
TPNS
Teleprocessing Network Simulator

Function and Service Enhancements-2001
Version 3 Release 5

SC31-8654-02

���

TPNS
Teleprocessing Network Simulator

Function and Service Enhancements-2001
Version 3 Release 5

SC31-8654-02

���

Second Edition (December 2001)

This document applies to the Teleprocessing Network Simulator Version 3 Release 5 (program number 5688-121),
an IBM licensed program, which runs under the following operating systems:

MVS/370 (MVS/SP Version 1 or later)

MVS/Extended Architecture (MVS/SP Version 2 or later)

MVS/Enterprise System Architecture (MVS/SP Version 3 or later)

OS/390

z/OS

Any VM system (with or without High Performance Option) that supports Group Control System (GCS)

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch serving your locality.

A form for comments has been provided at the back of this document. If this form has been removed, you may
address comments to IBM Corporation, TPNS Development and Support, Dept. A30A/B503, P.O Box 12195, 4205 S.
Miami Blvd., Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Note!

Before using this document, read the general information under “Appendix E. Notices” on page 117.

Contents

About This Book . vii
Service Level 0110 Enhancements. vii
Service Level 9711 Enhancements viii
Who Should Read This Book . ix
How to Use This Book . ix
Where to Find More Information x

Chapter 1. TPNS CPI-C Script Generation Support 1
Function Overview . 1
Tracing Considerations . 1

VTAM Buffer Trace . 2
OS/2 Communications Manager (CM/2) Trace 2
IBM Communications Server Trace 2
Tracing Dependencies and Restrictions 3

Automatic Script Generation Considerations. 4
Network Definitions . 4

Sample Model Network . 4
Changes to JCL, EXECs, and CLISTs 5

Sample JCL . 5
Sample REXX EXEC . 6
Sample TSO CLIST . 6

Changes to the TPNS/ISPF Interface 7
ITPSGEN Control Commands . 8

COMP and NOCOMP . 8
FIELD and NOFIELD . 9
HEXON and NOHEXON . 11
SENDL and NOSENDL . 11
UCD and NOUCD. 12
Existing Control Commands 12

Changes to Reports . 13
Summary Report . 13
Detail Report . 13

SEQOUT Data Set . 13
Sample SEQOUT Data Set 14

STL Translation. 18
Sample JCL for STL Translation 19
CPICVARA STL Include File 20

VTAM System Definitions . 20

Chapter 2. TPNS STL Script Generation Support 21
STL and NOSTL . 21
Defining the Network. 21
Changes to JCL, EXECs, and CLISTs 21

Sample JCL . 22
Sample REXX EXEC . 23
Sample TSO CLIST . 23

Changes to the TPNS/ISPF Interface. 24
SEQOUT Data Set . 24

Sample SEQOUT Data Set 24
STL Translation. 25

Sample JCL for STL Translation 26

Chapter 3. Additional TPNS TCP/IP Support 27

iii

Telnet 3270E Support . 27
Suboption Negotiation Commands 28
Defining a Telnet 3270E Client 29

Telnet Line Mode Network Virtual Terminal. 34
Defining a Telnet Line Mode Network Virtual Terminal Client 34

Telnet 5250 Support . 36
Simple UDP Terminal Support 37
Limited Server Enhancements 37
Local Port Number Support . 38
TCP/IP Macro API Utilization . 38
Alter PORT=port_number . 38
Simulated Resource Type Codes 39
User Exit Control Blocks . 39

Device Control Block. 39
Log Record Header Format 39

Chapter 4. TPNS Scripting Enhancements 41
STL Data Manipulation Functions 41

BITAND . 43
BITOR . 44
BITXOR . 45
B2X . 46
CENTER . 47
COPIES . 48
DELWORD . 49
D2C . 50
LASTPOS. 51
OVERLAY. 52
PATHID . 53
POS . 54
REVERSE . 55
SAY . 56
SNACMND . 58
SPACE . 60
STRIP . 61
SUBWORD . 62
WORD . 63
WORDINDEX . 64
WORDPOS . 65
WORDS . 66
X2B . 67
X2C . 68

Operands for Datasave Statement 69
SET - Set Counters Statement 74
Named Queue Support . 76

PULL . 77
PUSH . 78
QUEUE . 79
QUEUED . 80

Increased Scripting Resources 80
BIT . 81
INTEGER . 81
STRING . 81
ONIN/ONOUT . 82

Date and Time Stamp . 82
NOIMPLICIT Option . 82

iv TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Delay Cancellation . 83
DLYCNCL Action . 83

Verify Record Reports . 84
New Exit Interface Routine Requests. 84
Variable Parameter Data for Script User Exit 85

Chapter 5. Miscellaneous Enhancements 87
Enhancements to CPI-C Protocol Support 87

TPNS 3.5 or TPNS 3.5 Service Level 9711 87
TPNS 3.5 Service Level 0110 87

ITPFIOX File I/O User Exit . 87
ITPFIOX Syntax and Use . 88

Data Compression . 91
Summary Report . 91
Detail Report . 92

New DSPLY Loglist Control Command Operand 93
Loglist Data Output and Display 93
ITPECHO Generic Resource Support 94
New ITPVTBRF Execution Parameters 94
ITPSGEN Initial Delay Calculation 94
Storage Allocation Below 16 Megabytes Minimized 95
Boundary Channel-Attached Type 2.1 Node CP to CP Capability 95
VM/ESA REAL I/O Support Without RIO370 Pages 95
TPNS/ISPF Interface PF3 Key Changes 95
Service Level Indicator . 95
ITP0BRW2 . 96
NOWTOR TPNS Execution Parameter 96

Chapter 6. Migration Considerations 97
Loglist Utility ITPLL and CPI-C Trace Records 97
Loglist Utility ITPLL and Verify Records 97
STL . 97
User Exits. 98

Counter Reference . 98
Switch Reference . 98
Save Area Reference . 98
Save Area Control Block . 98

Log Record Header . 99
TCP/IP Subsystem Detection. 99
TPNS/ISPF Interface PF3 Key Changes 99
TPNS/ISPF Interface ITP0BRW2 Changes. 99

Appendix A. Work Station Trace Reformatter Utility. 101
Trace Output Format Requirements 101

Example: CM/2 Trace Record 101
Example: CS Trace Record 101

Using ITPWSTRF . 102
Executing ITPWSTRF Under VM CMS. 102
Executing ITPWSTRF Under MVS 103

Appendix B. Messages and Return Codes 105
TPNS Script Generator Utilities Messages 105
TPNS STL Translator Messages 106
Informational Log Data Set Messages 107
Changed Return Codes . 107

Contents v

Appendix C. Simple TCP Sample Script 109
Simple TCP Client Connecting to a Server Using Telnet Line Mode Network

Virtual Terminal . 109

Appendix D. Miscellaneous 115
TPNS Sample Network Models 115

CPIC . 115
TN3270 . 115

TPNS Sample Data Set . 115

Appendix E. Notices . 117
Trademarks and Service Marks 119

Bibliography . 121
TPNS Library . 121
Related Publications . 121

Index . 123

vi TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

About This Book

This book describes the function and service enhancements to TPNS Version 3
Release 5 that are being made available in TPNS Service Levels 9711 and 0110.
The new features and updates included in these service levels are not explained in
the existing TPNS product documentation.

Service Level 0110 Enhancements
Among the new function and service enhancements for Service Level 0110 are:

TPNS STL Script Generation Support
The TPNS Script Generator Utility has been enhanced with an option to
generate scripts in Structured Translator Language (STL).

STL Scripting Data Manipulation Functions
Many enhancements have been made to extend the capabilities of STL.
These enhancements make STL more REXX-like and provide the capability
to do advanced data manipulation.

Local Port and Limited Server Enhancements
Two enhancements have been made to the TPNS TCP/IP simulation
support. These enhancements include the following:

v The addition of the LOCLPORT operand which allows the specification of
the local port number to be used by a Simple TCP (STCP) or Simple
UDP (SUDP) device.

v The addition of the STCPROLE operand which allows you to specify
whether an STCP device should act as a client or server.

v An exit routine, ITPGSIPA, has been added which can be used to glean
the address information from received data and set the address
information for data to be transmitted. This routine is used in conjunction
with the limited server enhancement.

Enhancements to CPI-C Protocol Support
Enhancements have been made to the CPI-C Protocol Support to provide
Single Session Support.

CPI-C Comparison Logic Enhancements
Enhancements have been made to the error handling logic when generating
CPI-C scripts. Error handling logic is controlled by the SENDL and
NOSENDL commands.

CPI-C Composite Fields
Support has been added for composite field creation when generating
CPI-C scripts. Creation of composite fields is controlled by the FIELD and
NOFIELD commands.

Miscellaneous Enhancements
Several other enhancements have been made for this service level of
TPNS. These enhancements include the following:

v The STL PATHID function returns the name of the PATH statement
currently being used.

v The ITPFIOX File I/O User Exit provides file I/O capabilities to a TPNS
script.

v SAY and WTO enhancements which include the following:

vii

– The maximum length that is written to the operator has been
increased from 50 to 100.

– Data can be written with an abbreviated header containing only a
TPNS message number preceding the data.

– The addition of the WTOABRHD statement which indicates that only
abbreviated headers are to be used.

v The NOWTOR TPNS execution parameter has been added to allow
TPNS to be executed under MVS as a batch job without issuing a WTOR
for operator control.

v View is now used instead of browse to look at data sets through the
TPNS/ISPF Interface.

v The LOG operand has been added to the DSPLY loglist control
command. This operand causes only log display records created by LOG
DISPLAY scripting statements to be printed.

Service Level 9711 Enhancements
Among the new function and service enhancements for Service Level 9711 are:

TPNS CPI-C Script Generator support
You can now automatically generate TPNS scripts for CPI-C transaction
programs (TPs).

Additional support for TCP/IP simulations
TPNS can now simulate the following types of clients:

v Telnet 3270E clients connecting to a Telnet 3270 or 3270E server

v Telnet Line Mode Network Virtual Terminal clients connecting to a Telnet
server

v Telnet 5250 clients connecting to a Telnet 5250 server

v Simple UDP clients

Other TCP/IP-related enhancements included in this service level are:

v TPNS now uses the Macro API of the IBM TCP/IP product when it is
available.

v The port number to be used for subsequent connections can now be
altered for TCP/IP resources via PORT=nnnnn on the a (alter) TPNS
operator command.

Scripting enhancements
A variety of changes have been made to extend the capabilities of the
TPNS scripting languages. Among the enhancements and updates are:

v An OVERLAY function that allows you to write statements that replace or
overlay an existing text string with new text.

v A delay cancellation function that enables you to write scripts that
account for the possibility that long delays may need to be canceled
based on operator or other input.

v The upper limits for index counters, switches, IFs, and save areas have
been increased to enable you to define additional index counters,
switches, IFs, and save areas for simulated resources.

v Named queue support has been added to provide an easier method for
passing data between simulated resources by using named queues.

viii TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Who Should Read This Book
Read this book if you want to use the new TPNS functions and learn about TPNS
service enhancements. The book assumes you are familiar with TPNS and with the
statements and commands used in TPNS message generation decks and STL
procedures.

If you are a new TPNS user, you may want to become familiar with the following
books in the TPNS library before using this book:

v For an overview of TPNS and how to begin using it, refer to TPNS Planning and
Installation and TPNS Primer.

v For information about creating message generation decks, refer to Creating
TPNS Message Generation Decks.

v If you will be capturing data and using the captured data to produce message
generation decks or STL procedures, refer to TPNS Script Generating Utilities.

v For more information about TPNS networks, see Defining TPNS Networks.

v Refer to TPNS Language Reference for information on the syntax of the TPNS
scripting language statements and to Using the TPNS Structured Translator
Language (STL) and the STL Translator for information on the syntax of STL
statements.

How to Use This Book
The purpose of this book is to describe new function and service enhancements
available for TPNS Version 3 Release 5. The book is intended for experienced
TPNS users. If you are not already familiar with TPNS, you may want to refer to
TPNS Primer and the other books in the TPNS library.

This book is divided into the following sections:

v “Chapter 1. TPNS CPI-C Script Generation Support” on page 1 describes TPNS
enhancements that enable you to generate scripts for CPI-C TPs.

v “Chapter 2. TPNS STL Script Generation Support” on page 21 describes TPNS
enhancements that enable you to generate scripts in Structured Translator
Language.

v “Chapter 3. Additional TPNS TCP/IP Support” on page 27 describes
enhancements that enable you to simulate the following types of TCP/IP clients:

– Telnet 3270E clients connecting to a Telnet 3270 or 3270E server

– Telnet Line Mode Network Virtual Terminal clients connecting to a Telnet
server

– Telnet 5250 clients connecting to a Telnet 5250 server

– Simple UDP clients

The chapter also describes the following other TPNS TCP/IP enhancements:

- TPNS now uses the Macro API of the IBM TCP/IP product when it is available.

- The port number to be used for subsequent connections can now be altered
for TCP/IP resources via PORT=nnnnn on the a (alter) TPNS operator
command.

v “Chapter 4. TPNS Scripting Enhancements” on page 41 describes a variety of
changes that extend the capabilities of the TPNS scripting languages and
address service needs.

About This Book ix

v “Chapter 5. Miscellaneous Enhancements” on page 87 describes
maintenance-related changes to TPNS Version 3 Release 5 Service Level 9711
and 0110.

v “Chapter 6. Migration Considerations” on page 97 describes considerations in
migrating to TPNS Version 3 Release 5 Service Level 9711 and 0110.

v “Appendix A. Work Station Trace Reformatter Utility” on page 101 provides
information on ITPWSTRF, a new TPNS utility used to reformat OS/2
Communications Manager (CM/2) and IBM Communications Server traces so
they can be used to generate CPI-C scripts.

v “Appendix B. Messages and Return Codes” on page 105 describes messages
and return codes added or changed by the TPNS enhancements.

v “Appendix C. Simple TCP Sample Script” on page 109 provides an example of a
Simple TCP script that provides Telnet Line Mode Network Virtual Terminal
support. Simple TCP is an alternative means of simulating the various Telnet
protocols discussed in “Chapter 3. Additional TPNS TCP/IP Support” on page 27.

v “Appendix D. Miscellaneous” on page 115 addresses changes required to TPNS
sample network models and new members of the TPNS Sample data set.

Where to Find More Information
The following list shows the books in the TPNS library. For information on other
related publications, see the ″Bibliography″.

TPNS General Information, GH20–2487

TPNS Primer, SC31–6043

TPNS Planning and Installation, SH20–2488

Defining TPNS Networks, SC31–6008

Creating TPNS Message Generation Decks, SC31–6009

TPNS Language Reference, SH20–2489

TPNS Script Generating Utilities, SC30–3453

TPNS Samples, SC30–3454

TPNS STL Reference Card, SX75–0065

Using the TPNS Structured Translator Language (STL) and the STL Translator,
SC31–6013

TPNS Operation, SC30–3289

TPNS Messages and Codes, SC30–3310

TPNS Test Manager User’s Guide and Reference, SC31–8719

TPNS General Utilities, SC30–3290

TPNS User Exits, SC31–6009

TPNS Master Index, GC31–6059

IBM Online Library: IBM Networking Systems Softcopy Collection Kit (CD-ROM
containing softcopy of all manuals except for TPNS Master Index and TPNS
STL Reference Card), SK2T-6012

TPNS Library (all manuals except TPNS General Information, and TPNS Test
Manager User’s Guide and Reference), SB0F-1426

For more information about TPNS visit us on the Internet at
www.software.ibm.com/network/tpns, or call the TPNS Hotline at 1-800-835-8767
(US and Canada) or (919)543-5983 (all others). You can also contact us through
e-mail at tpns@us.ibm.com for questions on all matters related to TPNS.

x TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 1. TPNS CPI-C Script Generation Support

This chapter describes enhancements to the TPNS Script Generator Utility
(ITPSGEN) that enable you to generate CPI-C scripts using data traffic captured
from live system runs. Refer to TPNS Script Generating Utilities and Defining TPNS
Networks for detailed information on using ITPSGEN and on creating network
definitions.

Function Overview
CPI-C script generation support has been added to TPNS. This enables you to use
the TPNS Script Generator Utility (ITPSGEN) to generate CPI-C scripts from traces
of CPI-C applications or other applications that produce LU 6.2 line flows.

The procedure for generating CPI-C scripts using ITPSGEN is similar to that used
for generating other types of scripts. To generate CPI-C scripts, you must follow
these steps:

1. obtain a trace of system activity

2. reformat the captured data using the appropriate utility program

3. sort the reformatted data

4. define a model network for your simulation

5. use ITPSGEN to generate the scripts in STL

6. translate the STL to TPNS scripting language using the STL Translator

Before using ITPSGEN to generate CPI-C scripts, you must make minor
modifications to the existing script generation JCL, EXEC, or CLIST. Refer to
“Changes to JCL, EXECs, and CLISTs” on page 5 for information on the required
modifications. You can also create CPI-C scripts by invoking the script generator
from the TPNS/ISPF Interface.

Note: If you are using the TPNS/ISPF Interface, you may need to prep the model
network before translating the STL. Otherwise, the wait deck in the model
network may not be found during the STL translation.

Tracing Considerations
The first step in generating CPI-C scripts is to capture a trace containing LU 6.2 line
flows. The trace of system activity can be a VTAM buffer trace, an OS/2
Communications Manager (CM/2) trace, or an IBM Communications Server trace.
The trace must be reformatted before it can be used for script generation.

Note: Traces must contain the FMH-5 allocate request for any conversations that
are to be simulated. To ensure your trace contains the required allocate
requests, activate the trace before establishing any conversations you want
to simulate.

A new Work Station Trace Reformatter utility (ITPWSTRF) has been provided with
TPNS to allow you to reformat OS/2 Communications Manager (CM/2) and IBM
Communications Server traces. Refer to “Appendix A. Work Station Trace
Reformatter Utility” on page 101 for more information on ITPWSTRF. The existing
VTAM Buffer Trace Reformatter (ITPVTBRF) can be used to reformat VTAM buffer
traces. For all tracing options, the reformatted trace file must be sorted before it can

1

be used to generate CPI-C scripts. The files must be sorted in ascending order by
resource name, session, date, and time fields.

VTAM Buffer Trace
You can use a VTAM buffer trace as your source for generating a CPI-C script. The
trace may be recorded using either the GTF or the NPM data collection facility. You
should set up the trace in the same manner as you would when generating other
types of scripts (refer to Chapter 5 of the TPNS Script Generating Utilities manual
for further information). Be sure to request a full buffer trace by specifying the
AMOUNT=FULL parameter. After you have traced a scenario that involves CPI-C
applications or other applications that produce LU 6.2 line flows, you must reformat
the captured trace file using the VTAM Buffer Trace Reformatter (ITPVTBRF). Sort
the resulting file as described in Chapter 5 of the TPNS Script Generating Utilities
manual before running the TPNS Script Generator Utility.

OS/2 Communications Manager (CM/2) Trace
You can use the OS/2 Communications Manager (CM/2) trace facility to capture an
LU 6.2 trace. After capturing a trace, upload the trace file to the host as an EBCDIC
TEXT file. Reformat the trace file using the Work Station Trace Reformatter
(ITPWSTRF) and then sort the reformatted file. Refer to “Appendix A. Work Station
Trace Reformatter Utility” on page 101 for more information on ITPWSTRF.

IBM Communications Server Trace
You can also use the IBM Communications Server trace facility to capture an LU
6.2 trace. After capturing the trace, upload it to the host as an EBCDIC TEXT file.
Reformat the trace file using the Work Station Trace Reformatter (ITPWSTRF) and
then sort the reformatted file. Refer to “Appendix A. Work Station Trace Reformatter
Utility” on page 101 for more information on ITPWSTRF.

2 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Tracing Dependencies and Restrictions
Before attempting to generate CPI-C scripts, you should be aware of tracing issues
that could affect whether CPI-C scripts accurately represent the intended testing
scenario. There is no information in the trace file that differentiates transaction
programs or conversations. The TPNS CPI-C Script Generator Utility makes the
assumption that each session represents a unique transaction program and that
each attach request on the session represents the start of a new serial
conversation. The TPNS Script Generator Utility could produce unexpected results
in scripts generated from traces containing multiple transaction programs (TPs) per
LU, TPs processing multiple overlapping conversations, or full-duplex sessions. You
also should be aware of the circumstances under which the VTAM buffer trace
facility may fail to produce complete traces of conversations.

Traces Containing Multiple TPs or Conversations
The TPNS CPI-C script generation facility considers each unique session captured
in a system trace to represent a TP. As a result, scripts might not accurately
represent captured traces if the traces include any of the following:

v a TP processing multiple, overlapping conversations

v multiple TPs concurrently active on the same LU

v multiple instances of the same TP

If your trace includes a TP processing multiple conversations, the conversations
should be serial, rather than overlapping. If a trace contains a TP processing
multiple overlapping conversations or serial conversations using different sessions,
the script generated from the trace will not accurately represent the captured trace
because the script generator will create a different TP for each conversation.

Traces that include multiple TPs concurrently active on the same LU also can
produce unexpected results in generated scripts. Depending on timing, two or more
TPs concurrently active on the same LU can have conversations sharing the same
session. If this is the case, the generated script will not accurately represent the
traced scenario.

If the trace contains multiple instances of the same TP, the resulting script will not
accurately represent the original traced scenario. If traces containing multi-instance
TPs are used as input to the script generator, you will need to make numerous
revisions to the generated scripts to make them accurately represent the original
traced scenario.

Note: You will obtain the best results using the TPNS CPI-C script generation
facility if your trace contains one single-instance TP per LU.

Full-Duplex Sessions
Trace files that contain one or more full-duplex sessions should be used with
caution. TPNS simulations that use scripts generated from full-duplex sessions may
not accurately reproduce the original traced scenario. However, if a session is
identified as full-duplex but used as if it were half-duplex flip-flop, the generated
scripts should accurately reproduce the original traced scenario.

VTAM Buffer Traces
If you will be using VTAM Version 4 Release 4 (or later) buffer traces as your
source for generating CPI-C scripts, you should be aware of the circumstances
under which using the traces could result in incomplete CPI-C scripts. Buffer traces
produced by VTAM Version 4 Release 4 or later do not capture a complete trace of
conversations using the APPCCMD interface when the origin and destination are

Chapter 1. TPNS CPI-C Script Generation Support 3

within the same VTAM host. If the application being traced is using the VTAM
APPCCMD interface to communicate with a partner APPLID defined on the same
VTAM host, only the conversation setup information will be in the VTAM buffer trace
data set; all other data sent and received are not captured in the trace. As a result,
scripts generated from the trace will be incomplete.

Automatic Script Generation Considerations
As a general rule, scripts produced by the TPNS Script Generator Utility should be
used as a base. It is unrealistic to expect to play-back hours of live data capture
without modification to the generated scripts. If the interdependencies among LUs
or TPs is minimal, the modification required should be minor. The best case
scenario is LU names need to be updated to match your test system environment.
However, as a general rule, there are timing relationships among traced LUs and
TPs. For instance, one TP is dependent on receiving an attach request from
another TP, or a particular LU makes a database update that is dependent on
another LU having made an earlier update to the same field. The TPNS script
generator creates a script to represent each SNA session as if it is totally
independent of all other SNA sessions. Therefore, to accurately reproduce the
timing relationships among the generated scripts, logic will need to be manually
added to the scripts. This process will require an intimate knowledge of the traced
applications.

A good approach to automatic script generation is to limit the trace file to a known
transaction rather than tracing all transactions in a system simultaneously. Then add
logic to the generated scripts to handle timing relationships for that transaction.
Repeat this process for each transaction in the system to be simulated. By limiting
the scope of the trace file, timing relationships are much easier to identify.

Network Definitions
Before you can use ITPSGEN to generate CPI-C scripts or scripts for other
simulation types, you must define a model network. Refer to Defining TPNS
Networks for detailed information on coding network definition statements.

When creating a network definition for a CPI-C simulation, you must define a single
message generation sequence path as path 0. This will be the default path used by
any resources for which no script is generated.

A CPI-C APPCLU definition must be specified for each traced resource for which a
script will be generated. The APPCLU statement name must match a resource
name in the input trace file. There must be at least one TP statement following each
APPCLU statement. TP statement names can be selected at your discretion. If
automatic network updating is requested, the recommended approach is to specify
no operands on the TP statement.

Sample Model Network
The following is a sample of a network definition intended for use in generating
CPI-C scripts. Note that the APPCLU statement names are LU1 and LU2. For a
script to be generated for these resources, there must be records in the input trace
file with the same resource names.

CPICSGEN NTWRK CONRATE=YES, * Message rates to the console
OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs

4 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

PATH=(0), * Default path statement
HEAD='CPI-C NETWORK'

*
* Model network for CPI-C script generation.
*
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP
*
LU2 APPCLU
SERVER TP
*
SGENTXT MSGTXT

WAIT
ENDTXT

Changes to JCL, EXECs, and CLISTs
Before using ITPSGEN to generate CPI-C scripts, you must add an STLTXT DD
definition to the existing script generation JCL, EXEC, or CLIST. This DD is for an
output partitioned data set that will contain the STL source. Each STL MSGTXT will
be a member in this partitioned data set. The data set can have the same attributes
as those used for the MSGTXT data set. The following sample JCL, EXEC, and
CLIST illustrate the addition of the STLTXT DD definition.

Sample JCL
The example below shows JCL that has been modified to enable ITPSGEN to
generate CPI-C scripts.

//SGENJOB JOB
//***
//* Teleprocessing Network Simulator (TPNS) 5688-121 *
//***
//* SGENJOB JCL *
//* Sample JCL to execute ITPSGEN. *
//***
//JOBLIB DD DSNAME=TPNS.LOAD,DISP=SHR
//STEP1 EXEC PGM=ITPSGEN,PARM='CTL'
//RATEDD DD DSNAME=TPNS.RATETBLS,DISP=SHR
//INITDD DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//MSGDD DD DSNAME=TPNS.MSGFILE,DISP=SHR
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSPRINT DD SYSOUT=A
//MSGTXT DD DSNAME=TPNS.MSGFILE,DISP=SHR
//STLTXT DD DSNAME=TPNS.STLIN,DISP=SHR
//NTWRK DD DSNAME=TPNS.TESTFILE,DISP=SHR
//SEQOUT DD DSNAME=TPNS.SEQOUT,DISP=SHR
//TAPEIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,LABEL=(,NL)
//CTLIN DD *
* CONTROL STATEMENTS FOR ITPSGEN SCRIPT GENERATOR *
LIST
SEQOUT
NTWRK
REPORT FULL
/*
//SYSIN DD *
CPICSGEN NTWRK CONRATE=YES, * Message rates to the console

OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs

Chapter 1. TPNS CPI-C Script Generation Support 5

PATH=(0), * Default path statement
HEAD='CPI-C NETWORK'

*
* Model network for CPI-C script generation.
*
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP
*
LU2 APPCLU
SERVER TP
*
SGENTXT MSGTXT

WAIT
ENDTXT

/*

Sample REXX EXEC
The example below shows a REXX EXEC that has been modified to enable
ITPSGEN to generate CPI-C scripts.

/***
** Teleprocessing Network Simulator (TPNS) 5688-121 **

** SGEN EXEC **
** **
** Sample EXEC to execute ITPSGEN on CMS. It can also be used to **
** execute ITPSGEN on GCS if the file type is changed from EXEC **
** to GCS and the two ERASE commands at the end are removed. **
** **
** Format: **
** SGEN prepin_name prepin_type trace_name trace_type **
** **
***/
arg prep_fn prep_ft trace_fn trace_ft .
'FILEDEF * CLEAR'
'FILEDEF CTLIN DISK TPNS SGENCNTL *'
'FILEDEF INITDD DISK TPNS TESTFILE A'
'FILEDEF MSGDD DISK TPNS MSGFILE A'
'FILEDEF MSGTXT DISK TPNS MSGFILE A'
'FILEDEF STLTXT DISK TPNS STLIN A'
'FILEDEF NTWRK DISK TPNS TESTFILE A'
'FILEDEF RATEDD DISK TPNS RATETBLS * (BLKSIZE 2000)'
'FILEDEF SEQOUT DISK TPNS SEQOUT A'
'FILEDEF SYSIN DISK' prep_fn prep_ft '*'
'FILEDEF SYSPRINT PRINTER'
'FILEDEF TAPEIN DISK' trace_fn trace_ft '*'
'GLOBAL LOADLIB TPNSLOAD'
'OSRUN ITPSGEN'
rcode=rc
'ERASE FILE SYSUT2 A'
'ERASE FILE SYSUT3 A'
exit rcode

Sample TSO CLIST
The example below shows a CLIST that has been modified to enable ITPSGEN to
generate CPI-C scripts.

/***/
/* Teleprocessing Network Simulator (TPNS) 5688-121 */

6 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

/***/
/* SGEN CLIST */
/* Sample CLIST to execute ITPSGEN. */
/***/
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(RATEDD) DATASET('TPNS.RATETBLS') SHR
ALLOC DDNAME(INITDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT2) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT3) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGTXT) DATASET('TPNS.MSGFILE') SHR
ALLOC DDNAME(STLTXT) DATASET('TPNS.STLIN') SHR
ALLOC DDNAME(NTWRK) DATASET('TPNS.TESTFILE') SHR
ALLOC DDNAME(SEQOUT) DATASET('TPNS.SEQOUT') SHR
ALLOC DDNAME(TAPEIN) DATASET('ITPSGEN.TAPEIN') SHR
ALLOC DDNAME(CTLIN) DATASET('ITPSGEN.CTLIN') SHR
ALLOC DDNAME(SYSIN) DATASET('ITPSGEN.SYSIN') SHR
CALL 'TPNS.LOAD(ITPSGEN)' 'CTL'
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)

Changes to the TPNS/ISPF Interface
When generating CPI-C scripts using the TPNS/ISPF Interface, you must specify a
data set to contain the generated STL source. Use the field labeled Generated STL
programs on panel ITP0SGNP to specify this data set. A member will be created in
this data set for each STL MSGTXT that is generated. The data set can have the
same attributes as those used for the generated message decks data set. The
following is an example of the ITP0SGNP panel as it might look when generating
STL scripts.

ITP0SGNP TPNS: Generate Message Decks from Sorted Trace Data

Type information. Then Press Enter
More: +

Input Data Sets
Sorted trace 'USERID.SORTED.TRACE'

Tape: Serial numbers ,
File number . . (0-9999)
Label type . . (NL or SL)

Model script 'USERID.NETWORKS(MODEL)'
Control commands 'USERID.CONTROL(SGEN)'

Output Data Sets
Generated message decks 'USERID.MSGFILE'
Generated STL programs 'USERID.STLIN'
Updated networks 'USERID.TESTFILE'
Sequential output . . . 'USERID.SEQOUT'
Printer output 'USERID.SYSPRINT'

Command ===>
F1=Help F2=Split F3=Exit F4=Edit input F5=Refresh F6=Browse prt
F7=Bkwd F8=Fwd F9=Swap F10=Edit ctl F11=Save F12=Cancel

Chapter 1. TPNS CPI-C Script Generation Support 7

ITPSGEN Control Commands
This section describes new ITPSGEN control commands and explains how existing
control commands are affected by the TPNS CPI-C script generation enhancement.
There are five new control commands specifically for CPI-C scripts. All of the
existing control commands are recognized by the CPI-C script generator. However,
the RESP and SSCP commands are ignored during generation of CPI-C scripts.
Refer to TPNS Script Generating Utilities for complete information on existing
control commands.

COMP and NOCOMP
COMP {ALL [n] [WARNING | ERROR]}

{DATA [n] [WARNING | ERROR]}
{CONV [WARNING | ERROR]}

Default: COMP ALL 32767 ERROR

This command specifies the level of comparison to be performed when comparing
the actual send data length, and the actual received data, status, and conversation
characteristics to the trace file data. Received status comparisons controlled by this
command are: send received, confirm received, and conversation deallocated.
Conversation characteristic comparisons controlled by this command are: partner
LU name, mode name, conversation type, and conversation sync-level. This
command also controls whether conversation failures are handled as errors or
warnings. Warning conditions result in a message being issued, and the script
continues to process. Error conditions result in a message being issued, however,
the script is terminated.

COMP ALL [n][WARNING | ERROR]
The ALL operand compares send data length, received data, and received
status, as well as conversation characteristics. Use n to specify the amount of
received data to be compared. The range for n is 0 to 32767. The default value
is 32767. When this control command is specified, the actual send data length
is compared to the send data length from the trace. Also, the first n bytes of
actual received data from each receive verb will be compared against the data
from the trace. The actual received data length is also compared to the
received data length from the trace. However, if n is less than the received data
length from the trace, the comparison will only ensure that the actual received
data is at least as large as n. If warning is specified, the generated script
handles conversation failures by issuing a message and continuing with the
next statement in the script. If error is specified, the generated script handles
conversation failures by issuing a message and terminating the script.

COMP DATA [n][WARNING | ERROR]
The DATA operand compares only the received data to the trace file data. Use
n to specify the amount of received data to be compared. The range for n is 0
to 32767. The default value is 32767. When this control command is specified,
the first n bytes of actual received data from each receive verb will be
compared against the data from the trace. The actual received data length also
will be compared to the received data length from the trace. However, if n is
less than the received data length from the trace, the comparison will only
ensure that the actual received data is at least as large as n. If warning is
specified, the generated script handles conversation failures by issuing a
message and continuing with the next statement in the script. If error is
specified, the generated script handles conversation failures by issuing a
message and terminating the script.

8 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

COMP CONV [WARNING | ERROR]
The CONV operand compares only the conversation characteristics and
received status to the trace file data. If warning is specified, the generated script
handles conversation failures by issuing a message and continuing with the
next statement in the script. If error is specified, the generated script handles
conversation failures by issuing a message and terminating the script.

NOCOMP
The NOCOMP control command specifies that no comparisons are to be
performed on send data length, received data, status, or conversation
characteristics.

FIELD and NOFIELD
This command is used to control the creation of composite fields. Composite fields
can be optionally generated for the attach request (FMH-5) extension and the send
and receive buffers. Creating composite fields refers to mapping the variable length
fields in the FMH-5 extension and the send and receive buffers into component
pieces and creating STL variables to represent each component. Components that
are length fields are scripted in such a way as to support dynamic recalculation
when data field components are modified. For example, you can change the fully
qualified LU name in the FMH-5 extension by changing the STL variable that
represents this value. The FMH-5 length fields affected by the change are
automatically recalculated by the script.

FIELD
FIELD specifies that the variable length fields in the FMH-5 extension and the
send and receive buffers should be mapped into composite fields in the
generated script. FIELD is the default value.

NOFIELD
NOFIELD specifies that the variable length fields in the FMH-5 extension and
the send and receive buffers should not be mapped into composite fields in the
generated script.

NOFIELD Example
The following is an example of the generated script for an FMH-5 extension, send
buffer, and receive buffer. This example was generated without composite fields.
FMH5_extension = ,
/* 0000 */ '100702C4E2E4E2C5D90701C4E2E4E2C5D91A11C3E6E2D5C5E3'x||,
/* EBCDIC: . . . D S U S E R . . D S U S E R . . C W S N E T */
/* 0019 */ 'C3C14BC3E6F9F0F0C5F4C9AE08BF98C643000108B619DF7307'x||,
/* EBCDIC: C A . C W 9 0 0 E 4 I . . . q F */
/* 0032 */ '20E813'x
/* EBCDIC: . Y . */
FMH5_extension_length = length(FMH5_extension)

send_buffer = ,
/* 0000 */ '001A12210016FF000901E3C5E2E3F1F1C10902C2E4C4F3C2E4'x||,
/* EBCDIC: T E S T 1 1 A . . B U D 3 B U */
/* 0019 */ 'C4'x
/* EBCDIC: D */
send_length = length(send_buffer)
CMSEND(conversation_ID,send_buffer,send_length,,

request_to_send_received,return_code)

expected_receive_buffer = ,
/* 0000 */ '002D12210029FF020300000A0207CD01070F3A29040A0307CC'x||,
/* EBCDIC: . */
/* 0019 */ '0C171630223D0A0407CD05040000000004050000'x
/* EBCDIC: . */

Chapter 1. TPNS CPI-C Script Generation Support 9

FIELD Example
The following is an example of the generated script for an FMH-5 extension, send
buffer, and receive buffer. This example was generated with composite fields.
/* Create FMH-5 extension */
/* Note: If any data field in the FMH-5 extension is modified, all */
/* affected length fields will be dynamically recalculated. */

/* Build access security information */
fm5asipr = '00'x /* Profile field constant */
fm5asipw = '01'x /* Password field constant */
fm5asiid = '02'x /* User ID field constant */
fm5asty1 = fm5asiid /* User ID security subfield */
fm5asda1 = 'C4E2E4E2C5D9'x /* Security subfield data */
/* EBCDIC: D S U S E R */
fm5asll1 = , /* Security subfield length */

hex(length(fm5asty1)+length(fm5asda1))
fm5asi1 = , /* Composite security subfield */

fm5asll1||fm5asty1||fm5asda1
fm5asty2 = fm5asipw /* Password security subfield */
fm5asda2 = 'C4E2E4E2C5D9'x /* Security subfield data */
/* EBCDIC: D S U S E R */
fm5asll2 = , /* Security subfield length */

hex(length(fm5asty2)+length(fm5asda2))
fm5asi2 = , /* Composite security subfield */

fm5asll2||fm5asty2||fm5asda2
fm5accse = fm5asi1||fm5asi2
fm5lnasi = hex(length(fm5accse)) /* Access Security Info length */
fm5asi = fm5lnasi||fm5accse /* Composite Access Security Info */

/* Build logical unit of work fields */
fm5fqnam = , /* Fully Qualified Name */
/* 0000 */ 'C3E6E2D5C5E3C3C14BC3E6F9F0F0C5F4C9'x
/* EBCDIC: C W S N E T C A . C W 9 0 0 E 4 I */
fm5lnfqn = hex(length(fm5fqnam)) /* Fully Qualified Name length */
fm5luwi = fm5lnfqn||fm5fqnam /* Composite LUOW ID */
fm5luwin = 'AE08BF98C643'x /* LUOW Instance Number */
/* EBCDIC: . . . q F . */
fm5luwsn = '0001'x /* LUOW Sequence Number */
/* EBCDIC: . . */
fm5luow2 = fm5luwin||fm5luwsn /* Composite LUOW instance/seq */
fm5lnluw = , /* Logical Unit of Work length */

hex(length(fm5lnfqn)+length(fm5fqnam)+length(fm5luow2))
fm5luow1 = fm5lnluw||fm5luwi /* Composite Logical Unit of Work */

/* Build conversation correlator */
fm5ccs = 'B619DF730720E813'x /* Conversation Correlator data */
/* EBCDIC: Y . */
fm5lnccs = hex(length(fm5ccs)) /* Conversation Correlator length */
fm5cvcor = fm5lnccs||fm5ccs /* Composite Conv Correlator */

FMH5_Extension = fm5asi||fm5luow1||fm5luow2||fm5cvcor
/* 0000 '100702C4E2E4E2C5D90701C4E2E4E2C5D91A11C3E6E2D5C5E3'x||, */
/* EBCDIC: . . . D S U S E R . . D S U S E R . . C W S N E T */
/* 0019 'C3C14BC3E6F9F0F0C5F4C9AE08BF98C643000108B619DF7307'x||, */
/* EBCDIC: C A . C W 9 0 0 E 4 I . . . q F */
/* 0032 '20E813'x */
/* EBCDIC: . Y . */
FMH5_extension_length = length(FMH5_extension)

/* Note: If the senddata field is modified, all affected length */
/* fields will be dynamically recalculated. */
sendid = '1221'x /* Probable ID field */
/* EBCDIC: . . */
senddata = ,
/* 0000 */ '0016FF000901E3C5E2E3F1F1C10902C2E4C4F3C2E4C4'x
/* EBCDIC: T E S T 1 1 A . . B U D 3 B U D */

10 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

sendll = hex(length(sendid)+length(senddata)+2,2)
send_buffer = sendll||sendid||senddata /* Send buffer data */
send_length = length(send_buffer)
CMSEND(conversation_ID,send_buffer,send_length,,

request_to_send_received,return_code)

/* Note: If the expected_receive_data field is modified, all */
/* affected length fields will be dynamically recalculated. */
expected_receive_id = '1221'x /* Probable ID field */
/* EBCDIC: . . */
expected_receive_data = ,
/* 0000 */ '0029FF020300000A0207CD01070F3A29040A0307CC0C17163022'x||,
/* EBCDIC: . */
/* 001A */ '3D0A0407CD05040000000004050000'x
/* EBCDIC: */
expected_receive_ll = , /* Expected receive buffer length */

hex(length(expected_receive_id)+length(expected_receive_data)+2,2)
expected_receive_buffer = , /* Expected receive buffer data */

expected_receive_ll||expected_receive_id||expected_receive_data

HEXON and NOHEXON
This command is used to force certain data buffers to be generated in displayable
hexadecimal form if they exceed a specified length threshold. The buffers controlled
by this command are: send data, receive comparison data, error log data, and
FMH-5 extension data. Optionally, the ASCII and/or EBCDIC translations of the
displayable hexadecimal data can be echoed in the form of STL comments. This
control command can be useful to facilitate the analysis of the data buffers in the
generated script when viewing them in a printout or on a video display screen. Also,
if long ASCII data streams are produced in the script, this command can be used to
avoid the generation of excessively complex STL statements that exceed the
capacity of the STL Translator.

HEXON ALL [ASCII │ EBCDIC │ BOTH]
The ALL operand specifies that all send data, receive comparison data, error
log data, and FMH-5 extension data will be generated in displayable
hexadecimal. You may optionally use ASCII, EBCDIC, or BOTH to specify that
the data will be followed with STL comments that echo the data in ASCII,
EBCDIC, or both.

HEXON n [ASCII │ EBCDIC │ BOTH]
The n operand specifies that all send data, receive comparison data, error log
data, and FMH-5 extension data should be generated in displayable
hexadecimal if the data length is n bytes or more. Data streams less than n
bytes in length will be generated as a combination of displayable character data
and displayable hexadecimal as required for effective display of the data on a
video screen. The value for n can range from 1 to 32767. You may optionally
use ASCII, EBCDIC, or BOTH to specify that for data streams greater than n
bytes in length, the data will be followed with STL comments that echo the data
in ASCII, EBCDIC, or both.

NOHEXON
NOHEXON is the default for this control command. The NOHEXON command
generates all send data, receive comparison data, error log data, and FMH-5
extension data as a combination of displayable character data and displayable
hexadecimal as required for effective display of the data on a video screen.

SENDL and NOSENDL
SENDL [WARNING | ERROR]

Default: SENDL WARNING

Chapter 1. TPNS CPI-C Script Generation Support 11

This command is used to determine whether a generated script should report
differences in send length compared to the trace file. Reported differences can be
treated as warning conditions or error conditions. If warning is specified, the
generated script handles length differences by issuing a message and continuing
with the next statement in the script. If error is specified, the generated script
handles length differences by issuing a message and terminating the script.

SENDL [WARNING | ERROR]
SENDL specifies that the generated script should report differences in the
actual send length compared to the trace file.

NOSENDL
NOSENDL specifies that the generated script should not report differences in
the actual send length compared to the trace file.

UCD and NOUCD
The UCD and NOUCD control commands are used to specify whether user control
data should be processed or ignored.

UCD
UCD is the default for this control command. The UCD control command
specifies that any user control data encountered in the trace should be
processed as if they were application data. Also either UCD=YES or
UCD=BOTH is added to the TP statement in the model network. If any true
application data is encountered, UCD=BOTH is added. Otherwise, UCD=YES is
added. Message ITP868I is issued to the SYSPRINT data set the first time user
control data is encountered for a given TP. Refer to “Appendix B. Messages and
Return Codes” on page 105 for more information about the message.

NOUCD
This control command specifies that any user control data encountered in the
trace should be ignored. Also, UCD=NO is added to the TP statement in the
model network. Message ITP867I is issued to the SYSPRINT data set the first
time user control data is encountered for a given TP. Refer to “Appendix B.
Messages and Return Codes” on page 105 for more information about the
message.

Existing Control Commands
All of the current control commands are recognized by the CPI-C script generator.
However, the RESP and SSCP commands are ignored during generation of CPI-C
scripts. Refer to TPNS Script Generating Utilities for information on the RESP and
SSCP commands and for an explanation of other existing control commands.

The DELAY command is handled differently when generating CPI-C scripts. Delays
are calculated from the time of the last receive record or from the time of the last
transmit record, whichever is the most recent. A delay is calculated for all CPI-C
verbs that are TPNS delimiters (that is, verbs that cause a transmit to VTAM).
These verbs are: CMALLC, CMCFM, CMCFMD, CMDEAL, CMFLUS, CMPTR,
CMRTS, CMSEND, and CMSERR. The delay is generated in the CPI-C script as an
STL SUSPEND statement, and is inserted at the point where the delay was
encountered in the trace. When running the generated script, the delays should
approximate what actually transpired when the trace was captured. However, no
attempt is made to control any delays in responses from the partner. In addition to
the SUSPEND statement, a DELAY(0) statement is generated prior to each CPI-C
delimiter. This overrides any default delay that may have been set in the network
definition, thus preventing a cumulative delay effect.

12 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Changes to Reports
A trace records eligible field has been added to the detail and summary reports.
This field contains a count of the total number of input trace records that were
eligible for script generation processing.

Summary Report
The trace records eligible count will appear on the summary report for each network
defined in the model network. An example of a summary report containing the trace
records eligible field is shown below:

Detail Report
The trace records eligible count will appear on the detail report for each terminal or
resource in the model network. An example of a detail report containing the trace
records eligible field is shown below:

SEQOUT Data Set
If the SEQOUT control command is specified, ITPSGEN produces a SEQOUT data
set as output. If you are generating CPI-C scripts, the SEQOUT data set will
contain network definition statements and STL code. The STL must be translated to
the TPNS scripting language before you can run a simulation. If you generate
scripts for other simulation types in the same run in which you generate CPI-C
scripts, the SEQOUT data set will also contain the TPNS scripting language
message decks for the other simulation types.

Note: SEQOUT data sets for CPI-C simulations are structured differently than
SEQOUT data sets for other simulation types. The following are some of the
differences of which you should be aware:

1. In the SEQOUT data set for a CPI-C simulation, the network definition is
surrounded by the @NET and @ENDNET statements to inform the STL
Translator to pass it to the TPNS preprocessor.

ITPSGEN GENERATE OUTPUT TIME 13.45.09, JUNE 3, 2001 PAGE 44
GENERATION REPORT - SUMMARY

TERMINALS TRACE RECORDS MSGTXTS LIMIT PATHS
NETWORK ELIGIBLE ELIGIBLE GENERATED REACHED ADDED

NET1 3 97 5 0 3
NET2 3 0 0 0 0

ITPSGEN GENERATE OUTPUT TIME 13.45.09, JUNE 3, 2001 PAGE 45
GENERATION REPORT - DETAIL

TRACE RECORDS MESSAGES START STOP
TERMINAL NETWORK ELIGIBLE GENERATED TIME TIME PATH

ITPECHO NET1 77 37 16:09:05.80 16:09:42.21 ITPECHO
ITPECHO NET2 0 0
NET1TP1 NET1 9 5 08:30:10.94 08:30:20.72 NET1TP1
NET2TP1 NET2 0 0
NET1TP2 NET1 11 3 08:30:10.94 08:30:20.73 NET1TP2
NET2TP2 NET2 0 0

Chapter 1. TPNS CPI-C Script Generation Support 13

2. If TPNS scripting language message decks are generated during the
same run that produces STL, the TPNS scripting language message
decks will appear following the network definition and before the
@ENDNET.

3. As with other types of script generation, the network definition will be
updated to reflect the generated scripts if the NTWRK control command
is specified. For CPI-C networks, this update involves adding the PATH
statements and adding the PATH, TPTYPE, TPNAME, INSTANCE, and
UCD operands to the TP statements.

4. The allocate and receive CPI-C functions are consolidated into separate
STL message texts that are invoked as needed.

Sample SEQOUT Data Set
The following is a sample SEQOUT data set. Note that this data set contains STL
that was generated by the script generator for a CPI-C simulation.

14 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

@NET
CPICSGEN NTWRK CONRATE=YES, * Message rates to the console

OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs
PATH=(0), * Default path statement
HEAD='CPI-C NETWORK'

*
* Model network for CPI-C script generation.
*
CLIENT PATH CLIENT
SERVER PATH SERVER
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP PATH=(CLIENT),TPTYPE=CLIENT,TPNAME=CLIENT,INSTANCE=(1,1),UCD=NO
*
LU2 APPCLU
SERVER TP PATH=(SERVER),TPTYPE=SERVER,TPNAME=SERVER,INSTANCE=(0,1),UCD=NO
*
@ENDNET

@include cpicvara
@include cpiccon

CLIENT: MSGTXT
/*--*/
/* ITPSGEN: RESOURCE=CLIENT SESSION=00002 12:49:42.00 06/04/01 */
/*--*/
/* ----------------- CONVERSATION CHARACTERISTICS ----------------- */
/* CONVERSATION NUMBER: 00001 CONVERSATION DIRECTION: OUTBOUND */
/* CONVERSATION TYPE: MAPPED CONVERSATION SYNC-LEVEL: CONFIRM */
/* MODE NAME: #INTER PARTNER LU NAME: LU1 */
/* PARTNER TP NAME: SERVER HEX TP NAME: 'E2C5D9E5C5D9'X */
/*--*/

conversation_error = on /* Init conversation error switch */

do forever /* Start do forever loop */

/*----- Allocate a conversation with the remote LU/TP -----*/
partner_LU_name = 'LU1'
mode_name = '#INTER'
TP_name = 'SERVER'
conversation_type = cm_mapped_conversation
sync_level = cm_confirm
call @CMALLC /* allocate conversation */
if return_code ¬= cm_ok then leave

/*----- Send data to the remote TP -----*/
send_type = cm_send_and_confirm
CMSST(conversation_ID,send_type,return_code)
if return_code ¬= cm_ok then leave

prepare_to_receive_type = cm_prep_to_receive_sync_level
CMSPTR(conversation_ID,prepare_to_receive_type,return_code)
if return_code ¬= cm_ok then leave

deallocate_type = cm_deallocate_sync_level
CMSDT(conversation_ID,deallocate_type,return_code)
if return_code ¬= cm_ok then leave

send_buffer = ,
/* 0000 */ 'This is the data that is sent from the client trans'\,
/* 0033 */ 'action program to the server transaction program. '\,
/* 0066 */ 'Here is some hex data followed by some more printab'\,

Chapter 1. TPNS CPI-C Script Generation Support 15

/* 0099 */ 'le EBCDIC: '\'0102030405060708090A0B0C'x\'End of '\,
/* 00B7 */ 'data.'
send_length = length(send_buffer)
CMSEND(conversation_ID,send_buffer,send_length,,

request_to_send_received,return_code)
if return_code ¬= cm_ok then leave

/*----- Deallocate the conversation -----*/
deallocate_type = cm_deallocate_confirm
CMSDT(conversation_ID,deallocate_type,return_code)
if return_code ¬= cm_ok then leave
CMDEAL(conversation_ID,return_code)
if return_code ¬= cm_ok then leave

/*----- Normal end of communications -----*/
conversation_error = off /* No conv error, reset switch */
leave /* Always leave do forever loop */

end /* End do forever loop */

if conversation_error = on then say 'CPI-C Conversation Error!!!'

ENDTXT

SERVER: MSGTXT
/*--*/
/* ITPSGEN: RESOURCE=SERVER SESSION=00002 12:49:42.00 06/04/01 */
/*--*/
/* ----------------- CONVERSATION CHARACTERISTICS ----------------- */
/* CONVERSATION NUMBER: 00001 CONVERSATION DIRECTION: INBOUND */
/* CONVERSATION TYPE: MAPPED CONVERSATION SYNC-LEVEL: CONFIRM */
/* MODE NAME: #INTER PARTNER LU NAME: LU2 */
/* LOCAL TP NAME: SERVER HEX TP NAME: 'E2C5D9E5C5D9'X */
/*--*/

conversation_error = on /* Init conversation error switch */

do forever /* Start do forever loop */

/*----- Accept conversation from remote LU/TP -----*/
CMACCP(conversation_ID,return_code)
if return_code ¬= cm_ok then leave

CMEPLN(conversation_ID,partner_LU_name,,
partner_LU_name_length,return_code)

if return_code ¬= cm_ok then leave
if partner_LU_name ¬= 'LU2' then leave

CMEMN(conversation_ID,mode_name,mode_name_length,return_code)
if return_code ¬= cm_ok then leave
if mode_name ¬= '#INTER' then leave

CMECT(conversation_ID,conversation_type,return_code)
if return_code ¬= cm_ok then leave
if conversation_type ¬= cm_mapped_conversation then leave

CMESL(conversation_ID,sync_level,return_code)
if return_code ¬= cm_ok then leave
if sync_level ¬= cm_confirm then leave

/*----- Receive data from the remote TP -----*/
receive_type = cm_receive_and_wait
CMSRT(conversation_ID,receive_type,return_code)
if return_code ¬= cm_ok then leave
call @CMRCV /* receive data from the remote TP */
if return_code ¬= cm_ok then leave
if send_received = on then leave

16 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

if confirm_received = off then leave
if conversation_deallocated = on then leave
expected_receive_buffer = ,
/* 0000 */ 'This is the data that is sent from the client trans'\,
/* 0033 */ 'action program to the server transaction program. '\,
/* 0066 */ 'Here is some hex data followed by some more printab'\,
/* 0099 */ 'le EBCDIC: '\'0102030405060708090A0B0C'x\'End of '\,
/* 00B7 */ 'data.'
if received_length ¬= 188 then leave
if substr(receive_buffer,1,188) ¬= ,

substr(expected_receive_buffer,1,188) then leave

/*----- Send a confirmation reply -----*/
CMCFMD(conversation_ID,return_code)
if return_code ¬= cm_ok then leave

/*----- Receive data from the remote TP -----*/
call @CMRCV /* receive data from the remote TP */
if return_code ¬= cm_ok then leave
if send_received = on then leave
if confirm_received = off then leave
if conversation_deallocated = off then leave

/*----- Send a confirmation reply -----*/
CMCFMD(conversation_ID,return_code)
if return_code ¬= cm_ok then leave

/*----- Normal end of communications -----*/
conversation_error = off /* No conv error, reset switch */
leave /* Always leave do forever loop */

end /* End do forever loop */

if conversation_error = on then say 'CPI-C Conversation Error!!!'

ENDTXT

@CMALLC: MSGTXT
/*---*/
/*----- Allocate a conversation with the remote LU/TP -----*/
/*---*/

/* Initialize the conversation */
sym_dest_name = ' '
CMINIT(conversation_ID,sym_dest_name,return_code)
if return_code ¬= cm_ok then return

/* Set the partner LU name */
partner_LU_name_length = length(partner_LU_name)
CMSPLN(conversation_ID,partner_LU_name,,

partner_LU_name_length,return_code)
if return_code ¬= cm_ok then return

/* Set the mode name */
mode_name_length = length(mode_name)
CMSMN(conversation_ID,mode_name,mode_name_length,return_code)
if return_code ¬= cm_ok then return

/* Set the TP name */
TP_name_length = length(TP_name)
CMSTPN(conversation_ID,TP_name,TP_name_length,return_code)
if return_code ¬= cm_ok then return

/* Set the conversation type */
CMSCT(conversation_ID,conversation_type,return_code)
if return_code ¬= cm_ok then return

Chapter 1. TPNS CPI-C Script Generation Support 17

/* Set the synchronization level */
CMSSL(conversation_ID,sync_level,return_code)
if return_code ¬= cm_ok then return

/* Allocate the conversation */
CMALLC(conversation_ID,return_code)

ENDTXT

@CMRCV: MSGTXT
/*---*/
/*----- Receive data from the remote TP -----*/
/*---*/

/* Initialize the receive parameter values */
receive_buffer = ''
requested_length = 32767
received_length = 0
data_received = cm_no_data_received

/* Initialize the receive status flags */
conversation_deallocated = off
confirm_received = off
send_received = off

/* Issue the receive request */
CMRCV(conversation_ID,receive_buffer,requested_length,,

data_received,received_length,status_received,,
request_to_send_received,return_code)

/* Examine the receive results and set the status flags */
select
when return_code = cm_ok then
select
when status_received = cm_send_received then send_received = on
when status_received = cm_confirm_received then confirm_received = on
when status_received = cm_confirm_send_received then
do
confirm_received = on
send_received = on
end
when status_received = cm_confirm_dealloc_received then
do
confirm_received = on
conversation_deallocated = on
end
otherwise nop
end
when return_code = cm_deallocated_normal then
do
return_code = cm_ok
conversation_deallocated = on
end
otherwise nop
end

ENDTXT

STL Translation
CPI-C scripts are generated by ITPSGEN in STL. Before you can run a CPI-C
script generated by ITPSGEN, you must translate the STL into TPNS scripting
language by following the steps given below:

1. The STL input data set must point to the data set produced by the script
generation SEQOUT DD. See “Sample JCL for STL Translation” on page 19.

18 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

2. Add the CPICVARA and the CPICCON STL include files as members in your
STL includes data set (SYSLIB DD) if they are not already in this data set. Both
these files are members in the TPNS SAMPLE data set. CPICVARA is a new
include file added as part of the CPI-C script generation support. See
“CPICVARA STL Include File” on page 20.

Sample JCL for STL Translation
You can use the following sample when writing your own JCL to execute the TPNS
STL Translator.
//STLJOB JOB
//***
//* Teleprocessing Network Simulator (TPNS) 5688-121 *
//***
//* STLJOB JCL *
//* Sample JCL to execute the TPNS STL Translator (ITPSTL). *
//***
//STL EXEC PGM=ITPSTL,REGION=4096K
//STEPLIB DD DSN=TPNS.LOAD,DISP=SHR
//PARMDD DD DSN=TPNS.PARMDD,DISP=SHR
//RATEDD DD DSN=TPNS.RATETBLS,DISP=SHR
//INITDD DD DSN=TPNS.TESTFILE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//MSGDD DD DSN=TPNS.MSGFILE,DISP=SHR
//SEQOUT DD DSN=TPNS.STL.SEQOUT,DISP=SHR
//SYSLIB DD DSN=TPNS.STLIN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSIN DD DSN=TPNS.SEQOUT,DISP=SHR

Chapter 1. TPNS CPI-C Script Generation Support 19

CPICVARA STL Include File
Before translating the STL, add the following CPICVARA STL include file as a
member in your STL includes data set (SYSLIB DD) if it is not already a member of
that data set.
/***/
/* STL variable allocations for CPI-C verb parameters & switches */
/***/
/* String parameters */
allocate conversation_ID '1' /* Conversation ID */
allocate mode_name '2' /* Mode name */
allocate partner_LU_name '3' /* Partner LU name */
allocate sym_dest_name '4' /* Symbolic dest name */
allocate TP_name '5' /* TP name */
allocate log_data '6' /* Log data */
allocate send_buffer '7' /* Send buffer */
allocate receive_buffer '8' /* Receive buffer */
allocate FMH5_extension '9' /* FMH-5 extension */
/***/
/* Integer parameters */
allocate conversation_state 'DC1' /* Conversation state */
allocate conversation_type 'DC2' /* Conversation type */
allocate data_received 'DC3' /* Data received */
allocate deallocate_type 'DC4' /* Deallocate type */
allocate error_direction 'DC5' /* Error direction */
allocate fill 'DC6' /* Fill value */
allocate log_data_length 'DC7' /* Log data length */
allocate mode_name_length 'DC8' /* Mode name length */
allocate partner_LU_name_length 'DC9' /* Partner LU name length*/
allocate prepare_to_receive_type 'DC10' /* Prepare to RCV type */
allocate receive_type 'DC11' /* Receive type */
allocate received_length 'DC12' /* Received length */
allocate request_to_send_received 'DC13' /* Request-to-send rcvd */
allocate requested_length 'DC14' /* Requested length */
allocate return_code 'DC15' /* Return code */
allocate return_control 'DC16' /* Return control */
allocate send_length 'DC17' /* Send length */
allocate send_type 'DC18' /* Send type */
allocate status_received 'DC19' /* Status received */
allocate sync_level 'DC20' /* Sync-level */
allocate TP_name_length 'DC21' /* TP name length */
allocate FMH5_extension_length 'DC22' /* FMH-5 extension length*/
/***/
/* Device switches */
allocate send_received 'SW1' /* Send token received */
allocate confirm_received 'SW2' /* Confirmation req rcvd */
allocate conversation_deallocated 'SW3' /* Conv deallocated */
allocate conversation_error 'SW4' /* Conversation error */
/***/

VTAM System Definitions
Prior to running a TPNS simulation using generated CPI-C scripts, make sure each
APPC LU to be simulated by TPNS is defined to VTAM via APPL statements in the
VTAMLST data set. The definition must specify APPC=YES. Each APPC LU must
have a unique APPLID name. This is necessary since VTAM associates
conversations to an APPLID name and receives attach requests by this name,
rather than by the TP name.

20 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 2. TPNS STL Script Generation Support

The TPNS Script Generator Utility has been enhanced with an option to generate
scripts in Structured Translator Language (STL). In TPNS 3.5 Service Level 9711,
CPI-C scripts are generated exclusively in STL. However, other types of scripts
(VTAMAPPL LU0 or LU2 for instance) are generated in TPNS scripting language.
This new support provides a user option for all types of script generation except
CPI-C. CPI-C scripts are still exclusively generated in STL. All other types of scripts
can be generated in either TPNS scripting language or STL. The target language
for the script generator output is controlled by the following new control commands.

STL and NOSTL
This command is used to determine whether scripts are to be generated in the
Structured Translator Language (STL). Previously, CPI-C scripts were generated
exclusively in STL. However, other types of scripts (VTAMAPPL LU0 or LU2, for
example) are generated in TPNS scripting language. This command provides you
with an option for all types of script generation except CPI-C. CPI-C scripts are still
exclusively generated in STL. All other types of scripts can be generated in either
TPNS scripting language or STL.

STL
STL specifies that the target language for script generator output is Structured
Translator Language (STL).

NOSTL
NOSTL specifies that the target language for script generator output is TPNS
scripting language. NOSTL is the default value.

Defining the Network
The model network is defined the same for generating STL as for generating TPNS
scripting language. Refer to TPNS Script Generating Utilities for detailed
information. Note that if scripts are included with the model network they must be
written in TPNS scripting language. Any scripts included with the model network are
copied to the generated message decks data set during the script generation
process.

Changes to JCL, EXECs, and CLISTs
Before using ITPSGEN to generate scripts in STL, you must add an STLTXT DD
definition to the existing script generation JCL, EXEC, or CLIST. This DD is for an
output partitioned data set that will contain the STL source. Each STL MSGTXT will
be a member in this partitioned data set. The following sample JCL, EXEC, and
CLIST illustrate the addition of the STLTXT DD definition.

21

Sample JCL
The example below shows a JCL that has been modified to enable ITPSGEN to
generate scripts in STL.

//SGENJOB JOB
//***
//* Teleprocessing Network Simulator (TPNS) 5688-121 *
//***
//* SGENJOB JCL *
//* Sample JCL to execute ITPSGEN. *
//***
//JOBLIB DD DSNAME=TPNS.LOAD,DISP=SHR
//STEP1 EXEC PGM=ITPSGEN,PARM='CTL'
//RATEDD DD DSNAME=TPNS.RATETBLS,DISP=SHR
//INITDD DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//MSGDD DD DSNAME=TPNS.MSGFILE,DISP=SHR
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSPRINT DD SYSOUT=A
//MSGTXT DD DSNAME=TPNS.MSGFILE,DISP=SHR
//STLTXT DD DSNAME=TPNS.STLIN,DISP=SHR
//NTWRK DD DSNAME=TPNS.TESTFILE,DISP=SHR
//SEQOUT DD DSNAME=TPNS.SEQOUT,DISP=SHR
//TAPEIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,LABEL=(,NL)
//CTLIN DD *
* CONTROL STATEMENTS FOR ITPSGEN SCRIPT GENERATOR *
LIST
SEQOUT
NTWRK
REPORT FULL
/*
//SYSIN DD *
CPICSGEN NTWRK CONRATE=YES, * Message rates to the console

OPTIONS=(MONCMND), * Monitor operator commands
CPITRACE=VERB, * Trace CPI-C verbs
PATH=(0), * Default path statement
HEAD='CPI-C NETWORK'

*
* Model network for CPI-C script generation.
*
0 PATH SGENTXT
*
LU1 APPCLU
CLIENT TP
*
LU2 APPCLU
SERVER TP
*
SGENTXT MSGTXT

WAIT
ENDTXT

/*

22 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Sample REXX EXEC
The example below shows a REXX EXEC that has been modified to enable
ITPSGEN to generate scripts in STL.

/***
** Teleprocessing Network Simulator (TPNS) 5688-121 **

** SGEN EXEC **
** **
** Sample EXEC to execute ITPSGEN on CMS. It can also be used to **
** execute ITPSGEN on GCS if the file type is changed from EXEC **
** to GCS and the two ERASE commands at the end are removed. **
** **
** Format: **
** SGEN prepin_name prepin_type trace_name trace_type **
** **
***/
arg prep_fn prep_ft trace_fn trace_ft .
'FILEDEF * CLEAR'
'FILEDEF CTLIN DISK TPNS SGENCNTL *'
'FILEDEF INITDD DISK TPNS TESTFILE A'
'FILEDEF MSGDD DISK TPNS MSGFILE A'
'FILEDEF MSGTXT DISK TPNS MSGFILE A'
'FILEDEF STLTXT DISK TPNS STLIN A'
'FILEDEF NTWRK DISK TPNS TESTFILE A'
'FILEDEF RATEDD DISK TPNS RATETBLS * (BLKSIZE 2000)'
'FILEDEF SEQOUT DISK TPNS SEQOUT A'
'FILEDEF SYSIN DISK' prep_fn prep_ft '*'
'FILEDEF SYSPRINT PRINTER'
'FILEDEF TAPEIN DISK' trace_fn trace_ft '*'
'GLOBAL LOADLIB TPNSLOAD'
'OSRUN ITPSGEN'
rcode=rc
'ERASE FILE SYSUT2 A'
'ERASE FILE SYSUT3 A'
exit rcode

Sample TSO CLIST
The example below shows a CLIST that has been modified to enable ITPSGEN to
generate scripts in STL.

/***/
/* Teleprocessing Network Simulator (TPNS) 5688-121 */
/***/
/* SGEN CLIST */
/* Sample CLIST to execute ITPSGEN. */
/***/
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)
ALLOC DDNAME(SYSPRINT) SYSOUT(A)
ALLOC DDNAME(RATEDD) DATASET('TPNS.RATETBLS') SHR
ALLOC DDNAME(INITDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGDD) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT2) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(SYSUT3) UNIT(SYSDA) SPACE(10,10) DIR(3) TRACKS
ALLOC DDNAME(MSGTXT) DATASET('TPNS.MSGFILE') SHR
ALLOC DDNAME(STLTXT) DATASET('TPNS.STLIN') SHR
ALLOC DDNAME(NTWRK) DATASET('TPNS.TESTFILE') SHR
ALLOC DDNAME(SEQOUT) DATASET('TPNS.SEQOUT') SHR
ALLOC DDNAME(TAPEIN) DATASET('ITPSGEN.TAPEIN') SHR
ALLOC DDNAME(CTLIN) DATASET('ITPSGEN.CTLIN') SHR
ALLOC DDNAME(SYSIN) DATASET('ITPSGEN.SYSIN') SHR

Chapter 2. TPNS STL Script Generation Support 23

CALL 'TPNS.LOAD(ITPSGEN)' 'CTL'
FREE DDNAME(SYSPRINT RATEDD INITDD MSGDD SYSUT2 SYSUT3)
FREE DDNAME(MSGTXT STLTXT NTWRK SEQOUT TAPEIN CTLIN SYSIN)

Changes to the TPNS/ISPF Interface
When generating STL scripts using the TPNS/ISPF Interface, you must specify a
data set to contain the generated STL source. Use the field labeled Generated STL
programs on panel ITP0SGNP to specify this data set. A member will be created in
this data set for each STL MSGTXT that is generated. The data set can have the
same attributes as those used for the generated message decks data set. The
following is an example of the ITP0SGNP panel as it might look when generating
STL scripts.

ITP0SGNP TPNS: Generate Message Decks from Sorted Trace Data

Type information. Then Press Enter
More: +

Input Data Sets
Sorted trace 'USERID.SORTED.TRACE'

Tape: Serial numbers ,
File number . . (0-9999)
Label type . . (NL or SL)

Model script 'USERID.NETWORKS(MODEL)'
Control commands 'USERID.CONTROL(SGEN)'

Output Data Sets
Generated message decks 'USERID.MSGFILE'
Generated STL programs 'USERID.STLIN'
Updated networks 'USERID.TESTFILE'
Sequential output . . . 'USERID.SEQOUT'
Printer output 'USERID.SYSPRINT'

Command ===>
F1=Help F2=Split F3=Exit F4=Edit input F5=Refresh F6=Browse prt
F7=Bkwd F8=Fwd F9=Swap F10=Edit ctl F11=Save F12=Cancel

SEQOUT Data Set
If the SEQOUT control command is specified, ITPSGEN produces a SEQOUT data
set as output. If you are generating STL scripts, the SEQOUT data set will contain
network definition statements and STL code. The STL must be translated to the
TPNS scripting language before you can run a simulation.

Note: SEQOUT data sets that contain STL source code are structured differently
than SEQOUT data sets that contain TPNS scripting language source code.
In SEQOUT data sets that contain STL source, the network definition is
surrounded by the @NET and @ENDNET statements to inform the STL
Translator to pass it to the TPNS preprocessor. As with non-STL script
generation, the network definition will be updated to reflect the generated
scripts if the NTWRK control command is specified.

Sample SEQOUT Data Set
The following is a sample SEQOUT data set.
@NET
IDCTSO NTWRK UTI=100,LOGDSPLY=BOTH
ITPIDC PATH ITPIDC
0 PATH SGENTXT

24 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

* Model network for ITPECHO via IDC.
VAPPL1 VTAMAPPL APPLID=ITPIDC,INIT=SEC,BUFSIZE=1920
ITPIDC LU PATH=(ITPIDC),

LUTYPE=LU2
*
@ENDNET
ITPIDC: MSGTXT

suspend(3)
delay(4)
erin
cursor(1,27)
type 'userid'
cursor(2,7)
transmit using ENTER
delay(5)
erin
cursor(8,20)
type 'ABCDEF'
transmit using ENTER
delay(21)
erin
cursor(5,6)
transmit using ENTER
delay(6)
erin
cursor(4,14)
type '9.6;log'
transmit using ENTER
delay(3)
erin
cursor(4,21)
type '/d a,1'
transmit using ENTER
delay(2)
erin
cursor(4,21)
transmit using PF3
delay(3)
erin
cursor(4,21)
transmit using PF3
delay(2)
erin
cursor(4,14)
transmit using PF3
delay(2)
erin
cursor(1,9)
type 'logoff'
cursor(2,7)
transmit using ENTER
do forever

wait
end
ENDTXT

STL Translation
Before you can run a script that was generated in STL, you must translate the STL
into TPNS scripting language. If you want to translate all generated scripts during
the same STL invocation, point the STL input data set to the data set produced by
the script generator SEQOUT DD. Use the sample in “Sample JCL for STL
Translation” on page 26 when writing your own JCL to execute the TPNS STL
Translator.

Chapter 2. TPNS STL Script Generation Support 25

Sample JCL for STL Translation
You can use the following sample when writing your own JCL to execute the TPNS
STL Translator.
//STLJOB JOB
//***
//* Teleprocessing Network Simulator (TPNS) 5688-121 *
//***
//* STLJOB JCL *
//* Sample JCL to execute the TPNS STL Translator (ITPSTL). *
//***
//STL EXEC PGM=ITPSTL,REGION=4096K
//STEPLIB DD DSN=TPNS.LOAD,DISP=SHR
//PARMDD DD DSN=TPNS.PARMDD,DISP=SHR
//RATEDD DD DSN=TPNS.RATETBLS,DISP=SHR
//INITDD DD DSN=TPNS.TESTFILE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//MSGDD DD DSN=TPNS.MSGFILE,DISP=SHR
//SEQOUT DD DSN=TPNS.STL.SEQOUT,DISP=SHR
//SYSLIB DD DSN=TPNS.STLIN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSIN DD DSN=TPNS.SEQOUT,DISP=SHR

26 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 3. Additional TPNS TCP/IP Support

TPNS has been updated to enable you to simulate the following types of TCP/IP
clients:

v Telnet 3270E clients connecting to a Telnet 3270 or 3270E server

v Telnet Line Mode Network Virtual Terminal clients connecting to a Telnet server

v Telnet 5250 clients connecting to a Telnet 5250 server

v Simple User Datagram Protocol (UDP) clients

Other TCP/IP-related enhancements included are:

v The LOCLPORT operand has been added to allow the specification of the local
port number to be used by a Simple TCP (STCP) or Simple UDP (SUDP) device.

v The STCPROLE operand has been added to allow you to specify whether STCP
devices are to act as a client or server.

v ITPGSIPA, an exit routine, has been added to glean the address information from
received data and set the address information for data to be transmitted.

v TPNS now uses the Macro API of the IBM TCP/IP product when it is available.

v The port number to be used for subsequent connections can now be altered for
TCP/IP resources via PORT=nnnnn on the a (alter) TPNS operator command.

Telnet 3270E Support
TPNS now simulates Telnet 3270E clients connecting to a Telnet 3270 server or
3270E server. This enhancement enables you to simulate Telnet 3270E terminals or
Telnet LU3 printers. The following functions are supported:

Device naming

Most host applications behave differently depending on the network name
of the terminal. The TPNS 3270E support allows you to simulate a 3270
client requesting that a connection be associated with a given 3270 device
name. This capability is particularly useful when simulating a Telnet 3270E
printer since many host applications pre-define printer destinations. To
query the Connect or Associate name of the TCP/IP terminal or printer,
query the TPNS TN3270E terminal or printer name using the TPNS
operator command Q and look for the LUNAME= operand in the returned
query response lines.

SYSREQ key

TPNS supports the SYSREQ key. The Telnet Abort Output (AO) command
is sent when SYSREQ is coded in a TPNS message generation deck or
STL procedure.

SNA positive/negative response process

The SNA positive/negative response process is supported. A positive
response may be sent (depending on function negotiations) to indicate that
previously received data has been successfully processed. A negative
response may be sent to indicate that an error occurred while processing
the previously received data.

27

Telnet 3270E suboption negotiations

TPNS provides a means to simulate Telnet 3270E suboption negotiations.
Suboption negotiations are handled in two steps. The first step is a
device-type negotiation that is similar to, but more complicated than the
Telnet terminal-type option. The second step involves the negotiation of a
set of supported 3270 functions. If these two suboption negotiations are
successful, the 3270 data stream transmission may begin. Each data
message in TN3270E is prefixed by a header containing flags and
indicators that convey positive and negative responses and the type of data
that follows — that is, 3270 data stream, SNA character stream, or device
status information. Once the DEVICE-TYPE information has been
successfully negotiated, the client and server will exchange the
FUNCTIONS information.

Suboption Negotiation Commands
The following are descriptions of the suboption negotiation commands:

DEVICE-TYPE
The server transmits the DEVICE-TYPE SEND command and the
TPNS TN3270E client responds with the DEVICE-TYPE REQUEST
command, which includes the device-type and may include a
device-name request.

IBM-3287-1 printers are supported. Terminal types supported
include:

IBM-3278-2 IBM-3278-2-E (24 rows x 80 cols display)
IBM-3278-3 IBM-3278-3-E (32 rows x 80 cols display)
IBM-3278-4 IBM-3278-4-E (43 rows x 80 cols display)
IBM-3278-5 IBM-3278-5-E (27 rows x 132 cols display)
IBM-3278-2 IBM-3278-2-E (default if none of above)

The ″E″ indicates that extended data stream capability is supported.
At a minimum, this usually includes support for extended colors and
highlighting, but may include other functions.

CONNECT The TPNS TN3270E client requests that the server assign a
specific device-name to this Telnet session. This is implemented in
TPNS by the use of the RESOURCE= operand to specify the name
and ASSOC=NO operand value. The device-name must not conflict
with the device-type. For example, the client may request
DEVICE-TYPE IBM-3287-1 which is a printer and specify
CONNECT T1000001, but T1000001 is defined as a terminal. This
would result in a denial of the request. If the requested
device-name is already associated with some other Telnet session,
or if it is not defined to the server, the request will be denied.

ASSOCIATE The TPNS TN3270E client requests a DEVICE-TYPE that
represents a printer. This requests that the session be assigned the
device-name of the printer that is paired with the terminal named in
the request. This is implemented by the use of the RESOURCE=
operand for the terminal name and ASSOC=YES operand value. If
the device-type does not represent a printer, or if the device-name
is not that of a terminal, the request will be denied.

FUNCTIONS The FUNCTIONS REQUEST command contains a list of the 3270
functions that the sender would like to see supported on this

28 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

session. The list of 3270 functions that may be negotiated in the
function list are specified by the FUNCTS= operand. All functions
not in the FUNCTIONS REQUEST command list are considered not
supported. See the FUNCTS= operand description for the
description of the 3270 functions.

Defining a Telnet 3270E Client
This section illustrates how to define a Telnet 3270E client. A sample TPNS network
definition and TPNS script for a Telnet 3270E client are provided. For additional
information about defining display characteristics and 3270 characteristics for Telnet
3270E clients, refer to Defining TPNS Networks, Chapter 7, ″Simulating TCP/IP
Devices″ and to the TPNS Language Reference manual.

Sample Network Definition for a Telnet 3270E Simulation
To simulate a Telnet 3270E client, code the following operands in your network
definition. These operands can be coded on the DEV statement in a TCPIP group
definition, or on the TCPIP statement in order to establish operand values for any
DEV statements in that group that do not specify certain operands.

ASSOC={YES│NO}

Function: Specifies whether the ASSOCIATE command is to be used
when requesting a DEVICE-TYPE that represents a printer.
Only valid when TYPE=TN3270P.

Format: YES or NO.

Default: NO

FUNCTS={integer,...}

Function: Specifies the list of 3270 options supported for the
specific FUNCTIONS REQUEST command that the sender would
like to see supported on this session.

Format: Integers between 0 and 4 or a single integer value of 5.

0 - Bind image, allows the server to send the SNA Bind
image and Unbind notification to the client.

1 - Data stream control, for TYPE=TN3270P only. Allows
the use of standard 3270 data stream. This
corresponds to LU type 3 SNA sessions.

2 - Responses, provides support for positive and negative
response handling. Allows the server to reflect to
the client any and all definite, exception, and no
response requests sent by the host application.

3 - SNA character stream control codes for printer
sessions only. Allows the use of the SNA Character
Stream (SCS) and SCS control codes on the session.
SCS is used with LU type 1 SNA sessions.

Note: TPNS can receive LU type 1 data but nothing is
done except logging and logic testing. There
is no printer speed delay generated. No
module is called to check the data or set a
delay.

4 - Sysreq, allows the client and server to emulate some

Chapter 3. Additional TPNS TCP/IP Support 29

(or all, depending on the server) of the functions of
the SYSREQ key in an SNA environment.

5 - Null list, no options are supported.

Default: 0,1,2,3,4

PRTSPD=integer

Function: Specifies the speed at which the device being simulated
will print the data received. The device buffer is
assumed to be busy for the time taken to print the data.
A TN3270E response will be sent after the data has
been printed.

Format: An integer from 0 to 32767 that specifies the print speed
for the device in characters per second. PRTSPD=0 means
"immediate completion of print operation."

Note: This option is only valid for TYPE=TN3270P and LU3
printer types. This option does not take into
account the extra time required for color printers.

Default: 0

RESOURCE=name

Function: Specifies the TN3270E LU name to connect or associate
with.

Format: A 1- to 8- character name.

Default: None.

TYPE={TN3270E│TN3270P}

Function: TN3270E specifies a Telnet 3270E terminal.
TN3270P specifies a Telnet 3270E printer.

Format: TN3270E or TN3270P

Sample TPNS Script for a Telnet 3270E Simulation
Below is an example of a TPNS script simulating two Telnet 3270E printers
receiving data and two Telnet 3270E terminals connecting to an application logon
screen.

**
* Network Configuration: Telnet 3270E simulation *
* *
* Description: This TPNS script will simulate two Telnet 3270E *
* terminals connecting to an application logon *
* screen and logging back off. This script also *
* simulates two Telnet 3270E printers receiving *
* data. The SERVADDR operand specifies the IP *
* dotted address of the host to which the *
* terminals and printers will connect. *
* Some values may need to be changed in this data set *
* in order to operate in your environment. They are *
* indicated by the "<== " string. *
* *

30 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

* TPNS CP Gen: None *
* NCP Gen: None *
* *
* Publications Cross Reference: *
* 1) Defining TPNS Networks - Information on this particular *
* network configuration *
* 2) TPNS Message Generation Decks - Information on writing message *
* text decks *
* 3) TPNS Language Reference - Details on how to code TPNS *
* statements *
**

--
* Network statement operands. *
--
TN3270E NTWRK HEAD='TEST NETWORK', * Set the title line

CONRATE=YES, * Print message rates on console
ITIME=1, * Interval report every 1 minute
MSGTRACE=YES, * Log message generation trace
LOGDSPLY=BOTH, * Log formatted 3270 displays
BUFSIZE=2048, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
SEQ=0, * Clear network sequence counter
TCPNAME=TCPIP, * <== Default name of the local

* TCPIP virtual machine
SERVADDR=9.67.6.1 * <== Default IP server address

* to which you will connect
--
* Define the message decks included in this path *
--
HOST1 PATH HOST1 * Execute HOST1 msgtxt
HOST2 PATH HOST2 * Execute HOST2 msgtxt
--
* Define the network resources. *
* *
* This is a Telnet connection with 2 simulated Telnet 3270E terminals *
* and 2 simulated Telnet LU3 printers. You may add additional *
* operands on the devices if desired. See the TPNS Language Reference *
* manual for details on valid operands. *
--
TCONN1 TCPIP TNPORT=23
DEV11 DEV TYPE=TN3270E,RESOURCE=TPNS01,PATH=(HOST1)
DEV12 DEV TYPE=TN3270E,FUNCTS=(0,1,2),PATH=(HOST1)
DEV13 DEV TYPE=TN3270P,RESOURCE=TPNS02,ASSOC=YES,PATH=(HOST2)
DEV14 DEV TYPE=TN3270P,PRTSPD=1000,PATH=(HOST2)

MESSAGE GENERATION DECK

HOST1 MSGTXT
--
* The Message Generation deck for the Telnet 3270E terminal. *
* *
* This deck calls WAITSCRN to wait for the application logon screen *
* and issues a Write To Operator message acknowledging that the device *
* has successfully connected. A USERID and password are selected *
* from user tables defined below that attempt to logon to the host. *
* The device then calls WAITREDY to wait for a "ready prompt" from *
* the host indicating a successful logon. After receiving the *
* appropriate ready message, the device logs off. After a device *
* logs off, TPNS is closed down. *
--

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TELNET SESSION, LOGGING ON)
SET DC1=NSEQ
SET NSEQ=+1

Chapter 3. Additional TPNS TCP/IP Support 31

TEXT ($UTBL,IDS,DC1$),MORE=YES
TAB
TEXT ($UTBL,PWS,DC1$)
ENTER
CALL NAME=WAITREDY
WTO (GOT READY PROMPT)
TEXT (LOGOFF)
ENTER
CALL NAME=WAITLOGF
WTO (GOT LOGOFF MESSAGE)
OPCMND (ZEND)
ENDTXT

--
WAITSCRN MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logon screen. *
--
0 IF WHEN=IN,LOC=B+0,TEXT=(VM/ESA ONLINE),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITREDY MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate ready message *
--
0 IF LOC=B+0,TEXT=(Ready),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(Reconnected),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITLOGF MSGTXT
*---
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logoff message *
*---
0 IF LOC=B+0,TEXT=(Logoff),SCAN=YES,THEN=CONT
1 IF LOC=B+0,TEXT=(LOGOFF),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*
HOST2 MSGTXT
--
* The Message Generation deck for the Telnet 3270E LU3 printer. *
* *
* This deck waits for the NL and EM in the data stream and checks for *
* an unbind sent by the server. *
* *
--

WTO (STARTING PRINTER SESSION,$MSGTXTID$)
0 IF LOC=B+0,SCAN=YES,TEXT=('1519'),

THEN=E-MSGAA,WHEN=IN
1 IF LOC=D+0,TEXT=('00'),

COND=GE,THEN=E-INCAL,
DATASAVE=(1,D+0,32000)

2 IF LOC=D+0,SCAN=YES,TEXT=('0800'),
THEN=E-MSGBB,WHEN=IN

WAIT
MSGAA WTO (PRINTOUT RECEIVED,$MSGTXTID$)

RETURN
MSGBB WTO (UNBIND RECEIVED,$MSGTXTID$)

WTO ($CNTR,DC1$ BYTES RECEIVED)

32 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

SET DC1=0
RETURN

INCAL SET DC2=LENG(1),DC1=+DC2
WTO ($CNTR,DC2$ BYTES RECEIVED)
WTO ($CNTR,DC1$ TOTAL BYTES RECEIVED)
RETURN
ENDTXT

*---
* * <== The USERIDs and passwords
* * below must be changed to
* * valid names
*---
IDS MSGUTBL (USER1),(USER2),(USER3),(USER4)
PWS MSGUTBL (PASSWORD),(PASSWORD),(PASSWORD),(PASSWORD)

STL PROCEDURE

@PROGRAM=TN3270E
/*---*
* This deck waits for the application logon screen and displays a *
* message to the operator acknowledging that the device has been *
* successfully connected. A USERID and password are selected from *
* user tables defined below that attempt to logon to the host. The *
* device then calls WAITREDY to wait for a "ready prompt" from the *
* host indicating a successful logon. After receiving the appropriate *
* ready message, the device logs off. Once a device logs off, TPNS *
* is closed down. *
---/
allocate nextnum 'NSEQ'
integer nextid
integer totaldata

host1: msgtxt
wait until onin index(screen, 'VM/ESA ONLINE') > 0
say devid() 'ESTABLISHED TELNET SESSION, LOGGING ON'
nextid = nextnum
nextnum = nextnum + 1
type utbl(ids,nextid)
tab
type utbl(pws,nextid)
transmit and wait until onin index(screen, 'READY;') > 0
say 'GOT READY PROMPT'
type 'LOGOFF'
transmit and wait until onin index(screen, 'LOGOFF') > 0
opcmnd 'ZEND'
endtxt

/*---*
* The Message deck for the Telnet 3270E LU3 printer. *
* *
* This deck waits for the NL and EM in the data stream and checks for *
* an unbind sent by the server. *
---/
host2: msgtxt
say 'STARTING PRINTER SESSION, ' msgtxtid()
onin index(buffer,'1519') > 0 then

say 'PRINTOUT RECEIVED ' msgtxtid()
onin then do

totaldata=totaldata+length(data)
say char(length(data)) ' BYTES RECEIVED'
say char(totaldata) ' TOTAL BYTES RECEIVED'

end
onin index(buffer,'0800') > 0 then do

say 'UNBIND RECEIVED ' msgtxtid()
say char(totaldata) ' BYTES RECEIVED'

Chapter 3. Additional TPNS TCP/IP Support 33

total=0
end
wait

endtxt

ids: msgutbl
'USER1'
'USER2'
'USER3'
'USER4'
endutbl

pws: msgutbl
'PASSWORD'
'PASSWORD'
'PASSWORD'
'PASSWORD'
endutbl

Telnet Line Mode Network Virtual Terminal
TPNS now simulates Telnet Line Mode Network Virtual Terminal clients connecting
to a Telnet server. The client will look like a Network Virtual Terminal. The TPNS
user must append carriage control and line feed characters at the end of each data
stream to be sent. However, the incoming data is translated from ASCII to EBCDIC
and the outgoing data is translated from EBCDIC to ASCII. Line mode does not
provide screen images. No buffers are maintained in the TPNS line mode support.
For logic testing, only the incoming data streams are checked. Also refer to
“Appendix C. Simple TCP Sample Script” on page 109 for an example of a Telnet
Line Mode NVT client exchanging negotiations with a Telnet server using the TPNS
Simple TCP support.

Defining a Telnet Line Mode Network Virtual Terminal Client
To simulate a Telnet Line Mode Network Virtual Terminal client, code the following
operand in your network definition. The operand can be coded on the DEV
statement in a TCPIP group definition, or on the TCPIP statement to establish the
terminal type for any of the DEV statements in the group that do not have a specific
type.

TYPE=TNNVT

Function: Specifies a Telnet Line Mode Network Virtual Terminal client.

Format: TNNVT

Sample Telnet Line Mode Network Virtual Terminal Message
Generation Deck
The following is a sample Telnet Line Mode Network Virtual Terminal message
generation deck:

34 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Telnet Line Mode Network Virtual Terminal Simulation Message Generation Deck
--
* The Message Generation deck for the Telnet Line Mode NVT. *
* *
* This deck calls WAITSCRN to wait for the application logon screen *
* and issues a Write To Operator message acknowledging that the device *
* has successfully connected. A USERID is selected from the id user *
* table defined below to attempt to logon. The device then calls *
* WAITPWD to wait for "Password" and then send the password from the *
* password user table below. After receiving the "$" prompt, the *
* device logs off. *
* *
--
HOST1 MSGTXT

CALL NAME=WAITSCRN
WTO ($DEVID$ ESTABLISHED TELNET SESSION, LOGGING ON)
SET DC1=NSEQ
SET NSEQ=+1
TEXT ($UTBL,IDS,DC1$'0D25')
ENTER
CALL NAME=WAITPWD
WTO (GOT PASSWORD)
TEXT ($UTBL,PWS,DC1$'0D25')
ENTER
CALL NAME=WAIT$
TEXT (LOGOUT)
WTO (GOT $$ PROMPT)
ENDTXT

--
WAITSCRN MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate logon screen. *
--
0 IF WHEN=IN,LOC=B+0,TEXT=(login:),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAITPWD MSGTXT
--
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate password message *
--
0 IF LOC=B+0,TEXT=(Password),SCAN=YES,THEN=CONT

WAIT
ENDTXT

*---
WAIT$ MSGTXT
*---
* * <== The TEXT operand below must *
* * be changed to reflect the *
* * appropriate prompt message *
*---
0 IF LOC=B+0,TEXT=($$),SCAN=YES,THEN=CONT

WAIT
CLEAR
ENDTXT

*---
* * <== The USERIDs and passwords
* * below must be changed to
* * valid names
*---
IDS MSGUTBL (USER1),(USER2),(USER3)
PWS MSGUTBL (PASSWD1),(PASSWD2),(PASSWD3)

Chapter 3. Additional TPNS TCP/IP Support 35

Sample Telnet Line Mode Network Virtual Terminal STL
Procedure
The following is a sample Telnet Line Mode Network Virtual Terminal STL
procedure:

allocate nextnum 'NSEQ'
integer nextid
constant crlf '0D25'x
host1: msgtxt
data_received=''
onout then data_received=''
onin then data_received=data_received\buffer
wait until onin index(data_received,'login') > 0
say devid() 'ESTABLISHED TELNET SESSION, LOGGING ON'
nextid =nextnum
nextnum=nextnum+1
if nextnum=utblmax(ids) then
nextnum=0
say devid() 'sending LOGIN'
type utbl(ids,nextid)\crlf
transmit and wait until onin index(data_received,'Password') > 0
say devid() 'got Password PROMPT'
type utbl(pws,nextid)\crlf
do nextcmd=0 to utblmax(cmds)
transmit and wait until onin index(data_received,'$') > 0
say devid() 'sending COMMAND' utbl(cmds,nextcmd)
type utbl(cmds,nextcmd)\crlf
end
endtxt

ids: msgutbl
'user1'
'user2'
'user3'
endutbl

pws: msgutbl
'passwd1'
'passwd2'
'passwd3'
endutbl

cmds: msgutbl
'cd /usr/lpp'
'ls'
'logout'
endutbl

Telnet 5250 Support
TPNS now simulates Telnet 5250 clients connecting to a Telnet 5250 server. To
simulate a Telnet 5250 client, code the following operand in your network definition:

TYPE=TN5250

Function: Specifies a Telnet 5250 terminal.

Format: TN5250

36 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

The operand can be coded on the DEV statement in a TCPIP group definition, or
on the TCPIP statement to establish the terminal type for any of the DEV
statements in that group which do not have a specific type. For details on 5250
simulation statements, refer to TPNS Language Reference.

Simple UDP Terminal Support
TPNS now supports simulation of Simple UDP terminals. The terminal type SUDP
has been added to provide simple client UDP support in TPNS. To simulate a
Simple UDP terminal, code the following operand in your network definition:
TYPE=SUDP

SUDP terminal simulation is the same as simple TCP terminal simulation other than
supporting UDP instead of TCP protocols. The SUDPPORT=port_number operand
has also been added to define a default simple UDP port number other than the
default of 256.

Limited Server Enhancements
For STCP devices, you can now specify whether the device is to act as a client or
server. If specified as a server, the device listens for a connection before any
messages can be generated. In most cases, the script is also set up to wait for a
received data message before generating a response, however, the only
requirement is to wait for the connection. In order for STCP devices to perform the
server role, a local port number must be specified. To specify whether a STCP
device is to act as a server or client, code the following operand in your network
definition:
STCPROLE=CLIENT|SERVER

where the value specified indicates the role to be performed. CLIENT is the default.

Note: This operand can only be specified on a DEV statement associated with a
TCPIP statement.

The exit routine which can be used to glean the address information from received
data and set the address information for data to be transmitted is ITPGSIPA. This
exit can be used as an input user exit to retrieve the full address of the source of
the last data received for Simple UDP or Simple TCP simulated devices or as a
message generation exit to set the full address to be used for the next message to
be transmitted for SUDP devices or for the next connection established for STCP
devices. When called as an input exit (specified by INEXIT on the NTWRK
statement), ITPGSIPA saves the full INET address for the message being received
by Simple TCP or Simple UDP terminals in network save area 13. The address is in
the form used by the sockets interface, which is as follows:

Table 1. INET Address Format
Offset Length Description

0 2 Address Family
2 2 Port (AF_NET=0002)
4 4 IP Address
8 8 Binary Zeros

When called as a Message Generation exit (USEREXIT STL statement or EXIT
statement in TPNS Scripting Language), ITPGSIPA moves the INET address from

Chapter 3. Additional TPNS TCP/IP Support 37

network save area 13 into the internal TPNS control block so that the new address
will be used for the next message transmitted (SUDP) or the next connection
(STCP). ITPGSIPA assumes that the INET address exists in the save area in the
format described in Table 1 on page 37.

Local Port Number Support
TPNS allows the specification of the local port number to be used by a Simple TCP
or Simple UDP device. When a local port number is specified for STCP or SUDP
devices, TPNS will obtain the socket and BIND that socket to the specified local
port before any data is transmitted or received on that socket. To specify the local
port number, code the following operand in your network definition:
LOCLPORT=n

where n is an integer from 1 to 65535 representing the local port number to be
used.

Note: This operand can only be specified on a DEV statement associated with a
TCPIP statement.

TCP/IP Macro API Utilization
When available for the TCP/IP instance, as specified by the TCPIP operand, TPNS
will use the TCP/IP Macro API instead of the IUCV API. This will improve
performance and provide compatibility with future releases of the IBM TCP/IP
product.

Alter PORT=port_number
The port number can now be altered for TCP/IP resources via PORT=nnnnn on the
alter command. As part of this change, the PORT=nnnnn and NEXTPORT=nnnnn
values are displayed when a TCP/IP resource is queried, and the port number has
been added to informational message ITP478I. The port number is changed just
before the next connection attempt. The NEXTPORT=nnnnn value is only shown
when such a change is pending. An example of the query output follows:

A STCP001,PORT=2345
ITP033I ALTER COMPLETE
Q STCP001

ITP143I NAME=STCP001 -ACTIVE TYPE=STCP QUIESCED=NO
ITP143I MSG DELAY=F(1) BLK DELAY=NONE
ITP143I WAIT=ON
ITP143I SERVADDR=9.9.9.9 TCPSTATE=CLOSED
ITP143I PORT=1234 NEXTPORT=2345 LOCLPORT=9999 STCPROLE=CLIENT
ITP143I WAIT EVENTS = *NONE*
ITP143I ON EVENTS = *NONE*
ITP143I INSERT PATH=NONE PATHS=STCPPATH
ITP143I CURRENT PATH=STCPPATH PATH ENTRY=1
ITP143I CURRENT DECK=TCPDECK CURRENT STATEMENT: TPNS=00002
ITP143I MSGTRACE=NO STLTRACE=YES INTERMESSAGE DELAY=NOT ACTIVE
ITP143I ACTIVE UTI IS NTWRKUTI=0
ITP143I DSEQ 1 NUMBER INDEX COUNTERS=3
ITP143I DC01-03 0 0 0
ITP143I DEV SWITCHES 01-04=0000 05-08=0000 09-12=0000 13-16=0000
ITP143I NUMBER SWITCHES=32 17-20=0000 21-24=0000 25-28=0000 29-32=0000

38 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

ITP143I NO MESSAGE TRANSMITTED
ITP143I NO MESSAGE RECEIVED
ITP143I DEV LOCATION=014310F8

Simulated Resource Type Codes
New TPNS code values have been added for the new simulated resource types.
The following codes identify resource types when reading a log data set listing or
processing in a user exit routine:

Device Type

TN3270E 95
TN3270P 96
SUDP 97
TNNVT 98
TN5250 99

User Exit Control Blocks
The following new constant values have been added to the DEV (device control
block) and the LOG (log record header format) sections:

Device Control Block

Len Type Value Name Description

DEVICE TYPES
1 HEX 95 DEVTNE TELNET 3270E DEVICE
1 HEX 96 DEVTNEP TELNET 3270E PRINTER
1 HEX 97 DEVSUDP SIMPLE UDP
1 HEX 98 DEVLNMD TELNET LINE MODE NVT DEVICE
1 HEX 99 DEV5250 TELNET 5250 DEVICE

Log Record Header Format

Len Type Value Name Description

LOG TERMINAL TYPES
1 HEX 95 LOG32TE TELNET 3270E DEVICE
1 HEX 96 LOG32TP TELNET 3270E PRINTER
1 HEX 97 LOGSUDP SIMPLE UDP
1 HEX 98 LOGLNMD TELNET LINE MODE NVT DEVICE
1 HEX 99 LOG5250 TELNET 5250 DEVICE

Chapter 3. Additional TPNS TCP/IP Support 39

40 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 4. TPNS Scripting Enhancements

This chapter describes the many enhancements related to the Structured Translator
Language (STL) and to the TPNS scripting language as well as other miscellaneous
enhancements.

STL Data Manipulation Functions
STL, the high-level structured programming language used to create TPNS
message generation decks, has been expanded to include new scripting statements
and functions. With this support, STL becomes more REXX-like giving the TPNS
scripter more capabilities for performing advanced data manipulation. Each new
statement and function listed below is detailed in the pages that follow including a
section which lists the equivalent TPNS scripting language for that specific STL
statement or function.

v A BITAND function that performs a logical AND’ing of two strings.

v A BITOR function that performs a logical OR’ing of two strings.

v A BITXOR function that performs a logical XOR’ing of two strings.

v A B2X function which converts binary strings of data to their hexadecimal
equivalent.

v A CENTER function that centers a string of data within an area of a particular
length.

v A COPIES function that produces a string of data which represents some number
of concatenated copies of the original string.

v A DELWORD function that deletes some number of consecutive words within a
string of words.

v A D2C function which converts a decimal number into its equivalent hexadecimal
string value.

v A LASTPOS function which locates the last occurrence of a specified string
within another string.

v An OVERLAY function that replaces or overlays existing text strings with new
text.

v A POS function which locates the first occurrence of a specified string within
another string.

v A REVERSE function which creates a string of characters in reverse order of
another string.

v A SPACE function which creates a string of uniformly delimited words from a
string of words containing various amounts of spacing.

v A STRIP function which removes leading and/or trailing characters from a string.

v A SUBWORD function which creates a string of words which represents a
consecutive set of words from another string.

v A WORD function which creates a single word string by specifying a particular
word position in another string.

v A WORDINDEX function which identifies where in a string a particular word is
located on a character boundary.

v A WORDPOS function which identifies where in a string a particular word is
located on a word boundary.

v A WORDS function which determines how many words there are in a particular
string.

41

v An X2B function which converts a string of hexadecimal characters to its binary
character equivalent.

v An X2C function which converts a string of hexadecimal characters to its
character equivalent.

42 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

BITAND

BITAND(string1[,[string2][,pad]])

Where
string1 is a string expression.

string2 is a string expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The BITAND function returns a string composed of the string1 and string2 input
strings logically AND’ed together, bit by bit. The length of the result is the length of
the longer of the two strings. The shorter of the two strings is extended with the pad
character on the right before carrying out the logical operation. The default for
string2 is the null string and the default for pad is X’FF’.

Examples
a = BITAND('55AA'x,'FF88'x) /* Assigns '5588'x to "a" */
b = BITAND('COLORADO','FF'x,'BF'x) /* Assigns 'Colorado' to "b" */

Note: The BITAND function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support BITAND
The DATASAVE statement has been updated to allow BITAND as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=BITAND,

TEXT=(string1),
TEXT2=(string2),
PAD=pad,
AREA=area

Chapter 4. TPNS Scripting Enhancements 43

BITOR

BITOR(string1[,[string2][,pad]])

Where
string1 is a string expression.

string2 is a string expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The BITOR function returns a string composed of the string1 and string2 input
strings logically inclusive-OR’ed together, bit by bit. The length of the result is the
length of the longer of the two strings. The shorter of the two strings is extended
with the pad character on the right before carrying out the logical operation. The
default for string2 is the null string and the default for pad is X’00’.

Examples
a = BITOR('152535'x,'22'x) /* Assigns '372535'x to "a" */
b = BITOR('Barney',,'40'x) /* Assigns 'BARNEY' to "b" */
c = BITOR('112233'x,'66'x,'88'x) /* Assigns '77AABB'x to "c" */

Note: The BITOR function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support BITOR
The DATASAVE statement has been updated to allow BITOR as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=BITOR,

TEXT=(string1),
TEXT2=(string2),
PAD=pad,
AREA=area

44 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

BITXOR

BITXOR(string1[,[string2][,pad]])

Where
string1 is a string expression.

string2 is a string expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The BITXOR function returns a string composed of the string1 and string2 input
strings logically eXclusive-ORed together, bit by bit. The length of the result is the
length of the longer of the two strings. The shorter of the two strings is extended
with the pad character on the right before carrying out the logical operation. The
default for string2 is the null string and the default for pad is X’00’.

Examples
a = BITXOR('1211'x,'22'x) /* Assigns '3011'x to "a" */
b = BITXOR('1111'x,'444444'x,'40'x) /* Assigns '555504'x to "b" */
c = BITXOR('AAAA'x,,'FF'x) /* Assigns '5555'x to "c" */

Note: The BITXOR function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support BITXOR
The DATASAVE statement has been updated to allow BITXOR as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=BITXOR,

TEXT=(string1),
TEXT2=(string2),
PAD=pad,
AREA=area

Chapter 4. TPNS Scripting Enhancements 45

B2X

B2X(binary_string)

Where
binary_string is a string expression containing only ’0’s or ’1’s.

Returns
String

Function
The B2X function returns a string in character format, that represents binary_string
converted to hexadecimal. It can be any length. You can optionally include blanks in
binary_string (at four-digit boundaries only, not leading or trailing) to aid readability;
they are ignored. The returned string uses uppercase alphabetics for the values
A-F, and does not include blanks.

If binary_string is the null string or a string formatted other than as described above,
B2X returns a null string. If the number of binary digits in binary_string is not a
multiple of four, then up to three 0 digits are added on the left before the conversion
to make a total that is a multiple of four.

Examples
a = B2X('10101010') /* Assigns 'AA' to "a" */
b = B2X('1 0011 1100') /* Assigns '13C' to "b" */
c = B2X('10001110 0111') /* Assigns '8E7' to "c" */

Note: The B2X function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support B2X
The DATASAVE statement has been updated to allow B2X as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=B2X,

TEXT=(binary_string),
AREA=area

46 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

CENTER

CENTER(string,length[,pad])

Where
string is a string expression.

length is an integer expression with a value from 1 to 32767.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The CENTER function returns a string of length length with string centered in it,
with pad characters added as necessary on both ends. If string is longer than
length, it is truncated at both ends to fit. If an odd number of characters are
truncated or added, the right-hand end loses or gains one more character than the
left-hand end. The default value for pad is a blank (X’40’).

Examples
a = CENTER('abc',5) /* Assigns ' abc ' to "a" */
b = CENTER('abcdef',10,'C1'x) /* Assigns 'AAabcdefAA' to "b" */
c = CENTER('abcdefg',4) /* Assigns 'bcde' to "c" */

Note: The CENTER function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support CENTER
The DATASAVE statement has been updated to allow CENTER as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=CENTER,

TEXT=(string),
PLENG=length,
PAD=pad,
AREA=area

Chapter 4. TPNS Scripting Enhancements 47

COPIES

COPIES(string,n)

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767.

Returns
String

Function
The COPIES function returns n concatenated copies of string.

Examples
a = COPIES('abc',3) /* Assigns 'abcabcabc' to "a" */
b = COPIES(' ab',3) /* Assigns ' ab ab ab' to "b" */

Note: The COPIES function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support COPIES
The DATASAVE statement has been updated to allow COPIES as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=COPIES,

TEXT=(string),
COUNT=n,
AREA=area

48 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

DELWORD

DELWORD(string,n[,length])

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767.

length is an integer expression with a value from 1 to 32767. This is optional.

Returns
String

Function
The DELWORD function returns string after deleting the substring that starts at the
nth word and is of length blank-delimited words. If you omit length, or if length is
greater than the number of words from n to the end of string, the function deletes
the remaining words in string (including the nth word). If n is greater than the
number of words in string, the function returns string unchanged. The string deleted
includes any blanks following the final word involved but none of the blanks
preceding the first word involved.

Examples
a = DELWORD('Now is the time',2,2) /* Assigns 'Now time' to "a" */
b = DELWORD('Now is the time',3) /* Assigns 'Now is' to "b" */
c = DELWORD('Now is the time',1,2) /* Assigns 'the time' to "c" */

Note: The DELWORD function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support DELWORD
The DATASAVE statement has been updated to allow DELWORD as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=DELWORD,

TEXT=(string),
POS=n,
PLENG=length,
AREA=area

Chapter 4. TPNS Scripting Enhancements 49

D2C

D2C(number[,n])

Where
number is an integer expression.

n is an integer constant expression with a value of 1 to 4. This is optional.

Returns
String

Function
The D2C function converts a decimal integer value into its equivalent hexadecimal
string value. n specifies the number of characters to be returned. If n is specified as
1 and the hexadecimal string has a length greater than 1, then the rightmost byte is
returned. If n is not specified, all significant bytes of the number will be returned; a
leading zero will not be returned.

Examples
a = D2C(15) /* Assigns '0F'x to "a" */
b = D2C(32767) /* Assigns '7FFF'x to "b" */
c = D2C(32767,1) /* Assigns 'FF'x to "c" */

Notes:

1. The D2C function can not be used in asynchronous conditions.

2. The D2C function is equivalent to the HEX function and was added solely to
accommodate those familiar with the REXX programming language.

TPNS Scripting Language Changes to Support D2C
None.

50 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

LASTPOS

LASTPOS(needle,haystack[,start])

Where
needle is a string expression.

haystack is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Returns
Integer

Function
The LASTPOS function returns the position of the last occurrence of one string,
needle, in another, haystack. (See also the POS function.) If needle is the null string
or is not found then the function returns a 0. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying
start, the point at which the backward scan starts. The default for start is set equal
to LENGTH(haystack) if the value specified is larger than LENGTH(haystack) or if it
is omitted.

Examples
a = LASTPOS(' ','ab cd ef gh') /* Assigns 9 to "a" */
b = LASTPOS(' ','ab cd ef gh',7) /* Assigns 6 to "b" */
c = LASTPOS('25','12352425352522',10) /* Assigns 7 to "c" */

Note: The LASTPOS function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support LASTPOS
The SET statement has been updated to allow LASTPOS as one of the options that
can be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=LASTPOS(needle_area,haystack_area[,start])

Chapter 4. TPNS Scripting Enhancements 51

OVERLAY

OVERLAY(new,target[,[n][,[length][,pad]]])

Where
new is a string expression.

target is a string expression.

n is an integer expression. This is optional.

length is an integer expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The OVERLAY function returns the string target, which, starting at the nth character,
is overlaid with the string new, padded or truncated to the value of length. Overlays
may also extend beyond the end of the optional target string. If n is greater than the
length of the target string, padding is added before the new string. The default for n
is 1. If length is not specified, it defaults to a value equal to the length of the string
expression new. The default value for pad is a blank (X’40’).

Examples
a = OVERLAY(' ','abcdef',3) /* Assigns 'ab def' to "a" */
b = OVERLAY('.','abcdef',3,2) /* Assigns 'ab. ef' to "b" */
c = OVERLAY('qq','abcd') /* Assigns 'qqcd' to "c" */
d = OVERLAY('qq','abcd',4) /* Assigns 'abcqq' to "d" */
e = OVERLAY('123','abc',5,6,'+') /* Assigns 'abc+123+++' to "e" */

Note: The OVERLAY function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support OVERLAY
The DATASAVE statement has been updated to allow OVERLAY as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=OVERLAY,

TEXT=(target),
INSERT=(new),
POS=n,
PLENG=length,
PAD=pad,
AREA=area

52 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

PATHID

PATHID()

Returns
String

Function
The PATHID function returns the name of the PATH statement currently being
executed. This is the 1- to 8-character name coded on the PATH statement.

Examples
say 'The current path is' pathid()

Note: The PATHID function can be used in asynchronous conditions.

TPNS Scripting Language Changes to Support PATHID
The Data Field Options have been expanded to include a PATHID option. Refer to
the TPNS Language Reference manual for information on other available data field
options.
$PATHID$

Note: The name field from the PATH statement is inserted in the data. The blanks
used to pad the name to eight characters are deleted.

Chapter 4. TPNS Scripting Enhancements 53

POS

POS(needle,haystack[,start])

Where
needle is a string expression.

haystack is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Returns
Integer

Function
The POS function returns the position of one string, needle, in another, haystack.
(See also the LASTPOS function.) If needle is the null string or is not found or if
start is greater than the length of haystack then the function returns a 0. By default
the search starts at the first character of haystack.

Examples
a = POS(' ','ab cd ef gh') /* Assigns 3 to "a" */
b = POS(' ','ab cd ef gh',7) /* Assigns 9 to "b" */
c = POS('25','12352425352522',10) /* Assigns 11 to "c" */

Note: The POS function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support POS
The SET statement has been updated to allow POS as one of the options that can
be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=POS(needle_area,haystack_area,[start])

54 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

REVERSE

REVERSE(string)

Where
string is a string expression.

Returns
String

Function
The REVERSE function returns a string with the order of the characters reversed.

Examples
a = REVERSE('abcdefghi') /* Assigns 'ihgfedcba' to "a" */
b = REVERSE('517C'x) /* Assigns '7C51'x to "b" */

Note: The REVERSE function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support REVERSE
The DATASAVE statement has been updated to allow REVERSE as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=REVERSE,

TEXT=(string),
AREA=area

Chapter 4. TPNS Scripting Enhancements 55

SAY

SAY message [TYPE 'ABRHD']

Where
message is a string expression.

Function
The SAY statement writes message to the TPNS operator console. The string that
you specify can be any length; however, a maximum of 100 characters will be
displayed.

If TYPE ’ABRHD’ is specified, message will be written with an abbreviated header
containing only a TPNS message number preceding the data. If omitted, message
is written with network and device or LU names included in the header and using
message number ITP113I or ITP137I.

Examples
say 'Beginning to execute procedure' msgtxtid()
say 'Beginning to execute procedure' msgtxtid() type 'ABRHD'

Note: When using the SAY statement, make sure that the system console is not
overloaded with these messages.

TPNS Scripting Language Changes to Support the Enhanced
SAY
The WTOABRHD statement has been added which writes user-specified data to the
TPNS operator console using only an abbreviated header containing only a TPNS
message number preceding the data. The format is as follows:

[name] WTOABRHD (data...)

name

Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data...)

Function:
Defines the data to be written to the TPNS operator.

Format:
You can enter any amount of data for this operand, but a maximum of 100
characters of user data will actually be written to the operator console. The
data is enclosed by the text delimiting character specified on the MSGTXT
statement, defaulting to left and right parentheses.

You can use the data field options (see Appendix A. ″Data Field Options″ in
the TPNS Language Reference manual). Enter hexadecimal data by
enclosing the digits within single quotes. To enter a single quote, the special
control character (CONCHAR), or a text delimiting character (TXTDLM) as

56 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

data, enter two of the characters. If two text delimiting characters are
entered, they must be on the same statement (no continuation between the
characters).

You can continue the data on the next line. However, if a single text
delimiting character is detected in column 71, it indicates the end of the
operand, and any data after column 71 is ignored.

Default:
None. If no data is entered, no user data will be included in the console
message.

Chapter 4. TPNS Scripting Enhancements 57

SNACMND

SNACMND(type,[arg1...arg5])

Where
type is STSN (set and test sequence numbers).

arg1,...,arg5 are the arguments for STSN.

Note: For further information on STL and other valid type values on the SNACMND
statement, refer to the Using the TPNS Structured Translator Language
(STL) and the STL Translator manual.

Type 1st
Argument

2nd
Argument

3rd
Argument

4th
Argument

5th
Argument

STSN pseqact pseqval sseqact sseqval log_byte

Argument Format

pseqact Is a string constant that can have the following values:

IGNORE Specifies that this STSN command is to be ignored.

SET Specifies that the primary-to-secondary sequence number
of the secondary end user is to be set to pseqval operand
value.

TEST Specifies that the secondary end user must return its
primary-to-secondary sequence number in the response
RU.

TESTSET Specifies that the primary-to-secondary sequence number
of the control program (CP) manager is to be set to the
pseqval operand value, and the secondary end user is to
compare that value against its own and respond
accordingly.

pseqval Is an integer constant with a value from 0 to 65535.

sseqact Is a string constant that can have the following values:

IGNORE Specifies that this STSN command is to be ignored.

SET Specifies that the primary-to-secondary sequence number
of the secondary end user is to be set to sseqval operand
value.

TEST Specifies that the secondary end user must return its
primary-to-secondary sequence number in the response
RU.

TESTSET Specifies that the primary-to-secondary sequence number
of the control program (CP) manager is to be set to the
sseqval operand value, and the secondary end user is to
compare that value against its own and respond
accordingly.

sseqval Is an integer constant with a value from 0 to 65535.

log_byte Is a 1-byte string constant or a string expression.

58 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Function
The function of type for the SNA command STSN is set and test sequence
numbers.

The arguments have a unique function for STSN. The function of the arguments are
as follows:

pseqact Specifies the action to be executed by the STSN receiver for the
primary-to-secondary sequence number. The default pseqact value
is SET.

pseqval Specifies the primary-to-secondary sequence number value to be
sent with the STSN. The default pseqval is 0.

sseqval Specifies the secondary-to-primary sequence number value to be
sent with STSN. The default sseqval is 0.

sseqact Specifies the action to be executed by the STSN receiver for the
secondary-to-primary sequence number. The default sseqact value
is SET.

log_byte Specifies the byte of user data to be associated with all data
transmitted and received. The log_byte remains active until data is
″typed″ and transmitted with a TRANSMIT statement or until an
INITSELF, TERMSELF, or another SNACMND statement is issued.
This byte gives users of the Response Time Utility a way to identify
transactions when gathering statistics by the various ″log_byte″
categories. The default log_byte is X’00’.

Chapter 4. TPNS Scripting Enhancements 59

SPACE

SPACE(string,n[,pad])

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Returns
String

Function
The SPACE function returns the blank-delimited words in string with n pad
characters between each word. If n is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default value for
pad is a blank (X’40’).

Examples
a = SPACE('aa bb cc',1,'+') /* Assigns 'aa+bb+cc' to "a" */
b = SPACE(' ab cd ',2) /* Assigns 'ab cd' to "b" */
c = SPACE(' a a ',9,'#') /* Assigns 'a#########a' to "c" */

Note: The SPACE function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support SPACE
The DATASAVE statement has been updated to allow SPACE as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=SPACE,

TEXT=(string),
PAD=pad,
PLENG=n,
AREA=area

60 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

STRIP

STRIP(string[,[option][,char]])

Where
string is a string expression.

option is a single character constant with one of the following values:

B or b removes both leading and trailing characters from string

L or l removes leading characters from string

T or t removes trailing characters from string

char is a single character constant. This is optional.

Returns
String

Function
The STRIP function returns string with leading or trailing characters or both
removed, based on the option you specify. The third argument, char, specifies the
character to be removed. The default for option is B and the default for char is a
blank (X’40’).

Examples
a = STRIP(' abc da ') /* Assigns 'abc da' to "a" */
b = STRIP('aaaabcdefaaa','T','a') /* Assigns 'aaaabcdef ' to "b" */
c = STRIP('aaaabcdefaaa','b','a') /* Assigns 'bcdef' to "c" */

Note: The STRIP function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support STRIP
The DATASAVE statement has been updated to allow STRIP, STRIPL, and STRIPT
as values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=STRIP|STRIPL|STRIPT,

TEXT=(string),
PAD=char,
AREA=area

Chapter 4. TPNS Scripting Enhancements 61

SUBWORD

SUBWORD(string,n[,length])

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767.

length is an integer expression with a value from 1 to 32767. This is optional.

Returns
String

Function
The SUBWORD function returns the substring of string that starts at the nth word
and is up to length blank-delimited words. If you omit length, it defaults to the
number of remaining words in string. The returned string never has leading or
trailing blanks, but includes all blanks between the selected words.

Examples
a = SUBWORD('Now is the time',2,2) /* Assigns 'is the' to "a" */
b = SUBWORD('Now is the time',3) /* Assigns 'the time' to "b" */
c = SUBWORD('Now is the time',5) /* Assigns '' to "c" */

Note: The SUBWORD function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support SUBWORD
The DATASAVE statement has been updated to allow SUBWORD as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=SUBWORD,

TEXT=(string),
POS=n,
PLENG=length,
AREA=area

62 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

WORD

WORD(string,n)

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767.

Returns
String

Function
The WORD function returns the nth blank-delimited word in string or returns the null
string if fewer than n words are in string. This function is exactly equivalent to
SUBWORD(string,n,1).

Examples
a = WORD('Now is the time',3) /* Assigns 'the' to "a" */
b = WORD('Now is the time',5) /* Assigns '' to "b" */

Note: The WORD function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support WORD
The DATASAVE statement has been updated to allow SUBWORD as one of the
values that can be coded for the FUNCTION operand (refer to page 330 of the
TPNS Language Reference manual for information on the existing DATASAVE
statement). Refer to “Operands for Datasave Statement” on page 69 for specific
details on coding the DATASAVE statement as follows:
DATASAVE FUNCTION=SUBWORD,

TEXT=(string),
POS=n,
PLENG=1,
AREA=area

Chapter 4. TPNS Scripting Enhancements 63

WORDINDEX

WORDINDEX(string,n)

Where
string is a string expression.

n is an integer expression with a value from 1 to 32767.

Returns
Integer

Function
The WORDINDEX function returns the position of the first character in the nth
blank-delimited word in string or returns 0 if fewer than n words are in string.

Examples
a = WORDINDEX('Now is the time',2) /* Assigns 5 to "a" */
b = WORDINDEX('Now is the time',3) /* Assigns 8 to "b" */
c = WORDINDEX('Now is the time',5) /* Assigns 0 to "c" */

Note: The WORDINDEX function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support WORDINDEX
The SET statement has been updated to allow WORDINDEX as one of the options
that can be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=WORDINDEX(string_area,n)

64 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

WORDPOS

WORDPOS(phrase,string[,start])

Where
phrase is a string expression.

string is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Returns
Integer

Function
The WORDPOS function returns the word number of the first word of phrase found
in string or returns 0 if phrase contains no words or if phrase is not found in string.
Multiple blanks between words in either phrase or string are treated as a single
blank for the comparison, but otherwise the words must match exactly. By default
the search starts at the first word in string. You can override this by specifying start,
the word at which to start the search.

Examples
a = WORDPOS(' is what','It is what it is') /* Assigns 2 to "a" */
b = WORDPOS('it is','It is what it is') /* Assigns 4 to "b" */
c = WORDPOS(' is ','It is what it is',3) /* Assigns 5 to "c" */
d = WORDPOS(' Is ','It is what it is') /* Assigns 0 to "d" */

Note: The WORDPOS function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support WORDPOS
The SET statement has been updated to allow WORDPOS as one of the options
that can be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=WORDPOS(phrase_area,string_area[,start])

Chapter 4. TPNS Scripting Enhancements 65

WORDS

WORDS(string)

Where
string is a string expression.

Returns
Integer

Function
The WORDS function returns the number of blank-delimited words in string.

Examples
a = WORDS('Now is the time ') /* Assigns 4 to "a" */
b = WORDS('a b d cd e f') /* Assigns 6 to "b" */

Note: The WORDS function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support WORDS
The SET statement has been updated to allow WORDS as one of the options that
can be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=WORDS(string_area)

66 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

X2B

X2B(hexstring)

Where
hexstring is a string expression containing hexadecimal characters.

Returns
String

Function
The X2B function returns a string, in character format, that represents hexstring
converted to a binary string. The hexstring is a string of hexadecimal characters. It
can be of any length. Each hexadecimal character is converted to a string of four
binary digits. You can optionally include blanks in hexstring (at byte boundaries only,
not leading or trailing) to aid readability; they are ignored. The returned string has a
length that is a multiple of four, and does not include any blanks. If hexstring is null,
the function returns a null string.

Examples
a = X2B('F1C2') /* Assigns '1111000111000010' to "a" */
b = X2B('5A A5') /* Assigns '0101101010100101' to "b" */

Note: The X2B function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support X2B
The DATASAVE statement has been updated to allow X2B as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=X2B,

TEXT=(hexstring),
AREA=area

Chapter 4. TPNS Scripting Enhancements 67

X2C

X2C(hexstring)

Where
hexstring is a string expression containing hexadecimal characters.

Returns
String

Function
The X2C function returns a string, in character format, that represents hexstring
converted to a character string. The returned string is half as many bytes as the
original hexstring. The string hexstring can be any length. If necessary, it is padded
with a leading 0 to make an even number of hexadecimal digits. You can optionally
include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored. If hexstring is null, the function returns a null string.

Examples
a = X2C('F1F2 F3') /* Assigns '123' to "a" */
b = X2C('C1 C2 C3') /* Assigns 'ABC' to "b" */
c = X2C('8140') /* Assigns 'a ' to "c" */

Note: The X2C function can not be used in asynchronous conditions.

TPNS Scripting Language Changes to Support X2C
The DATASAVE statement has been updated to allow X2C as one of the values
that can be coded for the FUNCTION operand (refer to page 330 of the TPNS
Language Reference manual for information on the existing DATASAVE statement).
Refer to “Operands for Datasave Statement” on page 69 for specific details on
coding the DATASAVE statement as follows:
DATASAVE FUNCTION=X2C,

TEXT=(hexstring),
AREA=area

68 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Operands for Datasave Statement
The following table indicates the valid operands on the DATASAVE statement for
the specific function.

STL
Function

Datasave
Function

Text Text2 Area Count Insert Pad Pleng Pos

BITAND BITAND string1 string2 area char

BITOR BITOR string1 string2 area char

BITXOR BITXOR string1 string2 area char

B2X B2X binary_string area

CENTER CENTER string area char length

COPIES COPIES string area n

DELWORD DELWORD string area length n

D2C $CNTRX,
number_cntr
[,n_constant]$

area

OVERLAY OVERLAY target area new char length n

REVERSE REVERSE string area

SPACE SPACE string area char n

STRIP STRIP string area char

STRIPL string area char

STRIPT string area char

SUBWORD SUBWORD string area length n

WORD SUBWORD string area 1 n

X2B X2B hexstring area

X2C X2C hexstring area

Note: For the D2C function, refer to Appendix A, ″Data Field Options″ in the TPNS
Language Reference manual for coding the TEXT operand on the
DATASAVE statement.

The following definitions add to and revise the information on the DATASAVE
statement included in the TPNS Language Reference manual.
FUNCTION={BITAND}

{BITOR}
{BITXOR}
{B2X}
{CENTER}
{COPIES}
{DELWORD}
{OVERLAY}
{REVERSE}
{SPACE}
{STRIP}
{STRIPL}
{STRIPT}
{SUBWORD}
{X2B}
{X2C}

Chapter 4. TPNS Scripting Enhancements 69

Function: Specifies that a string manipulation function be performed on the TEXT
operand.

Format: You can code one of the following values for the FUNCTION operand.

BITAND Specifies that the data coded for the TEXT and TEXT2 operands
will be logically AND’ed together, bit by bit. If the PAD operand is
specified, the shorter text data of TEXT and TEXT2 will be
extended with the PAD character on the right before carrying out
the logical operation.

BITOR Specifies that the data coded for the TEXT and TEXT2 operands
will be logically inclusive-OR’ed together, bit by bit. If the PAD
operand is specified, the shorter text data of TEXT and TEXT2 will
be extended with the PAD character on the right before carrying out
the logical operation.

BITXOR Specifies that the data coded for the TEXT and TEXT2 operands
will be logically eXclusive-OR’ed together, bit by bit. If the PAD
operand is specified, the shorter text data of TEXT and TEXT2 will
be extended with the PAD character on the right before carrying out
the logical operation.

B2X Specifies that the data coded for the TEXT operand will be
converted to hexadecimal.

CENTER Specifies that the data coded for the TEXT operand will be centered
with the PAD character around both ends until a length of PLENG is
reached.

COPIES Specifies that the data coded for the TEXT operand will be copied
and concatenated by the number specified on the COUNT operand.

DELWORD Specifies that the data coded for the TEXT operand will be deleted
starting at the word corresponding to the value coded on the POS
operand for a length of PLENG words.

OVERLAY Specifies that the data coded for the INSERT operand is to be
overlaid on the data specified by the TEXT operand. If the PLENG
operand is also coded, the data specified by the INSERT operand
is padded or truncated to that length before it is overlaid on the
TEXT data. If the POS operand is also specified, the INSERT data
is overlaid starting at that position in the TEXT data. If the PAD
operand is specified, the specified PAD character is used, if
necessary, to extend the TEXT or INSERT data to meet the POS or
PLENG specifications respectively.

REVERSE Specifies that the data coded for the TEXT operand will be
reversed.

SPACE Specifies that the data coded for the TEXT operand will have a
space of length PLENG between each word. If the PAD operand is
coded, the PAD value is used instead of a space.

STRIP Specifies that the data coded for the TEXT operand will have both
leading and trailing blanks removed. If the PAD operand is coded,
the PAD value will be used as the character to remove instead of
blanks.

STRIPL Specifies that the data coded for the TEXT operand will have
leading blanks removed. If the PAD operand is coded, the PAD
value will be used as the character to remove instead of blanks.

70 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

STRIPT Specifies that the data coded for the TEXT operand will have
trailing blanks removed. If the PAD operand is coded, the PAD
value will be used as the character to remove instead of blanks.

SUBWORD Specifies that a substring of the data coded for the TEXT operand
will start at the nth word coded by the n value of the POS operand
and up to the PLENG value coded for the number of words. If the
PLENG value is not coded, the default will be the number of
remaining words in the data coded for the TEXT operand.

X2B Specifies that the data coded for the TEXT operand will be
converted to binary. Each hexadecimal character is converted to a
string of four binary digits. Blanks are ignored.

X2C Specifies that the data coded for the TEXT operand will be
converted to character. A leading 0 will be added if necessary to
make an even number of hexadecimal digits.

AREA={s|Ns|N±value|U±value|1}
Function: Specifies whether one of the save areas or user areas is to be used
to save the data.

Format: For the AREA operand, you can enter one of the following options. The
value for value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. Zero is the offset to the first byte of the field
for positive offsets (+value) and the offset to the last byte of the field for
negative offsets (-value).

s Specifies a device save area to be used to save the data,
where s is an integer from 1 to 4095.

Ns Specifies a network save area to be used to save the data,
where s is an integer from 1 to 4095.

N±value Specifies a network user area to be used to save the data,
where +value is the offset from the start of the user area and
-value is the offset back from the end of the user area.

U±value Specifies a device user area to be used to save the data,
where +value is the offset from the start of the user area and
-value is the offset back from the end of the user area.

Note: If value specifies an offset that is outside the user area,
no data is saved and an informational message is written
to the log data set.

Default: 1, indicating device save area number 1.

COUNT=value
Function: When FUNCTION=COPIES is coded, value specifies the number of
copies to create.

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=COPIES is coded.

Format: value can be an integer from 1 to 32767 or a counter specification
whose value is within this range.

Default: None. This operand is required when FUNCTION=COPIES.

Chapter 4. TPNS Scripting Enhancements 71

INSERT=(data)
Function: Specifies the string data to be inserted into, or overlaid on, the data
coded in the TEXT operand.

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=INSERT or FUNCTION=OVERLAY is coded.

Format: You can code any amount of data for this operand. If this resulting
string is longer than the space available in the save area, the data is truncated
and a message is written to the log data set.

The data is enclosed by the text delimiting character specified on the MSGTXT
statement. (The defaults are left and right parentheses.) You can also continue
the data.

You can use the data field options (see Appendix A, ″Data Field Options″ in the
TPNS Language Reference manual). To enter hexadecimal data, enclose the
digits within single quotes. To enter a single quote, a special control character
(CONCHAR), or a text delimiter (TXTDLM) as data, enter two of the characters.
If you enter two text delimiting characters, they must be on the same statement;
you cannot continue the statement between the characters.

Default: None.

PAD={char|blank}
Function: Specifies the character to be used as padding when BITAND,
BITOR, BITXOR, CENTER, INSERT, LEFT, OVERLAY, RIGHT, SPACE, STRIP,
STRIPL, STRIPT or TRANSLATE is coded for the FUNCTION operand.

Note: This operand is only valid when the TEXT operand is coded along with
the specified functions.

Format: char is a 1-character string constant or a 2-character hexadecimal
constant. When you use a special character (such as a quote or parenthesis)
as padding, do not double it.

Default: When FUNCTION=BITAND is coded, the default is X’FF’. When
BITOR or BITXOR is coded for the FUNCTION operand, the default is X’00’.
Otherwise, the default is blank (X’40’).

PLENG=value
Function: When INSERT or OVERLAY is coded for the FUNCTION operand,
value specifies the number of characters to which the data specified by the
INSERT operand is truncated or padded when data is inserted into, or overlaid
on, the data specified by the TEXT operand. When FUNCTION=DELETE is
coded, value specifies the number of characters to be deleted. When
FUNCTION=SPACE is coded, value specifies the number of blanks or
characters specified by the PAD operand, to place between the words. If value
is 0, all blanks are removed. Leading and trailing blanks are always removed.
When CENTER, LEFT or RIGHT is coded for the FUNCTION operand, value
specifies the number of characters to which the data coded for the TEXT
operand is truncated or padded. When DELWORD or SUBWORD is coded for
the FUNCTION operand, value specifies the number of words to delete or
return.

Note: This operand is only valid when the TEXT and FUNCTION operands are
coded.

72 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Format: value can be an integer from 0 to 32767 or a counter specification
whose value is within the range.

Default: When INSERT or OVERLAY is coded for the FUNCTION operand, the
default is the length of the data specified by the INSERT operand. When
FUNCTION=DELETE is coded, the default is the length of the TEXT data after
the position specified by the POS operand. When FUNCTION=SPACE is
coded, the default is 1. When CENTER, LEFT or RIGHT is coded for the
FUNCTION operand, there is no default, and a value is required. When
DELWORD or SUBWORD is coded for the FUNCTION operand, the default is
the number of words left in the TEXT data after the word in the position
specified by the POS operand.

POS=value
Function: When FUNCTION=INSERT is coded, value specifies the position in
the TEXT data after which the data coded for the INSERT operand is inserted.
When FUNCTION=OVERLAY is coded, value specifies the first position in the
TEXT data to be overlaid with the data coded for the INSERT operand. When
FUNCTION=DELETE is coded, value specifies the first position in the TEXT
data to be deleted. When DELWORD or SUBWORD is coded for the
FUNCTION operand, value specifies the word position in the TEXT data.

Note: This operand is only valid when the TEXT operand is coded and when
DELETE, DELWORD, INSERT, OVERLAY or SUBWORD is coded on
the FUNCTION operand.

Format: When FUNCTION=INSERT is coded, value can be an integer from 0
to 32766 or a counter specification whose value is within that range. If value is
greater than the length of the data specified in the TEXT operand, pad
characters are inserted after the TEXT data, with the INSERT data following. If
value is zero, the data coded in the INSERT operand is inserted before the
beginning of the data coded in the TEXT operand.

When FUNCTION=OVERLAY is coded, value can be an integer from 1 to
32767 or a counter specification whose value is within that range. If value is
greater than the length of the data specified in the TEXT operand, pad
characters are added to the TEXT data.

When DELETE, DELWORD or SUBWORD is coded on the FUNCTION
operand, value can be an integer from 1 to 32767 or a counter specification
whose value is within that range.

Default: When FUNCTION=INSERT is coded, the default is 0. When
FUNCTION=OVERLAY is coded, the default is 1. When DELETE, DELWORD
or SUBWORD is coded for the FUNCTION operand, there is no default and a
value must be specified.

TEXT=([data])
Function: Specifies the text data to be saved in the save area or user area
based on the function specified for the FUNCTION operand.

Note: If this operand is coded, the LENG and LOC operands are not valid.

Format: You can code any amount of data for this operand. If the data is longer
than the space available in the save area or user area, it is truncated and an
informational message is written to the log data set. The data is enclosed by
the text delimiting characters specified on the MSGTXT statement. (The default

Chapter 4. TPNS Scripting Enhancements 73

is the left and right parentheses.) You can also continue the data. You can use
the data field options (see Appendix A, ″Data Field Options″ in the TPNS
Language Reference manual). Enter hexadecimal data by enclosing the digits
within single quotes. To enter a single quote, a special control character
(CONCHAR), or a text delimiting character (TXTDLM) as data, enter two of the
characters. If two text delimiting characters are entered, they must be on the
same statement (no continuation between the characters).

If the TEXT operand specifies only two text delimiting characters with no
intervening data (for example, TEXT=(),), a clear function is executed.
Specifying TEXT=() also frees a dynamically allocated save area. If the AREA
operand specifies a save area number, the length of data saved in that save
area is set to zero. If the AREA operand specifies an offset into a user area, the
user area is usually cleared to binary zeros from the specified offset to the end.
This will not be the case if the FUNCTION operand or CONVERT=YES has
also been specified. In those cases, the user area is unchanged.

Default: None. This operand is optional.

TEXT2=([data])
Function: Specifies the text data to be used when BITAND, BITOR or BITXOR
is coded for the FUNCTION operand.

Note: If this operand is coded, the LENG and LOC operands are not valid.

Format: See the TEXT description above.

Default: None. This operand is optional.

SET - Set Counters Statement
[name] SET cntr=option[,...]

The following definitions add to the information on the SET statement included in
the TPNS Language Reference manual.

The SET statement performs the following new functions:

v Sets the counter to the position of the last occurrence of specified data in a save
area

v Sets the counter to the position of the first occurrence of specified data in a save
area

v Sets the counter to the position of the first character in the nth blank-delimited
word in a save area

v Sets the counter to the word number of the first word of specified data found in a
save area

v Sets the counter to the number of blank-delimited words in a save area or a user
area

v Sets the counter to the number of text data items on the queue.

Note: To use the SET statement, you must code at least one operand.

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

74 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Default: None. This field is optional.

cntr
Function: Specifies which counter is to be set.

Note: You can set the same counter multiple times with the same SET
statement. If you code multiple operands, the counters will be set in the
order specified.

Format: The valid values for cntr are NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn,
TCn, and DCn, where n is an integer from 1 to 4095. These values represent
the sequence counters and the index counters for the network, line, terminal,
and device levels.

Default: None. You must code a value for cntr.

Notes:

1. For terminal types that do not allow devices, TSEQ and DSEQ are the
same sequence counter, and TCn and DCn are the same index counter.

2. For domain simulation, TSEQ, LSEQ, TCn, and LCn will reference a single
set of counters allocated to each simulated subarea. The terminal and line
counters will be the same.

3. For VTAMAPPL LU simulation, TSEQ, LSEQ, TCn, and LCn will reference a
single set of counters allocated to each VTAM application (VTAMAPPL).

4. For CPI-C transaction program simulation:

v LSEQ and LCn will reference a single set of counters allocated to each
APPC LU.

v TSEQ and TCn will reference a single set of counters allocated to each
transaction program.

v DSEQ and DCn will reference a single set of counters allocated to each
transaction program instance.

5. For Type 2.1 node simulation, TSEQ, LSEQ, TCn, and LCn will reference a
single set of counters allocated to each Type 2.1 node (PU21).

6. See Appendix D, ″Counters and Switches″ in the TPNS Language
Reference manual, for valid counter and switch specifications.

option
Function: Specifies how the counter is to be set.

Format: For the option, you can code one of the following values:

LASTPOS(needle_area,haystack_area[,start])

Set the counter to the position of the last occurrence of the data
specified in the needle_area save area within the data specified in the
haystack_area save area. Returns 0 if data in needle_area is the null
string or is not found. By default the search starts at the last character
in haystack_area and scans backward. You can override the default by
specifying start, the position to start the backward scan. start defaults to
the length of haystack_area if it is not specified or it is larger than the
length of haystack_area. start can be an integer from 1 to 32767 or a
counter specification whose value is within this range.

POS(needle_area,haystack_area[,start])

Set the counter to the position of the first occurrence of the data
specified in the needle_area save area within the data specified in the
haystack_area save area. Returns 0 if data in needle_area is the null

Chapter 4. TPNS Scripting Enhancements 75

string or is not found, or if start is greater than the length of
haystack_area. By default the search starts at the first character in
haystack_area. You can override the default by specifying start, the
position to start the search. start can be an integer from 1 to 32767 or a
counter specification whose value is within this range.

QUEUED([queue_name])

Set the counter to the number of text data items on the queue,
queue_name. queue_name can be specified as either a static one to
eight character alphameric queue name or a save or user area + offset
definition. The default for queue_name is a unique value for each
simulated device.

WORDINDEX(string_area,n)

Set the counter to the position of the first character in the nth
blank-delimited word in the string_area save area. Returns 0 if fewer
than n words are in string_area. n can be an integer from 1 to 32767 or
a counter specification whose value is within this range. n is required.

WORDPOS(phrase_area,string_area[,start])

Set the counter to the word number of the first word in the phrase_area
save area, found in the string_area save area. Returns 0 if phrase_area
contains no words or if the data in phrase_area is not found in
string_area. Multiple blanks between words in either phrase_area or
string_area are treated as a single blank for comparison, otherwise the
words must match exactly. By default, the search starts at the first word
in string_area. You can override the default by specifying start, the word
at which to start the search. start can be an integer from 1 to 32767 or
a counter specification whose value is within this range.

WORDS(string_area)

Set the counter to the number of blank-delimited words in the
string_area save area or user area.

Default: None. You must code a value for option.

Named Queue Support
Named queue support has been added to provide an easier method for passing
data between simulated resources by using named queues. The following
statements and functions have been added as part of this new support. Each new
statement and function listed below is detailed in the pages that follow including a
section which lists the equivalent TPNS scripting language for that specific STL
statement or function.

v A PULL function which returns the next text/string data item from the queue.

v A PUSH statement which adds a text/string data item to the queue on a last in,
first out (LIFO) basis.

v A QUEUE statement which adds a text/string data item to the queue on a first in,
first out (FIFO) basis.

v A QUEUED function which returns the number of text/string data items on the
queue.

76 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

PULL

PULL([queue_name])

Where
queue_name is a string expression consisting of 1 to 8 alphanumeric characters.
This is optional.

Returns
String

Function
The PULL function returns the next text/string item from queue_name.

If the specified queue_name is a nonconstant expression, the first 8 characters of
the string are used. If the string is shorter than 8 characters, the available
characters are used. When specifying queue_name within the PULL function, the
specified name must exactly match the name initially used to QUEUE or PUSH the
text/string item.

If you specify a string variable, it cannot be the name of one of the STL reserved
variables (for example, BUFFER). If not specified, queue_name defaults to a unique
value assigned to each device.

Examples
user_queue = 'UseridQ' /* Assigns 'UseridQ' to "user_queue" */
queue '111111' TO user_queue /* Places '111111' on queue 'UseridQ' */
queue '222222' TO 'UseridQ' /* Places '222222' on queue 'UseridQ' */
queue 'ABCD' /* Places 'ABCD' on unique device Q */
a = PULL('UseridQ') /* Assigns '111111' to "a" */
b = PULL(user_queue) /* Assigns '222222' to "b" */
c = PULL() /* Assigns 'ABCD' to "c" */

Notes:

1. The PULL function can be used in asynchronous conditions.

2. The named queue structure and text/string data items are allocated dynamically
by TPNS and deleted as the queue is emptied.

TPNS Scripting Language Changes to Support PULL
The Data Field Options have been expanded to include a PULL option. Refer to the
TPNS Language Reference manual for information on other available data field
options.
$PULL[,queue_name]$

Notes:

1. queue_name can be specified as either a static one to eight character
alphanumeric queue name or an area+offset definition.

2. The queue_name field conforms to the same rules as event names.

Chapter 4. TPNS Scripting Enhancements 77

PUSH

PUSH string [TO queue_name]

Where
string is a string expression.

queue_name is a string expression consisting of 1 to 8 alphanumeric characters.
This is optional.

Function
The PUSH statement places string on queue_name on a last in first out (LIFO)
basis.

If the specified queue_name is a nonconstant expression, the first 8 characters of
the string are used. If the string is shorter than 8 characters, the available
characters are used. When specifying queue_name with the PUSH statement, the
test/string item will be placed on a queue exactly matching queue_name. If you
specify a string variable, it cannot be the name of one of the STL reserved variables
(for example, BUFFER). If not specified, queue_name defaults to a unique value
assigned to each device.

Examples
Qname = 'QUEUE1' /* Assigns 'QUEUE1' to "Qname" */
push 'ABCD' /* Places 'ABCD' on unique device Q */
push '1234567' TO Qname /* Places '1234567' on queue 'QUEUE1' */
push '7654321' TO 'QUEUE1' /* Places '7654321' on queue 'QUEUE1' */
a = PULL(Qname) /* Assigns '7654321' to "a" */
b = PULL('QUEUE1') /* Assigns '1234567' to "b" */
c = PULL() /* Assigns 'ABCD' to "c" */

Notes:

1. The named queue structure and text/string data items are allocated dynamically
by TPNS and deleted as the queue is emptied.

TPNS Scripting Language Changes to Support PUSH
The PUSH statement has been added to the TPNS Scripting Language. Refer to
the TPNS Language Reference manual for information on other available data field
options.
PUSH TEXT=(text_data)[,Q=queue_name]

Notes:

1. queue_name can be specified as either a static one to eight character
alphanumeric queue name or an area+offset definition.

2. The queue_name field conforms to the same rules as event names.

78 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

QUEUE

QUEUE string [TO queue_name]

Where
string is a string expression.

queue_name is a string expression consisting of 1 to 8 alphanumeric characters.
This is optional.

Function
The QUEUE statement adds string to queue_name on a first in, first out (FIFO)
basis.

If the specified queue_name is a nonconstant expression, the first 8 characters of
the string are used. If the string is shorter than 8 characters, the available
characters are used. When specifying queue_name with the QUEUE statement, the
test/string item will be placed in a queue by the exact name as queue_name. If you
specify a string variable, it cannot be the name of one of the STL reserved variables
(for example, BUFFER). If not specified, queue_name defaults to a unique value
assigned to each device.

Examples
queue 'AAAA' TO 'Queue1' /* Places 'AAAA' in queue 'Queue1' */
queue 'BBBB' TO 'QUEUE1' /* Places 'BBBB' in queue 'QUEUE1' */
a = PULL('QUEUE1') /* Assigns 'BBBB' to "a" */

Notes:

1. The named queue structure and text/string data items are allocated dynamically
by TPNS and deleted as the queue is emptied.

TPNS Scripting Language Changes to Support QUEUE
The QUEUE statement has been added to the TPNS Scripting Language. Refer to
the TPNS Language Reference manual for information on other available data field
options.
QUEUE TEXT=(text_data)[,Q=queue_name]

Notes:

1. queue_name can be specified as either a static one to eight character
alphanumeric queue name or an area+offset definition.

2. The queue_name field conforms to the same rules as event names.

Chapter 4. TPNS Scripting Enhancements 79

QUEUED

QUEUED([queue_name])

Where
queue_name is a string expression consisting of 1 to 8 alphanumeric characters.
This is optional.

Returns
Integer

Function
The QUEUED function returns the number of text/string items on queue_name.

If the specified queue_name is a nonconstant expression, the first 8 characters of
the string are used. If the string is shorter than 8 characters, the available
characters are used. When specifying queue_name within the QUEUED function,
the specified name must exactly match the name initially used to QUEUE or PUSH
the text/string item. If you specify a string variable, it cannot be the name of one of
the STL reserved variables (for example, BUFFER). If not specified, queue_name
defaults to a unique value assigned to each device.

Examples
Q_name = 'I'||devid() /* This example will place */
Do i = 1 to 5 /* five entries on a queue. */

Queue char(i) to Q_name /* Then the queue will be */
End /* read until it is empty. */
Do while queued(Q_name) > 0

Say 'Queue item' pull(Q_name)
End

Notes:

1. The QUEUED function can not be used in asynchronous conditions.

2. The named queue structure and text/string data items are allocated dynamically
by TPNS and deleted as the queue is emptied.

TPNS Scripting Language Changes to Support QUEUED
The SET statement has been updated to allow QUEUED as one of the options that
can be coded (refer to page 410 of the TPNS Language Reference manual for
information on the existing SET statement). Refer to “SET - Set Counters
Statement” on page 74 for specific details on coding the SET statement as follows:
SET cntr=QUEUED([queue_name])

Notes:

1. queue_name can be specified as either a static one to eight character
alphanumeric queue name or an area+offset definition.

2. The queue_name field conforms to the same rules as event names.

Increased Scripting Resources
STL has been updated to expand its support for the number of bits, strings, integers
and onin/onouts which can be used when creating STL programs.

80 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

BIT
STL has been expanded to assign bit variables to switches up to number 4095 as
required for STL program translation. STL ALLOCATE statements can now specify
network, terminal, and device switches up to this new increased limit.

Note: NSW32 cannot be used with ALLOCATE because it is used for special
purposes in the STL generated code.

The Alter switch operator command has been updated to support switch numbers
up to 4095.

The Query operator command has been updated to allow a single switch setting to
be queried. The following example illustrates this enhanced support.
Q SLU,SW25
ITP143I Name=SLU-1 SW25=OFF

Note: TPNS will allocate switches (minimum 32) up to the maximum switch
referenced in a script associated with the network for each level of switches.
For example, if SW4095 and TSW77 are the maximum switches referenced
in a script, 4095 device switches will be allocated for each device level
resource in the network and 77 terminal switches will be allocated for each
terminal level resource in the network. Only those switches allocated can be
Altered or Queried.

INTEGER
STL has been expanded to assign integer variables to index counters up to number
4095 as required for STL program translation. STL ALLOCATE statements can now
specify network, line, terminal, and device index counters up to this new increased
limit. Additionally, TPNS now supports network, line, terminal, and device sequence
counters up to 4095.

The Alter counter operator command has been updated to support index counter
numbers up to 4095.

The Query operator command has been updated to allow a single counter value to
be queried. The following example illustrates this enhanced support.
Q SLU,DC3
ITP143I Name=SLU-1 DC3=0

Note: TPNS will allocate index counters (minimum 3) up to the maximum index
counter referenced in a script associated with the network for each level of
counters. For example, if DC4095 and TC77 are the maximum numbered
index counters referenced in a script, all device counters from DSEQ to
DC4095 will be allocated for each device level resource in the network and
all terminal counters from TSEQ to TC77 will be allocated for each terminal
level resource in the network. Only those counters allocated can be Altered
or Queried.

STRING
STL has been updated to assign string variables to save areas up to number 4095
as required for STL program translation. STL ALLOCATE statements can now also
specify network and device save areas up to this new increased limit.

Chapter 4. TPNS Scripting Enhancements 81

The Query and Alter save area operator commands have been updated to support
network and device save areas numbers up to 4095.

Note: TPNS dynamically allocates save areas, numbered above the save area
operand value, when they are referenced in the script.

ONIN/ONOUT
STL has been updated to assign ONINs/ONOUTs to input/output IFs up to number
4095 as required for STL program translation. Also, the STL @IFNUM statement
has been updated to accept a value from 1 to 4095.

Date and Time Stamp
A TPNS scripting language comment specifying the date and time of the execution
of the STL program is added to each generated MSGTXT deck. This comment
immediately follows the generated MSGTXT statement and reads as follows:

*GENERATED FROM STL SOURCE - mmmmmmmmm dd, yyyy, hh:mm

where:

mmmmmmmmm is the month, dd is the day, yyyy is the year, hh is the hour, and
mm is the minute of the execution of STL.

The time stamp is in 24 hour format. All decks generated during a single execution
of STL will have the same date and time in the generated comment. For example:
*GENERATED FROM STL SOURCE - OCTOBER 13, 2001, 13:13

There is no option associated with this new comment. Anytime a TPNS Message
Deck is generated using ITPSTL, this comment is included.

NOIMPLICIT Option
If NOIMPLICIT is specified as an execution parameter for STL, implicit definitions of
BIT, INTEGER, or STRING variables are considered errors and are flagged with a
new error message (ITP3206I). Refer to “Appendix B. Messages and Return Codes”
on page 105 for a detailed description of this new error message. Implicit
definitions are most commonly found in an assignment statement where a
previously unused and undefined variable is assigned a value of a particular type.
They can also be encountered when previously unused variables are used as
output variables on CPI-C STL statements or on the UTBLSCAN function.

If NOIMPLICIT is not specified, implicitly defined variables are assigned a type
based on the context of the first usage of the variable.

Variables are explicitly defined by using ALLOCATE statements or BIT, INTEGER,
or STRING statements.

The NOIMPLICIT option is particularly useful in avoiding inadvertent resource
conflicts when STL programs are developed separately using a common set of
variables distributed in a common member which is included by all such programs.

A modification has also been made to the TPNS/ISPF Interface to allow the
specification of this option when executing STL from that interface. A new Control
Option has been added to the second panel of the STL execution panels. It is the

82 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Allow Implicit Variables option and is specified as Y for Yes or N for No. The
default value is Y for compatibility with previous releases.

Delay Cancellation
STL has been updated to enable you to write scripts that account for the possibility
that long delays may need to be cancelled based on operator or other input. STL
now allows you to specify CANCEL DELAY or CANCEL SUSPEND as an
asynchronous subset action following an ON SIGNALED statement. Below is an
example of how a delay cancellation statement might be coded:

ON SIGNALED(event_name) THEN CANCEL DELAY

The STL Translator has also been modified to generate a new DLYCNCL action
when CANCEL DELAY or CANCEL SUSPEND is specified on ONIN, ONOUT, or
ON SIGNALED statements.

DLYCNCL Action
The TPNS scripting language has been updated with a new DLYCNCL action to
support the delay cancellation feature added to STL. DLYCNCL cancels any active
or pending intermessage delay. DLYCNCL is permitted on the THEN and ELSE
operands of IF statements and the THEN operand of ON statements. The
DLYCNCL action is identical to that taken when DELAY=CANCEL is coded on an
input or output IF statement and the THEN action is taken. However, the DLYCNCL
action can be taken independently of other actions and on other statement types.

MSGTRACE and STLTRACE messages have been updated to document the
cancellation of delays as a result of the DLYCNCL action.

Chapter 4. TPNS Scripting Enhancements 83

Verify Record Reports
The verify record reports have been adjusted to allow for additional counters,
switches, and save areas. Because of formatting changes, the expected and actual
value fields are now 29 instead of 30 bytes. A sample verify report follows:

New Exit Interface Routine Requests
The following new exit interface routine requests have been added to support the
additional counters, save areas, and switches:

X’5A’ This request returns the address of a specific network save area, the
address of the length of the data in the network save area, and the address
of the length of the network save area. The lengths are two-byte binary
numbers.

Note: The user exit must place the network save area number (1–4095) in
the first two bytes of the return area before calling the exit interface
routine.

X’5B’ This request allocates a new network save area for the size requested and
frees the existing network save area if currently allocated. The user exit
must place the network save area number (1–4095) in the first two bytes of
the return area and the desired network save area size (1–32767) in the
third and fourth bytes of the return area. If the network save area allocation
is successful, the X’5A’ request information is returned.

X’5C’ This request frees a currently allocated network save area. The user exit
must place the network save area number (1–4095) in the first two bytes of
the return area.

X’5D’ This request increases the size of a currently allocated network save area
while retaining any saved data in the increased network save area. The
user exit must place the network save area number (1–4095) in the first two
bytes of the return area and the desired network save area size (1–32767)
in the third and fourth bytes of the return area. If the network save area
increase is successful, the X’5A’ request information is returned.

X’5E’ This request returns the address of the number of network index counters.
This is a two-byte field.

X’5F’ This request returns the address of the number of network switches. This is
a two-byte field.

X’74’ This request returns the address of the number of line index counters. This
is a two-byte field.

VERIFICATION REPORT
DESCRIPTION LOCATION LENG COND EXPECTED VALUE ACTUAL VALUE

======================= =========== ===== == ============================= ===================
SA1 OK 1+0 11 EQ SAVE AREA 1 SAVE AREA 1
N4095 OK N4095+0 18 EQ NET SAVE AREA 4095 NET SAVE AREA 4095
DC1 OK DC1 EQ 1 1
DC4095 OK DC4095 EQ 4095 4095
SW1 OK SWITCH SW1 1
NSW4095 OK SWITCH NSW4095 1
SW1&TSW666&NSW4095 OK SWITCHES SW1&TSW666&NSW4095 111
NSW3000│SW99│TSW666 OK SWITCHES NSW3000│SW99│TSW666 001
SW1│..│SW7 OK SWITCHES SW1│SW2│SW3│SW4│SW5│SW6│SW7+ 1000000001000000
SW10│..│SW7 OK SWITCHES SW10│SW2│SW3│SW4│SW5│SW6│SW7+ 0000000001000000

84 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

X’94’ This request returns the address of the number of terminal index counters.
This is a two-byte field.

X’95’ This request returns the address of the number of terminal switches. This is
a two-byte field.

X’C2’ This request returns the address of a specific device save area, the
address of the length of the data in the device save area, and the address
of the length of the device save area. The lengths are two-byte binary
numbers.

Note: The user exit must place the device save area number (1–4095) in
the first two bytes of the return area before calling the exit interface
routine.

X’C3’ This request allocates a new device save area for the size requested and
frees the existing device save area if currently allocated. The user exit must
place the device save area number (1–4095) in the first two bytes of the
return area and the desired device save area size (1–32767) in the third
and fourth bytes of the return area. If the device save area allocation is
successful, the X’C2’ request information is returned.

X’C4’ This request frees a currently allocated device save area. The user exit
must place the device save area number (1–4095) in the first two bytes of
the return area.

X’C5’ This request increases the size of a currently allocated device save area
while retaining any saved data in the increased device save area. The user
exit must place the device save area number (1–4095) in the first two bytes
of the return area and the desired device save area size (1–32767) in the
third and fourth bytes of the return area. If the device save area increase is
successful, the X’C2’ request information is returned.

X’C6’ This request returns the address of the number of device index counters.
This is a two-byte field.

X’C7’ This request returns the address of the number of device switches. This is a
two-byte field.

Note: Return code 44 is set when the save area number is greater than
4095.

Variable Parameter Data for Script User Exit
The parm_list argument on the USEREXIT STL statement can now be any type of
string expression rather than just a string constant.

The PARM operand on the EXIT statement in the TPNS scripting language can now
specify either a save area number or a constant data string. The syntax of this
operand is as follows:

PARM=s|Ns|(data...)

where s is a save area number, N indicates a network save area, and (data...) is a
constant string of 100 bytes or less.

The only change in the interface to the exit routines is that with a save area, the
data can be of any length up to the maximum length of the save area and is not
limited to 100 bytes.

Chapter 4. TPNS Scripting Enhancements 85

86 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 5. Miscellaneous Enhancements

This section outlines a wide range of updates and improvements included in the
TPNS Version 3 Release 5 function and service enhancements.

Enhancements to CPI-C Protocol Support
Support has been added for CPI-C single sessions when the control mode is not
defined on the partner LU. Under normal circumstances, the TPNS CPI-C function
uses parallel sessions when establishing conversations with partner LUs. Parallel
sessions consist of a user session and a control session. The control session is
used by the LU 6.2 control mode SNASVCMG to accomplish session control tasks.
On rare occasions, a TPNS user might want to establish a CPI-C session that has
a user session, but no control session. This type of session is referred to as a
single session.

TPNS 3.5 or TPNS 3.5 Service Level 9711
Using TPNS 3.5 or TPNS 3.5 Service Level 9711, single sessions can be used by
the TPNS CPI-C function if the LU 6.2 control mode (SNASVCMG) is defined on
the partner LU and the TPNS network specifies the following setting for each mode
that is to use a single session:
CNOS=((LUNAME=lu,MODENAME=mode,SESSIONS=1,CWL=1,CWP=0))

If the TPNS network specifies a single session using the CNOS setting in the
previous example, and the SNASVCMG mode is not defined on the partner LU,
TPNS message ITP4014I is issued indicating the CNOS command has failed.

TPNS 3.5 Service Level 0110
With the new support added in TPNS 3.5 Service Level 0110, single sessions can
be used even if the SNASVCMG mode is not defined on the partner LU. To use
single sessions, specify the CNOS setting as shown in the previous example for
each mode that is to use a single session. TPNS 3.5 Service Level 0110 will
recognize from the CNOS definition that a single session is desired, and
communicates this to VTAM. VTAM then establishes a user session between the
local and partner LUs, but no control session is established.

ITPFIOX File I/O User Exit
ITPFIOX is a TPNS message generation exit (EXIT MODULE=ITPFIOX) and
network control exit (NCTLEXIT=ITPFIOX) providing sequential file I/O support to
TPNS scripts.

QSAM is used to perform the actual file I/O operations. Storage for the DCB is
allocated below the 16 MB line. The file handle, DCBE, and other control blocks are
allocated above the 16 MB line. The DCBE is coded with RMODE31=BUFF which
allows QSAM to allocate the block buffers above the 16 MB line. GET locate and
PUT locate modes are used to access the record data.

Data sets must be preallocated and partitioned data sets are supported through
member reference. The exit dynamically allocates the DD statement required for the
data set unless the data set name is specified as DDNAME=ddname using an
existing DD statement. Existing DCB attributes are used when data sets are opened
for input. DCB attributes are set when data sets are opened for output.

87

Once a file handle is available after an OPEN, any simulated device in any active
network can issue file I/O requests by passing the file handle value to the user exit.

ITPFIOX Syntax and Use
The syntax for ITPFIOX is as follows:
EXIT MODULE=ITPFIOX,

PARM=(file_request rc_counter handle_sa# [data_sa#] [recfm] [blksize] [lrecl])

Where:

v file_request is one of the following:

OPENI Open the data set for input

OPENO Open the data set for output

OPENA Open the data set for output append

READ Read record

WRITE Write record

CLOSE Close the data set

v rc_counter, the return code counter name, is one of the following:

DC1-DC4095

NC1-NC4095

The counter contains the return code after each file I/O request
completes.

The following codes are set:

0 OK

1 Record truncated, READ or WRITE

2 READ EOF

8 Parameter error

12 Request error

16 Handle error

20 Data error

24 DD allocation error

28 GETMAIN error

32 OPEN error

36 READ error

40 WRITE error

44 CLOSE error

48 Allocate data save area error

52 DD clear error

56 Find data save area error

60 Interface exit routine error

64 DCB values (recfm, blksize, or lrecl) error

88 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

68 Invalid member name

72 Data set not found

76 Data set in use

80 Invalid data set name

84 DD allocation, unexpected error

88 DSORG error, PO without member or PS with member

92 OPENA (append) for member of PDS

96 WRITE null record

100 DD name error

v handle_sa#, the file handle save area name, is one of the following:

1-4095

NI-N4095

A four-byte address is saved in the handle save area when the
file is opened. This value must be returned in the specified save
area for all the other file I/O requests. This value is validated to
avoid errors.

v data_sa#, the data save area name, is one of the following:

1-4095

N1-N4095

For OPENI, OPENO, and OPENA, this save area contains the
MVS or VM data set name or DDNAME=ddname keyword.

For WRITE, this save area contains the record data to be written.

For READ, this save area contains the record read from the data
set.

For CLOSE, this save area is not required.

v recfm is either VB or FB

v blksize is 1-32760

v lrecl is 1-32760

Notes:

1. When data sets are opened for output, the following DCB default values are set
if recfm, blksize, and lrecl are not specified.
RECFM=VB BLKSIZE=23476 LRECL=23472

2. For VB, lrecl can be a maximum of four bytes less than blksize.

3. For FB, blksize must be a multiple of lrecl.

4. Code NCTLEXIT=ITPFIOX and the open files in a network will be closed when the
network is cancelled or reset.

5. OPENA (append) is not accepted for a partitioned data set.

6. When DDNAME=ddname is specified as the data set name, the file is OPENed
against the DD name specified without allocating a DD statement.

OPENO and OPENA are equal because the disposition of the data set is
controlled by the DISP= value on the DD statement.

7. DISP=SHR is set on the DD statement for data sets OPENed for input
(DDNAME=ddname not specified).

Chapter 5. Miscellaneous Enhancements 89

8. DISP=OLD is set on the DD statement for data sets OPENed for output
(OPENO and DDNAME=ddname not specified).

The following are examples of the ITPFIOX syntax:
DATASAVE AREA=254,TEXT=(MYMVS.FILE)
SET DC55=999
EXIT MODULE=ITPFIOX,PARM=(OPENO DC55 252 254)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR

DATASAVE AREA=254,TEXT=(RECORD 1 DATA)
EXIT MODULE=ITPFIOX,PARM=(WRITE DC55 252 254)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR

EXIT MODULE=ITPFIOX,PARM=(CLOSE DC55 252)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR

DATASAVE AREA=254,TEXT=(MYMVS.FILE)
SET DC55=999
EXIT MODULE=ITPFIOX,PARM=(OPENI DC55 252 254)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR

EXIT MODULE=ITPFIOX,PARM=(READ DC55 252 254)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR
WTO (FIRST RECORD READ = $RECALL,254$)

EXIT MODULE=ITPFIOX,PARM=(READ DC55 252 254)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=2,THEN=B-ERROR

EXIT MODULE=ITPFIOX,PARM=(CLOSE DC55 252)
IF WHEN=IMMED,LOC=DC55,COND=NE,TEXT=0,THEN=B-ERROR

STL Language Example
The following is an example of ITPFIOX in STL:
constant handle_sa# '253'
constant data_sa# '254'
constant rc_counter# 'DC55'

constant rc_eof 2

allocate file_handle handle_sa#
allocate file_data data_sa#
allocate file_rc rc_counter#

file_data = 'MYMVS.FILE'
file_rc = 999
userexit('ITPFIOX', 'OPENO' rc_counter# handle_sa# data_sa#)
if file_rc <> 0 then call error

file_data = 'Record 1'

userexit('ITPFIOX', 'WRITE' rc_counter# handle_sa# data_sa#)
if file_rc <> 0 then call error

userexit('ITPFIOX', 'CLOSE' rc_counter# handle_sa#)
if file_rc <> 0 then call error

file_data = 'MYMVS.FILE'
file_rc = 999
userexit('ITPFIOX','OPENI' rc_counter# handle_sa# data_sa#)
if file_rc <> 0 then call error

userexit('ITPFIOX','READ' rc_counter# handle_sa# data_sa#)
if file_rc <> 0 then call error
say 'Record 1 =' file_data

90 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

userexit('ITPFIOX','READ' rc_counter# handle_sa# data_sa#)
if file_rc <> rc_eof then call error

userexit('ITPFIOX','CLOSE' rc_counter# handle_sa#)
if file_rc <> 0 then call error

Data Compression
ITPSGEN now supports the two forms of data compression used in SNA. By
default, run-length encoding (RLE) is supported in all traced RU data. When a BIND
response is included in the traced RU data, Lempel-Ziv (LZ) encoding is also
supported if indicated in the BIND response. To decompress both types of RU data,
all RU data must be included in the traced data in order to recreate the original
uncompressed RU data.

Decompression errors are reported in the summary and detail reports. The specific
type of decompression error is indicated for the transmitted and received records in
the detail report.

The following sections include examples of detail and summary reports, and provide
possible code values for decompression errors.

Summary Report
An example of a summary report containing terminals with errors field is shown
below:

GENERATION REPORT - SUMMARY

TERMINALS TRACE RECORDS MSGTXTS LIMIT PATHS TERMINALS
NETWORK ELIGIBLE ELIGIBLE GENERATED REACHED ADDED WITH ERRORS
VASGEN 15 10,669 0 0 0 4

Chapter 5. Miscellaneous Enhancements 91

Detail Report
An example of a detail report containing the error codes field is shown below:

The detail report error codes field is blank if no decompression errors occur during
script generation. If decompression errors occur, the error codes field will be
formatted as follows to indicate the type of decompression error associated with
transmitted and received RU data.

X-Code R-Code
The possible code values are listed below.

OK No errors occurred decompressing the RU data.

DCE1 The three byte compression header is missing from the RU data.

DCE2 The compression header compression type field value is invalid.

DCE3 An RLE string control byte (SCB) count field has a zero value.

DCE4 An RLE SCB indicates raw data is present. However, the complete
raw data is not present in the RU data.

DCE5 An RLE SCB indicates a duplicated character is present. However,
the duplicated character is not present in the RU data.

DCE6 An RLE SCB type field value is invalid.

DCE7 During RLE decompression, the output buffer was overrun.

DCE8 After RLE decompression of the complete RU data, the length of
the decompressed RU data did not equal the compression header
length field value.

DCE9 The compression header indicates LZ compression. However, the
BIND response did not indicate support of LZ compression.

GENERATION REPORT - SUMMARY

TERMINALS TRACE RECORDS MSGTXTS LIMIT PATHS TERMINALS
NETWORK ELIGIBLE ELIGIBLE GENERATED REACHED ADDED WITH ERRORS
VASGEN 15 10,669 0 0 0 4

GENERATION REPORT - DETAIL

TRACE RECORDS MESSAGES START STOP
TERMINAL NETWORK ELIGIBLE GENERATED TIME TIME PATH ERROR CODES
DGA7060L VASGEN 0 0
F258TSG VASGEN 86 0 X-DCE10 R-DCE10
F294TSG VASGEN 2,390 0 X-DCE10 R-DCE10
F295TSG VASGEN 3,554 0 X-DCE10 R-DCE10
F296TSG VASGEN 4,639 0 X-DCE10 R-DCE10
IDCSLU VASGEN 0 0
MVSAPL10 VASGEN 0 0
TP1 VASGEN 0 0
NR5E02A2 VASGEN 0 0
NR5E02A4 VASGEN 0 0
NR509A63 VASGEN 0 0
PLU VASGEN 0 0
SLU VASGEN 0 0
TP2 VASGEN 0 0
TP3 VASGEN 0 0

92 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

DCE10 The compression header indicates LZ compression. However, no
BIND response was available in the traced data to indicate the type
of LZ compression supported.

DCE11 The compression header indicates LZ compression. However, only
one byte of additional RU data is present.

DCE12 An LZ control sequence command field value is invalid.

DCE13 An LZ compressed RU contains one extra byte of data.

DCE14 After LZ decompression of the complete RU data, the length of the
decompressed RU data did not equal the compression header
length field value.

DCE15 During LZ decompression, the output buffer was overrun.

A generated script is typically usable if only the receive records cannot be
decompressed (R-DCEnn). This is because the messages created by a TPNS script
are generated from the transmitted RU data records in the sorted trace input file.

New DSPLY Loglist Control Command Operand
A new operand, LOG, has been added to the DSPLY data type selection command
in the loglist utility. The LOG operand causes only the log display records created
using the ’LOG DISPLAY’ scripting statements to be printed.

Loglist Data Output and Display
The TPNS loglist data output for Simple TCP and Simple UDP is formatted as
ASCII and EBCDIC data with 24 bytes of hex data with ASCII and EBCDIC
interpretations. The X.25 TWX PAD packets will be interpreted as ASCII only. ASCII
data will be framed with ’<’ and ’>’ characters. Below is an example of the loglist
output:

The TPNS Display Monitor Facility has been updated to allow the monitored data to
be displayed in either EBCDIC or ASCII. The M operator command will now accept
CODE=EBCDIC│ASCII when the monitoring is started. EBCDIC is the default. The
example below shows the updated TPNS Display Monitor Facility logon panel:

00000000 53616D70 .. 726F6D20 <Sample Transaction from > *./_.%..../>./...?>...?_.*
00000018 53544350 .. 78787878 <STCP001 ..xxxxxxxxxxxxxx> *...&....................*
00000030 78787878 .. 78787878 <xxxxxxxxxxxxxxxxxxxxxxxx> *........................*

TO NEXT LINE SAME AS ABOVE
00000060 78787878 .. 6D706C65 <xxxxxxxxxxxxxxx..@Sample> *................. ./_.%.*
00000078 20547261 .. 0A0D0A < Transaction line 2.... > *.../>./...?>.%.>....... *

Chapter 5. Miscellaneous Enhancements 93

ITPECHO Generic Resource Support
VTAM Generic Resource support has been added to ITPECHO. The
GNAME=generic_resource_name execution parameter allows ITPECHO to
associate itself with the generic resource name specified. The following default
prompt is displayed by ITPECHO.

New ITPVTBRF Execution Parameters
The following execution parameters have been added to ITPVTBRF:

INVERT
INVERT allows scripts to be generated in situations where the VTAM buffer
trace was active for an LU that did not capture ″inbound″ data to VTAM. When
INVERT is specified, ″outbound″ data from VTAM will be reformatted to allow
for script generation by ITPSGEN.

SSCPNAME=sscp_name
SSCPNAME allows an SSCP name other than the default (″VTAM″) to be
specified.

ITPSGEN Initial Delay Calculation
When the initial time record is present as the first record of the trace input to
ITPSGEN, the time stamp in that record will provide a default ″start time″ for
calculating initial delays in generated scripts where delays have been requested.
The initial time record is a special record written to the reformatted trace data set by
the ITPVTBRF utility. This record contains the earliest time stamp from the

TPNS Version 3 Release 5.0.1 Display Monitor Facility

Name = TPNS name of simulated device or 3270 display
View = SCREEN DATA or SCREEN - show data stream or 3270 screen image

Screen image display only:
Update = XMITRECV Monitoring display updated when:

MONITOR - MONITOR statement is executed from script,
TIMER - the specified time value expires, or
XMITRECV - data is transmitted/received by display.

Source = BLOCKS Data stream sent to the monitoring display built from:
BLOCKS - TPNS internal control blocks
DATA - data transmitted/received by display.

Timer = 10 1-600 Seconds when Update = TIMER
Aid = ON ON, OFF, or (row,column) location of AID display field

Data stream display only:
Lines = 2 Maximum number of displayed data lines
Code = EBCDIC ASCII or EBCDIC - interpret data as ASCII or EBCDIC

ENTER - Submits parameters to start monitoring of simulated display.
PA1/ATTN - Stops monitoring of simulated display.
PF3/PF15 - Ends Display Monitor Facility session.

ITP900I ITPECHO: APPLID=ITPECHO,BUFSIZE=2048,GNAME=,PASSWD=,SMSG,NOTRACE,WTOR

94 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

reformatted trace data set and a dummy name of all hex 00’s so that it will always
sort to the beginning of the input to ITPSGEN. The provision of this record was part
of the updates to ITPVTBRF for Service Level 9711.

The default ″start time″ established through the new initial delay calculation function
is used if all of the following conditions are true:

v No start time has been specified via a TIME control statement.

v A DELAY control statement has been specified.

v Either ISTART is specified on the DELAY control statement or no other start time
(ACTLU, BIND, SDT) is available for the script being generated.

Except for obtaining the start time from a different source, the actual initial delay is
calculated in the same manner as it was prior to Service Level 9711. Refer to the
TPNS Script Generating Utilities manual for a description of the existing DELAY
control statement.

Storage Allocation Below 16 Megabytes Minimized
For VTAMAPPL and CPI-C simulations, the amount of storage allocated below the
16 megabyte line has been lowered by allocating only the ACB, APPLID, and
PASSWD areas below the 16 megabyte line. This change allows additional
VTAMAPPL and/or CPI-C APPCLU resources to be simulated within a TPNS
region.

Boundary Channel-Attached Type 2.1 Node CP to CP Capability
Boundary channel-attached Type 2.1 nodes now provide CP to CP session
capability.

VM/ESA REAL I/O Support Without RIO370 Pages
TPNS now supports Real I/O on VM/ESA without RIO370 pages. To support Real
I/O when running on VM/ESA, TPNS required the system to be generated with
RIO370 pages. This was a problem for many users since the space available below
16MB is limited. The need for RIO370 pages comes from the way the channel
programs are built and the ending status is interpreted. This enhancement allows
TPNS users running on VM to use Real I/O without reserving pages for RIO370.

TPNS/ISPF Interface PF3 Key Changes
PF3 in the TPNS/ISPF Interface now takes you to the previous panel, unless
pressed on the main panel, in which case it exits. Prior to Service Level 9711, PF3
would exit the TPNS/ISPF Interface regardless of where it was pressed.

Service Level Indicator
A TPNS service level indicator has been added by appending a digit after the
modification level. For example, 3.5.0.2 will be used for the second refresh (Service
Level 0110). For the first refresh (Service Level 9711) 3.5.0.1 was used. This
change has been made in the following areas:

Chapter 5. Miscellaneous Enhancements 95

ITP0BRW2
The BROWSE command in the ITP0BRW2 exec of the TPNS/ISPF Interface has
been changed to VIEW. This enables the VIEW mode in ISPF where the edit
functions, including scrolling, overtyping data, entering line commands and primary
commands to modify the data can be used. If you have a level of ISPF earlier than
ISPF 4.2 or prefer BROWSE over VIEW, change line 56 of the ITP0BRW2 exec to
“BROWSE DATASET(″dsname″)”.

NOWTOR TPNS Execution Parameter
The NOWTOR TPNS execution parameter has been added to allow TPNS to be
executed under MVS as a batch job without issuing a WTOR for operator control.
When NOWTOR is specified, no WTOR will be issued and TPNS must either be
ZENDed via an operator command from an active TPNS network or canceled by
the operator.

Interval Report:

TPNS 3.5.0.2 PRINTER OUTPUT

Display Monitor:

TPNS Version 3 Release 5.0.2 Display Monitor Facility

ITPIDC:

ITP1501I TPNS VERSION 3, RELEASE 5.0.2, INTERACTIVE DATA CAPTURE UTILITY

TPNS Version 3 Release 5.0.2 Program Number 5688-121

ITPLL:

RUN TIME 15.05.23, JANUARY 30, 2001 VERSION 3 RELEASE 5.0.2

15052337 0099030 35020000 CNSL

ITPRESP:

RUN TIME 15.05.23, JANUARY 30, 2001 VERSION 3 RELEASE 5.0.2

ITPCOMP:

MASTER RUN TIME 11.09.48, JANUARY 29, 1997 VERSION 3 RELEASE 5.0.0
TEST RUN TIME 10.45.39, JANUARY 30, 2001 VERSION 3 RELEASE 5.0.2

96 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Chapter 6. Migration Considerations

This chapter describes issues you should consider when migrating to the TPNS
Version 3 Release 5 function and service enhancements that are being made
available in TPNS Service Levels 9711 and 0110.

Loglist Utility ITPLL and CPI-C Trace Records
The loglist utility program ITPLL shipped with the TPNS Version 3 Release 5
function and service enhancements must be used to format the CPI-C trace records
created using Service Level 9711 or 0110. The loglist utility program shipped with
the original program product release of TPNS Version 3 Release 5 will loop
processing the CPI-C trace records created by Service Level 9711 or 0110.

The loglist utility program shipped with Service Level 9711 or 0110 will format the
CPI-C trace records created by these service levels of TPNS and those created by
the original program product release of TPNS Version 3 Release 5 without any
problems.

Loglist Utility ITPLL and Verify Records
The loglist utility program ITPLL shipped with Service Level 9711 or 0110 must be
used to format verify records created by these service levels of TPNS. The loglist
utility program shipped with the original program product release of TPNS Version 3
Release 5 will not format the verify records created by Service Level 9711 or 0110
correctly. The loglist utility program shipped with Service Level 9711 or 0110 will
format the verify records created by these service levels of TPNS and those created
by the original program product release of TPNS Version 3 Release 5 without any
problems.

STL
The following are new STL reserved words that cannot be used as variable or
constant names in STL programs:

v BITAND

v BITOR

v BITXOR

v B2X

v CENTER

v COPIES

v DELWORD

v D2C

v LASTPOS

v OVERLAY

v PATHID

v POS

v PULL

v PUSH

v QUEUE

v QUEUED

97

v REVERSE

v SPACE

v STRIP

v SUBWORD

v WORD

v WORDINDEX

v WORDPOS

v WORDS

v X2B

v X2C

User Exits

Counter Reference
The counter control block structure has not changed. When index counters above
number 63 must be referenced by a user exit, the new exit interface routine
requests (refer to “New Exit Interface Routine Requests” on page 84), should be
used to determine the number of index counters allocated at the desired resource
level before referencing and/or changing the counter value.

Switch Reference
User exits which reference switches using the exit interface routine will not require
any changes to reference switch numbers up to 32. When switch numbers above
32 must be referenced, the new exit interface routine requests (refer to “New Exit
Interface Routine Requests” on page 84), should be used to determine the number
of switches allocated at the desired resource level before referencing and/or
changing the switch setting.

User exits which reference switches using the TPNS internal control block structure
will require changes when more than the default 32 switches are allocated at the
desired resource level. These exits should be recoded to use the documented
interface to locate switches through the user exit interface routine.

Save Area Reference
User exits which reference save areas using the exit interface routine will not
require any changes to reference save area numbers up to 255. When save area
numbers above 255 must be referenced, the new exit interface routine requests
(refer to “New Exit Interface Routine Requests” on page 84), must be used to
reference the additional save areas. The SAV DSECT should be used to reference
other fields in the save area control block since offsets into the control block have
changed.

Save Area Control Block
The save area control block has been updated to support save area numbers
above 255. The SAVNUM field has been changed from a one-byte to a two-byte
field and the SAVBUFSZ, SAVDATLN, SAVFLAGS, and SAVDATAX fields now have
different offsets into the control block. The SAV DSECT has been updated to reflect
this change.

98 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Log Record Header
The LOGLEVEL field has been modified to include a service level indicator. This
two-byte field now contains two one-byte components named LOGVEREL and
LOGMODRF. For Service Level 9711 of TPNS Version 3 Release 5, LOGLEVEL will
contain X’3501’. For Service Level 0110 of TPNS Version 3 Release 5, LOGLEVEL
will contain X’3502’. The LOG DSECT has been updated to reflect this change.

TCP/IP Subsystem Detection
TPNS will not detect the TCP/IP instance, as specified by the TCPIP operand,
being inactive until the TPNS network is started. Previously, this detection was
performed when the TPNS network was initialized.

TPNS/ISPF Interface PF3 Key Changes
PF3 in the TPNS/ISPF Interface now takes you to the previous panel, unless
pressed on the main panel, in which case it exits. Prior to Service Level 9711, PF3
would exit the TPNS/ISPF Interface regardless of where it was pressed.

TPNS/ISPF Interface ITP0BRW2 Changes
If you have a level of ISPF earlier than ISPF 4.2 or prefer BROWSE over VIEW,
change line 56 of the ITP0BRW2 exec to “BROWSE DATASET (″dsname″)”.

Chapter 6. Migration Considerations 99

100 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Appendix A. Work Station Trace Reformatter Utility

ITPWSTRF is a REXX exec that reformats OS/2 Communications Manager (CM/2)
and IBM Communications Server LU 6.2 traces into TIR formatted records for
processing by the TPNS Script Generator (ITPSGEN). The steps for using OS/2
Communications Manager (CM/2) and IBM Communications Server traces as script
generation source files are as follows:

1. Capture an LU 6.2 trace using either the OS/2 Communications Manager
(CM/2) trace facility or the IBM Communications Server trace facility.

2. Upload the trace output file to your host system as an EBCDIC TEXT file.

3. Run the Work Station Trace Reformatter utility (ITPWSTRF) against the
uploaded trace file.

4. Sort the ITPWSTRF output file in ascending order by resource name, session
number, date, and time fields.

5. Run the Script Generator utility (ITPSGEN) against the sorted file.

Trace Output Format Requirements
ITPWSTRF can only be used to reformat trace output produced by the OS/2
Communications Manager (CM/2) or IBM Communications Server trace facilities.
Examples of the format required for the trace output files are provided below.

Note: ITPWSTRF will only process trace records in the formats listed below. The
trace record formats are subject to change as the OS/2 Communications
Manager (CM/2) and IBM Communications Server products evolve over time.

If the Work Station trace does not match one of the following formats, such
that ITPWSTRF cannot be used, you should use a VTAM buffer trace and
ITPVTBRF to provide input for CPI-C script generation.

Example: CM/2 Trace Record

Example: CS Trace Record
This section includes two examples of valid IBM Communications Server Trace
Records.

"TRACE COPIED 06/30/2001 13:09:05.06""
<==SEND===== IBMTRNET #00 40003745100204 0C400774E27E37BF 13:08:08.16

#:009F TH:2F0001020001 RH:6B8100
31001307 B0B05033 01808686 80010602 <1.....P3..ff....>
00000000 0000001C 23000010 E4E2C9C2 <........#...USIB>

===RECV====> IBMTRNET #00 40003745100204 0C400774E27E37BF 13:08:10.44
#:0068 TH:2F0002010001 RH:EB8000

31001307 B0B050B3 00808585 80000602 <1.....P...ee....>
00000000 00000010 23000000 25000902 <........#...%...>

101

Token Ring Trace Format

SDLC Trace Format

Using ITPWSTRF
An explanation of the commands to execute ITPWSTRF under VM CMS and MVS
are provided below.

Executing ITPWSTRF Under VM CMS
To execute ITPWSTRF under VM CMS, specify the following:
ITPWSTRF ifn ift ifm ofn oft ofm ([INVERT]

Where:

v ifn is the input file name

v ift is the input file type

v ifm is the input file mode

v ofn is the output file name

v oft is the output file type

v ofm is the output file mode

v INVERT causes the reformatter to switch the origin and destination LU names

Notes:

1. The ifn, ift, and ifm parameters are required.

2. The input names may be duplicated for ofn, oft, and/or ofm by using an
equals sign (=) in place of the parameter name.

Á22║ 12/16 10:59:49.45,(0015) len=195, Connectivity.LAN (LLC2).0001, 00000000:0
Frame Type: TOKEN_RING
Source Address: 0004ac751777 (canonical: 002035aee8ee)
Source SAP: 04
Destination Address: 0004ac325f7b (canonical: 0020354cfade)
Destination SAP: 04
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 00
NS: 00
LPDU Data length: 179

2D000002 80016B81 00310013 07B0B050 <-.....k..1.....P> <......,a.......&>
33018186 86810106 02000000 00000000 <3...............> <..affa..........>
16230000 0DD4C1D9 D2D5C5E3 4BD4C1D9 <.#..........K...> <.....MARKNET.MAR>

Á22║ 12/16 10:59:49.45,(0015) len=195, Connectivity.SDLC.0704, 00000000:0000000
SDLC TRANSMIT I-FIELD
2D000002 80016B81 00310013 07B0B050 <-.....K..1.....P> <......,a.......&>
33018186 86810106 02000000 00000000 <3...............> <..affa..........>

Á23║ 12/16 10:59:49.45,(0016) len=150, Connectivity.SDLC.0704, 00000000:0000000
SDLC TRANSMIT I-FIELD
2D000200 8001EB80 00310013 07B0B050 <-........1.....P> <...............&>
33008086 86800006 02000000 00000000 <3...............> <...ff...........>

102 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

3. The defaults for ofn and ofm are the ifn and ifm values respectively; the
default for oft is WSTRF.

4. The input and output files must be different physical files.

Executing ITPWSTRF Under MVS
To execute ITPWSTRF under MVS, specify the following:
ITPWSTRF input_file output_file [INVERT]

Where:

v input_file is the input file name

v output_file is the output file name

v INVERT causes the reformatter to switch the origin and destination LU names

Notes:

1. The input_file and output_file parameters are required.

2. The input and output files must be different physical files.

3. If the file name is not specified in quotes, the TSO userid is added as
the high-level qualifier.

Appendix A. Work Station Trace Reformatter Utility 103

104 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Appendix B. Messages and Return Codes

The TPNS Version 3 Release 5 function and service enhancements changed a few
existing messages and added a few new messages and return codes. The new and
revised messages and codes are explained below. Note that Initiator Message
ITP1385I has been eliminated. Refer to TPNS Messages and Codes for complete
information on the existing TPNS messages.

TPNS Script Generator Utilities Messages
The following are TPNS Script Generator Utilities messages added or changed by
the TPNS Version 3 Release 5 function and service enhancements.

ITP863I I/O ERROR ON INPUT TAPE -
EXECUTION ABORTED

Explanation: This message indicates that an I/O error
occurred while reading the input data set.

System Action: ITPSGEN execution stops.

User Response: Check the definition of the input data
set. If the data set is a tape file, the problem could be
with the tape drive. Try using another drive.

ITP864I I/O ERROR ON DATA SET ddname —
EXECUTION ABORTED

Explanation: This message indicates that an I/O error
occurred while reading or writing the data set named.

System Action: ITPSGEN execution stops.

User Response: Check the definition of the data set.

ITP866I NO TRACE RECORDS WERE FOUND
THAT ARE ELIGIBLE FOR SCRIPT
GENERATION

Explanation: No trace records were found in which
the resource name matched a TERM, DEV, LU, or
APPCLU name specified in the model network(s).

System Action: No scripts are generated.

User Response: Make sure the correct model network
and input trace data set are being referenced. Make
sure at least one device in the model network matches
at least one resource found in the trace data set.

ITP867I USER CONTROL DATA
ENCOUNTERED FOR TP XXXXXXXX -
THE DATA WAS IGNORED

Explanation: The trace data set contains data for the
specified TP that is encoded as user control data. Since
the NOUCD script generation control command was
specified, this data is ignored by the script generator.

System Action: The user control data is ignored and
script generation continues.

User Response: If the user control data should be
processed as application data, specify the UCD script
generation control command and rerun the script
generator.

ITP868I USER CONTROL DATA
ENCOUNTERED FOR TP XXXXXXXX -
THE DATA WAS PROCESSED AS
APPLICATION DATA

Explanation: The trace data set contains data for the
specified TP that is encoded as user control data. Since
the UCD script generation control command was
specified or defaulted, this data is processed as
application data by the script generator.

System Action: The user control data is processed as
application data and script generation continues.

User Response: If the user control data should not be
processed as application data, specify the NOUCD
script generation control command and rerun the script
generator.

ITP869I THE SCRIPT FOR TP XXXXXXXX WAS
GENERATED FROM A FULL-DUPLEX
SESSION — USE THIS SCRIPT WITH
CAUTION

Explanation: The session that was used to generate
the specified TP was identified as a full-duplex session.

System Action: Script generation continues. A script
is generated for the specified TP.

User Response: When running TPNS simulations that
use scripts generated from full-duplex sessions, be
aware that the simulations may not accurately
reproduce the original traced scenario. However, it is
possible that the session was identified as full-duplex
but used as if it were half-duplex flip-flop. In this case,
the generated scripts should accurately reproduce the
original traced scenario.

105

ITP870I TRUNCATED TRACE DATA
ENCOUNTERED FOR TP XXXXXXXX

Explanation: This message indicates that truncated
data has been detected in the trace data set for the
specified TP.

System Action: Script generation continues. A script
is generated for the specified TP.

User Response: Use generated scripts with caution
as they might not reflect complete data flows. Make
sure you request a full buffer trace when capturing trace
files. For VTAM buffer traces, a full buffer trace is
requested by specifying the AMOUNT=FULL parameter
on the trace command.

ITP871I ERRONEOUS TRACE DATA
DETECTED: END-OF-CHAIN RECEIVED
BEFORE EXPECTED

Explanation: This message indicates that an
end-of-chain indicator was received before all of the
chain was received.

System Action: Script generation continues.

User Response: Use generated scripts with caution
as they might not reflect complete data flows. The trace
file contains corrupted data. Consider recapturing the
trace data.

ITP872I ERRONEOUS TRACE DATA
DETECTED:END-OF-CHAIN NOT
RECEIVED WHEN EXPECTED

Explanation: This message indicates that an
end-of-chain indicator was not received when all of the
data in the chain was received.

System Action: Script generation continues.

User Response: Use generated scripts with caution
as they might not reflect complete data flows. The trace
file contains corrupted data. Consider recapturing the
trace data.

TPNS STL Translator Messages
The following are TPNS STL messages added by the TPNS Version 3 Release 5
function and service enhancements.

ITP3202I INVALID OPTION ARGUMENT FOR
″STRIP″ FUNCTION

Explanation: This message indicates that an invalid
option was specified.

System Action: The current statement is ignored and
processing continues.

User Response: The valid options are B, L, and T.

ITP3203I SEQUENCE NUMBER VALUE TOO
LARGE

Explanation: This message indicates that the
sequence number value specified was too large.

System Action: The current statement is ignored and
processing continues.

User Response: Specify a sequence number value
between 0 and 65535.

ITP3204I SEQUENCE ACTION VALUE INVALID

Explanation: This message indicates that an invalid
action was specified.

System Action: The current statement is ignored and
processing continues.

User Response: The valid action values are IGNORE,
SET, TEST, or TESTSET.

ITP3205I SAY STATEMENT TYPE OPTION
INVALID

Explanation: This message indicates that the TYPE
option specified on the SAY statement is invalid.

System Action: The current statement is ignored and
processing continues.

User Response: The valid TYPE option is ABRHD.

ITP3206I IMPLICIT VARIABLE DEFINITION
DISALLOWED BY NOIMPLICIT OPTION

Explanation: This message indicates that the
NOIMPLICIT option is specified and implicit definitions
variables are not allowed.

System Action: The current statement and the
remainder of the current line is ignored. Processing
continues with the next input line.

User Response: Ensure that the flagged variable
definition is specified correctly. If correctly specified,
then declare it using a BIT, INTEGER, STRING, or
ALLOCATE statement.

106 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Informational Log Data Set Messages
The following Informational Log Data Set messages were changed by the TPNS
Version 3 Release 5 function and service enhancements.

ITP427I logic test (dname,snum) MET - THEN
ACTION TAKEN: action

Explanation: This message trace record indicates that
the specified logic test was evaluated, the specified test
condition was met, and the action specified by the
THEN operand was taken. The specified logic test is
found in message generation deck dname at statement
snum. The action contains information about the action
taken. It can be one of the following:

v BRANCH FROM snum OF dname TO {label AT
snum│THE BEGINNING} OF dname

v CALL FROM snum OF dname TO {label AT
snum│THE BEGINNING} OF dname

v RETURN FROM snum OF dname TO THE STMT AT
snum OF dname

v EXECUTED dname FROM {THE BEGINNING│label
AT snum}

v ABORTED dname AT STMT# snum AND STARTED
dname

v CONTINUE (RESET WAIT)

v WAIT INDICATOR SET

v QUIESCE DEVICE

v RELEASE DEVICE

v WAITING ON EVENT

v IGNORE

v SET DEV SWITCH XX ON

v SET DEV SWITCH XX OFF

v SET DEV SWITCHES ON

v SET DEV SWITCHES OFF

v SET TERM SWITCH XX ON

v SET TERM SWITCH XX OFF

v SET TERM SWITCHES ON

v SET TERM SWITCHES OFF

v SET NTWRK SWITCH XX ON

v SET NTWRK SWITCH XX OFF

v SET NTWRK SWITCHES ON

v SET NTWRK SWITCHES OFF

v EVENT ename POSTED

v EVENT ename QSIGNALED

v EVENT ename SIGNALED

v EVENT ename RESET

v MAX CALL LEVEL EXCEEDED

v INVALID RETURN ISSUED

v VERIFY

v ABORTED dname AT STMT# snum AND
TERMINATED THE TP

v OUTSTANDING DELAY CANCELED

System Action: The THEN action is taken.

User Response: None.

ITP477I socket_call_type SOCKET CALL
FAILED WITH ERRNO nnnn

Explanation: A socket call used to control the
connection completed with a return code of -1. The
ERRNO value can be found in the TCPERRNO H
header file. Typically, this indicates network problems.

System Action: TPNS issues this message, queues a
timer delay, and continues operation.

User Response: If the problem continues, stop the
TCP/IP connection.

ITP478I TCPERRNO nnnn — CANNOT
CONNECT TO xxx.xxx.xxx.xxx PORT
nnnnn

Explanation: The CONNECT to the destination
xxx.xxx.xxx.xxx PORT nnnnn failed. The ERRNO value
is defined in the C language TCPERRNO header file or
in the IBM TCP/IP Product Publications. This indicates
that the destination address and port number are
unavailable or unreachable.

System Action: TPNS issues this message, queues a
timer delay, and continues operation.

User Response: Ensure that the destination IP
address and port number are correct and alter the
SERVADDR and/or PORT values as needed. In MVS,
the TCPERRNO header file is a member of the C
header files and Pascal include files data set. This data
set is called hlq.SEZACMAC, where hlq is the
installation-defined high-level qualifier. In VM, the
TCPERRNO header file is a separate file named
TCPERRNO H, installed with the TCP/IP product.

Changed Return Codes
The following are Script Generator Utility return codes changed by the TPNS
Version 3 Release 5 function and service enhancements:

72 An error occurred while reading from an input data set

76 The STLTXT data set failed to open

Appendix B. Messages and Return Codes 107

80 The NTWRK data set failed to open.

108 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Appendix C. Simple TCP Sample Script

The following Simple TCP script provides Telnet Line Mode NVT negotiations
exchange. Simple TCP provides an alternative means of simulating the various
Telnet protocols. Simple TCP gives the user more control in the negotiations but
requires more TPNS scripting.

Simple TCP Client Connecting to a Server Using Telnet Line Mode
Network Virtual Terminal

@NET
**
* Network Configuration: Simple TCP Client simulation *
* *
* Description: This TPNS script will simulate one Simple TCP Client *
* connecting to a server, issuing a request to that *
* server, receiving data until the server closes the *
* connection, and then repeating the process. *
* *
* The server to which this Simple TCP Client connects *
* is assumed to have the following characteristics: *
* 1) requests to it must use ASCII code; *
* 2) the end of a request is marked by the *
* carriage return/line feed (CR/LF) sequence; *
* 3) the server closes the connection when all response *
* data has been sent. *
* *
* Some values may need to be changed in this data set in *
* order to operate in your environment. They are *
* indicated by the "<== " string. *
* *
* TPNS CP Gen: None *
* NCP Gen: None *
* *
* Publications Cross Reference: *
* 1) Defining TPNS Networks - Information on this particular *
* network configuration *
* 2) Using STL and the STL - Help on writing STL scripts *
* Translator *
* 3) TPNS Language Reference - Details on how to code TPNS *
* statements *
**

--
* Network statement operands. *
--
STCPLNMD NTWRK HEAD='Telnet Line Mode NVT', * Set the title line

CONRATE=YES, * Print message rates on console
OPTIONS=(MONCMND,debug), * Network Options
ITIME=1, * Interval report every 1 minute
BUFSIZE=32000, * Specify buffer size
THKTIME=UNLOCK, * Wait for keyboard unlock
UTI=100, * User time interval is 1 second
MSGTRACE=YES, * Trace messages
STLTRACE=YES, * Trace messages
TCPNAME=TCPIP * <== Default name of the local

* * TCPIP virtual machine
--
STCPDECK PATH STCPDECK
--
* Define the network resources. *
* *
* This is a TCP/IP connection with 1 simulated device. You may *

109

* add additional operands on the device if desired. See the TPNS *
* Language Reference manual for details on valid operands. *
--
TCONN1 TCPIP
DEV010 DEV TYPE=STCP, * Simple TCP Client

PORT=23, * Server Port for connection
SERVADDR=9.67.127.216,* Server IP Address for connect
PATH=(STCPDECK) * Path Sequence for this DEV

@ENDNET

@program=stcpprog
integer shared nextnum
integer nextid
integer startpos
constant crlf '0D0A'x
constant ff 'FF'x

stcpdeck: msgtxt
/*---*
* The Message Generation deck. *
* *
* Generates requests for the server hypothesized in the network *
* description above, waits for the connection to be *
* closed, and then generates another request. *
---/
/* Initialize table for translation to EBCDIC */

asc2ebc = '00010203372D2E2F1605250B0C0D0E0F'X\, /* 00-0F */
'101112133C3D322618193F27221D351F'X\, /* 10-1F */
'405A7F7B5B6C507D4D5D5C4E6B604B61'X\, /* 20-2F */
'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F'X\, /* 30-3F */
'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6'X\, /* 40-4F */
'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D'X\, /* 50-5F */
'79818283848586878889919293949596'X\, /* 60-6F */
'979899A2A3A4A5A6A7A8A9C04FD0A107'X\, /* 70-7F */
'00010203372D2E2F1605250B0C0D0E0F'X\, /* 80-8F */
'101112133C3D322618193F27221D351F'X\, /* 90-9F */
'405A7F7B5B6C507D4D5D5C4E6B604B61'X\, /* A0-AF */
'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F'X\, /* B0-BF */
'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6'X\, /* C0-CF */
'D7D8D9E2E3E4E5E6E7E8E9ADE0BD5F6D'X\, /* D0-DF */
'79818283848586878889919293949596'X\, /* E0-EF */
'979899A2A3A4A5A6A7A8A9C04FD0A107'; /* F0-FF */

/* Initialize table for translation to ASCII */
ebc2asc = '000102031A091A7F1A1A1A0B0C0D0E0F'X\, /* 00-0F */

'101112131A1A081A18191A1A1C1D1E1F'X\, /* 10-1F */
'1A1A1C1A1A0A171B1A1A1A1A1A050607'X\, /* 20-2F */
'1A1A161A1A1E1A041A1A1A1A14151A1A'X\, /* 30-3F */
'20A6E180EB909FE2AB8B9B2E3C282B7C'X\, /* 40-4F */
'26A9AA9CDBA599E3A89E21242A293B5E'X\, /* 50-5F */
'2D2FDFDC9ADDDE989DACBA2C255F3E3F'X\, /* 60-6F */
'D78894B0B1B2FCD6FB603A2340273D22'X\, /* 70-7F */
'F861626364656667686996A4F3AFAEC5'X\, /* 80-8F */
'8C6A6B6C6D6E6F7071729787CE93F1FE'X\, /* 90-9F */
'C87E737475767778797AEFC0DA5BF2F9'X\, /* A0-AF */
'B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4'X\, /* B0-BF */
'7B414243444546474849CBCABEE8ECED'X\, /* C0-CF */
'7D4A4B4C4D4E4F505152A1ADF5F4A38F'X\, /* D0-DF */
'5CE7535455565758595AA0858EE9E4D1'X\, /* E0-EF */
'30313233343536373839B3F7F0FAA7FF'X; /* F0-FF */

/* clear data received each time data is transmitted */
onout then
data_in=''
/* if no data is received, the connection is closed */

onin buffer='' then abort
/* store data received until data transmitted */

onin then
data_in=data_in\buffer

110 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

type '0D0A'x

/* this script does not account for 'FF'x at the end of data */
/* look at each received stream of data and transmit a response */
/* WILL and DO will be responded back with WONT and DONT */
/* the client will look like a Network Virtual Terminal */
/* the script assumes that there will be a prompt to check */
/* for to indicate the when the client can send data */

/* set look_for to what you expect to receive */
look_for='login'
call wait4it

say devid() ' received login'
nextid =nextnum /* index for user tables */
nextnum=nextnum+1
if nextnum=utblmax(ids) then
nextnum=0
type translate(utbl(ids,nextid),ebc2asc)\crlf

/* change 'Password' to what you expect to receive */
look_for='Password'
call wait4it

say devid() ' received Password'
type translate((utbl(pws,nextid)),ebc2asc)\crlf

do nextcmd=0 to utblmax(cmds)

/* change '$' to what prompt you expect to receive */
look_for='$'

call wait4it
say devid() ' sending COMMAND' utbl(cmds,nextcmd)
type translate((utbl(cmds,nextcmd)),ebc2asc)\crlf
end
suspend()
quiesce
endtxt

wait4it: msgtxt

/* wait for specific data deck - */
/* set look_for to the data expected */
/* check for FF in the data stream in case more negotiations */
/* need to take place */

look_for = translate(look_for,ebc2asc)
notfound = on
do while notfound=on /* wait until data found */
delay(0)
transmit and wait until onin
if index(data_in,ff) > 0 then /* look for commands first */
call negotiat /* negotiate commands */
else
if index(data_in,look_for) > 0 then /* look for data next */
notfound = off

end
endtxt

negotiat: msgtxt

/* negotiation deck - */

Appendix C. Simple TCP Sample Script 111

/* parse through data for FF, look at next bytes for the */
/* commands and options */
/* looks for DO, DONT, WILL, WONT and DATA MARK commands */
/* looks for the Suppress Go Ahead option */

data_out='' /* clear output buffer */
data_ck='' /* clear data parsing field */
datalen=length(data_in) /* get data length */
if datalen>1 then /* >1 implies not just FF */
do
startpos=index(data_in,ff) /* find FF in data */

/* start at command past ff */
data_ck=substr(data_in,startpos+1,length(data_in)-startpos)
fffound=on
do while fffound=on

/* get first byte of parsed data */
data_byte=substr(data_ck,1,1)

/* get second byte of parsed data */
data_byte2=substr(data_ck,2,1)
if data_byte='FD'x │ data_byte='FE'x then /* DO or DONT */
if data_byte2='03'x then /* Suppress GO Ahead */
data_out=data_out\'FFFB'x\data_byte2 /* WILL */
else /* any other option */
data_out=data_out\'FFFC'x\data_byte2 /* WONT */

else
if data_byte='FC'x │ data_byte='FB'x then /* WILL or WONT */
if data_byte2='03'x then /* Suppress GO Ahead */
data_out=data_out\'FFFD'x\data_byte2 /* DO */
else /* any other option */
data_out=data_out\'FFFE'x\data_byte2 /* DONT */

else
if data_byte='F2'x then /* data mark, synch */
do /* assume synch signal */
data_in=buffer /* clear previous data */
data_out='' /* no response sent */
end

startpos=index(data_ck,ff) /* look for ff */
if startpos=0 then
do /* no ff */
fffound=off
startpos=index(data_in,look_for) /* search for specific data */
if startpos>0 then /* found specific data */
notfound=off /* get out of loop */

end /* no ff */
else

/* found ff, parse through commands */
data_ck=substr(data_ck,startpos+1,length(data_ck)-startpos)

end /* fffound on */
if data_out¬='' then /* check if data to transmit */
type data_out /* transmit data */

end
endtxt

ids: msgutbl
'userid1'
'userid2'
'userid3'
'userid4'
'userid5'
endutbl

pws: msgutbl
'pswd1'
'pswd2'
'pswd3'
'pswd4'
'pswd5'

112 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

endutbl

cmds: msgutbl
'cd /usr/lpp'
'ls'
'logout'
endutbl

Appendix C. Simple TCP Sample Script 113

114 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Appendix D. Miscellaneous

This appendix provides information about the miscellaneous enhancements made to
TPNS Version 3 Release 5.

TPNS Sample Network Models
When using the TPNS Version 3 Release 5 Service Level 9711 CPIC or TN3270
network models which are part of the TPNS/ISPF Interface, you must make the
following changes to the model definitions after they are selected.

CPIC
v Change the line after ’@PROGRAM=CPIC’ that starts with ’*----’ to ’/*---’.

v Change the end of the fifth line after the @PROGRAM line from ’----*’ to ’---*/’.

TN3270
Change ’HEAD=Telnet 3270 and 3270E Model Network’ to ’HEAD=Telnet 3270
Network’.

TPNS Sample Data Set
Three new members have been added to the TPNS Sample data set.

WEBLOAD TPNS network definition scripts to simulate Web clients.

TAPING TPNS network definition and scripts that define a CPI-C client
application that attaches the APINGD server.

TAPINGD TPNS network definition and scripts that define a CPI-C server
application that can be attached by the APING client.

115

116 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Appendix E. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

117

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs

118 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

Trademarks and Service Marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

IBM

VTAM

SNA

IBM Communications Server OS/2

Communications Manager (CM/2)

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Appendix E. Notices 119

120 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Bibliography

TPNS Library
TPNS General Information, GH20–2487

TPNS Primer, SC31–6043

TPNS Planning and Installation, SH20–2488

Defining TPNS Networks, SC31–6008

Creating TPNS Message Generation Decks,
SC31–6009

TPNS Language Reference, SH20–2489

TPNS Script Generating Utilities, SC30–3453

TPNS Samples, SC30–3454

TPNS STL Reference Card, SX75–0065

Using the TPNS Structured Translator
Language (STL) and the STL Translator,
SC31–6013

TPNS Operation, SC30–3289

TPNS Messages and Codes, SC30–3310

TPNS General Utilities, SC30–3290

TPNS User Exits, SC31–6009

TPNS Test Manager User’s Guide and
Reference, SC31–8719

TPNS Master Index, GC31–6059

TPNS Library (all manuals except TPNS
General Information, and TPNS Test Manager
User’s Guide and Reference), SB0F-1426

IBM Online Library: IBM Networking Systems
Softcopy Collection Kit (CD-ROM containing
softcopy of all manuals except for TPNS
Master Index and TPNS STL Reference Card),
SK2T-6012

Related Publications
SAA Common Programming Interface
Communications Reference, SC26–4399

VTAM Programming for LU 6.2, SC31–6437

121

122 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

Index

Special Characters
@ENDNET 13
@NET 13

A
Alter PORT=port_number 38

B
B2X 46
BIT 81
BITAND 43
BITOR 44
BITXOR 45
boundary channel-attached Type 2.1 node CP to

CP 95

C
CENTER 47
COMP 8
COPIES 48
CPI-C Protocol Support 87
CPI-C script generation 1

functional overview 1
STL translation 18, 25

CPICVARA STL include file 20
sample JCL for STL translation 19, 26

tracing considerations 1, 3
full-duplex sessions 3
multiple transaction programs 3
VTAM buffer traces 1, 2, 3

D
D2C 50
data compression 91
DATASAVE

operands 69
AREA 71
COUNT 71
INSERT 72
PAD 72
PLENG 72
POS 73
TEXT 73
TEXT2 74

date and time stamp 82
defining the network 21
delay cancellation 83
DELWORD 49
device naming 27
DLYCNCL 83

E
enhancements

Service Level 0110 vii
Service Level 9711 viii

exit interface routine requests 84
extended data stream capability 28

F
FIELD 9
FMH-5 allocate request 1

H
HEXON 11
HPNS 38

I
IBM-3287-1 printers 28
IBM Communications Server

ITPWSTRF 101
trace record example 101
tracing considerations 1, 2

INTEGER 81
ISPF Interface 1, 95, 99
ITPECHO 94
ITPFIOX 87

STL language example 90
syntax 88
use 88

ITPFIOX file I/O user exit 87
ITPLL 97
ITPSGEN 1, 8, 13, 18, 24, 25

changes to JCL, EXECs, and CLISTs for CPI-C
scripts 5, 21

initial delay calculation 94
ITPSGEN control commands 8

COMP and NOCOMP 8
DELAY 12
FIELD and NOFIELD 9
HEXON and NOHEXON 11
RESP 12
SENDL and NOSENDL 11
SSCP 12
STL and NOSTL 21
UCD and NOUCD 12

JCL for CPI-C scripts 5, 22
procedure for generating CPI-C scripts 1
REXX EXEC for CPI-C scripts 6, 23
SEQOUT data set 13, 14, 24
TSO CLIST for CPI-C scripts 6, 23

ITPVTBRF 94
INVERT 94
ITPSGEN initial delay calculation 94
SSCPNAME 94

ITPWSTRF 1, 101

123

ITPWSTRF (continued)
trace format requirements 101
under MVS 103
under VM CMS 102

L
LASTPOS 51
LOCLPORT operand 38
log record header 99

LOGLEVEL field 99
loglist data output and display 93
loglist utility ITPLL 97

CPI-C trace records 97
verify records 97

M
messages 105

informational log data set messages 107
ITP427I 107
ITP477I 107
ITP478I 107

ITP1385I, initiator message eliminated 105
TPNS script generator utilities messages 105

ITP863I 105
ITP864I 105
ITP866I 105
ITP867I 105
ITP868I 105
ITP869I 105
ITP870I 106
ITP871I 106
ITP872I 106

TPNS STL Translator messages 106
ITP3202I 106
ITP3203I 106
ITP3204I 106
ITP3205I 106
ITP3206I 106

migration considerations 97

N
named queue support 76, 97

PUSH 97
QUEUE 97
QUEUED 97

network, defining 21
network definition statements 4

sample model network 4
NOCOMP 9
NOFIELD 9
NOHEXON 11
NOIMPLICIT option 82
NOSENDL 11
NOSTL 21
NOUCD 12

O
ONIN/ONOUT 82
OS/2 Communications Manager (CM/2)

ITPWSTRF 101
trace record example 101
tracing considerations 1, 2

OVERLAY 52
OVERLAY function 97

P
PATHID 53
POS 54
PULL 77
PUSH 78

Q
QUEUE 79
QUEUED 80

R
reports 13

detail report 13
summary report 13
trace records eligible field 13

return codes 105, 107
REVERSE 55

S
SAY 56
SENDL 11
SEQOUT data set 13, 14, 24

sample SEQOUT data set 14, 24
Service Level 0110 enhancements vii
Service Level 9711 enhancements viii
SET 74
set counters statement 74
Simple TCP sample script 109
Simple User Datagram Protocol (UDP) 37

network definition 37
simulated resource type codes 39
SNA positive/negative response process 27
SNACMND 58
SPACE 60
STCP sample script 109
STCPROLE operand 37
STL 21, 41

exit interface routine requests 84
named queue support 97
OVERLAY function 97
verify record reports 84

STL data manipulation functions 41
STL miscellaneous enhancements

B2X 46
BITAND 43
BITOR 44
BITXOR 45

124 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

STL miscellaneous enhancements (continued)
CENTER 47
COPIES 48
D2C 50
delay cancellation 83
DELWORD 49
LASTPOS 51
OVERLAY 52
PATHID 53
POS 54
PULL 77
PUSH 78
QUEUE 79
QUEUED 80
REVERSE 55
SAY 56
SNACMND 58
SPACE 60
STRIP 61
SUBWORD 62
WORD 63
WORDINDEX 64
WORDPOS 65
WORDS 66
X2B 67
X2C 68

STL script generation 21
STL scripting enhancements

additional scripting resources
BIT 81
INTEGER 81
ONIN/ONOUT 82
STRING 81

named queue support 76
STL translation 18, 25

CPICVARA STL include file 18, 20
Sample JCL for STL translation 19, 26

STLTXT 5, 21, 107
STRING 81
STRIP 61
SUBWORD 62
SUDP 37
SYSREQ key 27

T
TCP/IP 27, 109

alter PORT=port_number 38
TCP/IP High Performance Native Sockets

(HPNS) 38
Telnet 3270E 27
Telnet 5250 36
Telnet Line Mode Network Virtual Terminal

clients 34
user exit control blocks

device control block 39
log record header format 39

TCP/IP High Performance Native Sockets (HPNS) 38
TCP/IP subsystem detection 99
Telnet 3270E clients 27

device naming 27

Telnet 3270E clients (continued)
network definition 29

sample network definition 29
sample TPNS script simulating a TN3270E client 30
SNA positive/negative response process 27
suboption negotiation commands 28

ASSOCIATE 28
CONNECT 28
DEVICE-TYPE 28
FUNCTIONS 28

SYSREQ key 27
Telnet 5250 clients 36

network definition 36
Telnet Line Mode Network Virtual Terminal clients 34

network definition 34
sample message generation deck 34
sample STL procedure 36

TPNS Display Monitor Facility 93
TPNS/ISPF Interface 1, 7, 24, 95, 99
TPNS sample network models 115

CPIC 115
TN3270 115

TPNS scripting language 41
Alter PORT=port_number 38
DLYCNCL 83
exit interface routine requests 84
named queue support 97

PULL 97
PUSH 97
QUEUE 97
QUEUED 97

verify record reports 84
TPNS Service Level 9711 97

migration considerations 97
service level indicator 95

trace records eligible field 13

U
UCD 12
UDP (simple UDP) 37
user exit control blocks 39
user exits 98

counter reference 98
save area control block 98

SAVBUFSZ 98
SAVDATAX 98
SAVDATLN 98
SAVFLAGS 98

save area reference 98
switch reference 98

V
variable parameter data for script user exit 85
verify record reports 84
VM/ESA REAL I/O support 95
VTAM generic resource support 94
VTAM system definitions 20
VTAMAPPL 95

Index 125

W
WORD 63
WORDINDEX 64
WORDPOS 65
WORDS 66
Work Station Trace Reformatter Utility 1, 101

X
X2B 67
X2C 68

126 TPNS Teleprocessing Network Simulator: Function and Service Enhancements-2001

We’d Like to Hear from You

TPNS
Teleprocessing Network Simulator
Function and Service Enhancements-2001
Version 3 Release 5

Publication No. SC31-8654-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8654-02

SC31-8654-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

TPNS Development and Support
Department A30A/B503
IBM Corporation
P.O. Box 12195
Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8654-02

	Contents
	About This Book
	Service Level 0110 Enhancements
	Service Level 9711 Enhancements
	Who Should Read This Book
	How to Use This Book
	Where to Find More Information

	Chapter 1. TPNS CPI-C Script Generation Support
	Function Overview
	Tracing Considerations
	VTAM Buffer Trace
	OS/2 Communications Manager (CM/2) Trace
	IBM Communications Server Trace
	Tracing Dependencies and Restrictions
	Traces Containing Multiple TPs or Conversations
	Full-Duplex Sessions
	VTAM Buffer Traces

	Automatic Script Generation Considerations
	Network Definitions
	Sample Model Network

	Changes to JCL, EXECs, and CLISTs
	Sample JCL
	Sample REXX EXEC
	Sample TSO CLIST

	Changes to the TPNS/ISPF Interface
	ITPSGEN Control Commands
	COMP and NOCOMP
	FIELD and NOFIELD
	NOFIELD Example
	FIELD Example

	HEXON and NOHEXON
	SENDL and NOSENDL
	UCD and NOUCD
	Existing Control Commands

	Changes to Reports
	Summary Report
	Detail Report

	SEQOUT Data Set
	Sample SEQOUT Data Set

	STL Translation
	Sample JCL for STL Translation
	CPICVARA STL Include File

	VTAM System Definitions

	Chapter 2. TPNS STL Script Generation Support
	STL and NOSTL
	Defining the Network
	Changes to JCL, EXECs, and CLISTs
	Sample JCL
	Sample REXX EXEC
	Sample TSO CLIST

	Changes to the TPNS/ISPF Interface
	SEQOUT Data Set
	Sample SEQOUT Data Set

	STL Translation
	Sample JCL for STL Translation

	Chapter 3. Additional TPNS TCP/IP Support
	Telnet 3270E Support
	Suboption Negotiation Commands
	Defining a Telnet 3270E Client
	Sample Network Definition for a Telnet 3270E Simulation
	Sample TPNS Script for a Telnet 3270E Simulation

	Telnet Line Mode Network Virtual Terminal
	Defining a Telnet Line Mode Network Virtual Terminal Client
	Sample Telnet Line Mode Network Virtual Terminal Message Generation Deck
	Sample Telnet Line Mode Network Virtual Terminal STL Procedure

	Telnet 5250 Support
	Simple UDP Terminal Support
	Limited Server Enhancements
	Local Port Number Support
	TCP/IP Macro API Utilization
	Alter PORT=port_number
	Simulated Resource Type Codes
	User Exit Control Blocks
	Device Control Block
	Log Record Header Format

	Chapter 4. TPNS Scripting Enhancements
	STL Data Manipulation Functions
	BITAND
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support BITAND

	BITOR
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support BITOR

	BITXOR
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support BITXOR

	B2X
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support B2X

	CENTER
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support CENTER

	COPIES
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support COPIES

	DELWORD
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support DELWORD

	D2C
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support D2C

	LASTPOS
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support LASTPOS

	OVERLAY
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support OVERLAY

	PATHID
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support PATHID

	POS
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support POS

	REVERSE
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support REVERSE

	SAY
	Where
	Function
	Examples
	TPNS Scripting Language Changes to Support the Enhanced SAY

	SNACMND
	Where
	Function

	SPACE
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support SPACE

	STRIP
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support STRIP

	SUBWORD
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support SUBWORD

	WORD
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support WORD

	WORDINDEX
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support WORDINDEX

	WORDPOS
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support WORDPOS

	WORDS
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support WORDS

	X2B
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support X2B

	X2C
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support X2C

	Operands for Datasave Statement
	SET - Set Counters Statement
	Named Queue Support
	PULL
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support PULL

	PUSH
	Where
	Function
	Examples
	TPNS Scripting Language Changes to Support PUSH

	QUEUE
	Where
	Function
	Examples
	TPNS Scripting Language Changes to Support QUEUE

	QUEUED
	Where
	Returns
	Function
	Examples
	TPNS Scripting Language Changes to Support QUEUED

	Increased Scripting Resources
	BIT
	INTEGER
	STRING
	ONIN/ONOUT

	Date and Time Stamp
	NOIMPLICIT Option
	Delay Cancellation
	DLYCNCL Action

	Verify Record Reports
	New Exit Interface Routine Requests
	Variable Parameter Data for Script User Exit

	Chapter 5. Miscellaneous Enhancements
	Enhancements to CPI-C Protocol Support
	TPNS 3.5 or TPNS 3.5 Service Level 9711
	TPNS 3.5 Service Level 0110

	ITPFIOX File I/O User Exit
	ITPFIOX Syntax and Use
	STL Language Example

	Data Compression
	Summary Report
	Detail Report
	X-Code R-Code

	New DSPLY Loglist Control Command Operand
	Loglist Data Output and Display
	ITPECHO Generic Resource Support
	New ITPVTBRF Execution Parameters
	ITPSGEN Initial Delay Calculation
	Storage Allocation Below 16 Megabytes Minimized
	Boundary Channel-Attached Type 2.1 Node CP to CP Capability
	VM/ESA REAL I/O Support Without RIO370 Pages
	TPNS/ISPF Interface PF3 Key Changes
	Service Level Indicator
	ITP0BRW2
	NOWTOR TPNS Execution Parameter

	Chapter 6. Migration Considerations
	Loglist Utility ITPLL and CPI-C Trace Records
	Loglist Utility ITPLL and Verify Records
	STL
	User Exits
	Counter Reference
	Switch Reference
	Save Area Reference
	Save Area Control Block

	Log Record Header
	TCP/IP Subsystem Detection
	TPNS/ISPF Interface PF3 Key Changes
	TPNS/ISPF Interface ITP0BRW2 Changes

	Appendix A. Work Station Trace Reformatter Utility
	Trace Output Format Requirements
	Example: CM/2 Trace Record
	Example: CS Trace Record
	Token Ring Trace Format
	SDLC Trace Format

	Using ITPWSTRF
	Executing ITPWSTRF Under VM CMS
	Executing ITPWSTRF Under MVS

	Appendix B. Messages and Return Codes
	TPNS Script Generator Utilities Messages
	TPNS STL Translator Messages
	Informational Log Data Set Messages
	Changed Return Codes

	Appendix C. Simple TCP Sample Script
	Simple TCP Client Connecting to a Server Using Telnet Line Mode Network Virtual Terminal

	Appendix D. Miscellaneous
	TPNS Sample Network Models
	CPIC
	TN3270

	TPNS Sample Data Set

	Appendix E. Notices
	Trademarks and Service Marks

	Bibliography
	TPNS Library
	Related Publications

	Index
	We'd Like to Hear from You

