government Users Restricted Rights - Use,

duplication
05 FILLER

05 FILLER
'with IBM Corp.'.

FILLER PIC X(40) VALUE
'MQPECHO VERSION 1.4.0.'.
WS-WORK-FIELDS.

05 WS-MORE-FLAG
88 WS-MORE-DATA
88 WS-NOMORE-DATA
05 WS-DATA-LENGTH
ZERO.
05 WS-APPL-MSG-LENGTH
ZERO.
05 WS-ABSTIME
05 WS-DATE.
10 WS-DATE-CC
10 WS-DATE-YYMMDD.
12 WS-DATE-YY
12 WS-DATE-MM
12 WS-DATE-DD
12 FILLER

05 WS-UNPACK-TIME-9

PIC X(80) VALUE

‘or disclosure restricted by GSA ADP Schedule Contract

PIC X(80) VALUE

VALUE SPACES.
VALUE SPACES.
VALUE 'Y'.

PIC XX

PIC S9(4) COMP VALUE

PIC S9(8) COMP VALUE

PIC S9(15) COMP-3.

PIC 99 VALUE ZERO.
VALUE ZERO.
VALUE ZERO.
VALUE ZERO.
VALUE ZERO.

PIC 99
PIC 99
PIC 99
PIC XX

PIC 9(07) VALUE ZEROES.

05 WS-UNPACK-TIME-X REDEFINES WS-UNPACK-TIME-9.

10 FILLER

10 WS-TIME-HHMMSS.
12 WS-TIME-HH
12 WS-TIME-MM
12 WS-TIME-SS

05 WS-FORMATTED-TIME.

10 WS-FORMAT-TIME-HH

10 FILLER

10 WS-FORMAT-TIME-MM

PIC X(01).

PIC X(02).
PIC X(02).
PIC X(02).

PIC X(02) VALUE SPACES.

PIC X(01) VALUE ':'.
PIC X(02) VALUE SPACES.

255

10 FILLER
10 WS-FORMAT-TIME-SS
05 WS-FORMATTED-DATE.
10 WS-FORMAT-DATE-MM
10 FILLER
10 WS-FORMAT-DATE-DD
10 FILLER
10 WS-FORMAT-DATE-YY

*_-DEFAULT ECHO READQUEUE/QM
05 WS-READ-QM-QUEUE.
10 WS-QM-NAME
10 WS-Q-NAME
"QUEUEL'.

*--DEFAULT ECHO RESPONSE QUEUE/QM
05 WS-RESPONSE-QM-QUEUE.
10 WS-R-QM-NAME
10 WS-R-Q-NAME
'IBM.REPLY.QUEUE'.

01 WS-ERROR-MESSAGE.

05 FILLER

"ECHO: '.

05 FILLER

' QID -'.
05 WS-ERR-DISPLAY-QUEUE
05 FILLER

,cco-'.

05 WS-ERR-DISPLAY-CCODE
05 FILLER

',RC ',

05 WS-ERR-DISPLAY-RCODE

05 WS-FUNCTION

* ERROR WS VALUES
01 WS-ERR-INFO.

* COPY MQIERR.

K e e e ——————————————————— —— —— —— ——
* - BEGIN - **% COPYBOOK: MQIERR
K e e e ——————————————————— —— ——
* ERROR MODULE CALLING PARAMETERS

02 ERR-HANDLER-COMMAREA.
05 ERR-CURRENT-INFO.
10 ERR-COM-HANDLER
10 ERR-QUEUE
10 ERR-FILE
10 ERR-DETAIL
10 ERR-DETAIL2
10 ERR-Q-CODE
10 FILLER

05 ERR-RESULTS.

10 ERR-CODE

10 FILLER

10 ERR-PROGRAM

10 ERR-TRANID

10 ERR-TERMID

10 ERR-TASKNO
ZERO.

10 ERR-ABSTIME
ZERO

PIC X(01) VALUE ':'.

PIC X(02) VALUE SPACES.

PIC X(02) VALUE SPACES.

PIC X(01) VALUE '/'.

PIC X(02) VALUE SPACES.

PIC X(01) VALUE '/'.

PIC X(02) VALUE SPACES.

PIC X(48) VALUE SPACES.

PIC X(48) VALUE

PIC X(48) VALUE SPACES.

PIC X(48) VALUE

PIC X(5) VALUE

PIC X(6) VALUE

PIC X(30) VALUE SPACES.

PIC X(6) VALUE

PIC 9(4)

PIC X(6) VALUE

PIC 9(4)

PIC X(12) VALUE SPACES.

*hx - BEGIN -

PIC X(48) VALUE SPACES.
PIC X(48) VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(80) VALUE SPACES.

PIC X(80) VALUE SPACES.
PIC S9(8) COMP VALUE ZERO.

PIC X(8) VALUE SPACES.

PIC 9(6) VALUE ZERO.

PIC XX VALUE SPACES.
PIC X(8) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC X(4) VALUE SPACES.
PIC S9(7) COMP-3 VALUE

P

—

C S9(15) COMP-3 VALUE

256 IBM MQSeries for VSE/ESA User's Guide

VALUE ZERO.

VALUE ZERO.

10 ERR-DEBUG-EIBFN

10 ERR-DEBUG-EIBRCODE
LOW-VALUES.

10 ERR-DEBUG-EIBRSRCE
LOW-VALUES.

10 ERR-DEBUG-EIBRESP
ZEROS.

10 ERR-DEBUG-EIBRESP2
ZEROS.

10 ERR-DEBUG-EIBERRCD
LOW-VALUES.

10 ERR-DEBUG-ABEND
10 FILLER

* - END - *** COPYBOOK: MQIERR

* COPY MQIERRC.

01 MSG-ERROR-MESSAGES.
05 ERR-NO-ENVIRONMENT

05 ERR-CICS-ERROR

05 ERR-CICS-INVALID-REQ
05 ERR-CICS-ILLOGIC

05 ERR-CICS-ERROR-CHECKPOINT
05 ERR-CICS-ABEND

05 ERR-CICS-FILE-NOTOPEN
05 ERR-CICS-DISABLE

05 ERR-CICS-NO-STORAGE

05 ERR-CICS-LENGTH-ERR
05 ERR-CICS-MAPFAIL

05 ERR-CICS-PGMIDERR

05 ERR-CICS-FILEID

05 ERR-CICS-NOFILE

05 ERR-CICS-IO-ERROR

05 ERR-CICS-TRANIDERR

G

(S 0%]

05 ERR-COM-FREE-ERROR
05 ERR-COM-EIB-ERROR

05 ERR-COM-STAT-ERROR

05 ERR-COM-ALLOC-ERROR
05 ERR-COM-ALLOC-RETRY
05 ERR-COM-CONN-ERROR
05 ERR-COM-SEND-ERROR
05 ERR-COM-RECV-RESP-ERR
05 ERR-COM-RESP-TYPE

05 ERR-COM-RESP-MSN

05 ERR-COM-RESP-FATAL
05 ERR-COM-MSG-ERROR

05 ERR-COM-BIG-INDIAN
05 ERR-COM-TSH-ERROR

05 ERR-COM-CCSID-ERROR
05 ERR-COM-MSH-ERROR

05 ERR-COM-MQX-ERROR

05 ERR-COM-INIT-ERROR
05 ERR-COM-FAP-ERROR

05 ERR-COM-MSG-SIZE

05 ERR-COM-WRAP-ERROR
05 ERR-COM-MCP-DOWN

05 ERR-COM-DOWN

05 ERR-COM-NOT-FOUND

05 ERR-COM-ERROR

05 ERR-COM-BUSY

05 ERR-COM-RESYNC-ERROR
05 ERR-COM-STATUS-ERROR
05 ERR-COM-LENGTH-ERROR
05 ERR-COM-MSG-PER-BATCH
05 ERR-COM-MAX-TRANSM-SIZE
05 ERR-COM-RESET-MSN

(S 0%]

a1

[N

PIC XX VALUE SPACES.
PIC X(6) VALUE

PIC X(8) VALUE
PIC S9(8) COMP VALUE
PIC S9(8) COMP VALUE
PIC X(4) VALUE

PIC X(4) VALUE SPACES.
PIC X(12) VALUE SPACES.

PIC 9(6) VALUE 900000.

PIC 9(6) VALUE 800000.
PIC 9(6) VALUE 800010.
PIC 9(6) VALUE 800011.
PIC 9(6) VALUE 800090.
PIC 9(6) VALUE 800099.
PIC 9(6) VALUE 801012.
PIC 9(6) VALUE 801019.
PIC 9(6) VALUE 802000.
PIC 9(6) VALUE 803001.
PIC 9(6) VALUE 808000.
PIC 9(6) VALUE 809000.
PIC 9(6) VALUE 809010.
PIC 9(6) VALUE 809011.
PIC 9(6) VALUE 809012.
PIC 9(6) VALUE 809050.

PIC 9(6) VALUE 501001.
PIC 9(6) VALUE 501002.
PIC 9(6) VALUE 501003.
PIC 9(6) VALUE 501004.
PIC 9(6) VALUE 501005.
PIC 9(6) VALUE 501006.
PIC 9(6) VALUE 501008.
PIC 9(6) VALUE 501009.
PIC 9(6) VALUE 501010.
PIC 9(6) VALUE 501011.
PIC 9(6) VALUE 501012.
PIC 9(6) VALUE 501013.
PIC 9(6) VALUE 501014.
PIC 9(6) VALUE 501015.
PIC 9(6) VALUE 501016.
PIC 9(6) VALUE 501017.
PIC 9(6) VALUE 501018.
PIC 9(6) VALUE 501019.
PIC 9(6) VALUE 501020.
PIC 9(6) VALUE 501021.
PIC 9(6) VALUE 501022.

PIC 9(6) VALUE 501023.
PIC 9(6) VALUE 501024.
PIC 9(6) VALUE 501025.
PIC 9(6) VALUE 501026.
PIC 9(6) VALUE 501027.
PIC 9(6) VALUE 501028.
PIC 9(6) VALUE 501029.
PIC 9(6) VALUE 501030.
PIC 9(6) VALUE 501031.
PIC 9(6) VALUE 501032.
PIC 9(6) VALUE 501050.

05 ERR-INT-LINK-ERROR PIC 9(6) VALUE 400000. 05 PARSER-MSN-ERROR PIC 9(6) VALUE 29.

05 ERR-INT-LINK-COM-SIZE PIC 9(6) VALUE 400001. 05 PARSER-TYPE-ERROR PIC 9(6) VALUE 30.
05 ERR-INT-LINK-COM-DATA PIC 9(6) VALUE 400002. 05 PARSER-PDM-ERROR PIC 9(6) VALUE 31.
05 ERR-INT-RETURN-ERROR PIC 9(6) VALUE 400003. 05 PARSER-SID-ERROR PIC 9(6) VALUE 32.
05 ERR-INT-MOVE-ERROR PIC 9(6) VALUE 400010. 05 PARSER-PN-ERROR PIC 9(6) VALUE 33.
05 ERR-INT-STRUC-MISSING PIC 9(6) VALUE 402000. 05 PARSER-KEY-ERROR PIC 9(6) VALUE 34.
05 ERR-INT-STRUC-ERROR PIC 9(6) VALUE 402090. 05 PARSER-APID-ERROR PIC 9(6) VALUE 35.
05 PARSER-ORG-DT-ERROR PIC 9(6) VALUE 38.
05 ERR-LOGIC-NOT-SUPPORTED PIC 9(6) VALUE 300000. 05 PARSER-ORIG-MSN-ERROR PIC 9(6) VALUE 39.
05 ERR-LOGIC-STARTED-WRONG PIC 9(6) VALUE 300010. 05 PARSER-BODY-ERROR PIC 9(6) VALUE 40.
05 ERR-LOGIC-REPEATED-FAILURE PIC 9(6) VALUE 300020. 05 PARSER-STATUS-ERROR PIC 9(6) VALUE 41.
05 ERR-LOGIC-LOCKS-EXCEEDED PIC 9(6) VALUE 300030. 05 PARSER-LENGTH-ERROR PIC 9(6) VALUE 42.
05 ERR-LOGIC-MISSING-RECORD PIC 9(6) VALUE 301000. 05 MCCONN-ERROR PIC 9(6) VALUE 51.
05 ERR-LOGIC-RECORD-DUPLICATED PIC 9(6) VALUE 301010. 05 MQOPEN-ERROR PIC 9(6) VALUE 52.
05 ERR-LOGIC-Q-CKP-MISSING PIC 9(6) VALUE 309010. 05 MQGET-ERROR PIC 9(6) VALUE 53.
05 MQPUT-ERROR PIC 9(6) VALUE 54.
05 ERR-PROC-SYSTEM-STOPPED PIC 9(6) VALUE 100000. 05 MQPT1-ERROR PIC 9(6) VALUE 55.
05 ERR-PROC-SYSTEM-ACTIVE PIC 9(6) VALUE 100010. 05 MQCLOSE-ERROR PIC 9(6) VALUE 56.
05 ERR-PROC-SYS-START-NOQDR PIC 9(6) VALUE 100011. 05 MQDISC-ERROR PIC 9(6) VALUE 57.
05 ERR-PROC-SYS-START-MAXQDR ~ PIC 9(6) VALUE 100012. 05 QM-OTHER-ERROR PIC 9(6) VALUE 60.
05 ERR-PROC-SYS-START-MAXCOM PIC 9(6) VALUE 100013. 05 RECV-RETURN-LON-STATUS PIC 9(6) VALUE 80.
05 ERR-PROC-SYS-START-NOSYS PIC 9(6) VALUE 100090. 05 RECV-RETURN-LON-TYPE PIC 9(6) VALUE 8l.
05 ERR-PROC-Q-EXCEEDED-DEPTH PIC 9(6) VALUE 101000. 05 SIDRC-RETURN-MLP-FORMAT PIC 9(6) VALUE 91.
05 ERR-PROC-Q-CONCURRENT-UPD PIC 9(6) VALUE 101010.
05 ERR-PROC-Q-NOTFOUND PIC 9(6) VALUE 101015. T *
05 ERR-PROC-Q-STOPPED PIC 9(6) VALUE 101090. EJECT
05 ERR-PROC-Q-DISABLED PIC 9(6) VALUE 101091. T *
05 ERR-PROC-QSN-LIMIT-REACHED ~ PIC 9(6) VALUE 102090. * ENVIRONMENT
05 ERR-PROC-FILE-SPACE-PUT PIC 9(6) VALUE 102091. T *
05 ERR-PROC-FILE-SPACE PIC 9(6) VALUE 102092. 01 WS-ENVIR-INFO.
05 ERR-PROC-DUAL-Q-ERROR PIC 9(6) VALUE 104021. * COPY MQICENV.
05 ERR-PROC-DUAL-Q-FILE PIC 9(6) VALUE 104022. T *
05 ERR-PROC-DUAL-Q-LOGIC PIC 9(6) VALUE 104023. * - BEGIN - ®k% COPYBOOK: MQICENV — *** - BEGIN - *
05 ERR-PROC-TRIGGER-ERROR PIC 9(6) VALUE 105090. T *
05 ERR-PROC-TRIGGER-DATA PIC 9(6) VALUE 105091. * ENVIRONMENT VALUE - SYSTEM (ENV) *
05 ERR-PROC-NOT-AUTHORIZED PIC 9(6) VALUE 109000. T *
05 ERR-WARN-SYS-STARTED-W-ERR PIC 9(6) VALUE 010000. 02 ENV-DEFINITION.
05 ERR-WARN-SYS-STARTED-W-FILER PIC 9(6) VALUE 010001. 03 ENV-DATA-FOR-SYSTEM.
05 ERR-WARN-SYS-STARTED-W-COMER PIC 9(6) VALUE 010002. 05 ENV-PRODUCT-INSTALLED PIC X(4) VALUE 'MQM '.
05 ERR-WARN-SYS-STARTED-W-CHANG PIC 9(6) VALUE 010003. 88 ENV-PRODUCT-EZBRIDGE ~ VALUE 'EZB '.
88 ENV-PRODUCT-MQM VALUE 'MQM '.
05 ERR-WARN-COM-CONNECT PIC 9(6) VALUE 005000.
05 ERR-WARN-COM-OPENED PIC 9(6) VALUE 005001. 05 ENV-PRODUCT-RUNTIME PIC X(4) VALUE 'BOTH'.
05 ERR-WARN-COM-QUEUE-OPENED ~ PIC 9(6) VALUE 005002. 88 ENV-PRODUCT-RT-EZBRIDGE VALUE 'EZB '.
05 ERR-WARN-COM-LU62-CONNECT ~ PIC 9(6) VALUE 005003. 88 ENV-PRODUCT-RT-MQM VALUE 'MQM '.
05 ERR-WARN-COM-RECEIVER-ALLOC PIC 9(6) VALUE 005004. 88 ENV-PRODUCT-RT-BOTH VALUE 'BOTH'.
05 ERR-WARN-COM-QUEUE-EMPTY PIC 9(6) VALUE 005005.
05 ERR-WARN-COM-QUEUE-CLOSED ~ PIC 9(6) VALUE 005006. 05 ENV-LANG-INFO.
05 ERR-WARN-COM-DISC PIC 9(6) VALUE 005007. 10 ENV-LANGUAGE-FILE-CODE PIC 99 VALUE 01.
05 ERR-WARN-COM-SHUT PIC 9(6) VALUE 005008. 10 ENV-LANGUAGE PIC X(24)
05 ERR-WARN-COM-SHUT-SENT PIC 9(6) VALUE 005009. VALUE 'ENGLISH'.
05 ENV-DATE-FORMAT PIC 99 VALUE 01.
05 ERR-FUNCTION-STARTED PIC 9(6) VALUE 000100. 88 ENV-DATE-MMDDYY VALUE 01.
05 ERR-FUNCTION-DONE PIC 9(6) VALUE 001000. 88 ENV-DATE-YYMMDD VALUE 02.
05 ERR-FUNCTION-NOT-DONE PIC 9(6) VALUE 001090. 88 ENV-DATE-YYDDMM VALUE 03.
88 ENV-DATE-YYDDD VALUE 04.
05 ERR-WARN-SYS-STARTED PIC 9(6) VALUE 000000. 88 ENV-DATE-DDMMYY VALUE 05.
05 SYNCH-MSN-ERROR PIC 9(6) VALUE 3.
05 SYNCH-MSG-DUP PIC 9(6) VALUE 4. 03 ENV-DATA-FOR-TRAN.
05 LU62-FREE-ERROR PIC 9(6) VALUE 10.
05 LU62-EIB-ERROR PIC 9(6) VALUE 11. 05 ENV-MASTER-TERMINAL-TRAN.
05 LU62-STAT-ERROR PIC 9(6) VALUE 12. 10 ENV-MT-MASTER-TASK-ID PIC X(4) VALUE 'MQMT'.
05 LU62-ALLOC-ERROR PIC 9(6) VALUE 13. 10 ENV-MT-CONFIG-TASK-ID ~ PIC X(4) VALUE 'MQMC'.
05 LU62-ALLOC-RETRY-ERROR PIC 9(6) VALUE 14. 10 ENV-MT-MONITOR-TASK-ID PIC X(4) VALUE
05 LU62-CONN-ERROR PIC 9(6) VALUE 15. MMM
05 LU62-SEND-ERROR PIC 9(6) VALUE 16. 10 ENV-MT-OPER-TASK-ID PIC X(4) VALUE 'MQMO'.
05 LU62-RECV-RESP-ERROR PIC 9(6) VALUE 17. 10 ENV-MT-DISP-TASK-ID PIC X(4) VALUE 'MQBQ'.
05 INVLD-RESP-TYPE PIC 9(6) VALUE 23. 10 ENV-MT-QUEUE-TASK-1D PIC X(4) VALUE 'MQMQ'.
05 INVLD-RESP-MSN PIC 9(6) VALUE 24. 10 ENV-MT-QUEUEI-TASK-ID PIC X(4) VALUE 'MQDQ'.
05 FATAL-RESP-TYPE PIC 9(6) VALUE 25. 10 ENV-MT-COM-TASK-1D PIC X(4) VALUE 'MQMH'.
05 RECOVERABLE-RESP-TYPE PIC 9(6) VALUE 26. 10 ENV-MT-COMI-TASK-ID PIC X(4) VALUE 'MQDH'.

Appendix D. Sample programs 257

10 ENV-MT-SYS-TASK-ID PIC X(4) VALUE 'MQMS'. 10 ENV-II-LINK-AIPO PIC X(8) VALUE

10 ENV-MT-SYSI-TASK-ID PIC X(4) VALUE 'MQDS'. 'MQPAIPO *.
10 ENV-MT-MONQ-TASK-ID PIC X(4) VALUE 'MQQM'. 1,?4 E“A\{;III-IUNK-AIN PIC X(8) VALUE
10 ENV-MT-MONC-TASK-ID PIC X(4) VALUE 'MQCM'. IOQENV Lol INCALP? PIC X(8) VALUE
10 ENV-MT-SS-TASK-1D PIC X(4) VALUE 'MQMA'. 'MQPAIPZ .
10 ENV-MT-SC-TASK-1D PIC X(4) VALUE 'MQMB'.
10 ENV-MT-SI-TASK-1D PIC X(4) VALUE 'MQMI'. 10 ENV=T1-LINK-ECHO PIC X(8) VALUE
10 ENV-MT-SR-TASK-1D PIC X(4) VALUE 'MQMR'. 'MQPECHO ' .
10 ENV-MT-SD-TASK-ID PIC X(4) VALUE 'MQMD'. 10 ENV-II-LINK-FINDQ PIC X(8) VALUE
10 FILLER PIC X(4) VALUE SPACES. 'MQPFINDQ' .
10 FILLER PIC X(4) VALUE SPACES. 10 ENV-TI-LINK-QUEL PIC X(8) VALUE
10 FILLER PIC X(4) VALUE SPACES. MQPQUEL *.
10 ENV-II-LINK-QUE2 PIC X(8) VALUE
'MQPQUE2 .
05 ENV-INTERNAL-ITEMS-TRAN. 10 ENV-II-LINK-INITL PIC X(8) VALUE
10 ENV-II-MONITOR PIC X(4) VALUE 'MQSM'. MQPINITL' .
10 ENV-II-M-RECOVERY PIC X(4) VALUE 'MQSR'. 10 ENV-TI-LINK-INIT2 PIC X(8) VALUE
10 ENV-II-Q-RECOVERY PIC X(4) VALUE 'MQSQ'. 'MQPINIT2' .
10 ENV-II-START-STOP PIC X(4) VALUE 'MQSS'. 10 ENV-II-LINK-SSQ PIC X(8) VALUE 'MQPSSQ
10 ENV-II-TRAN-AIP2 PIC X(4) VALUE 'MQ02'. "

10 ENV-II-TRAN-COM-CHECKP ~ PIC X(4) VALUE 10 ENV-TT-LINK-SCHK PIC X(8) VALUE

'MQCP' . MQPSCHK .

10 ENV-II-TRAN-QUE-DELETE PIC X(4) VALUE 10 ENV-II-LINK-SREC PIC X(8) VALUE

'MQQD' . MQPSREC '.

10 ENV-TI-TRAN-QUE-DEL-ALL PIC X(4) VALUE 10 ENV-II-LINK-QRECOVERY ~ PIC X(8) VALUE

'MQQA' . 'MQPQREC .

10 FILLER PIC X(4) VALUE SPACES. IIO ENV-II-ILINK-SENDER PIC X(8) VALUE

10 FILLER PIC X(4) VALUE SPACES. 1;)40;3??1 LINC-RECIEVER PIC X(8) VALUE
10 FILLER PIC X(4) VALUE SPACES. 'MQPRECV .

10 ENV-II-LINK-COM-CHECKP PIC X(8) VALUE
'MQPCCKPT' .

03 ENV-DATA-FOR-PROGRAMS. 10 ENV-II-LINK-QUE-DELETE PIC X(8) VALUE
'MQPQDEL ' .

05 ENV-MASTER-TERMINAL-PROGRAMS. 10 ENV-I1-LINK-SET-NAP PIC X(8) VALUE

10 ENV-MT-MASTER-PROGRAM PIC X(8) VALUE MQPSMAP .

'MQPMTP" . 10 ENV-II-LINK-LU21 PIC X(8) VALUE

10 ENV-MT-CONFIG-PROGRAM PIC X(8) VALUE MePLUZL".

"MQPMCFG ' . 10 ENV-II-LINK-LU33 PIC X(8) VALUE

10 ENV-MT-MONITOR-PROGRAM PIC X(8) VALUE MQPLU33".

' MQPMMON " . 10 FILLER PIC X(8) VALUE SPACES.

10 ENV-MT-OPER-PROGRAM PIC X(8) VALUE 10 FILLER PIC X(8) VALUE SPACES.

'MQPMOPR' . 10 FILLER PIC X(8) VALUE SPACES.

10 ENV-MT-DISP-PROGRAM PIC X(8) VALUE

MQPDISP". 03 ENV-DATA-FOR-MAPS.

10 ENV-MT-QUEUE-PROGRAM PIC X(8) VALUE

“MQPMQLE " 05 ENV-MASTER-TERMINAL-MAPS

10 ENV-MT-QUEUEI-PROGRAM PIC X(8) VALUE - - - .

.MQPMQUE._Q (8) 10 ENV-MT-MASTER-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-COM-PROGRAM PIC X(8) VALUE MQMMTP" .

TMQPMCOM " . 10 ENV-MT-CONFIG-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-COMI-PROGRAM PIC X(8) VALUE MQMMCFG *.

*MQPHCOM " llaoamxdbnr-MONITOR-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-SYS-PROGRAM PIC X(8) VALUE :

MQPHSYS ' (8) 10 ENV-MT-OPER-MAPSCREEN ~ PIC X(8) VALUE

10 ENV-MT-SYSI-PROGRAM PIC X(8) VALUE HQMMOPR "

TMQPMSYS ' . 10 ENV-MT-DISP-MAPSCREEN ~ PIC X(8) VALUE

10 ENV-MT-MONQ-PROGRAM PIC X(8) VALUE MQMDLSP .

*MQPHMOQ %%Qa%hrg-QUEUE-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-MONC-PROGRAM PIC X(8) VALUE :

*MQPHMOC - (8) 10 ENV-MT-QUEUEI-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-SS-PROGRAM PIC X(8) VALUE MQMMQUE "

TMQPMSS” . 10 ENV-MT-COM-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-SC-PROGRAM PIC X(8) VALUE MQMMCOM "

MQPHSC . }%Q;m\ébnr-COMI-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-SI-PROGRAM PIC X(8) VALUE :

MQPHS " . (8) 10 ENV-MT-SYS-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-SR-PROGRAM PIC X(8) VALUE HQMMSYS "

TMQPMMSN ' . 10 ENV-MT-SYSI-MAPSCREEN ~ PIC X(8) VALUE

10 ENV-MT-SD-PROGRAM PIC X(8) VALUE MQMMSYS "

*MQPMDEL " }%Qamnbgr-MONQ-MAPSCREEN PIC X(8) VALUE

10 ENV-MT-CMD-PROGRAM PIC X(8) VALUE :

MQPCMD: . (8) 10 ENV-MT-MONC-MAPSCREEN ~ PIC X(8) VALUE
10 FILLER PIC X(8) VALUE SPACES. 1340?:14:/40;{55 MAPSCREEN PIC X(8) VALUE
10 FILLER PIC X(8) VALUE SPACES. MQMMSS' .

10 ENV-MT-SC-MAPSCREEN PIC X(8) VALUE
05 ENV- INTERNAL-ITEMS-PROGRAMS. "MQMMSC' .
10 ENV-II-LINK-ERROR PIC X(8) VALUE 'MQPERR 10 ENV-MT-SI-MAPSCREEN PIC X(8) VALUE

F "MQMMST" .

10 ENV-II-LINK-EIB1 PIC X(8) VALUE

'MQPEIBL '.

258 IBM MQSeries for VSE/ESA User's Guide

* _ END _ *kk

*

10 ENV-MT-SR-MAPSCREEN

PIC X(8) VALUE

"MQMMMSN " .

10 ENV-MT-SD-MAPSCREEN PIC X(8) VALUE
"MQMMDEL " .
10 FILLER PIC X(8) VALUE SPACES.
10 FILLER PIC X(8) VALUE SPACES.
10 FILLER PIC X(8) VALUE SPACES.

03 ENV-DATA-FOR-CONSTANTS.

05 ENV-CONFIG-DDNAME
'MQFCNFG' .

05 ENV-SYSTEM-NUMBER

05 ENV-MASTER-TERMINAL-CONS.
10 ENV-MT-TITLE

! IBM MQSeries for VSE/ESA Version 1 '.

05 ENV-INTERNAL-ITEMS-CONS.
10 ENV-II-ERROR-TD
10 ENV-II-ERROR-CSMT
10 ENV-II-SYSTEM-ANCHOR
'MQTAQM' .
10 ENV-II-SYSTEM-PREFIX
10 ENV-II-DUMPCODE

10 ENV-II-ENQ-INIT1
'MQPINITL'.

10 ENV-II-SYSTEM-ENVIR

10 ENV-IT-UN-INIT-MSG

PIC X(8) VALUE

PIC 9(4) VALUE 1.

PIC X(40) VALUE

PIC X(80) VALUE

PIC X(4) VALUE 'MQER'.
PIC X(4) VALUE 'CSMT'.
PIC X(8) VALUE

PIC X(4) VALUE 'MQI '.
PIC X(4) VALUE 'MQ?7'.
PIC X(8) VALUE

PIC X(8) VALUE 'MQTENV

'MQ900000: MQSERIES VSE ENVIRONMENT not initialized.'.

10 FILLER

COPYBOOK: MQICENV ~ ***

01 WS-PROC.
COPY CMQTMV.

PIC X(80) VALUE SPACES.

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: CMQTMV

DESCRIPTIVE NAME: COBOL copy file for MQTM structure
VERSION 1.3.0

FUNCTION: This file declares the MQTM structure,

which forms part of the IBM Message
Queue Interface (MQI).

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

MQTM structure

10 MQTM.

Structure identifier
15 MQTM-STRUCID

Structure version number
15 MQTM-VERSION

Name of triggered queue
15 MQTM-QNAME.

PIC X(4) VALUE 'TM '.

PIC S9(9) BINARY VALUE 1.

25 MQI-PROC-LOCAL-QUEUE-NAME PIC X(48) VALUE SPACE.

Name of process object
15 MQTM-PROCESSNAME PIC X(48) VALUE SPACES.

Trigger data
15 MQTM-TRIGGERDATA PIC X(64) VALUE SPACES.

15 MQTM-TRIGGERDATA-RED REDEFINES MQTM-TRIGGERDATA.

25 MQI-PROC-TRANS-ID
25 MQI-PROC-PROGRAM-ID

PIC X(4).
PIC X(8).

*%

*%

*%

25 MQI-PROC-TRIGGER-EVENT PIC X.
88 MQI-PROC-TRIGGER-FIRST VALUE 'F'.
88 MQI-PROC-TRIGGER-EVERY VALUE 'E'.

Application type

15 MQTM-APPLTYPE
Application identifier

15 MQTM-APPLID
Environment data

15 MQTM-ENVDATA
User data

15 MQTM-USERDATA PIC X(128) VALUE SPACES.

15 MQTM-USERDATA-RED REDEFINES MQTM-USERDATA.

25 MQI-PROC-CHANNEL-NAME PIC X(20).

PIC S9(9) BINARY
PIC X(256) VALUE SPACES.

PIC X(128) VALUE SPACES.

CoPY cMQv.

VALUE 0.

*%

*%

*%

*

*

*%

*%

*%

*

*

*%

*%

*%

FILE NAME: cmQv

DESCRIPTIVE NAME: COBOL copy file for MQI constants
VERSION 1.3.0

FUNCTION: This file declares the constants

which form part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*%

*k

*k

*k

*%

*%

*k

*k

*%

Values Related to MQDLH Structure

*%

*%

*%

Structure Identifier
10 MQDLH-STRUC-ID PIC X(4) VALUE 'DLH '.

Structure Version Number
10 MQDLH-VERSION-1 PIC S9(9) BINARY VALUE 1.

Values Related to MQGMO Structure

*%

*%

Structure Identifier
10 MQGMO-STRUC-ID PIC X(4) VALUE 'GMO '.

Structure Version Number
10 MQGMO-VERSION-1 PIC S9(9) BINARY VALUE 1.

Get-Message Options
10 MQGMO-WAIT
10 MQGMO-NO-WAIT
10 MQGMO-%EPNSE-FIRST

PIC S9(9) BINARY
PIC S9(9) BINARY

10 MQGMO-BROWSE-NEXT
32.

10 MQGMO-ACCEPT-TRUNCATED-MSG
64.

VALUE 1.
VALUE 0.

PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

10 MQGMO-SET-SIGNAL

10 MQGMO-SYNCPOINT

10 MQGMO-NO-SYNCPOINT

10 MQGMO-MSG-UNDER-CURSOR
256.

10 MQGMO-LOCK
512.

10 MQGMO-UNLOCK
1024.

PIC S9(9) BINARY VALUE 8.
PIC S9(9) BINARY VALUE 2.
PIC S9(9) BINARY VALUE 4.

PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

PIC S9(9) BINARY VALUE

Appendix D. Sample programs 259

*k

Wait Interval
10 MQWI-UNLIMITED PIC S9(9) BINARY VALUE -1.

*%

Values Related to MQMD Structure **

*%

*%

Message Id Value

10 MQMI-NONE PIC X(24) VALUE LOW-VALUES.

Correlation Id Value

10 MQCI-NONE PIC X(24) VALUE LOW-VALUES.

*k

*%

*%

*%

*%

*%

Structure Identifier
10 MQMD-STRUC-ID PIC X(4) VALUE 'MD '.

Structure Version Number
10 MQMD-VERSION-1 PIC S9(9) BINARY VALUE 1.

Report Options
10 MQRO-NONE PIC S9(9) BINARY VALUE 0.

Message Types
10 MQMT-REQUEST PIC S9(9) BINARY VALUE 1
10 MQMT-REPLY PIC S9(9) BINARY VALUE 2.
10 MQMT-DATAGRAM PIC S9(9) BINARY VALUE 8.
10 MQMT-REPORT ~ PIC S9(9) BINARY VALUE 4.

Expiry Value
10 MQEI-UNLIMITED PIC S9(9) BINARY VALUE -1.

Feedback Values

10 MQFB-NONE PIC S9(9) BINARY VALUE 0.

10 MQFB-QUIT PIC S9(9) BINARY VALUE 256.

10 MQFB-SYSTEM-FIRST PIC S9(9) BINARY VALUE 1

10 MQFB-SYSTEM-LAST PIC S9(9) BINARY VALUE 65535.

10 MQFB-APPL-FIRST ~ PIC S9(9) BINARY VALUE 65536.

10 MQFB-APPL-LAST PIC S9(9) BINARY VALUE 999999999.
* format

10 MQFMT-NONE PIC X(8) VALUE SPACES.

10 MQFMT-DEAD-LETTER-Q-HEADER PIC X(8) VALUE 'MQDLQH'.

10 MQFMT-TRIGGER PIC X(8) VALUE 'MQTRIG'.

10 MQFMT-XMIT-Q-HEADER PIC X(8) VALUE 'MQXMIT'.

*%

*%

*%

*%

*%

*%

*%

Encoding Value
10 MQENC-NATIVE PIC S9(9) BINARY VALUE 785.

Encoding Masks
10 MQENC-INTEGER-MASK PIC S9
10 MQENC-DECIMAL-MASK PIC S9
10 MQENC-FLOAT-MASK PIC S9
10 MQENC-RESERVED-MASK PIC S9

9) BINARY VALUE 15.
9) BINARY VALUE 240.
9) BINARY VALUE 3840.
9) BINARY VALUE -4096.

Encodings for Binary Integers
10 MQENC-INTEGER-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC- INTEGER-NORMAL PIC S9(9) BINARY VALUE 1.
10 MQENC-INTEGER-REVERSED PIC S9(9) BINARY VALUE 2.

Encodings for Packed-Decimal Integers
10 MQENC-DECIMAL-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC-DECIMAL-NORMAL PIC S9(9) BINARY VALUE 16.
10 MQENC-DECIMAL-REVERSED PIC S9(9) BINARY VALUE 32.

Encodings for Floating-Point Numbers
10 MQENC-FLOAT-UNDEFINED PIC S9(9) BINARY VALUE 0.
10 MQENC-FLOAT-IEEE-NORMAL PIC S9(9) BINARY VALUE 256.
10 MQENC-FLOAT-IEEE-REVERSED PIC S9(9) BINARY VALUE 512.
10 MQENC-FLOAT-S390 PIC S9(9) BINARY VALUE 768.

Coded Character-Set Identifier
10 MQCCSI-Q-MGR PIC S9(9) BINARY VALUE 0.

Persistence Values
10 MQPER-PERSISTENT PIC S9(9) BINARY VALUE 1.
10 MQPER-PERSISTENCE-AS-Q-DEF PIC S9(9) BINARY VALUE 2.

260 IBM MQSeries for VSE/ESA User's Guide

*%

Values Related to MQOD Structure

*k

*%

*%

*%

Structure Identifier

10 MQOD-STRUC-ID PIC X(4) VALUE 'OD

Structure Version Number

10 MQOD-VERSION-1 PIC S9(9) BINARY VALUE 1.

Object Types

10 MQOT-Q PIC S9(9) BINARY VALUE 1.

*%

Values Related to MQPMO Structure

*%

*%

*%

*%

Structure Identifier

10 MQPMO-STRUC-ID PIC X(4) VALUE 'PMO '.

Structure Version Number

10 MQPMO-VERSION-1 PIC S9(9) BINARY VALUE 1.

Put-Message Options

10 MQPMO-SYNCPOINT PIC S9(9) BINARY VALUE 2.
10 MQPMO-NO-SYNCPOINT PIC S9(9) BINARY VALUE 4.
** Values Related to MQTM Structure **
** Structure Identifier
10 MQTM-STRUC-ID PIC X(4) VALUE 'TM '
** Structure Version Number
10 MQTM-VERSION-1 PIC S9(9) BINARY VALUE 1.
** Values Related to MQCLOSE Call **
** (Close Options
10 MQCO-NONE PIC S9(9) BINARY VALUE 0.
** Values Related to MQINQ Call **
** Character-Attribute Selectors
10 MQCA-BASE-Q-NAME PIC S9(9) BINARY VALUE 2002.
10 MQCA-CREATION-DATE PIC S9(9) BINARY VALUE 2004.
10 MQCA-CREATION-TIME PIC S9(9) BINARY VALUE 2005.
10 MQCA-FIRST PIC S9(9) BINARY VALUE 2001.
10 MQCA-INITIATION-Q-NAME PIC S9(9) BINARY VALUE 2008.
10 MQCA-LAST PIC S9(9) BINARY VALUE 4000.
10 MQCA-PROCESS-NAME PIC S9(9) BINARY VALUE 2012.
10 MQCA-Q-DESC PIC S9(9) BINARY VALUE 2013.
10 MQCA-Q-NAME PIC S9(9) BINARY VALUE 2016.
10 MQCA-REMOTE-Q-MGR-NAME PIC S9(9) BINARY VALUE 2017.
10 MQCA-REMOTE-Q-NAME PIC S9(9) BINARY VALUE 2018.
** Integer-Attribute Selectors
10 MQIA-CURRENT-Q-DEPTH PIC S9(9) BINARY VALUE 3.

10 MQIA-DEF-PERSISTENCE PIC S9(9) BINARY VALUE 5. 10 MQRC-CONNECTION-BROKEN PIC S9(9) BINARY VALUE
10 MQIA-DEFINITION-TYPE ~ PIC S9(9) BINARY VALUE 7. 2009.
10 MQIA-FIRST PIC S9(9) BINARY VALUE 1. 10 MQRC-DATA-LENGTH-ERROR PIC S9(9) BINARY VALUE
10 MQIA-INHIBIT-GET PIC S9(9) BINARY VALUE 9. 10 HORC E;;’Il& rRoR PIC S9(9) BINARY VALUE
10 MQIA-INHIBIT-PUT PIC S9(9) BINARY VALUE 10. QRC- 2013.
10 MQIA-LAST PIC $9(9) BINARY VALUE 2000. 10 MQRC-FEEDBACK-ERROR PIC S9(9) BINARY VALUE
10 MQIA-MAX-MSG-LENGTH PIC S9(9) BINARY VALUE 13. 2014.
10 MQIA-MAX-Q-DEPTH PIC S9(9) BINARY VALUE 15. 10 MQRC-GET-INHIBITED PIC S9(9) BINARY VALUE
10 MQIA-OPEN-INPUT-COUNT PIC S9(9) BINARY VALUE 17. 2016.
10 MQIA-OPEN-OUTPUT-COUNT PIC S9(9) BINARY VALUE 18. 10 MQRC-HANDLE-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQIA-Q-TYPE PIC S9(9) BINARY VALUE 20. 2017.
10 MQIA-SHAREABILITY PIC S9(9) BINARY VALUE 23. 10 MQRC‘H%%N&'ERROR PIC S9(9) BINARY VALUE
10 MQIA-TRIGGER-CONTROL ~ PIC S9(9) BINARY VALUE 24. ;
10 MQRC-HOBJ-ERROR PIC S9(9) BINARY VALUE
10 MQIA-TRIGGER-TYPE PIC S9(9) BINARY VALUE 28. Q 2019, ©)
10 MQIA-USAGE PIC $9(9) BINARY VALUE 12. 10 MQRC-INT-ATTR-COUNT-ERROR PIC S9(9) BINARY VALUE
2021.
** Integer Attribute Value Denoting 'Not Applicable’ 1

0 MQRC-INT-ATTR-COUNT-TOO-SMALL PIC S9(9) BINARY VALUE
2022.

10 MQIAV-NOT-APPLICABLE PIC S9(9) BINARY VALUE -1.
10 MQRC-INT-ATTRS-ARRAY-ERROR PIC S9(9) BINARY VALUE
2023.

10 MQRC-MAX-CONNS-LIMIT-REACHED PIC S9(9) BINARY VALUE
2025.

** Values Related to MQOPEN Call > 10 MQRC-MD-ERROR PIC S9(9) BINARY VALUE
2026.
10 MQRC-MISSING-REPLY-TO-Q PIC S9(9) BINARY VALUE
** Open Options 2027.
10 MQOO-INPUT-SHARED ~ PIC S9(9) BINARY VALUE 2. 10 MQRC-MSG-TYPE-ERROR PIC S9(9) BINARY VALUE
10 MQOO-INPUT-EXCLUSIVE PIC S9(9) BINARY VALUE 4. 2029.
10 MQOO-BRONSE PIC $9(9) BINARY VALUE 8. 10 MQRC-M%%%T()OO-BIG-FOR-Q PIC S9(9) BINARY VALUE
10 MQOO-OUTPUT PIC S9(9) BINARY VALUE 16. :
10 MQRC-NO-MSG-AVAILABLE PIC S9(9) BINARY VALUE
10 MQOO-INQUIRE PIC S9(9) BINARY VALUE 32. Q 2033 ©)
10 MQRC-NO-MSG-UNDER-CURSOR PIC S9(9) BINARY VALUE
2034.
10 MQRC-NOT-AUTHORIZED PIC S9(9) BINARY VALUE
** Values Related to A1l Calls ** 2035.
10 MQRC-NOT-OPEN-FOR-BROWSE PIC S9(9) BINARY VALUE
2036.
** String Lengths 10 MQRC-N%—3()7P'EN-FOR-INPUT PIC S9(9) BINARY VALUE
10 MQ-CREATION-DATE-LENGTH PIC S9(9) BINARY VALUE 12. 10 MQRC-NOT-OPEN-FOR-INQUIRE PIC $9(3) BINARY VALUE
10 MQ-CREATION-TIME-LENGTH ~ PIC S9(9) BINARY VALUE 8. 2038.
10 MQ-PROCESS-APPL-ID-LENGTH PIC $S9(9) BINARY VALUE 256. 10 MQRC-NOT-OPEN-FOR-OUTPUT PIC S9(9) BINARY VALUE
10 MQ-PROCESS-DESC-LENGTH PIC $S9(9) BINARY VALUE 64. 2039.
10 MQ-PROCESS-ENV-DATA-LENGTH PIC S9(9) BINARY VALUE 128. 10 MQRC-0BJECT-CHANGED PIC S9(9) BINARY VALUE
10 MQ-PROCESS-NAME-LENGTH PIC S9(9) BINARY VALUE 48. 2041.
10 MQ-PROCESS-USER-DATA-LENGTH PIC S9(9) BINARY VALUE 10 MQRC'Og%a%T'IN'”SE PIC S9(9) BINARY VALUE
128. .
10 MQ-Q-DESC-LENGTH PIC $9(9) BINARY VALUE 64. 10 MQRC-OBZ%F_4C3T-TYPE-ERROR PIC S9(9) BINARY VALUE
10 MQ-Q-NAME-LENGTH PIC $9(9) BINARY VALUE 48. 10 MQRC-0D-ERROR PIC $9(9) BINARY VALUE
10 MQ-Q-MGR-DESC-LENGTH PIC S9(9) BINARY VALUE 64. 2044,
10 MQ-Q-MGR-NAME-LENGTH PIC S9(9) BINARY VALUE 48. 10 MQRC-OPTION-NOT-VALID-FOR-TYPE PIC S9(9) BINARY VALUE
10 MQ-TRIGGER-DATA-LENGTH PIC $S9(9) BINARY VALUE 64. 2045.
10 MQRC-OPTIONS-ERROR PIC S9(9) BINARY VALUE
2046.

** Completion Codes
10 MQCC-0K PIC S9(9) BINARY VALUE 0. 10 MQRC-PERSISTENCE-ERROR PIC S9(9) BINARY VALUE

10 MQCC-WARNING PIC S9(9) BINARY VALUE 1. 10 MQRC PRZIOO4R7I'TY EXCEEDS-MAXIMUM PIC S9(9) BINARY VALUE
10 MQCC-FAILED PIC S9(9) BINARY VALUE 2. R =P 1 -

10 MQRC-PRIORITY-ERROR PIC S9(9) BINARY VALUE

** Reason Codes 2050.
10 MQRC-NONE PIC S9(9) BINARY VALUE 0. 10 MQRC-PUT-INHIBITED PIC S9(9) BINARY VALUE

10 MQRC-ACCESS-RESTRICTED PIC S9(9) BINARY VALUE 2051.
2000. 10 MQRC-Q-FULL PIC S9(9) BINARY VALUE

10 MQRC-ALIAS-BASE-Q-TYPE-ERROR PIC S9(9) BINARY VALUE 2053.
2001. 10 MQRC-Q-SPACE-NOT-AVAILABLE PIC S9(9) BINARY VALUE

10 MQRC-ALREADY-CONNECTED PIC S9(9) BINARY VALUE 2056.
2002. 10 MQRC-Q-MGR-NAME-ERROR PIC S9(9) BINARY VALUE

10 MQRC-BUFFER-ERROR PIC S9(9) BINARY VALUE 2058.
2004. 10 MQRC-Q-MGR-NOT-AVAILABLE PIC S9(9) BINARY VALUE

10 MQRC-BUFFER-LENGTH-ERROR PIC S9(9) BINARY VALUE 2059.
2005. 10 MQRC-REPORT-OPTIONS-ERROR PIC S9(9) BINARY VALUE

10 MQRC-CHAR-ATTR-LENGTH-ERROR PIC S9(9) BINARY VALUE 2061.
2006. 10 MQRC-SECURITY-ERROR PIC S9(9) BINARY VALUE

10 MQRC-CHAR-ATTRS-ERROR PIC S9(9) BINARY VALUE 2063.
2007. 10 MQRC-SELECTOR-COUNT-ERROR PIC S9(9) BINARY VALUE

10 MQRC-CHAR-ATTRS-TOO-SHORT PIC S9(9) BINARY VALUE 2065.

2008. 10

MQRC-SELECTOR-LIMIT-EXCEEDED ~ PIC S9(9) BINARY VALUE
2066.

Appendix D. Sample programs 261

10 MQRC-SELECTOR-ERROR PIC S9(9) BINARY VALUE
10 MQRC-SEhﬁi;OR-NOT-FOR-TYPE PIC S9(9) BINARY VALUE
10 MQRC-SES%Q}-OUTSTANDING PIC S9(9) BINARY VALUE
10 MQRC-SEENAL-REQUEST-ACCEPTED PIC S9(9) BINARY VALUE
10 MQRC-STORAéE-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-SYNCPOINT-NOT-AVAILABLE PIC S9(9) BINARY VALUE
10 MQRC-T%ﬂgﬁfTED-MSG-ACCEPTED PIC S9(9) BINARY VALUE
10 MQRC-T%&%&?TED-MSG-FAILED PIC S9(9) BINARY VALUE
10 MQRC-U@iﬁfthED-CONNECT-ERROR PIC S9(9) BINARY VALUE
10 MQRC-UﬁﬁgggN-ALIAS-BASE-Q PIC S9(9) BINARY VALUE
10 MQRC-UﬂﬁQg?N-OBJECT-NAME PIC S9(9) BINARY VALUE
10 MQRC-Uﬁﬁgﬁ?N-OBJECT-Q-MGR PIC S9(9) BINARY VALUE
10 MQRC-UﬁggﬁﬂN-REMOTE-Q-MGR PIC S9(9) BINARY VALUE
10 MQRC-N%;;QJhTERVAL-ERROR PIC S9(9) BINARY VALUE
10 MQRC-X%i;hé-TYPE-ERROR PIC S9(9) BINARY VALUE
10 MQRC-X%;;QQ-USAGE-ERROR PIC S9(9) BINARY VALUE
10 MQRC-P%%EEEROR PIC S9(9) BINARY VALUE
10 MQRC-GMO-E&ROR PIC S9(9) BINARY VALUE
2186.
10 MQRC-Uﬁfﬁ;;CTED-ERROR PIC S9(9) BINARY VALUE
10 MQRC_M%Eiﬁé-ERROR PIC S9(9) BINARY VALUE
10 MQRC-CORREL-ID-ERROR PIC S9(9) BINARY VALUE
2207.
10 MQRC-FEhgifYSTEM-ERROR PIC S9(9) BINARY VALUE
10 MQRC-NO-MSG-LOCKED PIC S9(9) BINARY VALUE
2209.
** Values Related to Queue Attributes *x
** Queue Types
10 MQQT-LOCAL PIC S9(9) BINARY VALUE 1.
10 MQQT-ALIAS PIC S9(9) BINARY VALUE 3.
10 MQQT-REMOTE PIC S9(9) BINARY VALUE 6.
**% Queue Definition Types
10 MQQDT-PREDEFINED PIC S9(9) BINARY VALUE 1.

*%

*%

*%

*%

*%

Inhibit Get

10 MQQA-GET-INHIBITED PIC S9(9)
MQQA-GET-ALLOWED ~ PIC S9(9)

10

Inhibit Put

10 MQQA-PUT-INHIBITED PIC S9(9)
MQQA-PUT-ALLOWED PIC S9(9)

10

Queue
10

Shareability

MQQA-SHAREABLE PIC S9(9)
10 MQQA-NOT-SHAREABLE PIC S9(9)

Message Delivery Sequence
10 MQMDS-FIFO PIC S9(9) BINARY VALUE 1.

Trigger Control
10 MQTC-OFF PIC S9(9) BINARY VALUE 0.

BINARY VALUE
BINARY VALUE

BINARY VALUE
BINARY VALUE

BINARY VALUE
BINARY VALUE

262 IBM MQSeries for VSE/ESA User's Guide

(=3

(=3

o =

*%

*%

10 MQTC-ON PIC S9(9) BINARY VALUE 1

Trigger Types

10 MQTT-NONE PIC S9(9) BINARY VALUE 0.
10 MQTT-FIRST PIC S9(9) BINARY VALUE 1.
10 MQTT-EVERY PIC S9(9) BINARY VALUE 2.

Queue Usage

10 MQUS-NORMAL

PIC S9(9) BINARY VALUE 0.

10 MQUS-TRANSMISSION PIC S9(9) BINARY VALUE 1.

*%

Values Related to Process-Definition Attributes

*%

Application Type
10 MQAT-USER-FIRST PIC S9(9)
10 MQAT-USER-LAST PIC S9(9)

10 MQAT-0S2
10 MQAT-DOS
10 MQAT-AIX

PIC S9(9)
PIC S9(9)
PIC S9(9)

10 MQAT-0S400 PIC S9(9)

10 MQAT-CICS-VSE PIC S9(9)

10 MQAT-VMS

PIC S9(9)

10 MQAT-GUARDIAN PIC S9(9)

10 MQAT-VOS

(
(
(
(
10 MQAT-WINDOWS ~ PIC S9(9)
(
(
(
(

PIC S9(9)

BINARY
BINARY

BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY

VALUE 65536.

VALUE 999999999.

VALUE
VALUE
VALUE
VALUE
VALUE 9.
VALUE 10.
VALUE 12.
VALUE 13.
VALUE 14.

® oo

*%

Values Related to Queue-Manager Attributes

*%

*%

Syncpoint Availability

10 MQSP-AVAILABLE PIC S9(9) BINARY VALUE

—_

COPYBOOK: MQIAIP1

EJECT
*

* AP

*

* COPY MQIAIPL.
*

* - BEGIN - wan
*

* 9/ 1/93 REV:

APPL. INTERFACE PARM FOR SSI STUBS

05 API-CALL-PARM.
10 API-FUNCTION
88 API-CONNECT

88 API-CONNECT-VIA-APPL

88
88
88
88
88
88
88
88
88

1

o

15
15

API-CONNECT-VIA-INTERFACE VALUE 'CONI'.
VALUE 'MCCO'.
VALUE 'OPEN'.
VALUE 'PUT '.
VALUE '"INQ '.
VALUE 'GET '.
VALUE 'GETQ'.
VALUE 'CLOS'.
VALUE 'DISC'.

API-MCP-CONNECT
API-OPEN
API-PUT
API-INQ
API-GET
API-GET-QSN
API-CLOSE
API-DISCONNECT

API-CCODE-ADDR
API-RCODE-ADDR

API-RETURN-CODE-INFO.

PIC X(4).

VALUE 'CONN',
'Mcco'.

'CONI'

VALUE 'CONN', 'CONI'.

USAGE POINTER.
USAGE POINTER.

10 API-VARIABLE-PARM-INFO.

15 API-HCONN-ADDR
15 API-HOBJ-ADDR
15 API-PARM-NUM
15 FILLER

USAGE POINTER.
USAGE POINTER.
PIC S9(4) COMP.
PIC XX.

15 API-PARM-ADDR-LIST.
20 API-PARM-ADDR OCCURS 50 TIMES

* - END - *** COPYBOOK: MQIAIP1
K e e e i ——————— = =
EJECT

K e e —— ————— =

* CoPY MQIENQ.

K e e = ——— = = =

* "MQIENQ"

K e e e e —— —— ——— —— i ——_— ———— —— ——

* ENQ/DEQ DEFINITIONS

K e e e e ——— —— i ———————— —— —— i ——
01 ENQ-INFO.

*--GLOBAL ENVIRONMENT TS QUEUE ID
05 ENQ-ENVIR-TS-INFO.
10 ENQ-ENVIR-TS-ITEM
10 ENQ-ENVIR-TS-SIZE
10 ENQ-ENVIR-TS-QID

*--ENQ KEY FOR LOCKING
05 ENQ-RECORD.
10 ENQ-QSN
10 ENQ-O0BJ-NAME

05 QSN-BUSY-FLAG
88 QSN-BUSY
88 QSN-BUSY-0K

*--QUE RECORD RIB KEY
05 QUEUE-KEY.
10 QUEUE-KEY-0BJ
10 QUEUE-KEY-QSN

*--DRQ TS QUEUE ID
05 ENQ-RT-QUEUE-ID.
10 ENQ-RT-CONSTANT
10 ENQ-RT-TYPE
10 ENQ-RT-HHHH
10 ENQ-RT-ITEM

*--DRQ WAIT REQID
05 ENQ-RT-REQID-ID.
10 ENQ-RT-R-CONSTANT
10 ENQ-RT-R-TYPE
10 ENQ-RT-R-HHHH
10 ENQ-RT-R-ITEM

*--DELETE QUEUE TS QUEUE ID
05 ENQ-DQ-QUEUE-ID.
10 ENQ-DQ-CONSTANT
10 ENQ-DQ-TYPE
10 ENQ-DQ-HHHH
10 ENQ-DQ-ITEM

USAGE POINTER.

*kk

PIC S9(4) COMP VALUE +1.
PIC S9(4) COMP VALUE ZERO.
PIC X(8) VALUE 'MQSERIES'.

PIC 9(10) VALUE ZERO.
PIC X(48) VALUE SPACES.
PIC X VALUE SPACE.
VALUE 'Y'.
VALUE 'N'.

PIC X(48) VALUE SPACES.
PIC S9(8) COMP VALUE ZERO.

PIC X(3) VALUE 'MQT'.
PIC X VALUE 'O'.

PIC 9999 VALUE ZERO.
PIC 9999 VALUE ZERO.

PIC X(3) VALUE 'MQT'.
PIC X VALUE 'O'.
PIC 9999 COMP VALUE ZERO.
PIC 9999 COMP VALUE ZERO.

PIC X(3) VALUE 'MQT'.

PIC X VALUE 'D'.

PIC 9999 VALUE ZERO.
PIC 9999 COMP VALUE ZERO.

*--ENQ FOR COMMUNICATION HANDLERS - SENDERS

05 ENQ-COMH-ID.
10 ENQ-COMH-CONSTANT
10 ENQ-COMH-ENTRY

PIC X(3) VALUE 'MQT'.
PIC 9(5) VALUE ZERO.

*--0PEN

*

PARM
01 WS-Q-NAME-AREA.
COPY CMQODV.

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: cmQopv
DESCRIPTIVE NAME:
VERSION 1.3.0

FUNCTION:

COBOL copy file for MQOD structure

This file declares the MQOD structure,

which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*%

*%

*%

*%

*%

*%

*%

*%

MQOD structure
10 MQOD.

Structure identifier

15 MQOD-STRUCID
Structure version number

15 MQOD-VERSION
Object type

15 MQOD-OBJECTTYPE
Object name

15 MQOD-0BJECTNAME
Object queue manager name

15 MQOD-OBJECTQMGRNAME
Dynamic queue name

15 MQOD-DYNAMICQNAME
Alternate user identifier

PIC

PIC

PIC

PIC

P

—
o

PIC

15 MQOD-ALTERNATEUSERID PIC

EJECT

*--INQ

01 MQI-SECTOR-COUNT.
05 WS-SECTOR-COUNT
01 MQI-SECTOR.
05 WS-SECTOR

01 MQI-IN-ATTR-COUNT.
05 WS-IN-ATTR-COUNT
01 MQI-IN-ATTR.
05 WS-IN-ATTR

01 MQI-CHAR-ATTR-LENGTH.

05 WS-CHAR-ATTR-LENGTH

01 MQI-CHAR-ATTR.
05 WS-CHAR-ATTR

*--PUT/GET PARM

*

01 WS-MSG-DESCRIPTOR.
COPY CMQMDV.

X(4) VALUE '0D '.

$9(9)
$9(9)
X(48)
X(48)
X(48)

X(12)

BINARY VALUE 1.

BINARY VALUE 1.
VALUE SPACES.
VALUE SPACES.

VALUE '*'.

VALUE SPACES.

PIC S9(8) COMP.

PIC XXXX.

PIC S9(8) COMP.

PIC XXXX.

PIC S9(8) COMP.

PIC XXXX.

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME: cMQMDyV
DESCRIPTIVE NAME:
VERSION 1.3.0

FUNCTION:

COBOL copy file for MQMD structure

This file declares the MQMD structure,

which forms part of the IBM Message
Queue Interface (MQI).

*%

*%

*%

*%

*%

*%

*%

*%

*%

MQMD structure
10 MQMD.
Structure identifier

Appendix D. Sample programs 263

15 MQMD-STRUCID PIC X(4) VALUE 'MD
** Structure version number

15 MQMD-VERSION PIC S9(9) BINARY
ik Reserved

15 MQMD-REPORT PIC S9(9) BINARY
** Message type

15 MQMD-MSGTYPE PIC S9(9) BINARY
** Reserved

15 MQMD-EXPIRY PIC S9(9) BINARY
** Feedback code

15 MQMD-FEEDBACK PIC S9(9) BINARY
** Data encoding

15 MQMD-ENCODING PIC S9(9) BINARY
** Coded character set identifier

15 MQMD-CODEDCHARSETID PIC S9(9) BINARY
** Format name

15 MQMD-FORMAT PIC X(8) VALUE SPA
** Reserved

15 MQMD-PRIORITY PIC S9(9) BINARY
** Message persistence

15 MQMD-PERSISTENCE PIC S9(9) BINARY
** Message identifier

15 MQMD-MSGID PIC X(24) VALUE LO
** Correlation identifier

15 MQMD-CORRELID PIC X(24) VALUE LO
** Reserved

15 MQMD-BACKOUTCOUNT PIC S9(9) BINARY
*k Name of reply queue

15 MQMD-REPLYTOQ PIC X(48) VALUE SP
** Name of reply queue manager

15 MQMD-REPLYTOQMGR PIC X(48) VALUE SP

** Reserved

15 MQMD-USERIDENTIFIER PIC X(12) VALUE SP
** Reserved

15 MQMD-ACCOUNTINGTOKEN PIC X(32) VALUE LO
** Reserved

15 MQMD-APPLIDENTITYDATA PIC X(32) VALUE SP
** Reserved

15 MQMD-PUTAPPLTYPE PIC S9(9) BINARY
** Reserved

15 MQMD-PUTAPPLNAME PIC X(28) VALUE SP
** Reserved

15 MQMD-PUTDATE PIC X(8) VALUE SPA
** Reserved

15 MQMD-PUTTIME PIC X(8) VALUE SPA

** Reserved
15 MQMD-APPLORIGINDATA PIC X(4) VALUE SPA

01 WS-PUT-OPTIONS.
* COPY CMQPMOV.

VALUE 1.

VALUE 0.

VALUE 8.

VALUE -1.

VALUE 0.

VALUE 785.

VALUE 0.

CES.

VALUE 0.

VALUE 2.

W-VALUES.

W-VALUES.

VALUE 0.

ACES.

ACES.

ACES.

W-VALUES.

ACES.

VALUE 0.

ACES.

CES.

CES.

CES.

*%

** FILE NAME: CMQPMOV

*%

** DESCRIPTIVE NAME: COBOL copy file for MQPMO structure

*%

** VERSION 1.3.0

*%

** FUNCTION: This file declares the MQPMO structure,
o which forms part of the IBM Message
*% Queue Interface (MQI).

*%

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

** MQPMO structure
10 MQPMO.
xk Structure identifier
15 MQPMO-STRUCID
*k Structure version number
15 MQPMO-VERSION
xk Reserved
15 MQPMO-OPTIONS
xk Reserved

PIC X(4) VALUE 'P
PIC S9(9) BINARY

PIC S9(9) BINARY

264 1BM MQSeries for VSE/ESA User's Guide

MO .

VALUE 1.

VALUE 0.

*%

*%

*%

*%

*%

*%

15 MQPMO-TIMEQOUT

Reserved

15 MQPMO-CONTEXT

Reserved

15 MQPMO-KNOWNDESTCOUNT

Reserved

15 MQPMO-UNKNOWNDESTCOUNT

Reserved

15 MQPMO-INVALIDDESTCOUNT
Resolved name of destination queue
15 MQPMO-RESOLVEDQNAME

PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE
PIC S9(9) BINARY VALUE

PIC X(48) VALUE SPACES.

Resolved name of destination queue manager
15 MQPMO-RESOLVEDQMGRNAME PIC X(48) VALUE SPACES.

01 WS-GET-OPTIONS.
CoPY CMQGMOV.

0.

0.

0.

0.

*%

*%

*%

*%

*%

*%

*%

*%

FILE NAME:

DESCRIPTIVE NAME:

CMQGMOV

VERSION 1.3.0

FUNCTION:

This file declares the MQGMO structure,

COBOL copy file for MQGMO structure

which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*%

*%

*%

*k

*%

*%

*%

*%

*%

*%

*%

*%

MQGMO structure
10 MQGMO.
Structure identifier

15 MQGMO-STRUCID

Structure version number

15 MQGMO-VERSION

Options

15 MQGMO-OPTIONS

Wait interval

15 MQGMO-WAITINTERVAL

Signal

15 MQGMO-SIGNAL1

Reserved

15 MQGMO-SIGNAL2
Resolved name of destination queue

PIC X(4) VALUE 'GMO '.

PIC S9(9) BINARY VALUE 1.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.
PIC S9(9) BINARY VALUE 0.

PIC S9(9) BINARY VALUE 0.

15 MQGMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.

* COMMON PARMS
01 WS-PARMS.

05
05
05
05
05
05
05
05
05

WS-HCONN-VALUE
WS-HOBJ-VALUE
WS-PUT-HOBJ-VALUE
WS-CCODE-VALUE
WS-RCODE-VALUE
WS-QM-NAME-CONNECT
WS-Q-OPEN-OPTIONS-VALUE
WS-DATA-LENGTH-USER
WS-BUFFER-LENGTH

WS-BUFFER-AREA.
10 FILLER

USAGE POINTER.
USAGE POINTER.
USAGE POINTER.
PIC S9(8) COMP.
PIC S9(8) COMP.
PIC X(48).

PIC S9(8) COMP.
PIC S9(8) COMP.
PIC S9(8) COMP.

PIC X(8000).

01 DFHCOMMAREA.

05

FILLER

PROCEDURE DIVISION. MOVE LENGTH OF ENV-DEFINITION TO ENQ-ENVIR-TS-SIZE.

S * EXEC CICS READQ TS
QUEUE (ENQ-ENVIR-TS-QID)
0000-MAIN-LINE. INTO (ENV-DEFINITION)
LENGTH (ENQ-ENVIR-TS-SIZE)
*--INITIALIZE ITEM (ENQ-ENVIR-TS-ITEM)
PERFORM 1000-INITIALIZE END-EXEC.

THRU 1000-EXIT.
*--CHECK IF GOOD SIZE

*--CONNECT AND OPEN GET QUEUE IF LENGTH OF ENV-DEFINITION
PERFORM 2000-CONNECT. NOT EQUAL ENQ-ENVIR-TS-SIZE
PERFORM 3100-GET-OPEN. G0 TO 9900-NO-ENVIR-SETUP
END-IF.
K e e e e e *
SET WS-MORE-DATA TO TRUE. K e e o e e o e *
PERFORM 1015-GET-ENVRIR-EXIT.
UNTIL (WS-NOMORE-DATA) EXIT.
EJECT
*--GET MESSAGE S *
PERFORM 3500-GET-MESSAGES 1050- SET-ERROR-INFO.
K e e e e e e *
END-PERFORM. * PURPOSE: SET DEFAULT ERROR INFO
K e e e e e e *
*--SET CSMT DATE AND TIME
*--CLOSE AND DISC EXEC CICS ASKTIME
PERFORM 3900-GET-CLOSE. ABSTIME (WS-ABSTIME)
PERFORM 5000-DISCONNECT. END-EXEC.
S * MOVE EIBTIME TO WS-UNPACK-TIME-9.
0000-RETURN. MOVE WS-TIME-HH TO WS-FORMAT-TIME-HH
EXEC CICS RETURN MOVE WS-TIME-MM TO WS-FORMAT-TIME-MM.
END-EXEC. MOVE WS-TIME-SS TO WS-FORMAT-TIME-SS.
GOBACK. EXEC CICS FORMATTIME
EJECT ABSTIME (WS-ABSTIME)
S * MMDDYY (WS-FORMATTED-DATE)
1000-INITIALIZE. DATESEP ('/")
S * END-EXEC.
* PURPOSE: SETUP DATA AREAS *
S * EXEC CICS FORMATTIME
ABSTIME (WS-ABST IME)
*--GET ENVIRONMENT INFO YYMMDD (WS -DATE-YYMMDD)
PERFORM 1015-GET-ENVRIR-RECORD END-EXEC.

THRU 1015-GET-ENVRIR-EXIT.
*-- --SET CENTURY

*--SET UP ERROR AREA IF WS-DATE-YY > 50
PERFORM 1050-SET-ERROR- INFO. MOVE 19 T0 WS-DATE-CC
* ELSE
*--CHECK IF QUEUE PRESENT MOVE 20 T0 WS-DATE-CC
IF EIBCALEN < LENGTH OF MQTM END-IF.
THEN
G0 TO 0000-RETURN. *--SET COMMON ERROR INFO
MOVE ZERO T0 ERR-CODE.
*--MOVE QUEUE NAME MOVE ENV-II-LINK-ECHO TO ERR-PROGRAM.
MOVE DFHCOMMAREA TO MQTM.
K e e e e e e e o o o o *
S * EJECT
1000-EXIT. K e e e e o e e e e *
EXIT. 2000-CONNECT.
EJECT K e e e o e o e e e *
R * * PURPOSE: CONNECT
1015-GET-ENVRIR-RECORD. S *
R * *--MQCONNECT TO QM
* PURPOSE: READ ENVIRONMENT RECORD MOVE 'CONNECT' TO WS-FUNCTION.
R * MOVE SPACES TO WS-QM-NAME-CONNECT.
*--SET HANDLE MOVE MQCC-0K TO WS-CCODE-VALUE.
EXEC CICS HANDLE CONDITION MOVE MQRC-NONE TO WS-RCODE-VALUE.
QIDERR (9900-NO-ENVIR-SETUP) SET WS-HCONN-VALUE TO NULL.
ITEMERR (9900-NO-ENVIR-SETUP) CALL 'MQCONN' USING WS-QM-NAME
END- EXEC. WS-HCONN-VALUE

WS-CCODE-VALUE
WS-RCODE-VALUE.
*--READ ANCHOR FOR QM *

Appendix D. Sample programs 265

IF WS-CCODE-VALUE NOT EQUAL ZERO
GO TO 9900-ERR-DISPLAY
END-IF.

*--MQOPEN QUEUE TO QM

MOVE 'OPEN' TO WS-FUNCTION.

MOVE MQOO-INPUT-SHARED TO WS-Q-OPEN-OPTIONS-VALUE.

MOVE SPACES TO MQOD-OBJECTQMGRNAME.

MOVE MQI-PROC-LOCAL-QUEUE-NAME

TO MQOD-OBJECTNAME.

MOVE MQCC-0K TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

SET WS-HOBJ-VALUE TO NULL.

CALL "MQOPEN' USING WS-HCONN-VALUE
WS-Q-NAME-AREA
WS-Q-OPEN-OPTIONS-VALUE
WS-HOBJ-VALUE
WS-CCODE-VALUE
WS-RCODE-VALUE.

IF WS-CCODE-VALUE ~ NOT EQUAL ZERO
GO TO 9900-ERR-DISPLAY
END-IF.

*--MQGET TO QUEUE TO QM
MOVE 'GET' T0
MOVE MQCC-0K T0
MOVE MQRC-NONE TO
MOVE SPACES T0

WS-FUNCTION.
WS-CCODE-VALUE.
WS-RCODE-VALUE.
MQMD-MSGID
MQMD-CORRELID.
MOVE LENGTH OF WS-BUFFER-AREA TO
MOVE MQGMO-ACCEPT-TRUNCATED-MSG

TO MQGMO-OPTIONS.

WS-BUFFER-LENGTH.

CALL 'MQGET' USING WS-HCONN-VALUE
WS-HOBJ-VALUE
WS-MSG-DESCRIPTOR
WS-GET-OPTIONS
WS-BUFFER-LENGTH
WS-BUFFER-AREA
WS-DATA-LENGTH
WS-CCODE-VALUE
WS-RCODE-VALUE.

IF (WS-CCODE-VALUE NOT EQUAL ZERO)

AND (WS-RCODE-VALUE ~ NOT EQUAL
MQRC-TRUNCATED-MSG-ACCEPTED)

IF WS-RCODE-VALUE EQUAL MQRC-NO-MSG-AVAILABLE
SET WS-NOMORE-DATA TO TRUE
ELSE
GO TO 9900-ERR-DISPLAY
END-IF
END-IF.

*--SEND QUEUE RECORDS
IF WS-MORE-DATA
*-- --FIRST CHECK IF ANY REPLY
PERFORM 4000-PUT1-MESSAGES

266 IBM MQSeries for VSE/ESA User's Guide

*

*

*

*

*

THRU 4000-EXIT
END-IF.

--SYNCPOINT
EXEC CICS SYNCPOINT
END-EXEC.

--MQCLOSE QUEUE TO QM

MOVE 'CLOSE' TO

MOVE ZERO T0

MOVE MQCC-0K TO WS-CCODE-VALUE.

MOVE MQRC-NONE TO WS-RCODE-VALUE.

CALL "MQCLOSE' USING WS-HCONN-VALUE
WS-HOBJ-VALUE
WS-Q-OPEN-OPTIONS-VALUE
WS-CCODE-VALUE
WS-RCODE-VALUE.

WS-FUNCTION.
WS-Q-OPEN-OPTIONS-VALUE.

IF WS-CCODE-VALUE NOT EQUAL ZERO
GO TO 9900-ERR-DISPLAY
END-IF.

--MQPUT1 QUEUE TO QM
MOVE 'PUT1' TO WS-FUNCTION.
MOVE MQOO-OUTPUT TO WS-Q-OPEN-OPTIONS-VALUE.
IF MQMD-REPLYTOQMGR EQUAL SPACES OR LOW-VALUES
MOVE SPACES TO MQOD-OBJECTQMGRNAME
ELSE
MOVE MQMD-REPLYTOQMGR
TO MQOD-OBJECTQMGRNAME
END-IF.

--IF NOT REPLY QUEUE - SET DEFAULT
IF MQMD-REPLYTOQ EQUAL SPACES OR LOW-VALUES
MOVE WS-R-Q-NAME
TO MQOD-OBJECTNAME
ELSE
MOVE MQMD-REPLYTOQ
TO MQOD-OBJECTNAME

END-IF.
MOVE MQCC-0K TO WS-CCODE-VALUE.
MOVE MQRC-NONE TO WS-RCODE-VALUE.

MOVE WS-DATA-LENGTH-USER TO WS-BUFFER-LENGTH.

CALL "MQPUT1' USING WS-HCONN-VALUE
WS-Q-NAME-AREA
WS-MSG-DESCRIPTOR
WS-PUT-OPTIONS
WS-BUFFER-LENGTH
WS-BUFFER-AREA
WS-CCODE-VALUE
WS-RCODE-VALUE.

IF WS-CCODE-VALUE NOT EQUAL ZERO

GO TO 9900-ERR-DISPLAY EXEC CICS WRITEQ TD

END-1F. QUEUE (ENV-II-ERROR-TD)
FROM (ERR-HANDLER-COMMAREA)
K e e e e e e e e e * LENGTH (LENGTH OF ERR-HANDLER-COMMAREA)
4000-EXIT. NOHANDLE
EXIT. END-EXEC.
EJECT
K e * *--IF ERROR IN ERROR TD .. PUT TO CSMT
5000-DISCONNECT. *NKH IF EIBRCODE NOT EQUAL LOW-VALUES
K e e e e e *
* PURPOSE: DISCON F o o e oo oo *
K e * EJECT
*--MQDISC FROM QM o o e e e e e e e e *
MOVE 'DISCONN' TO WS-FUNCTION. 9999-CONVERT-ERROR-INFO.
MOVE MQCC-OK TO WS-CCODE-VALUE. o o e e e e oo *
MOVE MQRC-NONE TO WS-RCODE-VALUE. MOVE EIBTRNID TO ERR-TRANID.
CALL 'MQDISC' USING MOVE EIBTRMID TO ERR-TERMID.
WS-HCONN-VALUE MOVE EIBTASKN TO ERR-TASKNO.
WS-CCODE-VALUE MOVE WS-ABSTIME TO ERR-ABSTIME.
WS-RCODE-VALUE.
* MOVE EIBFN TO ERR-DEBUG-EIBFN.
MOVE EIBRCODE TO ERR-DEBUG-EIBRCODE.
B e e e * MOVE EIBRSRCE TO ERR-DEBUG-EIBRSRCE.
EJECT
B e e e * MOVE EIBRESP TO ERR-DEBUG-EIBRESP.
9900-ERR-DISPLAY. MOVE EIBRESP2 TO ERR-DEBUG-EIBRESP2.
B e e e * MOVE EIBERRCD TO ERR-DEBUG-EIBERRCD.
*-_ERROR IN "MQ" VERB
* K e e e e e e e e e *
MOVE ERR- INT-RETURN-ERROR TO ERR-CODE. o o o e e e e *
MOVE MQI-PROC-LOCAL-QUEUE-NAME ~ TO ERR-QUEUE. EJECT

PERFORM 9999-CONVERT-ERROR-INFO.

*--WRITE ERROR T Tt *
PERFORM 9999-ERROR-WRITE. 9999-ABEND-CONDITION.
* MOVE ERR-CICS-ABEND TO ERR-CODE.
*--ALWAYS DISCONNECT (NOTE NO ERROR CHECKING IN DISCONNECT) PERFORM ~ 9999-CONVERT-ERROR-INFO.
*--SYNCPOINT - ROLLBACK *--ASSIGN INFO
EXEC CICS SYNCPOINT EXEC CICS ASSIGN ABCODE (ERR-DEBUG-ABEND)
ROLLBACK END-EXEC.
END-EXEC.
*
PERFORM 5000-DISCONNECT. *--USER CODE MUST FOLLOW THIS STATEMENT *#***%
GO TO 0000-RETURN. 9999-ABEND-USER-CODE.
*
EJECT *--ADDED CODE FOR ABEND CONDITION
K e e e * *--RETURN
9900-CICS-PGMIDERR. GO TO 0000-RETURN.
* *

9900-NO-ENVIR-SETUP.

*--SET MESSAGE AND CODE GO TO 0000-RETURN.
MOVE ERR-CICS-PGMIDERR TO ERR-CODE.

*--CONVERT ERROR CODE
PERFORM 9999-CONVERT-ERROR-INFO.

*--WRITE ERROR
PERFORM 9999-ERROR-WRITE.

*--RETURN
GO TO 0000-RETURN.

EJECT
K e e e e o o *
* ERROR PROCESSING
* *

* CoPY MQIERRCD.
*/INCLUDE MQIERRCD

K e e e o o o *
* ERROR PROCESSING - CODE PROCESSING - MQIERRCD
* *

9999-ERROR-WRITE.

Appendix D. Sample programs 267

268 IBM MQSeries for VSE/ESA User's Guide

Appendix E. COBOL copybooks

** FILE NAME: CMQDLHV ik
*k *%
*k *%
** DESCRIPTIVE NAME: COBOL copy file for MQDLH structure ok
*k *%
** FUNCTION: This file declares the MQDLH structure, *x
** which forms part of the IBM Message *x
** Queue Interface (MQI). *k
** |icensed Materials - Property of IBM *k
*k * %
** This Module is Restricted Materials of IBM kel
** 5787-ECX *%
** [J Copyright IBM Corp. 1993, 1996 *x

*%

*%

*%

*k

US Government Users Restricted Rights - Use, duplication or**

disclosure restricted by GSA ADP Schedule Contract with IBM
Corp. *k

*

*

*%

*%

*%

*%

*%

*

*

*

*

*

*

*

*

*

*

*%

*%

MQDLH structure
10 MQDLH.
Structure identifier
15 MQDLH-STRUCID
PIC X(4) °DLH .
Structure version number
15 MQDLH-VERSION
PIC S9(9) BINARY VALUE ZERO.
Reason message arrived on dead-letter queue
15 MQDLH-REASON
PIC S9(9) BINARY VALUE ZERO.
Name of original destination queue
15 MQDLH-DESTQNAME
PIC X(48) VALUE SPACES.
Name of original destination queue manager
15 MQDLH-DESTQMGRNAME
PIC X(48) VALUE SPACES.
Original data encoding
15 MQDLH-ENCODING
PIC S9(9) BINARY VALUE ZERO.
Original coded character set identifier
15 MQDLH-CODEDCHARSETID
PIC S9(9) BINARY VALUE ZERO.
Original format name
15 MQDLH-FORMAT
PIC X(8) VALUE SPACES.
Type of application that put message on dead-letter queue
15 MQDLH-PUTAPPLTYPE
PIC S9(9) BINARY VALUE ZERO.
Name of application that put message on dead-letter queue
15 MQDLH-PUTAPPLNAME
PIC X(28) VALUE SPACES.
Date when message was put on dead-letter queue
15 MQDLH-PUTDATE
PIC X(8) VALUE SPACES.
Time when message was put on dead-letter queue

15 MQDLH-PUTTIME
PIC X(8) VALUE SPACES.

© Copyright IBM Corp. 1993, 1997

CMQGMOV.C

*k

* FILE NAME: CMQGMOV

*k

* DESCRIPTIVE NAME: COBOL copy file for MQGMO structure
* %

*% FUNCTION: This file declares the MQGMO structure,

** which forms part of the IBM Message

** Queue Interface (MQI).

*k

*

*

*k

*k

*k

*k

*k

*k

*k

*k

*

* Licensed Materials - Property of IBM

*%

* This Module is Restricted Materials of IBM
* 5787-ECX

** [0 Copyright IBM Corp. 1993, 1996

*%

*

*

*

*

Corp.

*k

*k

*k

*k

*k

*k

* US Government Users Restricted Rights - Use, duplication or**
* disclosure restricted by GSA ADP Schedule Contract with IBM
*

*

** MQGMO structure
10 MQGMO.
** Structure identifier
15 MQGMO-STRUCID PIC X(4) VALUE ‘GMO °©.
** Structure version number
15 MQGMO-VERSION PIC S9(8) BINARY VALUE 1.
** Options
15 MQGMO-OPTIONS PIC S9(8) BINARY VALUE 0.
** Wait interva
15 MQGMO-WAITINTERVAL PIC S9(8) BINARY VALUE 0.
** Signal
15 MQGMO-SIGNALL PIC S9(8) BINARY VALUE 0.
** Reserved
15 MQGMO-SIGNAL2 PIC S9(8) BINARY VALUE 0.
** Resolved name of destination queue
15 MQGMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.

269

CMQMDV.C

*%

*

*

FILE NAME: CMQMDV

*%

*

*

*%

*

*

FUNCTION: This file declares the MQMD structure,
which forms part of the IBM Message
Queue Interface (MQI).

*

*

*

*

*%

DESCRIPTIVE NAME: COBOL copy file for MQMD structure

*

*

Licensed Materials - Property of IBM

*%

*

*

This Module is Restricted Materials of IBM
5787-ECX
O Copyright IBM Corp. 1993, 1996

*

*

*

*

*%

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

** US Government Users Restricted Rights - Use, duplication or**

*

*

Corp.

disclosure restricted by GSA ADP Schedule Contract with IBM
*

** MQMD structure
10 MQMD.
** Structure identifier
15 MQMD-STRUCID PIC X(4) VALUE ‘MD °.
88 MQMD-STRUCID-VALUE VALUE ‘MD *.
** Structure version number
15 MQMD-VERSION PIC S9(8) BINARY VALUE 1
88 MQMD-VERSION-VALUE VALUE 1.
** Reserved
15 MQMD-REPORT PIC S9(8) BINARY VALUE 0.
88 MQMD-REPORT-VALUE VALUE 0.
** Message type
15 MQMD-MSGTYPE PIC S9(8) BINARY VALUE 8.
88 MQMD-MSGTYPE-VALUE VALUE 8.
** Reserved
15 MQMD-EXPIRY PIC S9(8) BINARY VALUE -1.
88 MQMD-EXPIRY-VALUE VALUE -1.
** Feedback code
15 MQMD-FEEDBACK PIC S9(8) BINARY VALUE 0.
88 MQMD-FEEDBACK-VALUE VALUE 0.
** Data encoding
15 MQMD-ENCODING PIC S9(8) BINARY VALUE 785.
88 MQMD-ENCODING-VALUE VALUE 785.
** Coded character set identifier
15 MQMD-CODEDCHARSETID PIC S9(8) BINARY VALUE 0.
88 MQMD-CODEDCHARSETID-VALUE VALUE 0.
** Format name
15 MQMD-FORMAT PIC X(8) VALUE SPACES.
** Reserved
15 MQMD-PRIORITY PIC S9(8) BINARY VALUE 0.
88 MQMD-PRIORITY-VALUE VALUE 0.
** Message persistence
15 MQMD-PERSISTENCE PIC S9(8) BINARY VALUE 2.
88 MQMD-PERSISTENCE-VALUE VALUE 2.
** Message identifier
15 MQMD-MSGID PIC X(24) VALUE LOW-VALUES.
88 MQMD-MSGID-VALUE VALUE LOW-VALUES.
** Correlation identifier
15 MQMD-CORRELID PIC X(24) VALUE LOW-VALUES.
88 MQMD-CORRELID-VALUE VALUE LOW-VALUES.
** Reserved
15 MQMD-BACKOUTCOUNT PIC S9(8) BINARY VALUE 0.
88 MQMD-BACKOUTCOUNT-VALUE VALUE 0.
** Name of reply queue
15 MQMD-REPLYTOQ PIC X(48) VALUE SPACES.
** Name of reply queue manager
15 MQMD-REPLYTOQMGR PIC X(48) VALUE SPACES.
** Reserved

270 IBM MQSeries for VSE/ESA User's Guide

*

15 MQMD-USERIDENTIFIER PIC X(12) VALUE SPACES.
** Reserved

15 MQMD-ACCOUNTINGTOKEN PIC X(32) VALUE LOW-VALUES.

88 MQMD-ACCOUNTINGTOKEN-VALUE VALUE LOW-VALUES.
** Reserved

15 MQMD-APPLIDENTITYDATA PIC X(32) VALUE SPACES.
** Reserved

15 MQMD-PUTAPPLTYPE PIC S9(8) BINARY VALUE 0.

88 MQMD-PUTAPPLTYPE-VALUE VALUE 0.
** Reserved

15 MQMD-PUTAPPLNAME PIC X(28) VALUE SPACES.
** Reserved

15 MQMD-PUTDATE PIC X(8) VALUE SPACES.
** Reserved

15 MQMD-PUTTIME PIC X(8) VALUE SPACES.
** Reserved

15 MQMD-APPLORIGINDATA PIC X(4) VALUE SPACES.

CMQODV.C

*%
** FILE NAME: CMQODV
*%

*

*

DESCRIPTIVE NAME: COBOL copy file for MQOD structure
* %

**% FUNCTION: This file declares the MQOD structure,

** which forms part of the IBM Message

** Queue Interface (MQI).
*%

*

*

Licensed Materials - Property of IBM

* %

** This Module is Restricted Materials of IBM
** 5787-ECX

** [0 Copyright IBM Corp. 1993, 1996

*%

*%

*k

*%

*k

*k

*%k

*k

*%

*%

*%

*%k

*%

*%k

*%

** US Government Users Restricted Rights - Use, duplication or**

** disclosure restricted by GSA ADP Schedule Contract with IBM
*

Corp.

*

** MQOD structure
10 MQOD.
** Structure identifier
15 MQOD-STRUCID PIC X(4) VALUE “OD °.
** Structure version number
15 MQOD-VERSION PIC S9(9) BINARY VALUE 1.
** Object type
15 MQOD-0BJECTTYPE PIC S9(9) BINARY VALUE 1
** Object name
15 MQOD-OBJECTNAME PIC X(48) VALUE SPACES.
** Object queue manager name
15 MQOD-0BJECTQMGRNAME PIC X(48) VALUE SPACES.
** Dynamic queue name
15 MQOD-DYNAMICQNAME PIC X(48) VALUE “*°.
** Alternate user identifier
15 MQOD-ALTERNATEUSERID PIC X(12) VALUE SPACES.

CMQPMOV.C

*k

*

*

*%

*

*

*k

*

*

*

*

*

*

*k

FILE NAME: CMQPMOV
DESCRIPTIVE NAME: COBOL copy file for MQPMO structure
FUNCTION: This file declares the MQPMO structure,

which forms part of the IBM Message
Queue Interface (MQI).

*

*

*%

*

*

*

*

*

*

*%

*k

*

*

Licensed Materials - Property of IBM

This Module is Restricted Materials of IBM
5787-ECX
O Copyright IBM Corp. 1993, 1996

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

US Government Users Restricted Rights - Use, duplication or**

disclosure restricted by GSA ADP Schedule Contract with IBM
*

Corp.

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

MQPMO structure

10 MQPMO.

Structure identifier

15 MQPMO-STRUCID PIC X(4) VALUE °PMO *.

Structure version number

15 MQPMO-VERSION PIC S9(8) BINARY VALUE 1.
Reserved

15 MQPMO-OPTIONS PIC S9(8) BINARY VALUE 0.
Reserved

15 MQPMO-TIMEOUT PIC S9(8) BINARY VALUE -1.
Reserved

15 MQPMO-CONTEXT PIC S9(8) BINARY VALUE 0.
Reserved

15 MQPMO-KNOWNDESTCOUNT PIC S9(8) BINARY VALUE 0.
Reserved

15 MQPMO-UNKNOWNDESTCOUNT PIC S9(8) BINARY VALUE 0.
Reserved

15 MQPMO-INVALIDDESTCOUNT PIC S9(8) BINARY VALUE 0.
Resolved name of destination queue

15 MQPMO-RESOLVEDQNAME PIC X(48) VALUE SPACES.
Resolved name of destination queue manager

15 MQPMO-RESOLVEDQMGRNAME PIC X(48) VALUE SPACES.

Appendix E. COBOL copybooks 271

*

CMQTMV.C

*%

*

*

*%

*

*

*%

*%

*

*

*

*

*

*

*%

FILE NAME: CMQTMV

DESCRIPTIVE NAME: COBOL copy file for MQTM structure

FUNCTION: This file declares the MQTM structure,
which forms part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*k

*k

*k

*

*

*%

*

*

*

*

*

*

*%

*%

*

*

Licensed Materials - Property of IBM

This Module is Restricted Materials of IBM
5787-ECX
O Copyright IBM Corp. 1993, 1996

*k

*k

*k

*k

*k

*k

US Government Users Restricted Rights - Use, duplication or**

disclosure restricted by GSA ADP Schedule Contract with IBM
*

Corp.

*

*%

*%

*%

*%

*%

*%

*%

*%

*%

*%

MQTM structure
10 MQTM.
Structure identifier

15 MQTM-STRUCID
PIC X(4) VALUE “TM’.

Structure version number

15 MQTM-VERSION
PIC S9(9) BINARY VALUE 1.

Name of triggered queue
15 MQTM-QNAME.

25 MQI-PROC-LOCAL-QUEUE-NAME
PIC X(48) VALUE SPACE.

Name of process object

15 MQTM-PROCESSNAME
PIC X(48) VALUE SPACES.

Trigger data

15 MQTM-TRIGGERDATA
PIC X(64) VALUE SPACES.

15 MQTM-TRIGGERDATA-RED REDEFINES MQTM-TRIGGERDATA.

25 MQI-PROC-TRANS-ID
PIC X(4).

25 MQI-PROC-PROGRAM-ID
PIC X(8).

25 MQI-PROC-TRIGGER-EVENT
PIC X.

88 MQI-PROC-TRIGGER-FIRST
VALUE “F’.

88 MQI-PROC-TRIGGER-EVERY
VALUE “E’.

Application type
15 MQTM-APPLTYPE

PIC S9(9) BINARY VALUE 0.
Application identifier

15 MQTM-APPLID
PIC X(256) VALUE SPACES.

Environment data

15 MQTM-ENVDATA
PIC X(128) VALUE SPACES.

User data

15 MQTM-USERDATA
PIC X(128) VALUE SPACES

15 MQTM-USERDATA-RED REDEFINES MQTM-USERDATA.

25 MQI-PROC-CHANNEL-NAME
PIC X(20).

272 IBM MQSeries for VSE/ESA User's Guide

CMQV.C

*

*

*%

*

*

*k

*

*

*%

*%

FILE NAME: CMQV
DESCRIPTIVE NAME: COBOL copy file for MQI constants
FUNCTION: This file declares the constants

which form part of the IBM Message
Queue Interface (MQI).

*k

*k

*k

*k

*k

*k

*k

*k

*

*

*%

*%

*

*

*%

*%

*%

*%

Licensed Materials - Property of IBM

This Module is Restricted Materials of IBM
5787-ECX
O Copyright IBM Corp. 1993, 1996

*k

*k

*k

*k

*k

*k

US Government Users Restricted Rights - Use, duplication or**

disclosure restricted by GSA ADP Schedule Contract with IBM
*

Corp.

*

Values Related to MQDLH Structure

*k

*%

*%

Structure Identifier
10 MQDLH-STRUC-ID PIC X(4) VALUE °DLH °.

Structure Version Number
10 MQDLH-VERSION-1 PIC S9(9) BINARY VALUE 1.

Values Related to MQGMO Structure

*k

*%

*%

*%

*%

Structure Identifier
10 MQGMO-STRUC-ID PIC X(4) VALUE ‘GMO °.

Structure Version Number
10 MQGMO-VERSION-1 PIC S9(9) BINARY VALUE 1.

Get-Message Options
0 MQGMO-WAIT

—

PIC S9(9) BINARY VALUE 1.
0 MQGMO-NO-WAIT

PIC S9(9) BINARY VALUE 0.
10 MQGMO-BROWSE-FIRST

PIC S9(9) BINARY VALUE 16.
10 MQGMO-BROWSE-NEXT

PIC S9(9) BINARY VALUE 32.
10 MQGMO-ACCEPT-TRUNCATED-MSG

PIC S9(9) BINARY VALUE 64.
10 MQGMO-SET-SIGNAL

PIC S9(9) BINARY VALUE 8.
10 MQGMO-SYNCPOINT

PIC S9(9) BINARY VALUE 2.
10 MQGMO-NO-SYNCPOINT

PIC S9(9) BINARY VALUE 4.
10 MQGMO-MSG-UNDER-CURSOR

PIC S9(9) BINARY VALUE 256.
10 MQGMO-LOCK

PIC S9(9) BINARY VALUE 512.
0 MQGMO-UNLOCK

PIC S9(9) BINARY VALUE 1024.

—

—

Wait Interval
10 MQWI-UNLIMITED PIC S9(9) BINARY VALUE -1.

*%

Values Related to MQMD Structure

*k

** Structure Identifier
10 MQMD-STRUC-ID PIC X(4) VALUE ‘MD °.

** Structure Version Number
10 MQMD-VERSION-1 PIC S9(9) BINARY VALUE 1.

** Report Options
10 MQRO-NONE PIC S9(9) BINARY VALUE 0.

** Message Types

10 MQMT-REQUEST
PIC S9(9) BINARY VALUE 1.

10 MQMT-REPLY
PIC S9(9) BINARY VALUE 2.

10 MQMT-DATAGRAM
PIC S9(9) BINARY VALUE 8.

10 MQMT-REPORT
PIC S9(9) BINARY VALUE 4.

** Expiry Value

10 MQEI-UNLIMITED PIC S9(9) BINARY VALUE -1.

** Feedback Values

10 MQFB-NONE
PIC S9(9) BINARY VALUE 0.

10 MQFB-QUIT
PIC S9(9) BINARY VALUE 256.

10 MQFB-SYSTEM-FIRST
PIC S9(9) BINARY VALUE 1.

10 MQFB-SYSTEM-LAST

PIC S9(9) BINARY VALUE 65535.

10 MQFB-APPL-FIRST

PIC S9(9) BINARY VALUE 65536.

10 MQFB-APPL-LAST

PIC S9(9) BINARY VALUE 999999999.

* FORMAT

10 MQFMT-NONE
PIC X(8) VALUE SPACES.

10 MQFMT-DEAD-LETTER-Q-HEADER

PIC X(8) VALUE MQDLQH’.
10 MQFMT-TRIGGER

PIC X(8) VALUE °MQTRIG’.

10 MQFMT-XMIT-Q-HEADER
PIC X(8) VALUE ‘MQXMIT’.

** Encoding Value

10 MQENC-NATIVE
PIC S9(9) BINARY VALUE 785.

** Encoding Masks

10 MQENC-INTEGER-MASK
PIC S9(9) BINARY VALUE 15.

10 MQENC-DECIMAL-MASK
PIC S9(9) BINARY VALUE 240.

10 MQENC-FLOAT-MASK
PIC S9(9) BINARY VALUE 3840.

10 MQENC-RESERVED-MASK

PIC S9(9) BINARY VALUE -4096.

** Encodings for Binary Integers
10 MQENC-INTEGER-UNDEFINED
PIC S9(9) BINARY VALUE 0.
10 MQENC-INTEGER-NORMAL
PIC S9(9) BINARY VALUE 1.

10 MQENC-INTEGER-REVERSED
PIC S9(9) BINARY VALUE 2.

** Encodings for Packed-Decimal Integers
10 MQENC-DECIMAL-UNDEFINED
PIC S9(9) BINARY VALUE 0.
10 MQENC-DECIMAL-NORMAL
PIC S9(9) BINARY VALUE 16.

10 MQENC-DECIMAL-REVERSED
PIC S9(9) BINARY VALUE 32.

** Encodings for Floating-Point Numbers

10 MQENC-FLOAT-UNDEFINED
PIC S9(9) BINARY VALUE 0.

10 MQENC-FLOAT-TEEE-NORMAL

PIC S9(9) BINARY VALUE 256.

10 MQENC-FLOAT-IEEE-REVERSED

PIC S9(9) BINARY VALUE 512.

10 MQENC-FLOAT-S390

PIC S9(9) BINARY VALUE 768.

** Coded Character-Set Identifier

10 MQCCSI-Q-MGR
PIC S9(9) BINARY VALUE 0.

** Persistence Values

10 MQPER-PERSISTENT
PIC S9(9) BINARY VALUE 1.

10 MQPER-PERSISTENCE-AS-Q-DEF
PIC S9(9) BINARY VALUE 2.

** Message Id Value
10 MQMI-NONE

PIC X(24) VALUE LOW-VALUES.

** Correlation Id Value
10 MQCI-NONE

PIC X(24) VALUE LOW-VALUES.

** Values Related to MQOD Structure

*k

** Structure Identifier

10 MQOD-STRUC-ID
PIC X(4) VALUE 0D .

** Structure Version Number

10 MQOD-VERSION-1
PIC S9(9) BINARY VALUE 1.

** Object Types
10 MQOT-Q
PIC S9(9) BINARY VALUE 1.

** Values Related to MQPMO Structure

*%

** Structure Identifier

10 MQPMO-STRUC-ID
PIC X(4) VALUE °PMO °.

** Structure Version Number

10 MQPMO-VERSION-1
PIC S9(9) BINARY VALUE 1.

** Put-Message Options
10 MQPMO-SYNCPOINT
PIC S9(9) BINARY VALUE 2.

10 MQPMO-NO-SYNCPOINT
PIC S9(9) BINARY VALUE 4.

** Values Related to MQTM Structure

** Structure Identifier

10 MQTM-STRUC-ID
PIC X(4) VALUE ‘M °©.

** Structure Version Number

10 MQTM-VERSION-1
PIC S9(9) BINARY VALUE 1.

*%

** Values Related to MQCLOSE Call

*%

Appendix E. COBOL copybooks 273

** Close Options

10

MQCO-NONE
PIC S9(9) BINARY

VALUE

0.

** Values Related to MQINQ Call

*k

** Character-Attribute Selectors

10

10

10

MQCA-BASE-Q-NAME

PIC S9(9) BINARY
MQCA-CREATION-DATE

PIC S9(9) BINARY
MQCA-CREATION-TIME

PIC S9(9) BINARY

10 MQCA-FIRST
PIC S9(9)

BINARY

10 MQCA-INITIATION-Q-NAME

PIC S9(9)
10 MQCA-LAST
PIC S9(9)

10 MQCA-PROCESS-NAME
PIC S9(9)
10 MQCA-Q-DESC
PIC S9(9)
10 MQCA-Q-NAME
PIC S9(9)

BINARY

BINARY

BINARY

BINARY

BINARY

10 MQCA-REMOTE-Q-MGR-NAME

PIC S9(9)

10 MQCA-REMOTE-Q-NAME
PIC S9(9)

BINARY

BINARY

** Integer-Attribute Selectors

-

0 MQIA-CURRENT-Q-DEPTH
PIC S9(9)
10 MQIA-DEF-PERSISTENCE
PIC S9(9)
10 MQIA-DEFINITION-TYPE
PIC S9(9)
10 MQIA-FIRST
PIC S9(9)
10 MQIA-INHIBIT-GET
PIC S9(9)
10 MQIA-INHIBIT-PUT
PIC S9(9)
10 MQIA-LAST
PIC S9(9)
10 MQIA-MAX-MSG-LENGTH
PIC S9(9)
10 MQIA-MAX-Q-DEPTH
PIC S9(9)
10 MQIA-OPEN-INPUT-COUNT
PIC S9(9)

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

10 MQIA-OPEN-OUTPUT-COUNT

PIC S9(9)
10 MQIA-Q-TYPE
PIC S9(9)
10 MQIA-SHAREABILITY
PIC S9(9)
10 MQIA-TRIGGER-CONTROL
PIC S9(9)
10 MQIA-TRIGGER-TYPE
PIC S9(9)
10 MQIA-USAGE
PIC S9(9)

** Integer Attribute Value Denoting ‘Not Applicable’

10 MQIAV-NOT-APPLICABLE

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

2002.

2004.

2005.

2001.

2008.

4000.

2012.

2013.

2016.

2017.

2018.

20.

23.

24,

28.

12.

PIC S9(9) BINARY VALUE -1

** Values Related to MQOPEN Call

*k

** Open Options
10 MQOO-INPUT-SHARED

PIC S9(9) BINARY VALUE 2.

274 1BM MQSeries for VSE/ESA User's Guide

10 MQOO-INPUT-EXCLUSIVE

PIC S9(9) BINARY VALUE

10 MQOO-BROWSE

PIC S9(9) BINARY VALUE

10 MQOO-OUTPUT

PIC S9(9) BINARY VALUE

10 MQOO-INQUIRE

PIC S9(9) BINARY VALUE

Kk ok kok ok ok ok ko kok

** Values Related to A1l Calls

** String Lengths
0 MQ-CREATION-DATE-LENGTH

i

—

0

10

10

10

10

10

10

10

10

10

10

PIC S9(9) BINARY
MQ-CREATION-TIME-LENGTH

PIC S9(9) BINARY
MQ-PROCESS-APPL-ID-LENGTH

PIC S9(9) BINARY
MQ-PROCESS-DESC-LENGTH

PIC S9(9) BINARY
MQ-PROCESS-ENV-DATA-LENGTH

PIC S9(9) BINARY
MQ-PROCESS-NAME-LENGTH

PIC S9(9) BINARY
MQ-PROCESS-USER-DATA-LENGTH

PIC S9(9) BINARY
MQ-Q-DESC-LENGTH

PIC S9(9) BINARY
MQ-Q-NAME-LENGTH

PIC S9(9) BINARY
MQ-Q-MGR-DESC-LENGTH

PIC S9(9) BINARY
MQ-Q-MGR-NAME-LENGTH

PIC S9(9) BINARY
MQ-TRIGGER-DATA-LENGTH

PIC S9(9) BINARY

** BINARYletion Codes

10

10

10

MQCC-0K

PIC S9(9) BINARY
MQCC-WARNING

PIC S9(9) BINARY
MQCC-FAILED

PIC S9(9) BINARY

** Reason Codes

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

MQRC-NONE

PIC S9(9) BINARY
MQRC-ACCESS-RESTRICTED

PIC S9(9) BINARY

MQRC-ALIAS-BASE-Q-TYPE-ERROR

PIC S9(9) BINARY
MQRC-ALREADY-CONNECTED

PIC S9(9) BINARY
MQRC-BUFFER-ERROR

PIC S9(9) BINARY
MQRC-BUFFER-LENGTH-ERROR

PIC S9(9) BINARY
MQRC-CHAR-ATTR-LENGTH-ERROR

PIC S9(9) BINARY
MQRC-CHAR-ATTRS-ERROR

PIC S9(9) BINARY
MQRC-CHAR-ATTRS-T0O0-SHORT

PIC S9(9) BINARY
MQRC-CONNECTION-BROKEN

PIC S9(9) BINARY
MQRC-DATA-LENGTH-ERROR

PIC S9(9) BINARY
MQRC-EXPIRY-ERROR

PIC S9(9) BINARY
MQRC-FEEDBACK-ERROR

PIC S9(9) BINARY
MQRC-GET-INHIBITED

PIC S9(9) BINARY
MQRC-HANDLE-NQOT-AVAI LABLE

PIC S9(9) BINARY

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

256.

64.

128.

48.

128.

64.

48.

64.

48.

64.

2000.

2001.

2002.

2004.

2005.

2006.

2007.

2008.

2009.

2010.

2013.

2014.

2016.

2017.

*k

1

o

10

10

10

10

1

o

10

1

o

1

o

1

o

1

o

1

o

1

o

10

10

10

10

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

10

1

o

10

10

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

1

o

MQRC- HCONN- ERROR

PIC S9(9) BINARY VALUE
MQRC-HOBJ-ERROR

PIC S9(9) BINARY VALUE
MQRC- INT-ATTR-COUNT-ERROR

PIC S9(9) BINARY VALUE
MQRC- INT-ATTR-COUNT-TOO-SMALL

PIC S9(9) BINARY VALUE
MQRC- INT-ATTRS-ARRAY- ERROR

PIC S9(9) BINARY VALUE
MQRC-MAX-CONNS -L IMI T-REACHED

PIC S9(9) BINARY VALUE
MQRC-MD-ERROR

PIC S9(9) BINARY VALUE
MQRC-MISSING-REPLY-T0-Q

PIC S9(9) BINARY VALUE
MQRC-MSG-TYPE-ERROR

PIC S9(9) BINARY VALUE
MQRC-MSG-T00-BIG-FOR-Q

PIC S9(9) BINARY VALUE
MQRC-NO-MSG-AVAI LABLE

PIC S9(9) BINARY VALUE
MQRC-NO-MSG - UNDER-CURSOR

PIC S9(9) BINARY VALUE
MQRC-NOT-AUTHORI ZED

PIC S9(9) BINARY VALUE
MQRC-NOT-OPEN- FOR-BROWSE

PIC S9(9) BINARY VALUE
MQRC-NOT-OPEN- FOR- INPUT

PIC S9(9) BINARY VALUE
MQRC-NOT-OPEN- FOR- INQUIRE

PIC S9(9) BINARY VALUE
MQRC-NOT-OPEN- FOR-OUTPUT

PIC S9(9) BINARY VALUE
MQRC-OBJECT - CHANGED

PIC S9(9) BINARY VALUE
MQRC-OBJECT - IN-USE

PIC S9(9) BINARY VALUE
MQRC-OBJECT - TYPE-ERROR

PIC S9(9) BINARY VALUE
MQRC-0D-ERROR

PIC S9(9) BINARY VALUE
MQRC-OPTION-NOT-VALID-FOR-TYPE

PIC S9(9) BINARY VALUE
MQRC-OPTIONS -ERROR

PIC S9(9) BINARY VALUE
MQRC-PERSISTENCE-ERROR

PIC S9(9) BINARY VALUE
MQRC-PRIORITY-EXCEEDS MAXIMUM

PIC S9(9) BINARY VALUE
MQRC-PRIORITY-ERROR

PIC S9(9) BINARY VALUE
MQRC-PUT- INHIBITED

PIC S9(9) BINARY VALUE
MQRC-Q-FULL

PIC S9(9) BINARY VALUE
MQRC-Q-SPACE -NOT-AVAI LABLE

PIC S9(9) BINARY VALUE
MQRC-Q-MGR-NAME- ERROR

PIC S9(9) BINARY VALUE
MQRC-Q-MGR-NOT-AVAI LABLE

PIC S9(9) BINARY VALUE
MQRC-REPORT -OPTIONS-ERROR

PIC S9(9) BINARY VALUE
MQRC-SECURITY-ERROR

PIC S9(9) BINARY VALUE
MQRC- SELECTOR-COUNT-ERROR

PIC S9(9) BINARY VALUE
MQRC-SELECTOR- LIMIT-EXCEEDED

PIC S9(9) BINARY VALUE
MQRC- SELECTOR- ERROR

PIC S9(9) BINARY VALUE
MQRC-SELECTOR-NOT-FOR-TYPE

PIC S9(9) BINARY VALUE
MQRC-SIGNAL -OUTSTANDING

PIC S9(9) BINARY VALUE
MQRC-SIGNAL -REQUEST-ACCEPTED

PIC S9(9) BINARY VALUE
MQRC- STORAGE -NOT-AVAI LABLE

PIC S9(9) BINARY VALUE
MQRC-SYNCPOINT -NOT - AVAI LABLE

PIC S9(9) BINARY VALUE

2018.

2019.

2021.

2022.

2023.

2025.

2026.

2027.

2029.

2030.

2033.

2034.

2035.

2036.

2037.

2038.

2039.

2041.

2042.

2043.

2044.

2045.

2046.

2047.

2049.

2050.

2051.

2053.

2056.

2058.

2059.

2061.

2063.

2065.

2066.

2067.

2068.

2069.

2070.

2071.

2072.

1

o

1

o

1

o

1

o

1

o

1

o

1

o

10

1

o

1

o

10

10

1

o

10

1

o

10

10

MQRC-TRUNCATED-MSG-ACCEPTED

PIC S9(9) BINARY VALUE
MQRC-TRUNCATED-MSG-FATLED

PIC S9(9) BINARY VALUE
MQRC-UNEXPECTED-CONNECT-ERROR

PIC S9(9) BINARY VALUE
MQRC-UNKNOWN-ALTAS-BASE-Q

PIC S9(9) BINARY VALUE
MQRC-UNKNOWN-0BJECT -NAME

PIC S9(9) BINARY VALUE
MQRC-UNKNOWN-0BJECT-Q-MGR

PIC S9(9) BINARY VALUE
MQRC-UNKNOWN-REMOTE-Q-MGR

PIC S9(9) BINARY VALUE
MQRC-WAIT-INTERVAL-ERROR

PIC S9(9) BINARY VALUE
MQRC-XMIT-Q-TYPE-ERROR

PIC S9(9) BINARY VALUE
MQRC-XMIT-Q-USAGE-ERROR

PIC S9(9) BINARY VALUE
MQRC-PMO-ERROR

PIC S9(9) BINARY VALUE
MQRC-GMO-ERROR

PIC S9(9) BINARY VALUE

MQRC-UNEXPECTED-ERROR

PIC S9(9) BINARY VALUE
MQRC-MSG-ID-ERROR

PIC S9(9) BINARY VALUE
MQRC-CORREL-ID-ERROR

PIC S9(9) BINARY VALUE

MQRC_FILE_SYSTEM_ERROR

PIC S9(9) BINARY VALUE
MQRC-NO-MSG-LOCKED

PIC S9(9) BINARY VALUE

2079.

2080.

2081.

2082.

2085.

2086.

2087.

2090.

2091.

2092.

2173.

2186.

2195.

2206.

2207.

2208.

2209.

** Values Related to Queue Attributes

*%

** Queue Types

10

10

10

MQQT-LOCAL

PIC S9(9) BINARY VALUE
MQQT-ALIAS

PIC S9(9) BINARY VALUE
MQQT-REMOTE

PIC S9(9) BINARY VALUE

** Queue Definition Types

10

MQQDT-PREDEFINED
PIC S9(9) BINARY VALUE

** Inhibit Get

10

10

MQQA-GET-INHIBITED

PIC S9(9) BINARY VALUE
MQQA-GET-ALLOWED

PIC S9(9) BINARY VALUE

** Inhibit Put

10

10

MQQA-PUT-INHIBITED

PIC S9(9) BINARY VALUE
MQQA-PUT-ALLOWED

PIC S9(9) BINARY VALUE

** Queue Shareability

10

10

MQQA-SHAREABLE

PIC S9(9) BINARY VALUE
MQQA-NOT-SHAREABLE

PIC S9(9) BINARY VALUE

** Message Delivery Sequence

10

MQMDS-FIFO
PIC S9(9) BINARY VALUE

** Trigger Control

10

10

MQTC-OFF

PIC S9(9) BINARY VALUE
MQTC-ON

PIC S9(9) BINARY VALUE

Appendix E.

1.
3.

6.

1.

1.

0.

1.

0.

1.

0.

1.

0.

1.

COBOL copybooks 275

** Trigger Types
10 MQTT-NONE

€ S9(9)

10 MQTT-FIRST
PIC

10 MQTT-EVERY
PIC

** Queue Usage

10 MQUS-NORMAL
PIC

S9(9)

S9(9)

S9(9)

10 MQUS-TRANSMISSION

PIC

$9(9)

BINARY VALUE 0.

BINARY VALUE 1.

BINARY VALUE 2.

BINARY VALUE 0.

BINARY VALUE 1.

** Values Related to Process-Definition Attributes

** Application Type
0 MQAT-USER-FIRST
PI

—

—

0 MQAT-USER-LAST
PIC

10 MQAT-0S2
PIC

10 MQAT-DOS
PIC

10 MQAT-AIX
PIC

10 MQAT-0S400
PI
10 MQAT-WINDOWS
PI
10 MQAT-CICS-VSE

PIC
10 MQAT-VMS

€ S9(9)

$9(9)

S9(9)
S9(9)

S9(9)

C S9(9)

C S9(9)

S9(9)

C S9(9)

10 MQAT-GUARDIAN
PI

10 MQAT-VOS
PIC

C S9(9)

S9(9)

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

BINARY

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

65536.

999999999.

** Values Related to Queue-Manager Attributes

*k

*k

** Syncpoint Availab

ility

10 MQSP-AVAILABLE PIC S9(9) BINARY VALUE 1

276 IBM MQSeries for VSE/ESA User's Guide

Appendix F. Configuration worksheets

System list - worksheet

One list to be compiled for entire network, identifying all systems which will utilize MQSeries
messaging and queuing. Each is assigned one message_queue_manager name.

System

Location

Hardware

Msg_Queue_Ma nager

Comments

Column 1 = System Name or identification (User specified terminology)

Column 2 = Location of system (City, Building, Floor, etc.)

Column 3 = Type of Hardware (Mainframe, LAN, AS/400, VAX, TANDEM, etc.)

Column 4 = Assigned Message_Queue_Manager name

Column 5 = Any other user comments

© Copyright IBM Corp. 1993, 1997

277

Application list - worksheet

One list to be compiled for entire network, identifying all applications which will utilize MQSeries
messaging and queuing. Each is assigned one (or more) local queue _name(s) through which
they will receive messages. Each is mapped to a host system from above list.

Application Queue_Name Hardware Msg_Q_Mgr Comments

Column 1 = Application Name or identification
Column 2 = Assigned local Queue_Name.
Column 3 = Type of Hardware (from SYSTEM LIST WORKSHEET)

Column 4 = Message_Queue_Manager name (from SYSTEM LIST WORKSHEET)

Column 5 = Any other user comments

278 IBM MQSeries for VSE/ESA User's Guide

Application look at queues - worksheet

One list to be compiled for each application , identifying all queues with which that application
will interact. (This is primary input data to applications developers.)

Application
Input Queue Output Queue
Input Queue Output Queue
Input Queue Output Queue
Input Queue Output Queue

Each gueue box contains:

QUEUE_NAME
and

MESSAGE FORMAT (User Supplied Information)

Appendix F. Configurationworksheets 279

System look at queues - worksheet

One list to be compiled for each MQSeries System . All applications on the system are
identified, all queues required on the system are identified, all channels are identified. All data is
derived from previous worksheets.

Local System Remote System
Application Queue Name Channel || Queue_Name | Queue_Manager_Name
Input from Remote
<ee-
P
<ee-
<ee-
Output to Remote
—>
—>
—>
—>
Local Messaging
None
None
None
None
None
Passthru Cases (this system is intermediate node in multi-hop
routing)
-
>
=
>

Column 1 = Local Application Name or identification
Column 2 = Assigned local Queue_Name.

Column 3 = Channel (direction of message flow)
Column 4 = Remote system Queue_Name

Column 5 = Remote system Message_Queue_Manager name

280 IBM MQSeries for VSE/ESA User's Guide

Channel list - worksheet

One list to be compiled for entire network. All information in first 5 columns is derived from prior
worksheets. All Channel names assigned (last column).

System Q_Mgr_Name Channel System Q_Mgr_Name || Channel_Name

L

—>

Column 1 = System Name

Column 2 = Queue_Manager_Name for above system.
Column 3 = Channel (direction of message flow)

Column 4 = System Name of “other” system in connection
Column 5 = Queue_Manager_Name for above system

Column 6 = Assigned Channel Name

Appendix F. Configurationworksheets 281

MQSeries System configuration (routing table) - worksheet

One list to be compiled for each system .

Obj_Name Type Q_Name QMgr_Name Xmit_QName
Local
Local
Local
Local
Transmit
Transmit
Remote
Remote
Remote
Entries are any of the following formats
Obj_Name Type Q_Name QMgr_Name Xmit_QName
Required Local n.a. n.a. n.a.
Required Transmit n.a. n.a. n.a.
Required Remote Required Required Optional
Required Alias_Q Required n.a. n.a.
Required Alias_M n.a. Required Optional
Required Alias_R Required Required n.a.

282 IBM MQSeries for VSE/ESA User's Guide

Appendix G. System Resources

System set up file: MQFSSET

MQFSSET is a ESDS VSAM file created from a flat file containing system setup information for
MQSeries for VSE. MQFSSET is a file used one time only to initialize the System Configuration
file, MQFCNFG.

Configuration file: MQFCNFG

MQFCNFG is a KSDS VSAM file which is initialized from MQFSSET at install time by a
transaction named MQSU. After installation, it contains only system information such as system
constants, system messages, screen messages and the names of CICS maps, programs and
transactions. After subsequent updates, any and all user definitions, such as Global System
Definition, Queue Definitions and Channel Definitions, are also defined in this configuration file.

MQFCNFG and other resources, including transactions, cannot be used unless a transaction
named MQSE (accessing program MQPSENV) is executed. While MQSU is run only once after
installation, the transaction MQSE has to be run every time CICS is started. When CICS is
started, MQSE must be executed to build a irrecoverable temporary storage area for the
purpose of identification.

User definitions are entered and updated by the configuration functions of the Master Terminal
(MQMT). The information retained in MQFCNFG, however, is not available for the Queue
Manager unless it is brought into storage by executing the MQIT transaction or the initialize
option on the operations screen Shutdown of System (function 2.4 of MQMT) or the refresh
functions Start/Stop Queue and Open/Close Channel (function 2.1 and 2.2 of MQMT). In other
words, after successfully modifying an existing queue definition, the user must stop and refresh
this queue (by using the MQMT Start/Stop Queue operation) in order to make these changes
available to the Queue Manager.

The other alternative is to execute MQST and then MQIT to shutdown and reinitialize the Queue
Manager. However, if new channels or new queues are added, the Queue Manager must be
shut down (by MQST or function 2.4 of MQMT) and then initialized (by MQIT or function 2.4 of
MQMT) in order to make this new information available to the Queue Manager. Due to the high
activity on the MQFCNFG file, it is strongly recommended that it be placed on a DASD volume
having a low activity for other files.

Queues

Queues containing application messages, are located in KSDS VSAM clusters. The key to
these queues consists of a 48 character object name plus a 4 byte Queue Sequence Number
(QSN). Several queues may be defined in the same VSAM cluster. The first record of a queue is
a control record. The first 744 bytes of a record contain the message header, not visible from
application programs.

The MQSeries Queue Manager uses its own locking facility. It is recommended that the user
should not use the CICS ENQ command to obtain exclusive control of queues. Instead, set the
MQOO_INPUT_EXCLUSIVE option flag with the MQOPEN command.

Temporary storage

The MQSeries Queue Manager makes wide use of CICS temporary storage. The following
temporary storage names are reserved:

— MQSERIES

- MQTAQM

- MQIIoo1

— MQIO001

Appendix G. System Resources 283

In-storage-control-blocks and recovery mechanism

It may happen that an application program terminates without issuing the MQDISC command.
In such a case, allocated control blocks would never be freed. To overcome this problem, a
special task, called System Monitor (MQSM) is started at initialization time.

MQSM has three objectives:

1. Detect and clean unused control blocks.
2. Trigger channel activity when messages have been written into queues.

3. Queue recovery when they become out of sync.

This transaction is then activated at regular time intervals, specified in the global definition
“System Wait Interval” (see Figure 14 on page 68).

284 IBM MQSeries for VSE/ESA User's Guide

Appendix H. Sample JCL

Sample JCL to define a configuration file

* ** JO0B JNM=MQJCONFG,DISP=D,CLASS=A

* %% | ST DISP=H,CLASS=Q,PRI=3

// JOB MQJCONFG Define Configuration file for MQ/Series for VSE/ESA.
*

IMPORTANT IMPORTANT IMPORTANT

Please change :
% *% JOB" tO 0% $$ JOB"
"kokx |STY to "X $§ LST"
"xx% EQJ" to "* $$ EOJ"

Fields filed with ?volid? have also to be modified to suit the
user specifications.

Licensed Materials - Property of IBM

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

// EXEC IDCAMS,SIZE=AUTO

L T T R S T R N N N S S T R
EE R A A . N I R R . T S R R I T R

/* */
/* DELETE VSAM FILES */
/* */

DELETE (MQSERIES.MQFCNFG) CL NOERASE PURGE -

CATALOG(?CAT?)

SET MAXCC = 0
/* */
/* DEFINE VSAM FILE */
/* */
DEF -

CLUSTER(NAME (MQSERIES .MQFCNFG) -
FILE (MQFCNFG) -
VOL(?volid?) -

RECORDS (300 100) -
RECORDSIZE (2048 2048) -
INDEXED -
KEYS (100 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFCNFG.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFCNFG.INDEX) CISZ(512)) -

CATALOG(?CAT?)
/* */
/*
/&
* % E0J

Appendix H. Sample JCL 285

Sample JCL to define queue file

* ** J0OB JNM=MQJQUEUE,DISP=D,CLASS=A
* %% | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJQUEUE Define VSAM clusters for MQ/Series for VSE/ESA Queues

286

*

0% Xk X ok 3k X X X X ok kX ok X ok %k X X ok Xk F X F F* F

IMPORTANT

Please change :

IMPORTANT

% *% JOB" tO 0% $$ JOB"
"koRRLST" to "% $$ LST"
"% EQJ" to "X $$ EOJ"

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

// EXEC IDCAMS,SIZE=AUTO

/*
/*
/*

/*
/*
/*

DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.
DELETE (MQSERIES.

DELETE (MQSERIES.

DELETE VSAM FILES

CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)
CATALOG(?CAT?)

CATALOG(?CAT?)

SET MAXCC = 0

DEFINE VSAM FILES

IBM MQSeries for VSE/ESA User’s Guide

MQFI001)
MQFI002)
MQFI003) CL
MQF0001) CL
MQF0002) CL

MQF0003) CL

CL NOERASE

CL NOERASE

NOERASE

NOERASE

NOERASE

NOERASE

PURGE

PURGE

PURGE

PURGE

PURGE

PURGE

IMPORTANT

This job allocates QUEUE files for MQSeries for VSE/ESA.

There is a one-to-one correspondence of the file names in this
job with those in the sample JCL named MQCICSFT

If there are more files to be allocated, please update MQCICSFT
accordingly.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

MQFLOG) CL NOERASE PURGE -
MQFERR) CL NOERASE PURGE -

MQFMON) CL NOERASE PURGE -

Fields filed with ?volid? have also to be modified to suit the
user specifications.

Licensed Materials - Property of IBM

*/
*/
*/

*/
*/
*/

E R I T S T T R R B I R S

/* */
DEF CLUSTER (NAME (MQSERIES.MQFIO001) -
FILE(MQFIO0O01) -
VOL(?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFI001.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFIOO01.INDEX) CISZ(1024)) -

CATALOG (?CAT?)
/* */
/* */
DEF CLUSTER (NAME (MQSERIES .MQFI002) -

FILE (MQFI002) -

VOL(?volid?) -

RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFI002.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFI002.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/* */
DEF CLUSTER (NAME (MQSERIES.MQF1003) -
FILE (MQFI003) -
VOL (?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFI003.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFIO0O03.INDEX) CISZ(1024)) -

CATALOG (?CAT?)
/* */
/* */
DEF CLUSTER (NAME (MQSERIES.MQF0001) -

FILE (MQFO001) -

VOL (?vo1id?) -

RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQF0001.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQF0001.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/* */
DEF CLUSTER(NAME (MQSERIES.MQF0002) -
FILE(MQF0002) -
VOL(?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQF0002.DATA) CISZ(4096)) -

Appendix H. Sample JCL 287

288

INDEX (NAME (MQSERIES.MQF0002.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/*
DEF CLUSTER (NAME (MQSERIES .MQF0003) -
FILE(MQF0003) -
VOL (?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 11000) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQF0003.DATA) CISZ(12288)) -
INDEX (NAME (MQSERIES.MQFO003.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/*
DEF CLUSTER (NAME (MQSERIES.MQFLOG) -
FILE (MQFAUDT) -
VOL (?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFLOG.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFLOG.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/*
DEF CLUSTER (NAME (MQSERIES .MQFMON) -
FILE (MQFERR1) -
VOL (?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFMON.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFMON.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/*
DEF CLUSTER (NAME (MQSERIES.MQFERR) -
FILE (MQFERR) -
VOL (?volid?) -
RECORDS (300 100) -
RECORDSIZE (200 4089) -
INDEXED -
KEYS (52 0) -
SHR(2)) -
DATA (NAME (MQSERIES.MQFERR.DATA) CISZ(4096)) -
INDEX (NAME (MQSERIES.MQFERR.INDEX) CISZ(1024)) -
CATALOG (?CAT?)
/*
/&
* k% EOJ

IBM MQSeries for VSE/ESA User’s Guide

*/

*/

*/

*/

Sample JCL to define and create the setup file MQJSETUP

* %% JOB JNM=MQJSETUP,DISP=D,CLASS=A
* *% | ST DISP=H,CLASS=Q,PRI=3
// JOB MQJSETUP - Define/Load Setup file for MQ/Series for VSE/ESA.

*

IMPORTANT IMPORTANT IMPORTANT

Please change :
% *% JOB" tO 0% $$ JOB"
"kooRRLST" to "* $$ LST"
% *% SLIM tO % $$ SLI"
"xx% EQJ" to "* $$ EOJ"

Fields filed with ?volid? have also to be modified to suit the
user specifications.

PRD2.MQSERIES to an ESDS VSAM file : MQSERIES.MQFSSET
This ESDS file is, in turn, the input to MQSU transaction
to create MQSERIES.MQFCNFG VSAM cluster.

Licensed Materials - Property of IBM

5787-ECX
(C) Copyright IBM Corp. 1993, 1996

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

E I T S T T R N S R R S T R I R

*
*
*
*
*
*
*
*
*
*
*
*
*
* This job downloads SYSIN.Z from a the sublibray named
*
*
*
*
*
*
*
*
*
*
*
*
*

// EXEC IDCAMS,SIZE=AUTO

/* */
/* DELETE VSAM FILES */
/* */

DELETE (MQSERIES.MQFSSET) CL NOERASE PURGE -

CATALOG(?CAT?)

SET MAXCC = 0
/* */
/* DEFINE VSAM FILE */
/* */
DEF CLUSTER(NAME (MQSERIES.MQFSSET) -

FILE (MQFSSET) -

VOL(?volid?) -

RECORDS (500 100) -
RECORDSIZE (80 80) -

NONINDEXED -
SHR(2)) -
DATA (NAME (MQSERIES.MQFSSET.DATA) CISZ(4096)) -
CATALOG (?CAT?)
/* */
/* */

// DLBL LOADFL, 'MQSERIES.MQFSSET',,VSAM,CAT=MQMCAT
// EXEC TESVSMLD,SIZE=AUTO

80,E,LOADFL

* ** SLI MEM=SYSIN.Z,S=PRD2.MQSERIES

/*

/&

* k% EOJ

Appendix H. Sample JCL 289

290 IBM MQSeries for VSE/ESA User's Guide

Glossary

This glossary describes terms used in this book and
words used with other than their everyday meaning. In
some cases, a definition may not be the only one
applicable to a term, but it gives the particular sense in
which the word is used in this book.

If you do not find the term you are looking for, see the
Index or the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition. The ANSI/EIA Standard--440-A: Fiber Optic
Terminology.

Copies may be purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue, N.W.,
Washington DC 20006. Definitions are identified by the
symbol (E) after the definition. The Information
Technology Vocabulary, developed by Subcommittee 1,
Joint Technical Committee 1, of the International
Organization for Standardization and the International
Electrotechnical Commission (ISO/IEC JTC1/SC1).
Definitions of published parts of this vocabulary are
identified by the symbol (I) after the definition; definitions
from draft international standards, committee drafts, and
working papers being developed by ISO/IEC JTC1/SC1
are identified by the symbol (T) after the definition,
indicating that final agreement has not yet been reached
among the participating National Bodies of SC1.

A

ADMINISTRATOR COMMANDS. MQSeries
commands used to manage MQSeries objects, such as
gueues, processes and channels.

ALIAS QUEUE OBJECT. An MQSeries object, the
name of which is an alias for another queue name. When
an application or a queue manager uses an alias queue,
the alias name is resolved and the requested operation is
performed on the queue with the resolved name.

APAR. Authorized program analysis report.

ATTRIBUTE. One of a set of properties that defines
the characteristics of an MQSeries object.

AUTHORIZED PROGRAM ANALYSIS REPORT
(APAR). Areport of a problem caused by a suspected
defect in a current, unaltered release of a program.

© Copyright IBM Corp. 1993, 1997

B

BACKOUT. An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery or
unit of work begins.

BROWSE. In message queuing, to copy a message
without removing it from the queue. See also get.

BROWSE CURSOR. In message queuing, an indicator
used when browsing a queue to identify the message that
is next in sequence.

C

CHANNEL.

CLIENT. The program that requests information in the
particular two-program information-flow model of
client/server. See also server. In an 0OS/2, DOS,
Microsoft Windows, AlX or UNIX environment, this
means a system which supports MQI application
programs but does not contain the entire queue manager.
For example, several client systems can all logically
belong to the same queue manager.

See message channel.

D

DEAD-LETTER QUEUE. A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

DISTRIBUTED APPLICATION. In message queuing,
a set of application programs that can each be connected
to a different queue manager, but that collectively
comprise a single application.

DISTRIBUTED QUEUE MANAGEMENT. In message
queuing, the setup and control of message channels to
gueue managers on other systems.

F

FIFO. First-in-first-out.

FIRST-IN-FIRST-OUT (FIFO). A queuing technique in
which the next item to be retrieved is the item that has
been in the queue for the longest time. (A)

G

GET. In message queuing, to retrieve a message by
removing the message from a queue or by browsing the
message. See also browse.

291

INPUT PARAMETER. A parameter of an MQI call in
which you supply information when you make the call.

INPUT/OUTPUT PARAMETER. A parameter of an
MQI call in which you supply information when you make
the call, and in which the queue manager changes the
information when the call completes or fails.

L

LOCAL DEFINITION. An MQSeries object that
belongs to a local queue manager.

LOCAL DEFINITION OF A REMOTE QUEUE. An
MQSeries object that belongs to a local queue manager.
This object defines the attributes of a remote queue.

LOCAL QUEUE. A queue that belongs to the local
gueue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

LOCAL QUEUE MANAGER. To a program, the queue
manager to which the program is connected. This is the
gueue manager that provides message queuing services
to that program. Queue managers to which a program is
not connected are called remote queue managers, even
if they are running on the same system as the program.

LOGICAL UNIT OF WORK (LUW). See unit of work.

M

MCA. Message channel agent.

MCAMD. A system program that provides a centralized
channel database service allowing MCAs and MQM to
access and modify the channel database.

MESSAGE. (1) In message queuing applications, a
communication sent from a program to another program.
(2) In system programming, information intended for the
terminal operator.

MESSAGE CHANNEL. In distributed message
gueuing, a mechanism for moving messages from one
gueue manager to another. A message channel
comprises two message channel agents and a
communication link.

MESSAGE CHANNEL AGENT (M CA). A program that
transmits prepared messages from a transmission queue
to a communication link, or from a communication link to
a destination queue

MESSAGE DESCRIPTOR. Control information that is
carried as part of an MQSeries message. The format of
the message descriptor is defined by the MQMD
structure.

MESSAGE QUEUE. Synonym for queue.

292 IBM MQSeries for VSE/ESA User's Guide

MESSAGE QUEUE INTERFACE (MQI). The
programming interface provided by the MQSeries
message queue managers. This programming interface
allows application programs to access message queuing
services.

MQSERIES. A family of IBM licensed programs that
provides message queuing services.

MESSAGE QUEUING. A programming technique in
which each program within an application communicates
with the other programs by putting messages on queues.

MESSAGE SEQUENCE NUMBERING. A
programming technique in which messages are given
unique numbers during transmission over a
communication link. This enables the receiving process
to check whether all messages are received, to place
them in a queue in the original order, and to discard
duplicate messages.

MESSAGING. A method for communication between
programs. Messaging can be synchronous or
independent of time.

MQI. Message Queue Interface.

O

OBJECT. In MQSeries, objects define the attributes of
gueue managers, queues and process definitions.
OBJECT DESCRIPTOR. A data structure that
identifies a particular MQSeries object. Included in the
descriptor are the name of the object and the object type.

OBJECT HANDLE. The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

P

PERSISTENT MESSAGE.
restart of the queue manager.

PLATFORM. In MQSeries, the operating system under
which a queue manager is running. See also application
environment.

PROGRAM TEMPORARY FIX (PTF). A solution or
by-pass of a problem diagnosed by IBM field engineering
as the result of a defect in a current, unaltered release of
a program.

A message that survives a

PTF. Program temporary fix.

Q

QUEUE. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Queues can be of type local, alias or
remote. Local queues can contain a list of messages
waiting to be processed. Queues of other types cannot
contain messages -- they point to other queues.

QUEUE MANAGER. (1) A system program that
provides queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue manager
owns. See also local queue manager and remote queue
manager. (2) An MQSeries object that defines the
attributes of a particular queue manager.

QUEUING. See message queuing.

R

REASON CODE. A return code that describes the
reason for the failure or partial success of an MQI call.

RECEIVER CHANNEL. In message queuing, a channel
that responds to a sender channel, takes messages from
a communication link, and puts them on a local queue.

REMOTE QUEUE. A queue that belongs to a remote
gueue manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

REMOTE QUEUE MANAGER. To a program, a queue
manager is remote if it is not the queue manager to which
the program is connected.

REMOTE QUEUING. In message queuing, the
provision of services to enable applications to put
messages on queues belonging to other queue
managers.

REPLY MESSAGE. A type of message used for replies
to request messages.

REPLY-TO QUEUE. The name of a queue to which the
program that issued an MQPUT call wants a reply
message sent.

REQUESTER CHANNEL. In MQSeries, a channel that
initiates transfers, communicating with a remote server
channel. The requester channel accepts messages from
the server channel over a communication link and puts
the messages on the local queue designated in the
message.

RETURN CODES. The collective name for completion
codes and reason codes.

ROLLBA CK. Synonym for backout.

S

SENDER CHANNEL. In MQSeries, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver channel.

SERVER. The program that responds to requests for
information in the particular two-program information-flow
model of client/server. See also client.

SERVER CHANNEL. In MQSeries, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

SYNCHRONOUS MESSAGING. A method for
communication between programs in which the
application waits for a reply before resuming its own
processing. Contrast with time-independent messaging.

SYNCPOINT. An intermediate or end point during
processing of a transaction at which the transaction's
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

T

TIME-INDEPENDENT MESSAGING. A method for
communication between programs in which the
requesting program proceeds with its own processing
without waiting for a reply to its request. Contrast with
synchronous messaging.

TRANSMISSION PROGRAM. See message channel
agent.

TRANSMISSION QUEUE. A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

TRIGGERING. In MQSeries, a facility that allows a
gueue manager to start an application automatically when
predetermined conditions on a queue are satisfied.

TWO-PHASE COMMIT. A protocol for the coordination
of changes to recoverable resources when more than one
resource manager is used by a single transaction.

U

UNDELIVERED MESSAGE QUEUE. See dead-letter
queue.

UNIT OF WORK. Arecoverable sequence of
operations performed by an application between two
points of consistency. A unit of work begins when a
transaction starts or at a user-requested syncpoint. It
ends either at a user-requested syncpoint or at the end of
a transaction. Compare with unit of recovery.

Glossary 293

294 1BM MQSeries for VSE/ESA User's Guide

Index

A

ACTION NOT AUTHORIZED 172
ACTION NOT SUPPORTED 172
adjacent SSCP tables 59
ALERT 11
alias 1, 28
QM name 76, 77
queue create 75
queue manager create 76
queue name 75, 77
reply create 77
all channel's request 87
all queue’s request 86
allocation retries 46, 81
allow internal dump 69
Allow TDQ Write on Errors 69
APPC 55
APPL 55
application definition 59
application major node 55
ATCSTRxx 54

B

background queue maintain transactions 11

batch interface 99
data integrity 100
logic 99
restrictions 101
use 100
verification 101

batch processing 111

BMS maps 205

browse function 96

C

call completed 141
call failed 142
CDRSCTI 54, 60
channel 2
activation 86
attachment major node 59
close 87
communication 26
configuration 46
definition 43, 80
deletion 83
format 81
last checkpoint 83
last MSN 83
maximum values 69
modification 83
monitoring 94
name 73, 81, 83, 88
negotiation fields 81
open 87
reset status 88
selection 82
status 83, 88
system 85, 87
type 81, 83
CHANNEL BUSY 180

© Copyright IBM Corp. 1993, 1997

CHANNEL CONNECT ERROR 176
CHANNEL CONNECTED 165
CHANNEL DISCONNECTED 166
CHANNEL LU 6.2 CONNECTED 166
CHANNEL MESSAGE SEQUENCE NUMBER
ERROR 156

CHANNEL NEGOTIATIONS ACCEPTED 165
CHANNEL QUEUE CLOSED 166
CHANNEL QUEUE OPENED 165
CHANNEL RE-NEGOTIATION 177
CHANNEL RE-SYNC ERROR 180
CHANNEL SEND ERROR 176
CHANNEL SHUTDOWN 166
checkpoint

frequency 47

global timer 44

threshold 45, 48, 69, 72

time span 47

values 81
checkpointer global timer 69
CICS 41

connection definition 41

control table definitions 197

CSD group 202

deck 201

PLTPI table 10

session definition 42

start-up deck 9

system initialization table 56

table entries 8

task abend (AFCL) 11
CICS ABEND CONDITION REACHED 184
CICS ERROR CONDITION REACHED 184
close object (MQCLOSE) 122
CMQDLHV.C 269
CMQGMOV.C 269
CMQMDV.C 270
CMQODV.C 271
CMQPMOV.C 271
CMQTMV.C 272
CMQV.C 272
Cobol

calls 190

copy files 189

copybooks 269

data types 193

notational conventions 189

programs and transactions 205

structures 189
command line function 97
communications channels 26
completion code (CompCode) 141

295

configuration environment not initialized message 10

capacities 34 ERROR CONDITION DURING CHECKPOINT
channel 46, 49 PROCESSING 184
elements 23 error logs 97
examples 34, 49 example
file 69 channel configuration 49
guidelines 43 queue configuration 50
queue 47,50 queue manager
gueue manager 44, 49 configuration 49
system 41 system configuration 41
worksheets 34 EXPECTED RECORD IS MISSING 173
connect queue manager (MQCONN) 112 external security 11
connection ID 47, 81
console messages 188 F
convers cap 81 FCT 9
create

entries 197
file control table (FCT) 9, 197
FILE NOTOPEN CONDITION 185
FILEID CONDITION 186
Function 87
FUNCTION DONE 165
FUNCTION NOT DONE 165

alias queue 75
alias queue manager 76
alias reply 77
local queue 71
remote queue 74
cross-domain resource definition 59

CSMT 97
current next-MSN 88 FUNCTION STARTED 164
D G

get enabled 71, 74, 75, 76, 77

get message (MQGET) 117

get message options structure (MQGMO) 139
get retries 46, 81

getting messages 108

global lock entries 48, 72

global queue/file names 69

global system definition 10, 68

data types 130
elementary 130
structure 130
DCT 9
entry sample 199
dead letter name 69
default inbound status 71, 74, 75, 76, 77

definitions

channel 80, 82, 84, 94

CICS 57 H

queue 70, 78, 84 hardware 3

gueue manager 83 header 1
delay time 46, 81 HOSTPU 54
delete

all function (MQQA) 11 |

by date/time (MQQD) 11
channel definition 82 .”‘LOGIC CONDITION 184
inbound status 86

delete all function (MQQA) 102 independent LU 60

dependent LU 60
I INITIALIZATION COMPLETED 10
destination control table (DCT) 9, 197 INITIATION ERROR 178

DISABLE CONDITION 185 Lo) .
disconnect queue manager (MQDISC) 123 inquire ?bOUt object attributes (MQINQ) 126
disk space installation
recrl)amation 101 verification 11
distributed applications 15 INTERNAL STRUCTURE HAS ERRORS 175
o : INTERNAL STRUCTURE MISSING 175
g:gmgﬂ:ﬁﬂ]etgvgogmem 7 INVALID FAP LEVEL 178
dual queue 72 INVALID MESSAGE SEGMENT HEADER 178
squport 40 INVALID REQUEST CONDITION 184
INVALID RESPONSE TYPE 177
882:: SBEBE EEE()E%}R}(;lR 171 INVALID TRANSMISSION QUEUE HEADER 178
DUAL QUEUE LOGIC ERROR 171 INVALID TRANSMISSION SEGMENT HEADER 177
INVLD RESP TYPE 160

DUALQ TAKEOVER 40
DUPLICATE RECORD HAS OCCURRED 173 10 ERROR CONDITION 186

ISTCDRDY 60
ISTPDILU 60
E
EAS 55 J

EIB ERROR 175

elementary data types 130 journal control table (JCT) 11

296 IBM MQSeries for VSE/ESA User's Guide

K message size 43
MESSAGE SIZE TOO BIG 179

KSDS 5 MESSAGE WRAP ERROR 179
MESSAGE-PER-BATCH TOO BIG 181
L messages
language considerations 189 system 155
last MSN 83 migration 6
legacy applications 20 guidance 3
LENGTH ERROR CONDITION 185 minor node name 55
LIBDEF 9 mode 86
LINK DFHCOMMAREA DATA INCORRECT 174 mode table 56
LINK DFHCOMMAREA SIZE INCORRECT 174 MODETAB 56
LINK ERROR 174 modify
local lock entries 48, 72 channel definition 82
local major node 59 queue definition 79
local message queue 24 monitor
local queue 1 channel 94
create 71 queues 92
local queue information 72 monitor queue name 69
LOG queue name 69 monitor status 85
logon mode table 61 monitoring
LU62 ALLOC ERROR 158 functions 91
LU62 ALLOC RETRY ERROR 159 MOVE ERROR 175
LU62 CONN ERROR 159 MQBIBTCH.Z 99
LU62 EIB ERROR 158 MQBICALL.Z 99
LU62 FREE ERROR 157 MQBICIRH.Z 99
LU62 SEND ERROR 160 MQBICITK.Z 99
LU62 SESSION STARTED 157 MQBYTE 130
LU62 STAT ERROR 158 MQBYTE24 130
MQBYTE32 130
M MQCC_FAILED 142
MAPFAIL CONDITION 185 MQCC_OK 141

max message size 47, 81 MQCC_WARNING 141

max messages per batch 46, 81 MQCHAR 130

max transmission size 81 MQCHARnN 130
MAX TRANSMISSION SIZE TOO BIG 181 MQCL 97

max. recovery tasks 69 MQCLOSE 122, 190
maximum concurrent accesses 47, 72 MQCONN 112,190
maximum concurrent queues 44, 69 MQDISC 123, 190
maximum global locks 45, 69 MQFCNFG 197
maximum local locks 45, 69 MQFLOG 13
maximum message length 47, 72 MQGET 117, 190
maximum message size 45, 69 MQGMO 139, 193
maximum number of tasks 44, 69 MQHCONN 131

maximum Q depth 44, 47, 69, 72 MQPSBJ 131
maximum single Q access 45, 69 Q
maximum transmission size 46 MQ:gggé: igg
maximum trigger starts 48 Q
i MQIO005I 188
maximum values 72
MCA 2 MQIO011l 188
mess seq reqd 81 MQI0013I 188
messal MQI00211 188
g MQI00231 188
message channel agent (MCA) 2 Q
messal initi MQI00251 188
ge deflnmon MOING 126, 101
explanation 156 MOIT 10)

message descriptor structure (MQMD) 133

MQJCONFG.Z 5
MESSAGE LENGTH ERROR 180
message queue MQJCSD.Z 9

space required 5 MQJLABEL.Z 9

message queue interface (MQI) 2 MQJMIGR1 sample JCL 6

MQJMIGR2 sample JCL 8
message queue management (MQM) 2
message routing 28 MQJQUEUE.Z 5

MQJREORG 40
message sequence number
reset 88 MQJSETUP.Z 5, 10

MQLONG 131
message sequence wrap 46, 81 MOM 2

Index 297

MQMO001000 97
MQMO001090 97
MQMD 133, 194
MQOD 132, 195
MQOPEN 114, 191
mqgpecho.cob 255
MQPMO 138, 195
MQPREORG

sample 103
MQPREORG function 102
MQPSENV 9
MQPSTART 9
MQPUT 120, 191
MQPUTL1 124,192
MQPUTIL 40, 200
MQPUTIL commands 98

DUALQ 98

PRINT 98

RESET 98
MQOQOA 11
MQQD 11
MQRC_ALIAS_BASE_Q_TYPE_ERROR 142
MQRC_ALREADY_CONNECTED 143
MQRC_BUFFER_LENGTH_ERROR 143
MQRC_CHAR_ATTR_LENGTH_ERROR 143
MQRC_CHAR_ATTRS_TOO_SHORT 144
MQRC_CONNECTION_BROKEN 144
MQRC_EXPIRY_ERROR 144
MQRC_FEEDBACK_ERROR 144
MQRC_GET_INHIBITED 144
MQRC_GMO_ERROR 153
MQRC_HANDLE_NOT_AVAILABLE 145
MQRC_HCONN_ERROR 145
MQRC_HOBJ_ERROR 145
MQRC_INT_ATTR_COUNT_ERROR 145
MQRC_INT_ATTR_COUNT_TOO_SMALL 145
MQRC_LOCK_NOT_AVAILABLE 154
MQRC_MAX_CONNS_LIMIT_REACHED 146
MQRC_MD_ERROR 146
MQRC_MISSING_REPLY_TO_Q 146
MQRC_MSG_TOO_BIG_FOR_Q 146
MQRC_MSG_TYPE_ERROR 146
MQRC_NO_MESSAGE_AVAILABLE 147
MQRC_NO_MSG_UNDER_CURSOR 147
MQRC_NONE 142
MQRC_NOT_OPEN_FOR_BROWSE 147
MQRC_NOT_OPEN_FOR_INPUT 147
MQRC_NOT_OPEN_FOR_INQUIRE 147
MQRC_NOT_OPEN_FOR_OUTPUT 148
MQRC_OBJECT_IN_USE 148
MQRC_OBJECT_TYPE_ERROR 148
MQRC_OD_ERROR 148
MQRC_OPTION_NOT_VALID_FOR_TYPE 148
MQRC_OPTIONS_ERROR 149
MQRC_PERSISTENCE_ERROR 149
MQRC_PMO_ERROR 153
MQRC_PRIORITY_ERROR 149
MQRC_PRIORITY_EXCEEDS_MAXIMUM 149
MQRC_PUT_INHIBITED 149
MQRC_Q_FULL 150
MQRC_Q_MGR_NAME_ERROR 150
MQRC_Q_MGR_NOT_AVAILABLE 150
MQRC_Q_SPACE_NOT_AVAILABLE 150
MQRC_REPORT_OPTIONS_ERROR 150
MQRC_SELECTOR_COUNT_ERROR 150
MQRC_SELECTOR_ERROR 151

298 IBM MQSeries for VSE/ESA User's Guide

MQRC_SELECTOR_LIMIT_EXCEEDED 151
MQRC_SELECTOR_NOT_FOR_TYPE 151
MQRC_STORAGE_NOT_AVAILABLE 151
MQRC_TRUNCATED_MSG_ACCEPTED 152
MQRC_TRUNCATED_MSG_FAILED 152
MQRC_UNEXPECTED_ERROR 154
MQRC_UNKNOWN_ALIAS_BASE_Q 152
MQRC_UNKNOWN_OBJECT_NAME 152
MQRC_UNKNOWN_OBJECT_Q_MGR 152
MQRC_UNKNOWN_REMOTE_Q_MGR 152
MQRC_WAIT_INTERVAL_ERROR 153
MQSE 10

MQSERIES INSTALL COMPLETED 10
MQSERIES.MQFERR 6
MQSERIES.MQFI001 6
MQSERIES.MQFI002 6
MQSERIES.MQFI003 6
MQSERIES.MQFLOG 6
MQSERIES.MQFMON 6
MQSERIES.MQFO001 6
MQSERIES.MQFO002 6
MQSERIES.MQFO003 6

MQSU 10

MQWCNSL.C 188

N

naming conventions 11, 33
NCP 59
NETID 54
network configuration
CICSto VTAM 55
network control program (ncp) major node 59
network resources 51
new definitions, channels and queues 13
new next-MSN 88
NO ENVIRONMENT RECORD 187
NO STORAGE CONDITION 185
NOFILE CONDITION 186
Number of Retries 46, 81
number of retries 46, 81

O

object attributes (MQINQ) 126

object descriptor structure (MQOD) 132
object name 70

object type 70

open message queue (MQOPEN) 114
open/close channel 87

other channel data 81

outbound status 71, 74, 75, 76, 77, 86

P

PARAMETER VALUE INVALID 63
PARSER LENGTH ERROR 162
PARSER STATUS ERROR 161
PARSESS 55

partially completed call 141
PCT 9

PGMIDERR CONDITION 186
physical file name 47, 72
planning considerations 20
PLTPI 9

PLTSD 9

PPT 9

PRD2.MQSERIES 5, 9
processing program table(PPT) 9
PRODINFO.Z 14
product information file 14
Prog
xxxxxxxx ABEND Code zzzz 182
XXXXXXXX Error detected 182
XXXXXXXX File
yyyyyyy DISABLED. 182
yyyyyyy I/O error. 183
yyyyyyy ILLOGIC error. 182
YYYYYYy is not open. 183
yyyyyyy Not Found. 182
yyyyyyy Record not found. 183
XXXxXxxxX INVREQ error 183
XXXXXXXX MAPFAIL error 183
XXXxxxxX TRANSID error 183
program control table(PCT) 9
PROGRAM HAS REPEATED ERRORS 173
program ID 48, 73
program list table post initialization (PLTPI) 9
program list table shut down (PLTSD) 9
PROGRAM STARTED INCORRECTLY 172
protocol 81
publications
MQSeries xviii
put
message (MQPUT) 120
message options structure (MQPMO) 138
one message (MQPUT1) 124
put enabled 71, 74, 75, 76, 77
putting messages 108

Q

queue
actual entity 1
configuration 50
create alias 75
create local 71
create remote 74
definition deletion 79
definitions 70
file reorganization 103
local 1, 24
maximum values 69, 72
modification 79
monitoring 92
multiple files 102
name 90
names 23
recovery task 40
remote 27
start 85
status 85, 87, 88
stop 85
system values 69
transmission 25

QUEUE CHECKPOINT RECORD MISSING 174

QUEUE CLOSE ERROR 164

QUEUE CONCURRENT UPDATE HAS OCCURED 169

gueue configuration guidelines 47
QUEUE CONNECTION ERROR 162
QUEUE DISABLED 170

QUEUE DISC ERROR 164

QUEUE GET ERROR 162

QUEUE LOCK TABLE IS FULL 173
queue maintenance 90
queue manager 1, 69
configuration 44, 49
connect 112
create alias 76
disconnect (MQDISC) 123
number of channels 48
QUEUE MANAGER IS DOWN 179

QUEUE MANGER IS DOWN DURING ACCESSING

DLQ 179
QUEUE NO SPACE AVAILABLE 171

QUEUE NO SPACE AVAILABLE FOR PUT 170

QUEUE NOT FOUND 169

QUEUE OPEN ERROR 162

QUEUE PUT ERROR 163

QUEUE PUT1 ERROR 163

QUEUE QDEPTH EXCEEDED 169

QUEUE QSN NUMBER LIMIT HAS BEEN
REACHED 170

QUEUE STOPPED 170

QUEUE TRIGGER DATA ERROR 172

QUEUE TRIGGER ERROR 172

R
RECEIVER RESPONSES WITH ERROR 176
reclamation of freed file space 101
recovery 9
re-initialization 6
remote link 13
remote qeueu name 74
remote gm name 74
remote queue 1
create 74
definitions 27

REMOTE SITE DEALLOCATED CONVERSATION 160

remote SNA software

definitions 62
remote system

required definitions 56
reorganizing queue files 103
requirements

hardware 3

software 3
reset channel info 88
reset deleted records (MQQD) 11
reset message sequence number 88
RESET MSN 181
restart 9
RETURN FROM LINK ERROR 174
routing table 29

S

sample
CICS CSD group definitions 202
CICS deck 201
configuration file JCL 285
DCT 199
FCT 197
MQFSSET file JCL 289
MQJMIGR1 6
MQJIMIGR2 8
MQPUTIL 200
programs 2, 207
queue file JCL 286

Index 299

security 11, 21
selecting channel definition 82
sender channel
definition 110
service history 14
session establishment failure 59
setup environment 10
share mode 72
single channel request 87
single queue
function 85
queue name 85
single queue request 85
SNA 52
SNA definitions
remote 62
SNASVCMG 63
Software 3
space
reclamation 101
SPANNED 43
split mssg 81
SSCP 52
SSCPNAME 55
start up parameter 54
start/stop queue 85
startup list 54
structure data types 193
sublibrary restoration 5
subsystem datasets 9
subsystem files 5
supported language 3
SYNCH MSG DUP 157
syncpoint rollback 109
syncpoints 107
SYSID 73
SYSIN.Z 10
system
configuration examples 41
definition 68
initialization 89
messages 155
monitor 2, 284
SYSTEM ACTIVE 168
system information 88
system installation 4
system setup 10
SYSTEM STARTED 156

T

tasks
application developer 19
MQSeries system administrator 19
system / network administrator 18
system designer 16
temporary storage 283
term ID 48, 73
terminal type definition 59
TP name 47, 81
TRANIDERR CONDITION 186
trans ID 48, 73
transaction program name 43
transmission queue 1, 2, 25, 76
transmission queue name 74, 81
trigger information 72
trigger program
definition 110
trigger type 48
triggering 86
triggers 107
troubleshooting 62
TST2 11
TTPTST1.COB 207
TTPTST2 11
usage 12
TTPTST2.COB 221
TTPTST3.COB 239

U

unit of work
getting messages 108
putting messages 108

UNKNOWN CHANNEL ID (INBOUND) 179

UNKNOWN ENCODING 177

UNSUPPORTED CODED CHARACTER SET ID

(CcsID) 178
upgrading 6
usage mode 72

\%
verifying installation 11
VSAM cluster

multiple queues 102
VSAM ESDS 10
VSAM file maintenance 101
VSAM user catalog 4

SYSTEM STARTED BUT SYSTEM CHANGED 167
SYSTEM STARTED W/ CHANNEL ERRORS 167
SYSTEM STARTED W/ ERRORS 167

SYSTEM STARTED W/ FILE ERRORS 167
SYSTEM STARTED W/ NO QUEUES 168

SYSTEM STARTED W/ NO SYSTEM DEFINITION 169
SYSTEM STARTED W/ TOO MANY CHANNELS 168
SYSTEM STARTED W/ TOO MANY QUEUES 168
system status 85, 87, 88

SYSTEM STOPPED 168

system wait interval 44, 69

SYSTEM.EXCEPT 97

SYSTEM.LOG 13, 97

SYSTEM.MONITOR 97

VSE library allocation 4
VTAM 41, 52
VTAM domain 52

300 IBM MQSeries for VSE/ESA User's Guide

Sending your comments to IBM

IBM MQSeries for VSE/ESA
User’s Guide
SC33-1142-02

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject
matter, or completeness of this book. Please limit your comments to the information in this book only and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or
systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate, without incurring any obligation to you.
You can send your comments to IBM in any of the following ways:
® By mail, use the Readers’ Comment Form
® By fax:
— From outside the U.K., use your international access code followed by 44 1962 870229
— From within the U.K., use 01962 870229
® Electronically, use the appropriate network ID:

— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
— IBMLink: WINVMD(IDRCF)
— Internet: idref@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

® The publication number and title
® The page number or topic number to which your comment applies
® Your name/address/telephone number/fax number/network ID.

Readers’ Comments
IBM MQSeries for VSE/ESA

User’s Guide
SC33-1142-02

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to express your
opinion about it (such as organization, subject matter, appearance) or make suggestions for improvement, this is the form
to use.

To request additional publications, or to ask questions or make comments about the functions of IBM products or
systems, you should talk to your IBM representative or to your IBM authorized remarketer. This form is provided for
comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it
believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone Number

IBM MQSeries for VSE/ESA User’'s Guide

SC33-1142-02

You can send your comments POST FREE on this form from any one of these countries: =
(@]
Australia Finland Iceland Netherlands Singapore United States §
Belgium France Israel New Zealand Spain of America 2
Bermuda Germany Italy Norway Sweden 2
Cyprus Greece Luxembourg Portugal Switzerland =
Denmark Hong Kong Monaco Republic of Ireland United Arab Emirates
If your country is notlisted here, your local IBM representative will be pleased to forward your comments
to us. Oryou can pay the postage and send the form direct to IBM (this includes mailing inthe U.K.).
E Fold alongthisline
By air mail NE PAS AFFRANCHIR
Par avion
IBRS/CCRINUMBER: PHQ-D/1348/SO
NO STAMP REQUIRED
|
I T v —
IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
S021277 United Kingdom
E] Foldalongthisline
From: Name
Company or Organization E
Address §_:
EMAIL z
@
Telephone

ﬂ Fasten here with adhesive tape

Program Number: 5787-ECX

Printed in U.S.A.

SC33-1142-02

IBM MQSeries for VSE/ESA

User’'s Guide

Version 1 Release 4

SC33-1142-02

