
An enterprise directory
solution with DB2

by S. S. B. Shi
E. Stokes
D. Byrne
C. F. Corn
D. Bachmann
T. Jones

LDAP (Lightweight Directory Access Protocol) is
a technology that can provide directory services
to a range of applications. Directory service, a
critical part of distributed computing, is the
central point where network services, security
services, and applications can form an integrated
distributed computing environment. The
simplicity of LDAP enables users to store and
retrieve data easily from the directory.
Nevertheless, as the use of directory services
becomes more widespread, directories will need
to scale to support millions of entries and
millions of user requests with subsecond
predictable performance. LDAP directories
can be implemented using various storage
mechanisms such as flat files, b-trees, or
databases. This paper discusses an
implementation of LDAP that uses the IBM
DATABASE 2TM relational database as the data
store and query engine to meet the directory
service requirements. Performance analysis is
provided to show that a relational database can
be used to successfully meet the performance
and scale needs of an LDAP directory while
remaining secure and competitive with other
vendor implementations.

Directories are special-purpose databases, usu-
ally containing categorized information to sup-

port frequent data retrieval and data update.1

Directory service, a critical part of distributed
computing, is the central point where network ser-
vices, security services, and applications can form an
integrated distributed computing environment. The
current usage of a directory service can be classified
into the following categories:

● Name service—Use directory as a source to locate
Internet host address or the location of the server.
Examples are Domain Name System (DNS) and
DCE (Distributed Computing Environment) Cell
Directory Service (CDS).

● User registry—Store information of all users in a
system. A central repository of user information
will enable the system administrator to adminis-
ter the distributed system as a single system im-
age, especially if the system is composed of a num-
ber of interconnected machines. Novell Directory
Services** (NDS**) is an example.

● White pages lookup—Some modern e-mail clients
provide users with the capability of looking up peo-
ple’s names and e-mail addresses. The users type
in the name, or part of the name, and the direc-
tory service will extract the e-mail information for
the user. Netscape Communicator**, Lotus
Notes**, Eudora**, and other e-mail clients pro-
vide the address book lookup capability.

With more and more applications and system ser-
vices demanding a central information repository,
the next-generation directory service will be provid-
ing system administrators with a data repository that
could significantly ease the administrative burden.
In addition, the future directory service will also pro-

rCopyright 2000 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

SHI ET AL. 0018-8670/00/$5.00 © 2000 IBM IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000360

vide end users with a rich information data ware-
house that allows them to access department or com-
pany employee data, or resource information such
as the name and location of printers, copy machines,
etc. In the Internet or intranet environment, users
will be able to use the public key certificates stored
in the directory to handle encrypted or digitally
signed documents.

Lightweight Directory Access Protocol (LDAP) is an
emerging technology that can provide directory ser-
vices to applications ranging from e-mail systems to
distributed system management tools. LDAP is a sim-
ple directory data access protocol that supports a rich
set of operations for a wide range of applications.
LDAP is an open Internet standard, defined by the
Internet Engineering Task Force (IETF). A number
of implementations of LDAP are available, ranging
from commercial to publicly available open-source
products.

One key feature of LDAP is it is simple but function-
ally rich. The simplicity of LDAP enables users to store
and retrieve data easily from the directory. Never-
theless, as the use of directory services becomes more
widespread, directories will need to scale to support
millions of entries and millions of user requests with
subsecond predictable performance. The protocol
(LDAP) and the application programming interfaces
(APIs) to access the directory are simple, but the
amount of data stored in the directory can be tre-
mendous. There must be a natural growth path for
scale and performance that does not require an all-
out replacement of the currently installed directory.

LDAP directories can be implemented using various
storage mechanisms such as flat files, b-trees, or da-
tabases. The data store is as important as (if not more
than) the protocol implementation of the directory
server. It must scale, provide transactional integrity,
be robust, and handle a variety of queries securely
from simple to negation, existence, and wild cards—
all without paying a noticeable performance penalty.

This paper discusses an implementation of LDAP that
uses the IBM DATABASE 2* (DB2*) relational data-
base as the data store and query engine to meet the
directory service requirements and demonstrates
performance via a set of benchmarks that catego-
rize the types of queries. In detail, this paper exam-
ines the salient points of the University of Michigan
reference implementation, the trade-offs of using a
relational database, the LDAP hierarchical informa-
tion model through a set of relations (tables), the

mapping of the LDAP query language to SQL (Struc-
tured Query Language) given the defined relations,
the access control model to provide authorization
in the LDAP directory service, an identified set of
items implemented to further enhance performance,
and finally the performance comparison of a rela-
tional implementation to a file-system-based imple-
mentation given a set of well-defined benchmarks.
This paper is an enhanced version of an earlier con-
ference paper.2

Summary of related work

LDAP was originally implemented by the University
of Michigan (U of M). The U of M reference im-
plementation3 is freely available through their FTP
site. The implementation of the U of M LDAP is based
on several freely available b-tree packages, such as
GNU dbm and Berkeley db packages. This reference
implementation supports LDAP version 2 protocol
and is used as a basis for the LDAP/DB2 directory. The
LDAP protocol and APIs are defined in IETF RFCs (Re-
quests for Comments) 1777–1779 and 1823.4–7

LDAP was coauthored by Timothy A. Howes and
Mark C. Smith,8 and an implementation was done
at the University of Michigan. The U of M LDAP is
a sound reference implementation that helps peo-
ple to understand the internals of LDAP. However,
it needs a lot of enhancements to be a reliable and
scalable enterprise directory service. First, the num-
ber of entries is limited. It does not scale to more
than a few hundred thousand to possibly a million
entries. By using simple file-system-based hash and
b-tree packages, it is not able to handle large amounts
of data. In contrast, relational database technolo-
gies such as DB29 are designed to handle terabytes
of data. Second, populating directories with large
numbers of entries is time-consuming work. A great
amount of time is required to populate the direc-
tories with millions of entries. Third, because of lim-
ited search and indexing facilities provided by the
file-system-based back end, only candidate entries
can be retrieved. Then each entry is filtered through
the filter program before it is returned to the client.
However, in some cases, when the set of candidates
is large, the search degenerates into a sequential
search. For example, we discovered that negation
queries and existence queries are fairly expensive
with both the reference implementation and LDAP
server from Netscape Communications Corporation.
By using the powerful search engines provided by
DB2, we were able to address some of the weak
areas.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 361

Mapping the LDAP model1,10,11 to relational tables,
however, is not a trivial task. First, LDAP allows both
single-valued and multivalued attributes. But a re-
lational database does not deal with multivalued at-
tributes well. Second, the size of each DB2 table9 is
limited to 4K. Third, the LDAP model is hierarchi-
cal. It is known that hierarchies are very easy to rep-
resent in hierarchical databases (such as the Infor-
mation Management System, or IMS*), where the
structure of the data and the structure of the data-
base are the same. Unfortunately, it is generally
thought that relational databases do not provide ad-
equate support for such data. It is not possible to
directly map hierarchical data into tables because
tables are based on sets rather than on graphs. Dif-
ferent vendors provide different mechanisms for the
tree structure. For example, DB29 provides the WITH
clauses in the SELECT statement to provide sub-
tree traversal with arbitrary depth. Oracle 12 has
CONNECT BY PRIOR and START WITH clauses in the
SELECT statement to provide partial support for
reachability and path enumeration. But all mecha-
nisms will end up with recursive queries to handle
hierarchical structures. Through experimentation, we
discovered that recursive queries do not scale up well
for large numbers of records in the table. We did a
small experiment with 1000 LDAP entries using DB2
recursive queries; a simple select takes more than
five minutes to complete.

U.S. Patent 546747113 presents a solution that does
not require recursive query. The invention provides
a genealogy table with which the directory hierar-
chy is represented in a table form. Each column of
the genealogy table represents a level of the direc-
tory tree. This solution might be fine for directories
with limited hierarchy depth. However, it is very dif-
ficult to realize the idea in practice when the direc-
tory is infinitely deep and the number of columns of
a table is limited. We have attempted a similar im-
plementation but learned that the complexity is very
great and the performance implication is unclear.

To address this problem, we invented an efficient
method14,15 to represent LDAP hierarchies with re-
lational tables without the overhead of recursive que-
ries.16–20 Our performance results showed that our
implementation is competitive with other directory
products in the industry.

Trade-offs of using DB2

This section is a summary of the advantages of using
DB2 as the LDAP data store.

One advantage is being a highly scalable data store.
Unlike b-tree libraries in which the application pro-
cess is tightly coupled with the physical storage, DB2
offers a number of solutions to store and retrieve
large amounts of data. First of all, DB2 provides very
flexible data placement options based on table
spaces. A DB2 database can have multiple table
spaces, and each table space can be created, mod-
ified, and recovered independently of another. Ta-
bles can be created in a preallocated storage (within
a table space), or the storage can be allocated only
when it is required or when the data are populated.
The table data can be entirely contained in a single
table space or multiple table spaces. DB2 also incor-
porates the concept of containers. A container is the
allocation of physical spaces. In AIX* (Advanced In-
teractive Executive), a container is a logical volume.
With the layer of table space, DB2 is able to handle
large amounts of data independent of the limit of
physical data storage (hard drive) and logical data
storage (file system). For example, the maximum ca-
pacity of an AIX 4.1.x file system is 2 gigabytes. With
table space, DB2 allows a database to grow up to 60
terabytes of data on a uniprocessor machine. Sec-
ond, DB2 provides a truly distributed data store so-
lution. Various configurations can be arranged with
DB2. The configurations can be classified into the fol-
lowing categories:

● Single client/multiple server configuration. In a
client/server configuration, every database resides
on one network node, a database server, and is
managed by a database management system
(DBMS) running on that node. The applications can
run on network nodes, such as the client nodes,
separated from servers. The DB2 client provides
the communication mechanism to retrieve data
from the DB2 server. In the LDAP environment, the
LDAP server (a database client) can connect to a
number of networked databases that contain the
directory information. However, from the user’s
perspective, the LDAP server actually stores all the
information without knowing in which database the
data are actually located. With this configuration,
the LDAP server is freed from managing the phys-
ical data storage and is able to retrieve informa-
tion from multiple database servers that work to-
gether to form a huge data store.

● Multiple clients/multiple servers configuration.
The database clients can connect to any database
server that contains the directory information. The
collection of database servers actually form a sin-
gle directory system image, and more than one

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000362

LDAP server can access the directory information.
Since all the LDAP servers see the same directory
image, a network dispatcher can be deployed to
route requests among the LDAP servers. Figure 1
illustrates the configuration.

● Multiple clients/parallel super server configuration.
In certain environments where users need to store
large amounts of information in the directory,
DB2 PE (Parallel Edition) provides a solution to en-
able users to store huge amounts of information
in a single database. Instead of partitioning the da-
tabase from the application level, DB2 PE automat-
ically partitions the database into different ma-
chines. In addition, DB2 PE divides database queries
into smaller, independent tasks that can execute
concurrently; it is possible to complete the query
fast enough to meet an end user’s response time
needs. LDAP can benefit from the power of par-
allel processing of DB2 PE with no changes to the
server implementation. Another advantage of the
parallel database solution is the ability to expand

the system incrementally. This means users can
have a startup system with smaller, lower-cost con-
figurations to match initial size requirements.
Then, as the database grows, users can easily add
appropriately sized resources to accommodate
growth. DB2 PE enables users to store terabytes of
data into a database. Figure 1 illustrates the con-
figuration.

A second advantage is being an atomic transaction.
With the atomic transaction supported by DB2, LDAP
servers can survive hardware or software failures and
still maintain the integrity of the directory informa-
tion. One of the problems with b-tree packages is
that there are occasions where the database will be-
come corrupted because hardware or software fail-
ures occur while updates are in progress. DB2 pro-
vides atomic transaction to ensure that updates of
committed transactions will be recorded in the da-
tabase. Uncommitted transactions, however, will be
rolled back when system failure occurs. Database in-
tegrity will be maintained under all circumstances.

Figure 1 Multiple clients/multiple servers configuration

DB/2 SERVERS DB/2 CLIENT AND LDAP SERVER

NETWORK
DISPATCHER

LDAP CLIENTS

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 363

As a third advantage, it is an on-line backup and re-
store facility. DB2 allows users to back up databases
while it is either on line or off line. If the backup is
performed off line, only the backup task can be con-
nected to the database. If the backup is performed
on line, other applications will be able to connect to
the database while the backup task is running. The
database can be local or remote. Users can back up
a database or table space to disk, table, or a location
managed by a utility such as the IBM ADSM (ADSTAR
Distributed Storage Manager). A graphical tool is
available (db2jobs) for users to monitor backup and
recovery. DB2 provides a very fast and efficient re-
store facility. A 100K entry LDAP directory can be
restored in less than 10 minutes.

As a fourth advantage, it provides alternative rep-
lication support. In addition to the replication sup-
ported by LDAP, the user can use the DB2 data rep-
licator to provide faster and more efficient replication
for frequent updates.

As a fifth advantage, it is a fast database loading fa-
cility. LDAP/DB2 provides a fast facility (bulkload) for
initial load or for updating tables with large amounts
of data. This facility is based on the DB2 LOAD util-
ity. DB2 can move data into tables, create an index,
and generate database statistics. The bulkload tool
can populate the directory with 100K entries twice
as fast as our nearest competitor.

The sixth advantage is having a powerful query pro-
cessing engine that can deal with complicated que-
ries. As is well-known, SQL is a very powerful query
language. One of the problems that we observed in
the U of M reference implementation is that it is not
able to handle queries with the negation operator

(!). The query usually degenerates into a linear
search. LDAP/DB2, in contrast, is able to translate all
LDAP queries into SQL and obtains timely and ac-
curate results.

To summarize, DB2 provides hard-won advantages
such as scalability, transaction integrity, backup and
recovery, stability, and a powerful query processing
engine. But all of the features mentioned above come
with costs. Before our implementation, we had con-
cerns about how the extra path length added by DB2
would affect the response time for LDAP queries. Af-
ter extensive performance measurements, we discov-
ered that LDAP/DB2 performs well compared to other
LDAP products in the industry.

LDAP and relational model

In this section, we describe the information model
and the relational aspects of the model for LDAP.

LDAP information model. The LDAP directory da-
tabase consists of entries. Each entry is composed
of one or more attributes. A type is associated with
each attribute, and an attribute can have more than
one value in an entry. The attribute type determines
the syntax of the attribute. The syntax of an attribute
determines how the data will be compared against
the values in the query. In LDAP v2,4–7,21 the possible
syntaxes and their meanings are listed in Figure 2.

The LDAP schema is a collection of attribute defi-
nitions, object class definitions, and other informa-
tion that a server uses to determine how and what
to return for a given request. An attribute is infor-
mation of a particular type and may have one or more
associated values. A set of attributes is called an ob-

Figure 2 Possible syntaxes and meanings

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000364

ject class. A directory entry is an instantiation of one
or more object classes, that is, a set of attributes. At-
tributes in a given object class are specified as man-
datory or optional. Mandatory attributes are re-
quired to have values in the directory entry. Optional
attributes, in contrast, do not have to exist for the
directory entry of an object class. Figure 3 illustrates
a possible definition of an object class called Per-
son.

In object class Person, cn (common name), sn (sur-
name), and objectclass are mandatory attributes;
mail, phone, address, and fax are optional attributes.

LDAP entries are arranged in a tree structure that
typically follows a geographical and organizational
structure but is not limited to such structures. Each
entry is uniquely identified by a distinguished name
(DN). The formal definition of a distinguished name
is given in RFC 1779.6

The functions provided by LDAP can be categorized
as:

● Query: search and compare. These operations are
used to retrieve information from the database.
For the search function, the criteria of the search
is specified in the search filter. The search filter is
a Boolean expression that consists of attribute
names, attribute values, and the Boolean opera-
tors AND represented by &, OR represented by u,
and NOT represented by !. Users can use the filter
to perform fairly complicated search operations.
The filter syntax is defined in RFC 1960.22

In addition to the search filter, users can also spec-
ify where the search starts in the directory tree
structure. The starting point is called the base DN.
The scope of the search can be a single entry (base-
level search), the children of an entry (one-level
search), or an entire subtree (subtree search). Al-
though LDAP does not provide separate read and
list operations, the search operation is used to pro-
vide these operations by setting the DN, scope, and
filter appropriately.

● Update: add, delete, and modify. Users can use
these functions to update the contents of the di-
rectory.

● Authentication: bind and unbind. LDAP supports
a simple ID (identifier) and password authentica-
tion scheme. In the bind operation, the user can
specify the ID and password, and the server will

use this information to authenticate the client. If
successful, the authentication is in effect for the
life of that LDAP session, that is, until the corre-
sponding unbind operation is issued.

● Rename: ModRDN. MoDRDN renames an existing
directory entry.

Model LDAP through relations. At first glance, it
seems very obvious that we should be mapping an
LDAP object class into a DB2 relation. However, this
mapping posed a serious problem since the LDAP
model allows both single-valued and multivalued at-
tributes. In the database design guideline, the First
Normal Form requires that attributes within each
tuple are ordered and complete and that the domains
permit only simple values. Simple values cannot be
decomposed into multiple values and cannot them-
selves be sets or relations. Some database systems
(such as DB2) are attempting to support multivalued
attributes. However, the implementation is not avail-
able yet. Unnormalized relations will make update
operations (e.g., add, modify, and delete) fairly dif-
ficult to manage. We also discovered that we might
lose some data semantics during the update process
when multivalued attributes exist.

Instead, we mapped each LDAP attribute that can be
searched by the user to an attribute relation. The
attribute definitions were obtained from the attribute
configuration files. This relation consists of two col-
umns: unique entry identifier (EID) and normalized
attribute value. In our system, each LDAP entry is as-
signed an EID. On the basis of the attribute syntax,
the attributes are converted (or normalized) so that
our system can apply SQL queries to the attribute val-
ues. For example, if the attribute syntax is case in-
sensitive (CIS), the attribute value will be converted
to all uppercase and stored in the attribute table. The
attribute table is used mainly for the search oper-
ation to find the entries that match the filter crite-

Figure 3 Possible definition of object class Person

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 365

ria. The actual entry data are stored in the ldap_en-
try table. In other words, the SQL queries generated
by our system use the attribute table to locate the
entry EIDs that match the filter expression and use
the EIDs to retrieve the entry data from the ldap_en-
try table. Another advantage of this per-attribute ta-
ble is that the size of the entry is no longer bounded
by the DB2 4K limit. The attribute table and
ldap_entry table are similar to the id2entry and at-
tribute indices in the U of M reference implemen-
tation. The main difference is that our implemen-
tation is able to retrieve the exact target entries
instead of just “candidates.” As a result, no postpro-
cessing of filtering entries is needed in LDAP/DB2.

A second challenge is to map LDAP to relational ta-
bles because the LDAP model is hierarchical. We dis-
covered that with simple relations we were able to
support LDAP search (base, one level, and subtree)
with decent performance. The next subsection dis-
cusses the details.

In addition, we also have an LDAP entry table that
holds the information about an LDAP entry. This table
is used for obtaining the EID of the entry and support-
ing LDAP_SCOPE_ONELEVEL and LDAP_SCOPE_BASE
search scope. Entries are stored using a simple text
format of the form “attribute: value” as in the U of
M reference implementation. Non-ASCII values or
values that are too long to fit on a reasonably sized
line are represented using a base 64 encoding. Given
an ID, the corresponding entry can be returned with
a single SELECT statement.

Mapping the LDAP hierarchy through relations. As
illustrated in Figure 4, the LDAP naming hierarchy
includes a number of entries where each entry is rep-
resented by a unique entry identifier (EID). Thus, for
example, the root node has an EID 5 1. Root has
two children, entry GB (“Great Britain”) with EID 5
2, and entry US (“United States”) with EID 5 3. Child
node US itself has two children, o 5 IBM (with EID
5 4) and o 5 Netscape (with EID 5 5). The remain-
der of the naming directory includes several addi-
tional entries at further sublevels.

A particular entry thus may be a “parent” of one or
more child entries. An entry is considered a “par-
ent” if it is located in the next higher level in the hi-
erarchy. Likewise, a particular entry may be an an-
cestor of one or more descendant entries across many
different levels of the hierarchy. A parent-child pair
will also present an ancestor-descendant pair.

We created two relations to model the hierarchy in
LDAP: parent-child (parent table) and ancestor-de-
scendant (ancestor table). The parent table is cre-
ated as follows. For each entry that is a parent of a
child entry in the naming hierarchy, the unique iden-
tifier of the parent entry (PEID) is associated with
the unique identifier of each entry that is a child of
that parent entry. In the LDAP hierarchy illustrated
in Figure 4, PEID 1 is associated with EID 2 and EID
3, PEID 3 is associated with EID 4 and EID 5, and so
on. Each row of the parent table includes a PEID-EID
pair.

Figure 4 LDAP naming hierarchy

Root (1)

c=GB (2) c=US (3)

o=Netscape (5)o=IBM (4)

ou=IBM Rochester (8)ou=IBM Austin (7)ou=IBM San Jose (6)

cn=John Dogh (11) cn=Peter Matt (13)cn=Charlie Fox (9) cn=Alex Lee (10) cn=Mary Bur (12)

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000366

The descendant table is created as follows. For each
entry that is an ancestor of one or more descendant
entries in the hierarchy, the unique identifier of the
ancestor entry (AEID) is associated with the unique
identifier of each entry that is the descendant (DEID)
of that ancestor entry. The AEID field is the unique
identifier of an ancestor LDAP entry in the LDAP nam-
ing hierarchy. The DEID field is the unique identi-
fier of the descendant LDAP entry. Thus, in the nam-
ing hierarchy illustrated in Figure 4, AEID 1 has DEIDs
2–13 because each of the entries 2–13 is also a de-
scendant of the root node. AEID 3 has DEIDs 4–13,
AEID 4 has DEIDs 6–13, and so on. Each row in the
descendant table thus includes an AEID-DEID pair.

For the LDAP search operation, the criteria of the
search are specified in a search filter. The search fil-
ter is typically a Boolean expression that consists of
attribute name, attribute value, and the Boolean op-
erators AND, OR, and NOT. Users can use the filter
to perform complex search operations. The filter syn-
tax is defined in RFC 1960.22 In addition to the search
filter, users can also specify where in the directory
tree structure the search is to start. The starting point
is called the base DN. The search can be applied to
a single entry (a base-level search), the children of
an entry (a one-level search), or an entire subtree
(a subtree search). Thus, the “scope” supported by
an LDAP search consists of base, one level, and sub-
tree. The parent and ancestor tables are used to fa-
cilitate one-level and subtree searches without re-
cursive queries. In both cases, the search begins by
going into the database and using the LDAP filter cri-
teria to retrieve a list of entries matching the filter
criteria. If the search is a one-level search, the par-

ent table is then used to filter out EIDs that are out-
side the search scope (based on the starting point
or base DN). Likewise, if the search is a subtree
search, the descendant table is then used to filter out
EIDs that are outside the search scope (again, based
on the base DN). However, all the steps mentioned
above are performed in a single SQL query. Figures
5 and 6 are some examples of the SQL query skel-
eton that we used during the one-level and subtree
search. In these examples, ,data fields. represents
the SQL column name of the relations defined in the
LDAP/DB2 schema that is described in more detail in
the next subsection. ,table list. and ,sql select
statements. are the two null terminated strings re-
turned by the filter translator. The details of how the
inner ,sql select statements. were generated are
described in the next section. ,root dn id. is the
unique identifier of the root DN.

In the one-level search query, the parent table in-
formation is contained in the ldap_entry table. Since
the ldap_entry table also contains the entry informa-
tion, we use SQL as operator to provide an alias pchild
to represent the parent and child relation. Then, in the
where clause, “ldap_entry.EID5pchild.EID” is used
to filter out entries that are not in the one-level search
scope.

In the subtree search query, the ancestor informa-
tion is stored in the ldap_desc table. The inner where
statement “ldap_entry.EID5ldap_desc.DEID” is
used to filter out entries that are not in the subtree
search scope.

Figure 5 One-level SQL query skeleton

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 367

Database schema. We now give a detailed explana-
tion of the tables that we defined in LDAP/DB2.

Entry table. The entry table holds the information
about an LDAP entry. This table is used to obtain the EID
of the entry and to support LDAP_SCOPE_ONELEVEL
and LDAP_SCOPE_BASE search scope. The parent and
child table is included in the entry table since all the
other attributes are dependent on EID. The columns
in this table are:

● EID—The unique identifier of the LDAP entry. This
field is indexed.

● PEID—The unique identifier of the parent LDAP
entry in the naming hierarchy. For example, the
LDAP entry with the name “ou5Information Di-
vision, ou5People, o5University of Michigan,
c5US” is the parent of “cn5Barbara Jensen,
ou5Information Division, ou5People, o5Uni-
versity of Michigan, c5US.”

● DN—The distinguished name of the entry.
● DN_TRUNC—Truncate DN to 250 characters so that

we can build indices on this field.
● EntryData—Entries are stored using a simple text

format of the form “attribute: value” as in the U
of M reference implementation. Non-ASCII values
or values that are too long to fit on a reasonably
sized line are represented using a base 64 encod-
ing. Given an ID, the corresponding entry can be
returned with a single SELECT statement.

● Creator—The DN of the entry creator.
● Modifier—The DN of the entry modifier.
● modify_timestamp—Records the time when the

entry was last modified.

● create_timestamp—Records the time when the en-
try was created.

Attribute table. There is one attribute table per search-
able attribute. Each LDAP entry is assigned a unique
identifier (EID) by the backing store. The columns
for this table are:

● EID—The unique identifier of the LDAP entry.
● Attribute value—Normalized attribute values.
● Truncated attribute value—If the length of the col-

umn is longer than 250 bytes, a truncated column
is created for indexing. In DB2, the maximum length
for an indexed column is 255 bytes. The SQL type
of the attribute depends on the LDAP data type.
Indices can be created for attributes whose size is
less than 255 bytes.

Descendant table. The purpose of the descendant ta-
ble is to support the subtree search feature of LDAP.
For each LDAP entry with a unique ID (AEID), this
table contains the unique identifiers (DEID) of the
descendant entries. The columns in this table are:

● AEID—The unique identifier of the ancestor LDAP
entry. This entry is indexed.

● DEID—The unique identifier of the descendant
LDAP entry. This entry is indexed.

For every entry in the directory, a row exists in this
table for each of its ancestors including itself. The
size of the table depends on the depth of each entry.
In the worst case, if all the entries were at the same
depth, the number of rows in the table is in O(nm),

Figure 6 Subtree SQL query skeleton

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000368

where n is the number of nodes in the directory and
m is the depth of the tree.

LDAP filter to SQL translation

This section discusses how LDAP/DB2 translates LDAP
filters22 into various types of SQL queries. We im-
plemented a filter translator to generate the equiv-
alent SQL expression corresponding to an LDAP fil-
ter that can be used in the WHERE clause of an
SQL SELECT statement. For all queries, the general
approach is to obtain the entry EIDs that match the
search criteria based on the filter from the attribute
table. Then the parent or ancestor tables are used
to check whether the EIDs are located in the subtree
under the base DN. After obtaining the entry EIDs
that satisfy the filter and search scope criteria, the
entry data are retrieved from the LDAP entry table.
However, all the operations mentioned above are
performed in a single SQL query. We discovered that
combining subqueries into a single query is much
more efficient than performing subqueries indepen-
dently. The combined SQL query not only saves con-
text switching cost, but also provides the DB2 query
optimizer with more information to come up with
an optimum access plan.

LDAP filters consist of six basic search filters with the
format ,attribute. ,operator. ,value.. Com-
plex search filters can be generated by combining ba-
sic filters with the Boolean operators AND, OR, and
NOT.

The skeleton of SQL SELECT statements used by
LDAP/DB2 search routines are illustrated in Figure
7.

On the basis of the filter received, our SQL transla-
tor will generate ,table list. (a list of attribute ta-
bles) and ,sql select statements.. ,root dn id. is
the unique identifier of the root DN. The translation
rules for basic filters and Boolean filters are pre-
sented in the following subsections. In the transla-
tion rules, tablename is the SQL table for the spec-
ified attribute, and columnname is the column name
containing the attribute values.

Equality. The equality search operator locates en-
tries with attributes exactly equal to the given value.
The translation rule is shown in Figure 8.

For example, the purpose of the filter (sn 5 Jensen)
is to find surnames exactly equal to Jensen. The cor-

responding SQL subquery generated for this filter is
(SELECT EID FROM sn WHERE sn 5 'jensen ').

Ranges. For attributes supporting ordering, the LDAP
filter provides inequality operators such as “greater
than or equal” and “less than or equal.” The trans-
lation rules are given in Figure 9.

For example, the LDAP filter (sn .5 Jensen) locates
entries with surnames lexicographically greater or
equal to Jensen. The corresponding SQL subquery
generated for this filter is (SELECT EID FROM sn
WHERE sn 5 'jensen ').

Substring. LDAP supports arbitrary substring match-
ing for text attributes. The user can put the wild-card
character (*) at the beginning of a string, the middle
of the string, the end of the string, or any combina-
tion of these in the LDAP filter. The format of the
substring filter is:

(,attr. 5 [,leading.]* [any]*[,trailing.])

The SQL operator LIKE is used for substring match-
ing. The SQL LIKE operator has the following syntax:

column LIKE PATTERN

PATTERN combines string constants with wild-card
characters. SQL recognizes two wild-card characters:
(1) the percent symbol (%), which means match zero
or more characters, and (2) the underscore symbol
(_), which means match any one character.

We use the SQL wild-card character “%” for the LDAP
wild-card character. The LDAP substring filter
“(attribute5value-with-stars)” is translated into
“(SELECT EID FROM tablename WHERE columnname
LIKE 'value with percents ').”

For example, the LDAP filter (sn5*jensen*) locates
surnames containing the string “jensen.” The follow-
ing SQL query is generated:

(SELECT EID FROM sn
WHERE sn LIKE '%jensen% ')

Approximate. The approximate search operator lo-
cates entries with attributes that sound like the given
attribute value. The format of the approximate
search filter is (,attr.;5,value.).

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 369

The DB2 SOUNDEX library function is used for an ap-
proximate search. The SOUNDEX function returns
a four-character string that is either a CHAR or
VARCHAR. The SOUNDEX function is useful for find-

ing strings for which the sound is known but the pre-
cise spelling is not. It makes assumptions about the
way that letters and combinations of letters sound
that can help to search for words with similar sounds.

Figure 7 Skeleton of SQL SELECT statements

Figure 8 Translation rule for equality operator

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000370

The LDAP search filter “(attribute;5value)” is trans-
lated to the SQL query in Figure 10. For example,
the LDAP filter (sn;5jensen) locates entries with sur-
names that sound like “jensen.” The SQL query gen-
erated is illustrated in Figure 11.

The basic LDAP filter can be combined to form more
complicated filters using the Boolean operators—AND
(&), OR (u), and NOT (!)—and a prefix notation.

Others. The attribute values specified in the LDAP
filters cannot contain unescaped left or right paren-

thesis characters. Escape combinations (backslash
followed by any character) are translated as indicated
in Figure 12.

Any single-quote characters found in the attribute
value will be translated to two single-quote charac-
ters since the SQL value is enclosed in single-quote
characters.

Complex queries. On the basis of the basic translation
rules mentioned above, our biggest challenges are to
provide an algorithm that can do the following:

Figure 9 Translation rules for inequality operators

Figure 10 Translation of LDAP search filter

Figure 11 Example of SQL query

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 371

● Combine the basic expressions to form a single SQL
query that will retrieve the target entries that ex-
actly match the search criteria

● Deal with complicated LDAP queries with infinite
logical depth

● Deal with all logical operators efficiently

An intuitive solution is based on joining the attribute
tables and applying the basic expressions to the at-
tributes in the joined table. The LDAP AND and OR
operators, in this case, can be translated into SQL AND
and OR directly. In addition to the combined SQL
expression, we need to include the JOIN condition
based on EID. Figure 13 contains an example.

However, it is difficult to generalize this solution to
handle the NOT operator. The LDAP NOT operator

is basically used to locate entries that do not match
the search criteria. A naive solution is to directly
translate the LDAP NOT operator into an SQL NOT
operator. A sample SQL query is illustrated in Fig-
ure 14.

The SQL query in Figure 14 does not yield the cor-
rect answer. Figure 15 illustrates the problem. There
are five entries in this sample database (EID from 1
through 5) where the values of attribute f1 for entry
1, 2, 3, and 4 are v1. However, f1 of entry 4 is a mul-
tivalued attribute which has value v1 and foo. With
the SQL statement in Figure 14, entry 4 is the an-
swer. However, the correct answer should be entry
5. We discovered the following problems with the
table join approach:

Figure 12 Translation of escape combinations

Figure 13 Example of intuitive solution

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000372

● If an entry does not contain the target attributes
(for example, entry 5), this entry should not be se-
lected by the SQL statement.

● Since an attribute can have multiple values in LDAP,
the table join query will select the entry in which
one of the values meets the criteria (for example,
entry 4). But this entry should not be selected based
on the LDAP filter.

One solution to these problems is to retrieve all the
entries from the database and filter out the candi-
date entry as done by the Netscape server. However,
for an LDAP directory with a large number of entries,
it takes a very long time to obtain the results.

Another problem that we found with the intuitive
solution mentioned above is that the OR operation
does not perform well even for a small database with
thousands of entries. Because it is using JOIN to com-
bine the attribute tables and ldap_entry tables, DB2
will take a cross-product of all the rows in the at-
tribute tables and the ldap_entry table for the OR
operation. Even though most of the rows in the cross-
product are irrelevant, the DB2 SQL engine dutifully
reports all these rows, which are generally much more
than are needed for the subquery evaluation.

Our solution is based on the concept of EID sets. First,
generate an SQL subquery for each LDAP operator
based on the basic translation rules. The SQL sub-
query will generate a set of entry EIDs that match
the LDAP basic operation. If the LDAP logical oper-
ator is OR, use UNION to unite the sets generated
from the subquery. If the LDAP operator is AND, use

INTERCEPT to intercept the sets generated from the
subquery. We experimented with two different ways
to put together the SQL query based on the EID set
concept.

Figure 16 illustrates SQL queries that our system can
generate for the LDAP filter (u(f15 'v1 ') (f25 'v2 ')).

Both SQL statements in Figure 16 generate the cor-
rect results. The first query is basically to perform
the JOIN operation with the LDAP descendant table

Figure 15 Problem with SQL query

ENTRY 1 ENTRY 2 ENTRY 3

ENTRY 4 ENTRY 5

f1=v1
f2=v2
f3=foo

f1=v1
f2=v2
f5=bar

f1=v1
f2=v3
f3=bar

f1=foo
f1=v1
f2=v2
f2=v1
f7=bar

f7=foo

Figure 14 Sample SQL query for NOT operator

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 373

within each subquery. The second query is to per-
form the JOIN operation with the LDAP descendant
table outside the subquery. Through extensive mea-
surement, we chose to use Alternative 2 on the basis
of the performance results. In addition to correct re-
sults, the OR operation performs reasonably well with
both Alternatives 1 and 2 since relevant entries will
be filtered out in the subquery, and target entries
will be reported back to the main query.

With the set-based approach, the NOT operation can
be performed by excluding entries with negation of
the IN operation before the subquery. Figure 17 il-
lustrates the operation.

With the basic translation rules and the EID sets ap-
proach, we implemented a recursive algorithm that
can deal with complicated queries that have infinite
logical operators. Figure 18 is an example of an SQL
statement generated for a complex query with the
AND, OR, and NOT operators.

Directory access control

Once information is stored in the directory, a method
of protection must also be provided. When a user
performs an operation on a directory entry, some
mechanism must grant or deny permission to com-

Figure 16 SQL queries generated by system

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000374

Figure 17 NOT operation

Figure 18 SQL statement generated for complex query

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 375

plete the operation. This security concern is ad-
dressed by the access control model.

In designing the access control model, the primary
goals were to create a simple, secure, and highly ef-
ficient means of protecting information stored within
the LDAP directory. Using access control lists (ACLs),
administrators can be assured that access to direc-
tory information is secure.

Administrators and users can view and update di-
rectory information through the LDAP protocol. The
same is true for access control information (ACI). In
order to use the standard LDAP operations to man-
age security, access control information is stored in
attributes. By allowing updates to access control lists
through the LDAP protocol, administrators are able
to use a single protocol for all directory-related op-
erations. The rest of this section provides the details
of the access control mechanism that protects direc-
tory information.

Access control attributes. Each entry in the direc-
tory has an associated set of access control informa-
tion. This information is stored in seven different
attributes: aclEntry, entryOwner, aclPropagate,
ownerPropagate, ownerSource, aclSource, and in-
heritOnCreate.

The attributes aclEntry and entryOwner describe the
permissions given to particular subjects. The en-
tryOwner attribute is multivalued, consisting of dis-
tinguished names (DNs) that are given full authority
on an entry. These DNs are considered administra-
tors for their corresponding entry. The aclEntry at-
tribute is a multivalued attribute describing the user
and group DNs that have been given privileges to per-
form particular operations on an entry. The infor-
mation is associated with an entry in the LDAP di-
rectory. When an operation is initiated against that
directory entry, the aclEntry and entryOwner are
checked to determine whether the subject has the
required permission to perform the requested op-
eration on that particular directory entry.

Placing an ACL on each individual directory entry
would be a very time-consuming exercise and would
be difficult, if not impossible, to administer. There-
fore, it is necessary to use a sparse ACL model. This
means that not every node in the directory must have
an ACL. Instead, ACLs are strategically placed in the
tree and apply to entire portions of the tree instead
of just a single node.

Although each directory entry has a set of ACL at-
tributes that describe the security characteristics as-
sociated with it, it is not necessary that these at-
tributes must be explicitly placed on the directory
entry. ACL entries and entry owners set on a specific
node can propagate to descendant entries. The ac-
cess control policy can be managed on a per-direc-
tory entry basis, but it is also possible to manage en-
tries in large portions of the tree with only a single
ACL.

ACLs and an entry owner can be set to apply to just
a particular entry, or an entry and its entire subtree.
Although both entry owners and ACL entries can
propagate, their propagation is not linked.

Entries on which an ACL has been placed are con-
sidered to have an “explicit” ACL. Similarly, if an en-
try owner has been set on a particular entry, that en-
try has an “explicit” owner. Since the two are not
intertwined, an entry with an explicit owner may or
may not have an explicit ACL, and an entry with an
explicit ACL may or may not have an explicit owner.
If these values are not explicitly present on an entry,
the values are inherited from an ancestor node in
the tree.

Each explicit ACL and entry owner applies to the en-
try on which it is set. Additionally, the values may
apply to all descendants that do not have an explic-
itly set value. These values are considered “propa-
gated”; their values propagate through the directory
tree. Propagation of a particular value continues un-
til another propagating value is reached. If an ACL
(or entry owner) does not propagate, it is consid-
ered an “override” ACL (or entry owner) which ap-
plies only to the directory entry on which it is set.

The ACL of a directory entry can therefore be con-
ceptually determined by the following algorithm: “Is
there an explicit ACL set at the directory entry?” If
yes, then that is the ACL of the directory entry. If no,
then traverse the tree backwards until an ancestor
node is reached with a propagate ACL. If no node
is found with a propagate ACL, then only the entry
owner and the administrator will be granted access
to the directory entry.

The inheritOnCreate attribute ensures that direc-
tory entries are secure when they are created. At di-
rectory entry creation time, the creator may wish to
specify attribute values for the access-control-related
attributes. Whether or not the owner may specify ACL

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000376

and ownership properties is determined by the par-
ent directory entry’s owner “inherit on create” flag.

Subjects. Subjects are comprised of an (LDAP) dis-
tinguished name and a privilege attribute type and
represent a directory entry. The privilege attribute
type describes whether the DN is an “access-id,” a
“group,” or a “role.” These different types enable
access to be granted on both a per-user granularity
as well as by group or role membership.

When the user authenticates to the directory at bind
time, the subject information is retrieved. The DN
used during authentication becomes the “bind DN.”
Additionally, group and role membership is deter-
mined and added to the list of credentials for the
authenticated user. These credentials are later used
by the access determination functions.

Two additional DNs have been created and are used
as pseudosubjects. These pseudosubjects are not rep-
resented by an entry in the directory but can be used
in an ACL. They are used to refer to large numbers
of DNs that share a common characteristic at bind
time in relation to either the operation being per-
formed or the directory entry on which the opera-
tion is being performed.

The first pseudo-DN is the group “cn5Anybody.”
When specified as part of an ACL, this group refers
to all users. Users cannot be removed from this
group, and this group cannot be removed from the
database. “cn5Anybody” is considered to be the
group of all unauthenticated users or any user that
does not have a specific ACL on a directory entry.

The second pseudo-DN is the access-id “cn5this.”
When specified as part of an ACL, it grants permis-
sions when the bind DN matches the directory entry
DN on which the operation is performed. If an
operation is performed on the directory entry
“cn5personA, ou5IBM, c5US,” permissions asso-
ciated with the access-id “cn5self” would be granted
when the bind DN is “cn5personA, ou5IBM,
c5US.”

Permissions. The permission set is derived from the
six basic LDAP operations that may be performed on
a directory entry. The permissions are: add a direc-
tory entry, delete a directory entry, read an attribute
value, write an attribute value, search for an attribute,
and compare an attribute value. Each permission is
discrete; one permission does not imply another.

Table 1 lists the permissions needed to perform each
of the LDAP operations.

Add and delete permissions apply to an entire di-
rectory entry. Read, write, search, and compare ap-
ply to the attributes within the directory entry.

Attribute access classes. It is likely that many at-
tributes will require the same type of protection. It
is therefore useful to coarsen the access policy gran-
ularity by grouping attributes with similar access sen-
sitivities. This action reduces the number of ACLs
within the directory and greatly simplifies adminis-
tration.

Attributes are grouped together in “attribute access
classes.” Within the schema file, attributes are
mapped to an access control class. Each class is dis-
crete; access to one attribute class does not imply
access to another class.

Instead of specifying that a subject has access to an
attribute, the administrator gives a subject permis-
sion to an access class. This action grants the subject
the specified permission to all attributes within that
access class.

There are three access classes to which users can as-
sign user modifiable attributes: normal, sensitive, and
critical. Two additional attribute classes handle the
special-case attributes. The restricted attribute class
contains all of the ACL attributes, and the system at-
tribute class contains all of the non-user-modifiable
operational attributes.

Performance measurement

DB2 is a very powerful relational database product
with a wide assortment of tools and tuning param-
eters that allow us to tailor our use of DB2 for op-
timum performance.

Table 1 Permissions for LDAP operations

Operation Permission Needed

ldapadd add (on parent entry)
ldapdelete delete (on entry)
ldapmodify write (on attribute of entry)
ldapsearch: return

attribute names
search (on attribute)

ldapsearch: return
attributes and value

search, read (on attribute)

ldapmodrdn write (on attribute)
ldapcompare compare (on attribute)

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 377

Improvements. The following areas were key im-
provements in our LDAP/DB2 implementation with
respect to performance:

● SQL query tuning. We found that although two sim-
ilar queries could produce the same results in an
entry-level directory (i.e., 10K entries), the tuned
query performed much better when the directory
was scaled to larger levels (i.e., 100K3 1M). The
DB2 explain tool was used to tune our queries.

● Database indices. We also found that a single in-
dex on some of our tables did not scale well. We
used a combined index for each LDAP attribute that
was searchable, as well as a secondary single index
for queries involving only the EID. The DB2 re-
orgchk was used to analyze the effectiveness of our
indices and indicate when tables needed to be re-
organized for better performance.

● Database partitioning. We found that splitting the
database across multiple containers located on sep-
arate drives extended our scalability (avoiding op-
erating system file size limitations) in addition
to improving our search performance. The DB2
backup and redirected restore commands were
used to experiment with different combinations of
database partitioning and their effects on perfor-
mance.

● Referral caching. We found that caching referral
information at process startup time improved
search performance because the information was
already available when needed.

● Database and database manager tuning. We found
the DB2 database monitor extremely useful for tun-
ing our DB2 parameters for our specific directory
contents.

● Server caching. We added a filter cache and an en-
try cache so that we could quickly determine
whether a search had been done before, and if so,
quickly return the results from memory instead of
going to the database. We also added an ACL cache.

● Substring search improvements. We added a re-
verse index column in our attribute table to use
when processing substring searches with a wild-
card character “*” at the beginning.

Benchmark description. Because of a lack of a stan-
dard benchmark at the time, we created our own for
internal development use and user-level competitive
assessment. Our LDAP benchmark performs assorted
ldapsearch queries for various entries contained in
a directory. For this experiment, we used actual data
from IBM’s Callup (internal telephone) directory. A
base of 100K (101498) unique entries was created
by combining 12 IBM U.S. directories. Figure 19 il-
lustrates our base directory structure.

Then, to scale up to 1 million entries, we made 10
copies of the data with an additional “ou” level added
for uniqueness (Table 2). For example, if the first
100K contained Dave Bachmann in Austin, the sec-
ond 100K would contain Dave Bachmann in Aus-

Figure 19 Base directory structure

o=IBM_US, c=US

 ou=RTP ou=Boulder ou=FishKill ou=Atlanta ou=Burlington ou=Rochester

ou=Austin ou=Chicago ou=Dallas ou=SanJose ou=LW ou=MHV

ou=Austin9 ou=RTP9

100K

200K

1Million

ou=Austin1 ou=RTP1 ou=Rochester1

ou=Rochester9

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000378

tin1, and the last 100K would contain Dave Bach-
mann in Austin9.

Each entry in the directory contains three required
attributes and up to 43 additional attributes. On av-
erage, there are approximately 20 attributes per en-
try. We specified four indexed attributes in our LDAP
configuration file (sn, cn, ou, telephone) and per-
formed assorted ldapsearch operations with differ-
ent filters and search scopes (base, one level, and
subtree) on these attributes.

The hardware and software used for the experiment
was as follows:

● Client—RS/6000* Model 6015 (601,66 MHz), 98
MB of memory, 1.5 GB DASD, 16 Mbps Token
Ring, SPECint_base9551.69, AIXv4.2.1, IBM
eNetwork Directory Service v2.1 client

● Server—RS/6000 Model E20, 256 MB of memory,
132.2 GB and 434 GB disks, 16 Mbps Token
Ring, SPECint_base95 5 3.43, AIX v4.3, IBM eNet-
work Directory Service v2.1, DB2 v5

Benchmark results. Figures 20–23 illustrate our
benchmark results. We have separated them into
two categories: the first ldapsearch response times
and the cached ldapsearch response times. First
ldapsearch response times are important for appli-

Table 2 Data copies for 1 million entries

Number of Entries Respective DNs

100K dn: cn5Dave Bachmann, ou5Austin, o5IBM_US, c5US
200K dn: cn5Dave Bachmann, ou5Austin1, ou5Austin, o5IBM_US, c5US
300K dn: cn5Dave Bachmann, ou5Austin2, ou5Austin, o5IBM_US, c5US

·
·
·

·
·
·

900K dn: cn5Dave Bachmann, ou5Austin8, ou5Austin, o5IBM_US, c5US
1M dn: cn5Dave Bachmann, ou5Austin9, ou5Austin, o5IBM_US, c5US

Figure 20 First time response time

IBM AIX eNetwork DIRECTORY V 2.1

14

12

10

8

6

4

2

0

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

2.431

0.613 0.575
0.285

C0MPETITOR

EQUALITY *LEADING

1.087
0.585

1.43

10.664

7.455

12.01

TRAILING* MID*DLE BOOLEAN

SLOWER

FASTER

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 379

cations and users performing random searches in the
directory. A good example where first time searches
are important would be a white pages directory.
Cached ldapsearch response times are important for
applications and users performing repeated searches
in the directory. A good example where cached
searches are important would be a public key infra-
structure that stores certificates in the LDAP direc-
tory. For our benchmark results, we compared the
AIX IBM eNetwork Directory v2.1 product to a com-
petitive LDAP server (nonrelational) running on the
same hardware.

For first time equality searches, the IBM average re-
sponse time was four times better than the compet-
itor we studied, as illustrated in Figure 20. Further
analysis showing the distribution of response times
with respect to the number of entries returned from
the ldapsearch is shown in Figure 22. The compet-
itor did not do well for any equality searches that
returned more than one or two entries. For equality
searches that returned more entries, the IBM re-
sponse time increased only slightly and performed
consistently well. We believe that this result shows
the advantage of using a relational database for a
directory data store. Although there is a certain

amount of overhead associated with using a full-func-
tion database, its advantage becomes evident when
returning large amounts of data.

For first time substring searches, response time var-
ied depending on the location of the wild-card char-
acter “*.” In a previous release, we found that we
did not do well at all for this character at the be-
ginning; we have since implemented a solution that
performs much better. For searches with the char-
acter at the end or middle, we performed very well,
beating our competitor significantly for every search
in this category.

For Boolean first time queries (queries with AND and
OR), the IBM average response time was seven times
faster than that of the competitor. Further analysis
of the searches showed that IBM did much better for
searches that used the same attributes. For exam-
ple, “(u(sn5Corn)(sn5Jones))” performed better
than one that used two different attributes such as
“(&(sn5Corn)(division511)).” This results from our
attributes being stored in separate database tables.
Similar to the equality results, IBM did much better
when multiple results were returned. We did not in-
clude queries with the NOT operator in Figure 20 be-

Figure 21 Cache response time

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

C0MPETITOR

EQUALITY *LEADING TRAILING* MID*DLE BOOLEAN

SLOWER

FASTER

0.237

0.203

0.14
0.15

0.185

0.145

0.272

0.37

0.268

0.21

0.4

0.3

0.2

0.1

0

SUBSTRING
IBM AIX eNetwork DIRECTORY V 2.1

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000380

Figure 22 LDAP first response time distribution

COMPETITOR IBM

60

50

40

30

20

10

0
0 10 20 30 40 50

NUMBER OF ENTRIES RETURNED

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

> 60

50

40

30

20

10

0
0 10 20 30 40 50

NUMBER OF ENTRIES RETURNED

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

>

Figure 23 LDAP cache response time distribution

COMPETITOR IBM

1.2

1.0

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50

NUMBER OF ENTRIES RETURNED

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

1.2

1.0

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50

NUMBER OF ENTRIES RETURNED

R
E

S
P

O
N

S
E

 T
IM

E
 IN

 S
E

C
O

N
D

S

LOWER IS BETTER LOWER IS BETTER

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 381

cause the competitive product takes a very long time
to return any data. Our server returns correct data
in seconds.

For cache searches, both products performed very
quickly, regardless of the type of search being per-
formed. This result is expected, since the data are
being retrieved from memory instead of from the da-
tabase. Further analysis showing the distribution of
response times with respect to the number of cached
entries returned from the ldapsearch is shown in Fig-
ure 23. For both products, the response time in-
creased as the number of entries returned increased.
Based on the data we have, the slope of the increase
was twice as much for our competitor. For applica-
tions and users returning multiple entries, the IBM
eNetwork Directory would be faster. We also exper-
imented with committing and not committing SQL
operations for search. We did not observe any per-
formance differences.

Performance outlook. There are many more perfor-
mance enhancements to our LDAP implementation
that can further improve performance. Some exam-
ples are further caching improvements, table reduc-
tion, modification improvements, and lock reduction.

Conclusions

The design and implementation of an LDAP direc-
tory service using the IBM DB2 relational database as
a data store and query engine has been examined.
It has been shown that although the mapping of the
LDAP hierarchical model to a set of relational tables
(database schema) is a nontrivial task, a well-thought-
out (yet simple) set of relational tables and use of
SQL produces a secure directory service with com-
petitive performance. Use of a relational database
also provides:

● An easy growth path for a highly scalable direc-
tory server whose (1) database size on a single uni-
processor machine is not limited by the maximum
file size, (2) client/server configuration allows for
a network dispatcher to route requests among the
LDAP servers for scaling to very large numbers of
users while maintaining performance, and (3) par-
allel edition can automatically partition the data-
base across multiple machines to support even
more users and larger directories

● A robust data store whose transaction capability
gives the LDAP server protection from hardware
and software failures while maintaining the integ-

rity of the directory information (no corrupted di-
rectory)

● Alternative administrative capabilities in areas that
are not yet standardized by the LDAP such as ac-
cess control, on-line backup and restore, replica-
tion, and a fast bulk load facility

● A powerful query processing engine to securely
handle simple to complex queries using the well-
known and powerful SQL language

Acknowledgments

Rod Mancisidor has inspired many of the ideas that
we have presented in this paper. Larry Fichtner,
Chin-Long Shu, Mark McConaughy, and Trung Tran
also contributed greatly to the design and implemen-
tation. We would like to thank Dimitri Milionis and
Bill Wilkins for providing tremendous help and ad-
vice with respect to DB2 performance and technical
issues. We would also like to thank the management
team (Reggie Hill, Sharal Brown, Dave Dyar, and
Terry Dunkle) who provided us with strong support
to deliver this product within a tight schedule.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Novell, Inc., Netscape
Communications Corporation, Lotus Development Corporation,
or QUALCOMM, Inc.

Cited references

1. T. Howes and M. Smith, LDAP: Programming Directory-En-
abled Applications with Lightweight Directory Access Protocol,
ISBN 1-57870-000-0, Macmillan Technical Publishing, New
York (1997).

2. S. Shi, E. Stokes, C. Corn, D. Bachmann, T. Jones, and
S. Pasha, “Exploiting Relational Database Technologies with
LDAP Directory Service,” Proceedings of the International
Conference on Advanced Science and Technology (1998), pp.
222–227.

3. The SLAPD and SLURPD Administrator’s Guide, Release 3.3,
University of Michigan, Ann Arbor, MI (April 30, 1996).

4. W. Yeong, T. Howes, and S. Kille, Lightweight Directory Ac-
cess Protocol, RFC 1777, Internet Engineering Task Force
(March 1995); available at http://www.ietf.org/rfc/.

5. T. Howes and M. Smith, The LDAP Application Program In-
terface, RFC 1823, Internet Engineering Task Force (August
1995); available at http://www.ietf.org/rfc/.

6. S. Kille, A String Representation of Distinguished Names, RFC
1779, Internet Engineering Task Force (March 1995); avail-
able at http://www.ietf.org/rfc/.

7. T. Howes, S. Kille, W. Yeong, and C. Robbins, The String
Representation of Standard Attribute Syntaxes, RFC 1778, In-
ternet Engineering Task Force (March 1995); available at
http://www.ietf.org/rfc/.

8. T. A. Howes and M. C. Smith, A Scalable, Deployable Direc-
tory Service Framework for the Internet, CITI Technical Re-
port 95-7, University of Michigan, Ann Arbor, MI (April
1995).

SHI ET AL. IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000382

9. DATABASE 2, Application Programming Guide for Common
Servers, S20H-4643-01, IBM Corporation.

10. J. J. Ordille and B. P. Miller, “Nomenclature Descriptive
Query Optimization for Large X.500 Environments,” Proceed-
ings of the 1991 SIGCOMM Conference (1991), pp. 301–314.

11. D. Barrowman and P. Martin, “The Performance of SQL
Queries in X.500 Directory System,” Computer Communi-
cations 21, 133–146 (1998).

12. Oracle 7 Server SQL Reference Manual, Oracle Corporation,
see http://technet.oracle.com/docs/products/oracle7/
doc_index.htm.

13. Maintaining Databases by Means of Hierarchical Genealogi-
cal Table, United States Patent, No. 5467471 (November 14,
1995).

14. S. S. B. Shi, L. G. Fichtner, R. A. Mancisidor, and C. Corn,
An Efficient Implementation of Lightweight Directory Access
Protocol (LDAP) Search Queries with SQL, filed as Docket
AT998183 (1998).

15. S. S. B. Shi, L. G. Fichtner, R. A. Mancisidor, and C. Corn,
Method of Hierarchical LDAP Searching with Relational Ta-
bles, filed as Docket AT998106 (1998).

16. J. Teuhola, “An Efficient Relational Implementation of Re-
cursive Relationships Using Path Signatures,” The 10th In-
ternational Conference on Data Engineering, Houston, Texas
(February 1994), pp. 446–454.

17. R. Agrawal and H. V. Jagadish, “Direct Algorithms for Com-
puting the Transitive Closure of Database Relations,” Pro-
ceedings of the 13th VLDB Conference, Brighton, England
(1987), pp. 255–266.

18. “An Amateur’s Introduction to Recursive Query Processing
Strategies,” Proceedings of ACM SIGMOD Conference, Wash-
ington, DC (1986), pp. 16–52.

19. P. Ciaccia, D. Maio, and P. Tiberjo, “A Method for Hier-
archy Processing in Relational Databases,” Information Sys-
tems 14, No. 3, 93–105 (1989).

20. E. H. Herrin and R. A. Finkel, “Schema and Tuple Trees:
An Intuitive Structure for Representing Relational Data,”
Computing Systems: The Journal of the USENIX Association
9, No. 2, 93–118 (1996).

21. T. A. Howes, The Lightweight Directory Access Protocol: X.500
Lite, CITI Technical Report 95-8, University of Michigan,
Ann Arbor, MI (July 27, 1995).

22. T. Howes, A String Representation of LDAP Filters, RFC 1960,
Internet Engineering Task Force (June 1996); available at
http://www.ietf.org/rfc/.

Accepted for publication September 15, 1999.

Shepherd S. B. Shi IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
sshi@us.ibm.com). Dr. Shi is a senior software engineer and chief
developer for IBM eNetwork Directory Services. He has a B.S.
in computer science from National Taiwan University, an M.S.
in computer science from Stanford University, and a Ph.D. in com-
puter science from the University of Illinois.

Ellen Stokes IBM Network Computing Software Division, 11400
Burnet Road, Austin, Texas 78758 (electronic mail: ejstokes@us.
ibm.com). Ms. Stokes is a senior technical staff member and the
lead architect for Directory Services across IBM. She has a B.S.E.
in computer engineering and an M.S.E. in computer, informa-
tion, and control engineering from the University of Michigan.

Debora Byrne IBM Network Computing Software Division, 11400
Burnet Road, Austin, Texas 78758 (electronic mail: djbyrne@us.
ibm.com). Ms. Byrne is a staff software engineer and is team lead
for the SecureWay Directory User Interface. She has a B.S. in
computer science from Duke University and an M.S. in software
engineering from the University of Houston—Clear Lake.

Cindy Fleming Corn IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail: ccorn@
us.ibm.com). Ms. Corn is a staff software engineer and the IBM
Directory Performance lead member. She has a B.S. in computer
science and mathematics from the University of Illinois.

David Bachmann IBM Network Computing Software Division,
11400 Burnet Road, Austin, Texas 78758 (electronic mail:
dbachman@us.ibm.com). Dr. Bachmann is a senior software en-
gineer and the team lead for Distributed Systems Performance.
He has a B.S. in computer science and mathematics from Iowa
State University, and an M.S. and Ph.D. in computer science and
engineering from the University of Michigan.

Tom Jones Innosoft International, Inc., 8911 Capital of Texas
Highway, Suite 4140, Austin, Texas 78759 (electronic mail:
tom.jones@innosoft.com). Mr. Jones was a software engineer and
member of the SecureWay Directory Performance team at the
IBM Network Computing Software Division in Austin before join-
ing Innosoft. He has eighteen years of computer science expe-
rience, the last five of which have been in performance analysis
for distributed systems. Mr Jones is currently a senior quality as-
surance engineer at Innosoft International. He is responsible for
product testing of the Innosoft Distributed Directory Server, the
Innosoft DirectoryPortal, and the Innosoft LDAP Proxy Server,
with much of his work including LDAP performance testing.

IBM SYSTEMS JOURNAL, VOL 39, NO 2, 2000 SHI ET AL. 383

