Communications Server for Windows, Version 6.1
and
Personal Communications for Windows, Version 5.7

System Management Programming

<|lI!

SC31-8480-06

Communications Server for Windows, Version 6.1
and
Personal Communications for Windows, Version 5.7

System Management Programming

<|lI!

SC31-8480-06

Note
FBefore using this information and the product it supports, read the information in [Appendix B, “Notices”, on page 629

Seventh Edition (September 2003)

This edition applies to Version 6.1 of IBM Communications Server for Windows, Version 5.7 of Personal
Communications for Windows (program number: 5639-170), and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1989, 2003. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tablesvi
About ThisBook. X
Who Should Read This Book.ix
How to Use ThisBookX

Icons . L. . X

Number Conventlons D <
Where to Find More Informationxi

Part 1. Personal Communications
and Communications Server Node

Operator Facility1
Chapter 1. Introduction . 3
Purpose of the Document . . .3
Personal Communications and Commumcatlons
Server Node Operator Facility .3
Entry Points .3
Verb Control Blocks (VCBs) . .4
Writing Node Operator Facility (NOF) Programs .4
Communications Server SNA API Client Support . . 5
Verbs Supported by Communications Server and Not
by Personal Communications . .5
Chapter 2. Overview of the Verbs in This
Book7
How to Read Verb Descrlptlons . .7
Supplied Parameters. .7
Returned Parameters .7
Common VCB Fields .7
Verb Summary. . 8
Node Configuration . . .8
Activation and Deactivation . .9
Querying the Node.10
Session Limit Verbs.12
Unsolicited Indications12
Security Verbs13
APING Verbs.14
CPI-CVerbs14
Attach Manager Verbs. . . R
DLC Processes, Ports, and Link Statlons R
Chapter 3. Node Operator Fac|I|ty Entry
Points I I 6
WinNOF().18
WinAsyncNOF().19
WinAsyncNOFEx() 020
WmNOFCancelAsyncRequest() B |
WinNOFCleanup()22
WiIinNOFStartup()23
WmNOFReglsterIndlcatlonSmk() L.24
WinNOFUnregisterIndicationSink()25
WinNOFGetIndication()26

© Copyright IBM Corp. 1989, 2003

Chapter 4. Node Configuration Verbs
DEFINE_ADJACENT_NODE
DEFINE_CN . o
DEFINE_COS.

DEFINE_DEFAULT_PU
DEFINE_DEFAULTS

DEFINE_DLC
DEFINE_DLUR_DEFAULTS .
DEFINE_DOWNSTREAM_LU . :
DEFINE_DOWNSTREAM_LU_RANGE .
DEFINE_DSPU_TEMPLATE .
DEFINE_FOCAL_POINT .
DEFINE_INTERNAL_PU.
DEFINE_LOCAL_LU .

DEFINE_LS .
DEFINE_LU_0_TO_3 . :
DEFINE_LU_0_TO_3_RANGE .
DEFINE_LU_POOL.

DEFINE_MODE .
DEFINE_PARTNER LU .
DEFINE_PORT .

DEFINE_TP . .
DELETE_ADJACENT_ NODE .
DELETE_CN .
DELETE_COS .

DELETE_DLC . .
DELETE_DOWNSTREAM_LU. .
DELETE_DOWNSTREAM_LU_RANGE
DELETE_DSPU_TEMPLATE
DELETE_FOCAL_POINT
DELETE_INTERNAL_PU
DELETE_LOCAL_LU.

DELETE_LS . .
DELETE_LU_0_TO_3. :
DELETE_LU_0_TO_3_RANGE.
DELETE_LU_POOL .

DELETE_MODE
DELETE_PARTNER_LU.
DELETE_PORT.

DELETE_TP.

Chapter 5. Activation and Deactivation

. 161
. 162
. 164
. 166
. 169
BV
173
. 175
177
. 179
. 182
. 184
. 187

Verbs .

START _DLC.
START_INTERNAL_ PU
START LS

START _PORT

STOP_DLC .
STOP_INTERNAL_ PU
STOP_LS.

STOP_PORT.
ACTIVATE_SESSION. .
DEACTIVATE_CONV_GROUP
DEACTIVATE_SESSION.
PATH_SWITCH

27

. 28
.31
. 35
.41
. 43
. 46
. 50
. 52
. 55
. 58
. 61
. 65
. 69
.74
. 88
.92
.97
.99
. 105
. 109
. 118
. 122
. 124
. 126
. 128
. 130
. 132
. 134
. 137
. 139
. 141
. 143
. 145
. 147
. 150
. 152
. 154
. 156
. 158

iii

Chapter 6. Query Verbs .
QUERY_ADJACENT_NN
QUERY_ADJACENT_NODE
QUERY_CN .

QUERY_CN_PORT
QUERY_CONVERSATION .
QUERY_COS .
QUERY_DEFAULT_PU .
QUERY_DEFAULTS . :
QUERY_DIRECTORY_ENTRY .
QUERY_DIRECTORY_LU .
QUERY_DIRECTORY_STATS .
QUERY_DLC

QUERY_DLUR_ DEFAULTS.
QUERY_DLUR_LU
QUERY_DLUR_PU
QUERY_DLUS . : :
QUERY_DOWNSTREAM _ LU .
QUERY_DOWNSTREAM_PU .
QUERY_DSPU_TEMPLATE
QUERY_FOCAL_POINT.
QUERY_HPR_STATS .
QUERY_ISR_SESSION
QUERY_LOCAL_LU . :
QUERY_LOCAL_TOPOLOGY .
QUERY_LS . o
QUERY_LS_ EXCEPTION
QUERY_LU_0_TO_3 .
QUERY_LU_POOL :
QUERY_MDS_APPLICATION.
QUERY_MDS_STATISTICS .
QUERY_MODE
QUERY_MODE_DEFINITION..
QUERY_MODE_TO_COS_MAPPING
QUERY_NMVT_APPLICATION .
QUERY_NN_TOPOLOGY_NODE
QUERY_NN_TOPOLOGY_STATS
QUERY_NN_TOPOLOGY_TG.
QUERY_NODE.
QUERY_PARTNER_LU .

QUERY_PARTNER_LU_ DEFINITION .

QUERY_PORT .
QUERY_PU . .
QUERY_RTP_ CONNECTION
QUERY_SESSION . .
QUERY_SIGNED_ON_LIST
QUERY_STATISTICS .
QUERY_TP . . .
QUERY_TP_ DEFINITION .

Chapter 7. Safe-Store Verbs .

SAFE_STORE_TOPOLOGY .
SFS_ADJACENT_NN.
SFS_DIRECTORY . .
SES_NN_TOPOLOGY_ NODE
SFS_NN_TOPOLOGY_TG .

Chapter 8. Session Limit Verbs.

CHANGE_SESSION_LIMIT
INITIALIZE_SESSION_LIMIT .

iv System Management Programming

. 189
. 190
. 193
. 196
. 201
. 204
. 208
. 211
. 213
. 215
. 222
. 227
. 229
. 235
. 237
. 241
. 247
. 251
. 260
. 265
. 269
. 274
. 276
. 287
. 295
. 300
. 319
. 324
. 334
. 338
. 341
. 343
. 349
. 354
. 357
. 360
. 366
. 370
. 377
. 389
. 396
. 401
. 412
. 418
. 425
. 433
. 437
. 439
. 443

. 449
. 450
. 457
. 461
. 467
. 475

. 483
. 484
. 488

RESET_SESSION_LIMIT. . 492
Chapter 9. Node Operator Facility API
Indications . 497
DLC_INDICATION . 498
DLUR_LU_INDICATION . 499
DLUR_PU_INDICATION . 500
DLUS_INDICATION . . 502
DOWNSTREAM_LU_ INDICATION . . 504
DOWNSTREAM_PU_INDICATION . . 509
FOCAL_POINT_INDICATION . 512
ISR_INDICATION. . . 514
LOCAL_LU_INDICATION .) . 519
LOCAL_TOPOLOGY_INDICATION. . 523
LS_INDICATION . . . 525
LU_0_TO_3_INDICATION . . 530
MODE_INDICATION . . 534
NN_TOPOLOGY_NODE INDICATION . 536
NN_TOPOLOGY_TG_INDICATION. . 538
PLU_INDICATION . 540
PORT_INDICATION . . 542
PU_INDICATION . . . 544
REGISTRATION_FAILURE. . 547
RTP_INDICATION) . 549
SESSION_FAILURE_ INDICATION . . 553
SESSION_INDICATION . . 555
UNREGISTER_INDICATION SINK . 559
Chapter 10. Security Verbs . 561
CONV_SECURITY_BYPASS . 562
CREATE_PASSWORD_SUBSTITUTE . 564
DEFINE_LU_LU_PASSWORD. . 566
DEFINE_USERID_PASSWORD . 568
DELETE_LU_LU_PASSWORD. . 570
DELETE_USERID_PASSWORD . 572
SIGN_OFF . 574
Chapter 11. APING and CPI-C Verbs 577
APING . 578
CPI-C Verbs . . 582
DEFINE_CPIC SIDE INFO . 583
DELETE_CPIC_SIDE_INFO . 586
QUERY_CPIC_SIDE_INFO . . 588
Chapter 12. Attach Manager Verbs 591
DISABLE_ATTACH_MANAGER .) . 592
ENABLE_ATTACH_MANAGER . . 593
QUERY_ATTACH_MANAGER . 594
Part 2. Personal Communications
and Communications Server
Management Services API . 595
Chapter 13. Introduction to
Management Services API . . 597
Management Services Verbs . 597
Entry Points. . 597
Verb Control Blocks (VCB) . 597

Writing Management Services (MS) Programs

SNA API Client Support.

Chapter 14. Management Services
Entry Points .

WinMS() . .

WinMSCleanup() . .
WinMSGetIndication()

WinMSRegister Application()
WinMSStartup() . .
WmMSUnreglsterApphcatlon()

Chapter 15. Management Services
Verbs .
ALERT INDICATION

. 598
. 599

. 601
. 602
. 603
. 604
. 605
. 607
. 608

. 61
. 612

FP_NOTIFICATION . . 613
MDS_MU_RECEIVED . 614
NMVT_RECEIVED . 616
SEND_MDS_MU . . 618
TRANSFER_MS_DATA . . 621
Part 3. Appendixes . . 625
Appendix A. IBM APPN MIB Tables 627
Appendix B. Notices . . 629
Trademarks 631
Index . . 633

Contents V

vi System Management Programming

Tables

1. Header Files and Libraries for NOF.5 4. Implementing Tables from IBM Management
2. Port Types for DLC Types.47 Information Block MIB). 627
3. Header Files and Libraries for Management

Services59

© Copyright IBM Corp. 1989, 2003 vii

viii System Management Programming

About This Book

This book describes how to develop programs that use IBM® Communications
Server for Windows® and IBM Personal Communications for Windows.

IBM Communications Server for Windows (referred to as Communications Server) is
a communications services platform. This platform provides a wide range of
services for workstations that communicate with host computers and with other
workstations. Communications Server users can choose from among a variety of
remote connectivity options.

IBM Personal Communications for Windows (referred to as Personal
Communications) is a full-function emulator. In addition to host terminal emulation,
it provides these useful features:

* File transfer

* Dynamic configuration

* An easy-to-use graphical interface

* APIs for SNA-based client applications

* An API allowing TCP/IP-based applications to communicate over an SNA-based
network.

While in most instances, developing programs for Personal Communications and
Communications Server is very similar in that they each support many of the same
verbs, there are some differences. These differences are denoted through the use of
icons. See[“Icons” on page x| for specific details. Throughout this book, the Program
refers to both Personal Communications and Communications Server. When only
the Personal Communications program or only the Communications Server
program applies, then that specific program name is used.

In this book, Windows refers to Windows 95, Windows 98, Windows NT®,
Windows Me, Windows 2000, and Windows XP. Throughout this book, workstation
refers to all supported personal computers. When only one model or architecture
of the personal computer is referred to, only that type is specified.

Who Should Read This Book

This book is intended for programmers and developers who plan to use Node
Operator Facility (NOF) API messages to manage and query the operation of
Personal Communications or Communications Server, or plan to use ASCII
Configuration files or both.

This book is also intended for developers who are writing network management
applications that use the underlying management services support provided by
Personal Communications and Communications Server to communicate with
remote (host focal point) network management applications.

© Copyright IBM Corp. 1989, 2003 ix

How to Use This Book

This book is organized into two parts. [Part 1, “Personal Communications and|
[Communications Server Node Operator Facility”, on page 1| contains the following
chapters:

* |Chapter 1, “Introduction”, on page 3, describes the purpose of this book.

+ [Chapter 2, “Overview of the Verbs in This Book”, on page 7, describes the Node
Operator Facility API structure and the verbs it supports. The chapter outlines
the categories of the verbs implemented and the additional signals provided by
Personal Communications and Communications Server.

Chapter 3, “Node Operator Facility Entry Points”, on page 17} describes the entry
point extensions.

* Chapters 4 through 12 describe the syntax of each verb. A copy of the structure
that holds the information for each verb is included and each entry described,
followed by a list of possible return codes.

Part 2, “Personal Communications and Communications Server Management|
Services API”, on page 595} contains the following chapters:

+ |Chapter 13, “Introduction to Management Services API”, on page 597, describes
the management services APL

+ |Chapter 14, “Management Services Entry Points”, on page 601} describes the
entry points for the management services verbs.

* [Chapter 15, “Management Services Verbs”, on page 611} describes the syntax of
each verb. A copy of the structure that holds the information for each verb is
included and each entry described, followed by a list of possible return codes.

Ilcons

In this book, when it is necessary to communicate special information, the
following icons appear:

This icon represents a note, important information that can affect the
operation of Personal Communications or Communications Server or
the completion of a task.

This icon appears when the information applies only to the Personal
<Q' Communications program.
This icon appears when the information applies only to the
é Communications Server program.
—=

Number Conventions

Binary numbers Represented as BX'xxxx xxxx' or BX'X' except in certain instances where
they are represented with text (“A value of binary xxxx xxxx is...”).

Bit positions Start with 0 at the rightmost position (least significant bit).

Decimal numbers Decimal numbers over 4 digits are represented in metric style. A space is
used rather than a comma to separate groups of 3 digits. For example,
the number sixteen thousand, one hundred forty-seven is written 16 147.

X System Management Programming

Hexadecimal Represented in text as hex xxxx or X'xxxx' (“The address of the adjacent
numbers node is hex 5D, which is specified as X'5d".”)

Where to Find More Information

For more information, refer to Quick Beginnings, which contains a
/& complete description of both the Communications Server library and
= related publications.

To view a specific book after Communications Server has been
installed, use the following path from your desktop:

1. Programs

2. IBM Communications Server

3. Documentation

4. Choose from the list of books

The Communications Server books are in Portable Document Format
(PDF), which is viewable with the Adobe Acrobat Reader. If you do not
have a copy of this program on your machine, you can install it from
the Documentation list.

The Communications Server home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser, go to the
following URL:

[http://www.ibm.com/software/network/commserver/|

complete description of both the Personal Communications library and

For more information, refer to Quick Beginnings, which contains a
: 4 . .
related publications.

The Personal Communications books are included on the CD-ROM in
portable document format (pdf). Books can be accessed directly from
the root directory of the Personal Communications CD-ROM or from
the Install Manager welcome panel.

To view the Personal Communications documentation using Install
Manager, select View Documentation from the main panel of the
Install Manager on the CD-ROM. Clicking View Documentation
invokes Adobe Acrobat Reader from your system to view the books. If
Acrobat Reader is not detected on your system, you are given the
opportunity to install it at this time. After installation of Acrobat Reader
is complete, a window opens displaying the books available on the
CD-ROM.

Notes:

1. You can copy the book files from the CD-ROM to a local or network
drive to view at a later time.

2. Quick Beginnings in HTML format is installed during installation of
Personal Communications.

About This Book Xi

http://www.ibm.com/software/network/commserver/

xii

System Management Programming

The Personal Communications home page on the Internet has general
product information as well as service information about APARs and
fixes. To get the home page, using an Internet browser such as IBM
Web Explorer, go to the following URL:

http://www.ibm.com/software/network/pcomm/

The complete IBM Dictionary of Computing is available on the World
Wide Web at http://www.ibm.com/networking/nsg/nsgmain.htm.

Part 1. Personal Communications and Communications
Server Node Operator Facility

© Copyright IBM Corp. 1989, 2003

2 System Management Programming

Chapter 1. Introduction

This part describes the Node Operator Facility (NOF) API provided by Personal
Communications and Communications Server.

Purpose of the Document

The intent of this book is to:
* Provide a brief overview of the structure of the Node Operator Facility API
* Define the syntax of the signals that flow across the interface.

Personal Communications and Communications Server Node Operator
Facility

The Personal Communications and Communications Server Node Operator Facility
enables communication between the node operator, and the control point (CP) and
logical units (LUs). The Node Operator Facility receives node configuration
information from the operator, which it uses to initializethe control point when the
node is started. The Node Operator Facility also receives requests to query and
display node configuration information. The node operator is able to:

* Define and delete LUs, DLCs, ports, and links

* Activate and deactivate links and sessions

* Query the control point and LUs for database and status information

The node operator can be a human operator working with an interactive display, a
command file accessed by a file interface, or a transaction program. The Node
Operator Facility communicates with the node operator by using a verb interface.

Entry Points

Personal Communications and Communications Server provide a library file that
handles Node Operator Facility verbs.

Node Operator Facility verbs have a straightforward language interface. Your
program fills in fields in a block of memory called a verb control block. Then your
program calls the entry point and passes a pointer to the verb control block. When
its operation is complete, Node Operator Facility returns, having used and then
modified the fields in the verb control block. Your program can then read the
returned parameters from the verb control block.

Following is a list of entry points for Node Operator Facility verbs:
* WinNOF()

* WinAsyncNOEF()

* WinAsyncNOFEX()

* WinNOFCancel AsyncRequest()

* WinNOFCleanup()

* WinNOFStartup()

* WinNOFRegisterIndicationSink()

* WinNOFUnregisterIndicationSink()

* WinNOFGetIndication()

© Copyright IBM Corp. 1989, 2003 3

See [Chapter 3, “Node Operator Facility Entry Points”, on page 17| for detailed
descriptions of the entry points.

Verb Control Blocks (VCBs)

Programming Note: The base operating system optimizes performance by
executing some subsystems in the calling application’s address space. This means
that incorrect use of local descriptor table (LDT) selectors by application programs
can cause improper operation, or perhaps system failures.Accordingly, application
programs should not perform pointer arithmetic operations that involve changing
the LDT selector field of a pointer.

The segment used for the verb control block (VCB) must be a read/write data
segment. Your program can either declare the VCB as a variable in your program,
allocate it, or suballocate it from a larger segment. It must be sufficiently large to
contain all the fields for the verb your program is issuing.

An application program should not change any part of the verb control block after
it has been issued until the verb completes. When Node Operator Facility finishes
the execution of a verb, it copies a complete, modified VCB back onto the original
block. Therefore, if your program declares a verb control block as a variable,
consider declaring it in static storage rather than on the stack of an internal
procedure.

Fill all reserved and unused fields in each VCB with zeros (X'00"). In fact, it might
be more time-efficient to set the entire verb control block to zeros before your
program assigns the values to the parameters. Setting reserved fields to zeros is
particularly important.

Note: If the VCB is not read/write, or if it is not at least 10 bytes (that is, large
enough to hold the Node Operator Facility primary and secondary return
codes), Node Operator Facility cannot access it, and the base operating
system abnormally ends the process. This termination is recognized as a
general protection fault, processor exception trap D.

Node Operator Facility returns the INVALID_VERB_SEGMENT primary return
code when the VCB is too short or the incorrect type of segment is used.

Writing Node Operator Facility (NOF) Programs

4

Personal Communications and Communications Server provide a dynamic link
library (DLL) file, that handles NOF verbs.

The DLL is reentrant; multiple application processes and threads can call the DLL
concurrently.

NOF verbs have a straightforward language interface. Your program fills in fields
in a block of memory called a verb control block (VCB). Then it calls the NOF DLL
and passes a pointer to the verb control block. When its operation is complete,
NOF returns, having used and then modified the fields in the VCB. Your program
can then read the returned parameters from the verb control block.

[Table 1 on page 5 shows source module usage of supplied header files and libraries
needed to compile and link NOF programs. Some of the header files may include
other required header files.

System Management Programming

Table 1. Header Files and Libraries for NOF
Operating System Header File Library DLL Name
WINNT & WIN95 WINNOEH WINNOE32.LIB WINNOEF32.DLL

Communications Server SNA API Client Support

This information applies only to Communications Server.
=

—=

Included with Communications Server are a set of clients for the Windows 2000,
Windows 95, Windows NT, and Windows XP operating systems. These clients are
referred to as SNA API clients in this book and only support a subset of the full
node operator facility. Specifically, WINNOF is the only API supported on the
Windows 2000, Windows 95, Windows NT, and Windows XP clients. The following
is a list of the NOF verbs supported:

« QUERY_LOCAL LU

« QUERY_LU_0_TO_3

« QUERY_LU_POOL

« QUERY_MODE

« QUERY_MODE_DEFINITION
+ QUERY_PARTNER_LU

« QUERY_PARTNER_LU_DEFINITION
« QUERY_PU

« QUERY_SESSION

« QUERY_TP
 QUERY_TP_DEFINITION

Verbs Supported by Communications Server and Not by Personal
Communications

This information applies only to Communications Server.
=

—

The following list of verbs are supported by Communications Server and not by
Personal Communications.

* DEFINE_DOWNSTREAM_LU

* DEFINE_DOWNSTREAM_LU_RANGE
* DEFINE_DSPU_TEMPLATE
 DELETE_DOWNSTREAM_LU

« DELETE_DOWNSTREAM_LU_RANGE
* DELETE_DSPU_TEMPLATE

* QUERY_ADJACENT_NN

* QUERY_DIRECTORY_STATS

* QUERY_DOWNSTREAM_LU

Chapter 1. Introduction 5

* QUERY_DOWNSTREAM_PU

* QUERY_DSPU_TEMPLATE

* QUERY_HPR_STATS

* QUERY_ISR_SESSION

* QUERY_NN_TOPOLOGY_NODE

* QUERY_NN_TOPOLOGY_STATS

* QUERY_NN_TOPOLOGY_TG

* DOWNSTREAM_LU_INDICATION
* DOWNSTREAM_PU_INDICATION
* ISR_INDICATION

* NN_TOPOLOGY_NODE_INDICATION
* NN_TOPOLOGY_TG_INDICATION

6 System Management Programming

Chapter 2. Overview of the Verbs in This Book

The verb interface described in this book allows your programs to perform most of
the configuration, system management, and node definition functions associated
with a Personal Communications or Communications Server network environment.
This chapter provides an overview of each of these functions and the associated
verbs.

How to Read Verb Descriptions

Chapters 4 through 12 describe the configuration, system management, and attach
manager verbs.

Supplied Parameters

Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values supplied by the program.

In some cases, you must supply a variable value for a parameter.

Returned Parameters

Each verb description has a section that provides a detailed description of the
parameters and any associated parameter values returned to the program.

Return Codes

The configuration, system management, and attach manager verbs described in

this book have return codes associated with them that supply information about
the success of verb execution or that provide error information. These codes are
listed in the “Returned Parameters” section for each verb.

Additional Information
Many of the verb descriptions also contain a section titled “Additional
Information.” This section provides additional useful information about the verb.

Common VCB Fields

This chapter documents the syntax of each verb passed across the Node Operator
Facility APL It also describes the parameters passed in and returned for each verb.

typedef struct nof_hdr
{
unsigned short opcode;
unsigned char reserv2; /* reserved */
unsigned char format;
unsigned short primary_rc;
unsigned long secondary rc;
} NOF_HDR;

Each VCB has a number of common fields. These are listed and described below.

opcode
Verb operation code. This field identifies the verb.

© Copyright IBM Corp. 1989, 2003 7

8

format
Identifies the format of the VCB. The value that this field must be set to in
order to specify the current version of the VCB is documented individually
under each verb.

primary_rc
Primary return code. Possible values for each verb are listed in each verb
section.

secondary_rc
Secondary return code. This supplements the information provided by the
primary return code.

Verb Summary

The Node Operator Facility API is composed of verbs that can be used to do the
following things:

* Configure node resources

¢ Activate and deactivate links and sessions

* Query information held by the node

* Change the number of sessions

¢ Handle unsolicited indications

e Provide password support

* “ping” a remote LU

* Define, query, and delete CPI-C side information

Node Configuration

The following verbs can be used to define resources:
* DEFINE_ADJACENT_NODE

* DEFINE_CN

* DEFINE_COS

» DEFINE_DEFAULT_PU

* DEFINE_DLC

* DEFINE_DLUR_DEFAULTS

» DEFINE_DOWNSTREAM_LU

DEFINE_DOWNSTREAM_LU is Communications Server only.
=

* DEFINE_DOWNSTREAM_LU_RANGE

E DEFINE_DOWNSTREAM_LU_RANGE is Communications Server only.
—~=

* DEFINE_DSPU_TEMPLATE
DEFINE_FOCAL_POINT
DEFINE_INTERNAL_PU

* DEFINE LOCAL_LU
DEFINE_LS

* DEFINE_LU62_TIMEOUT
DEFINE_LU_0_TO_3
DEFINE_LU_0_TO_3_RANGE

System Management Programming

« DEFINE_LU_POOL

* DEFINE_MODE

* DEFINE_PARTNER_LU
e DEFINE_PORT

* DEFINE_TP

The following verbs can be used to delete resources:
* DELETE_ADJACENT_NODE

DELETE_CN

* DELETE_COS

DELETE_DLC

DELETE_DOWNSTREAM_LU

E DELETE_DOWNSTREAM_LU is Communications Server only.
D

s —

 DELETE_DOWNSTREAM_LU_RANGE
E DELETE_DOWNSTREAM_LU_RANGE is Communications Server only.
D

—

 DELETE _DSPU_TEMPLATE
DELETE_FOCAL_POINT
DELETE_INTERNAL_PU
DELETE_LOCAL_LU
DELETE_LS

* DELETE_LU62_TIMEOUT
DELETE_LU_0_TO_3
DELETE_LU_0_TO_3_RANGE
DELETE_LU_POOL
DELETE_MODE

* DELETE_PARTNER_LU
DELETE_PORT
DELETE_TP

Activation and Deactivation
The following verbs are used at link level:
* START_DLC
e START_LS
* START_PORT
* STOP_DLC
¢ STOP_LS
» STOP_PORT

The following verbs are used for dependent LU requestor function:
* START_INTERNAL_PU
+ STOP_INTERNAL_PU

Chapter 2. Overview of the Verbs in This Book 9

The following verbs are used at session level:
* ACTIVATE_SESSION

* DEACTIVATE_CONV_GROUP

* DEACTIVATE_SESSION

The following verb is used to force a high performance routing (HPR) RTP
connection to switch paths:
PATH_SWITCH

Querying the Node
These verbs return node information in named fields:
* QUERY_DEFAULT_PU
* QUERY_DLUR_DEFAULTS
* QUERY_MDS_STATISTICS
* QUERY_NN_TOPOLOGY_STATS

E QUERY_NN_TOPOLOGY_STATS is Communications Server only.
D

==

* QUERY_NODE
* QUERY_STATISTICS

The following verbs can return one or more units of information:
* QUERY_ADJACENT_NN

* QUERY_ADJACENT_NODE

* QUERY_CN

* QUERY_CN_PORT

* QUERY_COS

QUERY_DEFAULTS

QUERY_DLUS

* QUERY_DOWNSTREAM_PU

E QUERY_DOWNSTREAM_PU is Communications Server only.
D

—

QUERY_DSPU_TEMPLATE

« QUERY_FOCAL_POINT
QUERY_LU_POOL
QUERY_LU62_TIMEOUT
QUERY_MDS_APPLICATION
QUERY_MODE_TO_COS_MAPPING
QUERY_NMVT_APPLICATION
QUERY_PU

QUERY_TP

This information can be thought of as being stored in the form of a list. The verb
can specify a named entry in the list, which is then considered to be a place

10 System Management Programming

marker (or index value) in the list. The list_options field on these verbs specifies
from which point in the list information will be returned.

* If list_options is set to AP_FIRST_IN_LIST, then the fields specifying the index
value will be ignored, and the returned list will start at the beginning.

 If list_options is set to AP_LIST_INCLUSIVE, then the returned list will start
from the specified index value.

* If list_options is set to AP_LIST_FROM_NEXT, then the returned list will start
from the entry after the specified index value.

The index value specifies the starting point for returned information. Once this has
been determined, some of the query verbs also provide additional filtering options
for the returned list. These are specified independently of the index value. Note
that unless specified otherwise, the returned list will be ordered according to IBM’s
6611 APPN® MIB. (See |[Appendix A, “IBM APPN MIB Tables”, on page 627} for
information on how verb parameters map to MIB table entries.)

The number of entries to be returned or the buffer size to be filled is set. (If both
are set, then the verb is returned with the lower of the two specified quantities of
information.) Because the application buffer size typically limits the amount of
information that can be returned, the Node Operator Facility returns additional
information indicating the total amount of buffer space required to return the
requested information, and the total number of entries this represents.

In addition to returning one or more units of information, the following verbs are
also able to return different levels of information. The list_options field specifies
whether summary or detailed information will be returned by including either
AP_DETAIL or AP_SUMMARY in the list_options field. These options are
specified by ORing one of the previous list_options, for example: AP_DETAIL |
AP_FIRST_IN_LIST.

« QUERY_DIRECTORY_LU

« QUERY_DLC
QUERY_DLUR_LU
QUERY_DLUR_PU
QUERY_DOWNSTREAM_LU

QUERY_DOWNSTREAM_LU is Communications Server only.

* QUERY_ISR_SESSION

E QUERY_ISR_SESSION is Communications Server only.
W=

QUERY_LOCAL_LU
QUERY_LOCAL_TOPOLOGY
QUERY_LS

QUERY_LU_0_TO 3
QUERY_MODE
QUERY_MODE_DEFINITION
QUERY_NN_TOPOLOGY_NODE

Chapter 2. Overview of the Verbs in This Book 11

QUERY_NN_TOPOLOGY_NODE is Communications Server only.
=

* QUERY_NN_TOPOLOGY_TG

QUERY_NN_TOPOLOGY_TG is Communications Server only.
=

QUERY_PARTNER_LU

« QUERY_PARTNER_LU_DEFINITION
« QUERY_PORT
QUERY_RTP_CONNECTION
QUERY_SESSION
QUERY_TP_DEFINITION

Session Limit Verbs
e CHANGE_SESSION_LIMIT
e INITIALIZE SESSION_LIMIT
e RESET SESSION_LIMIT

Unsolicited Indications

Applications displaying node information can use these indications (which are
issued when a change occurs and return summary information only) to trigger the
query verbs (returning detailed information). The node only produces the signals
listed below as unsolicited indications of the named events if there are any
applications registered to receive the information. Applications should therefore
unregister if they no longer require the information.

* DLC_INDICATION
 DLUR_LU_INDICATION

* DLUS_INDICATION

* DOWNSTREAM_LU_INDICATION

DOWNSTREAM_LU_INDICATION is Communications Server only.

)%j
\

« DOWNSTREAM_PU_INDICATION
DOWNSTREAM_PU_INDICATION is Communications Server only.

=

4

* FOCAL_POINT_INDICATION
* ISR_INDICATION

ISR_INDICATION is Communications Server only.

)%j
\

 LOCAL_LU_INDICATION
* LOCAL_TOPOLOGY_INDICATION

12 System Management Programming

LS_INDICATION
LU_0_TO_3_INDICATION
MODE_INDICATION
NN_TOPOLOGY_NODE_INDICATION

g NN_TOPOLOGY_NODE_INDICATION is Communications Server only.
D

s —

* NN_TOPOLOGY_TG_INDICATION
NN_TOPOLOGY_TG_INDICATION is Communications Server only.
&;

—

* PLU_INDICATION
PORT_INDICATION
PU_INDICATION
REGISTRATION_FAILURE
RTP_INDICATION
SESSION_INDICATION
SESSION_FAILURE_INDICATION

The entry points used for indications are:

WinNOFRegisterIndicationSink
Register to receive an indication

WinNOFUnregisterIndicationSink
Unregister from receiving an indication

WinNOFGetIndication
Receive an indication

These indications are passed to any indication sinks that have registered with the
Node Operator Facility. If the component generating the indication is unable to
send it, then it sets the data_lost indicator on the next indication it issues. If the
data_lost flag has been set to AP_YES on an indication, then subsequent data fields
can be set to null. This flag is used to notify the application that a change has
occurred whose details have been lost, indicating that the application should
respond by issuing the appropriate query verb.

Note that the signal LULU_EVENT is also classified as an indication as it is sent
unsolicited by the node to a process registered using the verbs
REGISTER_LULU_EVENT and UNREGISTER_LULU_EVENT. It is not listed
above, since its behavior is significantly different: registration is for an LU-Partner
LU pair, and there is no equivalent of data_lost — these LULU event indications
are generated without fail.

Security Verbs

The following security verbs allow management of passwords for LU_LU
verification or conversation security.

* DEFINE_LU_LU_PASSWORD

* DEFINE_USERID_PASSWORD

e DELETE_LU_LU_PASSWORD

Chapter 2. Overview of the Verbs in This Book 13

* DELETE_USERID_PASSWORD

APING Verbs

The APING verb allows a management application to ping a remote LU in the
network.

CPI-C Verbs

The following verbs allow CPI-C side information to be defined, queried, and
deleted.

* DEFINE_CPIC_SIDE_INFO

» DELETE_CPIC_SIDE_INFO

* QUERY_CPIC_SIDE_INFO

Refer to CPI-C Reference for more information about the CPI-C support provided by
Personal Communications and Communications Server.

Attach Manager Verbs
The following verbs can be used to control the attach manager:
e DISABLE_ATTACH_MANAGER
* ENABLE_ATTACH_MANAGER
* QUERY_ATTACH_MANAGER

DLC Processes, Ports, and Link Stations

DLC Processes

Personal Communications or Communications Server can create multiple DLC
processes. Each DLC process is created by Personal Communications or
Communications Server in response to a START_DLC verb issued at the Node
Operator Facility API. Each DLC is responsible for communication over a link, or
set of links, using a specific data link protocol (such as SDLC or Token Ring).

Each DLC process can manage one or more ports. Ports are described below.

Ports

A port represents a unique access point (such as a MAC/SAP address pair) in the
local machine and is associated with a DLC process. Each DLC can have one or
more ports. A port can be one of the following types:

Switched port
Can have one or more adjacent link stations that are active at any one
time. (Note that this differs from the definition in the SNA APPN
Architecture Reference.)

Nonswitched port
Can have both point-to-point and multipoint link connections. Adjacent
link stations on a nonswitched link connection must be defined by a Node
Operator Facility component. Multipoint nonswitched links require
primary/secondary relationships to be defined properly on all nodes to
avoid unpredictable results.

SATF port
Uses a shared-access transport facility such as token ring. It allows
connectivity between any pair of link stations attaching to the facility. The

14 System Management Programming

initial role for all link stations being activated on a token ring must always
be defined as negotiable, so that link activation can be initiated through
any link station.

Note: SATF ports can also be associated with Connection Networks. In this
case, topology updates are used to broadcast the address of the
unique access point.

Link Stations

A link station is associated with a port and represents a connection to an adjacent
node. A port can have multiple link stations. Link stations can be categorized in
the following way:

Defined link station
A link station that has been defined explicitly (using a DEFINE_LS verb).

Dynamic link station
A link station that has been created as a result of activating a dynamic
connection through a connection network (also known as a virtual routing
node (VRN)).

Implicit link station
A link station that has been created as a result of a call received from a
previously unknown partner node on a switched or SATF port. (This type
of port is not defined in the SNA APPN Architecture Reference .)

Temporary link station
A link station that is created when a CONNECT _IN is received over the
DLC interface on a switched or SATF port. It is either deleted, or becomes
dynamic or implicit, when the remote node identity is determined.

Chapter 2. Overview of the Verbs in This Book 15

16 System Management Programming

Chapter 3. Node Operator Facility Entry Points

This chapter describes the entry points for Node Operator Facility verbs.

© Copyright IBM Corp. 1989, 2003

17

WinNOF()

WinNOF()

This function provides a synchronous entry point for all of the Node Operator
Facility verbs.

Syntax

void WINAPI WinNOF(long vcb,unsigned short vcb size)

Parameters
vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns

No return value. The primary_rc and secondary_rc fields in the verb control block
indicate any error.

Remarks

This is the main synchronous entry point for the Node Operator Facility APL This
call blocks until the verb completes.

18 System Management Programming

WinAsyncNOF()

WinAsyncNOF()

This function provides an asynchronous entry point for all of the Node Operator
Facility verbs.

Syntax
HANDLE WINAPI WinAsyncNOF(HWND hWnd,
long vcb,
unsigned short vcb_size)
Parameters

hWnd Window handle to receive completion message.
vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns

The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle. If the function was not
successful, a zero is returned.

Remarks

Each application thread can only have one outstanding request at a time when
using this entry point.

When the asynchronous operation is complete, the application’s window hWnd
receives the message returned RegisterWindowMessage with “WinAsyncNOF” as
the input string. The wParam argument contains the asynchronous task handle
returned by the original function call.

If the function returns successfully, a WinAsyncNOF() message will be posted to
the application when the operation completes or the conversation is canceled.

Note: See also[WinNOFCancel AsyncRequest()| on page

Chapter 3. Node Operator Facility Entry Points 19

WinAsyncNOFEX()

WinAsyncNOFEX()

This function provides an asynchronous entry point for all of the Node Operator
Facility verbs. Use this entry point instead of the blocking calls to allow multiple
verbs to be handled on the same thread.

Syntax
HANDLE WINAPI WinAsyncNOFEx (HANDLE handle,
long vcb,
unsigned short vcb_size);
Parameters
handle

Handle of the event that the application will wait on.
vcb Pointer to verb control block.

vcb_size
Number of bytes in the verb control block.

Returns

The return value specifies whether the asynchronous request was successful. If the
function was successful, the actual return value is a handle.

Remarks

This entry point is intended for use with WaitForMultipleObjects in the Win32 APL
For more information about this function, see the programming documentation for
the Win32 APL

When the asynchronous operation is complete, the application is notified by way
of the signaling of the event. Upon signaling of the event, examine the primary
return code and secondary return code for any error conditions.

Note: See also|[WinNOFCancelAsyncRequest()|on page

20 System Management Programming

WinNOFCancelAsyncRequest()

WinNOFCancelAsyncRequest()

This function cancels an outstanding WinAsyncNOF based request.

Syntax

int WINAPI WinNOFCancelAsyncRequest (HANDLE handle);

Parameters

handle
Supplied parameter; specifies the handle of the request to be canceled.

Returns

The return value specifies whether the asynchronous request was canceled. If the
value is zero, the request was canceled. Otherwise the value is:

WNOFALREADY
An error code indicating that the asynchronous request being canceled has
already completed, or the handle was not valid.

Remarks

An asynchronous request previously issued by one of the WinAsyncNOF functions
can be canceled prior to completion by issuing the WinNOFCancelAsyncRequest()
call, specifying the handle returned by the initial function in handle.

Canceling an asynchronous request stops any update to the application verb
control block and stops the application being notified that the verb has completed
(either by way of the window message or event). It does not cancel the underlying
request. To actually cancel the underlying request, the application must issue the
appropriate NOF verb (that is, STOP_LS to cancel START_LS).

Should an attempt to cancel an existing asynchronous WinAsyncNOF routine fail
with an error code of WNOFALREADY, one of two things has occurred. Either the
original routine has already completed and the application has dealt with the
resulting notification, or the original routine has already completed but the
application has not dealt with the completion notification.

Note: See also [WinAsyncNOF()| on page

Chapter 3. Node Operator Facility Entry Points 21

WinNOFCleanup()

WinNOFCleanup()

This function terminates and unregisters an application from the Node Operator
Facility APIL.

Syntax

BOOL WINAPI WinNOFCleanup(void);

Returns

The return value specifies whether the unregistration was successful. If the value is
not zero, the application was successfully unregistered. The application was not
unregistered if a value of zero is returned.

Remarks

Use WinNOFCleanup() to indicate unregistration of a Node Operator Facility
application from the Node Operator Facility API.

WinNOFCleanup unblocks any thread waiting in WinNOFGetIndication. These
return with WNOFNOTREG, (the application is not registered to receive
indication). WinNOFCleanup unregisters the application for all indications.
WinNOFCleanup returns any outstanding verb (synchronous or asynchronous)
with the error AP_CANCELLED. However, the verb completes inside the node.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also[WinNOFStartup()] on page 23

22 System Management Programming

WinNOFStartup()

WinNOFStartup()

This function allows an application to specify the version of Node Operator
Facility API required and to retrieve the version of the API supported by the
product. This function can be called by an application before issuing any further
Node Operator Facility API calls to register itself.

Syntax

int WINAPI WinNOFStartup(WORD wVersionRequired,
LPWNOFDATA nofdata);

Parameters

wVersionRequired
Specifies the version of Node Operator Facility API support required. The
high-order byte specifies the minor version (revision) number; the
low-order byte specifies the major version number.

nofdata
Returns the version of Node Operator Facility API and a description of API
implementation.

Returns

The return value specifies whether the application was registered successfully and
whether the Node Operator Facility API implementation can support the specified
version number. If the value is zero, it was registered successfully and the specified
version can be supported. Otherwise, the return value is one of the following
values:

WNOFSYSERROR
The underlying network subsystem is not ready for network communication.

WNOFVERNOTSUPPORTED
The version of Node Operator Facility API support requested is not provided
by this particular implementation.

WNOFBADPOINTER
Incorrect nofdata parameter.

Remarks

This call is intended to help with compatibility of future releases of the API. The
current version is 1.0.

It is not a requirement to use WinNOFStartup and WinNOFCleanup. However, an
application must be consistent in its use of these calls. You should use both of
them or never use either of them.

Note: See also [WinNOFCleanup()| on page .

Chapter 3. Node Operator Facility Entry Points 23

WinNOFRegisterindicationSink()

WinNOFRegisterindicationSink()

24

This allows the application to register to receive unsolicited indications.

Syntax

BOOL WINAPI WinNOFRegisterIndicationSink(unsigned short indication_opcode,
unsigned short queue_size,
unsigned short #primary_rc,
unsigned long *secondary rc);

Parameters

indication_opcode
The indication to register for.

queue_size
Number of unreceived indications to queue. Zero means use the current
value (the initial default value is set to 10). There is only one queue for all
indications registered by application.

primary_rc
Returned: primary return code

secondary_rc
Returned: secondary return code

Returns

The function returns a value indicating whether the registration was successful. If
the value is not zero, the registration was successful. If the value is zero, the
registration was not successful.

Remarks

Use WinNOFRegisterIndicationSink to register to receive unsolicited indications
of type indication_opcode.

An application must issue a WinNOFRegisterIndicationSink for each type of
indication it wants to receive.

Note: See also[WinNOFUnregisterIndicationSink()] on page P5]and
[WinNOFGetIndication()f on page

System Management Programming

WinNOFUnregisterindicationSink()

WinNOFUnregisterindicationSink()

This allows the application to stop receiving unsolicited indications.

Syntax

BOOL WINAPI WinNOFUnregisterIndicationSink(unsigned short indication_opcode,
unsigned short *primary_rc,
unsigned Tong *secondary rc);

Parameters

indication_opcode
The indication to unregister from.

primary_rc
Returned: primary return code.

secondary_rc
Returned: secondary return code.

Returns

The function returns a value indicating whether the unregistration was successful.
If the value is not zero, the unregistration was successful. If the value is zero, the
unregistration was not successful.

Remarks

Use WinNOFUnregisterIndicationSink to stop receiving unsolicited indications of
type indication_opcode.

An application must issue a WinNOFUnregisterIndicationSink for each type of
indication it wants to stop receiving.

Note: See also[WinNOFRegisterIndicationSink()]on page 24| and
[WinNOFGetIndication()f on page

Chapter 3. Node Operator Facility Entry Points 25

WinNOFGetIndication()

WinNOFGetIndication()

This allows the application to received unsolicited indications.

Syntax

int WINAPI WinNOFGetIndication(long buffer,
unsigned short *buffer_size,
unsigned long timeout);

Parameters
buffer Pointer to a buffer to receive indication.

buffer_size
Size of buffer. Returned: the size of the indication.

timeout
Time to wait for indication in milliseconds.

Returns

The function returns a value indicating whether an indication was received.
0 Indication returned.

WNOFTIMEOUT
Timeout waiting for indication.

WNOFSYSNOTREADY
The underlying network subsystem is not ready for network communication.

WNOFNOTREG
The application is not registered to receive indications.

WNOFBADSIZE
The buffer is too small to receive the indication. Reissue the
WinNOFGetIndication call with a large enough buffer. The size of the
indication is returned in the buffer_size parameter.

WNOFBADPOINTER
Either the buffer or buffer_size parameter is not valid.

WNOFSYSERROR
An unexpected system error has occurred.

Remarks
This is a blocking call, it returns in one of the following circumstances:
* An indication is returned
* The timeout expires
* The application issues a WinNOFCleanup call
¢ The product is stopped
* A system error occurs

Note: See also [WinNOFRegisterIndicationSink()|on page @ and
WinNOFUnregisterIndicationSink()| on page él

26 System Management Programming

Chapter 4. Node Configuration Verbs

The following verbs are used to define and delete node configuration information.

© Copyright IBM Corp. 1989, 2003 27

DEFINE_ADJACENT_NODE

DEFINE_ADJACENT_NODE

28

DEFINE_ADJACENT_NODE adds entries to the node directory database for the
resources on an adjacent node.

Note: This verb is not required, and should not be issued, if there is an active path
to the adjacent node using CP-CP sessions.

This verb can be issued on an end node, in which case the node’s control point is
added to the root of the directory.

To define the node’s control point LU, set the following fields:
* Specify the node’s control point name in the cp_name field

* Add an ADJACENT_NODE_LU structure, specifying the control point name in
the fqlu_name field.

Any additional LUs on the node are added to the directory as children of the
node’s control point. DEFINE_ADJACENT_NODE can also be used to add LU
definitions to an existing node definition. LUs can be removed in the same way by
issuing the DELETE_ADJACENT_NODE verb. If the verb fails part way through
processing, all new directory entries are removed, leaving the directory as it was
before the verb was issued.

VCB Structure

The DEFINE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DEFINE_ADJACENT_NODE structure.

typedef struct define_adjacent_node

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /% secondary return code */
unsigned char cp_name[17]; /* CP name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char reserv3[19]; /* reserved x/
unsigned short num_of Tus; /* number of LUs */

} DEFINE_ADJACENT NODE;
typedef struct adjacent node Tu

unsigned char wildcard_Tu; /* wildcard LU name */

/* indicator */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reservl[6]; /* reserved */

} ADJACENT_NODE_LU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

System Management Programming

DEFINE_ADJACENT_NODE

cp_name
The fully qualified name of the control point in the adjacent end node. This
should match the name the node sends on its XIDs (if it supports them),
and the adjacent control point name specified on the DEFINE_LS for the
link to the node. The name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.)

description
Resource description (returned on QUERY_DIRECTORY_LU). This is a
16-byte (nonzero) string in a locally displayable character set. All 16 bytes
are significant.

num_of_lus
The number of adjacent LU overlays that follow the
DEFINE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name (AP_YES or
AP_NO).

adjacent_node_lu.fqlu_name
The LU name to be defined. If this name is not fully qualified the network
ID of the CP name is assumed. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of either one or two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

When wildcard_lu is TRUE, a dot (.) followed by EBCDIC spaces means a
Full Wildcard (that will match anything). All EBCDIC spaces will match
anything beginning with the Net id of the CP Name.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CP_NAME

AP_INVALID_LU_NAME
AP_INVALID_WILDCARD_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_CP_NAME

Chapter 4. Node Configuration Verbs 29

DEFINE_ADJACENT_NODE

AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc
AP_MEMORY_SHORTAGE

AP_DIRECTORY_FULL

30 System Management Programming

DEFINE_CN

DEFINE_CN

DEFINE_CN defines a connection network (also known as a virtual routing node
or VRN). The verb provides the network-qualified name of the connection network
along with its transmission group (TG) characteristics. It also provides a list of the
names of the local ports that can access this connection network.

DEFINE_CN can be used to redefine an existing connection network. In particular,
new ports can be added to the list of ports that access the connection network by
issuing another DEFINE_CN. (Ports can be removed in the same way by issuing
the DELETE_CN verb.)

VCB Structure

typedef struct define_cn
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */
CN_DEF_DATA def data; /* CN defined data */

unsigned char port_name[8][8];
/* port names */
} DEFINE_CN;

typedef struct cn_def data

{
unsigned char description[RD_LEN];

/* resource description */
unsigned char num_ports; /* number of ports on CN */
unsigned char reservl[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

typedef struct tg defined chars

{
unsigned char effect_cap; /+ effective capacity */
unsigned char reservel[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte cost; /* byte cost x/
unsigned char reserveZ2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

unsigned char user_def parm_1; /* user-defined parameter 1 */

unsigned char user_def_parm_2; /* user-defined parameter 2 = */

unsigned char user_def parm 3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

Chapter 4. Node Configuration Verbs 31

DEFINE_CN

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqen_name
Fully qualified name (17 bytes long) of connection network being defined.
This name is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

def_data.description
Resource description (returned on QUERY_CN). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def data.num_ports
Number of ports associated with this connection network. There can be as
many as eight ports per DEFINE_CN verb, and up to and including 239
ports in total per CN.

def_data.tg chars.effect_cap
Actual units of effective capacity. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.l1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255,
where 0 is the lowest cost per connect time and 255 is the highest.

def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0
is the lowest cost per byte and 255 is the highest.

def_data.tg_chars.security
Security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal to travel the

32 System Management Programming

DEFINE_CN

length of the link, in microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.Immm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Default values are
listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0-255.

def_data.tg chars.user_def_parm_2
User defined parameter in the range 0-255.

def_data.tg_chars.user_def parm_3
User defined parameter in the range 0-255.

port_name
Array of up to eight port names defined on the connection network. Each
named port must have already been defined by a DEFINE_PORT verb.
Each port name is an 8-byte string in a locally displayable character set
and must match that on the associated DEFINE_PORT verb. Additional
ports can be defined on the connection network by issuing another
DEFINE_CN specifying the new port names.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED
AP_INVALID_PORT_NAME

Chapter 4. Node Configuration Verbs 33

DEFINE_CN

AP_INVALID_PORT_TYPE
AP_DEF_LINK_INVALID_SECURITY
AP_EXCEEDS_MAX_ALLOWED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_PORT_ACTIVE

AP_CANT_MODIFY_VISIBILITY
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP UNEXPECTED_SYSTEM_ERROR

34 System Management Programming

DEFINE_COS

DEFINE_COS

DEFINE_COS adds a class-of-service definition. The DEFINE_COS verb can also be
used to modify any fields in a previously defined COS.

The definition provides node and TG rows. These rows associate a range of node
and TG characteristics with weights that are used for route calculation. The lower

the weight the more favorable the route.

VCB Structure

The DEFINE_COS verb contains a variable number of cos_tg _row and
cos_node_row overlays. The cos_tg_row structures are concatenated onto the end

of DEFINE_COS (and ordered in ascending weight) and are followed by the
cos_node_row structures (also ordered in ascending weight).

typedef struct define_cos

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

unsigned

unsigned
} DEFINE_COS;

short
char
char
short
long
char
char

char
char

char
char

opcode;
reserve;
format;
primary_rc;
secondary_rc;
cos_name[8];

/*
/*
/*

/* primary return code
/* secondary return code
class-of-service name

/*

description[RD_LEN];

/*

verb operation code

reserved
format

resource description

transmission_priority;

reserv3[9];

num_of_node_rows;
num_of tg rows;

typedef struct cos_node_row

{

COS_NODE_STATUS
COS_NODE_STATUS

unsigned
unsigned
} COS_NODE_ROW;

typedef struct cos_node_

{
unsigned
unsigned
unsigned

char
char

char
char
char

} COS_NODE_STATUS;
typedef struct cos_tg_row

{

minimum;
maximums;
weight;

reservl;

status

rar;
status;
reservl[2];

TG_DEFINED_CHARS minimum;
TG_DEFINED_CHARS maximum;

unsigned
unsigned
} COS_TG_ROW;

char
char

weight;
reservl;

typedef struct tg_defined_chars

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char
char
char
char

effect_cap;
reservel[5];
connect_cost;
byte cost;
reservez;
security;
prop_delay;
modem_class;

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

transmission priority

reserved

number of node rows
number of TG rows

minimum
max
weight
reserved

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

route additional resistance =/

node status.
reserved

minimum
maximum
weight
reserved

effective capacity

reserved

cost per connect time

cost per byte
reserved
security

propagation delay

modem class

Chapter 4. Node Configuration Verbs

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

35

DEFINE_COS

unsigned char user_def parm_1; /* user-defined parameter 1 */

unsigned char user_def_parm_2; /* user-defined parameter 2 */

unsigned char user_def parm 3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

description
Resource description (returned on QUERY_COS). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

transmission_priority
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

num_of_node_rows
Number of node row overlays that follow the DEFINE_COS VCB. The
maximum is 8. Each node row contains a set of minimum node
characteristics, a set of maximum node characteristics, and a weight. When
computing the weights for a node, its characteristics are checked against
the minimum and maximum characteristics defined for each node row. The
node is then assigned the weight of the first node row, which confines all
the node’s characteristics within the limits specified. If the node
characteristics do not satisfy any of the listed node rows, the node is
considered unsuitable for this COS, and is assigned an infinite weight.
Note that the node rows must be concatenated in ascending order of
weight.

num_of_tg_rows
Number of TG row overlays that follow the node row overlays. The
maximum is 8. Each TG row contains a set of minimum TG characteristics,
a set of maximum TG characteristics, and a weight. When computing the
weights for a TG, its characteristics are checked against the minimum and
maximum characteristics defined for each TG row. The TG is then assigned
the weight of the first TG row, which confines all the TG’s characteristics
within the limits specified. If the TG characteristics do not satisfy any of
the listed TG rows, the TG is considered unsuitable for this COS, and is
assigned an infinite weight. Note that the TG rows must be concatenated
in ascending order of weight.

cos_node_row.minimum.rar
Route additional resistance minimum. Values must be in the range 0-255.

36 System Management Programming

DEFINE_COS

cos_node_row.minimum.status
Specifies the minimum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.maximum.rar
Route additional resistance maximum. Values must be in the range 0-255.

cos_node_row.maximum.status
Specifies the maximum congestion status of the node. This can be one of
the following values:

AP_UNCONGESTED
The node is not congested.

AP_CONGESTED
The number of ISR sessions is greater than the
isr_sessions_upper_threshold.

cos_node_row.weight
Weight associated with this node row. Values must be in the range 0-255.

cos_tg_row.minimum.effect_cap
Minimum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.Immm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.minimum.connect_cost
Minimum limit for cost per connect time. Valid values are integer values in
the range 0-255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg_row.minimum.byte_cost
Minimum limit for cost per byte. Valid values are integer values in the
range 0-255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.minimum.security
Minimum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

Chapter 4. Node Configuration Verbs 37

DEFINE_COS

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg_row.minimum.prop_delay
Minimum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.Immm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY_TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.minimum.modem_class
Reserved. This field should always be set to zero.

cos_tg row.minimum.user_def_parm_1
Minimum limit for user-defined parameter in the range 0-255.

cos_tg row.minimum.user_def_parm_2
Minimum limit for user-defined parameter in the range 0-255.

cos_tg row.minimum.user_def_parm_3
Minimum limit for user-defined parameter in the range 0-255.

cos_tg _row.maximum.effect_cap
Maximum limit for actual units of effective capacity. The value is encoded
as a 1-byte floating-point number, represented by the formula 0.lmmm * 2
eeeee, where the bit representation of the byte is eeeeemmm. Each unit of
effective capacity is equal to 300 bits per second.

cos_tg_row.maximum.connect_cost
Maximum limit for cost per connect time. Valid values are integer values in
the range 0-255, where 0 is the lowest cost per connect time and 255 is the
highest.

cos_tg_row.maximum.byte_cost
Maximum limit for cost per byte. Valid values are integer values in the
range 0-255, where 0 is the lowest cost per byte and 255 is the highest.

cos_tg_row.maximum.security
Maximum limits for security values as described in the list below:

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_ NETWORK
Data transmitted over this connection network will flow over a
public switched network.

38 System Management Programming

DEFINE_COS

AP_SEC_UNDERGROUND_CABLE
Data transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit that is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cos_tg row.maximum.prop_delay
Maximum limits for propagation delay representing the time it takes for a
signal to travel the length of the link, in microseconds. The value is
encoded as a 1-byte floating-point number, represented by the formula
0.Immm * 2 eeeee, where the bit representation of the byte is eeeeemmm.
Default values are listed below:

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY _TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cos_tg_row.maximum.modem_class
Reserved. This field should always be set to zero.

cos_tg_row.maximum.user_def_parm_1
Maximum limit for user-defined parameter in the range 0-255.

cos_tg_row.maximum.user_def_parm_2
Maximum limit for user-defined parameter in the range 0-255.

cos_tg row.maximum.user_def_parm_3
Maximum limit for user-defined parameter in the range 0-255.

cos_tg _row.weight
Weight associated with this TG row.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

Chapter 4. Node Configuration Verbs 39

DEFINE_COS

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_COS_NAME

AP_INVALID_NUMBER_OF_NODE_ROWS
AP_INVALID_NUMBER_OF_TG_ROWS
AP_NODE_ROW_WGT_LESS_THAN_LAST
AP_TG_ROW_WGT_LESS_THAN_LAST

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_COS_TABLE_FULL
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

40 System Management Programming

DEFINE_DEFAULT_PU

DEFINE_DEFAULT_PU

DEFINE_DEFAULT_PU allows the user to define, redefine, or modify any field of a
default PU. It also allows the user to delete the default PU, by specifying a null PU
name. If a PU name is not specified explicitly on a TRANSFER_MS_DATA verb,
then the management services information carried on the TRANSFER_MS_DATA is
sent on the default PU’s session with the host SSCP. For more information about
this see [Chapter 15, “Management Services Verbs”, on page 611}

VCB Structure

typedef struct define_default pu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned Tong secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* PU name */

unsigned char description[RD_LEN];
/* resource description =/
unsigned char reserv3[16]; /* reserved */
} DEFINE_DEFAULT_PU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULT_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of local PU that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

description
Resource description (returned on QUERY_DEFAULT_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

Chapter 4. Node Configuration Verbs 41

DEFINE_DEFAULT_PU

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

42 System Management Programming

DEFINE_DEFAULTS

DEFINE_DEFAULTS

DEFINE_DEFAULTS allows the user to define or redefine default actions of the
node.

VCB Structure

typedef struct define_defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */

unsigned long secondary rc; /* secondary return code */
DEFAULT_CHARS default_chars; /* default information x/
} DEFINE_DEFAULTS;

typedef struct default_chars
{
unsigned char description[RD_LEN];
/* resource description =/

unsigned char mode_name[8]; /* default mode name */
unsigned char implicit_plu_forbidden;
/* disallow implicit */
/* PLUS? */
unsigned char specific_security codes;
/* generiuc security */
/* sense codes */
unsigned short Timited_timeout;/* timeout for Timited */
/* sessions */
unsigned char reserv[244]; /* reserved */

} DEFAULT_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

default_chars.description
Resource description (returned on QUERY_DEFAULTS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

default_chars.mode_name
Name of the mode that will serve as the default. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

default_chars.implicit_plu_forbidden
Controls whether the Program puts implicit definitions in place for
unknown Partner LUs (AP_YES or AP_NO).

default_chars.specific_security_codes
Controls whether the Program uses specific sense codes on a security
authentication or authorization failure (AP_YES or AP_NO). Note, specific
sense codes will only be returned to those partner LUs that have reported
support for them on the session.

Chapter 4. Node Configuration Verbs 43

DEFINE_DEFAULTS

default_chars.limited_timeout
Specifies the timeout after which free limited-resource conwinner sessions
will be deactivated. Range 0 to 65535 seconds.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb specifies a default mode that is not valid (for example, not EBCDIC A),
or is valid but has not been defined, the Program returns the following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

The effect of redefinition of each field is as follows:

description
The redefinition takes effect immediately. The updated description is
returned on subsequent QUERY_DEFAULT verbs.

mode_name
The effect of a redefinition applies to all subsequent implicit mode
definitions, for example, the updated mode serves as the default mode.
The effect of a redefinition on a previously unknown mode (for example,
one that had inherited the previous default mode characteristics) is
identical to a redefinition of the unknown mode. For example, if the
default mode is #INTER, and the Program receives a bIND for (an
unknown) MODE], the effect on MODEI of the default mode subsequently
being redefined to #BATCH should be identical to the effect of a
DEFINE_MODE(MODE]1) specifying the mode characteristics of #BATCH.

implicit_plu_forbidden
The redefinition takes effect immediately. All subsequent implicit PLU
definitions succeed or fail depending on the updated value of this field.

specific_security_codes
The redefinition takes effect immediately.

44 System Management Programming

DEFINE_DEFAULTS

limited_timeout
The updated value is used for all new session established after the
redefinition. The old value is used for existing sessions.

Chapter 4. Node Configuration Verbs 45

DEFINE_DLC

DEFINE_DLC

DEFINE_DLC defines a new DLC or modifies an existing DLC. This verb defines
the DLC name, which is unique throughout the node, and some DLC-specific data,
which is concatenated to the basic structure. This data is used during initialization
of the DLC, and the format is specific to the DLC type (such as Token Ring). Only
the DLC-specific data appended to the verb can be modified using the
DEFINE_DLC verb. To do this, a STOP_DLC verb must first be issued so that the
DLC is in a reset state.

See ['DLC Processes, Ports, and Link Stations” on page 14} for more information
about the relationship between DLCs, ports and link stations.

VCB Structure

typedef struct define_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format %/
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC */
DLC_DEF_DATA def data; /* DLC defined data */

} DEFINE_DLC;

typedef struct dlc_def_data
{

DESCRIPTION description; /* resource description %/
unsigned char dlc_type; /* DLC type */
unsigned char neg_Ts_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */
unsigned char hpr_only; /* DLC only supports HPR Tinks:*/
unsigned char reserv3; /* reserved */
unsigned char retry flags; /* conditions for automatic */

/* retries */

unsigned short max_activation_attempts;
/* how many automatic retries? */
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */
unsigned char reserv4[4]; /* reserved */

unsigned short dlc_spec_data_len; /* Length of DLC specific data */
} DLC_DEF_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

46 System Management Programming

DEFINE_DLC

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of the DLC. This is an 8-byte string in a locally displayable character
set. All 8 bytes are significant and must be set. For OEM devices, this name
is manufacturer-specific. Valid values are LAN, SDLC, AnyNet®, X25 or
TWINAX (padded to 8 chars with spaces).

def_data.description
Resource description (returned on QUERY_DLC). This is a 16-byte string in
a locally displayable character set. All 16 bytes are significant.

def_data.dlc_type
Type of the DLC.Personal Communications and Communications Server
support the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

For EEDLC, use AP_OEM_DLC.

def_data.neg_ls_supp
Specifies whether the DLC supports negotiable link stations (AP_YES or
AP_NO). If the dlc_type is AP_TWINAX, then only AP_NO is supported.
If the dlc_type is AP_ANYNET, then only AP_YES is supported.

def_data.port_types
Specifies the allowable port types for the supplied dlc_type. The value
corresponds to one or more of the following values ORed together.

AP_PORT_NONSWITCHED

AP_PORT_SWITCHED

AP_PORT_SATF

Use the following table to set the fields for the corresponding DLC type.

Table 2. Port Types for DLC Types

DLC Type Port Type

AP_ANYNET AP_PORT_SATF

AP_LLC2 AP_PORT_SATF

AP_OEM_DLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_SDLC AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

AP_TWINAX AP_PORT_NONSWITCHED

AP_X25 AP_PORT_SWITCHED or
AP_PORT_NONSWITCHED

Chapter 4. Node Configuration Verbs 47

DEFINE_DLC

def_data.hpr_only
This field specifies whether the DLC only supports HPR links. This must
be set to AP_YES for HPR over IP links.

AP_YES
AP_NO

def_data.retry_flags
This field specifies the conditions under which link stations are subject to
automatic retry. It is a bit field, and may take any of the following values
bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
This flag has no effect.

def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS means no limit.

def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

48 System Management Programming

DEFINE_DLC

The value of zero or AP_USE_DEFAULTS results in the use of default
timer duration of thirty seconds.

def_data.dlc_spec_data_len
This field should always be set to zero.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

AP_INVALID_DLC_TYPE
AP_INVALID_RETRY_FLAGS
AP_INVALID_PORT_TYPE
AP_HPR_NOT_SUPPORTED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_DLC_ACTIVE

AP_INVALID_DLC_TYPE
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 49

DEFINE_DLUR_DEFAULTS

DEFINE_DLUR_DEFAULTS

50

DEFINE_DLUR_DEFAULTS allows the user to define, redefine, or revoke a default
dependent LU server (DLUS) and a backup default DLUS. The default DLUS name
is used by DLUR when it initiates SSCP-PU activation for PUs that do not have an
explicitly specified associated DLUS. If a DLUS name is not specified explicitly on

the DEFINE_DLUR_DEFAULTS verb then the current default (or backup DLUS) is

revoked.

VCB Structure

typedef struct define_dlur defaults
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

unsigned char description[RD_LEN];
/* resource description =/

unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */
unsigned char reserv3; /* reserved */
unsigned short dlus_retry timeout; /* DLUS Retry Timeout */
unsigned short dlus_retry 1imit; /* DLUS Retry Limit */
unsigned char reserv4[16]; /* reserved */

} DEFINE_DLUR DEFAULTS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DLUR_DEFAULTS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

description
Resource description. This is a 16-byte string in a locally displayable
character set. All 16 bytes are significant.

dlus_name
Name of the DLUS node that will serve as the default. This should be set
to all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, which is right-padded with
EBCDIC spaces. (Each name can have a maximum length of 8 bytes with
no embedded spaces.) If this field is set to all zeros, the current default
DLUS is revoked.

bkup_dlus_name
Name of the DLUS node that will serve as the backup default. This should
be set to all zeros or a 17-byte string composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot, which is right-padded
with EBCDIC spaces. (Each name can have a maximum length of 8 bytes
with no embedded spaces.) If this field is set to all zeros, the current
backup default DLUS is revoked.

dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact a

System Management Programming

DEFINE_DLUR_DEFAULTS

DLUS. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value of 5 seconds is used.

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. If
zero is specified, the default value of 3 is used. If X'FFFF' is specified,
Personal Communications or Communications Server will retry
indefinitely.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 51

DEFINE_DOWNSTREAM_LU

DEFINE_DOWNSTREAM_LU

E This verb applies only to Communications Server.
p;

—

The DEFINE_DOWNSTREAM_LU verb is used for PU concentration. When PU
concentration is used, downstream LUs are able to communicate with an upstream
host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU defines a new downstream LU and cannot be used
to modify an existing definition. The downstream LU is mapped to the specified
host LU (defined using the DEFINE_LU_0_TO_3 verb). The host LU can also be
specified in terms of an LU pool.

When DEFINE_DOWNSTREAM_LU is issued for an existing downstream LU
definition, the definition must be identical. If the downstream link is active and the
downstream LU is inactive, the verb will be returned as successful and a
reactivation attempt is made (although this may not be successful). If the
downstream is not active or the downstream LU is already active, the verb failed.

The processing of the reactivation attempt depends on the state of the specified
host LU.

e If the host LU is active, then the ACTLU is resent to the downstream LU
immediately.

e If the host LU is inactive, the node waits for the host LU to become active before
sending the ACTLU to the downstream LU. The node attempts to activate the
link to the host if it is not active (this will not be successful if the host link
cannot be activated automatically).

VCB Structure

typedef struct define_downstream Tu

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code x/
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */
DOWNSTREAM_LU_DEF_DATA def data; /* defined data */

} DEFINE_DOWNSTREAM_LU;
typedef struct downstream_lu_def_data

unsigned char description[RD_LEN];

/* resource description */
unsigned char nau_address; /* Downstream LU NAU address x/
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_Tu name[8]; /* Host LU or Pool name */

unsigned char allow_timeout; /* Allow timeout of host LU? =/
unsigned char delayed Togon; /* Allow delayed logon to */
/* host LU */
unsigned char reserv2[6]; /* reserved */
} DOWNSTREAM_LU_DEF_DATA;

Supplied Parameters
The application supplies the following parameters:

52 System Management Programming

DEFINE_DOWNSTREAM_LU

opcode
AP_DEFINE_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_name
Name of the downstream LU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

def_data.nau_address
Network addressable unit address of the DOWNSTREAM LU. This must
be in the range 1-255.

def data.dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU is mapped
to. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def data.allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this dowstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

def_data.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the dowstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

Chapter 4. Node Configuration Verbs 53

DEFINE_DOWNSTREAM_LU

54

secondary_rc
AP_INVALID_DNST_LU_NAME

AP_INVALID_NAU_ADDRESS

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP _INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED

AP_LU NAU_ADDR_ALREADY_DEFD
AP_INVALID_HOST LU _NAME
AP_LU_NAME_POOL_NAME_CLASH
AP_PU_NOT_ACTIVE
AP_LU_ALREADY_ACTIVATING
AP_LU_DEACTIVATING
AP_LU_ALREADY_ACTIVE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON
AP_DELAYED VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DEFINE_DOWNSTREAM_LU_RANGE

DEFINE_DOWNSTREAM_LU_RANGE

E This verb applies only to Communications Server.
p

=

The DEFINE_DOWNSTREAM_LU_RANGE verb is used for PU concentration.
When PU concentration is used, downstream LUs are able to communicate with an
upstream host. To do this, Communications Server maps each downstream LU to a
dependent local LU, referred to as the host LU.

DEFINE_DOWNSTREAM_LU_RANGE allows the definition of multiple
downstream LUs within a specified NAU range (but cannot be used to modify an
existing definition). The node operator provides a base name and an NAU range.
The LU names are generated by combining the base name with the NAU
addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNMEO01, LUNME002, LUNMEO003, and LUNMEQ04. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Communications Server then right-pads these to eight
characters.

Each downstream LU is mapped to the specified host LU (defined using the
DEFINE_LU_0_TO_3 verb).

VCB Structure

typedef struct define_downstream Tu_range

{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

unsigned char dslu_base name[5];/* Downstream LU base name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range x/
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char host_Tu_name[8]; /* Host LU or pool name */
unsigned char allow_timeout; /* Allow timeout of host LU? =/
unsigned char delayed_Togon; /* Allow delayed logon to the x/

/* host LU */
unsigned char reserv4[6]; /* reserved */

} DEFINE_DOWNSTREAM_LU_RANGE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DOWNSTREAM_LU_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

Chapter 4. Node Configuration Verbs 55

DEFINE_DOWNSTREAM_LU_RANGE

56

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_base_name
Base name for downstream LU name range. This is a 5-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three type-A EBCDIC
numeric characters, representing the decimal value of the NAU address,
for each LU in the NAU range.

description
Resource description (returned on QUERY_DOWNSTREAM_LU). The
length of this field should be a multiple of four bytes, and not zero.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

dspu_name
Name of the DOWNSTREAM PU (as specified on the DEFINE_LS). This is
an 8-byte alphanumeric type-A EBCDIC string (starting with a letter),
padded to the right with EBCDIC spaces.

host_lu_name
Name of the host LU or host LU pool that all the downstream LUs within
the range are mapped to. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

delayed_logon
Specifies whether the Program should delay connection of the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen will be sent to the downstream LU
(AP_YES or AP_NO).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DNST_LU_NAME

System Management Programming

DEFINE_DOWNSTREAM_LU_RANGE

AP_INVALID_NAU_ADDRESS
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LU_NAME_POOL_NAME_CLASH

AP_LU_ALREADY_DEFINED
AP_INVALID_HOST_LU_NAME
AP_PU_NOT_DEFINED
AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_CANT_MODIFY_VISIBILITY
AP_DELAYED_VERB_PENDING

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 57

DEFINE_DSPU_TEMPLATE

DEFINE_DSPU_TEMPLATE

E This verb applies only to Communications Server.
p;

—

This verb is used for PU concentration. When PU concentration is used,
downstream LUs are able to communicate with an upstream host. To do this,
Communications Server maps each downstream LU to a dependent local LU,
referred to as the host LU. DEFINE_DSPU_TEMPLATE defines a template for the
downstream LUs which are present on a group of downstream workstations. This
template is used to put in place definitions for the downstream LUs when a
workstation connects into Communications Server over an implicit link (one not
previously defined). These templates are referred to by the implicit_dspu_template
field on the DEFINE_PORT verb. DEFINE_DSPU_TEMPLATE can either be used to
define a new template or to modify an existing template (although the existing
instances of the modified template is not affected).

VCB Structure

typedef struct define_dspu_template

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template name[8]; /* name of template */
unsigned char description; /* resource description */
unsigned char modify_template; /* Modify existing template? =/
unsigned char reservl[11]; /* reserved */
unsigned short max_instance; /* Max active template */

/* instances */

unsigned short num_of dslu_templates;
/* number of DSLU templates =*/
} DEFINE_DSPU TEMPLATE;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range =/
unsigned char max_nau; /* max NAU address in range =/
unsigned char allow_timeout; /* Allow timeout of host LU? =/
unsigned char delayed Togon; /* Allow delayed logon to */

/* host LU */
unsigned char reservl[8]; /* reserved */
unsigned char host_Tu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

58 System Management Programming

DEFINE_DSPU_TEMPLATE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

template_name
Name of the DSPU template. (This corresponds to the name specified in
the implicit_dspu_template field on PORT_DEF_DATA). This is an 8_byte
string in a locally-displayable character set. All 8 bytes are significant and
must be set.

description
Resource description (returned on QUERY_DSPU_TEMPLATE). The length
of this should be a multiple of four bytes, and nonzero.

modify_template
Specifies whether this verb should add additional DSLU templates to an
existing DSPU template or should replace an existing DSPU template
(AP_MODIFY_DSPU_TEMPLATE or AP_REPLACE_DSPU_TEMPLATE).

If modify template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then it will be created.

If modify_template is set to AP_MODIFY_DSPU_TEMPLATE and
the named DSPU template does not exist, then appended DSLU
templates are added to the existing DSPU template.

If modify_template is set to AP_REPLACE_DSPU_TEMPLATE,
then a new template is created. This can be from 0 to 65535
inclusive, where 0 means no limit.

max_instance
This is the maximum number of instances of the template which can be
active concurrently. While this limit is reached, no new instances can be
created. This can be from 0 to 65535 inclusive, where 0 means no limit.

num_of_dslu_templates
The number of DSLU template overlays which follow the
DEFINE_DSPU_TEMPLATE VCB. This can be from 0 to 255 inclusive.

dslu_template.min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.allow_timeout
Specifies whether the Program is allowed to time-out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

dslu_template.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

dslu_template.host_lu
Name of the host LU or host LU pool that all the downstream LUs within
the range will be mapped onto. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
Spaces.

Chapter 4. Node Configuration Verbs 59

DEFINE_DSPU_TEMPLATE

60

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID TEMPLATE_NAME

AP_INVALID_NAU_ADDRESS
AP_INVALID_NAU_RANGE
AP_CLASHING_NAU_RANGE
AP_INVALID_NUM_DSPU_TEMPLATES
AP_INVALID_ALLOW_TIMEOUT
AP_INVALID_DELAYED_LOGON
AP_INVALID_MODIFY_TEMPLATE

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_INVALID_HOST_LU_NAME

AP_CANT_MODIFY_VISIBILITY
If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:
primary_rc

AP_FUNCTION_NOT_SUPPORTED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DEFINE_FOCAL_POINT

DEFINE_FOCAL_POINT

Personal Communications or Communications Server can have a number of types
of relationships with different focal points. The DEFINE_FOCAL_POINT verb
defines a focal point with which Personal Communications or Communications
Server has an implicit relationship (which can be of type primary or backup).
These relationships, and the ways in which they can be established, are described
below. Relationships between a management services focal point (FP) and a
management services entry point (EP) for a given category are established when
they exchange Management Services Capabilities messages. The following types of
FP-EP relationships can be established.
* Explicit
This relationship is established by an operator at the focal point assigning the
entry point to its sphere of control. The focal point initiates exchange of
Management Services Capabilities.
* Implicit (primary)
The relationship is established when an operator at an entry point assigns the
entry point to a specified focal point (for example, when the operator issues a
DEFINE_FOCAL_POINT verb). The entry point initiates the Management
Services Capabilities exchange.
* Implicit (backup)
This relationship is established when an entry point loses either an explicit or
implicit primary focal point. The entry point initiates Management Services
Capabilities exchange. The identity of the backup focal point can be defined
(using the DEFINE_FOCAL_POINT verb) or can be acquired via
Management Services Capabilities exchange.

* Default
This relationship is established when an FP acquires an EP without operator
intervention. The FP initiates the MS Capabilities exchange. This relationship
only applies to EPs that are NNs

* Domain
This relationship is established when a serving network node (NN) informs
the end node entry point of the identity of the focal point. Domain
relationships are only valid in end nodes.

* Host
This relationship does not involve Management Services Capabilities
exchange and is established by the configuration of an SSCP-PU session from
the entry point node to a host. It is the lowest precedence focal point
relationship.

Each DEFINE_FOCAL_POINT verb can only be used to define an implicit focal
point (which can be of type primary or backup). Each DEFINE_FOCAL_POINT
verb is issued for a specific management services category. Within this category the
DEFINE_FOCAL_POINT verb can be used to

¢ Define a focal point

* Replace a focal point (or backup focal point)

* Revoke the currently active focal point.

The fields on a DEFINE_FOCAL_POINT verb are used as follows.
The ms_category must always be filled in. The combination of the fp_fqcp_name

and ms_appl_name fields specify the focal point (or backup focal point if the
backup field is set to AP_YES) for the specified category.

Chapter 4. Node Configuration Verbs 61

DEFINE_FOCAL_POINT

62

If the verb is being issued to revoke the currently active focal point without
providing a new one, the fp_fqcp_name and ms_appl_name fields should be set
to all zeros. When a DEFINE_FOCAL_POINT verb defining or replacing a focal
point is received, Personal Communications or Communications Server attempts to
establish an implicit primary focal point relationship with the specified focal point
by sending a Management Services Capabilities request. When Personal
Communications or Communications Server receives a DEFINE_FOCAL_POINT
verb revoking the currently active focal point, it sends a Management Services
Capabilities revoke message to the focal point. It is recommended that the
DELETE_FOCAL_POINT verb (specifying AP_ACTIVE) be used to revoke the
currently active focal point.

VCB Structure

typedef struct define_focal_point

unsigned short opcode; /* verb operation code */
unsigned char reservZ; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code %/
unsigned long secondary rc; /* secondary return code */
unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char fp_fqcp_name[17]; /* Fully qualified focal */

/* point CP name */

unsigned char ms_appl_name[8]; /* Focal point application name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char backup; /* is focal point a backup */
unsigned char reserv3[16]; /* reserved */

} DEFINE_FOCAL_POINT;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_FOCAL_POINT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ms_category
Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation-defined name.

fp_fqcp_name
Focal point’s fully qualified control point name. This should be set to all
zeros or a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.) If the focal point is being revoked, this field should be set to all
Zeros.

ms_appl_name
Focal point application name. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services applications as described in SNA Management

System Management Programming

DEFINE_FOCAL_POINT

Services, or an 8-byte type 1134 EBCDIC installation-defined name. If the
focal point is being revoked, this field should be set to all zeros.

description
Resource description (returned on QUERY_FOCAL_POINT). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

backup
Specifies whether a backup focal point is being defined (AP_YES or
AP_NO). This field is reserved if the currently active focal point is being
revoked. It is recommended that the DELETE_FOCAL_POINT verb
(specifying AP_ACTIVE) be used to revoke the currently active focal point.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FP_NAME
AP_INVALID_CATEGORY_NAME
If the verb does not execute successfully, the Program returns the following
parameters:
primary_rc
AP_REPLACED
AP_UNSUCCESSFUL
secondary_rc
AP_IMPLICIT_REQUEST_REJECTED
AP_IMPLICIT_REQUEST_FAILED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING

The Program returns the following parameter if the verb does not execute because
of a system error or because the Program failed to contact the focal point
successfully:

Chapter 4. Node Configuration Verbs 63

DEFINE_FOCAL_POINT

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

64 System Management Programming

DEFINE_INTERNAL_PU

DEFINE_INTERNAL_PU

The DEFINE_INTERNAL_PU verb defines a DLUR-served local PU. This verb is

not used to define a local PU which is directly attached to the host. See

[“DEFINE_LS” on page 74| for this purpose.

Note: The DEFINE_LS verb should be used to define the following;:

* A downstream PU served by:

- DLUR
— PU concentration
¢ Alocal PU that is directly attached to the host

VCB Structure

typedef struct define_internal_pu

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
INTERNAL

{

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

} INTERNAL_PU_DEF DATA;

short
char
char
short
Tong
char

opcode;
attributes;
format;
primary_rc;
secondary _rc;
pu_name[8];

_PU_DEF_DATA def_data;
} DEFINE_INTERNAL PU;

typedef struct internal _pu def data

char

char
char
char
short
short
char

char

char

Supplied Parameters

The application supplies the following parameters:

opcode

description[RD_LEN];

dlus_name[17];

/*
/*
/*
/*
/*
/*
/*

bkup_dlus_name[17]; /*

pu_id[4];

dlus_retry timeout; /=

dlus_retry_limit;

verb operation code */
verb attributes */
format */
primary return code %/
secondary return code */
internal PU name */
defined data */

conventional_Tu_compression;

conventional_lu_cryptography;

reserv2[2] ;

AP_DEFINE_INTERNAL_PU

attributes

/* resource description */
/* DLUS name */

backup DLUS name */
/* PU identifier */

DLUS retry timeout */
/* DLUS retry Timit */
/* Data compression */
/* requested for con- */
/* ventional LU sessions */
/* Cryptography required */
/* for conventional LU */
/* sessions */

/* reserved */

The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

Chapter 4. Node Configuration Verbs

65

DEFINE_INTERNAL_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU that is being defined. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

def data.description
Resource description (returned on QUERY_DLUR_PU and QUERY_PU).
This is a 16-byte string in a locally displayable character set. All 16 bytes
are significant.

def_data.dlus_name
Name of the DLUS node that DLUR will use when it initiates SSCP-PU
activation. This should be set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
the global default DLUS (if it has been defined, using the
DEFINE_DLUR_DEFAULTS verb) is used in DLUR-initiated SSCP-PU
activation.

def_data.bkup_dlus_name
Name of the DLUS node that will serve as the backup DLUS for this PU.
This should be set to all zeros or a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
the global backup default DLUS (if it has been defined by the
DEFINE_DLUR_DEFAULTS verb) is used as the backup for this PU.

def_data.pu_id
PU identifier. This a 4-byte hexadecimal string. Bits 0-11 are set to the
Block number and bits 12-31 to the ID number that uniquely identifies the
PU. This must match the pu_id configured at the host.

def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the def_data.dlus_name and def_data.bkup_dlus_name
fields. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. This field is ignored if
def_data.dspu_services is not set to AP_DLUR.

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS
specified in the def data.dlus_name and def_data.bkup_dlus_name fields.
If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X’FFFF’ is specified, the Program
retries indefinitely. This field is ignored if def_data.dspu_services is not set
to AP_DLUR.

def_data.conventional lu_compression
Specifies whether data compression is requested for conventional LU
sessions dependent on this PU.

66 System Management Programming

DEFINE_INTERNAL_PU

AP_NO
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_YES
Data compression should be enabled for conventional LU sessions
dependent on this PU if the host requests compression. If this
value is set, but the node does not support compression (defined
on the START_NODE verb) then the INTERNAL_PU is
successfully defined but without compression support.

def_data.conventional_lu_cryptography
Note: This function applies only to Communications Server.

Specifies whether session level encryption is required for conventional LU
sessions dependent on this PU.

AP_NONE
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_MANDATORY
Mandatory session level encryption is performed by APPN if an
import key is available to the LU. Otherwise, it must be performed
by the application that uses the LU (if this is PU Concentration,
then it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host request cryptography
for a session is dependent on this PU, then the behaviour of the
Program is the same for AP_MANDATORY. If the host does not
request cryptography, then the behaviour is the same as
AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID _PU_NAME

AP_INVALID_PU_ID
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME
AP_INVALID_CLU_CRYPTOGRAPHY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

Chapter 4. Node Configuration Verbs 67

DEFINE_INTERNAL_PU

secondary_rc
AP_PU_ALREADY_DEFINED

AP_CANT_MODIFY_VISIBILITY
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP _UNEXPECTED_SYSTEM_ERROR

68 System Management Programming

DEFINE_LOCAL_LU

DEFINE_LOCAL LU

The DEFINE_LOCAL_LU verb requests the definition of a local LU with the
specified characteristics, or, if the LU already exists, the modification of the

attach_routing_data characteristic of the LU. Note that if a DEFINE_LOCAL_LU is
used to modify an existing definition then any parameter other than the
attach_routing_data field will be ignored.

VCB Structure

Format 1

typedef struct define_local_lu

{

unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
unsigned char

opcode; /*
reserv?; /*

format; /*
primary_rc; /*
secondary_rc; /*
Tu_name[8]; /*

LOCAL_LU_DEF_DATA

} DEFINE_LOCAL_LU;
typedef struct Tocal_Tu_def_data

{

} LOCAL_

unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char
unsigned char

unsigned char
LU_DEF_DATA;

VCB Structure

Format 0

def_data; /*

description; /*
Tu_alias[8]; /*
nau_address; /*
syncpt_support; /*
Tu_session_Timit; /=

typedef struct define_local_lu

{

unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
unsigned char

LOCAL_LU_DEF_DATA

} DEFINE_LOCAL_LU;
typedef struct Tocal_lu_def_data

{

unsigned char
unsigned char
unsigned char

default_pool; /*
reserv?; /*
pu_name[8] ; /*
Tu_attributes; /*
sscp_id[6]; /*
disable; /*
attach_routing_data;

/*

/*
Tu_modeT; /*
model_name[7]; /*

/*
reserv4[16]; /*
opcode; /*
reserv?; /*
format; /*
primary_rc; /*
secondary_rc; /*
Tu_name[8]; /*
def data; /*
description; /*
Tu_alias[8]; /*
nau_address; /%

verb operation code
reserved

format

primary return code
secondary return code
local LU name

defined data

resource description
local LU alias
NAU address

is sync-point supported?

LU session Tlimit

member of default_Tu_pool

reserved
PU name
LU attributes
SSCP 1D

disable or enable LOCAL LU

routing data for
incoming attaches
LU model for SDDLU
LU model name

for SDDLU

reserved

verb operation code
reserved

format

primary return code
secondary return code
local LU name

defined data

resource description
local LU alias
NAU address

Chapter 4. Node Configuration Verbs

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

%/
*/
*/

69

DEFINE_LOCAL_LU

unsigned char syncpt_support; /* is sync-point supported?
unsigned short Tlu_session_limit; /* LU session limit
unsigned char default_pool; /* member of default Tu_pool
unsigned char reserv2; /* reserved
unsigned char pu_name[8]; /* PU name
unsigned char Tu_attributes; /* LU attributes
unsigned char sscp_id[6]; /* SSCP 1D
unsigned char disable; /* disable or enable LOCAL LU
unsigned char attach_routing_data;

/* routing data for

/* incoming attaches

} LOCAL_LU_DEF_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_LOCAL_LU

format

Identifies the format of the VCB. Set this field to zero or one to specify

either format 0 or format 1 of the VCB listed above.

lu_name

Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with

EBCDIC spaces.

def_data.description

Resource description (returned on QUERY_LOCAL_LU). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

def_data.lu_alias

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Alias of the local LU to define. This is an 8-byte string in a locally

displayable character set. All 8 bytes are significant and must be set.

def_data.nau_address

Network addressable unit address of the LU, which must be in the range
0-255. A nonzero value implies the LU is a dependent LU. Zero implies the

LU is an independent LU.
def_data.syncpt_support

This field should always be set to AP_NO unless a sync point manager is

available for this LU.

def data.lu_session_limit

Maximum number of sessions supported by the LU. Zero means no limit.
If the LU is independent then this can be set to any value. If the LU is

dependent then this must be set to 1.
def_data.default_pool

Set to AP_YES if the LU is a member of the dependent LU6.2 default pool,

or if it is to be used as the default Local LU for independent LU 6.2

sessions.

def_data.pu_name

Name of the PU that this LU will use. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is only used by dependent LUs, and should be

set to all binary zeros for independent LUs.

70 System Management Programming

DEFINE_LOCAL_LU

def data.lu_attributes
Specifies further information about the LU. This field either takes the value
AP_NONE, or one or more following options ORed together.

AP_DISABLE _PWSUB
Disable password substitution support for the local LU.

def_data.sscp_id
This specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. This field is only used by dependent LUs, and should
be set to all binary zeros for independent LUs or if the LU may be
activated by any SSCP.

def_data.disable
Indicates whether the LOCAL LU should be disabled or enabled. The LU
can be dynamically enabled or disabled by reissuing the
DEFINE_LOCAL_LU with this parameter set as appropriate (AP_YES or
AP_NO). When a disabled LU is enabled, the Program issues a NOTIFY
(on-line). When an enabled LU is disabled, the Program issues a NOTIFY
(off-line). If the LU is bound when it is disabled, then the Program issues
an UNBIND followed by a NOTIFY (off-line).

def_data.attach_routing_data
Type of attach routing data.

AP_REGISTERED_OR_DEFAULT_ATTACH_MGR
Specifies that a DYNAMIC_LOAD_INDICATION resulting from an
attach arriving for the transaction program (TP) at this local LU is
sent to the attach manager that has registered to receive DLIs for
this LU, or to the default attach manager if no attach manager has
registered for this LU.

AP_REGISTERED_ATTACH_MGR_ONLY
Specifies that a DYNAMIC_LOAD_INDICATION resulting from an
attach arriving for the transaction program (TP) at this local LU is
sent only to the attach manager that has registered to receive DLIs
for this LU. If no attach manager has registered for this LU, the
attach is rejected.

def data.lu_model
Model type and number of the LU. This field is only used by dependent
LUs and should be set to AP_UNKNOWN for independent LUs. For
dependent LUs, this is set to one of the following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

For dependent LUs, if model_name is not set to all binary zeros, then this
field is ignored. If a value other than AP_UNKNOWN is specified and the
host system supports SDDLU (Self-Defining Dependent LU), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define

the local LU at the host. The PSID subvector will contain the machine type
and model number corresponding to the value of this field. This field may

Chapter 4. Node Configuration Verbs 71

DEFINE_LOCAL_LU

72

be changed dynamically by reissuing the verb. Changes will not come into
effect until after the LU is closed and deactivated.

def_data.model_name
Model name of the LU. This field is only used by dependent LUs and
should be set to binary zeros for independent LUs. APPN checks that this
field consists of the EBCDIC characters A-Z, 0-9 and @, #, and $.

If this field is not set to binary zeros and the host system supports SDDLU,
the node generates an unsolicited PSID NMVT reply in order to
dynamically define the local LU at the host. The PSID subvector contains
the name supplied in this field. The def_data.model_name can be changed
dynamically by reissuing the verb. Changes will not come into effect until
after the LU is closed and deactivated.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID _LU_MODEL

AP_INVALID_LU_NAME
AP_INVALID_NAU_ADDRESS
AP_INVALID_SESSION_LIMIT
AP_INVALID_DISABLE

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_DEFINED

AP_INVALID_LU_NAME

AP _LU_ALREADY_DEFINED
AP_ALLOCATE_NOT_PENDING
AP_LU_ALIAS ALREADY USED
AP_PLU_ALIAS_ALREADY_USED
AP_PLU_ALIAS_CANT_BE_CHANGED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

System Management Programming

DEFINE_LOCAL_LU

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

secondary_rc
AP_MEMORY_SHORTAGE

Chapter 4. Node Configuration Verbs 73

DEFINE_LS

DEFINE_LS

DEFINE_LS is used to define a new link station (LS) or modify an existing one.
This verb provides the LS name, which is unique throughout the node, and the
name of the port this LS should use. This port must already have been defined
using a DEFINE_PORT verb. Link-specific data is concatenated to the basic
structure. DEFINE_LS can only be used to modify one or more fields of an existing
link station if the link station is in a reset state (after a STOP_LS has been issued),
and the port_name specified on the DEFINE_LS has not changed since the
previous definition of the LS.

See ['DLC Processes, Ports, and Link Stations” on page 14} for more information
about the relationship between DLCs, ports, and link stations.

The setting of a large number of the fields in LS_DEF_DATA depends on the value
of the adj_cp_type field. There are eight values that adj_cp_type can take (which
are described further in def _data.adj_cp_type on page|78), four of which are used
for links to adjacent Type 2.1 (APPN) nodes:

¢ AP_NETWORK_NODE

¢ AP_END_NODE

¢ AP_APPN_NODE

e AP_BACK_LEVEL_LEN_NODE

and four of which are used for links carrying PU Type 2.0 traffic only:
* AP_HOST_XID3

* AP_HOST_XIDO

* AP_DSPU_XID

* AP_DSPU_NOKXID.

There are four types of APPN nodes, which are distinguished as follows

* An APPN network node includes the Network Name Control Vector (CV) in its
XID3, supports parallel TGs, sets the networking capabilities bit in its XID3, and
can support CP-CP sessions on a link.

* An APPN end node includes the Network Name CV in its XID3, supports
parallel TGs, does not set the networking capabilities bit in its XID3, and can
support CP-CP sessions on a link.

* An up-level node includes the Network Name CV in its XID3, can support
parallel TGs, does not set the networking capabilities bit in its XID3, and does
not support CP-CP sessions.

e A back-level node does not include the Network Name CV in its XID3, does not
support parallel TGs, does not set the networking capabilities bit in its XID3,
and does not support CP-CP sessions.

The following fields must be set for all links:
port_name
adj_cp_type
dest_address
auto_act_supp
disable_remote_act
limited_resource
link_deact_timer
Is_attributes
adj_node_id
local_node_id

74 System Management Programming

DEFINE_LS

target_pacing_count
max_send_btu_size
link_spec_data_len
Is_role

Other fields must be set as follows:

» If adj_cp_type is set to AP_ NETWORK_NODE, AP_END_NODE, or
AP_APPN_NODE the following fields must be set:
adj_cp_name
tg_number
solicit_sscp_sessions
dspu_services
hpr_supported
hpr_link_lvl_error
default_nn_server
cp_cp_sess_support
use_default_tg_chars
tg_chars

 If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE the following fields must
be set:
adj_cp_name
solicit_sscp_sessions
dspu_services
use_default_tg_chars
tg_chars

» If a local PU is to use the link (adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XIDO, or solicit_sscp_sessions is set to AP_YES on a link to an APPN
node) the following field must be set:

pu_name

* If a downstream PU is to use the link and will be served by PU Concentration
(dspu_services is set to AP_PU_CONCENTRATION) the following field must be
set:

dspu_name

 If a downstream PU is to use the link and will be served by DLUR
(dspu_services is set to AP_DLUR) the following fields must be set:

dspu_name
dlus_name
bkup_dlus_name

VCB Structure

typedef struct define_ls
{

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* current format is zero */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char 1s_name[8]; /* name of link station */
LS _DEF_DATA def data; /* LS defined data */

} DEFINE_LS;

typedef struct 1s_def data

{
unsigned char description[RD_LEN];

/* resource description */
unsigned char port_name[8]; /* name of associated port */
unsigned char adj_cp_name[17]; /* adjacent CP name x/

Chapter 4. Node Configuration Verbs 75

DEFINE_LS

76

unsigned char adj cp_type; /* adjacent node type */
LINK_ADDRESS dest_address; /* destination address */
unsigned char auto_act_supp; /* auto-activate supported */
unsigned char tg_number; /* Pre-assigned TG number */
unsigned char Timited_resource; /+ limited resource */
unsigned char solicit_sscp_sessions;

/* solicit SSCP sessions */
unsigned char pu_name[8]; /* Local PU name (reserved if */

/* solicit_sscp_sessions is set */

/* to AP_NO) */
unsigned char disable_remote_act; /* disable remote activation flag */
unsigned char dspu_services; /* Services provided for */

/* downstream PU */
unsigned char dspu_name[8]; /* Downstream PU name (reserved =*/

/* if dspu_services is set to */

/* AP_NONE or AP_DLUR) */
unsigned char dlus_name[17]; /* DLUS name if dspu_services */

/* set to AP_DLUR */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name if */

/* dspu_services set to AP_DLUR =*/
unsigned char hpr_supported; /* does the Tink support HPR? x/
unsigned char hpr_link_1vl_error; /* does Tink use Tink-Tevel */

/% error recovery for HPR frms? =/
unsigned short 1ink deact_timer; /* HPR Tink deactivation timer */
unsigned char reservl; /* reserved x/
unsigned char default_nn_server; /+ Use as deflt LS to NN server x/
unsigned char 1s_attributes[4]; /* LS attributes */
unsigned char adj node id[4]; /* adjacent node ID */
unsigned char local _node id[4]; /* Tocal node ID */
unsigned char cp_cp_sess_support; /* CP-CP session support */
unsigned char use default_tg_chars;

/* Use the default tg_chars */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */
unsigned short target_pacing_count;/* target pacing count */
unsigned short max_send_btu_size; /* max send BTU size */
unsigned char Ts_role; /* link station role to use */

/* on this Tink */
unsigned char max_ifrm rcvd; /* max number of I-frames rcvd */
unsigned short dlus_retry timeout; /+ DLUS retry timeout */
unsigned short dlus_retry 1imit; /* DLUS retry Timit */
unsigned char conventional_lu_compression;

/* Data compression requested for */

/* conventional LU sessions */
unsigned char conventional_Tu_cryptography;

/* Cryptography required for */

/* conventional LU sessions */
unsigned char reserv3; /* reserved */
unsigned char retry flags; /* conditions LU sessions */
unsigned short max_activation_attempts;

/* how many automatic retries: */
unsigned short activation_delay_timer;

/* delay between automatic retriesx/
unsigned char branch_link_type; /* branch Tlink type */
unsigned char adj_brn_cp_support; /+ adjacent BrNN CP support */
unsigned char reserv4[20]; /* reserved */
unsigned short 1ink_spec_data_len; /* Tength of link specific data */

} LS_DEF_DATA;

typedef struct tg_defined_chars
unsigned char effect_cap; /* effective capacity x/
unsigned char reservel[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte cost; /* byte cost */
unsigned char reserve2; /* reserved x/
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay */
unsigned char modem_class; /* modem class */

System Management Programming

DEFINE_LS

unsigned char user_def parm 1; /* user-defined parameter 1 */
unsigned char user_def_parm_2; /* user-defined parameter 2 */
unsigned char user_def parm 3; /* user-defined parameter 3 */

} TG_DEFINED_CHARS;

typedef struct Tink_address
{

unsigned short length; /* Tlength */
unsigned short reservel; /* reserved x/
unsigned char address[MAX LINK ADDR_LEN];

/* address */

} LINK_ADDRESS;

typedef struct Tink_spec_data

{
unsigned char Tlink_data[SIZEOF_LINK_SPEC_DATA];

} LINK_SPEC_DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LS

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_ VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Is_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Setting the field Is_name to the special value “$ANYNET$” (an ASCII
string) has the effect of informing the Node Operator Facility that this is
the link station to which independent LU session traffic that is to be routed
by the AnyNet DLC should be sent. A link station of this name must be
defined on a port over the AnyNet DLC if AnyNet routing is required.

def_data.description
Resource description (returned on QUERY_LS, QUERY_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_data.port_name
Name of port associated with this link station. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant and must be set.
This named port must have already been defined by a DEFINE_PORT
verb.

def_data.adj_cp_name
Fully qualified 17-byte adjacent control point name, which is right-padded
with EBCDIC spaces. It is composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is only relevant for

Chapter 4. Node Configuration Verbs 77

DEFINE_LS

links to APPN nodes and is otherwise ignored. For links to APPN nodes it
can be set to all zeros unless the field tg number is set to a number in the
range one to 20 or the field adj_cp_type is set to

AP _BACK_LEVEL_LEN_NODE. If it is set to all zeros, it is not checked
against the name received from the adjacent node during XID exchange.If
it is not set to all zeros, it is checked against the name received from the
adjacent node during XID exchange unless adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE (in which case it is used to identify the
adjacent node).

def_data.adj_cp_type

Adjacent node type.

AP_NETWORK_NODE
Specifies that the node is an APPN network node.

AP_END_NODE
Specifies that the node is an APPN end node or an up-level node.

AP_APPN_NODE
Specifies that the node is an APPN network node, an APPN end
node, or an up-level node. The node type will be learned during
XID exchange.

AP_BACK_LEVEL_LEN_NODE
Specifies that the node is a back_level_len node; that is, it does not
send the control point name in the XID. For a link using the
AnyNet DLC supporting independent LU sessions, you must
specify AP_BACK_LEVEL_LEN_NODE.

AP_HOST_XID3
Specifies that the node is a host and that Personal Communications
or Communications Server responds to a polling XID from the
node with a format 3 XID.

AP_HOST_XIDO
Specifies that the node is a host and that Personal Communications
or Communications Server responds to a polling XID from the
node with a format 0 XID. For a link using the AnyNet DLC
supporting dependent LU sessions, you must specify
AP_HOST_XIDO.

AP_DSPU_XID
Specifies that the node is a downstream PU and that Personal
Communications or Communications Server includes XID
exchange in link activation.

AP_DSPU_NOXID
Specifies that the node is a downstream PU and that Personal
Communications or Communications Server does not include XID
exchange in link activation.

Note: A link station to a VRN is always dynamic and is therefore
not defined.

def_data.dest_address.length

Length of destination link station’s address on adjacent node.

If def_data.dest_address.length is set to zero and this LS is associated with
a port of type SATF, then the Program considers this link station to be a

78 System Management Programming

DEFINE_LS

wild card link station. This will cause the Program to match LS to any
incoming connection that is not matched by another defined link station.

def_data.dest_address.address
Link station’s destination address on adjacent node. For a link using the
AnyNet DLC, the dest_address specifies the adjacent node ID or
adjacent control point name. If an adjacent node ID is specified, the length
must be 4 and the address must contain the 4-byte hexadecimal node ID
(1-byte block ID, 3-byte PU ID). If an adjacent control point name is
specified, the length must be 17 and the address must contain the control
point name in EBCDIC, padded with EBCDIC blanks.

def_data.auto_act_supp
Specifies whether the link can be activated automatically when required by
a session. (AP_YES or AP_NO). If the link is not to an APPN node then
this field can always be set to AP_YES and has no requirements on other
parameters. If the link is to an APPN node, then this field cannot be set to
AP_YES if the link also supports CP-CP sessions; and can only be set to
AP_YES if a preassigned TG number is also defined for the link
tg_number and is set to a value between one and 20). These requirements
will always be met if adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE
because cp_cp_sess_support and tg_number are ignored in this case).

def_data.tg number
Preassigned TG number. This field is only relevant if the link is to an
adjacent APPN node and is otherwise ignored. If adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE then it is also ignored and is assumed to
be set to one. For links to adjacent APPN nodes this must be set in the
range one to 20. This number is used to represent the link when the link is
activated. Personal Communications or Communications Server will not
accept any other number from the adjacent node during activation of this
link. To avoid link-activation failure because of a mismatch of preassigned
TG numbers, the same TG number must be defined by the adjacent node
on the adjacent link station (if using preassigned TG numbers). If a
preassigned TG number is defined then the adj_cp_name must also be
defined (and cannot be set to all zeros) and the adj_cp_type must be set to
AP_NETWORK_NODE or AP_END_NODE. If zero is entered the TG
number is not preassigned and is negotiated when the link is activated.

def data.limited_resource
Specifies whether this link station is to be deactivated when there are no
sessions using the link. This is set to one of the following values:

AP_NO
The link is not a limited resource and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
The link is a limited resource and will be deactivated automatically
when no active sessions are using it. A limited resource link station
can be configured for CP-CP session support. (This is done by
setting this field to AP_YES and cp_cp_sess_support to AP_YES.)
In this case, if CP-CP sessions are brought up over the link,
Personal Communications or Communications Server will not treat
the link as a limited resource (and will not bring the link down).

AP_INACTIVITY
The link is a limited resource and will be deactivated automatically
when no active sessions are using it, or when no data has flowed

Chapter 4. Node Configuration Verbs 79

DEFINE_LS

on the link for the time period specified by the link_deact_timer
field. Note that link stations on a nonswitched port cannot be
configured as limited resource.

Note that link stations on a nonswitched port cannot be configured as
limited resource.

A limited resource link station may be configured for CP-CP session
support. (This is done by setting this field to AP_YES and
cp_cp_sess_support to AP_YES.) In this case, if CP-CP sessions are brought
up over the link, Personal Communications or Communications Server will
not retreat the link as a limited resource (and will not bring the link
down). Note, this does not apply if this field is set to AP_INACTIVITY.

def_data.solicit_sscp_sessions

AP_YES requests the adjacent node to initiate sessions between the SSCP
and the local control point and dependent LUs. (In this case the pu_name
must be set.) AP_NO requests no sessions with the SSCP on this link. This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If the adjacent node is defined to be a host (adj_cp_type is set to
AP_HOST_XID3 or AP_HOST_XIDO0), then Personal Communications or
Communications Server always requests the host to initiate sessions
between the SSCP and the local control point and dependent LUs (and
again the pu_name must be set).

This field can only be set to AP_YES on a link to an adjacent APPN node if
dspu_services is set to AP_NONE. If this field is set to AP_YES and the
DCL used by this LS is defined as hpr_only, then the DEFINE_LS is
rejected with a parameter check and secondary return code of
AP_INVALID_SOLICIT_SSCP_SESS.

def_data.pu_name

Name of local PU that will use this link if the adjacent node is defined to
be a host or solicit_sscp_sessions is set to AP_YES on a link to an APPN
node. This is an 8-byte alphanumeric type-A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces. If the adjacent node is
not defined to be a host, and is not defined as an APPN node with
solicit_sscp_sessions set to AP_YES, this field is ignored.

def data.disable_remote_act

Specifies whether remote activation of this link is supported (AP_YES or
AP_NO).

def_data.dspu_services

Specifies the services that the local node provides to the downstream PU
across this link. This is set to one of the following:

AP_PU_CONCENTRATION
Local node will provide PU concentration for the downstream PU.

AP_DLUR
Local node will provide DLUR services for the downstream PU.
This setting is only valid if the local node is a Network Node.

AP_NONE
Local node will provide no services for this downstream PU.

The dspu_name must also be set if this field is set to
AP_PU_CONCENTRATION or AP_DLUR.

80 System Management Programming

DEFINE_LS

This field must be set to AP_PU_CONCENTRATION or AP_DLUR
if the adjacent node is defined as a downstream PU (that is,
adj_cp_type is set to AP_DSPU_XID or AP_DSPU_NOXID). It can
be set to AP_PU_CONCENTRATION or AP_DLUR on a link to an
APPN node if solicit_sscp_sessions is set to AP_NO. This field is
ignored if the adjacent node is defined as a host.

If this field is not set to AP_NONE and the DLC used by this LS is
defined as hpr_only, then the DEFINE_LS is rejected with a
parameter check and secondary return code of
SP_INVALID_DSPU_SERVICES.

def_data.dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

This field must be set if dspu_services is set to
AP_PU_CONCENTRATION or AP_DLUR and is otherwise ignored.

def data.dlus_name
Name of DLUS node which DLUR solicits SSCP services from when the
link to the downstream node is activated. This should be set to all zeros or
a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) If the field is set to all zeros, then the global default
DLUS (if it has been defined using the DEFINE_DLUR_DEFAULTS verb) is
solicited when the link is activated. If the dlus_name is set to zeros and
there is no global default DLUS, then DLUR will not initiate SSCP contact
when the link is activated. This field is ignored if dspu_services is not set
to AP_DLUR.

def_data.bkup_dlus_name
Name of DLUS node which serves as the backup for the downstream PU.
This should be set to all zeros or a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) If the field is set to all zeros,
then the global backup default DLUS (if it has been defined by the
DEFINE_DLUR_DEFAULTS verb) is used as the backup for this PU. This
field is ignored if dspu_services is not set to AP_DLUR.

def_data.hpr_supported
Specifies whether HPR is supported on this link (AP_YES or AP_NO). This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If it is not, setting this field to AP_YES results in the verb being
rejected with a parameter check and a secondary return code of
INVALID_NODE_TYPE_FOR_HPR.

def_data.hpr_link_lvl_error
Specifies whether HPR traffic should be sent on this link using link-level
error recovery (AP_YES or AP_NO). This parameter is ignored if
hpr_supported is set to AP_NO.

def_data.link_deact_timer
Limited resource link deactivation timer (in seconds).

If limited_resource is set to AP_INACTIVITY, then a link is automatically
deactivated if no data traverses the link for the duration of this timer.

Chapter 4. Node Configuration Verbs 81

DEFINE_LS

If zero is specified, the default value of 30 is used. Otherwise, the
minimum value is 5. (If it is set any lower, the specified value will be
ignored and 5 will be used.) This parameter is reserved if limited_resource
is set to AP_NO.

def_data.default_nn_server
Specifies whether a link can be automatically activated by an end node to
support CP-CP sessions to a network node server. (AP_YES or AP_NO).
Note that the link must be defined to support CP-CP sessions for this field
to take effect.

def data.ls_attributes
Specifies further information about the adjacent node.

def_data.ls_attributes[0]
Host type.

AP_SNA
Standard SNA host.

AP_FNA
FNA (VTAM-F) host.

AP_HNA
HNA host.

def_data.ls_attributes|[1]
This is a bit field. It may take the value AP_NO, or any of the following
values bit-wise ORed together.

AP_SUPPRESS_CP_NAME
Network Name CV suppression option for a link to a back-level
LEN node. If this bit is set, no Network Name CV is included in
XID exchanges with the adjacent node. (This bit is ignored unless
adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE or
AP_HOST_XID3.)

AP_REACTIVATE_ON_FAILURE
If the link is active and then fails, Personal Communications or
Communications Server will attempt to reactivate the link. If the
reactivation attempt fails, the link will remain inactive.

AP_USE_PU_NAME_IN_XID_CVS
If the adjacent node is defined to be a host or solicit_sscp_sessions
is set to AP_YES on a link to an APPN node, and the
AP_SUPPRESS_CP_NAME bit is not set, then the fully qualified
CP name in Network Name CVs sent on Format 3 XIDs is replaced
by the name supplied in def data.pu_name, fully qualified with
the network ID of the CP.

def_data.adj_node_id
Node ID of adjacent node. This a 4-byte hexadecimal string. If adj_cp_type
indicates the adjacent node is a T2.1 node, this field is ignored unless it is
nonzero, and either the adj_cp_type is set to
AP_BACK_LEVEL_LEN_NODE or the adjacent node does not send a
Network Name CV in its XID3. If adj_cp_type is set to AP_HOST_XID3 or
AP_HOST_XIDO, this field is always ignored. If adj_cp_type is set to
AP_DSPU_XID and this field is nonzero, it is used to check the identity of
the downstream PU. If adj_cp_type is set to AP_DSPU_NOXID, this field
is either ignored (if dspu_services is AP_PU_CONCENTRATION) or used
to identify the downstream PU to DLUS (if dspu_services is AP_DLUR).

82 System Management Programming

DEFINE_LS

def data.local_node_id
Node ID sent in XIDs on this link station. This a 4-byte hexadecimal string.
If this field is set to zero, the node_id will be used in XID exchanges. If
this field is nonzero, it replaces the value for XID exchanges on this LS.

def_data.cp_cp_sess_support
Specifies whether CP-CP sessions are supported (AP_YES or AP_NO). This
field is only relevant if the link is to an APPN node and is otherwise
ignored. If adj_cp_type is set to AP_BACK_LEVEL_LEN_NODE then it is
also ignored and is assumed to be set to AP_NO.

def_data.use_default_tg chars
Specifies whether the default TG characteristics supplied on the
DEFINE_PORT verb should be used (AP_YES or AP_NO). If this is set to
AP_YES then the tg_chars field will be ignored. This field is only relevant
if the link is to an APPN node and is otherwise ignored.

def_data.tg_chars
TG characteristics (See ['DEFINE_CN” on page 31). This field is only
relevant if the link is to an APPN node and is otherwise ignored.

def_data.target_pacing_count
Numeric value between 1 and 32 767, inclusive, indicating the desired
pacing window size for BINDs on this TG. The number is only significant
when fixed bind pacing is being performed. Personal Communications or
Communications Server does not currently use this value.

def data.max_send_btu_size
Maximum BTU size that can be sent from this link station. This value is
used to negotiate the maximum BTU size than can be transmitted between
a link station pair. If the link is not HPR-capable then this must be set to a
value greater than or equal to 99. If the link is HPR-capable then this must
be set to a value greater than or equal to 768.

def_data.ls_role
The link station role that this link station should assume. This can be any
one of AP_LS NEG, AP_LS PRI or AP_LS_SEC to select a role of
negotiable, primary or secondary. The field can also be set to
AP_USE_PORT_DEFAULTS to select the value configured on the
DEFINE_PORT verb. If the dlc_type is AP_TWINAX, then only
AP_LS_SEC is supported. If dlc_type is AP_ANYNET (and Is_name is
"$ANYNET$"), then AP_LS_PRI is not supported.

def_data.max_ifrm_rcvd
The maximum number of I-frames that can be received by the XID sender
before acknowledgment.

Range: 0-127

If zero is specified, the value of max_ifrm_rcvd from DEFINE_PORT is
used as the default.

def_data.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the def_data.dlus_name and def_data.bkup_dlus_name
fields. The interval between the initial attempt and the first retry is always
one second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. This field is ignored if
def_data.dspu_services is not set to AP_DLUR.

Chapter 4. Node Configuration Verbs 83

DEFINE_LS

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS
specified in the def_data.dlus_name and def_data.bkup_dlus_name fields.
If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X’FFFF’ is specified, APPN retries
indefinitely. This field is ignored if def_data.dspu_services is not set to
AP_DLUR.

def_data.conventional lu_compression
Specifies whether data compression is requested for conventional LU
sessions dependent on this PU. Note that this field is only valid for links
carrying LU 0 to 3 traffic.

AP_NO
The local node should not be compressing or decompressing data
flowing on conventional LU sessions using this PU.

AP_YES
Data compression should be enabled for conventional LU sessions
dependent on this PU if the host requests compression. If this
value is set, but the node does not support compression (defined
on the START_NODE verb) then the link station is successfully
defined but without compression support.

def_data.conventional_lu_cryptography
Specifies whether session level encryption is required for conventional LU
sessions. This field only applies to links carrying conventional LU traffic.

AP_NONE
Session level encryption is not performed by the Program.

AP_MANDATORY
Mandatory session level encryption is performed by the Program if
an import key is available to the LU. Otherwise, it must be
performed by the application that uses the LU (if this is PU
Concentration, then it is performed by a downstream LU).

AP_OPTIONAL
This value allows the cryptography used to be driven by the host
application on a per session basis. If the host requests
cryptography for a session on this LS, then the behavior of the
Program is the same as AP_MANDATORY. If the host does not
request cryptography, then the behaviour is as for AP_NONE.

def_data.retry_flags
This field specifies the conditions under which activation of this link
station is subject to automatic retry. It is a bit field, and may take any of
the following values bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

84 System Management Programming

DEFINE_LS

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

def_data.max_activation_attempts
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_PORT.

def_data.activation_delay_timer
This field has no effect unless at least one flag is set in retry_flags.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_ APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_PORT.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

def_data.branch_link_type
BrNN only. This specifies whether a link is an uplink or a downlink. This
field only applies if the def_data.adj_cp_type is set to
AP_NETWORK_NODE, AP_END_NODE, AP_APPN_NODE, or
AP_BACK_LEVEL_LEN_NODE.

AP_UPLINK
This link is an uplink.

AP_DOWNLINK
The link is a downlink.

If the field adj_cp_type is set to AP_NETWORK_NODE, then this
field must be set to AP_UPLINK.

Other node types: This field is ignored.

def_data.adj_brnn_cp_support
BrNN only. This specifies whether the adjacent CP is allowable, is a
requirement, or prohibited from being an NN(BrNN); for example, a BrNN
showing an NN face. This field only applies if the field adj_cp_type is set

Chapter 4. Node Configuration Verbs 85

DEFINE_LS

to AP_NETWORK_NODE or AP_APPN_NODE (and the node type learned
during XID exchange is network node).

AP_BRNN_ALLOWED
The adjacent CP is allowed (but not required) to be an NN(BrNN).

AP_BRNN_REQUIRED
The adjacent CP is required to be an NN(BrNN).

AP_BRNN_PROHIBITED
The adjacent CP is not allowed to be an NN(BrNN).

If the field adj_cp_type is set to AP_NETWORK_NODE and the field
auto_act_supp is set to AP_YES, then this field must be set to
AP_BRNN_REQUIRED or AP_BRNN_PROHIBITED.

Other node types: This field is ignored.

def data.link_spec_data_len

This field should always be set to zero.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc

AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_DEF_LINK_INVALID_SECURITY

AP_INVALID_CP_NAME
AP_INVALID_LIMITED_RESOURCE
AP_INVALID_LINK_NAME
AP_INVALID_LS_ROLE
AP_INVALID_NODE_TYPE
AP_INVALID_PORT_NAME
AP_INVALID_AUTO_ACT_SUPP
AP_INVALID_PU_NAME
AP_INVALID_SOLICIT_SSCP_SESS
AP_INVALID_DLUS_NAME
AP_INVALID_BKUP_DLUS_NAME
AP_INVALID_NODE_TYPE_FOR_HPR
AP_INVALID_TARGET_PACING_COUNT
AP_INVALID_BTU_SIZE
AP_HPR_NOT_SUPPORTED
AP_INVALID_TG_NUMBER
AP_MISSING_CP_NAME
AP_MISSING_CP_TYPE
AP_MISSING_TG_NUMBER
AP_PARALLEL_TGS_NOT_SUPPORTED
AP_INVALID_DLUS_RETRY_TIMEOUT
AP_INVALID_DLUS_RETRY_LIMIT
AP_INVALID_CLU_CRYPTOGRAPHY

86 System Management Programming

DEFINE_LS

AP_INVALID_RETRY_FLAGS
AP_BRNN_SUPPORT_MISSING
AP_INVALID_BRANCH_LINK_TYPE
AP_INVALID_BRNN_SUPPORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP _LOCAL_CP_NAME

AP_DEPENDENT_LU_SUPPORTED
AP_DUPLICATE_DEST_ADDR
AP_INVALID_NUM_LS_SPECIFIED
AP_LS_ACTIVE
AP_PU_ALREADY_DEFINED
AP_DSPU_SERVICES_NOT_SUPPORTED
AP_DUPLICATE_TG_NUMBER
AP_TG_NUMBER_IN_USE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_UPLINK
AP_INVALID_DPWNLINK

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP _NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the

following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs

87

DEFINE_LU_0_TO_3

DEFINE_LU 0 TO_ 3

This verb defines an LU of type 0, 1, 2 or 3. It allows the LU to be added to an LU
pool. If the pool does not already exist, it is added. This verb cannot be used to
modify the lu_model, model_name, priority, description, and appc_spec_def_data
of an existing definition, but no other fields may be modified.

Personal Communications or Communications Server supports implicit LU type 0,
1, 2 or 3 definition by ACTLU. Implicit definitions cannot be deleted, but are
removed when the LU becomes inactive. To obtain information about implicit
definitions, use QUERY_LU_0_TO_3 or register for LU_0_TO_3_INDICATIONs. An
implicit LU definition can be redefined using DEFINE_LU_0_TO_3, provided
lu_name, pu_name, and nau_address are correct, and pool_name is all zeros (the
LU is then treated as if it had been configured by the operator in the first place).

VCB Structure

Format 1
typedef struct define_lu_0_to_3

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes %/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char Tu_name[8]; /* LU name x/
LU_0_TO_3_DEF_DATA

def data; /* defined data */

} DEFINE_LU 0 _TO 3;
typedef struct Tu 0 _to_3 def_data

unsigned char description /* resource description */
unsigned char nau_address; /* LU NAU address %/
unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority %/
unsigned char Tu_model; /* LU model x/
unsigned char sscp_id[6] /* SSCP 1D */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def_data[16]; /* Application Specified Data */
unsigned char model name[7]; /* LU model name for DDDLU */
unsigned char reserv3[17]; /* reserved x/

} LU_0_TO_ 3 _DEF_DATA;

VCB Structure

Format 0
typedef struct define_lu_0 to_3

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char Tu_name[8]; /* LU name */
LU_6_TO 3 _DEF_DATA
def data; /* defined data */
} DEFINE_LU 0 _TO 3;
typedef struct Tu 0 to 3 def data
unsigned char description /* resource description */
unsigned char nau_address; /* LU NAU address */

88 System Management Programming

DEFINE_LU_0_TO_3

unsigned char pool_name[8]; /* LU pool name */
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char Tu_model; /* LU model */
unsigned char sscp_id[6] /* SSCP ID */
unsigned short timeout; /* Timeout */

unsigned char app_spec_def data[16]; /+ Application Specified Data */
} LU_0_TO 3 DEF DATA;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero or one to specify one
of the versions of the VCB listed above.

lu_name
Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

def_data.description
Resource description (returned on QUERY_LU_0_TO_3). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

def data.nau_address
Network addressable unit address of the LU, which must be in the range
1-255.

def_data.pool_name
Name of LU pool to which this LU belongs.This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If the LU does not belong to a pool, this field is set to all
binary zeros. If the pool does not currently exist, it is created.

def_data.pu_name
Name of the PU (as specified on the DEFINE_LS verb) that this LU will
use. This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

def_data.priority
LU priority when sending to the host. This is set to one of the following
values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

Chapter 4. Node Configuration Verbs 89

DEFINE_LU_0_TO_3

def data.lu_model

Model type and number of the LU. This is set to one of the following
values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

Format 1 only, if model_name is not set to all binary zeros, then this field
is ignored.

If a value other than AP_UNKNOWN is specified and the host system
supports DDDLU (Dynamic Definition of Dependent LUs), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. For format 1 only, the PSID subvector contains the
machine type and model number corresponding to the value of this field.
This field may be changed dynamically by reissuing the verb. Changes will
not come into effect until the LU is next closed and deactivated.

def_data.sscp_id

This field specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. If the field is set to binary zeros, then the LU may be
activated by any SSCP.

def data.timeout

Timeout for LU specified in seconds. If a timeout is supplied and the user
of the LU specified allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in
the case of PU concentration, on the Downstream LU definition), then the
LU will be deactivated after the PLU-SLU session is left inactive for this
period and one of the following conditions holds:

* The session passes over a limited resource link

* Another application wishes to use the LU before the session is used
again

If the timeout is set to zero, the LU will not be deactivated.

def_data.app_spec_def_data

Application specified defined data. This field is not interpreted by Personal
Communications or Communications Server, but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb.

def_data.model_name

Personal Communications or Communications Server checks that this field
consists of the EBCDIC characters A-Z, 0-9 and @, #, and $. If this field is
not set to all binary zeros and the host system supports DDDLU (Dynamic
Definition of Dependent LUs), the node will generate an unsolicited PSID
NMVT reply in order to dynamically define the local LU at the host. The
PSID subvector will contain the name supplied in this field. This field may
be changed dynamically by reissuing the verb. Changes will not come into
effect until the LU is closed and deactivated.

90 System Management Programming

DEFINE_LU_0_TO_3

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_PU_NOT_DEFINED
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED

AP LU NAU_ADDR_ALREADY_DEFD

If the verb does not execute because the system has not been built with Dependent
LU support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:
primary_rc

AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 91

DEFINE_LU_0_TO_3_RANGE

DEFINE_LU_0_TO_3_RANGE

This verb allows the definition of multiple LUs within a specified NAU range. The
node operator provides a base name and an NAU range. The LU names are
generated by combining the base name with the NAU addresses. This verb cannot
be used to modify existing definitions.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would define the LUs LUNMEO001, LUNMEQ002, LUNMEQ003, and LUNMEQ004. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters. Personal Communications or Communications Server
then right-pads these to eight characters.

VCB Structure

Format 1
typedef struct define_lu_0 to_3 range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char reserv3; /* reserved %/
unsigned char description; /* resource description */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char pool_name[8]; /* LU pool name x/
unsigned char pu_name[8]; /* PU name */
unsigned char priority; /* LU priority */
unsigned char Tu_model; /* LU model */
unsigned char sscp_id[6]; /% SSCP 1D */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def data[16]; /* application specified data */
unsigned char model_name[7]; /* LU model name for DDDLU */
unsigned char name_attributes; /* Attributes of base name */
unsigned char base_number; /* Base number for LU names */
unsigned char reserv3[15]; /* reserved x/

} DEFINE_LU_©_TO_3_RANGE;

VCB Structure

Format 0
typedef struct define_lu_0 to_3 range

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char reserv3; /* reserved x/
unsigned char description; /* resource description */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char pool_name[8]; /* LU pool name x/
unsigned char pu_name[8]; /* PU name x/
unsigned char priority; /* LU priority x/
unsigned char Tu_model; /* LU model %/

92 System Management Programming

DEFINE_LU_0_TO_3_RANGE

unsigned char sscp_id[6]; /* SSCP 1D */
unsigned short timeout; /* Timeout */
unsigned char app_spec_def data; /* application specified data */

} DEFINE_LU 0 TO 3 RANGE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_LU_0_TO_3_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero or one to specify one
of the versions of the VCB listed above.

base_name
Base LU name. This is an 5-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each LU in the
NAU range.

This is the field with no bits set in the field name_attributes. Setting bits
changes the meaning of this field.

description
Resource description (returned on QUERY_LU_0_TO_3). The length of this
field should be a multiple of four bytes, and not zero.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

pool_name
Name of LU pool to which this LU belongs. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If the LU does not belong to a pool, this field is set to all
binary zeros.

pu_name
Name of the PU (as specified on the DEFINE_LS verb) that this LU uses.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

priority
LU priority when sending to the host. This is set to one of the following
values:

AP_NETWORK
AP_HIGH
AP_MEDIUM
AP_LOW

Chapter 4. Node Configuration Verbs 93

DEFINE_LU_0_TO_3_RANGE

94

lu_model

Model type and number of the LU. This is set to one of the following
values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

Format 1 only, if model_name is not set to all binary zeros, then this field
is ignored.

If a value other than AP_UNKNOWN is specified and the host system
supports DDDLU (Dynamic Definition of Dependent LUs), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. For format 1 only, the PSID subvector contains the
machine type and model number corresponding to the value of this field.
This field may be changed dynamically by reissuing the verb. Changes will
not come into effect until the LU is next closed and deactivated.

This field specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. If the field is set to binary zeros, then the LU may be
activated by any SSCP.

Timeout for LU specified in seconds. If a timeout is supplied and the user
of the LU specified allow_timeout on the OPEN_LU_SSCP_SEC_RQ (or, in
the case of PU concentration, on the Downstream LU definition), then the
LU will be deactivated after the PLU-SLU session is left inactive for this
period and one of the following conditions holds:

* The session passes over a limited resource link

* Another application wishes to use the LU before the session is used
again

If the timeout is set to zero, the LU will not be deactivated.

model_name

Personal Communications or Communications Server checks that this field
consists of the EBCDIC characters A-Z, 0-9 and @, #, and $. If this field is
not set to all binary zeros and the host system supports SDDLU
(Self-Defining Dependent LU), the node will generate an unsolicited PSID
NMVT reply in order to dynamically define the local LU at the host. The
PSID subvector will contain the name supplied in this field.

name_attributes

This bit field modifies the interpretation and usage of the supplied
base_name. This field may take the value of zero, or any or all of the
following values bit-wise ORed together.

AP_USE_HEX IN_NAME
If this bit is set, the interpretation of the base_name is modified as
follows:

System Management Programming

DEFINE_LU_0_TO_3_RANGE

This is an 6-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. The base
name is appended with two EBCDIC characters, representing the
hexadecimal value of the NAU address, for each LU in the NAU
range.

AP_USE_BASE_NUMBER
If this bit is set, the interpretation base_name is modified as
follows:

This is an 5-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three EBCDIC numeric characters,
representing the decimal index of the LU in the range, starting
with base_number and ending with (base_name + max_nau —
min_nau).

base_number
If the AP_USE_BASE_NUMBER bit is not set in name_attributes, this field
is ignored. Otherwise, this field modifies the interpretation of base_name
described previously. Legal values are from zero to (255 — max_nau +
min_nau).

app_spec_def_data
Application specified defined data. This field is not interpreted by Personal
Communications or Communications Server, but is stored and
subsequently returned on the QUERY_LU_0_TO_3 verb (the same data is
returned for each LU in the range).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_BASE_NUMBER

AP_INVALID_LU_MODEL
AP_INVALID_LU_NAME
AP_INVALID_NAME_ATTRIBUTES
AP_INVALID_NAU_ADDRESS
AP_INVALID_PRIORITY

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_DEFINED

Chapter 4. Node Configuration Verbs 95

DEFINE_LU_0_TO_3_RANGE

96

AP_INVALID_PU_NAME
AP_INVALID_PU_TYPE
AP_LU_NAME_POOL_NAME_CLASH
AP_LU_ALREADY_DEFINED
AP_LU_NAU_ADDR_ALREADY_DEFD
AP_IMPLICIT_LU_DEFINED
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DEFINE_LU_POOL

DEFINE_LU_POOL

This verb is used to define an LU pool or to add LUs to an existing pool. The LUs
that are to be added must already have been defined using either a
DEFINE_LU_0_TO_3 verb or a DEFINE_LU_0_TO_3_RANGE verb. LUs can only
belong to one LU pool at a time. If the specified LUs already belong to a pool, they
are removed from the existing pool into the pool being defined. Up to 10 LUs can
be added to a pool at a time, although there is no limit to the total number of LUs
in a pool.

VCB Structure

typedef struct define_lu_pool
{

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* verb attributes x/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name */
unsigned char description[RD_LEN]; /* resource description %/
unsigned char reserv3[4]; /* reserved */
unsigned short num_Tus; /* number of LUs to add */
unsigned char Tu_names[10][8]; /* LU names */

} DEFINE_LU_POOL;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEFINE_LU_POOL

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pool_name
Name of pool to which these LUs belong. This name is an 8-byte string,
padded to the right with spaces. This can be either an EBCDIC string or a
string in a locally displayable character set.

description
Resource description (returned on QUERY_LU_POOL). The length of this
field should be a multiple of four bytes, and not zero.

num_lus
Number of LUs to add, in the range 0-10.

lu_names
Names of the LUs that are being added to the pool. Each name is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

Chapter 4. Node Configuration Verbs 97

DEFINE_LU_POOL

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_LU_NAME

AP_INVALID_NUM_LUS
AP_INVALID_POOL_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_LU_NAME_POOL_NAME_CLASH

AP_INVALID_POOL_NAME
If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

98 System Management Programming

DEFINE_MODE

DEFINE_MODE

The DEFINE_MODE verb defines a set of networking characteristics to assign to a
particular mode (or group of sessions). This verb can also be used to modify any

fields on a previously defined mode. If the SNASVCMG mode is redefined, its
mode_name and cos_name cannot be modified. The CPSVCMG mode cannot be

redefined.

The DEFINE_MODE verb can also be used to define the default COS, which
unknown modes will be mapped to. This is done by setting mode_name to all

zeros. The default COS is initially #CONNECT.

Note: It is not necessary to define all the modes you want to use locally, though
they must be defined at your network node and potentially, the partner
node. If an ALLOCATE is issued specifying a mode that has not been
defined, the node uses the characteristics for the model default mode
specified on the DEFINE_DEFAULTS verb. If no such model has been
specified, the characteristics of the blank mode are used for the model.

VCB Structure

typedef struct define_mode

{

short
char
char
short
long

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned char
unsigned short
MODE_CHARS
} DEFINE_MODE;

opcode;
reserve;
format;
primary_rc;
secondary_rc;
mode_name[8] ;
reserv3;
mode_chars;

typedef struct mode _chars

{

unsigned char
short
char
char

unsigned
unsigned
unsigned

short
short
short

unsigned
unsigned
unsigned

char
char
char
short
short
short
short

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char

unsigned

unsigned

unsigned

unsigned
} MODE_CHARS;

Supplied Parameters

description[RD_LEN]

max_ru_size_upp;
receive_pacing_win;
default_ru_size;

max_neg_sess_Tlim;
plu_mode_session_limit;
min_conwin_src;

cos_name[8];
cryptography;
compression;

auto_act;
min_conloser_src;
max_ru_size_low
max_receive_pacing_win;

max_compress_1vl;
max_decompression_1vl;
comp_in_series;
reserv4[24];

The application supplies the following parameters:

/* verb operation code */
/* reserved */
/* format */
/* primary return code */
/* secondary return code */
/* mode name */
/* reserved */
/* mode characteristics */
/* resource description */
/* max RU size upper bound */
/* receive pacing window */
/* default RU size to maximize =/
/* performance */
/* max negotiable session limit */
/* LU-mode session Timit */
/* min source contention winner x/
/* sessions */
/* class-of-service name */
/* cryptography */
/* compression */
/* initial auto-activation countx/
/* min source contention loser =/
/* maximum RU size Tower bound =*/
/* maximum receive pacing window*/
/* maximum compression level */
/* maximum decompression level =/
/* support for LZ and RLE */
/* reserved */
Chapter 4. Node Configuration Verbs 99

DEFINE_MODE

100

opcode
AP_DEFINE_MODE

format
Identifies the format of the VCB. Set this field to zero or one to specify the
version of the VCB listed above.

mode_name
Name of the mode. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. If this is
set to all zeros, the default COS is set to mode_chars.cos_name, and all
other mode_chars fields are ignored.

mode_chars.description
Resource description (returned on QUERY_MODE_DEFINITION and
QUERY_MODE). The length of this field should be a multiple of four
bytes, and nonzero.

mode_chars.max_ru_size_upp
Upper bound for the maximum size of RUs sent and received on sessions
in this mode. The value is used when the maximum RU size is negotiated
during session activation. The range is 256-61440. This field is ignored if
default_ru_size is set to AP_YES.

mode_chars.receive_pacing_win
Session pacing window for sessions in this mode. For fixed pacing, this
value specifies the receive pacing window. For adaptive pacing, this value
is used as a preferred minimum window size. Note that Personal
Communications or Communications Server will always use adaptive
pacing unless the adjacent node specifies that it does not support it. The
range is 1-63. The value zero is not allowed.

mode_chars.default_ru_size
Specifies whether a default upper bound for the maximum RU size will be
used. If this parameter specifies AP_YES, max_ru_size_upp is ignored, and
the upper bound for the maximum RU size is set to the link BTU size
minus the size of the TH and the RH.

AP_YES
AP_NO

mode_chars.max_neg_sess_lim
Maximum number of sessions allowed on this mode between any local LU
and partner LU. If a value of zero is specified then there will be no implicit
CNOS exchange. The range is 0-32 767.

mode_chars.plu_mode_session_limit
Default session limit for this mode. This limits the number of sessions on
this mode between any one local LU and partner LU pair. This value is
used when CNOS (Change Number of Sessions) exchange is initiated
implicitly. If a value of zero is specified then there will be no implicit
CNOS exchange. The range is 0-32 767.

mode_chars.min_conwin_src
Minimum number of contention winner sessions that can be activated by
any one local LU using this mode. This value is used when CNOS (Change
Number of Sessions) exchange is initiated implicitly. If a value of zero is
specified then there will be no implicit CNOS exchange. The range is
0-32767.

System Management Programming

DEFINE_MODE

mode_chars.cos_name
Name of the class of service to request when activating sessions on this
mode. This is an 8-byte alphanumeric type-A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces.

mode_chars.cryptography
Specifies whether session-level cryptography must be used (AP_NONE or
AP_MANDATORY).

mode_chars.compression
Specifies the use of compression for sessions activated using this mode.

AP_COMP_PROHIBITED
Compression is not supported on sessions for this mode.

AP_COMP_REQUESTED
Compression is supported and requested (but not mandated) on
sessions for this mode.

If the format field is set to 0, then the compression and
decompression levels are set to the maximum supported by the
node.

If the format field is set to 1, then the maximum levels of
compression and decompression are defined by the
max_compress_lvl and max_decompress_lvl fields.

mode_chars.auto_act
Specifies how many sessions are automatically activated for this mode.
This value is used when Change Number of Sessions (CNOS) exchange is
initiated implicitly.

The range is 0-32767.

mode_chars.min_consloser_src
Specifies the minimum number of contention loser sessions to be activated
by any one local LU for this mode. This value is used when CNOS (change
number of sessions) exchange is initiated implicitly. The range is 0-32767.

mode_chars.max_ru_size low
Specifies the lower bound for the maximum size of RUs sent and received
on sessions in this mode. This value is used when the maximum RU size is
negotiated during session activation. The range is 256-61140.

The value zero means that there is no lower bound.
The field is ignored if default_ru_size is set to AP_YES.

mode_chars.max_receive_pacing_win
Specifies the maximum pacing window for sessions in this mode. For
adaptive pacing, this value is used to limit the receive pacing window it
grants. For fixed pacing, this field is not used. Note, the Program always
uses adaptive pacing unless the adjacent node specifies that it does not
support it. The range is 0-32767.

The value of zero means that there is no upper bound.

mode_chars.max_compress_lvl
The maximum compression level that the Program attempts to negotiate
for data flowing supported by the node.

AP_NONE
AP_RLE_COMPRESSION

Chapter 4. Node Configuration Verbs 101

DEFINE_MODE

AP_LZ9_COMPRESSION
AP_LZ10_COMPRESSION
AP_LZ12_COMPRESSION

The level of compression configured cannot be greater than that supported
by the node (specified in the field max_compress_lvl on START_NODE).
Note, if compression is negotiated using a non-extended BIND, then the
compression level is set to RLE compression.

mode_chars.max_decompress_lvl

The maximum decompression level that the Program attempts to negotiate
for data flowing supported by the node.

AP_NONE
AP_RLE_COMPRESSION
AP_LZ9_COMPRESSION
AP_LZ10_COMPRESSION
AP_LZ12_COMPRESSION

The level of compression configured cannot be greater than that supported
by the node (specified in the field max_compress_lvl on START_NODE).
Note, if compression is negotiated using a non-extended BIND, then the
decompression level is set to LZ9 compression.

mode_chars.comp_in_series

Specifies whether the use of LZ compression preceded by RLE compression
is allowed. If this field is set to AP_YES, then max_compress_lvl must be
set to AP_LZ9_COMPRESSION, AP_LZ10_COMPRESSION, or
AP_LZ12_COMPRESSION.

AP_YES
AP_NO
This field cannot be set to AP_YES if the node is configured as not

supporting RLE and LZ compression (specified in the field comp_in_series
on START_NODE).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc

AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc

AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_COS_NAME

AP_CPSVCMG_ALREADY_DEFD
AP_INVALID_CNOS_SLIM
AP_INVALID_COS_SNASVCMG_MODE
AP_INVALID_DEFAULT RU_SIZE
AP_INVALID_MAX_NEGOT_SESS_LIM
AP_INVALID_MAX_RU_SIZE_UPPER

102 System Management Programming

DEFINE_MODE

AP_INVALID_MAX_RU_SIZE LOW
AP_RU_SIZE LOW_UPPER_MISMATCH
AP_INVALID_COMPRESSION
AP_INVALID_MIN_CONWINNERS
AP_INVALID_MIN_CONLOSERS
AP_INVALID_MIN_CONTENTION_SUM
AP_INVALID_MODE_NAME
AP_INVALID_RECV_PACING_WINDOW
AP_INVALID_MAX_RECV_PACING_WIN
AP_INVALID_DEFAULT_RU_SIZES
AP_INVALID_SNASVCMG_MODE_LIMIT
AP_MODE_SESS_LIM_EXCEEDS_NEG
AP_INVALID_CRYPTOGRAPHY
AP_INVALID_MAX_COMPRESS_LVL
AP_INVALID_MAX_DECOMPRESS_LVL
AP_INVALID_COMP_IN_SERIES

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:
primary_rc
AP_UNEXPECTED_SYSTEM_ERROR
Effects of Redefinition

Following is the effect of redefinition of each field:

description
The updated description is returned on subsequent QUERY_MODE verbs.

compression
max_compress_lvl
max_decompress_lvl
comp_in_series
cryptography
max_ru_size_upp
receive_pacing win
default_ru_size
max_ru_size_low

max_receive_pacing_win
The updated values are used for all subsequent session activation attempts

Chapter 4. Node Configuration Verbs 103

DEFINE_MODE

for this mode and are returned on all subsequent QUERY_MODE verbs.
The change does not effect any existing active sessions.

max_neg_sess_lim
plu_mode_session_limit
min_conwin_src
auto_act

min_conloser_src
The updated values are not used for a particular local LU or partner LU
pair until the next CNOS command (either locally initiated or remotely
initiated). The old value is returned in QUERY_MODE verbs until the next
CNOS command.

cos_name
The updated values are used for all subsequent session activation attempts
for this mode and are returned on all subsequent QUERY_MODE verbs.
The change does not effect any existing active sessions. The updated value
is also used for any subsequent mode to COS mapping operation (for
example, if this node is a network node and provides mode to COS
mapping services or its served end nodes), and is returned on all
subsequent QUERY_MODE_TO_COS_MAPPING verbs.

Note: An implicit mode definition can be made explicit by a DEFINE_MODE. This
is reflected by subsequent QUERY_MODE verbs returning with implicit set
to AP_NO.

104 System Management Programming

DEFINE_PARTNER_LU

DEFINE_PARTNER_LU

The DEFINE_PARTNER_LU verb defines the parameters of a partner LU for
LU-LU sessions between a local LU and the partner LU. Alternatively,

DEFINE_PARTNER_LU can be used to modify all parameters already defined for
the partner LU, other than the fqplu_name and plu_alias.

VCB Structure

typedef struct define_partner_lu

{
unsigned short opcode;
unsigned char reserv2;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
PLU_CHARS plu_chars;

} DEFINE_PARTNER LU;

typedef struct plu_chars
{

unsigned char fqplu_name[17];

unsigned char plu_alias[8];
unsigned char description[RD_LEN];

unsigned char plu_un_name[8];
unsigned char preference
unsigned short max_mc_11_send_size;
unsigned char conv_security ver;
unsigned char parallel_sess_supp;
unsigned char reserv2[8];

} PLU_CHARS;

Supplied Parameters

/*
/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*

verb operation code
reserved

format

primary return code
secondary return code
partner LU characteristics

fully qualified partner
LU name
partner LU alias

resource description

partner LU uninterpreted name
routing preference

max MC send LL size

already verified accepted?
parallel sessions supported?
reserved

The application supplies the following parameters:

opcode
AP_DEFINE_PARTNER_LU

format

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Identifies the format of the VCB. Set this field to zero to specify the version

of the VCB listed above.

plu_chars.fqplu_name

Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

plu_chars.plu_alias

Alias of the partner LU. This is an 8-byte string in a locally displayable

character set. This field may be set to all zeros for a partner LU with no

alias associated to it.

plu_chars.description

Resource description (returned on QUERY_PARTNER_LU and
QUERY_PARTNER_LU_DEFINITION). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

plu_chars.plu_un_name

Uninterpreted name of the partner LU. This is an 8-byte type-A EBCDIC

character string.

Chapter 4. Node Configuration Verbs

105

DEFINE_PARTNER_LU

plu_chars.max_mc_ll_send_size
Maximum size of LL records sent by and received by mapped conversation
services at the partner LU. Range: 1-32 767 (32 767 is specified by setting
this field to 0)

plu_chars.preference
The preferred routing protocol to be used for session activation to this
partner LU. This field can take the following values:

AP_NATIVE
Use native (APPN) routing protocols only.

AP_NONNATIVE
Use nonnative (AnyNet) protocols only.

AP_NATIVE_THEN_NONNATIVE
Try native (APPN) protocols, and if the partner LU cannot be
located then retry session activation using nonnative (AnyNet)
protocols.

AP_NONNATIVE_THEN_NATIVE
Try nonnative (AnyNet) protocols, and if the partner LU cannot be
located then retry session activation using native (APPN) protocols.

AP_USE_DEFAULT_PREFERENCE
Use the default preference defined when the node was started.
(This can be recalled by QUERY_NODE.)

Note: Nonnative routing is only meaningful when an AnyNet DLC
is available to the Node Operator Facility, and there is an

AnyNet link station defined. (See ["DEFINE_LS” on|
page 74)

plu_chars.conv_security_ver
Specifies whether the partner LU is authorized to validate user_ids on
behalf of local LUs, that is whether the partner LU can set the already
verified indicator in an Attach request (AP_YES or AP_NO).

plu_chars.parallel_sess_supp
Specifies whether the partner LU supports parallel sessions (AP_YES or
AP_NO).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_ANYNET _NOT_SUPPORTED

AP_DEF PLU_INVALID_FQ NAME
AP_INVALID_UNINT_PLU_NAME

106 System Management Programming

DEFINE_PARTNER_LU

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PLU_ALIAS_CANT_BE_CHANGED

AP_PLU_ALIAS_ALREADY_USED

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Effects of Redefinition

Following is the effect of redefinition of each field:

fgplu_name
Cannot be changed.

plu_alias
If a previous DEFINE_PARTNER_LU has been issued with a different
plu_alias, the DEFINE_PARTNER_LU fails. If a previous
DEFINE_PARTNER_LU has been issued with an all zero plu_alias, the
redefinition is accepted and will effect all existing PLU records. If no
previous DEFINE_PARTNER_LU has been issued, the specified plu_alias is
copied into all correspondig implicitly defined partner LU records, unless
all zeros are specified, in which case the implicit plu_aliases are left
uchanged.

Note: Issuing DEFINE_PARTNER_LU with a nonzero plu_alias can cause
some running applications to fail, if the applicaiton has already
obtained the implicit plu_alias from an earlier APPC verb and uses
it on a subsequent ALLOCATE.

description
The updated description is returned on subsequent QUERY_PARTNER_LU
verbs.

plu_un_name
The updated plu_un_name is used for all subsequent session activation
requests to this partner LU, and is returned on all subsequent
QUERY_PARTNER_LU verbs.

Chapter 4. Node Configuration Verbs 107

DEFINE_PARTNER_LU

preference

The updated preference is used for all subsequent session activation
requests to this partner LU, and is returned on all subsequent
QUERY_PARTNER_LU verbs.

max_mc_ll _send_size

The updated preference is used for all subsequent session activation
requests to this partner LU (even on existing sessions). The change does
not effect existing conversations. The updated value is returned on all
subsequent QUERY_PARTNER_LU verbs.

conv_security_ver

The updated value is not used for a particular local LU until the number
of sessions between that local LU and the partner LU drops to zero. BINDs
and RSP(BIND)s will flow using the old setting, and the old value will be
returned in QUERY_PARTNER_LU requests until the number of sessions
drops to zero. This is because the partner LU can reject subsequent session
activation attempts if the security support is different than that of existing
active sessions.

parallel_sess_supp

As with conv_security_ver, the updated value is not used for a particular
local LU until the number of sessions between that local LU and the
specified partner LU drops to zero. This is to avoid problems with the
architected LU6.2 session consistency check.

Note: An implicit mode definition can be made explicit by a

DEFINE_PARTNER_LU. This is reflected by subsequent
QUERY_PARTNER_LU verbs returning with implicit set to AP_NO.

108 System Management Programming

DEFINE_PORT

DEFINE_PORT

DEFINE_PORT defines a new port or modifies an existing one. This port belongs
to a specified DLC, which must already have been defined using a DEFINE_DLC

verb. The DEFINE_PORT verb provides the port name, which is unique
throughout the node, along with port specific parameters and default LS

characteristics for use with dynamic link stations. The port specific parameters are
concatenated to the basic structure. The default LS characteristics are concatenated
immediately following the port specific parameters.

DEFINE_PORT can be used to modify one or more fields on an existing port if the

port is in a reset state (after STOP_PORT has been issued) and the dlc_name

specified on the DEFINE_PORT has not changed since the previous definition of

the port.

If the port is active, only the following fields can be modified:

description

implicit_dspu_services

implicit_deact_timer
implicit_cp_cp_sess_support

implicit_link_Ivl_error

default_tg_chars

implicit_dspu_template

implicit_Is_limit

link_spec_data_len

link_spec_data

If the port spec data is changed while the port is active, the verb will not be

rejected but the modifications will be ignored.

See [“DLC Processes, Ports, and Link Stations” on page 14} for more information

about the relationship between DLCs, ports, and link stations.

VCB Structure

typedef struct define_port

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

PORT_DEF |

} DEFINE_PORT;

short
char
char
short
long
char
DATA

opcode;
attributes;
format;
primary_rc;
secondary_rc;
port_name[8];
def data;

typedef struct port_def_data

{
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char

char
long
short
short
short

description;
dlc_name[8];
port_type;
port_attributes[4];

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

implicit_uplink_to_en;/*

reserv3[2];
port_number;
max_rcv_btu_size;
tot_link_act_lim;
inb_link_act_lim;

/*
/*
/*
/*
/*
/*

Chapter 4. Node Configuration Verbs

verb operation code
verb attributes
format

primary return code

secondary return code

name of port
port defined data

resource description
DLC name associated with port

port type
port attributes

Implicit Tinks to EN are

uplink
reserved
port number

max receive BTU size
total link activation Timit

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

inbound Tink activation limit */

109

DEFINE_PORT

110

unsigned

unsigned
unsigned

short

char
char

usigned char

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned

char
char
char
char
char
char
char
short
short
char

char

short
short

LINK_ADDRESS
LINK_ADDRESS

unsigned

unsigned

unsigned

unsigned

unsigned

char

char

char

char

char

out_Tink_act_Tim; /* outbound Tink activation
/* limit

1s_role; /* initial Tink station role

retry_flags; /* conditions for automatic
/* retries

max_activation_attempts;

/* how many automatic retries?
activation_delay_timer;

/* delay between automatic

/* retries
reservl[10]; /* reserved
implicit_dspu_template[8];

/* reserved
implicit_1s_Timit; /* max number of implicit Tinks
reserv2; /* reserved
implicit_dspu_services;

/* implicit Tinks support DSPUs
implicit_deact_timer; /* Implicit Tink HPR Tink

/* deactivation timer
act_xid_exchange_limit;

/* act. XID exchange Timit
nonact_xid_exchange Timit;

/* nonact. XID exchange 1imit

1s_xmit_rcv_cap; /* LS transmit-receive
/* capability
max_ifrm_rcvd; /* max number of I-frames that

/* can be received
target_pacing_count; /* Target pacing count

max_send_btu_size; /* Desired max send BTU size
dlc_data; /* DLC data
hpr_dlc_data; /* HPR DLC data

implicit_cp_cp_sess_support;

/* Implicit Tinks allow CP-CP

/* sessions
implicit_limited_resource;

/* Implicit Tinks are limited

/* resource
implicit_hpr_support;

/* Implicit Tinks support HPR
implicit_link_1vl_error;

/* Implicit Tinks support HPR

/* link-level error recovery
retiredl; /* reserved

TG_DEFINED _CHARS default_tg chars; /* Default TG chars

unsigned

char

discovery_supported /* Discovery function
/* supported?

unsigned short port_spec_data_len; /* length of port spec data

unsigned
} PORT_DEF_DATA;

short

Tink_spec_data_len; /* length of Tink spec data

typedef struct Tink_address

{
unsigned
unsigned
unsigned

} LINK_ADDRESS;

short
short
char

Supplied Parameters

The application supplies the following parameters:

opcode

length; /* length
reservel; /* reserved
address[MAX_LINK ADDR_LEN];

/* address

AP_DEFINE_PORT

System Management Programming

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/

DEFINE_PORT

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port being defined. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

port_def_data.description
Resource description (returned on QUERY_PORT). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

port_def_data.dlc_name
Name of the associated DLC, which is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. This
named DLC must have already been defined by a DEFINE_DLC verb.

port_def_data.port_type
Specifies the type of line used by the port. The value corresponds to one of
the following line types:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

Note that if this field is set to AP_PORT_SATF then the Is_role must be set
to AP_LS_NEG.

port_def_data.port_attributes[0]
This is the bit field. It may take the value AP_NO, or the following;:

AP_RESOLVE_BY_LINK_ADDRESS
This specifies that an attempt is made to resolve incoming calls by
using the link address on CONNECT_IN before using the CP name
(or node ID) carried on the received XID3 to resolve them. This bit
is ignored unless the field port_type is set to
AP_PORT_SWITCHED.

port_def_data.implicit_uplink_to_en
BrNN only: Specifies whether implicit link stations off this port are uplink
or downlink if the adjacent node is an end node. The value of this field
will only be considered if there are no existing links to the same partner, as
such links are used first to determine the link type.

AP_NO
Implicit links are downlink.

AP_YES
Implicit links are uplink.

Other node types: This field is ignored.

port_def_data.port number
Port number.

Chapter 4. Node Configuration Verbs 111

DEFINE_PORT

port_def_data.max_rcv_btu_size

Maximum BTU size that can be received. If implicit HPR-capable links are
not supported on the port, then this must be set to a value greater than or
equal to 99. If implicit HPR-capable links are supported on the port, then
this must be set to a value greater than or equal to 768.

port_def_data.tot_link_act_lim

Total link activation limit. This specifies the maximum number of link
stations that can be active concurrently. This must be greater than or equal
to the sum of the inb_link_act_lim and out_link_act_lim fields. If the
port_type is set to AP_PORT_NONSWITCHED and the 1s_role is set to
AP_LS_NEG or AP_LS_SEC then this field must be set to one. If the
Is_role is set to AP_LS_PRI then this field must be in the range greater
than or equal to one to 256. If this port is for the AnyNet DLC, you must
use 65535.

port_def_data.inb_link_act_lim

Inbound link activation limit. This specifies the number of link stations
reserved for inbound activation on this port. The maximum number of
outbound link stations that can be active concurrently is therefore
port_def data.tot_link_act lim - port_def data.inb_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the Is_role is set to
AP_LS_NEG or AP_LS_PRI then this field must be set to zero. If the
port_type is set to AP_PORT_NONSWITCHED and the Is_role is set to
AP_LS_SEC then this field must be set to zero or one. If this port is for the
AnyNet DLC, you must use zero.

port_def_data.out_link act_lim

Outbound link activation limit. This specifies the number of link stations
reserved for outbound activation on this port. The maximum number of
inbound link stations that can be active concurrently is therefore

port_def data.tot_link_act_lim - port_def_ data.out_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the Is_role is set to
AP_LS_NEG then this field must be set to zero. If the Is_role is set to
AP_LS_PRI then this field must be equal to tot_link_act_lim. If the
port_type is set to AP_PORT_NONSWITCHED and the Is_role is set to
AP_LS_SEC then this field must be set to zero or one. If this port is for the
AnyNet DLC, you must use zero.

port_def data.ls_role

Link station role. This can be negotiable (AP_LS_NEG), primary
(AP_LS_PRI), or secondary (AP_LS_SEC). The link station role determines
the relationship between the values specified by the tot_act_lim,
inb_link_ act lim, and out_link_act lim fields as described above. Note
that if the port_type is set to AP_PORT_SATF then the 1s_role must be set
to AP_LS_NEG.

port_def_data.retry_flags

This field specifies the conditions under which activation of this link
station is subject to automatic retry if the flag AP_INHERIT _RETRY is set
on DEFINE_LS in port_def_data.retry_flags. It is a bit field, and may take
any of the following values bit-wise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, APPN will attempt to
activate it.

112 System Management Programming

DEFINE_PORT

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, APPN attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
In addition to the retry conditions specified by flags in this field,
those specified in the retry_flags field of the underlying port
definition will also be used.

port_def_data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
port_def data.retry_flags and port_def_data.max_activation_attempts on
DEFINE_LS is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit. The value AP_USE_DEFAULTS results in the use of
max_activiation_attempts supplied on DEFINE_DLC.

port_def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
port_def data.retry_flags and activiation_delay_timer on DEFINE_LS is
set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in

port_def data.retry_flags.

The value AP_USE_DEFAULTS results in the use of
activiation_delay_timer supplied on DEFINE_DLC.

If zero is specified, the Program uses a default timer duration of thirty
seconds.

port_def data.implicit_dspu_template
Specifies the DSPU template, defined with the DEFINE_DSPU_TEMPLATE
verb, that is used for definitions if the local node is to provide PU
Concentration for an implicit link activated on this port. If the template
specified does not exist (or is already at its instance limit) when the link is
activated, activation fails. This is an 8-byte string in a locally-displayable
character set. All 8 bytes are significant and must be set.

If the port_def data.implicit_dspu_services field is not set to
AP_PU_CONCENTRATION, then this field is reserved.

Chapter 4. Node Configuration Verbs 113

DEFINE_PORT

port_def_data.implicit_Is_limit
Specifies the maximum number of implicit link stations that can be active
on this port simultaneously, including dynamic links and links activated
for Discovery. A value of 0 means that there is no limit, a value of
AP_NO_IMPLICIT_LINKS means that no implicit links are allowed.

port_def_data.implicit.dspu_services
Specifies the services that the local node will provide to the downstream
PU across implicit links activated on this port. This is set to one of the
following values:

AP_DLUR
Local node will provide DLUR services for the downstream PU
(using the default DLUS configured through the
DEFINE_DLUR_DEFAULTS verb). This setting is only valid if the
local node is a network node.

AP_PU_CONCENTRATION
Local node will provide PU Concentration for the downstream PU
(and will put in place definitions as specified by the DSPU
template specified in the field
port_def_data.implicit_dspu_template).

AP_NONE
Local node will provide no services for this downstream PU.

port_def_data.implicit_deact_timer
Limited resource link deactivation timer (in seconds). If
implicit_limited_resource is set to AP_YES or AP_NO_SESSIONS, then an
HPR-capable implicit link is automatically deactivated if no data traverses
the link for the duration of this timer, and no sessions are using the link.

If implicit_limited_resource is set to AP_INACTIVITY then an implicit
link is automatically deactivated if no data traverses the link for the
duration of this timer.

The value is an integer in the range of 0-1000 seconds. The default is 10
seconds.

If zero is specified, the default value of 30 is used. Otherwise the minimum
value is 5. (If it is set any lower, the specified value will be ignored and 5
will be used.) Note that this parameter is reserved unless
implicit_limited_resource is set to AP_NO.

port_def data.act_xid_exchange_limit
Activation XID exchange limit.

port_def data.nonact xid_exchange_limit
Non-activation XID exchange limit.

port_def_data.ls_xmit_rcv_cap
Specifies the link station transmit/receive capability. This is either two-way
simultaneous (AP_LS_TWS) (also known as duplex or full-duplex) or two
way alternating (AP_LS_TWA) (also know as half-duplex).

port_def data.max_ifrm_rcvd
Maximum number of I-frames that can be received by the local link
stations before an acknowledgment is sent. The range is 1-127.

port_def_data.target_pacing_count
Numeric value between 1 and 32 767 inclusive indicating the desired
pacing window size for BINDs on this TG. The number is only significant

114 System Management Programming

DEFINE_PORT

when fixed bind pacing is being performed. Note that Personal
Communications or Communications Server does not currently use this
value.

port_def_data.max_send_btu_size
Maximum BTU size that can be sent from this link station. This value is
used to negotiate the maximum BTU size than can be transmitted between
a link station pair. If implicit HPR-capable links are not supported on the
port then this must be set to a value greater than or equal to 99. If implicit
HPR-capable links are supported on the port then this must be set to a
value greater than or equal to 768.

port_def data.dlc_data.length
Port address length.

port_def data.dlc_data.address
Port address.

port_def_data.hpr_dlc_data.length
HPR Port address length.

port_def data.hpr_dlc_data.address
HPR Port address. This is currently used when supporting HPR links. The
field specifies the information sent by Personal Communications or
Communications Server in the X'80' subfield of the X'61' control vector on
XID3s exchanged on link stations using this port. It is passed on the
ACTIVATE_PORT issued to the DLC by Personal Communications or
Communications Server. Some DLCs can require this information to be
filled in for ports supporting HPR links.

port_def_data.implicit_cp_cp_sess_support
Specifies whether CP-CP sessions are permitted for implicit link stations off
this port (AP_YES or AP_NO).

port_def_data.implicit_limited_resource
Specifies whether implicit link stations off this port should be deactivated
when there are no sessions using the link. This is set to one of the
following values:

AP_NO
Implicit links are not limited resources and will not be deactivated
automatically.

AP_YES or AP_NO_SESSIONS
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them.

AP_INACTIVITY
Implicit links are a limited resource and will be deactivated
automatically when no active sessions are using them, or when no
data has followed on the link for the time period specified by the
implicit_deact_timer field.

port_def data.implicit_hpr_support
Specifies whether HPR should be supported on implicit links (AP_YES or
AP_NO).

port_def data.implicit_link_lvl_error
Specifies whether HPR traffic should be sent on implicit links using
link-level error recovery (AP_YES or AP_NO). Note that the parameter is
reserved if implicit_hpr_support is set to AP_NO.

Chapter 4. Node Configuration Verbs 115

DEFINE_PORT

port_def data.default_tg_chars
TG characteristics (See ['DEFINE_COS” on page 35). These are used for
implicit link stations off this port and also for defined link stations that
specify use_default_tg_chars.

port_def_data.discovery_supported
Specifies whether Discovery functions are to be performed on this port
(AP_YES or AP_NO).

port_def_data.port_spec_data_len
Length of data to be passed unchanged to port on ACTIVATE_PORT
signal. The data should be concatenated to the basic structure.

port_def_data.link_spec_data_len
This field should always be set to zero.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

AP_INVALID_DLC_NAME
AP_INVALID_PORT_TYPE
AP_INVALID_BTU_SIZE
AP_INVALID_LS_ROLE
AP_INVALID_LINK_ACTIVE_LIMIT
AP_INVALID_MAX_IFRM_RCVD
AP_INVALID_DSPU_SERVICES
AP_HPR _NOT_SUPPORTED
AP_DLUR_NOT_SUPPORTED
AP_PU_CONC_NOT_SUPPORTED
AP_INVALID_TEMPLATE_NAME
AP_INVALID_RETRY_FLAGS
AP_INVALID_IMPLICIT_UPLINK

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE

AP_DUPLICATE_PORT_NUMBER
AP_CANT_MODIFY_WHEN_ACTIVE
AP_CANT_MODIFY_VISIBILITY
AP_INVALID_IMPLICIT_UPLINK

116 System Management Programming

DEFINE_PORT

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 117

DEFINE_TP

DEFINE_TP

The DEFINE_TP verb defines transaction program (TP) information for use by the
Node Operator Facility TP Attach Manager when it processes incoming attaches
from partner LUs. This verb can also be used to modify one or more fields on a
previously defined transaction program (but cannot be used to modify Personal
Communications or Communications Server defined transaction programs).

VCB Structure

typedef struct define_tp

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* verb attributes */
unsigned char reserv2; /* reserved x/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name */
TP _CHARS tp_chars; /* TP characteristics */

} DEFINE_TP;
typedef struct tp_chars

unsigned char description[RD_LEN]

/* resource description */
unsigned char conv_type; /* conversation type x/
unsigned char security rqd; /* security support */
unsigned char sync_level; /* synchronization level support =*/
unsigned char dynamic_load; /* dynamic Toad */
unsigned char enabled; /* is the TP enabled? */
unsigned char pip_allowed; /* program initialization */

/* parameters supported */
unsigned char duplex_support; /* duplex supported */
unsigned char reserv3[9]; /* reserved */
unsigned short tp_instance_limit; /* T1imit on currently active TP */

/* instances */

unsigned short incoming_alloc_timeout;
/* incoming allocation timeout =/
unsigned short rcv_alloc_timeout; /* receive allocation timeout */

unsigned short tp_data_len; /* TP data length */
TP_SPEC_DATA tp_data; /* TP data */
} TP_CHARS;

typedef struct tp_spec_data
{

unsigned char pathname[256] ; /* path and TP name */
unsigned char parameters[64]; /* parameters for TP x/
unsigned char queued; /* queued TP */
unsigned char load_type; /* type of load-DETACHED/CONSOLE x/
unsigned char dynamic_load /* dynamic loading of TP enabled =/
unsigned char reserved[5]; /* reserved x/

} TP_SPEC_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEFINE_TP

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following;:

118 System Management Programming

DEFINE_TP

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

tp_name
Name of the transaction program (TP) being defined. This is a 64-byte
EBCDIC string padded to the right with EBCDIC spaces. Note that
Personal Communications or Communications Server does not check the
character set of this field.

tp_chars.description
Resource description (returned on QUERY_TP_DEFINITION and
QUERY_TP). This is a 16-byte string in a locally displayable character set.
All 16 bytes are significant.

tp_chars.conv_type
Specifies the types of conversation supported by this transaction program.

AP_BASIC
AP_MAPPED
AP_EITHER

tp_chars.security_rqd
Specifies whether conversation security information is required to start the
transaction program (AP_NO or AP_YES).

tp_chars.sync_level
Specifies the synchronization levels supported by the transaction program.

AP_NONE
The transaction program supports a synchronization level of None.

AP_CONFIRM_SYNC_LEVEL
The transaction program supports a synchronization level of
Confirm.

AP_EITHER
The transaction program supports a synchronization level of None
or Confirm.

AP_SYNCPT_REQUIRED
The transaction program supports a synchronization level of
Sync-point.

AP_SYNCPT_NEGOTIABLE
The transaction program supports a synchronization level of None,
Confirm or Sync-point.

tp_chars.dynamic_load

Specifies whether the transaction program can be dynamically loaded
(AP_YES or AP_NO).

tp_chars.enabled
Specifies whether the transaction program can be attached successfully
(AP_YES or AP_NO). The default is AP_NO.

tp_chars.pip_allowed
Specifies whether the transaction program can receive program
initialization (PIP) parameters (AP_YES or AP_NO).

Chapter 4. Node Configuration Verbs 119

DEFINE_TP

tp_chars.duplex_support
Indicates whether the transaction program is full or half duplex.

AP_FULL_DUPLEX
Specifies that the transaction program is full duplex.

AP_HALF_DUPLEX
Specifies that the transaction program is half duplex.

AP_EITHER_DUPLEX
Specifies that the transaction program can be either half or full
duplex

tp_chars.tp_instance_limit
Limit on the number of concurrently active transaction program instances.
A value of zero means no limit.

tp_chars.incoming_alloc_timeout
Specifies the number of seconds that an incoming attach will be queued
waiting for a RECEIVE_ALLOCATE. Zero implies no timeout, and so it
will be held indefinitely.

tp_chars.rcv_alloc_timeout
Specifies the number of seconds that a RECEIVE_ALLOCATE verb will be
queued while waiting for an Attach. Zero implies no timeout, and so it will
be held indefinitely.

tp_chars.tp_data_len
Length of the implementation-dependent transaction program data.

tp_spec_data
Information used by the Attach Manager when launching the transaction
program. Refer to the information about Attach Manager in Personal
Communications for Windows, Version 5.7 Client/Server Communications
Programming for further details of how this is used.

tp_spec_data.pathname
Specifies the path and transaction program name.

tp_spec_data.parameters
Specifies the parameters for the transaction program.

tp_spec_data.queued
Specifies whether the transaction program will be queued.

tp_spec_data.load_type
Specifies whether type of load is either AP_AM_CONSOLE,
AP_AM_DETACHED or AP_AM_WINDOW.

tp_spec_data.dynamic_load
Specifies how the transaction program will be loaded.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:
primary_rc

AP_PARAMETER_CHECK

120 System Management Programming

DEFINE_TP

secondary_rc
AP_SYSTEM_TP_CANT_BE_CHANGED

AP_INVALID_CONV_TYPE
AP_INVALID_SYNC_LEVEL
AP_INVALID_DYNAMIC_LOAD
AP_INVALID_ENABLED
AP_INVALID_PIP_ALLOWED
AP_INVALID_DUPLEX_SUPPORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_CANT_MODIFY_VISIBILITY

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Effects Of Redefinition: The redefinition of each field takes effect immediately (for
example, when the next instance of the transaction program is started). However,
changes to the fields incoming_alloc_timeout and rcv_alloc_timeout will not effect
any attaches or RECEIVE_ALLOCATES that are already queued.

Chapter 4. Node Configuration Verbs 121

DELETE_ADJACENT_NODE

DELETE_ADJACENT_NODE

122

DELETE_ADJACENT_NODE removes entries in the node directory database that
are associated with the resources on an adjacent node.

To remove the node’s control point from the directory along with its LUSs, set
num_of lus to zero. If num_of_lus is nonzero, this verb is used to remove node

LUs from the directory, leaving the control point definition intact.

If the verb fails for any reason, no directory entries will be deleted.

VCB Structure

The DELETE_ADJACENT_NODE verb contains a variable number of
ADJACENT_NODE_LU overlays. The ADJACENT_NODE_LU structures are
concatenated onto the end of DELETE_ADJACENT_NODE structure.

typedef struct delete_adjacent_node

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char cp_name[17]; /% CP name x/
unsigned short num_of_lus; /* number of LUs x/

} DELETE_ADJACENT_NODE;
typedef struct adjacent_node_lu

unsigned char wildcard_Tu; /* wildcard LU name indicator */
unsigned char fqlu_name[17]; /* fully qualified LU name */
unsigned char reservl[6]; /* reserved */

} ADJACENT_NODE_LU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cp_name
The fully qualified name of the control point in the adjacent LEN end
node. The name is 17 bytes long and is right-padded with EBCDIC spaces.
It is composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

num_of lus
The number of LUs to be deleted. Set this to zero if the entire node
definition is to be deleted. This number represents the number of adjacent
LU overlays that follow the DELETE_ADJACENT_NODE VCB.

adjacent_node_lu.wildcard_lu
Indicates whether the specified LU name is a wildcard name (AP_YES or
AP_NO).

System Management Programming

DELETE_ADJACENT_NODE

adjacent_node_lu.fqlu_name
The LU name to be deleted. If this name is not fully qualified, the network
ID of the CP name is assumed. The name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of one or two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CP_NAME

AP _INVALID LU _NAME
If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_INVALID_CP_NAME

AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 123

DELETE_CN

DELETE_CN

DELETE_CN deletes and frees the memory for a connection network control block
if all the associated ports are reset. DELETE_CN can also be used to delete selected
ports from a connection network. To do this, the user should set the num_ports
field to a nonzero value and supply the port names of the ports to be deleted.

VCB Structure

typedef struct delete_cn

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary _rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char fqcn_name[17]; /* name of connection network */
unsigned char reservl; /* reserved */
unsigned short num_ports; /* number of ports to delete =/

unsigned char port name[8] [8];
/* names of ports to delete =/
} DELETE_CN;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqen_name
Name of connection network (17 bytes long) to be deleted. This name is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

num_ports
The number of ports to delete on the connection network. This should be
set to zero if the entire connection network is to be deleted.

port_name
Names of the ports to be deleted if the num_ports is nonzero. Each port
name is an 8-byte string in a locally displayable character set. All 8 bytes
are significant and must be set. If the num_ports field is zero this field is
reserved.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:

124 System Management Programming

DELETE_CN

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CN_NAME

AP_INVALID_NUM_PORTS_SPECIFIED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 125

DELETE_COS

DELETE_COS

DELETE_COS deletes a class-of-service entry unless it is one of the default classes
of service defined by SNA.

VCB Structure

typedef struct delete_cos

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /+ format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char cos_name[8]; /* class-of-service name */

} DELETE_COS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_COS_NAME_NOT_DEFD

AP_SNA_DEFD_COS_CANT_BE_DELETE
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

126 System Management Programming

DELETE_COS

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 127

DELETE_DLC

DELETE_DLC

DELETE_DLC deletes all ports, link stations, and connection network transmission
groups (TGs) associated with the DLC if it is reset. All DLC control blocks are
deleted and the memory freed. The Node Operator Facility returns a response
specifying whether the DLC was deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the DLC) then any LUs defined on this PU will also be deleted.

VCB Structure

typedef struct delete_dlc

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC x/

} DELETE_DLC;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of DLC to be deleted. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

128 System Management Programming

DELETE_DLC

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_ACTIVE
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 129

DELETE_DOWNSTREAM_LU

DELETE_DOWNSTREAM_LU

E This verb applies only to Communications Server.
p;

—

VCB Structure

typedef struct delete_downstream Tu

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_name[8]; /* Downstream LU name */

} DELETE_DOWNSTREAM_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_ VISIBLE

The other values that can be bit-wise ORed into this field are as follows:

AP_DELAY_IF_REQUIRED
This specifies that the downstream LU specified by dslu_name is
currently active, this verb should be queued inside the Program
until the LU becomes inactive. In this case, the verb is processed to
completion when the LU becomes inactive.

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_name
Name of the downstream LU that is being deleted. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

130 System Management Programming

DELETE_DOWNSTREAM_LU

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_LU_NAME

AP_DSLU_ACTIVE
AP_DELAYED_ VERB_PENDING

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 131

DELETE_DOWNSTREAM_LU_RANGE

DELETE_DOWNSTREAM_LU_RANGE

E This verb applies only to Communications Server.
p;

—

For example, a base name of LUNME combined with an NAU range of 1 to 4
deletes the LUs LUNMEQ001, LUNMEO002, LUNMEOQ03, and LUNMEOQ04. A base
name of less than five non-pad characters results in LU names of less than eight
non-pad characters.

This verb deletes all LUs in the range. If an LU in the range does not exist, then
the verb continues with the next one that does exist. The verb only fails if no LUs
exist in the specified range.

VCB Structure

typedef struct delete_downstream_Tu_range

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dslu_base name[5];/* Downstream LU base name */
unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range x/

} DELETE_DOWNSTREAM_LU_RANGE;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_DOWNSTREAM_LU_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dslu_base_name
Base name for downstream LU name range. This is a 5-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This base name is appended with three type-A EBCDIC
numeric characters, representing the decimal value of the NAU address,
for each LU in the NAU range.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

132 System Management Programming

DELETE_DOWNSTREAM_LU_RANGE

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_NAU_ADDRESS
AP_INVALID_LU_NAME
If the verb does not execute because of a state error, the Program returns the
following parameters:
primary_rc

AP_STATE_CHECK

AP_INVALID_LU_NAME
AP_DSLU_ACTIVE
AP_DELAYED_ VERB_PENDING

secondary_rc

AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 133

DELETE_DSPU_TEMPLATE

DELETE_DSPU_TEMPLATE

E This verb applies only to Communications Server.
p;

—

VCB Structure

Format 1
typedef struct delete_dspu_template

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes x/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char template_name[8]; /* name of template */

unsigned short num of dslu_templates;
/* Number of DSLU templates =/
unsigned char reservl[10]; /* reserved */
} DELETE_DSPU_TEMPLATE;

typedef struct dslu_template

unsigned char min_nau; /* min NAU address in range =*/
unsigned char max_nau; /* max NAU address in range =/
unsigned char allow_timeout; /* Allow timeout of host LU? =/
unsigned char delayed_Togon; /* Allow delayed logon to */

/* host LU %/
unsigned char reservl[8]; /* reserved */
unsigned char host_Tu[8]; /* host LU or pool name x/

} DSLU_TEMPLATE;

VCB Structure

Format 0
typedef struct delete_dspu_template

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char template name[8]; /* name of template x/

} DELETE_DSPU_TEMPLATE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibilityof the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

134 System Management Programming

DELETE_DSPU_TEMPLATE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

template_name
Name of the DSPU template. (This corresponds to the name specified in
the implicit_dspu_template field on PORT_DEF_DATA). This is an 8-byte
string in a locally-displayable character set. All 8 bytes are significant and
must be set.

num_of_dslu_templates
The number of DSLU template overlays which follow the
DEFINE_DSPU_TEMPLATE VCB. This can be from 0 to 255 inclusive. The
DSLU templates are appended as overlays to the end of the
DELETE_DSPU_TEMPLATE VCB.

dslu_template.min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

dslu_template.max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

def data.allow_timeout
This field is reserved.

def_data.delayed_logon
This field is reserved.

dslu_template.host_lu
This field is reserved.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_TEMPLATE _NAME

AP_INVALID_NAU_RANGE
If the verb does not execute because one or more relevant START_NODE
parameters were not set, the Program returns the following parameter:
primary_rc

AP_FUNCTION_NOT_SUPPORTED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

Chapter 4. Node Configuration Verbs 135

DELETE_DSPU_TEMPLATE

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

136 System Management Programming

DELETE_FOCAL_POINT

DELETE_FOCAL_POINT

The DELETE_FOCAL_POINT verb can be used to delete focal points of a specified
type and category. For more information about focal point types, see
[“DEFINE_FOCAL_POINT” on page 61} If an active focal point is deleted it will be
revoked. To revoke the active focal point (of any type) specify a type of
AP_ACTIVE. If a backup or implicit focal point is deleted (by specifying
AP_BACKUP or AP_IMPLICIT) when it is not currently active, any information
stored about it will simply be removed.

Note that the DEFINE_FOCAL_POINT verb can also be used to revoke currently
active focal points. This duplicated function is retained for back compatibility.

VCB Structure

typedef struct delete_focal_point
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char reserved; /* reserved */
unsigned char ms_category[8]; /* management services category */
unsigned char type; /* type of focal point */

} DELETE_FOCAL_POINT;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_FOCAL_POINT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

ms_category
Management services category. This cab either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation-defined name.

type Specifies the type of the focal point that is being deleted. Possible types

are:

AP_ACTIVE
The currently active focal point (which can be of any type) is
revoked.

AP_IMPLICIT
The implicit definition is removed. If the currently active focal
point is an implicit focal point, then it is revoked.

AP_BACKUP
The backup definition is removed. If the currently active focal
point is a backup focal point, then it is revoked.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

Chapter 4. Node Configuration Verbs 137

DELETE_FOCAL_POINT

138

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_TYPE

AP_INVALID_CATEGORY_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DELETE_INTERNAL_PU

DELETE_INTERNAL_PU

The DELETE_INTERNAL_PU verb requests the deletion of a DLUR-served local
PU. The verb will only succeed if the PU does not have an active SSCP-PU session.

Any LUs associated with the PU will be deleted.

VCB Structure

typedef struct delete_internal_pu
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */

} DELETE_INTERNAL PU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_INTERNAL_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU that is being deleted. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE

Chapter 4. Node Configuration Verbs 139

DELETE_INTERNAL_PU

140

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PU_NOT_RESET
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

DELETE_LOCAL_LU

DELETE _LOCAL_LU
The DELETE_LOCAL_LU verb requests deletion of the local LU definition.

VCB Structure

typedef struct delete_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char lu_name[8]; /* local LU name */

} DELETE_LOCAL_LU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_LOCAL_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
Name of the local LU that is being defined. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID LU_NAME

AP_CANT_DELETE_CP_LU
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

Chapter 4. Node Configuration Verbs 141

DELETE_LOCAL_LU

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

142 System Management Programming

DELETE_LS

DELETE_LS

DELETE_LS checks that the link station has been previously defined and reset. It
removes the link station control block and returns a response from the Node
Operator Facility specifying whether the link station has been deleted successfully.
Note that any LUs defined on the PU using this link station will also be deleted.

VCB Structure

typedef struct delete_ls

{
unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char 1s_name[8]; /* name of link station =/

} DELETE_LS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_LS

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

1s_name
Name of link station being deleted. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME

If the verb does not execute because of a state error, the Program returns the
following parameters:

Chapter 4. Node Configuration Verbs 143

DELETE_LS

primary_rc
AP_STATE_CHECK

secondary_rc

AP_LS_ACTIVE

AP_INVALID_LINK_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

144 System Management Programming

DELETE_LU_0_TO_3

DELETE_LU 0 TO_ 3
This verb is used to delete a specific LU.

VCB Structure

typedef struct delete_lu_0_to_3
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char Tu_name[8]; /* LU name */

} DELETE_LU__TO_3;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
Name of the LU to be deleted. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_CANT_DELETE_IMPLICIT_LU

If the verb does not execute because of a state error, the Program returns the
following parameters:

Chapter 4. Node Configuration Verbs 145

DELETE_LU_0_TO_3

primary_rc
AP_STATE_CHECK

secondary_rc
AP_INVALID_LU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

146 System Management Programming

DELETE_LU_0_TO_3_RANGE

DELETE_LU 0 TO_3_RANGE

This verb is used to delete a range of LUs. The node operator provides a base
name and an NAU range. The LU names are generated by combining the base
name with the NAU addresses.

For example, a base name of LUNME combined with an NAU range of 1 to 4
would delete the LUs LUNMEO01, LUNMEQ02, LUNMEQ003, and LUNMEQ04. A
base name of less than five non-pad characters results in LU names of less than
eight non-pad characters.

All LUs in the range are deleted. If an LU in the range does not exist, then the
verb continues with the next one that does exist. The verb fails if no LUs exist in
the specified range.

VCB Structure

Format 1

typedef struct delete_lu_0_to_3 range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes %/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char base_name[6]; /* base name */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char name_attributes; /* Attributes of base_name */
unsigned char base_number; /* Base number for LU names */
unsigned char reserv5[16]; /* reserved */

} DELETE_LU_©_TO_3_RANGE;

VCB Structure

Format 0

typedef struct delete_lu_0 to_3 range
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes x/
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char base_name[5]; /* base name */
unsigned char min_nau; /* minimum NAU address */
unsigned char max_nau; /* maximum NAU address */
unsigned char reserv3; /* reserved */

} DELETE_LU_©_TO_3_RANGE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_LU_0_TO_3_RANGE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

Chapter 4. Node Configuration Verbs 147

DELETE_LU_0_TO_3_RANGE

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

base_name
Base LU name. This is an 5-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces. This base
name is appended with three type-A EBCDIC numeric characters,
representing the decimal value of the NAU address, for each LU in the
NAU range.

min_nau
Minimum NAU address in the range. This can be from 1 to 255 inclusive.

max_nau
Maximum NAU address in the range. This can be from 1 to 255 inclusive.

name_attributes
This bit field modifies the interpretation and usage of the supplied
base_name. This field may take the value of zero, or any or all of the
following values bit-wise ORed together.

AP_USE_HEX_IN_NAME
If this bit is set, the interpretation of the base_name is modified as
follows:

This is a 6-byte alphanumeric types A EBCDID string (starting

with a letter), padded to the right with EBCDID spaces. This base
name is appended with two EBCDID characters, representing the
hexadecimal values of the NAU address, for each LU in the NAU

range.

AP_USE_BASE_NUMBER
If this bit is set, the interpretation of the base_name is modified as
follows:

This is a 5-byte alphanumeric type A EBCDIC string (starting with
a letter), padded to the right with EBCDIC spaces. This base name
is appended with three EBCDIC numeric characters, representing
the decimal index of the LU in the range, starting with
base_number and ending with (base_number + max_nau +
min_nau).

base_number
If the AP_USE_BASE_NUMBER bit is not set in name_attributes this field
is ignored. Otherwise, this field modifies the interpretation of base_name
as described above. Legal values are from zero to (255 — max_nau +
min_nau).

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

148 System Management Programming

DELETE_LU_0_TO_3_RANGE

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_NAU_ADDRESS

AP_INVALID_LU_NAME
If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc

AP_INVALID_LU_NAME

AP_CANT_DELETE_IMPLICIT_LU
If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 149

DELETE_LU_POOL

DELETE_LU_POOL

This verb is used to delete an LU pool or to remove LUs from a pool. If no LU
names are specified, the entire pool is removed. This verb completes successfully
when the specified LUs within the LU pool, or the LU pool itself, no longer exist.
The verb only fails if none of the specified LUs exist, or if there are no LUs in the
specified pool.

VCB Structure

typedef struct delete_Tu_pool

unsigned short opcode; /* verb operation code %/
unsigned char attributes; /* verb attributes */
unsigned char format; /* format %/
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pool_name[8]; /* LU pool name x/
unsigned short num_Tus; /* number of LUs to add */
unsigned char Tu_names[10][8]; /* LU names */

} DELETE_LU_POOL;

Supplied Parameters

Return

The application supplies the following parameters:

opcode
AP_DELETE_LU_POOL

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pool_name
Name of the LU pool. All 8 bytes are significant and must be set. This
name is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

num_lus
Number of LUs specified in the lu_names list.

lu_names
Names of the LUs to be removed. Each name is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

ed Parameters
If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

150 System Management Programming

DELETE_LU_POOL

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_POOL_NAME

AP_INVALID_LU _NAME
AP_INVALID_NUM_LUS

If the verb does not execute because the system has not been built with dependent
LU support, the Program returns the following parameter:
primary_rc
AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 151

DELETE_MODE

DELETE_MODE

The DELETE_MODE verb requests deletion of a mode definition. Default
definitions for CPSVCMG, SNASVCMG, and other standard SNA modes will not
be deleted.

VCB Structure

typedef struct delete_mode

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char mode name[8]; /* mode name */

} DELETE_MODE;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_MODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

mode_name
Name of the mode. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_CP_OR_SNA_SVCMG_UNDELETABLE

AP_MODE_UNDELETABLE
AP_DEL_MODE_DEFAULT_SPCD
AP_MODE_NAME_NOT_DEFD

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

152 System Management Programming

DELETE_MODE

primary_rc
AP_NODE_STOPPING

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 153

DELETE_PARTNER_LU

DELETE _PARTNER LU
The DELETE_PARTNER_LU requests the deletion of a partner LU definition.

VCB Structure

typedef struct delete_partner_lu

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */

unsigned long secondary rc; /* secondary return code */
unsigned char fgplu_name[17]; /* fully qualified partner =/
/* LU name */

} DELETE_PARTNER_LU;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DELETE_PARTNER_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

fqplu_name
Fully qualified name of the partner LU. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_PLU_NAME
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc
AP_NODE_STOPPING

154 System Management Programming

DELETE_PARTNER_LU

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 155

DELETE_PORT

DELETE_PORT

DELETE_PORT deletes all link stations and connection network transmission
groups (TGs) associated with the port if it is reset. It then deletes the port’s control
block, frees the memory, and returns a response from the Node Operator Facility
indicating whether the port has been deleted successfully.

Note that if a link station, which has a PU associated with it, is deleted (because it
is associated with the port) then any LUs defined on this PU will also be deleted.

VCB Structure

typedef struct delete_port

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char port _name[8]; /* name of port */

} DELETE_PORT;

Supplied Parameters

Return

The application supplies the following parameters:

opcode
AP_DELETE_PORT

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port being deleted. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set.

ed Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP _INVALID_PORT _NAME

156 System Management Programming

DELETE_PORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_ACTIVE
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 157

DELETE_TP

DELETE_TP
The DELETE_TP requests the deletion of a transaction program (TP) definition.

VCB Structure

typedef struct delete_tp

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char tp_name[64]; /* TP name x/

} DELETE_TP;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DELETE_TP

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

tp_name
Name of the transaction program. The Program does not check the
character set of this field.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_TP_NAME
If the verb does not execute because the node has not yet been started, the

Program returns the following parameter:

primary_rc
AP _NODE_NOT_STARTED

158 System Management Programming

DELETE_TP

If the verb does not execute because the node is stopping, the Program returns the
following parameter:

primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 4. Node Configuration Verbs 159

DELETE_TP

160 System Management Programming

Chapter 5. Activation and Deactivation Verbs

This chapter describes verbs that are used to activate and deactivate:
* Data link controls (DLCs)

* Internal PUs

* Ports

* Link stations

* Sessions

* Conversation groups

This chapter also describes a verb used to request a path switch to a connection
that supports High-Performance Routing (HPR).

© Copyright IBM Corp. 1989, 2003 161

START_DLC

START_DLC

START_DLC requests the activation of a data link control (DLC). It is subsequently
returned indicating whether the activation of the DLC was successful. Note that
the DLC can be started even if no ports have been defined for it. See
[Processes, Ports, and Link Stations” on page 14} for more information about the
relationship between DLCs, ports, and link stations.

VCB Structure

typedef struct start_dic

unsigned short opcode; /* verb operation code */
unsigned char reservz; /* reserved */
unsigned char format; /* format x/
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char dlc_name[8]; /* name of DLC x/

} START_DLC;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_DLC

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

dlc_name
Name of Data Link Control instance that is to be started. This is an 8-byte
string in a locally displayable character set, which must have already been
defined by a DEFINE_DLC verb.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC
If the verb does not execute because the DLC is deactivating, the Program returns

the following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_DEACTIVATING

162 System Management Programming

START_DLC

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 5. Activation and Deactivation Verbs 163

START_INTERNAL_PU

START_INTERNAL_PU

164

The START_INTERNAL_PU verb requests the dependent LU requester (DLUR) to
initiate SSCP-PU session activation for a previously defined local PU that is served
by DLUR.

VCB Structure

typedef
{

struct start_internal_pu

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char dlus_name[17]; /* DLUS name */
unsigned char bkup_dlus_name[17]; /* Backup DLUS name */

} START_INTERNAL_PU;

Supplied Parameters

The application supplies the following parameters:

opcode

format

AP_START_INTERNAL_PU

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name

Name of the internal PU for which the SSCP-PU session activation flows
will be solicited. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlus_name

Name of the dependent LU server (DLUS) node that DLUR will contact to
solicit SSCP-PU session activation for the given PU. This should be set to
all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This value overrides the value specified in the
DEFINE_INTERNAL_PU verb. If the field is set to all zeros, the DLUS
specified in the DEFINE_INTERNAL_PU verb will be used. If no DLUS
has been specified in the DEFINE_INTERNAL_PU verb, then the global
default (if specified by a DEFINE_DLUR_DEFAULTS verb) will be used.

bkup_dlus_name

Name of the DLUS node that DLUR will store as the backup DLUS for the
given PU. This should be set to all zeros or a 17-byte string composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This value overrides the
value specified in the DEFINE_INTERNAL_PU verb. If the field is set to
all zeros, the backup DLUS name specified by a DEFINE_INTERNAL_PU
verb will be retained as the backup DLUS for this PU. If no backup DLUS
was specified by the DEFINE_INTERNAL_PU verb, the global backup
default DLUS (if defined by the DEFINE_DLUR_DEFAULTS verb) is
retained as the backup default for this PU.

System Management Programming

START_INTERNAL_PU

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_DLUS_NAME

AP_INVALID_BKUP_DLUS_NAME
If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP _STATE_CHECK

secondary_rc

AP_NO_DEFAULT_DLUS_DEFINED

AP_PU_NOT_DEFINED
AP_PU_ALREADY_ACTIVATING
AP_PU_ALREADY_ACTIVE

If the verb does not execute successfully, the Program returns the following
parameters:

primary_rc
AP_UNSUCCESSFUL

secondary_rc
AP_DLUS_REJECTED

AP_DLUS_CAPS_MISMATCH
AP_PU_FAILED_ACTPU

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 5. Activation and Deactivation Verbs 165

START_LS

START_LS

START_LS requests activation of a link. It is returned as a response specifying
whether the link was successfully activated.

See |”DLC Processes, Ports, and Link Stations” on page 14{ for more information
about the relationship between DLCs, ports and link stations.

VCB Structure

typedef struct start_1s

unsigned short opcode; /* verb operation code %/
unsigned char reserv2; /* reserved */
unsigned char format; /* format %/
unsigned short primary rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char 1s_name[8]; /* name of link station */
unsigned char enable; /* whether the link is enabled*/
unsigned char reserv3[3]; /* reserved */
} START_LS;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_LS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Is_name
Name of link station to be started. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. The
value of Is_name must match that on the DEFINE_LS verb.

enable
Set this field to start the link. If this field is set to AP_ACTIVATE, then the
link is started. Otherwise, the link is not started, and the following values
are possible. These values can be ORed together.

AP_AUTO_ACT
The link can subsequently be activated on demand by the local
node. This value is only valid if auto_act_supp was set to AP_YES
on the DEFINE_LS verb.

AP_REMOTE_ACT
The link can subsequently be activated by the remote node. This
does not alter the defined value of disable_remote_act.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

166 System Management Programming

START_LS

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LINK_NAME_SPECIFIED

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PORT_INACTIVE

AP_ACTIVATION_LIMITS_REACHED
AP_PARALLEL_TGS_NOT_SUPPORTED
AP_ALREADY_STARTING
AP_LINK_DEACT_IN_PROGRESS

If the verb does not execute because it was canceled by a subsequent STOP_LS or
STOP_PORT before the link became active, the Program returns the following
parameters:

primary_rc
AP_CANCELLED

secondary_rc
AP_LINK_DEACTIVATED
If the verb does not execute because the partner could not be found by the link

software, the Program returns the following parameters:

primary_rc
AP_LS_FAILURE

secondary_rc
AP_PARTNER_NOT_FOUND
If the verb does not execute because a link error occurred while the link was being

established, the Program returns the following parameters:

primary_rc
AP_LS_FAILURE

secondary_rc
AP_ERROR
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the

following parameter:

primary_rc
AP_NODE_STOPPING

Chapter 5. Activation and Deactivation Verbs 167

START_LS

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

168 System Management Programming

START_PORT

START_PORT

START_PORT requests the activation of a port. It is returned indicating whether
the port was successfully activated. The port can be started even if no link stations
have been defined for it, but it will not be started if its parent DLC is inactive.

See [“DLC Processes, Ports, and Link Stations” on page 14} for more information
about the relationship between DLCs, ports and link stations.

VCB Structure

typedef struct start port
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned Tong secondary_rc; /* secondary return code */
unsigned char port_name[8]; /* name of port */

} START_PORT;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_START_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

port_name
Name of port to be started. This is an 8-byte string in a locally displayable
character set and must match that on the DEFINE_PORT verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID _PORT_NAME
If the verb does not execute because of a state error, the Program returns the

following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_DLC_INACTIVE

Chapter 5. Activation and Deactivation Verbs 169

START_PORT

AP_STOP_PORT_PENDING
AP_DUPLICATE_PORT

If the verb does not execute because it was canceled, the Program returns the
following parameter:
primary_rc
AP_CANCELLED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

170 System Management Programming

STOP_DLC

STOP_DLC

STOP_DLC requests that a DLC be stopped. It is returned indicating whether the
DLC was successfully stopped. STOP_DLC is also used to instruct the Program to

stop automatically retrying the activation of any link stations on ports over this
DLC.

VCB Structure

typedef struct stop_dlc
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format x/
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char dlc_name[8]; /* name of DLC */
} STOP_DLC;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_STOP_DLC

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which DLC should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping DLC.

AP_IMMEDIATE_STOP
Node should stop DLC immediately.

dlc_name
Name of DLC to be stopped. This is an 8-byte string in a locally
displayable character set, which must match that on the DEFINE_DLC
verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC

AP_UNRECOGNIZED_DEACT_TYPE

Chapter 5. Activation and Deactivation Verbs 171

STOP_DLC

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_STOP_DLC_PENDING
If the verb does not execute because it has been canceled, the Program returns the
following parameter:
primary_rc
AP_CANCELLED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

172 System Management Programming

STOP_INTERNAL_PU

STOP_INTERNAL_PU

The STOP_INTERNAL_PU verb requests the dependent LU requester (DLUR)
initiate SSCP-PU session deactivation for a previously defined local PU that is
served by DLUR.

VCB Structure

typedef struct stop_internal_pu

{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned Tong secondary rc; /* secondary return code */
unsigned char pu_name[8]; /* internal PU name */
unsigned char stop_type; /* type of stop requested */

} STOP_INTERNAL_PU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_STOP_INTERNAL_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

pu_name
Name of the internal PU for which the SSCP-PU session will be
deactivated. This is an 8-byte alphanumeric type-A EBCDIC string (starting
with a letter), padded to the right with EBCDIC spaces.

stop_type
Specifies stop type requested for the PU. An orderly stop will deactivate all
underlying PLU-SLU and SSCP-LU sessions before deactivating the
SSCP-PU session.

AP_ORDERLY_STOP
AP_IMMEDIATE_STOP

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_STOP_TYPE

If the verb does not execute because of a state error, the Program returns the
following parameters:

Chapter 5. Activation and Deactivation Verbs 173

STOP_INTERNAL_PU

174

primary_rc
AP_STATE_CHECK

secondary_rc

AP_PU_NOT_DEFINED

AP_PU_ALREADY_ DEACTIVATING
AP_PU_NOT_ACTIVE

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

STOP_LS

STOP_LS

STOP_LS requests the deactivation of a link station. It is returned specifying
whether the link was stopped successfully. STOP_LS can also be used to disable
remote activation of a link station or to disable activation on demand of a link
station. STOP_LS is also used to instruct the Program to stop automatically
retrying the activation of any link station.

VCB Structure

typedef struct stop_ls
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char stop_type; /* stop type */
unsigned char 1s_name[8]; /* name of link station */
unsigned char disable; /* whether the Tink is disabled =/
unsigned char reserved[3]; /* reserved */
} STOP_LS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_STOP_LS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which the link station should be stopped.
AP_ORDERLY_STOP

Node should perform cleanup operations before stopping the link
station.

AP_IMMEDIATE_STOP
Node should stop the link station immediately.

Is_name
Name of link station to be stopped. This is an 8-byte string in a locally
displayable character set. All 8 bytes are significant and must be set. The
value of Is_name must match that on the DEFINE_LS verb.

disable
This indicates whether remote activation or activation on demand of this
link station should be disabled. If set to AP_NO, then the link station is
returned to the state given by the values of auto_act_supp and
disable_remote_act from the DEFINE_LS verb. Otherwise, the following
values are possible (and can be ORed together).

AP_AUTO_ACT
The link cannot be reactivated on demand by the local node.

AP_REMOTE_ACT
The link cannot be activated by the remote node. For a link

Chapter 5. Activation and Deactivation Verbs 175

STOP_LS

configured with disable_remote_act set to AP_YES, this bit is

ignored (activation by a remote node is always disabled by
STOP_LS).

If the disable field is not set to AP_NO, then STOP_LS can be
issued for a link that is not active or that is in the process of
deactivating, for the purpose of setting the disable field.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:
primary_rc

AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_UNRECOGNIZED_DEACT_TYPE

AP _LINK NOT_DEFD
If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_LINK_DEACT_IN_PROGRESS
If the verb does not execute because it was canceled, the Program returns the
following parameter:
primary_rc
AP_CANCELLED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

176 System Management Programming

STOP_PORT

STOP_PORT

STOP_PORT requests that a port be stopped. It is returned specifying whether the
port was stopped successfully. STOP_PORT is also used to instruct the Program to
stop automatically retrying the activation of any link stations on the port.

VCB Structure

typedef struct stop_port
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary rc; /* secondary return code */
unsigned char stop_type; /* Stop Type */
unsigned char port _name[8]; /* name of port */

} STOP_PORT;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_STOP_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

stop_type
Manner in which the port should be stopped.

AP_ORDERLY_STOP
Node should perform cleanup operations before stopping the port.

AP_IMMEDIATE_STOP
Node should stop the port immediately.

port_name
Name of port to be stopped. This is an 8-byte string in a locally
displayable character set, which must match that on the DEFINE_PORT
verb.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PORT_NAME

AP_UNRECOGNIZED_DEACT_TYPE

Chapter 5. Activation and Deactivation Verbs 177

STOP_PORT

If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_STOP_PORT_PENDING
If the verb does not execute because it has been canceled, the Program returns the
following parameter:
primary_rc
AP_CANCELLED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

178 System Management Programming

ACTIVATE_SESSION

ACTIVATE_SESSION

The ACTIVATE_SESSION verb requests activation of a session between the local

LU and a specified partner LU using the characteristic of a particular mode.

VCB Structure

Format

1

typedef struct activate_session

{

unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char
unsigned char

unsigned char

} ACTIVATE_SESSION;

Format

0 (back-level)

opcode;
reservz;
format;
primary_rc;
secondary_rc;
Tu_name[8];
Tu_alias[8];
plu_alias[8];
mode_name[8] ;
faplu_name[17];

polarity;

session_id[8];
cnos_permitted;

reserv4[15];

typedef struct activate_session

{

unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char

} ACTIVATE_SESSION;

Supplied Parameters
The application supplies the following parameters:

opcode

format

opcode;
reserv?;
format;
primary_rc;
secondary _rc;
Tu_name[8];
Tu_alias[8];
plu_alias[8];
mode_name[8] ;
faplu_name[17];

polarity;

session_id[8];

AP_ACTIVATE_SESSION

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

verb operation code */
reserved */
format */
primary return code */
secondary return code */
Tocal LU name */
local LU alias */
partner LU alias */
mode name */
fully qualified partner */
LU name */
requested session */
polarity */
session identifier */
is implicit CNOS */
permitted? */
reserved */
verb operation code */
reserved */
format */
primary return code */
secondary return code =/
Tocal LU name */
local LU alias */
partner LU alias */
mode name */
fully qualified partner */
LU name */
requested session */
polarity */
session identifier */

Identifies the format of the VCB. Set this field to zero or one to specify the
version of the VCB listed above.

lu_name
LU name of the local LU requested to activate a session. This name is an
8-byte type-A EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

Chapter 5. Activation and Deactivation Verbs

179

ACTIVATE_SESSION

lu_alias

Alias of the local LU requested to activate a session. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_alias and the lu_name are set to all zeros
then the verb is forwarded to the LU associated with the control point (the
default LU).

plu_alias

Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

mode_name

Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

fqplu_name

Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

polarity

The polarity requested for the session. Possible values are:

AP_POL_EITHER
AP_POL_FIRST_SPEAKER
AP_POL_BIDDER

If AP_POL_EITHER is selected, ACTIVATE_SESSION activates a first
speaker session if available; otherwise, a bidder session is activated. For
AP_POL_FIRST_SPEAKER or AP_POL_BIDDER, ACTIVATE_SESSION
only succeeds if a session of the requested polarity is available.

cnos_permitted

This field may be set to AP_YES or AP_NO. If the activation of a new
session is not possible because the session limits for the specified mode are
reset, and this field is set to AP_YES, then the Program initiates implicit
CNOS processing to initialize the session limits. Execution of this verb will
be suspended while CNOS processing takes place.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc

AP_OK

secondary_rc

AP_AS_SPECIFIED

AP_AS_NEGOTIATED

session_id

8-byte identifier of the activated session.

180 System Management Programming

ACTIVATE_SESSION

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_EXCEEDS_MAX_ALLOWED

AP_INVALID_CNOS_PERMITTED
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS
AP_INVALID_MODE_NAME
AP_INVALID_PLU_NAME

If the verb exceeds the session limit for the mode, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

Secondary_rc

AP_EXCEEDS_MAX_ALLOWED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:
primary_rc

AP_UNEXPECTED_SYSTEM_ERROR
If the verb does not execute because of other errors, the Program returns one of the
following parameters:
primary_rc

AP_ACTIVATION_FAIL_NO_RETRY

AP_ACTIVATION_FAIL_RETRY

Chapter 5. Activation and Deactivation Verbs 181

DEACTIVATE_CONV_GROUP

DEACTIVATE_CONV_GROUP

The DEACTIVATE_CONV_GROUP verb requests the deactivation of the session
corresponding to the specified conversation group. Although this verb is part of
the Node Operator Facility API, it is primarily intended for use by application
programmers writing transaction programs that use the Personal Communications
or Communications Server APPC API. The conversation group identifier is
returned by the MC_ALLOCATE, ALLOCATE, MC_GET_ATTRIBUTES,
GET_ATTRIBUTES and RECEIVE_ALLOCATE verbs defined in Personal
Communications for Windows, Version 5.7 Client/Server Communications Programming.

VCB Structure

typedef struct deactivate_conv_group

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char Tu_name[8]; /* Tocal LU name */
unsigned char Tu_alias[8]; /* local LU alias */
unsigned long conv_group_id; /* conversation group identifier =*/
unsigned char type; /* deactivation type */
unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */

} DEACTIVATE_CONV_GROUP;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_DEACTIVATE_CONV_GROUP

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to deactivate the conversation group.
This name is an 8-byte type-A EBCDIC character string. If this field is set
to all zeros, the lu_alias field will be used for determining the local LU.

lu_alias
Alias of the local LU requested to deactivate the conversation group. This
is an 8-byte string in a locally displayable character set. This field is only
significant if the lu_name field is set to all zeros, in which case all 8 bytes
are significant and must be set. If both the lu_name and lu_alias are set to
all zeros, the verb is forwarded to the LU associated with the control point
(the default LU).

conv_group_id
Conversation group identifier for the session to be deactivated.

type Type of deactivation. This field is a bitmask consisting of a deactivation
type ORed with a flag indicating whether the verb should complete
asynchronously or synchronously.

Deactivation types:

182 System Management Programming

DEACTIVATE_CONV_GROUP

AP_DEACT_CLEANUP
The session is terminated immediately, without waiting for a
response from the partner LU.

AP_DEACT_NORMAL
The session terminates after all conversations using the session are
ended.

Verb behavior:

AP_ASYNCHRONOUS_DEACTIVATION
The verb returns immediately.

AP_SYNCHRONOUS_DEACTIVATION
The verb returns only after the session has been deactivated.

sense_data
Specifies the sense data for use in the CLEANUP type of deactivation.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CLEANUP_TYPE

AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 5. Activation and Deactivation Verbs 183

DEACTIVATE_SESSION

DEACTIVATE_SESSION

The DEACTIVATE_SESSION verb requests the deactivation of a particular session,
or all sessions on a particular mode.

VCB Structure

typedef struct deactivate_session

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved %/
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code =/
unsigned char Tu_name[8]; /* local LU name */
unsigned char Tu_alias[8]; /* local LU alias */
unsigned char session_id[8]; /* session identifier */
unsigned char plu_alias[8]; /* partner LU alias */
unsigned char mode name[8]; /* mode name */
unsigned char type; /* deactivation type */
unsigned char reserv3[3]; /* reserved */
unsigned long sense_data; /* deactivation sense data */
unsigned char fgplu_name[17]; /* fully qualified partner */

/* LU name */
unsigned char reserv4[20]; /* reserved */

} DEACTIVATE_SESSION;

Supplied Parameters
The application supplies the following parameters:

opcode
AP_DEACTIVATE_SESSION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

lu_name
LU name of the local LU requested to deactivate a session. This name is an
8-byte type-A EBCDIC character string. If this field is set to all zeros, the
lu_alias field will be used for determining the local LU.

lu_alias

Alias of the local LU requested to deactivate a session. This is an 8-byte
string in a locally displayable character set. This field is only significant if
the lu_name field is set to all zeros, in which case all 8 bytes are significant
and must be set. If both the lu_name and the lu_alias fields are set to all
zeros then the verb is forwarded to the LU associated with the control
point (the default LU).

session_id
8-byte identifier of the session to deactivate. If this field is set to all zeros,
Personal Communications or Communications Server deactivates all
sessions for the partner LU and mode.

plu_alias
Alias by which the partner LU is known to the local LU. This name must
match the name of a partner LU established during configuration. This is
an 8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. If this field is set to all zeros, the fqplu_name
field is used to specify the required partner LU.

184 System Management Programming

DEACTIVATE_SESSION

mode_name
Name of a set of networking characteristics defined during configuration.
This is an 8-byte alphanumeric type-A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces.

type Type of deactivation. This field is a bitmask consisting of a deactivation
type ORed with a flag indicating whether the verb should complete
asynchronously or synchronously.

Deactivation types:

AP_DEACT_CLEANUP
The session is terminated immediately, without waiting for a
response from the partner LU.

AP_DEACT_NORMAL
The session terminates after all conversations using the session are
ended.

Verb behavior:

AP_ASYNCHRONOUS_DEACTIVATION
The verb returns immediately.

AP_SYNCHRONOUS_DEACTIVATION
The verb returns only after the session has been deactivated.

sense_data
Specifies the sense data to be used for the CLEANUP type of deactivation.

fqplu_name
Fully qualified LU name for the partner LU. This name is 17 bytes long
and is right-padded with EBCDIC spaces. It is composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) This field is
only significant if the plu_alias field is set to all zeros.

Returned Parameters

If the verb executes successfully, the Program returns the following parameter:

primary_rc
AP_OK

Note that if the session_id cannot be matched with any existing sessions, it
is assumed that this is because the session has already been deactivated. In
this case the verb completes successfully.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_MODE_NAME

AP_INVALID_PLU_NAME
AP_INVALID_CLEANUP_TYPE
AP_INVALID_LU_NAME
AP_INVALID_LU_ALIAS

Chapter 5. Activation and Deactivation Verbs 185

DEACTIVATE_SESSION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc
AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

186 System Management Programming

PATH_SWITCH

PATH_SWITCH

The PATH_SWITCH verb requests Personal Communications or Communications
Server to switch routes on a connection that supports high-performance routing
(HPR). If a better path cannot be found, the connection is left unchanged.

VCB Structure

typedef struct path_switch
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */

unsigned long secondary rc; /* secondary return code */
unsigned char rtp_connection_name[8];
/* RTP connection name */
} PATH_SWITCH;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_PATH_SWITCH

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

rtp_connection_name
Identifies the RTP connection to path-switch. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant and must be set.

Returned Parameters
If the verb executes successfully, the Program returns the following parameter:
primary_rc
AP_OK
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_RTP_CONNECTION
If the verb does not execute because of a state error, the Program returns the
following parameters:

primary_rc
AP_STATE_CHECK

secondary_rc
AP_PATH_SWITCH_IN_PROGRESS

If the verb does not execute because the path switch attempt fails, the Program
returns the following parameter:

Chapter 5. Activation and Deactivation Verbs 187

PATH_SWITCH

primary_rc
AP_UNSUCCESSFUL

If the verb does not execute because the node is stopping, the Program returns the
following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

188 System Management Programming

Chapter 6. Query Verbs

This chapter describes verbs used to query information about node configuration
and status.

Only certain parameters are supported on SNA API clients.

© Copyright IBM Corp. 1989, 2003 189

QUERY_ADJACENT_NN

QUERY_ADJACENT_NN

E This verb applies only to Communications Server.
p;

—

QUERY_ADJACENT_NN is only used at a network node and returns information
about adjacent network nodes (that is, those network nodes to which CP-CP
sessions are active or have been active or have been active at some time).

The adjacent node information is returned as a formatted list. To obtain
information about a specific network node or to obtain the list information in
several chunks, the adj_nncp_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See [“Querying the Node” on page 10} for background on how the list
formats are used.

This list is ordered on the adj_nncp_name. Ordering is by name length first, and
then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM’s 6611 APPN MIB ordering). If AP_LIST FROM_NEXT is
selected the list starts from the next entry according to the defined ordering
(whether the specified entry exists or not).

VCB Structure

typedef struct query_adjacent_nn

unsigned short opcode; /* verb operation code %/
unsigned char reserv2; /* reserved */
unsigned char format; /* format %/
unsigned short primary rc; /* primary return code %/
unsigned long secondary_rc; /* secondary return code x/
unsigned char *buf_ptr; /* pointer to buffer x/
unsigned Tong buf_size; /% buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved x/

unsigned char adj_nncp_name[17]; /* CP name of adj network node =*/
} QUERY_ADJACENT _NN;

typedef struct adj nncp_data

unsigned short overlay size; /* size of this entry */
unsigned char adj_nncp_name[17]; /* CP name of adj. network node =/
unsigned char cp_cp_sess_status; /* CP-CP session status */
unsigned long out_of seq_tdus; /* out of sequence TDUs */
unsigned Tong last_frsn_sent; /* last FRSN sent */
unsigned long Tast frsn rcvd; /* last FRSN received */
unsigned char reserva[20]; /* reserved */

} ADJ_NNCP_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_ADJACENT_NN

190 System Management Programming

QUERY_ADJACENT_NN

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
adj_nncp_name specified (see the following parameter, adj_nncp_name)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

adj_nncp_name
Fully-qualified, 17 byte, name of adjacent network node composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, which is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This field is ignored if
list_options is set to AP_FIRST IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf _size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

Chapter 6. Query Verbs 191

QUERY_ADJACENT_NN

192

adj_nncp_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adj_nncp_data.adj_nncp_name
17-byte fully-qualified CP name of adjacent network node which is
composed of two type-A EBCDIC character strings concatenated by an
EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.)

adj_nncp_data.cp_cp_sess_status
Status of the CP-CP session. This is set to one of the following:

AP-ACTIVE
AP_CONWINNER_ACTIVE
AP_CONLOSER_ACTIVE
AP_INACTIVE

adj_nncp_data.out_of_seq_tdus
Number of out of sequence TDUs received from this node.

adj_nncp_data.last_frsn_sent
The last flow reduction sequence number sent to this node.

adj_nncp_data.last_frsn_rcvd
The last flow reduction sequence number received from this node.
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_ADJ]_NNCP_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

QUERY_ADJACENT_NODE

QUERY_ADJACENT_NODE

QUERY_ADJACENT_NODE returns information about adjacent nodes configured
on DEFINE_ADJACENT_NODE.

Information is returned in an ordered list. Each entry in the list consists of an

ADJACENT_NODE_DATA overlay containing information about the adjacent CP,
followed by an ADJACENT_NODE_LU_DATA overlay for each LU associated with

the adjacent CP.

Entries are ordered by cp_name, then by fqlu_name. Ordering is by name length
first, and then by ASCII lexicographical ordering for names of the same length (in
accordance with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the list will start from the next entry

according to the defined ordering (whether the specified entry exists or not).

VCB Structure

typedef struct query adjacent_node

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} QUERY_ADJACENT |

short
char
char
short
long
char
long
long
short
short
char
char
char
NODE ;

opcode;
reserv2;
format;

primary rc;
secondary_rc;
*buf_ptr;
buf_size;
total_buf_size;
num_entries;
total_num_entries;
Tist_options;
reserv3;
cp_name[17];

typedef struct adjacent node data

{

unsigned short overlay size;

unsigned
unsigned

short
char

DESCRIPTION

unsigned
unsigned

char
short

} ADJACENT_NODE_DATA;
typedef struct adjacent node_Tu_data

{

sub_overlay_size;
cp_name[17];
description;
reserv3[19];
num_of Tus;

unsigned short overlay size;

unsigned

char

reserve2[2];

ADJACENT_NODE_LU adj_Tu_def_data;

} ADJACENT NODE_LU_DATA;

typedef struct adjacent _node Tu

{
unsigned
unsigned
unsigned

char
char
char

wildcard Tu;
fqlu_name[17];
reservel[6];

ADJACENT_NODE_LU adj_lu_def_data;
} ADJACENT_NODE_LU;

Supplied Parameters

The application supplies the following parameters:

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

Verb operation code
reserved

format

Primary return code
Secondary return code
pointer to buffer
buffer size

total buffer size required

number of entries

total number of entries
listing options

reserved

CP name of adjacent node

size of this entry

size of this stub entry
CP name

resource description
reserved

number of LUs

effective capacity
reserved
Adjacent LU defined data

Is this LU a wildcard?
Fully-Qualified LU name
reserved

Adjacent LU defined data

Chapter 6. Query Verbs

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

193

QUERY_ADJACENT_NODE

opcode
AP_QUERY_ADJACENT_NODE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The
cp_name specified (see the following parameter, cp_name) represents an
index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
tirst adjacent node in the directory maintained by the Program.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

cp_name
Fully qualified name of the adjacent node. This name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf size
Length of the information returned in the buffer.

total_buf _size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

194 System Management Programming

QUERY_ADJACENT_NODE

adjacent_node_data.overlay_size
The number of bytes in this entry, including any
ADJACENT_NODE_LU_DATA structures, and hence the offset to the next
entry returned (if any).

adjacent_node_data.sub_overlay_size
The number of bytes in the node part of the entry, not including any
ADJACENT_NODE_LU_DATA structures; this is the offset to the first
ADJACENT_NODE_LU_DATA field in the entry.

adjacent_node_data.cp_name
Fully qualified name of the adjacent node. This name is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

adjacent_node_data.description
Resource description (as specified on DEFINE_ADJACENT_NODE). The
length of this field should be a multiple of four bytes, and nonzero.

adjacent_node_data.num_of_lus
The number of LUs defined for this adjacent node. An
ADJACENT_NODE_LU_DATA structure for each LU follows.

adjacent_node_lu_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

adjacent_node_lu.wildcard_lu
Indicates whether the LU name is defined as a wildcard.

adjacent_node_lu.fqlu_name
Fully qualified name of the adjacent node. The name is 17 bytes long and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.) This name is composed of
two type-A EBCDIC character strings concatenated by an EBCDIC dot, and
is right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CP_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 195

QUERY_CN

QUERY_CN

QUERY_CN returns information about adjacent Connection Networks. This
information is structured as determined data (data gathered dynamically during
execution) and defined data (the data supplied by the application on DEFINE_CN).

The information is returned as a formatted list. To obtain information about a
specific CN, or to obtain the list information in several chunks, the fqecn_name
field should be set.

Otherwise (if the list_options field is set to AP_FIRST IN_LIST), this field will be
ignored. See [‘Querying the Node” on page 10} for background on how the list
formats are used.

This list is ordered on the fqen_name. Ordering is by name length first, and then
by ASCII lexicographical ordering for names of the same length (in accordance
with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the list will start from the next entry
according to the defined ordering (whether the specified entry exists or not).

VCB Structure

typedef struct query_cn

unsigned short opcode; /* Verb operation code */
unsigned char attributes; /* verb attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size x/
unsigned long total buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total num entries; /* total number of entries */
unsigned char Tist_options; /* 1isting options */
unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network =/
} QUERY_CN;

typedef struct cn_data

unsigned short overlay size; /* size of this entry */

unsigned char fqcn_name[17]; /* Name of connection network =/

unsigned char reservl; /* reserved */

CN_DET_DATA det_data; /* Determined data */

CN_DEF_DATA def data; /* Defined data */
} CN_DATA;

typedef struct cn_det_data

unsigned short num act ports; /* number of active ports */
unsigned char reserva[20]; /* reserved */
} CN_DET_DATA;

typedef struct cn_def_data

unsigned char description[RD_LEN];

/* resource description */
unsigned char num_ports; /* number of ports on CN */
unsigned char reservl[16]; /* reserved */
TG_DEFINED_CHARS tg_chars; /* TG characteristics */

} CN_DEF_DATA;

196 System Management Programming

QUERY_CN

typedef struct tg_defined_chars
{

unsigned char effect cap; /* effective capacity */
unsigned char reservel[5]; /* reserved */
unsigned char connect_cost; /* connection cost */
unsigned char byte_cost; /* byte cost */
unsigned char reserve?2; /* reserved */
unsigned char security; /* security */
unsigned char prop_delay; /* propagation delay %/
unsigned char modem class; /* modem class */

unsigned char user_def parm_1; /* user-defined parameter 1 %/

unsigned char user_def_parm_2; /* user-defined parameter 2 */

unsigned char user_def parm_3; /* user-defined parameter 3 */
} TG_DEFINED_CHARS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_CN

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
fqen_name specified (see the following parameter, fqecn_name) represents
an index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

Chapter 6. Query Verbs 197

QUERY_CN

fqen_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cn_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cn_data.fqen_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

cn_data.det_data.num_act_ports
Dynamic value giving number of active ports on the connection network.

cn_data.def_data.description
Resource description (as specified on DEFINE_CN). This is a 16-byte string
in a locally displayable character set. All 16 bytes are significant.

cn_data.def_data.num_ports
Number of ports on the connection network.

cn_data.def_data.tg chars.effect_cap
Actual units of effective capacity. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.Immm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Each unit of effective
capacity is equal to 300 bits per second.

cn_data.def_data.tg_chars.connect_cost
Cost per connect time. Valid values are integer values in the range 0-255,
where 0 is the lowest cost per connect time and 255 is the highest.

cn_data.def_data.tg_chars.byte_cost
Cost per byte. Valid values are integer values in the range 0-255, where 0
is the lowest cost per byte and 255 is the highest.

198 System Management Programming

QUERY_CN

cn_data.def_data.tg_chars.security
Security values as described in the list below.

AP_SEC_NONSECURE
No security exists.

AP_SEC_PUBLIC_SWITCHED_NETWORK
Data transmitted over this connection network will flow over a
public switched network.

AP_SEC_UNDERGROUND_CABLE
Data is transmitted over secure underground cable.

AP_SEC_SECURE_CONDUIT
The line is a secure conduit that is not guarded.

AP_SEC_GUARDED_CONDUIT
Conduit is protected against physical tapping.

AP_SEC_ENCRYPTED
Encryption over the line.

AP_SEC_GUARDED_RADIATION
Line is protected against physical and radiation tapping.

cn_data.def_data.tg_chars.prop_delay
Propagation delay representing the time it takes for a signal to travel the
length of the link, in microseconds. The value is encoded as a 1-byte
floating-point number, represented by the formula 0.l1mmm * 2 eeeee,
where the bit representation of the byte is eeeeemmm. Default values are
listed below.

AP_PROP_DELAY_MINIMUM
No propagation delay.

AP_PROP_DELAY_LAN
Less than 480 microseconds delay.

AP_PROP_DELAY TELEPHONE
Between 480 and 49 512 microseconds delay.

AP_PROP_DELAY_PKT_SWITCHED_NET
Between 49 512 and 245 760 microseconds delay.

AP_PROP_DELAY_SATELLITE
Longer than 245 760 microseconds delay.

AP_PROP_DELAY_MAXIMUM
Maximum propagation delay.

cn_data.def_data.tg_chars.modem_class
Reserved. This field should always be set to zero.

cn_data.def_data.tg_chars.user_def_parm_1
User defined parameter in the range 0-255.

cn_data.def_data.tg_chars.user_def_parm_2
User defined parameter in the range 0-255.

cn_data.def_data.tg_chars.user_def_parm_3
User defined parameter in the range 0-255.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

Chapter 6. Query Verbs 199

QUERY_CN

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CN_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

200 System Management Programming

QUERY_CN_PORT

QUERY_CN_PORT

QUERY_CN_PORT returns information about ports defined on adjacent connection
networks. The information is returned as a formatted list. To obtain information
about a specific port, or to obtain the list information in several chunks, the
port_name field should be set. Otherwise (if the list_options field is set to
AP_FIRST_IN_LIST), this field will be ignored. Note that the fqecn_name field must
always be set to the name of a valid connection network.

See ["Querying the Node” on page 10} for background on how the list formats are
used.

VCB Structure

typedef struct query_cn_port
{

unsigned short opcode; /* Verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* Primary return code */
unsigned long secondary rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size %/
unsigned long total buf _size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total num entries; /* total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char fqcn_name[17]; /* Name of connection network */
unsigned char port_name[8]; /* port name */

} QUERY_CN_PORT;

typedef struct cn_port_data
{

unsigned short overlay size; /* size of this entry */
unsigned char fqcn_name[17]; /* Name of connection network =*/
unsigned char port_name[8]; /* name of port */
unsigned char tg num; /* transmission group number */
unsigned char reserva[20]; /* reserved */

} CN_PORT_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_CN_PORT

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

Chapter 6. Query Verbs 201

QUERY_CN_PORT

list_options
This indicates what should be returned in the list information: The
combination of fqen_name and port_name specified (see the following
parameters, fqcn_name and port_name) represents an index value that is
used to specify the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

fqen_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field must
always be set.

port_name
8-byte string in a locally displayable character set. All 8 bytes are
significant and must be set. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf _size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cn_port_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cn_port_data.fqcn_name
Fully qualified, 17-byte, connection network name. This name is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

202 System Management Programming

QUERY_CN_PORT

cn_port_data.port_name
Port name in an 8-byte, locally displayable character set. All 8 bytes are
significant.

cn_port_data.tg_num
Transmission group number for specified port.
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_CN_NAME

AP_INVALID_PORT_NAME
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 203

QUERY_CONVERSATION

QUERY_CONVERSATION

QUERY_CONVERSATION returns list information about conversations running
over the specified LU. To obtain information about a specific conversation or to
obtain the list information in several chunks, the conv_id field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. Note that the lu_alias field must always be set. The lu_name, if nonzero,
will be used in preference to the lu_alias.

See [“Querying the Node” on page 10} for background on how the list formats are
used.

This list is ordered by the conv_id. If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the index (whether the
specified entry exists or not).

VCB Structure

typedef struct query_conversation

unsigned short opcode; /* Verb operation code %/
unsigned char reserv2; /* reserved */
unsigned char format; /* format %/
unsigned short primary rc; /* Primary return code */
unsigned long secondary_rc; /* Secondary return code */
unsigned char *buf_ptr; /* pointer to buffer x/
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num entries; /* number of entries */
unsigned short total_num entries; /* total number of entries */
unsigned char Tist_options; /* 1isting options */
unsigned char reserv3; /* reserved */
unsigned char lu_name[8]; /* local LU name */
unsigned char lu alias[8]; /* Tocal LU alias */
unsigned long conv_id; /* conversation identifier x/
unsigned char session id[8]; /* session identifier */
unsigned char reserv4[12]; /* reserved x/

} QUERY_CONVERSATION;
typedef struct conv_summary

unsigned short overlay size; /* size of this entry %/
unsigned long conv_id; /* conversation identifier */
unsigned char local_tp_name[64]; /+ Name of Tocal TP */
unsigned char partner_tp_name[64];

/* Name of partner TP */
unsigned char tp_id[8]; /* TP identifier %/
unsigned char sess id[8]; /* session identifier */
unsigned long conv_start_time; /* time conversation was */

/* started */
unsigned long bytes_sent; /* bytes sent so far */
unsigned long bytes_received; /* bytes received so far */
unsigned char conv_state; /* conversation state */
unsigned char duplex_type; /* conversation duplex type */

} CONV_SUMMARY;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_CONVERSATION

204 System Management Programming

QUERY_CONVERSATION

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information. The index
specified (see following) represents an index value that is used to specify
the starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Name of the local LU. This is an 8-byte alphanumeric type A EBCDIC
string (not starting with a number), and is right-padded with EBCDIC
spaces.

lu_alias
Alias by which the local LU is known by the local TP. This is an 8-byte
string in a locally displayable character set. All 8 bytes are significant and
must be set.

conv_id
Conversation ID.

session_id
If this is all binary zeroes, this field is not used to filter the returned
conversations. If it is not zeroes, only those conversations whose session
IDs match the supplied value are returned.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

Chapter 6. Query Verbs 205

QUERY_CONVERSATION

206

total_buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

conv_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

conv_summary.conv_id
Conversation ID.

The value of this parameter was returned by the ALLOCATE verb in the
invoking transaction action or by RECEIVE_ALLOCATE in the invoked
transaction program.

conv_summary.local_tp_name
Name of the local transaction program.

conv_summary.partner_tp_name
Name of the partner transaction program. This is only valid for a
locally-initiated conversation. For a remotely-initiated conversation, it is
blank.

conv_summary.tp_id
The transaction program identifier assigned to the transaction program.
This identifier is either assigned by the API stub, or by the NOF
transaction program manager.

conv_summary.sess_id
Identifier of the session allocated to this conversation.

conv_summary.conv_start_time
The elapsed time in centiseconds from the time the node was started to the
time the conversation was started.

conv_summary.bytes_sent
The number of bytes sent so far on this conversation.

conv_summary.bytes_received
The number of bytes received so far on this conversation.

conv_summary_conv_state
Current state of the conversation that is identified by conv_id. For
half-duplex conversations, it is one of the following:

AP_RESET_STATE

AP_SEND_STATE
AP_RECEIVE_STATE
AP_CONFIRM_STATE
AP_CONFIRM_SEND_STATE
AP_CONFIRM_DEALL_STATE
AP_PEND_POST_STAT
AP_PEND_DEALL_STATE

System Management Programming

QUERY_CONVERSATION

AP_END_CONV_STATE
AP_SEND_PENDING_STATE
AP_POST_ON_RECEIPT_STATE

For full-duplex conversations, it is one of the following:

AP_RESET_STATE
AP_SEND_RECEIVE_STATE
AP_SEND_ONLY_STATE
AP_RECEIVE_ONLY_STATE

conv_summary.duplex_type
Specifies whether this conversation is half or full-duplex.

AP_HALF_DUPLEX
AP_FULL_DUPLEX

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_BAD_CONV_ID

AP_INVALID_LU_ALIAS
AP_INVALID_LU_NAME

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 207

QUERY_COS

QUERY_COS

QUERY_COS returns route calculation information for a specific class of service.
The information is returned as a formatted list. To obtain information about a
specific COS, or to obtain the list information in several chunks, the cos_name field
should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See [“Querying the Node” on page 10} for background on how the list
formats are used. This list is ordered on the cos_name. Ordering is by name length
first, and then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM’s 6611 APPN MIB ordering). If AP_LIST FROM_NEXT is
selected the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

VCB Structure

typedef struct query_cos

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer x/
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved x/
unsigned char cos_name[8]; /* COS name */

} QUERY_COS;
typedef struct cos_data

unsigned short overlay size; /* size of this entry */
unsigned char cos_name[8]; /* COS name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char transmission_priority;

/* transmission priority */
unsigned char reservl; /* reserved */
unsigned short num_of_node_rows; /* number of node rows */
unsigned short num of tg rows; /* number of TG rows */
unsigned long trees; /* number of tree caches for COS */
unsigned Tong calcs; /* number of route calculations =/

/* for this COS */
unsigned long rejs; /* number of route rejects */

/* for COS */
unsigned char reserva[20]; /* reserved */

} COS_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_COS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

208 System Management Programming

QUERY_COS

buf ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information: The
cos_name specified (see the following parameter, cos_name) represents an
index value that is used to specify the starting point of the actual
information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

cos_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

cos_data.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

Chapter 6. Query Verbs 209

QUERY_COS

cos_data.description
Resource description (as specified on DEFINE_COS). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

cos_data.transmission_priority
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

cos_data.num_of node_rows
Number of node rows for this COS.

cos_data.num_of_tg_rows
Number of TG rows for this COS.

cos_data.trees
Number of route tree caches built for this COS since the last initialization.

cos_data.calcs
Number of session activation requests (and therefore route calculations)
specifying this class of service.

cos_data.rejs
Number of session activation requests that failed because there was no
acceptable (using the specified class of service) route from this node to the
named destination through the network. A route is only acceptable if it is
made up entirely of active TGs and nodes that can provide the specified
class of service.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_COS_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

210 System Management Programming

QUERY_DEFAULT_PU

QUERY_DEFAULT_PU

QUERY_DEFAULT_PU allows the user to query the default PU defined using a
DEFINE_DEFAULT_PU verb.

VCB Structure

typedef struct query_default_pu
{

unsigned short opcode; /* verb operation code */
unsigned char reservZ; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code x/
unsigned long secondary rc; /* secondary return code */
unsigned char def_pu_name[8]; /* default PU name */

unsigned char description[RD_LEN];
/* resource description */

unsigned char def_pu_sess[8]; /* PU name of active */
/* default session */
unsigned char reserv3[16]; /* reserved x/

} QUERY_DEFAULT_PU;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DEFAULT_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

def pu_name
Name of the PU specified on the most recent DEFINE_DEFAULT_PU verb.
This is an 8-byte alphanumeric type A EBCDIC string (starting with a
letter), padded to the right with EBCDIC spaces. If no
DEFINE_DEFAULT_PU verb has been issued then this field will be set to
all zeros.

description
Resource description (as specified on DEFINE_DEFAULT_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

def_pu_sess
Name of the PU associated with the currently active default PU session.
This will be different from the def_pu_name field if a default PU has been
defined, but the session associated with it is not active. In this case,
Personal Communications or Communications Server continues to use the
session associated with the previous default PU until the session associated
with the defined default PU becomes active. If there are no active PU
sessions then this field will be set to all zeros.

Chapter 6. Query Verbs 211

QUERY_DEFAULT_PU

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP _NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

212 System Management Programming

QUERY_DEFAULTS

QUERY_DEFAULTS

QUERY_DEFAULTS allows the user to query the defaults defined using the
DEFINE_DEFAULTS verb.

VCB Structure

typedef struct query_defaults

{
unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
DEFAULT_CHARS

} QUERY_DEFAULTS;

opcode; /*
reserv2; /%
format; /*
primary_rc; /%

secondary rc; /*
default_chars; /=

typedef struct default_chars

{

unsigned char

unsigned char
unsigned char

unsigned char

unsigned char

unsigned char
} DEFAULT_CHARS;

Supplied Parameters

verb operation code %/

reserved
format

*/
*/

primary return code */
secondary return code */
default information */

description[RD_LEN];
/* resource description =/

mode_name[8]; /* default mode name */
implicit_plu_forbidden;
/* disallow implicit */
/* PLUs ? */
specific_security codes;
/* generic security */
/* sense codes */
Timited_timeout;/* timeout for limited =*/
/* sessions */
reserv[244]; /* reserved */

The application supplies the following parameters:

opcode

AP_QUERY_DEFAULTS

format

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

default_chars.description
Resource description (as specified on DEFINE_DEFAULTS). This is a
16-byte string in a locally displayable character set. All 16 bytes are

significant.

default_chars.mode_name
Name of the mode specified on the most recent DEFINE_DEFAULTS verb.

This is an 8-byte alphanumeric type-A EBCDIC string (starting with a

letter), padded to the right with EBCDIC spaces. If no DEFINE_DEFAULTS
verb has been issued then this field will be set to all zeros.

Chapter 6. Query Verbs

213

QUERY_DEFAULTS

default_chars.implicit_plu_forbidden
Controls whether the Program will put implicit definitions in place for
unknown Partner LUs (AP_YES or AP_NO).

default_chars.specific_secuity_codes
Controls whether the Program will use specific sense codes on a security
authentication or authorization failure (AP_YES or AP_NO). Note that the
specific sense codes will only be returned to those partner LUs which have
reported support for them on the session.

default_chars.limited_timeout
Specifies the timeout after which free limited-resource conwinnner sessions

will be deactivated. Range 0 to 65535 seconds.
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

214 System Management Programming

QUERY_DIRECTORY_ENTRY

QUERY_DIRECTORY_ENTRY

QUERY_DIRECTORY_ENTRY returns a list of LUs from the directory database.
The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU, or to obtain the
list information in several chunks, the resource_name and resource_type fields
should be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this
field will be ignored. See [“Querying the Node” on page 10}, for background on how
the list formats are used.

When the local node is a network node, information is returned as follows:

1st Network Node
1st LU located at Network Node
2nd LU locate at Network Node

nth LU located at Network Node
1st End Node served by this Network Node

1st LU located at End Node(1)

2nd LU located at End Node(1)

nth LU located at End Node(1)

nth End Node served by this Network Node
1st LU located at End Node(n)
2nd LU located at End Node(n)

2nd Network Node
...etc..

When the Program is operating as an End Node the first entry returned in the first
entry returned in the resource list is the EN CP. (No entry is returned for the End
Node’s Network Node server.)

This list of directory entries returned may be filtered by the parent name (and
type). In this case, both the parent_name and parent_type fields should be set
(otherwise these fields should be set to all zeros). Ordering is by name length first,
and then by ASCII lexicographical ordering for names of the same length (in
accordance with IBM’s 6611 APPN MIB ordering). If AP_LIST FROM_NEXT is
selected, the returned list starts from the next entry according to the defined
ordering (whether the specified entry exists or not).

VCB Structure

Format 1

typedef struct query_directory_entry({
unsigned short opcode; /* verb operation code x/
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required =*/
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /* total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */

Chapter 6. Query Verbs 215

QUERY_DIRECTORY_ENTRY

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
short
char
char
short
char

resource_name[17]; /* network qualified res name
reservé; /* reserved

resource_type; /* Resource type
parent_name[17]; /* parent name filter
reservs; /* reserved

parent_type; /* parent type

reserv6[24]; /* reserved

} QUERY_DIRECTORY_ENTRY;
typedef struct directory entry summary

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
char
char
short
char
char
char

overlay_size; /* size of this entry
resource_name[17]; /* network qualified res name
reservel; /* reserved

resource_type; /* Resource type

description[RD_LEN]; /* resource description
real_owning cp_type; /* real owning CP type
real_owning_cp_name[17];

/* real owning CP name

} DIRECTORY_ENTRY_SUMMARY;
typedef struct directory entry detail

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

short
char
char
short
char
char

char
short
char
char
char
char

char

} DIRECTORY_LU DETAIL;

VCB Structure

Format 0 (back-level)
typedef struct query_directory_entry{

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} QUERY_DIRECTORY_ENTRY;

short
char
char
short
long
char
long
long
short
short
char
char
char
char
short
char
char
short

Supplied Parameters

The application supplies the following parameters:

216 System Management Programming

overlay_size; /* size of this entry
resource_name[17]; /* network qualified res name
reservla; /* reserved
resource type; /* Resource type
description[RD_LEN]; /* resource description
parent_name[17]; /* network qualified

/* parent name
reservlb; /* reserved
parent_type; /* parent resource type
entry_type; /* Type of the directory entry
location; /* Resource location

real_owning_cp_type; /* real owning CP type
real_owning_cp_name[17];

/* real owning CP name
reserva; /* reserved

opcode; /* verb operation code
reserv2; /* reserved

format; /* format

primary_rc; /* primary return code
secondary_rc; /* secondary return code

buf ptr; / pointer to buffer
buf_size; /* buffer size
total_buf_size; /* total buffer size required
num_entries; /* number of entries
total_num_entries; /* total number of entries
1ist_options; /* Tisting options

reserv3; /* reserved
resource_name[17]; /* network qualified res name
reservéd; /* reserved

resource_type; /* Resource type
parent_name[17]; /* parent name filter
reservb; /* reserved

parent_type; /* parent type

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

QUERY_DIRECTORY_ENTRY

opcode
AP_QUERY_DIRECTORY_ENTRY

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above. In addition to affecting the format of the VCB,
only format 1 returns resources of AP_DLUR_LU_RESOURCE.

buf ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP _DETAIL
Returns detailed information.

The combination of the resource_name and resource_type
specified (see the following parameters, resource_name and
resource_type) represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

resource_type
Resource type. See one of the following;:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE
AP_DLUR_LU_RESOURCE

This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Chapter 6. Query Verbs 217

QUERY_DIRECTORY_ENTRY

218

parent_name
Parent name filter. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot. (Each name can have a maximum length
of 8 bytes with no embedded spaces.) If this field is set, then only directory
entries belonging to the specified parent are returned (and in this case, the
parent_name field must also be set). This field is if it is set to all zeros.

parent_type
The type of parent specified in the parent_name field. The type must be
specified if the parent_name field is nonzero, otherwise this field should
be set to zero. The can be set to one of the following:

AP_ENCP_RESOURCE
AP_NNCP_RESOURCE

This field is ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf _size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of directory entries returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

directory_entry_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_entry_summary.resource_name
Network qualified resource name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_entry_summary.resource_type
Resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE
AP_DLUR_LU_RESOURCE

(Not returned if format is set to zero.)

System Management Programming

QUERY_DIRECTORY_ENTRY

directory_entry_summary.description
Resource description as specified on:

DEFINE_LOCAL_LU
DEFINE_DIRECTORY_ENTRY
DEFINE_ADJACENT_LEN_NODE or
DEFINE_ADJACENT_NODE

directory_entry_summary.real_owning_cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_summary.real_owning_cp_name

NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of

the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a

BrNN if the resource is owned by an EN in the domain of the BrNN. In

this case, the real owning CP is the EN, but the parent is the BrNN.
Other node types: This field is set to binary zeroes.

directory_entry_detail.overlay_size

The number of bytes in this entry, and therefore the offset to the next entry

returned (if any).

directory_entry_detail.resource_name
Network qualified resource name. This name is 17 bytes long and is

right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a

maximum length of 8 bytes with no embedded spaces.)

directory_entry_detail.resource_type
Resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE
AP_LU_RESOURCE

directory_entry_detail.description
Resource description as specified on:

DEFINE_LOCAL_LU
DEFINE_DIRECTORY_ENTRY
DEFINE_ADJACENT_LEN_NODE or
DEFINE_ADJACENT_NODE

Chapter 6. Query Verbs

219

QUERY_DIRECTORY_ENTRY

220

directory_entry_detail.parent_name
Fully-qualified parent name of the node serving the LU. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_entry_detail.parent_type
Parent resource type. This can be one of the following:

AP_NNCP_RESOURCE
AP_ENCP_RESOURCE

directory_entry_detail.entry_type
Specifies the type of the directory entry. This can be one of the following
values:

AP_HOME
Local resource.

AP_CACHE
Cached entry.

AP_REGISTER
Registered resource (NN only).

directory_entry_detail.location
Specifies the location of the resource, which can be one of the following
values:

AP_LOCAL
The resource is at the local node.

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

directory_entry_detail.real_owning cp_type
NN and BrNN only: Real owning CP type. This can be one of the
following:

AP_NONE
The real owning CP is a parent resource.

AP_ENCP_RESOURCE
The real owning CP is not the parent resource and is an EN.

Other node types: This field is set to AP_NONE.

directory_entry_detail.real_owning_cp_name
NN and BrNN only: Fully qualified real owning CP name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

If the real owning CP is the parent, this field is set to binary zeroes.

If the real owning CP is not the parent, then this field is set to the name of
the real owning CP.

The real owning CP is not the parent in the directory of the NNS of a
BrNN if the resource is owned by an EN in the domain of the BrNN. In
this case, the real owning CP is the EN, but the parent is the BrNN.

System Management Programming

QUERY_DIRECTORY_ENTRY

Other node types: This field is set to binary zeroes.
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_RES_NAME

AP_INVALID_RES_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 221

QUERY_DIRECTORY_LU

QUERY_DIRECTORY_LU

QUERY_DIRECTORY_LU returns a list of LUs from the directory database. The
information is returned as a list in one of two formats, either summary or detailed
information. To obtain information about a specific LU, or to obtain the list
information in several chunks, the lu_name field should be set. Otherwise (if the
list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
[“Querying the Node” on page 10} for background on how the list formats are used.

This list is ordered by the lu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
IBM’s 6611 APPN MIB ordering). If AP_LIST_FROM_NEXT is selected, the
returned list starts from the next entry according to the defined ordering (whether
the specified entry exists or not).

Note that DLUS-served LUs present in the directory are also returned by this
query.

VCB Structure

typedef struct query directory lu

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required =*/
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /+ total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char Tu_name[17]; /* network qualified LU name */

} QUERY_DIRECTORY_LU;
typedef struct directory Tu_summary

unsigned short overlay size; /* size of this entry */
unsigned char Tu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */

} DIRECTORY_LU_SUMMARY;
typedef struct directory Tu_detail

unsigned short overlay size; /* size of this entry */
unsigned char Tu_name[17]; /* network qualified LU name */
unsigned char description[RD_LEN]; /* resource description */
unsigned char server_name[17]; /* network qualified */

/* server name */
unsigned char Tu_owner_name[17]; /* network qualified */

/* LU owner name */
unsigned char location; /* Resource Tlocation */
unsigned char entry_type; /* Type of the directory entry */
unsigned char wild_card; /* type of wildcard entry */
unsigned char apparent_Tu_owner_name[17];

/* apparent LU owner name */
unsigned char reserva[3]; /* reserved */

} DIRECTORY_LU DETAIL;

Supplied Parameters

The application supplies the following parameters:

222 System Management Programming

QUERY_DIRECTORY_LU

opcode
AP_QUERY_DIRECTORY_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP DETAIL
Returns detailed information.

The lu_name specified (see the following parameter, lu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

Chapter 6. Query Verbs 223

QUERY_DIRECTORY_LU

num_entries
Number of directory entries returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

directory_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_lu_summary.lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU, or
DEFINE_ADJACENT_NODE). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

directory_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

directory_lu_detail.lu_name
Network qualified LU name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.description
Resource description (as specified on DEFINE_LOCAL_LU, or
DEFINE_ADJACENT_NODE). This is a 16-byte string in a locally
displayable character set. All 16 bytes are significant.

directory_lu_detail.server_name
Network qualified name of the node serving the LU. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.lu_owner_name
Network qualified name of the node owning the LU. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

directory_lu_detail.location
Specifies the location of the resource, which can be one of the following
values:

AP_LOCAL
The resource is at the local node.

AP_DOMAIN
The resource belongs to an attached end node.

AP_CROSS_DOMAIN
The resource is not within the domain of the local node.

224 System Management Programming

QUERY_DIRECTORY_LU

directory_lu_detail.entry_type
Specifies the type of the directory entry. This can be one of the following
values:

AP _HOME
Local resource.

AP_CACHE
Cached entry.

AP_REGISTER
Registered resource (NN only).

directory_lu_detail.wild_card
Specifies the type of wildcard the LU will match.

AP_OTHER
Unknown type of LU entry.

AP_EXPLICIT
The full lu_name will be used for locating this LU.

AP_PARTIAL_WILDCARD
Only the nonspace portions of lu_name will be used for locating
this LU.

AP _FULL_WILDCARD
All Iu_names will be directed to this LU.

directory_lu_detail.apprent_lu_owner_name
NN and BrNN only: Fully qualified apparent LU owner CP name. This
name is 17 bytes long and is right-padded with EBCDIC spaces. It is
composed of two type A EBCDIC character strings concatenated by an
EBCDIC dot. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

If the apparent LU owner is the real LU owner, this field is set to binary
zeroes.

If the apparent LU owner is not the real owner, then this field is set to the
name of the apparent LU owner.

The real LU owner is not the apparent LU owner in the directory of the
NNS of a BrNN if the resource is owned by an EN in the domain of the
BrNN. In this case, the real LU owner is the EN, but the apparent owner is
the BrNN.

Other node types: This field is set to binary zeroes.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

Chapter 6. Query Verbs 225

QUERY_DIRECTORY_LU

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

226 System Management Programming

QUERY_DIRECTORY_STATS

QUERY_DIRECTORY_STATS

—

QUERY_DIRECTORY_STATS returns directory database statistics. (The statistics

This verb applies only to Communications Server.

that refer to cache information are reserved in the case of an end node). The verb
can be used to gauge the level of network locate traffic. In the case of a network
node this information can be used to tune the size of the directory cache, which is
configurable at node-initialization time.

VCB Structure

typedef struct query_directory_stats

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned

} QUERY_DIRECTORY_STATS;

short
char
char
short
Tong
long
Tong
long
long
long

Tong
long

long
long
long
long
Tong
long

long

char

Supplied Parameters

The application supplies the following parameters:

opcode

opcode; /* verb operation code
reserv?; /* reserved

format; /* format

primary_rc; /* primary return code
secondary_rc; /* secondary return code
max_caches; /* max number of cache entries
cur_caches; /* cache entry count

cur_home_entries; /* home entry count
cur_reg_entries; /* registered entry count
cur_directory_entries;

/* current number of dir entries

cache_hits; /* count of cache finds

cache_misses; /* count of resources found by
/* broadcast search (not cache)

in_Tlocates; /* locates in

in_bcast_locates; /* broadcast locates in

out_locates; /* Tocates out

out_bcast_locates; /* broadcast locates out
not_found locates; /* unsuccessful Tocates
not_found_bcast_Tlocates;

/* unsuccessful broadcast

/* Tocates
locates_outstanding;

/* total outstanding locates
reserva[20]; /* reserved

AP_QUERY_DIRECTORY_STATS

format

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

max_caches

Reserved.

Chapter 6. Query Verbs

227

QUERY_DIRECTORY_STATS

228

cur_caches
Reserved.

cur_home_entries
Current number of home entries.

cur_reg_entries
Current number of registered entries.

cur_directory_entries
Total number of entries currently in the directory.

cache_hits
Reserved.

cache_misses
Reserved.

in_locates
Number of directed locates received.

in_bcast_locates
Number of broadcast locates received.

out_locates
Number of directed locates sent.

out_bcast_locates
Number of broadcast locates sent.

not_found_locates
Number of directed locates returned with a “not found.”

not_found_bcast_locates
Number of broadcast locates returned with a “not found.”

locates_outstanding
Current number of outstanding locates, both directed and broadcast.
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc
AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

QUERY_DLC

QUERY_DLC

QUERY_DLC returns a list of information about the DLCs defined at the node.
This information is structured as determined data (data gathered dynamically

during execution) and defined data (the data supplied by the application on
DEFINE_DLC).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific DLC, or to obtain the
list information in several chunks, the dlc_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See
[“Querying the Node” on page 10} for background on how the list formats are used.

This list is ordered by the dlc_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

VCB Structure

typedef struct query dlc
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* ver attributes */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total buf size; /* total buffer size required =*/
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /+ total number of entries */
unsigned char 1ist_options; /* Tisting options */
unsigned char reserv3; /* reserved */
unsigned char dlc_name[8]; /* name of DLC */

} QUERY_DLC;

typedef struct dlc_summary

{
unsigned short overlay size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char description[RD_LEN];

/* resource description */
unsigned char state; /* State of the DLC */
unsigned char dlc_type; /* DLC type */

} DLC_SUMMARY;

typedef struct dlc_detail

{
unsigned short overlay size; /* size of this entry */
unsigned char dlc_name[8]; /* name of DLC */
unsigned char reserv2[2]; /* reserved */
DLC_DET_DATA det_data; /* Determined data */
DLC_DEF_DATA def_data; /* Defined data */

} DLC_DETAIL;

typedef struct dlc_det_data

{
unsigned char state; /* State of the DLC */
unsigned char reserv3[3]; /* reserved */
unsigned char reserva[20]; /* reserved */

} DLC_DET_DATA;

Chapter 6. Query Verbs

QUERY_DLC

230

typedef struct dlc_def_data

DESCRIPTION description; /* resource description */
unsigned char dlc_type; /* DLC type */
unsigned char neg_ls_supp; /* negotiable LS support */
unsigned char port_types; /* allowable port types */
unsigned char retry flags; /* conditions for automatic */

/* retries */

unsigned short max_activaion_attempts;
/* how many automatic retries? */
unsigned short activation_delay_timer;

/* delay between automatic */
/* retries */
unsigned char reserv3[6]; /* reserved */

unsigned short dlc_spec_data len; /* Length of DLC specific data */
} DLC_DEF_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DLC

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following;:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP _DETAIL
Returns detailed information.

The dlc_name specified (see the following parameter, dlc_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

System Management Programming

QUERY_DLC

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dlc_name
DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant and must be set. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf size
Length of the information returned in the buffer.

total_buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlc_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlc_summary.dlc_name
DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

dlc_summary.description
Resource description (as specified on DEFINE_DLC). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

dlc_summary.state
State of the DLC. This field is set to one of the following values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_summary.dlc_type
Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

Chapter 6. Query Verbs 231

QUERY_DLC

dlc_detail.overlay_size

The number of bytes in this entry (including dlc_spec_data), and hence the
offset to the next entry returned (if any).

dlc_detail.dlc_name

DLC name. This is an 8-byte string in a locally displayable character set.
All 8 bytes are significant.

dlc_detail.det_data.state

State of the DLC. This field is set to one of the following values:

AP_ACTIVE
AP_NOT_ACTIVE
AP_PENDING_INACTIVE

dlc_detail.def_data.description

Resource description (as specified on DEFINE_DLC). This is a 16-byte
string in a locally displayable character set. All 16 bytes are significant.

dlc_detail.def_data.dlc_type

Type of DLC. The Program supports the following types:

AP_ANYNET
AP_LLC2
AP_OEM_DLC
AP_SDLC
AP_TWINAX
AP_X25

dlc_detail.def_data.neg_lIs_supp

Specifies whether the DLC supports negotiable link stations (AP_YES or
AP_NO).

dlc_detail.def_data.port_types

Specifies the allowable port types for the supplied dlc_type. The value
corresponds to one or more of the following values ORed together:

AP_PORT_NONSWITCHED
AP_PORT_SWITCHED
AP_PORT_SATF

dlc__detail.def_data.retry_flags

This field specifies the conditions under which link stations, defined on

this DLC, are subject to automatic retry if the flag AP_INHERIT_RETRY is
set on both DEFINE_LS and DEFINE_PORT in def_data.retry_flags. It is a
bit field, and may take any of the following values bitwise ORed together.

AP_RETRY_ON_START
Link activation will be retried if no response is received from the
remote node when activation is attempted. If the underlying port is
inactive when activation is attempted, the Program will attempt to
activate it.

AP_RETRY_ON_FAILURE
Link activation will be retried if the link fails while active or
pending active. If the underlying port has failed when activation is
attempted, the Program attempts to activate it.

AP_RETRY_ON_DISCONNECT
Link activation will be retried if the link is stopped normally by
the remote node.

232 System Management Programming

QUERY_DLC

AP_DELAY_APPLICATION_RETRIES
Link activation retries, initiated by applications (using START_LS
or on-demand link activation) will be paced using the
activation_delay_timer.

AP_INHERIT_RETRY
This flag has no effect.

dlc_detail.def data.max_activation_attempts
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def_data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of retry attempts the Program allows when
the remote node is not responding, or the underlying port is inactive. This
includes both automatic retries and application-driven activation attempts.

If this limit is ever reached, no further attempts are made to automatically
retry. This condition is reset by STOP_LS, STOP_PORT, STOP_DLC or a
successful activation. START_LS or OPEN_LU_SSCP_SEC_RQ results in a
single activation attempt, with no retry if activation fails.

Zero means no limit’. The value AP_USE_DEFAULTS means 'no limit’.

dlc_detail.def_data.activation_delay_timer
This field has no effect unless at least one flag is set in DEFINE_LS in
def_data.retry_flags, def_data.max_activation_attempts on DEFINE_LS is
set to AP_USE_DEFAULTS, and def data.max_activation_attempts on
DEFINE_PORT is set to AP_USE_DEFAULTS.

This field specifies the number of seconds that the Program waits between
automatic retry attempts, and between application-driven activation
attempts if the AP_DELAY_APPLICATION_RETRIES bit is set in
def_data.retry_flags.

The value of zero or AP_USE_DEFAULTS results in the use of default
timer duration of thirty seconds.

dlc_detail.def data.dlc_spec_data_len
Unpadded length, in bytes, of data specific to the type of DLC. The data
will be concatenated to the DLC_DETAIL structure. This data will be
padded to end on a 4-byte boundary. This field should always be set to
Zero.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_DLC_NAME

AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

primary_rc
AP_NODE_NOT_STARTED

Chapter 6. Query Verbs 233

QUERY_DLC

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

234 System Management Programming

QUERY_DLUR_DEFAULTS

QUERY_DLUR_DEFAULTS

QUERY_DLUR_DEFAULTS allows the user to query the defaults defined using the
DEFINE_DLUR_DEFAULTS verb.

VCB Structure

typedef struct query_dlur_defaults

{
unsigned
unsigned
unsigned
unsigned
unsigned

short
char
char
short
Tong

DESCRIPTION

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} QUERY_DLUR_LU;

char
char
char
short
short
char

Supplied Parameters

The application supplies the following parameters:

opcode

opcode; /*
reserv2; /*
format; /*
primary_rc; /*
secondary_rc; /*
description; /*
dlus_name[17]; /*

bkup_dlus_name[17];/~*
reserv3; /*
dlus_retry timeout;/*
dlus_retry limit; /=
reserv4[16]; /%

AP_QUERY_DLUR_DEFAULTS

format

verb operation code
reserved

format

primary return code
secondary return code
resource description
DLUS name

Backup DLUS name
reserved

DLUS Retry Timeout
DLUS Retry Limit
reserved

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

description

Resource description. The length of this field should be a multiple of four
bytes and nonzero.

dlus_name

Name of the DLUS node that will serve as the default. This is set to all
zeros or a 17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded

spaces.)

bkup_dlus_name
Name of the DLUS node that will serve as the backup default. This is set
to all zeros or a 17-byte string composed of two type-A EBCDIC character
strings concatenated by an EBCDIC dot, and is right-padded with EBCDIC
spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.)

dlus_retry_timeout
Interval in seconds between the second and subsequent attempts to contact
a DLUS. The interval between the initial attempt and the first retry is
always one second.

Chapter 6. Query Verbs

235

QUERY_DLUR_DEFAULTS

236

dlus_retry_limit
Maximum number of retries after an initial failure to contact a DLUS. If
X'FFFF’ is specified, the Program retries indefinitely.

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameters:
primary_rc

AP_FUNCTION_NOT_SUPPORTED
If the verb does not execute because the system has not been built with DLUR
support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because a STOP_NODE verb has been issued, the
Program returns the following parameter:
primary_rc

AP_NODE_STOPPING
If the verb does not execute because a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

QUERY_DLUR_LU

QUERY_DLUR_LU

QUERY_DLUR_LU returns a list of information about DLUR-supported LUs.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific LU, or to obtain the
list information in several chunks, the lu_name field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See [“Querying the Node” on page 10} for background on how the list
formats are used.

This list is ordered by the lu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with
normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The list of LUs returned can be filtered by pu_name or by whether the LU is local
or downstream or by both. If filtering by PU is desired, the pu_name field should
be set (otherwise this field should be set to all zeros). If filtering by location is
desired, the filter field should be set to AP_INTERNAL or AP_DOWNSTREAM
(otherwise, if no filtering is required, this field should be set to AP_NONE).

VCB Structure

typedef struct query dlur_Tu
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer x/
unsigned Tong buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required =/
unsigned short num entries; /* number of entries */
unsigned short total_num_ entries; /* total number of entries */
unsigned char Tist_options; /* 1isting options */
unsigned char reserv3; /* reserved */
unsigned char Tu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of PU to filter on */
unsigned char filter; /* reserved x/

} QUERY_DLUR_LU;
typedef struct dlur_lu_summary

{
unsigned short overlay_size; /* size of this entry */
unsigned char lu_name[8]; /* name of LU */
} DLUR_LU_SUMMARY;

typedef struct dlur_Tu_detail
{

unsigned short overlay size; /* size of this entry */
unsigned char Tu_name[8]; /* name of LU */
unsigned char pu_name[8]; /* name of owning PU */
unsigned char dlus_name[17]; /* DLUS name if SSCP-LU */

/* session active */
unsigned char Tu_Tlocation; /* downstream or local LU */
unsigned char nau_address; /* NAU address of LU */
unsigned char plu_name[17]; /* PLU name if PLU-SLU session */

Chapter 6. Query Verbs 237

QUERY_DLUR_LU

/* active */
unsigned char reservi[27]; /* reserved */
unsigned char rscv_len; /* length of appended RSCV */

} DLUR_LU_DETAIL;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DLUR_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP DETAIL
Returns detailed information.

The lu_name specified (see the following parameter, lu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

lu_name
Name of LU being queried. This is an 8-byte alphanumeric type A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

pu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only LUs associated with the
specified PU are returned. This field is ignored if it is set to all zeros.

238 System Management Programming

QUERY_DLUR_LU

filter Location filter. Specifies whether the returned LUs should be filtered by
location (AP_INTERNAL or AP_DOWNSTREAM). If no filter is required,
this field should be set to AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlur_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_lu_summary.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_lu_detail.overlay_size
The number of bytes in this entry (including appended RSCV), and hence
the offset to the next entry returned (if any).

dlur_lu_detail.lu_name
Name of LU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_lu_detail.pu_name
Name of PU associated with the LU. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

dlur_lu_detail.dlus_name
Name of the DLUS node if the SSCP-LU session is active. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) If the
SSCP-LU session is not active, this field will be set to all zeros.

dlur_lu_detail.lu_location
Location of LU. The only value returned is:
AP_INTERNAL
AP_DOWNSTREAM

dlur_lu_detail.nau_address
Network addressable unit address of the LU. This is in the range 1-255.

Chapter 6. Query Verbs 239

QUERY_DLUR_LU

dlur_lu_detail.plu_name
Name of PLU if the LU has an active PLU-SLU session. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, and is right-padded with EBCDIC spaces. (Each name can
have a maximum length of 8 bytes with no embedded spaces.) If the
PLU-SLU session is not active, this field will be set to all zeros.

dlur_lu_detail.rscv_len
This value will always be zero.
If the verb does not execute because of a parameter error, the Program returns the

following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_LU_NAME

AP_INVALID_FILTER _OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

240 System Management Programming

QUERY_DLUR_PU

QUERY_DLUR_PU

QUERY_DLUR_PU returns a list of information about DLUR-supported PUs.

The information is returned as a list in one of two formats, either summary or

detailed information. To obtain information about a specific PU, or to obtain the
list information in several chunks, the pu_name field should be set. Otherwise (if
the list_options field is set to AP_FIRST_IN_LIST), this field will be ignored. See

[“Querying the Node” on page 10} for background on how the list formats are used.

This list is ordered by the pu_name. Ordering is by name length first, and then by
ASCII lexicographical ordering for names of the same length (in accordance with

normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry

according to the defined ordering (whether the specified entry exists or not).

The list of PUs returned can be filtered either by dlus_name or by whether the PU
is local or downstream or by both. If filtering by DLUS is desired, the dlus_name

field should be set (otherwise this field should be set to all zeros). If filtering by

PU location is desired, the filter field should be set to AP_INTERNAL or
AP_DOWNSTREAM (otherwise, if no filtering is required, this field should be set

to AP_NONE).

VCB Structure

typedef struct query_dlur_pu

{

short
char
char
short
long
char
Tong
long
short
short
char
char
char
char
char

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} QUERY_DLUR_PU;

opcode; /*
reserv2; /*
format; /*
primary_rc; /*
secondary_rc; /*
*buf_ptr; /%
buf_size; /*
total_buf_size; /*
num_entries; /*
total_num_entries; /=
1ist_options; /*
reserv3; /*
pu_name[8]; /*
dlus_name[17]; /*
filter; /*

typedef struct dlur_pu_summary

{
unsigned short
unsigned char
unsigned char

} DLUR_PU_SUMMARY;

overlay size; /*
pu_name[8]; /*
description[RD_LEN];

/*

typedef struct dlur_pu detail

{

short
char
char

unsigned
unsigned
unsigned
unsigned char

char
char

unsigned
unsigned

overlay size; /*
pu_name[8] ; /*
description[RD_LEN];

/*
defined_dlus_name[17];

/*
bkup_dlus_name[17]; /=
pu_id[4]; /*

verb operation code */
reserved */
format */
primary return code x/
secondary return code x/
pointer to buffer */
buffer size */
total buffer size required */
number of entries */
total number of entries */
Tisting options */
reserved */
name of PU */
fully qualified DLUS name */
Tocal/downstream filter */
size of this entry */
name of PU */
resource description */
size of this entry */
name of PU */
resource description */
defined DLUS name */
backup DLUS name */
PU identifier */
Chapter 6. Query Verbs 241

QUERY_DLUR_PU

unsigned char pu_Tlocation; /* downstream or local PU */
unsigned char active_dlus_name[17];

/% active DLUS name */
unsigned char ans_support; /* Auto-Network shutdown support =/
unsigned char pu_status; /* status of the PU */
unsigned char dlus_session_status; /* status of the DLUS pipe */
unsigned char reserv3; /* reserved x/
FQPCID fqpcid; /* FQPCID used on pipe */
unsigned short dlus_retry_timeout; /* DLUS retry timeout */
unsigned short dlus_retry limit; /* DLUS retry Timit */

} DLUR_PU_DETAIL;
typedef struct fqpcid
{

unsigned char pcid[8]; /* proc correlator identifier */
unsigned char fqcp_name[17]; /* originator's network x/
/* qualified CP name */
unsigned char reserve3[3]; /* reserved x/
} FQPCID;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DLUR_PU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The pu_name specified (see the following parameter, pu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
tirst entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

242 System Management Programming

QUERY_DLUR_PU

pu_name
Name of PU being queried. This is an 8-byte alphanumeric type A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.
This field is ignored if list_options is set to AP_FIRST_IN_LIST.

dlus_name
DLUS filter. This should be set to all zeros or to a 17-byte string composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot,
and is right-padded with EBCDIC spaces. If this field is set then only PUs
associated with an SSCP-PU session to the specified DLUS node are
returned. This field is ignored if it is set to all zeros.

filter This field should be set to AP_NONE.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlur_pu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_pu_summary.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_pu_summary.description
Resource description (as specified on DEFINE_INTERNAL_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

dlur_pu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlur_pu_detail.pu_name
Name of PU. This is an 8-byte alphanumeric type-A EBCDIC string
(starting with a letter), padded to the right with EBCDIC spaces.

dlur_pu_detail.description
Resource description (as specified on DEFINE_INTERNAL_PU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

Chapter 6. Query Verbs 243

QUERY_DLUR_PU

dlur_pu_detail.defined_dlus_name

Name of the DLUS node defined by either a DEFINE_INTERNAL_PU verb
or DEFINE_LS verb (with dspu_services set to AP_DLUR). This is a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

dlur_pu_detail.bkup_dlus_name

Name of backup DLUS node defined by either a DEFINE_INTERNAL_PU
verb or DEFINE_LS verb (with dspu_services set to AP_DLUR). This is a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, and is right-padded with EBCDIC spaces.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

dlur_pu_detail.pu_id

PU identifier defined in a DEFINE_INTERNAL_PU verb or obtained in an
XID from a downstream PU. This a 4-byte hexadecimal string. Bits 0-11 are
set to the Block number and bits 12-31 are set to the ID number that
uniquely identifies the PU.

dlur_pu_detail.pu_location

Location of PU. The only value returned is:

AP_INTERNAL
AP_DOWNSTREAM

dlur_pu_detail.active_dlus_name

Name of the DLUS node that the PU is currently using. This is a 17-byte
string composed of two type-A EBCDIC character strings concatenated by
an EBCDIC dot, which is right-padded with EBCDIC spaces. (Each name
can have a maximum length of 8 bytes with no embedded spaces.) If the
SSCP-PU session is not active, this field will be set to all zeros.

dlur_pu_detail.ans_support

Auto Network Shutdown support. This field is reserved if the SSCP-LU
session is inactive. The support setting is sent to DLUR from the DLUS at
SSCP-PU activation. It specifies whether link-level contact should be
continued if the subarea node initiates an auto network shutdown
procedure for the SSCP controlling the PU. This can be one of the
following values:

AP_CONT
AP_STOP

dlur_pu_detail.pu_status

Status of the PU (as seen by DLUR). This can be set to one of the following
values:

AP_RESET
The PU is in reset state.

AP_PEND_ACTPU
The PU is waiting for an ACTPU from the host.

AP_PEND_ACTPU_RSP
Having forwarded an ACTPU to the PU, DLUR is now waiting for
the PU to respond to it.

244 System Management Programming

QUERY_DLUR_PU

AP_ACTIVE
The PU is active.

AP _PEND_DACTPU_RSP
Having forwarded a DACTPU to the PU, DLUR is waiting for the
PU to respond to it.

AP_PEND_INOP
DLUR is waiting for all necessary events to complete before it
deactivates the PU.

dlur_pu_detail.dlus_session_status
Status of the DLUS pipe currently being used by the PU. This can be one
of the following values:

AP_PENDING_ACTIVE
AP_ACTIVE
AP_PENDING_INACTIVE
AP_INACTIVE

dlur_pu_detail.fqpcid.pcid
Procedure correlator ID used on the pipe. This is an 8-byte hexadecimal
string. If the SSCP-PU session is not active this field will be set to zeros.

dlur_pu_detail.fqpcid.fqcp_name
Fully qualified Control Point name used on the pipe. This name is 17 bytes
long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.) If
the SSCP-PU session is not active this field will be set to zeros.

dlur_pu_detail.dlus_retry_timeout
Interval in seconds between second and subsequent attempts to contact the
DLUS specified in the dlus_name and bkup_dlus_name fields. The
interval between the initial attempt and the first retry is always one
second. If zero is specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used.

def_data.dlus_retry_limit
Maximum number of retries after an initial failure to contact the DLUS
specified in the dlus_name and bkup_dlus_name fields. If zero is
specified, the default value configured through
DEFINE_DLUR_DEFAULTS is used. If X’FFFF’ is specified, the Program
retrys indefinitely.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_FILTER_OPTION
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:

Chapter 6. Query Verbs 245

QUERY_DLUR_PU

primary_rc
AP_NODE_NOT_STARTED

If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

246 System Management Programming

QUERY_DLUS

QUERY_DLUS

QUERY_DLUS returns a list of information about DLUS nodes known by DLUR.

The information is returned as a list. To obtain information about a specific DLUS
node, or to obtain the list information in several chunks, the dlus_name field

should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be

ignored. See [“Querying the Node” on page 10} for background on how the list

formats are used.

This list is ordered by the dlus_name. Ordering is by name length first, and then

by ASCII lexicographical ordering for names of the same length (in accordance

with normal MIB ordering).

If AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

Note that this verb returns pipe statistics.

VCB Structure

typedef struct query_dlus

{
unsigned short
unsigned char
unsigned char
unsigned short
unsigned Tong
unsigned char
unsigned Tong
unsigned Tong
unsigned short
unsigned short
unsigned char
unsigned char
unsigned char

} QUERY_DLUS;

typedef struct dlus_data

{
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
PIPE_STATS

} DLUS_DATA;

typedef struct pipe_stats
{
unsigned Tong
unsigned Tlong

unsigned Tong
unsigned Tong
unsigned Tlong
unsigned Tong

opcode;
reserv2;
format;
primary_rc;
secondary_rc;
*buf_ptr;
buf_size;

total _buf_size;
num_entries;
total _num_entries;
Tist_options;
reserv3;
dlus_name[17];

overlay_size;
dlus_name[17];
is_default;
is_backup_default;
pipe_state;
num_active_pus;
pipe_stats;

reqactpu_sent;
reqactpu_rsp_received;

actpu_received;
actpu_rsp_sent;
reqdactpu_sent;
reqdactpu_rsp_received;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*

verb operation code
reserved

format

primary return code
secondary return code
pointer to buffer

buffer size

total buffer size required
number of entries

total number of entries
listing options

reserved

fully qualified DLUS name

size of this entry

fully qualified DLUS name

is the DLUS the default

is DLUS the backup default
state of CPSVRMGR pipe

num of active PUs using pipe
pipe statistics

REQACTPUs sent to DLUS

RSP (REQACTPU)s received
from DLUS

ACTPUs received from DLUS
RSP(ACTPU)s sent to DLUS
REQDACTPUs sent to DLUS

/* RSP(REQDACTPU)s received
/* from DLUS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/

*/
*/

Chapter 6. Query Verbs

247

QUERY_DLUS

unsigned long dactpu_received; /* DACTPUs received from DLUS */
unsigned long dactpu_rsp_sent; /* RSP(DACTPU)s sent to DLUS */
unsigned long actlu_received; /* ACTLUs received from DLUS */
unsigned Tong actlu_rsp_sent; /* RSP(ACTLU)s sent to DLUS */
unsigned long dactlu_received; /* DACTLUs received from DLUS */
unsigned long dactlu_rsp_sent; /* RSP(DACTLU)s sent to DLUS */

unsigned long sscp_pu_mus_rcvd; /* MUs for SSCP-PU */
/* sessions received */
unsigned long sscp_pu_mus_sent; /* MUs for SSCP-PU sessions sent */
unsigned long sscp_lu_mus_rcvd; /* MUs for SSCP-LU sessions */
/* received x/

unsigned long sscp_lu mus_sent; /* MUs for SSCP-LU sessions sent */
} PIPE_STATS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DLUS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP _DETAIL
Returns detailed information.

The dlus_name specified (see the following parameter, dlus_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dlus_name
Name of the DLUS being queried. This should be set to all zeros or a
17-byte string composed of two type-A EBCDIC character strings
concatenated by an EBCDIC dot, which is right-padded with EBCDIC

248 System Management Programming

QUERY_DLUS

spaces. (Each name can have a maximum length of 8 bytes with no
embedded spaces.) This field is ignored if list_options is set to
AP_FIRST IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dlus_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

dlus_data.dlus_name
Name of the DLUS. This is a 17-byte string composed of two type-A
EBCDIC character strings concatenated by an EBCDIC dot, and is
right-padded with EBCDIC spaces. (Each name can have a maximum
length of 8 bytes with no embedded spaces.)

dlus_data.is_default
Specifies whether the DLUS node has been designated as the default by a
DEFINE_DLUR_DEFAULTS verb (AP_YES or AP_NO).

dlus_data.is_backup_default
Specifies whether the DLUS node has been designated as the backup
default by a DEFINE_DLUR_DEFAULTS verb (AP_YES or AP_NO).

dlus_data.pipe_state
State of the pipe to the DLUS. It can have one of the following values:

AP_ACTIVE
AP_PENDING_ACTIVE
AP_INACTIVE
AP_PENDING_INACTIVE

dlus_data.num_active_pus
Number of PUs currently using the pipe to the DLUS.

dlus_data.pipe_stats.reqactpu_sent
Number of REQACTPUs sent to DLUS over the pipe.

dlus_data.pipe_stats.reqactpu_rsp_received
Number of RSP(REQACTPU)s received from DLUS over the pipe.

dlus_data.pipe_stats.actpu_received
Number of ACTPUs received from DLUS over the pipe.

Chapter 6. Query Verbs 249

QUERY_DLUS

dlus_data.pipe_stats.actpu_rsp_sent
Number of RSP(ACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_sent
Number of REQDACTPUs sent to DLUS over the pipe.

dlus_data.pipe_stats.reqdactpu_rsp_received
Number of RSP(REQDACTPU)s received from DLUS over the pipe.

dlus_data.pipe_stats.dactpu_received
Number of DACTPUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactpu_rsp_sent
Number of RSP(DACTPU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.actlu_received
Number of ACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.actlu_rsp_sent
Number of RSP(ACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.dactlu_received
Number of DACTLUs received from DLUS over the pipe.

dlus_data.pipe_stats.dactlu_rsp_sent
Number of RSP(DACTLU)s sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_pu_mus_rcvd
Number of SSCP-PU MUs received from DLUS over the pipe.

dlus_data.pipe_stats.sscp_pu_mus_sent
Number of SSCP-PU MUs sent to DLUS over the pipe.

dlus_data.pipe_stats.sscp_lu_mus_rcvd
Number of SSCP-LU MUs received from DLUS over the pipe.

dlus_data.pipe_stats.sscp_lu_mus_sent

Number of SSCP-LU MUs sent to DLUS over the pipe.
If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_DLUS_NAME

AP_INVALID_LIST _OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

250 System Management Programming

QUERY_DOWNSTREAM_LU

QUERY_DOWNSTREAM_LU

E This verb applies only to Communications Server.
p

=

QUERY_DOWNSTREAM_LU returns information about downstream LUs served
by DLUR or PU concentration or both. This information is structured as
determined data (data gathered dynamically during execution) and defined data.
(Defined data is supplied by the application on the DEFINE_DOWNSTREAM_LU
verb. Note that for DLUR-supported LUs, implicitly defined data is put in place
when the downstream LU is activated).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU or to obtain
the list information in several chunks, the dslu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored.

The returned LUs may be filtered by the type of service the local node provides or
the LU’s associated downstream PU or both. If filtering by type of service is
desired, the dspu_services field should be set to AP_PU_CONCENTRATION or
AP_DLUR (otherwise, this field should be set to AP_NONE). If filtering by PU is
desired, the dspu_name field should be set (otherwise, this field should be set to
all zeros).

VCB Structure

typedef struct query_downstream Tu

{

unsigned short opcode; /* verb operation code x/
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code %/
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size x/
unsigned long total buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total num entries; /* total number of entries x/
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dslu_name[8]; /* Downstream LU name */
unsigned char dspu_name[8]; /* Downstream PU name filter */
unsigned char dspu_services; /* filter on DSPU services type */

} QUERY_DOWNSTREAM_LU;
typedef struct downstream_lu_summary

{

unsigned short overlay size; /* size of this entry */
unsigned char dslu_name[8]; /* LU name */
unsigned char dspu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char dspu_services; /* type of service provided to */

/* downstream node */
unsigned char nau_address; /* NAU address */

unsigned char Tu_sscp_sess_active;
/* Is LU-SSCP session active */
unsigned char plu_sess active; /* Is PLU-SLU session active */
} DOWNSTREAM_LU_SUMMARY;

Chapter 6. Query Verbs 251

QUERY_DOWNSTREAM_LU

252

typedef struct downstream_lu_detail

unsigned short
unsigned char
unsigned char

overlay size; /*
dslu_name[8]; /*
reservl[2]; /*

DOWNSTREAM_LU DET DATA det_data; /+
DOWNSTREAM_LU_DEF DATA def data; /*

} DOWNSTREAM LU DETAIL;

typedef struct downstream lu_det data

unsigned char

unsigned char
unsigned char

unsigned char
SESSION_STATS
SESSION_STATS

SESSION_STATS
unsigned char
unsigned char
unsigned char

Tu_sscp_sess_active;

/*
plu_sess_active; /=
dspu_services; /*

/*
reservl; /*
Tu_sscp_stats; /*
ds_plu_stats; /*

/*
us_plu_stats; /*

host Tu_name[8]; /*
host 1u_name[8]; /*
reserval4]; /*

} DOWNSTREAM LU_DET_DATA;
typedef struct downstream_lu_def data

unsigned char

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

description[RD_LEN];

/*
nau_address; /*
dspu_name[8]; /*
host_Tu_name; /*
allow_timeout; /*
delayed_logon; /*

reserv2[6]; /*

} DOWNSTREAM_LU_DEF_DATA;
typedef struct session_stats

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

unsigned Tong
unsigned long

unsigned Tong
unsigned Tong
unsigned Tong

unsigned Tong

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char
} SESSION_STATS;

Supplied Parameters

rcv_ru_size; /*
send_ru_size; /*
max_send_btu_size; /*
max_rcv_btu_size; /*
max_send_pac_win; /*
cur_send_pac_win; /*
max_rcv_pac_win; /*
cur_rcv_pac_win; /*
/*
send_data_frames; /*
send_fmd_data_frames;
/*
send_data_bytes; /*
rcv_data_frames; /*
rcv_fmd_data_frames;

/*
rcv_data_bytes; /*
sidh; /*
sidl; /*
odai; /*
1s_name[8]; /*

pacing_type; /*

size of this entry
LU name

reserved
Determined data
Defined data

Is LU-SSCP session active
Is PLU-SLU session active
type of services provided to
downstream node

reserved

LU-SSCP session statistics
downstream PLU-SLU session
statistics

upstream PLU_SLU sess stats
Determined host LU name
Determined host PU name
reserved

resource description

NAU address

Downstream PU name

host LU or pool name
Allow timeout of host LU?

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

Allow delayed logon to host LU */

reserved

session receive RU size
session send RU size

max send BTU size

max rcv BTU size

max send pacing win size
current send pacing win size
max receive pacing win size
current receive pacing
window size

number of data frames sent

num of FMD data frames sent
number of data bytes sent
num data frames received

num of FMD data frames recvd
number of data bytes received
session ID high byte

session ID low byte

ODAI bit set

Link station name

type of pacing in use

The application supplies the following parameters:

System Management Programming

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

QUERY_DOWNSTREAM_LU

opcode
AP_QUERY_DOWNSTREAM_LU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written.

buf size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter, dslu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dspu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set, then only LUs associated with the
specified PU are returned. This field is ignored if it is set to all zeros.

dspu_services
DSPU services filter. If set to AP_PU_CONCENTRATION, only

Chapter 6. Query Verbs 253

QUERY_DOWNSTREAM_LU

downstream LUs served by PU concentration are returned. If set to
AP_DLUR, only DLUR-supported LUs are returned. Otherwise, if set to
AP_NONE, information on all downstream LUs is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

downstream_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_lu_summary.dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_summary.dspu_name
Name of local PU that this LU is using. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_summary.description
Resource description (as specified on DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE). This is a 16-byte string in a
locally displayable character set. All 16 bytes are significant.

downstream_lu_summary.dspu_services
Specifies the services which the local node provides to the downstream LU
across the link. This is set to one of the following;:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_lu_summary.nau_address
Network addressable unit address of the LU, which is in the range 1-255.

downstream_lu_summary.lu_sscp_sess_active
Indicates whether the LU-SSCP session is active (AP_YES or AP_NO).

downstream_lu_summary.plu_sess_active
Indicates whether the PLU-SLU session is active (AP_YES or AP_NO).

254 System Management Programming

QUERY_DOWNSTREAM_LU

downstream_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_lu_detail.dslu_name
Name of the local LU that is being queried. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_detail.det_data.lu_sscp_sess_active
Indicates whether the LU-SSCP session to the downstream LU is active
(AP_YES or AP_NO).

downstream_lu_detail.det_data.plu_sess_active
Indicates whether the PLU-SLU session to the downstream LU is active
(AP_YES or AP_NO).

downstream_lu_detail.det_data.dspu_services
Specifies the services that the local node provides to the downstream LU
across the link. This is set to one of the following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.send_ru_size
Maximum send RU size. If downstream_lu_detail.det_data.dspu_services
is set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.lu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

downstream_lu_detail.det_data.lu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.lu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

Chapter 6. Query Verbs 255

QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.lu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.lu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.lu_sscp_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.lu_sscp_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.lu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to one if the BIND sender is the node
containing the secondary link station.

downstream_lu_detail.det_data.lu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

downstream_lu_detail.det_data.lu_sscp_stats.pacing_type
Receive pacing in use on the LU-SSCP session. This takes the value
AP_NONE.

downstream_lu_detail.det_data.ds_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.ds_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.ds_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.ds_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.ds_plu_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.ds_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.ds_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.ds_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

256 System Management Programming

QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.ds_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_lu_detail.det_data.ds_plu_stats.sidh
Session ID high byte.

downstream_lu_detail.det_data.ds_plu_stats.sidl
Session ID low byte.

downstream_lu_detail.det_data.ds_plu_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

downstream_lu_detail.det_data.ds_plu_stats.Is_name

Link station name associated with statistics. This is an 8-byte string in a

locally displayable character set. All 8 bytes are significant.

downstream_lu_detail.det_data.plu_stats.pacing_type

Receive pacing type in use on the downstream PLU-SLU session. This can

take the values AP_NONE or AP_PACING_FIXED.

downstream_lu_detail.det_data.us_plu_stats.rcv_ru_size
Maximum receive RU size.

downstream_lu_detail.det_data.us_plu_stats.send_ru_size
Maximum send RU size.

downstream_lu_detail.det_data.us_plu_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_lu_detail.det_data.us_plu_stats.max_send_pac_win
Maximum size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_send_pac_win
Current size of the send pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.max_rcv_pac_win
Maximum size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.cur_rcv_pac_win
Current size of the receive pacing window on this session.

downstream_lu_detail.det_data.us_plu_stats.send_data_frames
Number of normal flow data frames sent.

downstream_lu_detail.det_data.us_plu_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_lu_detail.det_data.us_plu_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_lu_detail.det_data.us_plu_stats.rcv_data_bytes
Number of normal flow data bytes received.

Chapter 6. Query Verbs

257

QUERY_DOWNSTREAM_LU

downstream_lu_detail.det_data.us_plu_stats.sidh
Session ID high byte. If downstream_lu_detail.det_data_.dspu_services is
set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.sidl
Session ID low byte. If downstream_lu_detail.det_data_.dspu_services is
set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station. If
downstream_lu_detail.det_data_.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.Is_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. If
downstream_lu_detail.det_data_dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_lu_detail.det_data.us_plu_stats.pacing_type
Receive pacing type in use on the upstream PLU-SLU session. This can
take the values AP_NONE or AP_PACING_FIXED.

downstream_lu_detail.det_data.host_lu_name
Name of the host LU that the downstream LU is mapped to, or was
mapped to when the PLU-SLU session was last active. This may differ
from def_data.host_lu_name, as that may be the name of the host LU pool.

downstream_lu_detail.det_data.host_pu_name
Name of the host PU that the downstream PU is mapped to, or was
mapped to when the PLU-SLU session was last active.

downstream_lu_detail.def_data.description
Resource description (as specified on DEFINE_DOWNSTREAM_LU or
DEFINE_DOWNSTREAM_LU_RANGE).

downstream_lu_detail.def data.nau_address
Network addressable unit address of the LU, which is in the range 1-255.

downstream_lu_detail.def data.dspu_name
Name of PU associated with the LU. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces.

downstream_lu_detail.def_data.host_lu_name
Name of the host LU or host LU pool that the downstream LU is mapped
to. In the case of an LU, this is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces. In
the case of an LU pool, the Program does not specify a character set for
this field. This field is reserved for DLUR-served downstream LUs.

downstream_lu_detail.def_data.allow_timeout
Specifies whether the Program is allowed to time out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

downstream_lu_detail.def_data.delayed_logon
Specifies whether the Program should delay connecting the downstream

258 System Management Programming

QUERY_DOWNSTREAM_LU

LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen will be sent to the downstream LU
(AP_YES or AP_NO).

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_LU_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 259

QUERY_DOWNSTREAM_PU

QUERY_DOWNSTREAM_PU

E This verb applies only to Communications Server.
p;

—

QUERY_DOWNSTREAM_PU returns information about downstream PUs (defined
using a DEFINE_LS verb).

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local PU or to obtain
the list information in several chunks, the dspu_name field should be set.
Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored.

The list of PUs can be filtered by the type of service the local node provides for the
downstream PU. To do this, the dspu_services field should be set to
AP_PU_CONCENTRATION or AP_DLUR.

VCB Structure

typedef struct query_downstream pu

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num entries; /* total number of entries */
unsigned char Tist options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char dspu_name[8]; /* Downstream PU name */
unsigned char dspu_services; /* filter on DSPU services type =/

} QUERY_DOWNSTREAM_PU;
typedef struct downstream_pu_data

unsigned short overlay size; /* size of this entry */
unsigned char dspu_name[8]; /* PU name */
unsigned char description[RD_LEN];

/* resource description */
unsigned char 1s_name[8]; /* Link name x/
unsigned char pu_sscp_sess_active;

/* Is PU-SSCP session active */
unsigned char dspu_services; /* DSPU service type */
SESSION _STATS pu_sscp_stats; /* SSCP-PU session stats */
unsigned char reserva[20]; /* reserved */

} DOWNSTREAM_PU_DATA
typedef struct session_stats

{

unsigned short rcv_ru_size; /* session receive RU size */
unsigned short send_ru_size; /* session send RU size */
unsigned short max_send btu size; /* max send BTU size */
unsigned short max_rcv_btu_size; /* max rcv BTU size */
unsigned short max_send pac_win; /* max send pacing win size */

unsigned short cur_send_pac_win; /* current send pacing win size =/
unsigned short max_rcv_pac_win; /* max receive pacing win size =/
unsigned short cur_rcv_pac_win; /% current receive pacing x/

/* window size */

260 System Management Programming

QUERY_DOWNSTREAM_PU

unsigned Tong send data_frames; /* number of data frames sent */
unsigned Tong send_fmd_data_frames;

/* num of FMD data frames sent =/
unsigned Tong send_data_bytes; /* number of data bytes sent */
unsigned Tong rcv_data_frames; /* num data frames received */
unsigned long rcv_fmd_data_frames;

/* num of FMD data frames recvd =*/
unsigned Tong rcv_data_bytes; /* number of data bytes received */

unsigned char sidh; /* session ID high byte */
unsigned char sidl; /* session ID Tow byte */
unsigned char odai; /* ODAI bit set %/
unsigned char 1s_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DOWNSTREAM_PU

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf ptr
Pointer to a buffer into which list information can be written.

buf size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP_DETAIL
Returns detailed information.

The dslu_name specified (see the following parameter, dslu_name)
represents an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

Chapter 6. Query Verbs 261

QUERY_DOWNSTREAM_PU

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

dspu_name
Name of the downstream PU that is being queried. This is an 8-byte
alphanumeric type-A EBCDIC string (starting with a letter), padded to the
right with EBCDIC spaces. This field is ignored if list_options is set to
AP_FIRST_IN_LIST.

dspu_services
DSPU services filter. If set to AP_PU_CONCENTRATION, only
downstream LUs served by PU concentration are returned. If set to
AP_DLUR, only DLUR-supported LUs are returned. Otherwise, if set to
AP_NONE, information on all downstream LUs is returned.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

downstream_pu_data.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

downstream_pu_data.dspu_name
Name of the downstream PU. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces.

downstream_pu_data.description
Resource description (as specified on DEFINE_LS).

downstream_pu_data.ls_name
Name of link station. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

downstream_pu_data.pu_sscp_sess_active
Indicates whether the PU_SSCP session to the downstream PU is active.
Set to either AP_YES or AP_NO.

downstream_pu_data.dspu_services
Specifies the services that the local node provides to the downstream PU
across the link. This is set to one of the following values:

AP_PU_CONCENTRATION
Local node that provides PU concentration for the downstream LU.

262 System Management Programming

QUERY_DOWNSTREAM_PU

AP_DLUR
Local node that provides DLUR support for the downstream LU.

downstream_pu_data.pu_sscp_stats.rcv_ru_size
Maximum receive RU size. If
downstream_lu_detail.det_data.dspu_services is set to
AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.send_ru_size
Maximum send RU size. If downstream_lu_detail.det_data.dspu_services
is set to AP_PU_CONCENTRATION, then this field is reserved.

downstream_pu_data.pu_sscp_stats.max_send_btu_size
Maximum BTU size that can be sent.

downstream_pu_data.pu_sscp_stats.max_rcv_btu_size
Maximum BTU size that can be received.

downstream_pu_data.pu_sscp_stats.max_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_send_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.max_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.cur_rcv_pac_win
This field will always be set to zero.

downstream_pu_data.pu_sscp_stats.send_data_frames
Number of normal flow data frames sent.

downstream_pu_data.pu_sscp_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent.

downstream_pu_data.pu_sscp_stats.send_data_bytes
Number of normal flow data bytes sent.

downstream_pu_data.pu_sscp_stats.rcv_data_frames
Number of normal flow data frames received.

downstream_pu_data.pu_sscp_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received.

downstream_pu_data.pu_sscp_stats.rcv_data_bytes
Number of normal flow data bytes received.

downstream_pu_data.pu_sscp_stats.sidh
Session ID high byte.

downstream_pu_data.pu_sscp_stats.sidl
Session ID low byte.

downstream_pu_data.pu_sscp_stats.odai
Origin Destination Address Indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station, and sets it to 1 if the BIND sender is the node
containing the secondary link station.

downstream_pu_data.pu_sscp_stats.ls_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant.

Chapter 6. Query Verbs 263

QUERY_DOWNSTREAM_PU

264

downstream_pu_data.pu_sscp_stats.pacing_type
Receive pacing type in use on the upstream PU-SSCP session. This will
take the value AP_NONE.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_PU_NAME

AP_INVALID_PU_TYPE
AP_INVALID_LIST_OPTION

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

System Management Programming

QUERY_DSPU_TEMPLATE

QUERY_DSPU_TEMPLATE

E This verb applies only to Communications Server.
p

=

QUERY_DSPU_TEMPLATE returns information about defined downstream PU
templates used for PU concentration over implicit links. This information is
returned as a list. To obtain information about a specific downstream PU template
or to obtain the list information in several chunks, the template_name field should
be set. Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field is
ignored. See [‘Querying the Node” on page 10} for background on how the list
formats are used.

VCB Structure

typedef struct query dspu_template
{

unsigned short opcode; /* verb operation code */
unsigned char attributes; /* Verb attributes */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char xbuf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total buf size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total_num_entries; /+ total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char template_name[8]; /* name of DSPU template */

} QUERY_DSPU_TEMPLATE;

typedef struct dspu_template_data
{

unsigned short overlay size; /* size of this entry */
unsigned char template name[8]; /* name of DSPU template */
unsigned char description; /* resource description */
unsigned char reservi[12]; /* reserved */
unsigned short max_instance; /* max active template instances */
unsigned short active instance; /* current active instances */
unsigned short num_of dsTu_templates;

/* number of DSLU templates */

} DSPU_TEMPLATE_DATA;

Each dspu_template_data is followed by num_of_dslu_templates downstream LU
templates. Each downstream LU template has the following format.

typedef struct dslu_template_data
{

unsigned short overlay size; /* size of this entry */
unsigned char reservl[2]; /* reserved */
DSLU_TEMPLATE dslu_template; /* downstream LU template */

} DSLU_TEMPLATE_DATA;

typedef struct dslu_template
{

unsigned char min_nau; /* min NAU address in range */
unsigned char max_nau; /* max NAU address in range */
unsigned char allow_timeout; /* Allow timeout of host LU? */
unsigned char delayed_logon; /* Allow delayed logon to host LU */
unsigned char reservl[10]; /* reserved */
unsigned char host_Tu[8]; /* host LU or pool name */

} DSLU_TEMPLATE;

Chapter 6. Query Verbs 265

QUERY_DSPU_TEMPLATE

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_DSPU_TEMPLATE

attributes
The attributes of the verb. This field is a bit field. The first bit contains the
visibility of the resource to be defined and corresponds to one of the
following:

AP_EXTERNALLY_VISIBLE
AP_INTERNALLY_VISIBLE

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

The template_name specified (see the following parameter,
template_name) represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

template_name
Name of the DSPU template. This is an 8-byte string in a
locally-displayable character set. This field is ignored if list_options is set
to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf size
Length of the information returned in the buffer.

266 System Management Programming

QUERY_DSPU_TEMPLATE

total_buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

dspu_template_data.overlay_size
The number of bytes in this entry (including any downstream LU
templates, and hence the offset to the next entry returned, if any).

dspu_template_data.template_name
Name of the DSPU template. This is an 8-byte string in a
locally-displayable character set.

dspu_template_data.description
Resource description (as specified on QUERY_DSPU_TEMPLATE).

dspu_template_data.max_instance
This is the maximum number of instances of the template which can be
active concurrently.

dspu_template_data.active_instance
This is the number of instances of the template which are currently active.

dspu_template_data.num_of_dslu_templates
Number of downstream LU templates for this downstream PU template.
Following this field are num_of_dslu_templates_application_id entries,
one for each application registered for the focal point category.

dslu_template_data.overlay_size
The number of bytes in this entry (and hence the offset to the next entry
returned, if any).

dslu_template_data.dslu_template.min_nau
Minimum NAU address in the range.

dslu_template_data.dslu_template.max_nau
Maximum NAU address in the range.

dslu_template_data.dslu_template.allow_timeout
Specifies whether the Program is allowed to time out host LUs used by
this downstream LU if the session is left inactive for the timeout period
specified on the host LU definition (AP_YES or AP_NO).

dslu_template_data.dslu_template.delayed_logon
Specifies whether the Program should delay connecting the downstream
LU to the host LU until the first data is received from the downstream LU.
Instead, a simulated logon screen is sent to the downstream LU (AP_YES
or AP_NO).

dslu_template_data.dslu_template.host_lu
Name of the host LU or host LU pool that all the downstream LUs within
the range will be mapped onto. This is an 8-byte alphanumeric type
A-EBCDIC string (starting with a letter), padded to the right with EBCDIC
Spaces.

Chapter 6. Query Verbs 267

QUERY_DSPU_TEMPLATE

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID TEMPLATE_NAME

AP_INVALID_LIST_OPTION
If the verb does not execute because one or more of the relevant START NODE
parameters were not set, the Program returns the following parameter:
primary_rc

AP_FUNCTION_NOT_SUPPORTED
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameters:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

268 System Management Programming

QUERY_FOCAL_POINT

QUERY_FOCAL_POINT

QUERY_FOCAL_POINT returns information about focal points that Personal
Communications or Communications Server knows about.

This information is returned as a list. To obtain information about a specific focal
point category or to obtain the list information in several chunks, the ms_category
field should be set.

Otherwise (if the list_options field is set to AP_FIRST_IN_LIST), this field will be
ignored. See [‘Querying the Node” on page 10} for background on how the list
formats are used.

Note: If no focal point is found, then one FP_DATA structure will be returned with
fp_data.fp_type set to AP_NO_FP. See the following structure.

VCB Structure

typedef struct query focal_point
{

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned Tong buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required */
unsigned short num entries; /* number of entries */
unsigned short total_num_ entries; /* total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved x/
unsigned char ms_category[8]; /* name of MS category */

} QUERY_FOCAL_POINT;

typedef struct fp_data
{

unsigned short overlay size; /* size of this entry */
unsigned char ms_appl_name[8]; /* focal point application name */
unsigned char ms_category[8]; /* focal point category */
unsigned char description[RD_LEN];

/* resource description */

unsigned char fp_fqcp_name[17]; /* focal pt fully qual CP name =*/
unsigned char bkup_appl_name[8]; /* backup focal pt appl name */
unsigned char bkup_fp_fqcp_name[17];

/* backup FP fully qualified */

/* CP name */
unsigned char implicit_appl_name[8];

/* implicit FP appl name */
unsigned char implicit_fp_fqcp_name[17];

/* implicit FP fully */

/* qualified CP name */
unsigned char fp_type; /* focal point type */
unsigned char fp_status; /* focal point status x/
unsigned char fp_routing; /* type of MDS routing to use */
unsigned char reserva[20]; /* reserved */
unsigned short number_of_appls; /* number of applications */

} FP_DATA;

Each fp_data is followed by number_of_appls application names. Each application
name has the following format:

Chapter 6. Query Verbs 269

QUERY_FOCAL_POINT

typedef
{

struct application_id

unsigned char appl_name[8]; /* application name */

} APPLICATION_ID;

Supplied Parameters

The application supplies the following parameters:

opcode

format

buf_ptr

AP_QUERY_FOCAL_POINT

Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size

Size of buffer supplied. The data returned will not exceed this size.

num_entries

Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options

This indicates what should be returned in the list information: The
ms_category specified (see the following parameter, ms_category)
represents an index value that is used to specify the starting point of the
actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
tirst entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

ms_category

Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation defined name. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc

AP_OK

buf size

Length of the information returned in the buffer.

270 System Management Programming

QUERY_FOCAL_POINT

total_buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
The number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

fp_data.overlay_size
The number of bytes in this entry (including any application names, and
hence the offset to the next entry returned (if any)).

fp_data.ms_appl_name
Name of the currently active focal point application. This can either be one
of the 4-byte architecturally defined values (right-padded with EBCDIC
spaces) for management services applications as described in SNA
management services, or an 8-byte type 1134 EBCDIC installation defined
name.

fp_data.ms_category
Management services category. This can either be one of the 4-byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services categories as described in SNA management services,
or an 8-byte type 1134 EBCDIC installation defined name.

fp_data.description
Resource description (as specified on DEFINE_FOCAL_POINT). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

fp_data.fp_fqcp_name
Currently active focal point’s fully qualified control point name. This name
is 17 bytes long and is right-padded with EBCDIC spaces. It is composed
of two type-A EBCDIC character strings concatenated by an EBCDIC dot.
(Each name can have a maximum length of 8 bytes with no embedded
spaces.)

fp_data.bkup_appl_name
Name of backup focal point application. This can either be one of the
4-byte architecturally defined values (right-padded with EBCDIC spaces)
for management services applications as described in SNA management
services, or an 8-byte type 1134 EBCDIC installation defined name.

fp_data.bkup_£fp_fqcp_name
Backup focal point’s fully qualified control point name. This name is 17
bytes long and is right-padded with EBCDIC spaces. It is composed of two
type-A EBCDIC character strings concatenated by an EBCDIC dot. (Each
name can have a maximum length of 8 bytes with no embedded spaces.)

fp_data.implicit_appl_name
Name of implicit focal point application (specified using the
DEFINE_FOCAL_POINT verb). This can either be one of the four byte
architecturally defined values (right-padded with EBCDIC spaces) for
management services applications as described in SNA management
services, or an 8-byte type 1134 EBCDIC installation defined name. This
field will be the same as the ms_appl_name if the implicit focal point is
the currently active focal point.

Chapter 6. Query Verbs 271

QUERY_FOCAL_POINT

fp_data.implicit_fp_fqcp_name
Implicit focal point’s fully qualified control point name (as specified using
the DEFINE_FOCAL_POINT verb). This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field will be
the same as the fp_fqcp_name if the implicit focal point is the currently
active focal point.

fp_data.fp_type
Type of focal point. Refer to SNA Management Services for further detail.
This will be one of the following values:

AP_EXPLICIT_PRIMARY_FP
AP_BACKUP_FP

AP _DEFAULT_PRIMARY_FP
AP_IMPLICIT_PRIMARY_FP
AP_DOMAIN_FP
AP_HOST_FP

AP_NO_FP

fp_data.fp_status
Status of the focal point. This can be one of the following values:

AP_NOT_ACTIVE
The focal point is currently not active.

AP_ACTIVE
The focal point is currently active.

AP_PENDING
The focal point is pending active. This occurs after an implicit
request has been sent to the focal point and before the response
has been received.

AP_NEVER_ACTIVE
No focal point information is available for the specified category
although application registrations for the category have been
accepted.

fp_data.fp_routing
Type of routing that applications should specify when using MDS
transport to send data to the focal point.

AP_DEFAULT
Default routing is used to deliver the MDS_MU to the focal point.

AP_DIRECT
The MDS_MU will be routed on a session directly to the focal
point.

fp_data.number_of_appls
Number of applications registered for this focal point category. Following
this field will be number_of_appls application_id entries, one for each
application registered for the focal point category.

application_id.appl_name
Name of application registered for focal point category. This can either be
one of the 4-byte architecturally defined values (right-padded with

272 System Management Programming

QUERY_FOCAL_POINT

EBCDIC spaces) for management services applications as described in SNA
management services, or an 8-byte type 1134 EBCDIC installation defined
name.

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc

AP_INVALID_MS_CATEGORY

AP_INVALID_LIST_OPTION
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the
following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

Chapter 6. Query Verbs 273

QUERY_HPR_STATS

QUERY_HPR_STATS

E This verb applies only to Communications Server.
p;

—

QUERY_HPR_STATS returns statistics describing the HPR performance of the
node. QUERY_HPR_STATS is only supported by nodes that support the RTP
Tower.

VCB Structure

typedef struct query_hpr_stats

unsigned short opcode; /* verb operation code x/
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */

unsigned COUNTER

num-orig_rs_sent; /* RS requests sent as origin =/
unsigned COUNTER

num_orig_rs_rej; /* RS rejections at orign */
unsigned COUNTER

num_inter_rs_rcvd; /* Intermediate RS requests */
unsigned COUNTER

num_inter_rs rej; /* Intermediate RS rejections =/
unsigned COUNTER

num_dest_rs_rcvd; /* RS regs as destination */
unsigned COUNTER
num_dest rs_rej; /* RS rej sent as destination =/
unsigned long active_isr_hpr_sessions;
/* ISR sessions active */
unsigned char reserv[28]; /* reserved */

} QUERY_HPR_STATS;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_HPR_STATS

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

num_orig_rs_sent
The total number HPR Route Setup requests sent that originated in this
node, since the node started.

num_orig_rs_rej
The total number of HPR Route Setup requests that originated in this node
and have been rejected by other nodes since the node started.

274 System Management Programming

QUERY_HPR_STATS

num_inter_rs_rcvd
The total number of HPR Route Setup requests processed by this node
acting as an intermediate node since the node started.

num_inter_rs_rej
The total number of HPR Route Setup requests processed by this node
acting as an intermediate node, that have been rejected by the node since
the node started.

num_dest_rs_rcvd
The total number of HPR Route Setup requests received by this node, that
has this node as the destination, since the node started.

num_dest_rs_rej
The total number of HPR Route Setup requests received by this node, that
has this node as the destination and that have been rejected by the node
since the node started.

active_isr_hpr sessions
The number of ISR sessions using HPR-APPN Boundary Function that are
currently active in the node.

If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because the node does not support the HPR RTP
Tower function, the Program returns the following parameter:

primary_rc
AP_FUNCTION_NOT_SUPPORTED

Chapter 6. Query Verbs 275

QUERY_ISR_SESSION

QUERY_ISR_SESSION

E This verb applies only to Communications Server.
p;

—

QUERY_ISR_SESSION is only used at a Network Node and returns list
information about sessions for which the network node is providing intermediate
session routing.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific session, or to obtain
the list information in several chunks, the fields in the fqpcid structure should be
set. Otherwise (if the list_options field is set to AP_FIRST IN_LIST), the fields in
this structure is ignored. See [‘Querying the Node” on page 10} for background on
how the list formats are used.

This list is ordered by fqpcid.pcid first and then by EBCDIC lexicographical
ordering on fqpcid.fqcp_name. The ordering by fqpcid.pcid_name is by name
length first, and then by ASCII lexicographical ordering for names of the same
length (in accordance with IBM’s 6611 APPN MIB ordering). If
AP_LIST_FROM_NEXT is selected, the returned list starts from the next entry
according to the defined ordering (whether the specified entry exists or not).

The format of the fqpcid structure is an 8-byte Procedure Correlator Identifier
(PCID) and the network qualified CP name of the session originator.

In addition to the detail information for each session, a route selection control
vector (RSVC) is returned if this is specified on the START_NODE parameters. This
RSVC defines the route through the network that the session takes in a hop-by-hop
form.

VCB Structure

Format 2

typedef struct query isr_session

unsigned short opcode; /* verb operation code */
unsigned char reserv2; /* reserved */
unsigned char format; /* format */
unsigned short primary rc; /* primary return code */
unsigned long secondary_rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer */
unsigned long buf_size; /* buffer size */
unsigned long total_buf_size; /* total buffer size required =/
unsigned short num entries; /* number of entries */
unsigned short total_num entries; /* total number of entries */
unsigned char 1ist options; /* listing options */
unsigned char session_type; /* is this query for DLUR or */

/* regular ISR sessions? */
FQPCID fqpcid; /* fully qualified procedure */

/* correlator ID */

} QUERY_ISR_SESSION;
typedef struct isr_session_summary

unsigned short overlay size; /* size of this entry */
FQPCID fgpcids /* fully qualified procedure */
/* correlator ID */

} ISR_SESSION_SUMMARY;

276 System Management Programming

typedef struct isr_session_detail

{

unsigned short
FQPCID
unsigned short

unsigned char
unsigned char
unsigned char
unsigned char

SESSION_STATS
SESSION_STATS

unsigned char
unsigned char
unsigned char
unsigned char
unsigned Tong
unsigned Tong

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char
unsigned char

overlay size; /*
fqpcid; /*
sub_overlay_size; /=

/*
trans_pri; /%
cos_name[8]; /*

Ttd_res; /*
reservl[8]; /*

/*
pri_sess_stats; /*
sec_sess_stats; /*

/*
sess_lu_type; /*
sess_Tu_level; /*
pri_tg_number; /*
sec_tg_number; /*
rtp_tcid; /*
time_active; /*

/*
isr_state; /*
reserv2[11]; /*

mode_name[8] ; /*
pri_lu_name[17]; /*
sec_lu_name[17]; /=
pri_adj_cp_name[17];

/*
sec_adj_cp_name[17];

/*
reserv3[3]; /*

rscv_len; /*

} ISR_SESSION_DETAIL;
typedef struct fgpcid

{
unsigned char
unsigned char
unsigned char
} FQPCID;

pcid[8]; /*
fqcp_name[17]; /*

/*
reserve3[3]; /*

typedef struct session stats

{
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned Tong
unsigned Tong

rcv_ru_size; /*
send_ru_size; /*
max_send_btu_size; /*
max_rcv_btu size; /*
max_send_pac_win; /*
cur_send_pac_win; /*
max_rcv_pac_win; /*
cur_rcv_pac_win; /*
send_data_frames; /=
send_fmd_data_frames;

QUERY_ISR_SESSION

size of this entry

fully qualified procedure
offset to appended RSCV
correlator ID
Transmission priority:
Class-of-service name
Session spans a limited
reserved

resource

primary hop session stats
secondary hop session
statistics

session LU type

session LU level

Primary session TG number

Secondary session TG number

RTP TC identifier
time elapsed since
activation

current state of ISR session

reserved

mode name

primary LU name
secondary LU name

primary stage adj CP name

secondary stage adj CP name

reserved
Length of following RSCV

pro correlator identifier
orig's network qualified
CP name

reserved

session receive RU size
session send RU size
Maximum send BTU size
Maximum rcv BTU size

Max send pacing window size
Curr send pacing window size
Max receive pacing win size
Curr rec pacing window size

Number of data frames sent

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

unsigned Tong
unsigned Tong
unsigned Tong

unsigned Tong
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
} SESSION_STATS;

/*
send_data_bytes; /x
rcv_data_frames; /=

rcv_fmd_data_frames;

rcv_data_bytes;
sidh;

/*
/*
/*

sidl; /*
odai; /*
1s_name[8]; /*
pacing_type; /*

num of FMD data frames sent =*/

Number of data bytes sent
Num data frames received

num of FMD data frames recvd

Num data bytes received
Session ID high byte
Session ID Tow byte
ODAI bit set

Link station name

type of pacing in use

Chapter 6. Query Verbs

*/
*/

*/
*/
*/
*/
*/
*/
*/

277

QUERY_ISR_SESSION

278

VCB Structure

Format 1 (back-level)

typedef struct isr_session detail

unsigned
FQPCID
unsigned

unsigned
unsigned
unsigned
unsigned

SESSION_S
SESSION_S

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

unsigned
unsigned

short
short

char
char
char
char

TATS
TATS

char
char
char
char
long
long

char
char
char
char
char
char

char

char
char

overlay size; /*
fgpcid; /*
sub_overlay_size; /=

/*
trans_pri; /*

cos_name[8]; /*
Ttd_res; /%
reservl[2]; /*

/*
pri_sess_stats; /*
sec_sess_stats; /*

/*
sess_Tu_type; /*
sess_Tu_level; /*
pri_tg_number; /*
sec_tg_number; /*
rtp_tcid; /%
time_active; /*

/*
isr_state; /*
reserv2[11]; /*
mode_name[8] ; /*

pri_lu_name[17]; /=
sec_lu_name[17]; /=
pri_adj cp_name[17];

/*
sec_adj_cp_name[17];

/*
reserv3[3]; /*
rscv_len; /*

} ISR_SESSION_DETAIL;
typedef struct fgpcid

{
unsigned char pcid[8]; /*
unsigned char fqcp_name[17]; /*
/*
unsigned char reserve3[3]; /*
} FQPCID;
typedef struct session_stats
unsigned short rcv_ru_size; /*
unsigned short send ru_size; /*
unsigned short max_send_btu_size; /*
unsigned short max_rcv_btu_size; /=
unsigned short max_send pac_win; /=
unsigned short cur_send pac_win; /=
unsigned short max_rcv_pac_win; /=
unsigned short cur_rcv_pac_win; /*
unsigned long send data frames; /*
unsigned long send_fmd_data_frames;
/*
unsigned long send data_bytes; /=
unsigned long rcv_data_frames; /=
unsigned long rcv_fmd_data_frames;
/*
unsigned long rcv_data_bytes; /*
unsigned char sidh; /*
unsigned char sidl; /*

System Management Programming

size of this entry

fully qualified procedure
offset to appended RSCV
correlator ID
Transmission priority:
Class-of-service name
Session spans a limited
reserved

resource

primary hop session stats
secondary hop session
statistics

session LU type

session LU Tevel

Primary session TG number

Secondary session TG number

RTP TC identifier
time elapsed since
activation

current state of ISR session

reserved

mode name

primary LU name
secondary LU name

primary stage adj CP name

secondary stage adj CP name

reserved
Length of following RSCV

pro correlator identifier
orig's network qualified
CP name

reserved

session receive RU size
session send RU size
Maximum send BTU size
Maximum rcv BTU size

Max send pacing window size
Curr send pacing window size
Max receive pacing win size
Curr rec pacing window size

Number of data frames sent

num of FMD data frames sent

Number of data bytes sent
Num data frames received

num of FMD data frames recvd

Num data bytes received
Session ID high byte
Session ID Tow byte

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

VCB Structure

QUERY_ISR_SESSION

unsigned char odai; /% ODAI bit set */
unsigned char 1s_name[8]; /* Link station name */
unsigned char pacing_type; /* type of pacing in use */

} SESSION_STATS;

Format 0 (back-level)

typedef struct isr_session_detail

{
unsigned short overlay size; /* size of this entry */
FQPCID fapcid; /* fully qualified procedure */
unsigned char trans_pri; /* Transmission priority: */
unsigned char cos_name[8]; /* Class-of-service name */
unsigned char 1td_res; /* Session spans a limited */
unsigned char reservl[8]; /* reserved */

/* resource */
SESSION_STATS pri_sess_stats; /* primary hop session stats */
SESSION_STATS sec_sess_stats; /* secondary hop session */
/* statistics */

unsigned char reserv3[3]; /* reserved */
unsigned char reserva[20]; /* reserved */
unsigned char rscv_len; /* Length of following RSCV */

} ISR_SESSION_DETAIL;

Note: The ISR session detail overlay may be followed by a Route Selection Control
Vector (RSCV) as defined by SNA formats. This control vector defines the
session route through the network and is carried on the BIND. The inclusion
of this RSCV is decided when the node is started (as an option of the
START_NODE), and can be altered later using DEFINE_ISR_STATS. If these
verbs have been used to specify that RSCVs should not be stored, then the
rscv_len is set to zero.

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_ISR_SESSION

format
Identifies the format of the VCB and also the format of the returned
overlays. Set this field to zero to specify the version of the VCB and
overlays listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information.

AP_SUMMARY
Returns summary information only.

Chapter 6. Query Verbs 279

QUERY_ISR_SESSION

AP_DETAIL
Returns detailed information.

The fqpcid specified (see the following parameter, fqpcid)
represent an index value that is used to specify the starting point
of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

session_type
Does this verb query DLUR-maintained sessions, or regular ISR sessions?

AP_ISR_SESSION ISR sessions
AP_DLUR_SESSIONS DLUR sessions
fqpcid.pcid

Procedure Correlator ID. This is an 8-byte hexadecimal string. This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.) This field is
ignored if list_options is set to AP_FIRST_IN_LIST.

Returned Parameters
If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total_buf_size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

isr_session_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

isr_session_summary.fqpcid.pcid
Procedure Correlator ID.

280 System Management Programming

QUERY_ISR_SESSION

isr_session_summary.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

isr_session_detail.overlay_size
The number of bytes in this entry (including any appended RSCV), and
hence the offset to the next entry returned (if any).

isr_session_detail.sub_overlay_size
This field gives the size of this detail overlay. If an RSCV is appended,
then this is the offset to the start of the RSCV. This field can be equal to or
greater than the size of the format of one detail structure (allowing future
expansion).

isr_session_detail.fqpcid.pcid
Procedure Correlator ID.

isr_session_detail.fqpcid.fqcp_name
Fully qualified Control Point name. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type-A EBCDIC
character strings concatenated by an EBCDIC dot. (Each name can have a
maximum length of 8 bytes with no embedded spaces.)

session_detail.trans_pri
Transmission priority. This is set to one of the following values:

AP_LOW
AP_MEDIUM
AP_HIGH
AP_NETWORK

session_detail.cos_name
Class-of-service name. This is an 8-byte alphanumeric type-A EBCDIC
string (starting with a letter), padded to the right with EBCDIC spaces.

session_detail.ltd_res
Specifies whether the session uses a limited resource link (AP_YES or
AP_NO).

isr_session_detail.pri_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.pri_sess_stats.send_ru_size
Maximum send RU size.

isr_session_detail.pri_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on primary session hop.

isr_session_detail.pri_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the primary session hop.

isr_session_detail.pri_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.cur_send_pac_win
Current size of the send pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the primary session hop.

Chapter 6. Query Verbs 281

QUERY_ISR_SESSION

isr_session_detail.pri_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the primary session hop.

isr_session_detail.pri_sess_stats.send_data_frames
Number of normal flow data frames sent on the primary session hop.

isr_session_detail.pri_sess_stats.send_data_frames
Number of normal flow data frames sent on the primary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the primary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_data_frames
Number of normal flow data frames received on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the primary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the primary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.pri_sess_stats.sidh
Session ID high byte.

isr_session_detail.pri_sess_stats.sidl
Session ID low byte.

isr_session_detail.pri_sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

isr_session_detail.pri_sess_stats.Is_name
Link station name associated with statistics. This is an 8-byte string in a
locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the session statistics with the link over which session
data flows.

isr_session_detail.sec_sess_stats.rcv_ru_size
Maximum receive RU size.

isr_session_detail.pri_sess_stats.pacing_type
Receive pacing type in use on primary session. This may take the values
AP_NONE, AP_PACING_FIXED or AP_PACING_ADAPTIVE.

isr_session_detail.sec_sess_stats.send_ru_size
Maximum send RU size.

282 System Management Programming

QUERY_ISR_SESSION

isr_session_detail.sec_sess_stats.max_send_btu_size
Maximum BTU size that can be sent on secondary session hop.

isr_session_detail.sec_sess_stats.max_rcv_btu_size
Maximum BTU size that can be received on the secondary session hop.

isr_session_detail.sec_sess_stats.max_send_pac_win
Maximum size of the send pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.cur_send_pac_win
Current size of the send pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.max_rcv_pac_win
Maximum size of the receive pacing window on the secondary session
hop.

isr_session_detail.sec_sess_stats.cur_rcv_pac_win
Current size of the receive pacing window on the secondary session hop.

isr_session_detail.sec_sess_stats.send_data_frames
Number of normal flow data frames sent on the secondary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.send_fmd_data_frames
Number of normal flow FMD data frames sent on the secondary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.send_data_bytes
Number of normal flow data bytes sent on the secondary session hop. Zero
will be returned in this field if collection of statistics has been disabled
using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_data_frames
Number of normal flow data frames received on the secondary session
hop. Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_fmd_data_frames
Number of normal flow FMD data frames received on the secondary
session hop. Zero will be returned in this field if collection of statistics has
been disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.rcv_data_bytes
Number of normal flow data bytes received on the secondary session hop.
Zero will be returned in this field if collection of statistics has been
disabled using DEFINE_ISR_STATS.

isr_session_detail.sec_sess_stats.sidh
Session ID high byte.

isr_session_detail.sec_sess_stats.sidl
Session ID low byte (from LFSID).

isr_session_detail.sec_sess_stats.odai
Origin destination address indicator. When bringing up a session, the
sender of the BIND sets this field to zero if the local node contains the
primary link station. It sets it to one if the BIND sender is the node
containing the secondary link station.

isr_session_detail.sec_sess_stats.Is_name
Link station name associated with statistics. This is an 8-byte string in a

Chapter 6. Query Verbs 283

QUERY_ISR_SESSION

284

locally displayable character set. All 8 bytes are significant. This field can
be used to correlate the intermediate session statistics with a particular link
station.

isr_session_detail.sec_sess_stats.pacing_type
Receive pacing type in use on primary session. This can take the values
AP_NONE, AP_PACING_FIXED, or AP_PACING_ADAPTIVE..

isr_session_detail.sess_lu_type
The LU type of the session specified on the BIND. This field takes one of
the following values:

AP_LU_TYPE_0

AP_LU_TYPE_1

AP_LU_TYPE_2

AP_LU_TYPE_3

AP_LU_TYPE 4

AP_LU_TYPE_6

AP_LU_TYPE_7
AP_LU_TYPE_UNKNOWN

(LU type 5 is intentionally omitted.)

AP_LU_TYPE_UNKNOWN will always be returned unless collection of
names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.sess_lu_level
The LU level of the session. This field takes one of the following values:

AP_LU_LEVEL_0O
AP_LU_LEVEL_1
AP_LU_LEVEL_2
AP_LU_LEVEL_UNKNOWN

For LU types other than 6, this field is set to AP_LU_LEVEL _0.
AP_LU_LEVEL_UNKNOWN will always be returned unless collection of
names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.pri_tg number
The TG number associated with the link traversed by the primary session
hop. If the primary session stage traverses an RTP connection, zero is
returned. Zero will always be returned unless collection of names has been
enabled using DEFINE_ISR_STATS.

isr_session_detail.sec_tg_number
The TG number associated with the link traversed by the primary session
hop. If the primary session stage traverses an RTP connection, zero is
returned. Zero will always be returned unless collection of names has been
enabled using DEINE_ISR_STATS.

isr_session_detail.rtp_tcid
The local TC ID for the RTP connection, returned in cases where this ISR
session forms part of an ANR/ISR boundary. In other cases, this field is set
to zero. Zero will always be returned unless collection of names has been
enabled using DEINE_ISR_STATS.

isr_session_detail.time_active
The elapsed time since the activation of the session, measured in
hundredths of a second. Zero will always be returned unless collection of
names has been enabled using DEINE_ISR_STATS.

System Management Programming

QUERY_ISR_SESSION

isr_session_detail.isr_state
The current state of the session. This field is set to one of the following
values:

AP_ISR_INACTIVE
AP_ISR_PENDING_ACTIVE
AP_ISR_ACTIVE
AP_ISR_PENDING_INACTIVE

isr_session_detail.mode_name
The mode name for the session. This is an 8-byte alphanumeric type-A
EBCDIC string (starting with a letter), padded to the right with EBCDIC
spaces. All binary zeros will always be returned unless collection of names
has been enabled using DEFINE_ISR_STATS.

isr_session_detail.pri_lu_name
The primary LU name of the session. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type A EBCDIC
character strings concatenated by an EBCDIC dot. Each name can have a
maximum of 8 bytes with no embedded spaces. If this name is not
available, all binary zeros are returned in this field. All binary zeros will
always be returned unless a collection of names has been enabled using
DEFINE_ISR_STATS.

isr_session_detail.sec_lu_name
The secondary LU name of the session. This name is 17 bytes long and is
right-padded with EBCDIC spaces. It is composed of two type A EBCDIC
character strings concatenated by an EBCDIC dot. Each name can have a
maximum of 8 bytes with no embedded spaces. If this name is not
available, all binary zeros are returned in this field. All binary zeros will
always be returned unless a collection of names has been enabled using
DEFINE_ISR_STATS.

isr_session_detail.pri_adj_cp_name
The primary stage adjacent CP name of this session. If the primary session
stage traverses an RTP connection, the CP name of the remote RTP
endpoint is returned. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot. Each name can have a maximum of 8
bytes with no embedded spaces. If this name is not available, all binary
zeros are returned in this field. All binary zeros will always be returned
unless a collection of names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.sec_adj_cp_name
The secondary stage adjacent CP name of this session. If the secondary
session stage traverses an RTP connection, the CP name of the remote RTP
endpoint is returned. This name is 17 bytes long and is right-padded with
EBCDIC spaces. It is composed of two type A EBCDIC character strings
concatenated by an EBCDIC dot. Each name can have a maximum of 8
bytes with no embedded spaces. If this name is not available, all binary
zeros are returned in this field. All binary zeros will always be returned
unless a collection of names has been enabled using DEFINE_ISR_STATS.

isr_session_detail.rscv_len
Length of the RSCV which is appended to the session_detail structure. (If
none is appended, then the length is zero.) The RSCV will be padded to
end on a 4-byte boundary.

Chapter 6. Query Verbs 285

QUERY_ISR_SESSION

If the verb does not execute because of a parameter error, the Program returns the
following parameters:

primary_rc
AP_PARAMETER_CHECK

secondary_rc
AP_INVALID_FQPCID

AP_INVALID_LIST _OPTION
AP_INVALID_SESSION_TYPE

If the verb does not execute because one or more of the relevant START_NODE
parameters were not set, the Program returns the following parameter:
primary_rc

AP_FUNCTION_NOT_SUPPORTED
If the verb does not execute because the node has not been built with network
node support, the Program returns the following parameter:
primary_rc

AP_INVALID_VERB
If the verb does not execute because the node has not yet been started, the
Program returns the following parameter:
primary_rc

AP_NODE_NOT_STARTED
If the verb does not execute because of a system error, the Program returns the

following parameter:

primary_rc
AP_UNEXPECTED_SYSTEM_ERROR

286 System Management Programming

QUERY_LOCAL_LU

QUERY_LOCAL_LU

QUERY_LOCAL_LU returns information about local LUs. QUERY_LOCAL_LU can
be issued to retrieve information about the Personal Communications or
Communications Server control point LU.

The information is returned as a list in one of two formats, either summary or
detailed information. To obtain information about a specific local LU, or to obtain
the list information in several chunks, the lu_name or lu_alias field should be set.
If the lu_name field is nonzero it will be used to determine the index. If the
lu_name field is set to all zeros, the lu_alias will be used to determine the index. If
both the lu_name and the lu_alias fields are set to all zeros then the LU associated
with the control point (the default LU) will be used. If the list_options field is set
to AP_FIRST_IN_LIST then both of these fields will be ignored. (In this case, the
returned list will be ordered by LU alias if the AP_LIST_BY_ALIAS list_options is
set, otherwise it will be ordered by LU name). See [“Querying the Node” on|

for background on how the list formats are used.

This list is ordered on either lu_alias or lu_name according to the options
specified. The field is ordered by EBCDIC lexicographical ordering.

The list of local LUs returned can be filtered by the name of the PU that they are
associated with. In this case, the pu_name field should be set (otherwise this field
should be set to all zeros).

VCB Structure

Format 1

typedef struct query_local_lu
{

unsigned short opcode; /* verb operation code */
unsigned char reservZ; /* reserved */
unsigned char format; /* format */
unsigned short primary_rc; /* primary return code x/
unsigned long secondary rc; /* secondary return code */
unsigned char *buf_ptr; /* pointer to buffer x/
unsigned long buf_size; /* buffer size x/
unsigned long total_buf_size; /* total buffer size required */
unsigned short num_entries; /* number of entries */
unsigned short total num entries; /+ total number of entries */
unsigned char Tist_options; /* listing options */
unsigned char reserv3; /* reserved */
unsigned char Tu_name[8]; /* LU name */
unsigned char Tu_alias[8]; /* LU alias */
unsigned char pu_name[8]; /* PU name filter */

} QUERY_LOCAL_LU;
typedef struct Tocal_lu_summary

{

unsigned short overlay size; /* size of this entry */
unsigned char Tu_name[8]; /* LU name x/
unsigned char Tu_alias[8]; /* LU alias */
unsigned char description; /* resource description */

} LOCAL_LU_SUMMARY;

typedef struct Tocal_lu_detail
{

unsigned short overlay size; /* size of this entry */
unsigned char Tu_name[8]; /* LU name */
LOCAL_LU_DEF_DATA def_data; /* defined data */
LOCAL_LU DET DATA det data; /* determined data */

} LOCAL_LU_DETAIL;

Chapter 6. Query Verbs 287

QUERY_LOCAL_LU

288

typedef struct Tocal_lu_def data

unsigned char

unsigned char
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

unsigned char

unsigned char

unsigned char
} LOCAL_LU_DEF_DATA;

description[RD_LEN];

/*
Tu_alias[8]; /*
nau_address; /*

syncpt_support; /*
Tu_session_Timit; /=

default_pool; /*
reserv2; /*
pu_name[8]; /*
Tu_attributes; /*
sscp_id[6]; /*
disable; /*
attach_routing data[l

/*

/*
Tu_model; /*
model_name[8] ; /*
reserv4[16]; /*

typedef struct Tocal_lu_det_data

unsigned char

unsigned char
unsigned char
SESSION_STATS
unsigned char
} LOCAL_LU DET_DATA;

lu_sscp_sess_active;

typedef struct session_stats

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

unsigned Tlong
unsigned Tong

unsigned Tong
unsigned Tong
unsigned Tlong

unsigned long

unsigned char

unsigned char

unsigned char

unsigned char

unsigned char
} SESSION_STATS;

VCB Structure

Format 0

/*
appl_conn_active; /=
reservl[2]; /*
Tu_sscp_stats; /*
sscp_id[6]; /*
rcv_ru_size; /*
send_ru_size; /*

max_send_btu_size; /*
max_rcv_btu_size; /x
max_send_pac_win; /*
cur_send_pac_win; /=*
max_rcv_pac_win; /*
cur_rcv_pac_win; /*
/*
send_data_frames; /=
send_fmd_data_frames;
/*
send_data_bytes; /=
rcv_data_frames; /=
rcv_fmd_data_frames;

/*
rcv_data_bytes; /*
sidh; /*
sidl; /*
odai; /*
1s_name[8]; /*
pacing _type; /*

typedef struct Tocal Tu_def data
{

unsigned char

unsigned char
unsigned char
unsigned char

System Management Programming

description[RD_LEN];

/*
Tu_alias[8]; /*
nau_address; /*

syncpt_support; /*

resource description
local LU alias

NAU address

Reserved

LU session limit

member of default_Tu_pool
reserved

PU name

LU attributes

SSCP 1D

disable or enable Local LU
28];

routing data for

incoming attaches

LU model name for SDDLU
LU model name for SDDLU
reserved

Is LU-SSCP session active
Is LU-SSCP session active
reserved
LU-SSCP session statistics
SSCP ID

session receive RU size
session send RU size

max send BTU size

max rcv BTU size

max send pacing win size
current send pacing win size
max receive pacing win size
current receive pacing
window size

number of data frames sent

num of FMD data frames sent
number of data bytes sent
num data frames received

num of FMD data frames recvd
number of data bytes received
session ID high byte

session ID Tow byte

ODAI bit set

Link station name

Type of pacing in use

resource description
local LU alias

NAU address

Reserved

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

QUERY_LOCAL_LU

unsigned short Tu_session_Timit; /* LU session limit */
unsigned char default_pool; /* member of default_Tu_pool */
unsigned char reserv2; /* reserved %/
unsigned char pu_name[8]; /* PU name */
unsigned char Tu_attributes; /* LU attributes */
unsigned char sscp_id[6]; /* SSCP ID */
unsigned char disable; /* disable or enable Local LU */
unsigned char attach routing data[128];

/* routing data for */

/* incoming attaches */

} LOCAL_LU_DEF_DATA;

Supplied Parameters

The application supplies the following parameters:

opcode
AP_QUERY_LOCAL_LU

format
Identifies the format of the VCB. Set this field to zero to specify the version
of the VCB listed above.

buf_ptr
Pointer to a buffer into which list information can be written. The
application can append data to the end of the VCB, in which case buf_ptr
must be set to NULL.

buf_size
Size of buffer supplied. The data returned will not exceed this size.

num_entries
Maximum number of entries to return. The number of entries will not
exceed this value. A value of zero means no limit.

list_options
This indicates what should be returned in the list information:

AP_SUMMARY
Returns summary information only.

AP DETAIL
Returns detailed information.

The lu_name (or lu_alias if the lu_name is set to all zeros)
specified represents an index value that is used to specify the
starting point of the actual information to be returned.

AP_FIRST_IN_LIST
The index value is ignored, and the returned list starts from the
first entry in the list.

AP_LIST_FROM_NEXT
The returned list starts from the next entry in the list after the one
specified by the supplied index value.

AP_LIST_INCLUSIVE
The returned list starts from the entry specified by the index value.

AP_LIST_BY_ALIAS
The returned list is ordered by lu_alias. This option is only valid
when AP_FIRST_IN_LIST is specified. If AP_LIST FROM_NEXT or
AP_LIST_INCLUSIVE is specified, the list ordering will depend on
whether an lu_name or lu_alias has been supplied as a starting
point.

Chapter 6. Query Verbs 289

QUERY_LOCAL_LU

lu_name
LU name. This name is an 8-byte type-A EBCDIC character string. If this
field is set to all zeros, the lu_alias field will be used for determining the
index. This field is ignored if list_options is set to AP_FIRST_IN_LIST.

lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant and must be set. If both the
lu_name and the lu_alias field are set to all zeros, the LU associated with
the control point (the default LU) is used. This field is ignored if
list_options is set to AP_FIRST_IN_LIST.

pu_name
PU name filter. This should be set to all zeros or an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. If this field is set then only Local LUs associated with this
PU are returned. This field is ignored if it is set to all zeros.

Returned Parameters

If the verb executes successfully, the Program returns the following parameters:

primary_rc
AP_OK

buf_size
Length of the information returned in the buffer.

total buf size
Returned value indicating the size of buffer that would have been required
to return all the list information requested. This can be higher than
buf_size.

num_entries
Number of entries actually returned.

total_num_entries
Total number of entries that could have been returned. This can be higher
than num_entries.

local_lu_summary.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_lu_summary.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

local_lu_summary.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

local_lu_summary.description
Resource description (as specified on DEFINE_LOCAL_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

local_lu_detail.overlay_size
The number of bytes in this entry, and hence the offset to the next entry
returned (if any).

local_lu_detail.lu_name
LU name. This name is an 8-byte type-A EBCDIC character string.

290 System Management Programming

QUERY_LOCAL_LU

local_lu_detail.def_data.description
Resource description (as specified on DEFINE_LOCAL_LU). This is a
16-byte string in a locally displayable character set. All 16 bytes are
significant.

local_lu_detail.def_data.lu_alias
Locally defined LU alias. This is an 8-byte string in a locally displayable
character set. All 8 bytes are significant.

local lu_detail.def data.nau_address
Network addressable unit address of the LU, which is in the range 0-255.
A nonzero value implies the LU is a dependent LU. Zero implies the LU is
an independent LU.

local_lu_detail.def_data.syncpt_support
Reserved.

local_lu_detail.def data.lu_session_limit
Maximum number of sessions for the local LU. A value of zero indicates
that there is no limit.

local_lu_detail.def_data.default_pool
AP_YES if the LU is a member of the dependent LU 6.2 default pool.
Always AP_NO for independent LUs.

local_lu_detail.def_data.pu_name
Name of the PU that this LU will use. This is an 8-byte alphanumeric
type-A EBCDIC string (starting with a letter), padded to the right with
EBCDIC spaces. This field is only used by dependent LUs, and will be set
to all binary zeros for independent LUs.

local_lu_detail.def_data.lu_attributes
Configured LU attributes. This field either takes the value AP_NONE, or
the following option ORed together:

AP_DISABLE_PWSUB
Password substitution support disabled for the local LU.

local_lu_detail.def_data.sscp_id
This field specifies the ID of the SSCP permitted to activate this LU. It is a
6-byte binary field. This field is only used by dependent LUs, and should
be set to all binary zeros for independent LUs or if the LU can be activated
by any SSCP.

local_lu_detail.def_data.disable
This field indicates whether the LOCAL LU should be disabled or enabled.
The LU can be dynamically enabled or disabled by re-issuing the
DEFINE_LOCAL_LU with this parameter set as appropriate (AP_YES or
AP_NO). When a disabled LU is enabled, the Program issues a NOTIFY
(online). When an enabled LU is disabled, the Program issues a NOTIFY
(off-line). If the LU is bound when it is disabled, then the Program issues
an UNBIND followed by a NOTIFY (offline).

local_lu_detail.def_data.attach_routing_data
This field indicates data passed out unchanged on a
DYNAMIC_LOAD_INDICATION resulting from attaches arriving for the
transaction program at this local LU. For example, this field may be used
to set a path to the transaction program’s working directory.

local_lu_detail.def data.lu_model
Model type and number of the LU. This field is only used by dependent

Chapter 6. Query Verbs 291

QUERY_LOCAL_LU

LUs and should be set to AP_UNKNOWN for independent LUs. For
dependent LUs, this is set to one of the following values:

AP_3270_DISPLAY_MODEL_2
AP_3270_DISPLAY_MODEL_3
AP_3270_DISPLAY_MODEL_4
AP_3270_DISPLAY_MODEL_5
AP_RJE_WKSTN
AP_PRINTER
AP_SCS_PRINTER
AP_UNKNOWN

For dependent LUs, if model_name is not set to all binary zeros, then this
field is ignored. If a value other than AP_UNKNOWN is specified and the
host system supports SDDLU (Self-Defining Dependent LU), the node will
generate an unsolicited PSID NMVT reply in order to dynamically define
the local LU at the host. The PSID subvector will contain the machine type
and model number corresponding to the value of this field. This field may
be changed dynamically by re-issuing the verb. Changes will not come into
effect until after the LU is closed and deactivated.

local_lu_detail.def_data.model_name

Model name of the LU. This field is only used by dependent LUs and
should be set to binary zeros for independent LUs.

If this field is not set to binary zeros and the host system supports SDDLU,
the node generates an unsolicited PSID NMVT reply in order to
dynamically define the local LU at the host. The PSID subvector contains
the name supplied in this field. The field may be changed dynamically
reissuing the verb. Changes do not come into effect until after the LU is
closed and deactivated.

local_lu_detail.det_data.lu_sscp_session_active

Specifies whether the LU-SSCP session is active (AP_YES or AP_NO). If
the def_data.nau_address is zero, then this field is reserved.

local_lu_detail.det_data.appl_conn_active

Specifies whether an application is using the LU (AP_YES or AP_NO). If
the def_data.nau_address is zero, then this field is reserved.

local_lu_detail.det_data.lu_sscp_stats.rcv_ru_size

This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.send_ru_size

This field is always reserved.

local_lu_detail.det_data.lu_sscp_stats.max_send_btu_size

Maximum BTU size that can be sent.

local_lu_detail.det_data.lu_sscp_stats.max_rcv_