
IBM SecureWay Directory Version 3.2.1:
Access Control Lists

���



ii IBM SecureWay Directory Version 3.2.1: Access Control Lists



Preface

This is a temporary document intended to make Access Control List (ACL)
information available to users without having to access the Directory Management
Tool help panels. This information will be incorporated into a formal
Administration Guide at a later release.

iii



iv IBM SecureWay Directory Version 3.2.1: Access Control Lists



Contents

Preface . . . . . . . . . . . . . . . iii

Access Control Lists . . . . . . . . . 1
The Access Control Attribute Syntax . . . . . . 1
AclEntry. . . . . . . . . . . . . . . . 2

Subject . . . . . . . . . . . . . . . 2
Pseudo DN . . . . . . . . . . . . . . 3
Rights . . . . . . . . . . . . . . . 3

EntryOwner . . . . . . . . . . . . . . 4
Propagation . . . . . . . . . . . . . . 5
Access Evaluation . . . . . . . . . . . . 5
Defining the ACIs and Entry Owners . . . . . . 7
Modifying the ACI and Entry Owner Values. . . . 7
Deleting the ACI/Entry Owner Values. . . . . . 9
Retrieving the ACI/Entry Owner Values . . . . . 9
Working with Access Control Lists . . . . . . . 9

v



vi IBM SecureWay Directory Version 3.2.1: Access Control Lists



Access Control Lists

Access Control Lists (ACL) provide a means to protect information stored in a
LDAP directory. Administrators use ACLs to restrict access to different portions of
the directory, or specific directory entries. LDAP directory entries are related to
each other by a hierarchical tree structure. Each directory entry (or object) contains
the distinguished name of the object as well as a set of attributes and their
corresponding values.

The object attributes associated with access control, such as owner,
ownerSource,ownerPropagate, acl, aclSource and aclPropagate are unusual in that
they are logically associated with each object, but can have values that depend
upon other objects higher in the tree. Depending upon how they are established,
these attribute values can be explicit to an object or inherited from an ancestor.

The access control model defines two sets of attributes: The Access Control
Information (ACI) and the entryOwner Information. The ACI specifically defines a
subject’s permission to perform a given operation against certain LDAP objects.
The entryOwner information controls which subjects can define the ACIs. The
entryOwnership also acquires full access rights to the target object.

Using Access Control Information (ACI), administrators can restrict access to
different portions of the directory, specific directory entries and, based on the
attribute name or attribute access class, the attributes contained in the entries. Each
entry within the LDAP directory has a set of associated ACI. In conformance with
the LDAP model,the ACI and entryOwner informationis represented as
attribute-value pairs. Furthermore, the ldif syntax is used to administer these
values. The attributes are:
v aclEntry
v aclPropagate
v entryOwner
v ownerPropagate

The Access Control Attribute Syntax
Each of these attributes can be managed using LDIF notation. The following
defines the syntax for the ACI and entryOwner attributes using BNF.
<aclEntry> ::= <subject> [ ":" <rights> ]

<aclPropagate> ::= "true" | "false"

<entryOwner> ::= <subject>

<ownerPropagate> ::= "true" | "false"

<subject> ::= <subjectDnType> ':' <subjectDn> | <pseudoDn>

<subjectDnType> ::= "role" | "group" | "access-id"

<subjectDn> ::= <DN>

<DN> ::= distinguished name as described in RFC 2251, section 4.1.3.

<pseudoDn> ::= "group:cn=anybody" | "group:cn=authenticated" | "access-id:cn=this"

1



<rights> ::= <accessList> [":" <rights> ]

<accessList> ::= <objectAccess> | <attributeAccess> | <attributeClassAccess>

<objectAccess> ::= "object:" [<action> ":"] <objectPermissions>

<action> ::= "grant" | "deny"

<objectPermisssions> ::= <objectPermission> [ <objectPermissions> ]

<objectPermission> ::= "a" | "d" | ""

<attributeAccess> ::= "at." <attributeName> ":" [<action> ":"] <attributePermissions>

<attributeName> ::= attributeType name as described in RFC 2251, section 4.1.4. (OID or
alpha-numeric string with leading alphabet, "-" and ";" allowed)

<attributePermissions> ::= <attributePermission> [<attributePermissions>]

<attributePermission> ::= "r" | "w" | "s" | "c" | ""

<attributeClassAccess> ::= <class> ":" [<action> ":"] <attributePermissions>

<class> ::= "normal" | "sensitive" | "critical"

AclEntry

Subject
A subject (the entity requesting access to operate on an object) consists of the
combination of a DN (Distinguished Name) type and a DN. The valid DN types
are: access Id, Group and Role.

The DN identifies a particular access-id, role or group. For example, a subject
might be access-id: cn=personA, o=IBM or group: cn=deptXYZ, o=IBM.

Because the field delimiter is the colon (’:’), a DN containing colon(s) must be
double-quoted. And a double-quoted DN must escape any double-quote sign with
the escape character ’\’, should it be present in the DN.

All directory groups can be used in access control.

Note: Version 3.1 and earlier LDAP servers restricted Groups which are to be used
in access control to have an objectclass of AccessGroup. This restriction is
lifted at Version 3.2. Any group of AccessGroup, GroupOfNames or
’GroupofUniqueNames’ objectclasses can be used for access control.

Another DN type used within the access control model is role. While roles and
groups are similar in implementation, conceptually they are different. When a user
is assigned to a role, there is an implicit expectation that the necessary authority
has already been set up to perform the job associated with that role. With group
membership, there is no built in assumption about what permissions are gained (or
denied) by being a member of that group.

Roles are similar to groups in that they are represented in the directory by an
object. Additionally, roles contain a group of DNs. Roles that are used in access
control must have an objectclass of AccessRole.

2 IBM SecureWay Directory Version 3.2.1: Access Control Lists



Pseudo DN
The LDAP directory contains several pseudo DNs. These are used to refer to large
numbers of DNs which at bind time share a common characteristic, in relation to
either the operation being performed, or the target object on which the operation is
being performed.

Currently, three pseudo DNs are defined:

group:cn=anybody
Refers to all subjects, including those that are unauthenticated. All users
belong to this group automatically.

group:cn=authenticated
Refers to any DN which has been authenticated to the directory. The
method of authentication is not considered.

access-id:cn=this
Refers to the bindDn which matches the target object’s DN on which the
operation is performed.

Rights
Access rights can apply to an entire object or to attributes of the object. The LDAP
access rights are discrete. One right does not imply another right. The rights may
be combined together to provide the desired rights list following a set of rules
discussed later. Rights can be of null value, which indicates that no access rights
are granted to the subject on the target object. The rights consist of three parts:

Action:
Defined values are grant or deny. If this field is not present, the default is
set to grant.

Permission:
There are six basic operations that may be performed on a directory object.
From these operations, the base set of ACI permissions are taken. These
are: add an entry, delete an entry, read an attribute value, write an attribute
value, search for an attribute, and compare an attribute value.

The possible attribute permissions are : read ( r ), write ( w ), search ( s ),
and compare ( c ). Additionally, object permissions apply to the entry as a
whole. These permissions are add child entries ( a ) and delete this entry (
d ).

The following table summarizes the permissions needed to perform each of
the LDAP operations.

Table 1.

Operation Permission Needed

ldapadd add (on parent)

ldapdelete delete (on object)

ldapmodify write (on attributes being modified)

Access Control Lists 3



Table 1. (continued)

ldapsearch v search, read (on attributes in RDN)

v search (on attributes specified in the
search filter)

v search (on attributes returned with just
names)

v search, read (on attributes returned with
values)

ldapmodrdn write (on RDN attributes)

ldapcompare compare (on compared attribute)

Note: For search operations, the subject is required to have search (s)
access to all the attributes in the search filter or no entries are
returned. For returned entries from a search, the subject is required
to have search (s) and read (r) access to all the attributes in the RDN
of the returned entries or these entries are not returned.

Access Target:
These permissions can be applied to the entire object (add entry, delete
entry), to an individual attribute within the entry, or can be applied to
groups of attributes (Attribute Access Classes) as described in the
following.

Attributes requiring similar permissions for access are grouped together in
classes. Attributes are mapped to their attribute classes in the directory
schema file. These classes are discrete; access to one class does not imply
access to another class. Permissions are set with regard to the attribute
access class as a whole. The permissions set on a particular attribute class
apply to all attributes within that access class unless the individual
attribute access permissions are specified.

IBM defines three attribute classes that are used in evaluation of access to
user attributes: normal, sensitive, and critical. For example, attribute
commonName falls into the normal class, and attribute userpassword
belongs to the critical class. User defined attributes belong to the normal
access class unless otherwise specified.

Two other access classes are also defined: system and restricted. The
system class attributes are creatorsName, modifiersName,
createTimestamp, modifyTimestamp, ownerSource and aclSource. These
are attributes maintained by the LDAP server and read only to the
directory users. OwnerSource and aclSource are described in the
Propagation section. The attributes that define the access control, namely
aclEntry, aclPropagate, entryOwner and ownerPropagate, are in the
restricted class. All users have read access to the restricted attributes but
only entryOwners can create, modify, and delete these attributes.

EntryOwner
The entry owners have complete permissions to perform any operation on the
object regardless of the aclEntry. Additionally, the entry owners are the only ones
who are permitted to administer the aclEntries for that object. EntryOwner is an
access control subject, it can be defined as individuals, groups or roles.

4 IBM SecureWay Directory Version 3.2.1: Access Control Lists



Note: The directory administrator is one of the entryOwners for all objects in the
directory by default, and the directory administrator’s entryOwnership can
not be removed from any object.

Propagation
Entries on which an aclEntry has been placed are considered to have an explicit
aclEntry. Similarly, if the entryOwner has been set on a particular entry, that entry
has an explicit owner. The two are not intertwined, an entry with an explicit owner
may or may not have an explicit aclEntry, and an entry with an explicit aclEntry
might have an explicit owner. If either of these values is not explicitly present on
an entry, the missing value is inherited from an ancestor node in the directory tree.

Each explicit aclEntry or entryOwner applies to the entry on which it is set.
Additionally, the value might apply to all descendants that do not have an
explicitly set value. These values are considered propagated; their values propagate
through the directory tree. Propagation of a particular value continues until
another propagating value is reached.

AclEntry and entryOwner can be set to apply to just a particular entry with the
propagation value set to ″false″, or an entry and its subtree with the propagation
value set to ″true″. Although both aclEntry and entryOwner can propagate, their
propagation is not linked in anyway.

The aclEntry and entryOwner attributes allow multi-values, however, the
propagation attributes (aclPropagate and ownerPropagate) can only have a single
value for all aclEntry or entryOwner attribute values within the same entry.

The system attributes aclSource and ownerSource contain the DN of the effective
node from which the aclEntry or entryOwner are evaluated, respectively. If no
such node exists, the value default is assigned.

An object’s effective access control definitions can be derived by the following
logic:
v If there is a set of explicit access control attributes at the object, then that is the

object’s access control definition.
v If there is no explicitly defined access control attributes, then traverse the

directory tree upwards until an ancestor node is reached with a set of
propagating access control attributes.

v If no such ancestor node is found, the default access described below is granted
to the subject.

Access Evaluation
Access for a particular operation is granted or denied based on the subject’s bind
DN for that operation on the target object. Processing stops as soon as access can
be determined.

The checks for access are done by first finding the effective entryOwnership and
ACI definition, checking for entry ownership, and then by evaluating the object’s
ACI values.

By default, the directory administrator and the master server (for replication) get
full access rights to all objects in the directory except write access to system
attributes. Other entryOwners get full access rights to the objects under their

Access Control Lists 5



ownership except write access to system attributes. All users have read access
rights to system and restricted attributes. These predefined rights cannot be
altered. If the requesting subject has entryOwnership, access is determined by the
above default settings and access processing stops.

If the requesting subject is not an entryOwner, then the ACI values for the object
entries are checked. The access rights as defined in the ACIs for the target object
are calculated by the specificity and combinatory rules.

Specificity Rule
The most specific aclEntry definitions are the ones used in the evaluation
of permissions granted/denied to a user. The levels of specificity are:
v Access-id is more specific than group or role. Groups and roles are on

the same level.
v Within the same dnType level, individual attribute level permissions are

more specific than attribute class level permissions.
v Within the same attribute or attribute class level, deny is more specific

than grant.

Combinatory Rule
Permissions granted to subjects of equal specificity are combined. If the
access cannot be determined within the same specificity level, the access
definitions of lesser specific level are used. If the access is not determined
after all defined ACIs are applied, the access is denied.

Note: After a matching access-id level aclEntry is found in access
evaluation, the group level aclEntries are not included in access
calculation. The exception is that if the matching access-id level
aclEntries are all defined under cn=this, then all matching group
level aclEntries are also combined in the evaluation.

In other words, within the object entry, if a defined ACI entry contains an access-id
subject DN that matches the bind DN, then the permissions are first evaluated
based on that aclEntry. Under the same subject DN, if matching attribute level
permissions are defined, they supersede any permissions defined under the
attribute classes. Under the same attribute or attribute class level definition, if
conflicting permissions are present, denied permissions override granted
permissions.

Note: A defined null value permission prevents the inclusion of less specific
permission definitions.

If access still can not be determined and all found matching aclEntries are defined
under ″cn=this″, then group membership is evaluated. If a user belongs to more
than one groups, the user receives the combined permissions from these groups.
Additionally, the user automatically belongs to the cn=Anybody group and
possibly the cn=Authenticated group if the user did an authenticated bind. If
permissions are defined for those groups, the user receives the specified
permissions.

Note: Group and Role membership is determined at bind time and last until either
another bind takes place, or until an unbind request is received. Nested
groups and roles, that is a group or role defined as a member of another
group or role, are not resolved in membership determination nor in access
evaluation.

6 IBM SecureWay Directory Version 3.2.1: Access Control Lists



For example, assume attribute1 is in the sensitive attribute class, and user
cn=Person A, o=IBM belongs to both group1 and group2 with the following
aclEntries defined:
1. aclEntry: access-id: cn=Person A, o=IBM: at.attributel:grant:rsc:sensitive:deny:rsc
2. aclEntry: group: cn=group1,o=IBM:critical:deny:rwsc
3. aclEntry: group: cn=group2,o=IBM:critical:grant:r:normal:grant:rsc

This user gets:
v Access of ’rsc’ to attribute1, (from 1. Attribute level definition supersedes

attribute class level definition).
v No access to other sensitive class attributes in the target object, (from 1).
v No other rights are granted (2 and 3 are NOT included in access evaluation).

For another example, with the following aclEntries:
1. aclEntry: access-id: cn=this: sensitive
2. aclEntry: group: cn=group1,o=IBM:sensitive:grant:rsc:normal:grant:rsc

The user has:
v no access to sensitive class attributes, (from 1. Null value defined under

access-id prevents the inclusion of permissions to sensitive class attributes from
group1).

v and access of ’rsc’ to normal class attributes (from 2).

Defining the ACIs and Entry Owners
The following two examples show an administrative subdomain being established.
The first example shows a single user being assigned as the entryOwner for the
entire domain. The second example shows a group assigned as the entryOwner.

entryOwner: access-id:cn=Person A,o=IBM
ownerPropagate: true

entryOwner: group:cn=System Owners, o=IBM
ownerPropagate: true

The next example shows how a group ″cn=Dept XYZ, o=IBM″ is being given
permissions to read, search and compare attribute1. The permission applies to the
entire subtree below the node containing this ACI.

aclEntry: group:cn=Dept XYZ,o=IBM:at.attribute1:grant:rsc
aclPropagate: true

The next example shows how a role ″cn=System Admins,o=IBM″ is being given
permissions to add objects below this node, and read, search and compare
attribute2 and the critical attribute class. The permission applies only to the node
containing this ACI.
aclEntry: role:cn=System Admins,o=IBM:object:grant:a:at.attribute2:grant:rsc:critical:grant:rsc
aclPropagate: false

Modifying the ACI and Entry Owner Values
Modify-replace

Modify-replace works the same way as all other attributes. If the attribute
value does not exist, create the value. If the attribute value exists, replace
the value.

Given the following ACIs for an entry:

Access Control Lists 7



aclEntry: group:cn=Dept ABC,o=IBM:normal:grant:rsc
aclPropagate: true

perform the following change:
dn: cn=some entry
changetype: modify
replace: aclEntry
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc

The resulting ACI is:
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc
aclPropagate: true

ACI values for Dept ABC are lost through the replace.

Modify-add
During an ldapmodify-add, if the ACI or entryOwner does not exist, the
ACI or entryOwner with the specific values is created. If the ACI or
entryOwner exists, then add the specified values to the given ACI or
entryOwner. For example, given the ACI:
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc

with a modification:
dn: cn=some entry
changetype: modify
add: aclEntry
aclEntry: group:cn=Dept ABC,o=IBM:at.attribute1:grant:rsc

would yield an multi-valued aclEntry of:
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc
aclEntry: group:cn=Dept ABC,o=IBM:at.attribute1:grant:rsc

The permissions under the same attribute or attribute class are considered
as the basic building blocks and the actions are considered as the
qualifiers. If the same permission value is being added more than once,
only one value is stored. If the same permission value is being added more
than once with different action values, the last action value is used. If the
resulting permission field is empty (″″), this permission value is set to null
and the action value is set to grant.

For example, given the following ACI:
aclEntry: group:cn=Dept XYZ,O=IBM:normal:grant:rsc

with a modification:
dn: cn=some entry
changetype: modify
add: aclEntry
aclEntry: group:cn=Dept XYZ,o=IBM:normal:deny:r:critical:deny::sensitive:grant:r

yields an aclEntry of:
aclEntry: group:cn=Dept XYZ,O=IBM:normal:grant:sc:normal:deny:r:critical:grant::sensitive:gra

Modify-delete
To delete a particular ACI value, use the regular ldapmodify-delete syntax.

Given an ACI of:
aclEntry: group:cn=Dept XYZ,o=IBM:object:grant:ad
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rwsc

8 IBM SecureWay Directory Version 3.2.1: Access Control Lists



dn: cn = some entry
changetype: modify
delete: aclEntry
aclEntry: group:cn=Dept XYZ,o=IBM:object:grant:ad

yields a remaining ACI on the server of
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rwsc

Deleting an ACI or entryOwner value that does not exist results in an
unchanged ACI or entryOwner and a return code specifying that the
attribute value does not exist.

Deleting the ACI/Entry Owner Values
With the ldapmodify-delete operation, the entryOwner can be deleted by
specifying
dn: cn = some entry
changetype: modify
delete: entryOwner

In this case, the entry would then have no explicit entryOwner. The
ownerPropagate is also removed automatically. This entry would inherit its
entryOwner from the ancestor node in the directory tree following the propagation
rule.

The same can be done to delete aclEntry completely:
dn: cn = some entry
changetype: modify
delete: aclEntry

Deleting the last ACI or entryOwner value from an entry is not the same as
deleting the ACI or entryOwner. It is possible for an entry to contain an ACI or
entryOwner with no values. In this case, nothing is returned to the client when
querying the ACI or entryOwner and the setting propagates to the descendent
nodes until it is overridden. To prevent dangling entries that nobody can access,
the directory administrator always has full access to an entry even if the entry has
a null ACI or entryOwner value.

Retrieving the ACI/Entry Owner Values
The effective ACI or entryOwner values can be retrieved by simply specifying the
desired ACL or entryOwner attributes in a search, for example,
ldapsearch -b "cn=object A, o=ibm" -s base "objectclass=*"

aclentry aclpropagate aclsource entryowner ownerpropagate ownersource

returns all ACL or entryOwner information that is used in access evaluation on
object A. Note that the returned values might not look exactly the same as they are
first defined. The values are the equivalent of the original form.

Working with Access Control Lists
Follow these steps to use the Directory Management Tool utility to work with
ACLs.
1. If you have not done so already, expand the Directory tree category in the

navigation area, then click Browse tree.
2. Select a directory entry. For example, cn=John Doe,ou=Advertising,o=ibm,c=US.

Access Control Lists 9



3. Click the ACL icon on the toolbar.

An entry can either have an explicitly defined ACL or inherit an ACL from a
parent object.

The ACL panel contains two tabs:
v ACLs
v Owners

After modifying the settings on the ACLs and Owners tabs, click OK to add the
ACL to the selected entry.

The ACLs tab contains four sections:
v The DN entry section displays:

– ACL source - The ACL source is the source of current ACL for the selected
entry. If the entry does not have an ACL, it inherits an ACL from parent
objects based on the ACL settings of the parent objects.

– Select either:
- Inherit from ACL source - to inherit ACLs from the ACL source. In the

example used above, cn=John Doe,ou=Advertising,o=IBM,c=US inherits
from ou=Advertising,o=IBM,c=US

Note: If this option is selected, and you modify the Rights or Security
class, you are modifying the ACL of the ACL source (for example,
ou=Advertising,o=IBM,c=US, not the ACL of the selected entry (for
example cn=John Doe).

- Do NOT inherit from ACL source - to explicitly define an ACL for the
selected entry.

– Allow descendant entries to inherit from this entry - Select the check box to
allow descendants without an explicitly defined ACL to inherit from this
entry. If the check box is not selected, descendant entries without an explicitly
defined ACL inherits ACLs from a parent of this entry that has this option
enabled.

– Remove ACL and inherit from ACL source - Select this check box to remove
the explicitly defined ACL for this entry and inherit from the ACL source.

v The Subject section displays:
– The Distinguished Name (DN) of the entity requesting access to perform

operations on the selected entry. This can also be a pseudo DN.You can:
- Select a DN from the drop-down list.
- Add a new DN to the list.

1. Replace the entry displayed in the DN field. For example, highlight the
text, click the space bar to erase it, then type the DN you want to add,
for example, cn=Marketing Group. Do not delete the entry from the
drop-down list using Delete.

2. Select the Type of entry for the DN. For example, select access-id if the
DN is a user.

3. Click Add to add the specified DN to the drop-down list.
- Delete a DN from the list.

1. Select the DN from the drop-down list.
2. Click Delete.

- Click List all to display all subjects and their rights and permissions in a
tabular format.

10 IBM SecureWay Directory Version 3.2.1: Access Control Lists



– The Rights section displays the addition and deletion rights of the subject.
- Add child grants or denies the subject the right to add a directory entry

beneath the selected entry.
- Delete entry grants or denies the subject the right to delete the selected

entry. In the previous example , it grants or denies cn=Marketing Group
the ability to delete cn=John Doe.

– The Security class section defines permissions for security classes. Attributes
are grouped into security classes:
- Normal - Normal attribute classes require the least security, for example,

the attribute commonName.
- Sensitive - Sensitive attribute classes require a moderate amount of

security, for example homePhone.
- Critical - Critical attribute classes require the most security, for example,

the attribute userpassword.

Each security class has permissions associated with it.
- Read - the subject can read attributes.
- Write - the subject can modify the attributes.
- Search - the subject can search attributes.
- Compare - the subject can compare attributes.

Additionally, you may specify permissions based on the attribute instead of
the security class to which the attribute belongs.
1. Select an attribute from the Define an attribute drop-down list.
2. Click Define.
3. Defined attributes are listed below the Critical security class. To remove

an attribute, simply select Unspecified for all permissions, then click OK.

The Owners tab contains two sections:
v The DN entry section displays:

– The Owner source is the source of the current Owner for the selected entry.
– Select either:

- Remove this list from the entry and use propagated values - to inherit
Owner

- Descendant directory tree entries inherit from the entry - to define an
Owner for the entry and apply this owner to all descendants that do not
have an explicitly set Owner.

v The Subject section displays:
– The Distinguished name (DN) of the Owner of the entry. Owners have

complete access to all attributes for the entry. If the entry does not have an
Owner, it inherits an Owner from parent objects based on the Owner settings
of the parent objects. You can:
- Select a DN from the drop-down list.
- Add a new DN to the drop-down list:

1. Replace the entry displayed in the DN field. For example, highlight the
text, click the space bar to erase it, then type the DN you want to add,
for example, cn=Marketing Group. Do not delete the entry from the
drop-down list using Delete.

2. Select the Type of entry for the DN. For example, select access-id if the
DN is a user.

3. Click Add to add the specified DN to the drop-down list.

Access Control Lists 11



– Delete a DN from the drop-down list:
1. Select the DN from the drop-down list.
2. Click Delete.

12 IBM SecureWay Directory Version 3.2.1: Access Control Lists


	Preface
	Contents
	Access Control Lists
	The Access Control Attribute Syntax
	AclEntry
	Subject
	Pseudo DN
	Rights

	EntryOwner
	Propagation
	Access Evaluation
	Defining the ACIs and Entry Owners
	Modifying the ACI and Entry Owner Values
	Deleting the ACI/Entry Owner Values
	Retrieving the ACI/Entry Owner Values
	Working with Access Control Lists


