

Open Blueprint

L
O
C
A
L

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

S
E
R
V
I
C
E
S

Applications and
Development Tools

Systems Management

Application / Workgroup Services

Communication
Services

Object Mgmt
Services

Common Transport Semantics

Transport Services

Physical Network

Signalling
and

Control
Plane

Distribution
Services

Present'n
Services

Data
Access

Services

LAN WAN Channel ATM

Applications
and

Application
Enabling
Services

Distributed
Systems
Services

Network
Services

ÉÂÔ

Transaction Monitor
Resource Manager

 GC23-3931-01

Open Blueprint ÉÂÔ

Transaction Monitor
Resource Manager

 GC23-3931-01

About This Paper

Open, distributed computing of all forms, including client/server and network computing, is the model that is driving the rapid
evolution of information technology today. The Open Blueprint structure is IBM's industry-leading architectural framework for
distributed computing in a multivendor, heterogeneous environment. This paper describes the Transaction Monitor resource manager
component of the Open Blueprint and its relationships with other Open Blueprint components.

The Open Blueprint structure continues to accommodate advances in technology and incorporate emerging standards and protocols
as information technology needs and capabilities evolve. For example, the structure now incorporates digital library, object-oriented
and mobile technologies, and support for internet-enabled applications. Thus, this document is a snapshot at a particular point in
time. The Open Blueprint structure will continue to evolve as new technologies emerge.

This paper is one in a series of papers available in the Open Blueprint Technical Reference Library collection, SBOF-8702
(hardcopy) or SK2T-2478 (CD-ROM). The intent of this technical library is to provide detailed information about each Open Blueprint
component. The authors of these papers are the developers and designers directly responsible for the components, so you might
observe differences in style, scope, and format between this paper and others.

Readers who are less familiar with a particular component can refer to the referenced materials to gain basic background knowledge
not included in the papers. For a general technical overview of the Open Blueprint, see the Open Blueprint Technical Overview,
GC23-3808.

Who Should Read This Paper

This paper is intended for audiences requiring technical detail about the Transaction Monitor Resource Manager in the Open
Blueprint. These include:

¹ Customers who are planning technology or architecture investments

¹ Software vendors who are developing products to interoperate with other products that support the Open Blueprint

¹ Consultants and service providers who offer integration services to customers

 Copyright International Business Machines Corporation 1995, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Summary of Changes 1

Open Blueprint Transaction Monitor Resource Manager 3
Introduction 3
Attributes of the Transaction Monitor Resource Manager 4
Transaction Monitor Resource Manager Structure 5
Transaction Monitor Resource Manager Features 6

Relationships to Other Resource Managers 13
An Extended Model of Transaction Processing 13

Appendix A. Advanced Transaction Models 17
Sagas 17
Cooperating Transactions 18

Appendix B. Notices 19
Trademarks 19

Appendix C. Communicating Your Comments to IBM 21

 Copyright IBM Corp. 1995, 1996 iii

iv Transaction Monitor Resource Manager

Summary of Changes

This revision includes:

¹ A description of how relationships between the Transaction Monitor resource manager and other Open
Blueprint resource managers support network computing

¹ A description of advanced transaction models

 Copyright IBM Corp. 1995, 1996 1

2 Transaction Monitor Resource Manager

Open Blueprint Transaction Monitor Resource Manager

This paper describes both the attributes and the features of the Transaction Monitor resource manager.

 Introduction

Transaction processing (TP) and transaction monitors represent an important part of general client/server
computing, offering a set of facilities that are indispensable for building commercial-strength applications.
As client/server applications mature and become the basis for mission-critical solutions, it becomes
apparent that for such solutions to be effective, a component is required in the system that manages the
interactions between all the participants (sometimes likened to the software equivalent of the symphony
orchestra's conductor). This is the traditional role of the online transaction processing (OLTP) monitor, in
which transactions, rather than being mere business events, represent a philosophy of application design
that guarantees robustness in a distributed system. This philosophy has been summed up as follows:

“The idea of distributed systems without transaction management is like a society without contract
law. One does not necessarily want the laws, but one does need a way to resolve matters when
disputes occur. Nowhere is this more applicable than in the PC and client/server worlds.”1

In the Open Blueprint structure, transaction processing consists of two sets of function. The Transaction
Manager resource manager, one of the Open Blueprint Distributed Systems Services, represents the core
of the transaction processing environment. The Transaction Manager resource manager provides services
that provide a foundation for distributed transaction processing applications by providing functions that:

¹ Delineate a group of operations as a transaction
¹ Record a transaction's transactional state
¹ Complete the work in it's entirety or discarding all the operations
¹ Control resource usage on a transactional basis
¹ Facilitate recovery of the system back to a known state following a failure

The Transaction Manager resource manager is described more fully in the Open Blueprint Transaction
Manager Resource Manager component description paper.

The Open Blueprint also defines an application service called the Transaction Monitor resource manager.
A transaction monitor is that system software (or middleware) that provides end user (or client)
applications with access to a variety of application and system services (such middleware is often referred
to as an application server). Additionally, a transaction monitor environment provides a broad set of the
elements necessary to create, manage, and run user programs. Transaction monitor software specifically
addresses aspects of program execution, security, system management, and transactional and service
integrity. From a user's perspective, today's transaction processing monitors (such as CICS, IMS, AS/400,
and Encina) are characterized by a number of attributes which can be conveniently grouped into six main
categories that represent the integration components of a complete transaction processing system:

¹ System and Data Integrity Services
 ¹ Presentation Services
 ¹ Communications Services
 ¹ Data Access
 ¹ System/Program Services
¹ System Management services

 Copyright IBM Corp. 1995, 1996 3

Attributes of the Transaction Monitor Resource Manager

The Transaction Monitor resource manager is extremely well-suited to handling client/server applications in
complex environments for the following reasons:

 ¹ Integrity

The Transaction Monitor resource manager provides a robust, general-purpose environment which
enforces the Atomicity, Consistency, Isolation, and Durability (ACID) discipline without requiring any
complex application code to be written. It achieves this by using Transaction Manager resource
manager functions to ensure the integrity of distributed resources.

 ¹ Robustness

The ACID principles that underlie the Transaction Monitor resource manager provide appropriate
levels of protection between applications and resource managers and between applications
themselves.

The Transaction Monitor also provides an environment in which concurrent applications (or instances
of an application) are isolated and protected from one another and in which the business logic is
usually separated from both client processing (presentation services) and resource processing (data
access).

Individual parts of an application can be tightly-coupled using a two-phase commit protocol or
loosely-coupled using transactional queues.

 ¹ High Performance

The Transaction Monitor resource manager provides a “pre-warmed” environment by having resources
pre-allocated, exploiting early binding to resource managers and other optimizations. A pool of
pre-loaded application servers not only reduces overall system resource requirements but avoids the
overhead associated with starting up a new process for each client request.

Another key strength of the Transaction Monitor resource manager is its ability to provide efficient use
of (often limited) resources through superior process management and support for both static and
dynamic load balancing. Requests can be prioritized and server processes can be replicated as
required, either on the same server node or on different nodes. These facilities are especially
important for systems that run on SMP hardware.

Facilities are also provided to allow priority scheduling to be given to differing classes of work.

¹ High and Continuous Availability

The Transaction Monitor resource manager operates within many different failure scenarios. Because
the monitor is aware at all times of the current state of all client/server resources under its control, the
point of failure can always be detected and failed processes restarted as required.

 ¹ Security

The Transaction Monitor resource manager extends the functions of the Security resource managers
by providing role-based authorization models. Access to resources can be controlled with reference to
any combination of the user identity requesting the access, the type of action being requested
(transaction-based security), the system or terminal from which the request has been initiated or the
time of day.

 ¹ Scalability

The discipline of developing applications for the transaction monitor environment is one which leads to
the development of modular procedures that separate the function required from the data to be
processed. As more functions are added, the Transaction Monitor resource manager is able to
distribute that function over multiple servers. Enforcement of the ACID principles ensures that
disparate functions work together in a consistent way.

4 Transaction Monitor Resource Manager

In addition, the Transaction Monitor provides an easy way to mix differing resource managers in a
heterogeneous environment. Coordination across the resource managers is managed by the
Transaction Monitor resource manager itself. This allows the environment to grow without requiring
any alterations to the existing applications or application architecture.

Thus, the Transaction Monitor resource manager provides a ready-built framework for building, running
and administering a distributed application. This framework provides an excellent basis for rapid
development of client/server applications when complemented with the appropriate set of graphical user
interface (GUI) tools.

The combined effect is that the Transaction Monitor resource manager provides significant cost benefits,
not only in providing a running start for application development but also by funneling a large number of
clients into a small number of server processes, by reducing access costs to resource managers.

Transaction Monitor Resource Manager Structure

As shown in Figure 1 below, the Transaction Monitor resource manager is built on a client/server
architecture, with clients and servers implemented as separate processes, each within the local operating
system environment. A client can either run on the same system as the server or run remotely.

Presentation
Logic

Client

Client

Client

Client

Presentation
Logic

Presentation
Logic

Presentation
Logic

Listener/
Scheduler/
Router

Monitor

Application Server
Data
Manager

X/OPEN XA Interface

Data
Logic

Data
Logic

Business
Logic

Business
Logic

Business
Logic

Monitor
CICS RMI
IMS SSI

Data
Logic

Data
Logic

Business
Logic

Business
Logic

Business
Logic

Figure 1. Transaction Monitor Structure

Most clients are concerned with presentation management, for example when the client is a remote
application. In some configurations, elements of business logic can also be run on the client.

Transaction requests reach a server from a client and are caught by a front-end process that routes the
requests to an application server process, placing them on a priority scheduling queue. Each application
server (usually running in its own separate operating system process) takes the transaction requests from

 Open Blueprint Transaction Monitor Resource Manager 5

the scheduling queue and executes the requests in priority order, causing the appropriate customer
application to run. The number of processes (application servers) is controllable and will usually be far
fewer than the number of clients. A collection of such application servers is often called a region. More
than one region can be run on a system at any one time. An application server process runs only one
application at a time but is capable of running any of the application types defined to the region. When
the application terminates, the application server process is reused by the next application. Requests are
passed from the clients to the application server by a scheduler function within the Transaction Monitor
resource manager.

During system initialization, a number of application servers are created. At peak times, more servers can
be created, up to a configurable limit. Then, as the workload eases, excess servers are terminated. The
minimum and maximum number of application servers is controllable by the system administrator.
Predictable response time is a key requirement for OLTP systems. The ability to control the number of
applications running at any one time enables the system to be responsive to increased demand without
allowing a large number of concurrent requests to flood the system and slow response time. This can be
managed automatically by the Transaction Monitor resource manager itself.

Transaction Monitor Resource Manager Features

This section describes the various features of the Transaction Monitor resource manager in more detail.
Some of these features are provided directly by the Transaction Monitor resource manager itself, but in
many cases the Transaction Monitor resource manager simply provides access to the underlying Open
Blueprint services from within its environment.

In traditional implementations, transaction monitor environments are usually provided by powerful, single,
well-integrated products such as CICS, IMS, and AS/400. Each provides its own set of interfaces, such as
the EXEC CICS API.

As distributed computing evolves to encompass a more heterogeneous environment, some of the
functions traditionally associated with the transaction monitor environment will be provided as an integral
part of the base operating system. Therefore, applications will be able to use more of the standard
application programming interfaces (APIs) in addition to the specialized interfaces used today. Examples
of this include the Encina programming model, which extends the standard Distributed Computing
Environment (DCE) interfaces as defined by the Open Software Foundation and encompass the X/Open
transactional interfaces (TX, XA, XA+ and CPI-C) and the distributed object environment, in which some of
the transaction monitor function is incorporated into the Object Request Broker.

Transaction Manager Resource Manager Support

The Transaction Monitor resource manager provides access to the Transaction Manager resource
manager services (described in the Open Blueprint Technical Overview and related white papers), either
implicitly, as in the chained transaction model2 implemented by CICS or IMS, or explicitly through direct
access to the Transaction Manager resource manager interfaces. Thus, the Transaction Monitor resource
manager allows an application to delineate a group of operations as a transaction, record the transactional
state, and complete the work in its entirety or discard all the operations, to control resource usage on a
transactional basis and to facilitate recovery of the system back to a known state following a failure.

More detailed information on the support required to assist applications with their recovery when a system
restarts after a system failure is discussed in “Recovery Services” on page 11.

6 Transaction Monitor Resource Manager

 Presentation Support

Presentation support provides functions for data handling and validation capability. Examples include
CICS Basic Mapping Services (CICS/BMS), IMS MFS, AIX with Motif/AIC/Widgets or GUI builders.
Additionally, expanded client-server models such as intelligent agents include additional processing at the
client on behalf of the user (for example, rules and learning).

Presentation support is designed to free an application from those tasks associated with gathering and
displaying information to and from the client (for example, a terminal). Presentation support provides
device independence by creating a logical rather than a physical form description with which an application
interacts. Presentation support acts on the logical form description and reads/writes to the physical
device. Examples include the presentation support's use of X-Windows, Motif, CICS/BMS, or IMS
Message Formatting Services.

Associated with the presentation support is a screen generation tool that allows the developer to specify
an application's display or screen layout function (for either GUI-based or character-based environments).
These display generation facilities allow specification of standard components for GUI-based applications
such as data entry areas, labels, boxes, buttons (radio and push), lists (drop-down, pop-up), tables and
similarly character-based attributes such as fields (position, appearance, contents, and behavior). The
screen generation facility also provides services to assist the developer in forms construction. These
services are basic templates to build new forms, an editor to modify existing forms and debug facilities to
insure proper operation. The facilities can also be provided through such tools as IBM's VisualAge,
Powersoft's PowerBuilder, Microsoft's Visual Basic and Magna's Magna X.

The base functions will be provided by the Human Computer Interaction resource manager. In the
transaction monitor environment, these can be enhanced with additional support for forms processing
within the applications and transparent support of non-programmable terminals.

Communications Support and Interoperability

Communications support frees the application from those tasks associated with exchanging data between
client and server and between applications. They provide transparent access between the client and the
application through communications, directory and security functions. Applications (or servers) advertise
the availability of a particular program (or interface) with the Directory resource manager. After a user (or
client) request is issued, the directory transparently locates an available program and hides any
distribution detail associated with the connection. Associated with the user request are security services
to both authenticate the user's validity to access the program and to provide an authenticated connection
between user and application.

The three common distributed computing programming models are all supported: conversational, remote
procedure call, and messaging. Within the function are facilities to transparently transfer message
exchanges across any number of transport protocols and to handle data representation conversions.

Interoperability with existing systems requires that conversion of distributed computing protocols (for
example, IMS/ISC or CICS/ISC) be supported through gateways provided at the boundary of the operating
environment. Additionally, mapping is required to accommodate interoperability between communication
models (that is, between the contextual or connection-oriented conversations and independent or
datagram-oriented request/response models). Historically, gateways have been constructed that address
all aspects of interoperability (transaction, protocol, and model) in a unified implementation.

 Open Blueprint Transaction Monitor Resource Manager 7

Data Access Support

Within the transaction monitor environment, interfaces are provided between the application and stored
data. These interfaces allow the data to be read or updated, while preventing unauthorized access and
protecting the data from corruption. The Transaction Monitor resource manager supports recoverable
usage of a variety of database, record-oriented and byte-oriented file systems, and Persistence resource
manager support.

Some systems provide functions for handling queues either to provide such services as time-independent
processing (MQSeries, IMS Queue Manager, Encina RQS) or to use as transactional storage areas
(CICS).

Data access support is designed to free the application from those tasks associated with data definition
and data manipulation. This support delivers yet another degree of data independence by providing
logical data representation. Additionally, standards have been defined for data access operations (such as
SQL and ISAM). The X/Open XA interface, as supported by the Transaction Manager resource manager,
is used to ensure the integrity of resources.

The Transaction Monitor resource manager traditionally provides value-add to the existing data access
facility by defining recoverable services that are both:

¹ Permanent (exist for other programs to use)
¹ Temporary (only exist for the duration of the current program or transaction).

Additionally, the Transaction Monitor resource manager can provide any missing data manipulation
functions, as it does with CICS File Control (variable length, relative access, or generic key). It also
provides the convenience of common administration and common security across a variety of resource
managers.

Application Management Support

Facilities are provided for efficient balancing of workload and efficient use of available (and possibly
limited) resources to guarantee a consistent user response time. These facilities are:

 ¹ Scheduling

Although the local operating services provide basic facilities for task or program scheduling and
execution, a monitor provides a value add through the introduction of prioritization, triggering, and
resource sharing and by extending the core process and program definition to include a specification
level for user, application, transaction or service.

The operating system mechanisms for task and program scheduling include function for:

– Transparent assignment of a process context to an execution context (by reusing processes or
threads as needed)

– The concept of shared libraries that allows many applications to reuse a copy of the program

– The facility to assign fixed priorities to a process

– The ability to either create a process beforehand or upon request

– Concurrency service for synchronization of resource access

The Transaction Monitor resource manager provides additional value by extending the scheduling
functions to include the following:

– Priority levels on an application, transaction, or service basis

– Scheduling functions to provide program trigger on defined thresholds

8 Transaction Monitor Resource Manager

– Synchronization services at a resource level to allow programs to execute as the required total
resource becomes available for the required execution environment

 ¹ Workload Management

Workload management covers two areas:

– Load balancing: assures the workload is assigned equally across the system
– Load sharing: assures the workload is executed equally across the system

The Transaction Monitor resource manager provides facilities to support workload management for
transaction processing workloads, both within a single system and across multiple distributed systems.

 ¹ Event Services

Although the system provides basic services and frameworks for event management, an event service
provides additional value through the introduction of application execution based on an event such as
time of day, time interval, transaction completion, or resource availability.

The system service mechanisms for event management include core function to define the basic timer
event. The monitor service provides additional value by defining higher-level processing of the timer
event through a variety of time-dependent processing options (such as transactions executed at a
particular time of day or after an elapsed period of time).

Some transaction processing systems provide their own implementation of program service functions and
functions to facilitate and manage the sharing of resources. Examples include CICS task control, program
control, storage control and timer service; or the IMS storage manager, dispatcher, and scheduler.

Systems Management Support

System management services are designed to assist the administrator by supplying a graphical user
interface which provides both a single system image and single point of control for those tasks associated
with system definition, control, and maintenance. The Transaction Monitor resource manager provides
appropriate definitions and support to allow its entities and workload to be managed within the Open
Blueprint Systems Management structure.

 ¹ Configuration

Minimizes user involvement by automating definition of required user, application and system services
(and defining any relationships and operational environment). Provisions are made to ensure an
administrator is directed to the task at hand and to reduce or eliminate the need to supply definition for
the supporting system (for example, installation of a CICS/6000 system should be insulated from any
detail associated with Encina, DCE and AIX). Additionally, the configuration service needs to ensure
that only the minimal amount of parameters need specification for a particular system definition by
supplying as much default and generic definition as possible. Configuration services also need to
discover changes in the systems and automatically create and destroy definitions as appropriate.

 ¹ Update

Provides a mechanism for distribution of change of user, application and system service definition, or
software level. The update service ensures that the system has both the latest system definition and
the latest software (version, function, and fixes) by providing the mechanism to distribute changes.

 ¹ Backup

Provides a facility that supplies information the user might require to facilitate reconstruction of events
or data changes caused by an application. Usually, the backup data is stored in a recoverable file that
can be used as an audit trail, a list of transactions on the system, or a record of modifications to the
system services. The backup data can be used for additional purposes such as restart or recovery
operations. Examples of backup services include IMS logging and archiving, CICS journaling, Encina
logging, and AIX error logging.

 Open Blueprint Transaction Monitor Resource Manager 9

Many of the backup services are provided by the underlying local system facilities. System reliability,
availability, and serviceability (RAS) and monitoring facilities usually provide the necessary function to
perform general audit services.

The Transaction Monitor resource manager provides a general logging service to store data that the
user, application, or services specifies as recoverable. Usually, the Open Blueprint Data Access
Services incorporate such services within their specific product implementation. Such a service is
designed to store larger quantities of data, maintain the data for longer duration, and provide more
degrees of data selection (and is often required to provide backup storage mechanisms to retain the
data). The Transaction Monitor resource manager provides a transaction log service; however, the
recoverable data requirements are unique and distinct from a generalized logging service.

 ¹ Error Detection

Provides services for the collection of event data requiring some system intervention. These services
are useful for problem diagnosis, correction, and notification (of any interested party, such as
NetView).

The system RAS services provide for an integrated data repository for all events critical to the
operation of the system. Sufficient event information is gathered to allow subsequent problem
diagnosis and guarantee problem resolution (in other words, any occurrence critical to the operation of
the system or malfunction or error is recorded and provides a description, probable cause and
necessary corrective actions). RAS services include specific system facilities for trace, error logging,
and system dump. Common utilities provide uniform data reports for analysis of this gathered data in
relationship to overall system activity or on a more granular basis by specific component within the
system.

 ¹ Monitoring

A collection of operational data to allow system-controlled tuning. Such services are useful for
ensuring reliability and availability, performance management, and accounting.

Reliability and availability services provide for continued operations in the event of a failure. The
requirements placed on the system are for the following:

– Monitoring (or a heartbeat function) to provide notification of an outage and failure

– Configuration services to define the relationships and operating environment of user, application,
and system services (as defined previously)

– Data and system integrity services to provide global synchronization of resource access by the
user, application and system services (as defined previously)

When an application or service fails, work can be recovered by:

– Restarting the failing process

– Assigning a backup that provides similar function (generally operating somewhere else in the
system)

Restart and recovery services are addressed in “Recovery Services” on page 11.

Additionally, fault tolerant environments are specifically designed to provide continuous operation and
minimize disruption by providing failover processing, which uses a designated backup and automated
switchover procedures.

Performance management allows statistical information to be gathered on a user, application, service,
or transaction usage basis. User-defined performance data is written to a system facility for analysis
that is either specific to the transaction or in relationship to other system activity. The system can then
tune the application execution environment based on the statistical information to achieve maximum
throughput, guaranteed response times or maximum utilization of resources. Additionally, the
execution environment can be reconfigured among other systems to ensure specific execution criteria.

10 Transaction Monitor Resource Manager

Accounting is also provided by user, application, service, or transaction usage.

 ¹ Security

Authentication ensures a validated and secure connection between the requester and service
provider.

Authorization allows the definition and enforcement of access levels by requester for usage of a
service provider. For transaction processing environments it is generally desirable to have a single
authorization step for granting access into the system. Additionally, based on the operating
environment and conditions, authorization levels can be established by operating domain, user role,
level of permission or, time of day criteria.

The Transaction Monitor resource manager builds on the Security resource managers by providing
these additional parameters (such as transaction-oriented security or authorization based on the
identity of the initiating terminal).

 Recovery Services

Restart involves creating a backup after detection of a failure. The configuration services create the
backup in an operational processor (which is either the same or different from where the failure occurred
and depends on the failure type). The backup is responsible for re-creating the execution environment
from the point of failure from pertinent information retained in permanent storage. This information is used
for automatic replay of in-flight transactions following such a failure.

Failover involves creation of an execution environment that consists of a primary process and a backup
process, each running on separate processors (that is, a process pair). The basic definition of a process
pair states that the primary process executes while the backup process remains quiescent. However, as
long as primary and secondary processes perform different tasks, both can actively perform work. That is,
they can provide failover support for one another. The primary and backup processes maintain
synchronization by maintaining pertinent context information in a stable and shared storage area. In the
event of failure the system need not notify the associated user, application, or service of the failure,
because requests are automatically retargeted to the functional process.

If a system terminates before all transactions have completed normally, when the system is started again,
the recoverable resources of that system must be restored to a known consistent state before normal
processing can resume. This consistent state should reflect the changes made to resources by
transactions which committed during the last execution of the system. The logic for transactional recovery
is similar to the following:

¹ Restart the system (by starting the Transaction Manager and other resource managers)
¹ Reconstruct the Transaction Manager resource manager state (the transaction outcome)
¹ Restart the resource managers
¹ Exchange transaction outcome
¹ Relay log information to restore resource manager data

The specific procedures followed depend on the environment in which the application that comprises the
transactions was running, so the procedures are different for object-based transactions, for CICS-based
transactions, or for IMS-based transactions, for example. However, any recovery protocol mechanism
performs the following actions:

¹ Determine the transactions that need to be undone. Replay the log information for transactions that
are incomplete. Incomplete transactions are transactions that have a record of
BEGIN_TRANSACTION but no END_TRANSACTION.

¹ Determine the transactions that need to be redone. Replay the log information for transactions that
are complete. Complete transactions are transactions that have a record of a BEGIN_TRANSACTION
and END_TRANSACTION.

 Open Blueprint Transaction Monitor Resource Manager 11

In addition, a recovery checkpoint facility can be implemented to minimize the amount of time required for
recovery. Checkpointing forces a copy of the current state to permanent storage (at some specified time
interval) so that it only becomes necessary to replay the log information from the last checkpoint rather
than the entire log.

Specific requirements include:

¹ Log processing at restart (to restore state)
¹ Implicit recovery (warm start)

 ¹ REDO/UNDO
 ¹ Sharable
¹ Explicit recovery (heuristic)
¹ Data and operation logging

A recovery manager can be designed to support restart recovery processing in each and all of the
transaction management environments. It does not provide a recovery protocol but does provide logic to
simplify the implementation of a recovery protocol by providing the following basic recovery primitives:

¹ Recovery Analysis . Constructs a list of transaction status.

¹ Recovery Processing Assistance. Assists data retrieval by providing log scan operations that return
information associated with a given transaction or server (or both).

¹ Recovery Checkpoint. Forces a record (containing the Transaction Manager or other resource
manager state) to stable storage allowing recovery processing time to be minimized.

¹ Restart Processing. System facilities to restart resource managers and associated initialization
environment.

¹ Recovery Interface. Minimally an indication by the resource manager that it has restarted and is
ready to begin transaction state recovery.

¹ Resynchronization. Capability to facilitate recovery by passing all outstanding transaction recovery
status between Transaction Manager and resource manager on a single operation (that is, defining a
resynchronization protocol).

The Transaction Monitor resource manager builds on the basic recovery primitives by providing a
complete implementation of a recovery protocol and the necessary logic to ensure that recovery is driven
at system restart.

12 Transaction Monitor Resource Manager

Relationships to Other Resource Managers

There are many ways of bringing together the various Open Blueprint resource managers to meet the
needs of real commercial processing systems. This section describes the ways in which the Transaction
Monitor resource manager is being deployed in conjunction with the Workflow, Collaboration, and HTTP
resource managers.

An Extended Model of Transaction Processing

Increasingly, collaboration and workflow systems are being deployed as front office components linked to
specific back office systems that have long been automated. Hence the linkage between the front office
components and the more classical transaction processing system is critically important. A typical
workflow management system will provide functions which help to define, execute and re-engineer
business processes, often across a heterogeneous system environment. The workflow manager is a
coordinating agent which initiates the execution of work by end-users and the execution of programs in
multiple, distributed systems. It can be likened to a river which carries the flow of work from port to port
with extra value being added along the way. A workflow management system allows process
(flow-of-control) definitions to be separated from the applications.

There is some overlap between traditional transaction monitor systems and modern workflow management
systems. However, the current workflow models (and groupware in general) are not transaction oriented
in the ACID sense; the systems are very good at reflecting the changing states of information over time
but not as good at reflecting the current state of the data in real-time. In situations where this is an
important requirement, there seems to be significant scope for combining the two technologies to infuse
workflow with ACID properties.

A purchase processing example might be a helpful illustration.

A typical purchasing system begins with an approved purchase order requisition, which produces an
official purchase order. These systems are typically extremely well automated, and most of the cost
reductions to be gained from automation have been realized. The input to the system is an approved
purchase order requisition. However, an approved purchase order requisition is typically the result of a
process that begins when a person decides that they need to purchase something. The person creates a
purchase order, and this requisition threads its way through the system until it is approved or rejected.
When it is approved, the transaction (in the classic sense) is initiated. However, in reality a business
transaction was initiated when someone created a purchase order requisition. Increasingly, particularly as
enterprises re-engineer their business processes or establish some level of formalization of them,
back-office systems have front-office business processing components.

A term that has been adopted to refer to this broader and more business oriented view of a transaction is
that of the Extended Transaction Model (ETM). By tightly linking front office business processes to
existing back office processes, enterprises are able to achieve significant productivity and economic gains.
To achieve this tight linkage and integration, enabling frameworks, tools, and guidelines need to be
provided and exploited allowing interaction with existing enterprise transaction systems in a controlled and
architected way. By viewing front office processes as a part of some extended transaction, it becomes
clear that the key to developing rich collaboration applications is an application development/deployment
environment that is part of (integrated with) the overall business processing system.

There are many different approaches to the solution of these problems. but in the context of IBM's Open
Blueprint, we are interested in three examples in this section.

 Copyright IBM Corp. 1995, 1996 13

Integrating with the Collaboration Resource Manager

The purpose of the Extended Transaction Model implementation is to enable applications that are built in a
Collaboration resource manager environment to access and process data or transactions which reside in
an enterprise system.

Why do customers want to do this?

There are two principal reasons. First, all major enterprises already maintain, manage, and process a
significant part of their mission-critical data in such enterprise systems but want to build new systems and
applications which can exploit Collaboration resource manager function while continuing to access and
utilize the existing business applications and data. Second, the Collaboration and Transaction Monitor
resource managers provide different functions, each suited to solving a particular aspect of a business
problem. Many applications require the facilities provided by both environments. The extended
transaction model defines a strongly integrated way of bringing these environments together to build a
complete solution.

The integration of these two complementary environments is as seamless as possible, whether viewed
from the perspective of an end-user, an application developer, or a system administrator. This
seamlessness is most important from the end-user perspective and is achieved by ensuring that the entire
user interface is built within the collaboration environment. The end-user interacts with the application
through a series or sequence of collaboration documents, forms, or views.

The applications are built in such a way that whenever an interaction is required with a database or
enterprise application it is performed transparently and the data presented to the user through the
Collaboration resource manager.

Consider the application development scenario for the extended transaction model.. The process for
developing applications is divided into two distinct parts: construction and assembly. Construction
involves building well-defined and well-encapsulated pieces of business logic, usually within the context of
an RDBM or OLTP system. Assembly involves building a complete business application by putting
together a number of smaller constructed pieces; in the extended transaction model, this is in the context
of the collaboration environment (though this is by no means the only possible solution). Construction and
assembly can be undertaken by the same person or can be assigned to different skill groups.
Construction is often performed using a third-generation programming language and environment;
assembly is typically done using a scripting language or visual assembly tools. Almost all of the
user-interface implementation falls into the domain of the assembly phase. In the Open Blueprint
implementation of the extended transaction model, languages such as Cobol, PL/I, or C++ can be used for
construction and LotusScript, in conjunction with the Notes document editor, can be used as the basis for
assembly.

Access to the enterprise systems from the LotusScript environment is provided (transparently to both the
application and the programmer) across a number of protocols. These protocols can include the
MQSeries protocols and an optimized route to existing CICS 3270 applications using the CICS
InterSystem Communication protocols. Other protocols such as Transactional-RPC could be added in the
future,if required. The choice of protocol to be used in a given configuration will be driven by the
customer's existing infrastructure, the overall network topology, and decisions regarding skill requirements
(for administrative tasks) at particular network nodes.

14 Transaction Monitor Resource Manager

Integrating with the Workflow Resource Manager

Another example of the extended transaction model is the way in which applications can be integrated
across Transaction Monitor and Workflow resource managers.

Traditional transaction processing applications running under the control of the Transaction Monitor
resource manager can be extended by incorporation. They can run as activities in a workflow process
when built as applications using the Workflow resource manager. The Workflow resource manager also
allows the transactional applications to initiate workflow processes.

A Workflow resource manager run time server uses a process model definition to control a process
instance. Suppose an activity step in such an application wants to invoke an application that runs under
the control of the Transaction Monitor resource manager. Because the Workflow resource manager uses
data containers to pass work in progress from one activity step to another, the application developer must
write a script what can interpret these data containers and convert the information they hold into a form
appropriate to the transaction monitor application.

In a similar fashion, the Workflow resource manager can be invoked by a transaction monitor application
to initiate a business process. That application must provide the workflow data container values that are
required by the Workflow resource manager process.

For maximum flexibility, communication between the two resource manager environments can use the
facilities of the Messaging and Queuing resource manager.

Integrating with the HTTP Resource Manager

The World Wide Web was originally conceived as a mechanism for providing widespread access to many
documents. One of the key aspects of Web access was that the data was not centralized and was usually
accessed in a read-only mode. By contrast, transaction processing systems are designed to provide a
highly reliable means to read and update centrally managed resources.

However, there are some important similarities between Web servers (such as the HTTP resource
manager) and transactional systems (such as the Transaction Monitor resource manager):

¹ Both use standard data streams between the client and server. The HTTP resource manager uses
Hypertext Transfer Protocol (HTTP) and Hypertext Markup Language (HTML). The Transaction
Monitor resource manager uses IBM 3270.

¹ In both cases, the application is usually running on the server, and the client is dedicated to
presentation.

The pervasiveness of Web browsers makes the World Wide Web an attractive front-end environment for
accessing existing or new transaction processing systems. The full function of the World Wide Web can
be used to develop the presentation component of the application while the integrity of the data remains
protected within the transaction processing environment.

There are many ways of building the interface between the HTTP resource manager and the Transaction
Monitor resource manager.

An Internet gateway for the Transaction Monitor resource manager allows transaction monitor applications
that have been written to communicate with a standard terminal to be invoked from and within any
standard Web browser. Mapping between the 3270 datastream built by the Transaction Monitor resource
manager and the HTML, which is interpreted by the Web browser, is performed automatically.

 Relationships to Other Resource Managers 15

Implementations of Transaction Monitor Java clients will allow a more sophisticated Web interface to be
built for existing transaction environments within an enterprise, and will allow client applications to be
downloaded and executed as required.

1 Jim Gray, “Where is Transaction Processing Headed?,” OTM Spectrum Reports (May 1993)

2 In the chained transaction model, termination of one unit of work implicitly causes a new unit of work to be started, so an
application is always running within the context of some particular unit of work.

16 Transaction Monitor Resource Manager

Appendix A. Advanced Transaction Models

Although the traditional transactional model with its ACID properties is in widespread use throughout the
industry for building robust distributed applications, there are some areas in which the model has severe
limitations. Most notably, these include:

¹ Loss of work when a long-running transaction fails before commit

¹ Concurrency conflicts caused by long-running transactions

¹ Relationships between transactions (such as control flow dependencies) need to be handled by the
application

¹ Collaboration among transactions is not supported

¹ There is no support for application-level parallelism

¹ Transactions are able to recover data but not activities (application state)

One solution to such problems has been the introduction of the nested transaction model. However many
other, more exotic, transaction models are being introduced, each of which compromises the ACID
properties in some way, in order to support:

 ¹ Long-lived activities
 ¹ Open-ended activities
 ¹ Cooperative activities
 ¹ Local autonomy
¹ Reactive activities (active data and triggers)

Examples of such applications include VLSI design, CAD/CAM projects, office automation, software
development, heterogeneous database, or real-time applications.

Although there is much research into these areas and much published material there are many difficult
problems in these areas and hardly any realistic implementations. In general it is expected that such
solutions will either be built upon or delivered alongside traditional transaction processing monitors.

Some of the more interesting and important examples include Sagas, ConTracts, Parallel Transactions
(with rendezvous points), Cooperative Transactions and Split and Join Transactions.

 Sagas

Sagas represent an evolution of the solution to the problem of how to deal with long-running transactions,
following in a fairly natural way from the concepts of savepoints and chained transactions.

A saga is a linear sequence of regular ACID transactions such that:

¹ When each component transaction completes, it exposes its results by releasing locks.

¹ For each component transaction, a compensating transaction is defined by the application writer with
the property of logically undoing each of the component transaction updates

 Copyright IBM Corp. 1995, 1996 17

If a saga aborts part way through the sequence its effects may then be undone by running (in reverse
sequence) the compensating transaction associated with each of the component transactions which have
successfully completed. That is, for a saga that consists of the transaction sequence T¹,T²,...,Tⁿ, with
compensating transactions Cⁿ,...,C²,C¹ respectively, then aborting at stage n results in the following
sequence of transactions being executed:

T¹,T²,...,Tⁿ,<<saga aborted<>,Cⁿ,...,C²,C¹

If the system fails while a saga is in progress, forward recovery of the saga can be effected by executing
the remaining transactions in the sequence (the interrupted one plus the following ones). Provision of
support for this model of transaction processing would be provided through a system component known as
the Saga Manager .

 Cooperating Transactions

The Cooperative Transaction model is introduced to allow for explicit interactions between collaborating
applications on shared objects. Examples of this are multi-user design systems where several users can
require cooperative access to parts of a drawing, parts of a software design (or code) or parts of a
document. At such a level of cooperation the traditional notions of atomicity are not powerful enough to
be able to model the complex rules of state transitions that these applications will want to support.

To see how such a model works, assume that transaction T₁ is currently executing and modifying a
design object X and that a second transaction T₂ wishes to explicitly request access to this same design
object X. An implementation of the cooperative transaction model provides methods by which transaction
T₁ can decide whether it wishes to suspend its own activities on X and give it to T₂, with two underlying
conditions:

¹ Transaction T₂ must understand that object X is provisional and must not try to change it
¹ Transaction T₂ must eventually return object X to T₁ so that T₁ may resume its work on X

It is important to realize that this handing out of objects which have not yet been committed and
requesting them back later is substantially different from the traditional dynamic data-induced
dependencies which arise as side-effects of the parallel execution of transactions. Such data
dependencies are monitored and handled inside the TP Monitor system and not exposed to the
applications; however, in the case of cooperative transactions it is assumed that applications inherently
know of and handle such dependencies.

18 Transaction Monitor Resource Manager

 Appendix B. Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, is
the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 USA

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

AIX
AS/400
IBM
IBMLink
IMS
CICS
CICS/6000
MQSeries
Open Blueprint
Visual Age

The following terms are trademarks of other companies:

C++ American Telephone and Telegraph Company, Incorporated
DCE The Open Software Foundation, Incorporated
Encina Transarc Corporation
Java Sun Microsystems, Incorporated
Motif The Open Software Foundation, Incorporated
Open Software Foundation The Open Software Foundation, Incorporated
Visual Basic Microsoft Corporation
Windows Microsoft Corporation
X-Windows Massachusets Institute of Technology

Microsoft is a registered trademark of Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries.

 Copyright IBM Corp. 1995, 1996 19

20 Transaction Monitor Resource Manager

Appendix C. Communicating Your Comments to IBM

If you especially like or dislike anything about this paper, please use one of the methods listed below to
send your comments to IBM. Whichever method you choose, make sure you send your name, address,
and telephone number if you would like a reply. Feel free to comment on specific error or omissions,
accuracy, organization, subject matter, or completeness of this paper.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088.

¹ If you prefer to send comments electronically, use one of these ID's:

 – Internet: USIB2HPD@VNET.IBM.COM
– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

Make sure to include the following in your note:

¹ Title of this paper
¹ Page number or topic to which your comment applies

 Copyright IBM Corp. 1995, 1996 21

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC23-3931-01

