

Open Blueprint

L
O
C
A
L

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

S
E
R
V
I
C
E
S

Applications and
Development Tools

Systems Management

Application / Workgroup Services

Communication
Services

Object Mgmt
Services

Common Transport Semantics

Transport Services

Physical Network

Signalling
and

Control
Plane

Distribution
Services

Present'n
Services

Data
Access

Services

LAN WAN Channel ATM

Applications
and

Application
Enabling
Services

Distributed
Systems
Services

Network
Services

ÉÂÔ

Internationalization Resource Manager

 G325-6583-00

Open Blueprint ÉÂÔ

Internationalization Resource Manager

 G325-6583-00

About This Paper

Open, distributed computing of all forms, including client/server and network computing, is the model that is driving the rapid
evolution of information technology today. The Open Blueprint structure is IBM's industry-leading architectural framework for
distributed computing in a multivendor, heterogeneous environment. This paper describes the Internationalization resource manager
component of the Open Blueprint and its relationships with other Open Blueprint components.

The Open Blueprint structure continues to accommodate advances in technology and incorporate emerging standards and protocols
as information technology needs and capabilities evolve. For example, the structure now incorporates digital library, object-oriented
and mobile technologies, and support for internet-enabled applications. Thus, this document is a snapshot at a particular point in
time. The Open Blueprint structure will continue to evolve as new technologies emerge.

This paper is one in a series of papers available in the Open Blueprint Technical Reference Library collection, SBOF-8702
(hardcopy) or SK2T-2478 (CD-ROM) The intent of this technical library is to provide detailed information about each Open Blueprint
component. The authors of these papers are the developers and designers directly responsible for the components, so you might
observe differences in style, scope, and format between this paper and others.

Readers who are less familiar with a particular component can refer to the referenced materials to gain basic background knowledge
not included in the papers. For a general technical overview of the Open Blueprint, see the Open Blueprint Technical Overview,
GC23-3808.

Who Should Read This Paper

This paper is intended for audiences requiring technical detail about the Internationalization resource manager in the Open Blueprint.
These include:

¹ Customers who are planning technology or architecture investments

¹ Software vendors who are developing products to interoperate with other products that support the Open Blueprint

¹ Consultants and service providers who offer integration services to customers

 Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Internationalization Resource Manager 1
Introduction 1
Concepts 1

Background and Model 3
Evolution of Internationalized Applications 3
Locales 6
POSIX or XPG4 Locale Model 8

Resource Manager Definition 13
Internationalization Resource Manager 13
XPG4 Locale Services 13
Object-Oriented Support 19
Extended Locale Services 24
Relationships with Other Open Blueprint Resource Managers 24

Bibliography 27

Notices 29
Trademarks 29

Communicating Your Comments to IBM 31

 Figures

1. Evolution of International Software 3
2. Internationalization and Localization 5
3. Locale Structure Creation 8

 4. Runtime View 9

 Copyright IBM Corp. 1996 iii

iv Internationalization Resource Manager

Internationalization Resource Manager

 Introduction

There is an increased focus on worldwide software usage. Software may have to satisfy the language,
culture, and character data encoding needs of a wide variety of users. While meeting this need, the
software must fit or conform to the individual needs of each user.

The Internationalization resource manager component of IBM's Open Blueprint provides application
enabling services for the management of internationalization resources in an open, distributed
environment. Specifically, the Internationalization resource manager is one of the Application/Workgroup
Services of the Open Blueprint as shown in the graphic on the cover of this paper.

The Internationalization resource manager is an application enabler. It utilizes the local system's services
for the storage of the Internationalization resource manager managed data structures and utilizes
distributed services and network services to support access to those data structures.

The Internationalization resource manager supports the portion of the application processing environment
that deals with the language, culture, and character data encoding conventions. It also provides a set of
standard programming interfaces to functions that use the information contained within the
Internationalization resource manager managed data structures.

The Internationalization resource manager has dependencies upon other components of the Open
Blueprint for the provision of services required to locate and access the Internationalization resource
manager data structures in distributed environments.

In conjunction with a software development model, the Internationalization resource manager provides the
means for developers to create internationalized software, where users can select the language, culture,
and character data encoding of their choice.

 Concepts

Software internationalization is a design methodology used to create software that is neutral with respect
to the language, culture, and character data encodings that it is expected to support. The software
produced can have its processing results modified at runtime, according to the language, culture, and
character data encoding preferences of its users.

After the internationalized software has been developed, localization is used to provide the values
necessary for a specific language, culture, and character data encoding. Localization information is made
available to the software through a named data structure known as the locale.

The locale is created from source information that describes the local information necessary for the proper
processing of data with respect to language, culture, and character data encoding. This locale information
is a collection of values identifying the unique formatting specifications. These specifications are
categorized according to the particular type of information they deal with, such as date and time or
character classification.

The source definitions are stated in a symbolic manner and require the binding of the character encoding
information to produce a usable locale data structure. The character encoding information maps the
symbolic name of the character as used in the locale source file with the corresponding coded
representation as used in the machine for which the data structure is being created.

 Copyright IBM Corp. 1996 1

The locale source information is bound with the character encoding information in a compilation process
that produces the locale data structure. The data structure is also given a name as part of the compilation
process. The name is provided in a recognized industry convention of a two-character language identifier,
followed by a two-character country identifier and a character string identifying the character data encoding
used. The International Organization for Standardization (ISO) standards for country names (ISO 3166)
and language names (ISO 639) are used.

All of the locale creation activity must be performed prior to using the locale in the runtime environment.
The locale and its name, which follows recognized industry conventions, provide all of the relevant
information necessary to define the localized runtime environment. Providing a defined locale allows
access by any number of applications and ensures consistent results.

The Internationalization resource manager provides a mechanism to describe and manage the various
cultural elements of the internationalized processing environment expected by today's application users. It
provides runtime access to localization information to the application through well defined interfaces, hiding
any underlying implementation from the calling routines.

The programming model and related interfaces of the Internationalization resource manager have been
defined through the Institute of Electrical and Electronics Engineers (IEEE) Portable Operating System
Interfaces (POSIX), X/Open Joint Internationalization Group (XoJIG) and UniForum (before the formation
of the XoJIG) development efforts and those of the ANSI/ISO C programming language community. In
addition to this work, IBM extensions are provided to the standard base support.

2 Internationalization Resource Manager

Background and Model

Evolution of Internationalized Applications

The requirement to create international software has caused a development methodology to evolve. This
evolution is shown in Figure 1.

Stage 1

Stage 2

Stage 3

Traditional Application
- Resources and services
spread throughout the
application

Enabled Application
- Collected resources and
services in separate modules

Localization
Resources

- Formatting values
- Language specific
message files

Internationalized
Application
- Separated

resources
and services

Locale Dependent
Functions

Figure 1. Evolution of International Software

Stage One: In this stage software functions providing support for, or having a sensitivity to, the
language, culture, or character data encoding preferences were spread throughout the application. The
assumption was that the processing environment of the software is the same as that of the developer.
This method does not allow for any flexibility in supporting users with different sets of language, culture,
and character encoding preferences. A new set of preferences has to be developed and compiled into
each version of the software to satisfy unique requirements of the target users.

 Copyright IBM Corp. 1996 3

Software created with cultural support included at compile time does not allow for usage in cultures which
have not been predetermined. The location of software usage and its intended users has to be known at
design time.

Stage Two: The use of enabling techniques as described in the National Language Design Guide,
Volume 1, promotes the collection of the language, culture, and character data encoding aspects of the
software into modules. Packaging methodologies take advantage of the results of enabling and
implementation changes to provide versions of the software that support a particular language, culture,
and character encoding. The modularity reduces the maintenance effort for the software.

Stage Three: The software isolates the main application code from the resources and functions
required for proper language, culture, and character data encoding support. This allows developers to
concentrate more on the creation of desired software functions and less on the provision and management
of the internationalization aspects. The set of local values necessary for language, culture, and character
data encoding support are repackaged into localization resources known as locales. As much localization
data as possible is stored externally from the application. Commonly used functions are collected into
system services external to the application as well. Software is created with a dependency on these
system services to provide the needed functions and resources for proper support of a user's
expectations. Providing the necessary functions and resources by late binding of the localized information
with the application is known as localization and is supported by the Internationalization resource manager
on different platforms.

Internationalization and Localization

To exploit the availability of common services and resources for language, culture, and character data
encoding, software must adhere to the concepts of internationalization and localization. Figure 2 on
page 5 shows how these two concepts are related. By internationalizing the software for general
worldwide use at build time and then localizing it for a particular language, culture, and character data
encoding at run time, an application can be adapted to meet specific needs and preferences of a variety of
users in different countries. This support has the goal of being able to allow any user, at any location, to
use any application and have that application provide culturally-correct processing results.

4 Internationalization Resource Manager

International software design
starts here.

Internationalization

Localization

Culture A Culture B

Standardized localization values that may be 'plugged' into
the software 'receptacle'. The values include information
on language, culture, and character data encoding.

Culture C Culture D

Software
Localized to
Culture B

Cultural bias or
dependencies
not allowed by
design

Internationalized
Software - neutral for
language, culture, and
character data encoding

Locale dependent
services used by
the internationalized
software

Runtime process
in which localization
information is plugged
into the software

Standardized
support may be
viewed as a
receptacle into which
is plugged the
localization
values.

Software
Localized
to Culture A

Figure 2. Internationalization and Localization. Internationalized software is incomplete without the associated
localization.

Internationalizing software starts with careful design. Message libraries are created separately from the
software which uses them. Formatting information describing local requirements is defined and stored
separately from the application. The result is software that is neutral of any cultural bias or dependency.
The plugs in the diagram represent the logical collection of the necessary localized information and
message files. The result of this process is software using standard callable services for
internationalization support. The software's environment is enabled, through the interfaces, to have its
output dynamically altered at runtime by the user preferences. Software targeted for international usage
should use this internationalization process as a design foundation.

Localization is best handled at execution time (late binding) to provide the most flexibility to the user of the
application and to eliminate the costs of supporting multiple compiled versions. At runtime, a set of user
preferences is logically “snapped into” the receptacles of the internationalized software. Since the
software's processing results are dependent upon the localized values, and these can be controlled by the
user, the user actually has control over the international support of the software.

 Background and Model 5

 Locales
A named locale defines and contains information for the application. The runtime support makes this
information available to the application so the application data can be processed correctly according to the
preferences of the user.

The locale model is a programming construct for the software developer. The application user should not
normally have to deal with the locale. The construct has been used on various UNIX platforms, having its
origins in the works of POSIX, X/Open and UniForum. This work has resulted in international standards
recognition by ISO.

Locale Names: Some of the localization information is implicit in the name of the locale. In the Open
Blueprint, locale names follow recognized industry conventions that are in various stages of
standardization.

Locale names are composed of three separate terms as follows:

 ¹ Language identifier
 ¹ Country identifier
¹ Character data encoding identifier. This is also known as a code set identifier which is an identifier for

the charmap resource.

An example of a locale name is en_US.IBM-850 1 where en is a two-character ISO 639 identifier for the
language English, US is the two-character ISO 3166 identifier for the country USA and IBM-850 is the
character data encoding identifier which represents IBM's 850 code page or code set. Another example of
a locale name is FR_CA.ISO8859-1 where FR is a two-character identifier for the language French, CA is
the two-character identifier for the country Canada and ISO8859-1 is the character data encoding identifier
which represents the ISO 8859-1 code page or code set.

The language and country identifiers follow their respective ISO standard formats. The entire three term
name is under consideration for standardization in the recent draft X/Open document Distributed
Internationalization Services (DISS).

Specific locale names conforming to the conventions are entered into the system and maintained as part
of the administration process.

Models described later in this document assume that the locale names and their respective contents have
been defined and registered by some authority. This registration allows for the use of a name to provide
the same results across platforms and systems. Without such constraints there can be no guarantee that
the same name used on different systems will yield the same meaning.

Locale Content: The locale information as specified by POSIX and X/Open contains the following six
standard categories:

Category Description

LC_COLLATE Character collation information

LC_CTYPE Character classification attributes and case mapping information

LC_MONETARY Monetary formatting specifications

LC_NUMERIC Numeric data formatting specifications

LC_TIME Date and time formatting specifications

LC_MESSAGES Affirmative and negative response values

6 Internationalization Resource Manager

There are also two IBM extensions:

The IBM extensions provide support for the handling of variant characters in the EBCDIC environments
where such characters are required for the syntax of the programming language being used with the
underlying process code support, and time zone and daylight savings time information as well.

The locale categories are collections of similar information within the larger container known as the locale.
The manner in which the system stores this localization information is an implementation issue for the
system. Applications need not know the internal representation of the locale information because they do
not deal with the contents directly.

Locale Structure Creation

A locale data structure is a prerequisite to the performance of any of the locale dependent services
provided by the Internationalization resource manager. Locales, either as source and/or as compiled
ready-to-use objects, may be shipped with base operating systems. Application development tools such
as compilers may also ship locales. Additional locale structures may be created by taking the modified
locale source definitions and character definitions (charmap resource) and processing them through a
locale definition compiler (the localedef utility). The compiled output is a locale data structure used at
runtime by the callable locale-dependent services coded within the application software. Figure 3 on
page 8 illustrates how a locale is created.

Category Description

LC_SYNTAX Variant character support within the locale

LC_TOD Time and daylight savings time information

 Background and Model 7

Locale
Source
Data

Locale
Builder

Character Data Encoding
Information

Locale
Data
Structures
Storage

Figure 3. Locale Structure Creation

The locale source contains information describing the local values used to uniquely define the processing
environment according to the software user's preferences. The source file has a unique identifier, the
locale name. The character encoding information supplies the mapping between the symbolic information
used in the locale source file and the machine representation of the characters. The locale builder
combines this information into a structure that can be used on a specific system.

When locales are created, they are placed in a designated file directory.

POSIX or XPG4 Locale Model

The POSIX work was adopted by X/Open; the XPG4 locale model includes the POSIX locale model.

The foundation of this locale model is that one application equals one locale (for example, one language,
country, and encoding combination per instantiation). This model allows for the setting of language,
cultural, and encoding information at the process level through an opaque application global structure. It
is also called a global model because locale changes are global, in that all threads within the process are
affected. The model provides capabilities to set and query the current locale and locale categories.
Applications therefore have the capability to switch locales in order to provide different cultural behavior.

8 Internationalization Resource Manager

Program Flow: The program flow for the global locale model can be broken down into the following
steps:

1. Determine the currently active locale. This query helps to decide if the current locale is the right locale
for the operations that are intended.

2. Change the locale to the desired locale if not already active.

3. Perform the intended operations

4. Restore the previous locale if it was changed

Runtime View: Figure 4 shows an overview of locale usage. The runtime locale elements in this
figure correspond to the locale categories described under “Locale Content” on page 6.

Locale Data
Structure Storage

System
Loader

setlocale

tokens

R
e

q
u

e
s

ts

R
e

s
p

o
n

s
e

s

Application

Program Calls

Runtime Locale
- collation
- character classification
- monetary
- numeric
- date/time
- messages
- syntax
- time of day

Figure 4. Runtime View

Current standards call for the use of the C or POSIX locale information to be used as the default value for
locale settings.

 Background and Model 9

Locale Initialization: The locale data structure created previously has been stored in the file
system. The structure is retrieved from storage by the system loader based on a call initiated by the
software wanting to use the localization information. This is done through the setlocale interface. Once
loaded into storage, the locale's content is made available to the software through the locale-dependent
services.

The setlocale service is used to initialize the locale data structure in storage. The application does not
manage the international settings directly. It relies on the set of Internationalization resource manager
services to do that work. The application can only call the provided services to interact with the locale
data.

Extended Locale Model

The current global model provides a simple mechanism to write internationalized software. The model,
however, is inadequate for software that needs to deal with multiple languages and cultural conventions at
the same time, such as an internationalized spreadsheet program that supports different currencies and
date formats for each cell. Multithreaded software, whether local or distributed, where two or more
threads may be executing at a time, also challenges this model. In this case, if either thread changes the
active locale, locale-sensitive operations in the other thread are also affected. Other limitations include
locale synchronization and data representation in a distributed environment, context-sensitive rendering
and text directionality, and the support of stateful encodings that allow a context to be maintained across
different function calls.

There is work underway in the industry to define an extended locale model that would address these and
other limitations of the global locales model. X/Open has produced such a document. It is a working draft
called the Distributed Internationalization Services Snapshot (DISS).

The extended locale model is similar to the POSIX locale. The extensions provide a new locale
initialization function and support for multiple active runtime locales, each uniquely describing a set of
localized information and addressable by the software.

Another example of an extended locale model is the Universal Language Support (ULS) which is
implemented on OS/2.

 Distributed Usage

When client software requests internationalization services that will be provided by a server, it is
necessary that the locale used on the server be consistent with the expectations of the requester. For the
internationalized environment to be replicated on the server side, the locale on the client needs to be
uniquely and unambiguously identified. This is very important in order to allow locale replication across
heterogeneous networks.

The software developer must design and implement methods of locale and encoding negotiation between
the client and server sides. Assuming that this is done, a single set of localization resources is made
available to the software users. A server process can only provide service to clients with the same
localization requirement as the active locale. If a user request is for service associated with a locale other
than the current active locale in the server, then the current active locale needs to be changed to the one
requested. It is the server's responsibility to maintain the association of locales and user requests.

For a multithreaded server, serving multiple users with differing localization requirements, a specific server
process for a specific locale can be designated. In this locale-per-server-process approach, it is
imperative that the server process never changes its locale; the current active locale is the only active
locale allowed for that server process. The onus is on the client code to direct the server requests to the

10 Internationalization Resource Manager

right server process. The server must block all other threads and access the correct locale during an
operation that depends on that locale.

Note that the extended locale model provides for an object that can represent a well-known locale and can
be used across a network. It is a handle to a locale structure which can be interchanged as an remote
procedure call (RPC) object. This eases the enabling of consistent localized behavior in distributed
software.

 Background and Model 11

12 Internationalization Resource Manager

Resource Manager Definition

Internationalization Resource Manager

The Internationalization resource manager provides a mechanism to describe and manage the various
elements of the internationalized processing environment expected by today's application users. This
support is provided explicitly by APIs.

The Internationalization resource manager is based on open system standards as defined by POSIX,
adopted by X/Open and documented in XPG4 (X/Open Portability Guides). The Internationalization
resource manager also supports ANSI/ISO C and IBM extensions.

It supports a locale mechanism and related resources (formatting values and message files). This support
acts as an application enabler, permitting the implementation of a user's specific language, cultural, and
encoding needs. Associated with the resource manager is a locale definition compiler (the localedef
utility).

The relationship to other selected components of the IBM Open Blueprint is also described.

The Internationalization resource manager is one of the Application Enabling Services components of the
Open Blueprint. The Internationalization resource manager uses elements of the distributed and
networking services components of the Open Blueprint to support resource access.

XPG4 Locale Services

The major functions of the Internationalization resource manager are as follows:

 ¹ Locale management
¹ Locale information retrieval

 ¹ Character classification
 ¹ Collation
¹ Character string handling

 ¹ Formatting
 ¹ Stream I/O
 ¹ Message files

Object-oriented (OO) style interfaces can be supported through the use of the class library provided
interfaces. The Application Support Class2 contains the basic data type classes using the POSIX and
XPG4 programming model. They are dependent upon the locale sensitive functions of the C runtime.

 Locale Management

Locale management deals with the retrieval of the locale data structures from the locale database (file
system), the initialization of these structures into memory for application usage and the removal of these
structures from memory when they are no longer needed. All of these actions are done from within the
application software via callable services.

Locale initialization is handled by the following API:

 Copyright IBM Corp. 1996 13

Locale Information Retrieval

These services provide access to specific values set within an instance of a locale. They only operate
against the locale data structures in memory and not the locale data structures stored in the locale
database (file system).

Retrieval of locale information is accomplished using the following APIs:

 Character Classification

Character classification based interfaces are used to determine the unique properties assigned to
characters in the active locale. The characters have been assigned attributes or properties during the
definition of the locale in the locale source file. Assignments include such attributes as “alphabetic.”
Characters can be either common graphic characters as found in the file system (regular character-based)
or they can also be defined as wide characters as used in the internal processing code. A wide character
is defined as a character within a set of characters that contains all of the possible characters used in all
of the supported locales. The wide character set can be viewed, from the encoding perspective, as a
normalized character set. Typically the encoding used for the wide character set is different from the
character encoding used in the file systems. Wide character data may be stored, but it is primarily used as
a process code to eliminate the differences encountered when dealing with a variety of data encodings
found in the file system.

Character classification services for regular character support are:

Note: The isblank() interface, which tests if a character is a blank, is an IBM character classification
service for regular character support.

Interface Description

setlocale() Sets, changes, queries locale categories or groups of categories, according to the values of
the locale and category parameters specified

Interface Description

nl_langinfo() Retrieves the information associated with the specified locale item

localeconv() Places values from the current locale into another structure for further use

Interface Description

isalnum() Tests if this character is an alphanumeric character

isalpha() Tests if this character is an alphabetic character

iscntrl() Tests if this character is a control character

isdigit() Tests if this character is a decimal digit (0....9)

isgraph() Tests if this character is a graphic character

islower() Tests if this character is a lowercase character

isprint() Tests if this character is a printable character

ispunct() Tests if this character is a punctuation character

isspace() Tests if this character is a white space character (tab, space...)

isupper() Tests if this character is an uppercase character

isxdigit() Tests if this character is a hexadecimal character (0...9, a..f, A..F)

14 Internationalization Resource Manager

Character classification services for wide character support are:

Note: The iswblank() interface, which tests if a wide character is a blank, is an IBM character
classification service for wide character support.

 Collation

Cultural based ordering means collating a set of characters according to a user's cultural conventions (or
country standards). It is not the order that would result if the character data were ordered based on the
binary values of the character codes themselves. For example, the same results will be achieved if a
string is collated on an EBCDIC system or an ASCII system because the underlying binary coding values
are not used.

Collation based services are:

The following IBM collation services have also been added:

Interface Description

iswalnum() Tests if this wide character is an alphanumeric character

iswalpha() Tests if this wide character is an alphabetic character

iswcntrl() Tests if this wide character is a control character

iswdigit() Tests if this wide character is a decimal digit (0....9)

iswgraph() Tests if this wide character is a graphic character

iswlower() Tests if this wide character is a lowercase letter

iswprint() Tests if this wide character is a printable character

iswpunct() Tests if this wide character is a punctuation character

iswspace() Tests if this wide character is a white space character (tab, space...)

iswupper() Tests if this wide character is an uppercase character

iswxdigit() Tests if this wide character is a hexadecimal character (0...9, a..f, A..F)

iswctype() Tests if this wide character is a member of the character class specified

wctype() General function to return a value used in the iswctype call

Interface Description

strcoll() Compares two-character strings according to their collation weights

strxfrm() Transforms each character of the provided string into its respective collation weight

wcscoll() Compares two-character strings according to their collation weights

wcsxfrm() Transforms a wide character string into an array of representative collation weights

Interface Description

collequiv() Returns a list of equivalent collating elements for the primary weight given

collorder() Returns a list of collating elements

collrange() Calculates the range list of collating elements between the two primary collating weights given

colltostr() Converts a collating element to a string

 Resource Manager Definition 15

Character String Handling

These services are used to manipulate character data strings. Both the process code format and the file
code formats are supported. An example of string handling is a concatenation operation where two strings
are joined.

Character based string handling services are:

Wide character based string handling services are:

Interface Description

strcat() Appends a copy of the input string to the end of the target string

strchr() Searches a target string for the occurrence of the specified string

strcmp() Compares two-character strings

strcpy() Copies the content of one string into another string

strcspn() Determines the number of characters in the initial segment of a target string that do not
appear in the source string

strlen() Calculates the length of a character string

strncat() Appends a specified number of characters from the source string to the target string

strncmp() Compares a specified number of characters in the source string to the target string

strncpy() Copies a specified number of characters from the source to the target string

strpbrk() Locates the first occurrence in the target string of any character from the source string

strrchr() Locates the last occurrence of a specified character in the target string

strspn() Calculates the number of characters in the target string which consists entirely of characters
from the source string

strstr() Finds the first occurrence of the target string in the source string

strtok() Sequence of calls to wcstok will break the target string into a sequence of tokens, each of
which is delimited by characters from the source string

16 Internationalization Resource Manager

In addition, XPG4 includes the ANSI C interfaces that support conversions between multibyte character
streams and internal/processing (normalized character set) wide character streams:

The XPG4 standard can handle a variety of character data such as single, double, and multibyte character
sets. However, it does not support stateful encodings (where a sequence of operations is based on a
previously established condition or state). Thus, extensions based on the ISO/IEC 9899:1994, are
supported to provide shift-in/shift-out stateful encoding for EBCDIC double-byte character data:

Interface Description

wcscat() Appends a copy of the input string to the end of the target string

wcschr() Searches a target string for the occurrence of the specified string

wcscmp() Compares two wide character strings

wcscpy() Copies the content of one string into another string

wcscspn() Determines the number of wide characters in the initial segment of a target string that do not
appear in the source string

wcslen() Calculates the number of wide characters in a string

wcsncat() Appends a specified number of wide characters from the source string to the target string

wcsncmp() Compares a specified number of wide characters in the source string to the target string

wcsncpy() Copies a specified number of wide characters from the source to the target string

wcspbrk() Locates the first occurrence in the target string of any character from the source string

wcsrchr() Locates the last occurrence of a specified character in the target string

wcsspn() Calculates the number of wide characters in the target string which consists entirely of
characters from the source string

wcstok() Sequence of calls to wcstok will break the target string into a sequence of tokens, each of
which is delimited by a wide character from the source string

wcswcs() Locates the first occurrence in the target string of a sequence of wide characters specified in
the source string

wcswidth() Determines the number of display positions required to display the wide character string on a
display device

wcwidth() Determines the number of display positions required to display the wide character on a display
device

Interface Description

mblen() Determines the length in bytes of the multibyte character provided

mbstowcs() Converts a specified number of multibyte characters to their corresponding wide character
representations

mbtowc() Converts the multibyte character to a wide character

wcstombs() Converts a string of wide characters to their corresponding multibyte character representation

wctomb() Converts the wide character specified into a multibyte character

 Resource Manager Definition 17

 Formatting

Formatting services support the requirement to format character strings for date, time, and monetary
information according to the cultural preferences of the user or to meet country standards.

Formatting services are:

 Stream I/O

Stream I/O services support the requirement to access multibyte or wide character data.

Stream I/O services are:

 Message Files

These are the services necessary to manage the various libraries of translated textual information required
by the applications. They provide support necessary to keep textual information related to the application
separate from the application's executable code and to perform the proper information substitution at
runtime.

These message handling services are outside of the normal locale semantics in that they are not
contained within the locale data structure. However, they operate within the locale mechanism. They are
extremely important for the support of translated textual information within the internationalized software.

Interface Description

mbrlen() Determines the length in bytes of the multibyte character provided, when using stateful
encoding

mbrtowc() Converts the multibyte character in a stateful encoding to a wide character

wcrtomb() Converts the wide character specified into a multibyte stateful encoded character

mbsrtowcs() Converts a specified number of multibyte characters in a stateful encoded format to their
corresponding wide character representations

wcsrtombs() Converts a string of wide characters to their corresponding multibyte character stateful
encoding representation

Interface Description

strftime() Formats date and time values into a multibyte character string

wcsftime() Formats date and time values into a wide character representation

strptime() Converts a character string into date and time values using the specified formats

strfmon() Converts a monetary value to a formatted string of characters

Interface Description

fgetwc() Gets a multibyte character from the specified stream

fgetws() Gets a multibyte character string from the specified stream

getwc() Gets a multibyte character from the standard input stream

putwc() Outputs a wide character to the specified stream

putws() Outputs a wide character string to the specified stream

ungetwc() Pushes the specified wide character back onto the specified stream

18 Internationalization Resource Manager

Message handling services are:

There is one message handling utility:

There are two additional IBM message handling utilities:

 Object-Oriented Support

Internationalization support is provided in the Application Support Class by the IString, ITime, and IDate
set of functions. IString is used for character string handling in single, double and multibyte encodings.
ITime provides time formatting and manipulation functions. IDate is used for date formatting and
manipulation. All member functions of the above classes rely on the current locale for localization
information.

In the future, C++ programs will be able to encapsulate cultural differences including internationalization
support for character classification, collation, character string handling, formatting and parsing of numeric,
monetary, and date/time values, and message retrieval. This is described in the Draft Proposed
International Standard for Information Systems - Programming Language C++.

 IString

IString is a complex class, providing a comprehensive set of functions for string manipulation and support
for the single-byte character set (SBCS), the double-byte character set (DBCS), and the multibyte
character set (MBCS). It too uses the XPG4 programming model and support from the C runtime.

For binary, character, hexadecimal, and decimal conversions use:

b2c Converts a string of binary digits to a normal string of characters

b2d Converts a string of binary digits to a string of decimal digits

b2x Converts a string of binary digits to a string of hexadecimal digits

c2b Converts a string of characters to a string of binary digits

c2d Converts a normal character string to a string of decimal digits

c2x Converts a normal character string to string of hexadecimal digits

Interface Description

catopen() Opens the specified catalog and return a catalog descriptor for subsequent use by the catgets
function

catclose() Closes a catlog resource made available by the catopen function

catgets() Retrieves the indicated message from the specified message catalog

Interface Description

gencat Creates the catalog file from the message file source

Interface Description

runcat Generates the header file consisting of numbers for the mnemonics and the catalog file
consisting of messages with a set and message numbers from a message file source

mkcatdefs Generates the message header file consisting of numbers for the mnemonics

 Resource Manager Definition 19

x2b Converts a string of hexadecimal digits to a string of binary digits

x2c Converts a string of hexadecimal digits to a normal character string

x2d Converts a string of hexadecimal digits to a string of decimal digits

d2b Converts a string of decimal digits to a string of binary digits

d2c Converts a string of decimal digits to a normal character string

d2x Converts a string of decimal digits to a string of hexadecimal digits

For character string editing use the functions:

center
Centers the receiver within a string of a specified length

change
Changes occurrences of a specified pattern to a specified replacement string

copy
Replaces the receiver's contents with a specified number of replications of itself

insert
Inserts the specified string after the specified location

leftJustify
Left justifies the receiver in a string of a specified length

lowerCase
Translates all of the uppercase letters in the receiver to lowercase

overlayWith
Replaces a specified portion of the receiver's contents with the specified string

remove
Deletes the specified portion of the string

reverse
Reverses the receiver's contents

rightJustify
Right justifies the receiver in a string of the specified length

strip
Strips both the leading and trailing characters or character

stripBlanks
Strips both leading and trailing white space (blanks)

stripLeading
Strips the leading character or characters

stripTrailing
Strips the trailing character or characters

translate
Converts all of the characters that are in the first specified string into the corresponding characters in
the second string

upperCase
Translates all lowercase characters in the receiver to uppercase

Forward searching permits strings to be searched in a number of ways. The search start position can be
indicated, otherwise it will default to the beginning of the string. Function provided is:

20 Internationalization Resource Manager

indexOf
Returns the byte index of the first occurrence of the specified string within the receiver

For character string manipulation use:

operator+
Concatenates two strings

operator+=
Concatenates the specified string to the receiver and replaces the receiver

operator=
Replaces the content of the string

For character testing use the following functions. Basically they are used to determine if an IString is a
member of a specific character set.

disableinternationalization
Disables locale based string operations

enableinternationalization
Enables locale based string handling

includesDBCS
If any character is DBCS, true is returned

includesMBCS
If any characters are MBCS, true is returned

includesSBCS
If any characters are SBCS, true is returned

isDBCS
If all characters are DBCS, true is returned

isMBCS
If all characters are MBCS, true is returned

isSBCS
If all characters are SBCS, true is returned

isValidDBCS
If no DBCS characters have a second byte of 0, true is returned

isValidMBCS
If no MBCS characters have a second byte of 0, true is returned

 ITime

ITime class represents units of time as portions of days and provides support for converting these units of
time into numeric and character string format. Comparisons and other operations may be performed on
ITime objects by adding them to or subtracting them from other ITime objects.

Comparison functions are:

operator!=
Compares two time objects to determine whether they are not equal

operator<
Compares two objects to determine whether one is less than the other

 Resource Manager Definition 21

operator<=
Compares two objects to determine whether one is less than or equal to the other

operator==
Compares two objects to determine whether they are equal

operator>
Compares two objects to determine whether one is greater than the other

operator>=
Compares two objects to determine whether one is greater than or equal to the other

Constructors can be used to return the current time, copy another time object, give the time difference
between midnight and time value provided.

To obtain the current time, use the following:

now()
Returns the current time, can be used as a constructor

Manipulation of time object values is done using:

operator+
Adds two objects

operator+=
Adds two objects and stores the results in the receiver

operator-
Subtracts one object from another

operator-=
Subtracts two objects and stores the results in the receiver

For time queries, that is to access the hours, minutes, seconds of a time object, use:

asICnrTime()
Returns the time as a container ICnrTime structure

asSeconds()
Returns the number of seconds since midnight

hours()
Returns the number of hours past midnight

minutes()
Returns the number of minutes past the hour

seconds()
Returns the number of seconds past the minute

To represent the time value as an IString representation and output to a stream, use:

asString
Returns the ITime object as a string formatted according to the format specifiers

22 Internationalization Resource Manager

 IDate

IDate class represents specified dates. It provides general day and date handling functions to work with
year, month, and day values. This class returns language sensitive information such as the names of days
of the week and months in the language of the user's system.

Date comparison functions are:

operator!=
If the IDate objects represent different dates, true is returned

operator<
If the left hand operand represents a date prior to that of the right hand operand, true is returned

operator<=
If the left hand operand represents a date prior to or identical to that of the right hand operand, true is
returned

operator==
If the IDate objects represent the same date, true is returned

operator>
If the left hand operand represents a date subsequent to the date represented by the right hand
operand, true is returned

operator>=
If the left hand operand represents a date subsequent to or identical to the right hand operand, true is
returned

Constructors can be used to return the current day, copy another IDate object, give the year, month and
day or year and day for a given day, return the current day, or the Julian day number.

To obtain the current date, use the following:

today()
Returns the current date, can be used as a constructor

Manipulation of date object values is done using:

operator+
Adds an integral number of days to the left hand operand to yield a new IDate

operator+=
Adds an integral number of days to the left hand operand and stores the result in that operand

operator-
Subtracts an integral number of days from the left hand operand to yield a new IDate, if the right hand
operand was also an IDate, the difference between the two dates is given

operator-=
Subtracts an integral number of days from the right hand operand and places the result in that operand

For general date queries, use:

dayName
Returns the name of the day

daysinMonth
Returns the number of days in the specified month of the specified year

 Resource Manager Definition 23

daysinYear
Returns the number of days in the specified year

monthName
Returns the name of the month

monthofYear
Returns an index of the specified month

year
Returns the year

To perform validation on date based information use:

isLeapYear If the specified year is a leap year, true is returned

isValid Indicates whether the specified date is valid

To represent the IDate as an IString representation and output to a stream, use:

asString
Returns the IDate object as a string formatted according to the format specifiers

Extended Locale Services

The extended locale services are a potential future enhancement to the Internationalization resource
manager. They are the subject of a working draft from X/Open called the Distributed Internationalisation
Services Snapshot (DISS).

The services differ from those previously stated for the POSIX locale in that they allow for the locale name
to be passed as a parameter of the call. This allows for the specification of the localization information
required to be directly associated with the operation requested. This package can then be handled
anywhere as a complete unit of work.

In the ULS implementation on OS/2, which is another example of extended locale model support,
UniCreateLocaleObject allocates system resources associated with a specified locale and provides the
caller with a locale object handle. This locale object handle is used by the other functions to control their
locale behavior for the duration of the function call. An application is allowed to create multiple locale
object handles. Each locale object handle may refer to a different locale, thus allowing the application to
take advantage of multiple and concurrent locale support.

Relationships with Other Open Blueprint Resource Managers

The graphic on the cover of this paper shows the overall schematic of the Open Blueprint model. The
Internationalization resource manager is a part of the application enabling services component and is
dependent upon other components of the Open Blueprint for services in support of its role as a resource
manager.

Local Operating System Services

Locally, the Internationalization resource manager will make extensive use of the local operating system
services to perform dynamic loading of the locale data structures, to perform task management and
scheduling as well as memory management and termination (cleanup) services. The replication of
internationalization services across platforms will enhance the portability of internationalized software.

24 Internationalization Resource Manager

Security Resource Managers

Security services are used to authenticate calls to access locale data structures. Locales can be classed
as either public or private with necessary levels of access control in place to regulate their use. Software
should not share localization resources unless specifically authorized. Access controls for custom locales
is a must, while default locales should have free access to encourage their use.

Directory Resource Manager

Directory services are used to locate localization resources not available on the local system. A locale
initialization request may cause the fetching of a locale from a repository of locales on a remote server.
The only impact, in this case, should be the network delay and not a failure in the load request. The actual
location of the locale data structure should be transparent to the requester.

File Resource Manager

The distribution of localization information might not be pervasive. There may be a need to have
infrequently used resources maintained on selected servers and allow them to send out the requested
data as needed. In such cases requests to the Internationalization resource manager would cause a
related request to the distributed file system to send the necessary resources.

1 Mixed case locale names are often used on target systems that support case sensitive file names.

2 The Application Support Class is part of the IBM Open Class Library.

 Resource Manager Definition 25

26 Internationalization Resource Manager

 Bibliography

IBM National Language Design Guide (NLDG)

Volume 1, Designing Enabled
Products: Rules and Guidelines,
SE09-8001-01

Volume 2, National Language Support
Reference Manual, SE09-8002-01

To order (in the USA), call
1-800-879-2755

The Open Software Foundation
Internationalization Made Easy, A
White Paper, OSF-D-WP5-0790-1,
September 1990

POSIX 1003.2 Information Technology,
Portable Operating System Interfaces
(POSIX) - Part 2: Shell and Utilities,
The Institute of Electrical and
Electronic Engineers, Inc.

SHARE, Inc. Report SSD No. 366 ASCII and
EBCDIC Character Set and Code
Issues in Systems Application
Architecture, The ASCII/EBCDIC
Character Set Task Force. Edited by
Edwin Hart, The Johns Hopkins
University, Applied Physics Laboratory,
Laurel, Maryland, USA Published by
SHARE Inc., 111 East Wacker Drive,

Chicago, Illinois, USA 60601; June
1989.

SHARE Europe (SEAS) White paper National
Language Architecture. Edited by Klaus
Daube, Oerlikon Bührle RZ AG, Zürich
Switzerland. Published by SHARE
Europe Headquarters, 17, Rue
Pierres-du-Nitron, CH-1207 Geneva,
Switzerland; June 1990.

SHARE Europe Association White paper on
national character, language and
keyboard problems. National
Character Task Force. Published by
SHARE Europe Headquarters, 17, Rue
Pierres-du-Nitron, CH-1207 Geneva,
Switzerland; September, 1985

X/Open Company Limited X/Open Portability
Guides. Internationalisation Guide,
Version 2, (ISBN: 1-85912-002-4)

X/Open Company Limited Distributed
Internationalisation Services X/Open
Snapshot, Version 2, (ISBN:
1-85912-033-4)

Working Paper for Draft Proposed International
Standard for Information Systems -
Programming Language C++
Document number: X3J16/96-0018
WG21/N0836

 Copyright IBM Corp. 1996 27

28 Internationalization Resource Manager

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Subject to IBM's intellectual property or other legally protectable rights, any functionally equivalent product,
program, or service may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, is
the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 USA

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

IBM
IBMLink
Open Blueprint
OS/2

The following terms are trademarks of other companies:

POSIX Institute of Electrical and Electronic Engineers
UniForum UniForum Association
X/Open X/Open Company Limited

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

 Copyright IBM Corp. 1996 29

30 Internationalization Resource Manager

Communicating Your Comments to IBM

If you especially like or dislike anything about this paper, please use one of the methods listed below to
send your comments to IBM. Whichever method you choose, make sure you send your name, address,
and telephone number if you would like a reply. Feel free to comment on specific error or omissions,
accuracy, organization, subject matter, or completeness of this paper.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

¹ If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088.

¹ If you prefer to send comments electronically, use one of these ID's:

 – Internet: USIB2HPD@VNET.IBM.COM
– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

Make sure to include the following in your note:

¹ Title of this paper
¹ Page number or topic to which your comment applies

 Copyright IBM Corp. 1996 31

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

G325-6583-00

