
© 2012 IBM Corporation

Hey, Who closed my batch window?

Jeff Summers

Product Manager – WebSphere Foundation



2

• Business Pressures on Traditional Batch

• IBM WebSphere Java Batch Overview

• IBM WebSphere Java Batch Feature Focus

• IBM WebSphere Java Batch for z/OS Focus

• IBM WebSphere Java Batch Deployment Scenarios

• Wrap-Up Summary

Agenda



3

Business Pressures on
Traditional Batch



4

Concept of "Dedicated Batch" Window Going Away

24 x 7 x 365 Access
Users of your online systems
expect availability at all hours

Users from other parts of the
world means availability is
expected around the clock

Mobile Users
Users are no longer tied to a
desk and a computer. Today
users have access to mobile
computing devices that are with
the user wherever they may be.
Day or night, home or office.

Online

Batch

Online

Batch

In the past ... Today ...

Windows of time which used to be dedicated to batch processing are shrinking.
The demands of online processing require more and more ...

The need to process batch work has not gone away.

The need to perform the work concurrent with OLTP has emerged.



5

The Value of Shared Services
It's not just that the window is shrinking ... it's also the cost pressures on
maintaining the batch and OLTP environments:

Efficiencies through consolidation around common assets

Batch
Infrastructure

OLTP
Infrastructure

OLTP
Applications

OLTP
Development

Tools

Batch
Applications

Batch
Development

Tools

Homegrown
Middleware

Infrastructure

Batch Support Staff OLTP Support Staff

Batch + OLTP
Common Infrastructure

Batch + OLTP
Common Tooling

Common Support Staff

Homegrown
Middleware

Infrastructure

Shared
Java

Assets

OLTP
Applications

Batch
Applications



6

Java for Batch Processing?
Yes ... for many very good reasons:

z/OS Specialty Engines
Pressures on cost containment often dictate greater use of z/OS
specialty engines. Java offloads to zAAP. Java batch does as well.

Tooling Support
Development tooling for Java has advanced to the point where some
tools (IBM Rational Application Developer) are very powerful and
sophisticated.

This also provides an opportunity to consolidate to a common tooling
environment for both OLTP and batch development.

Processing in OLTP Runtime
Running Java batch in the same execution runtime as Java OLTP
provides an opportunity to mix and manage the two processing types
together under the same management model.

Availability of Skills
Java is a programming language with wide adoption in the industry.
Skills for Java programming are common and affordable.



7

The Objective -- OLTP and Batch Mixed and Managed:
OLTP and Batch do not need to be "either / or" ... it can be "both":

With IBM WebSphere Batch this is possible. OLTP and
Batch processing within a common execution runtime

(WebSphere Application Server) allows the WAS platform
to mix and manage the two workload types.

11:00pm Midnight 1:00a 2:00am 3:00am

OLTP ProcessingBatch Processing Batch Processing

OLTP Processing Batch

Batch OLTP Batch OLTP Batch

Batch Processing OLTP Processing

OLTP Batch OLTP Processing Batch OLTP

Compute
Processing
Resources



8

Overview
A high-level look at the IBM WebSphere

Java Batch model



9

IBM Compute Grid V8 and IBM WAS V8.5
The IBM WebSphere Java Batch function is provided in two ways today:

IBM WebSphere
Compute Grid

Version 8

IBM WebSphere
Application Server

Version 7 or 8

Operating Systems Supported:
AIX, IBM i, Linux, Windows, HP-UX,

Solaris, Linux for System z, z/OS

Add the function ("Augment")

IBM WebSphere
Application Server

Version 8.5

Operating Systems Supported:
AIX, IBM i, Linux, Windows, HP-UX,

Solaris, Linux for System z, z/OS

Compute Grid V8 function
incorporated into WAS V8.5Java Batch

Function

Java
Execution
Runtime

Function is identical between the two environments

Compute Grid V8 available for those who have not yet migrated
their execution runtimes to WAS V8.5



10

Batch Container Added to the WAS Runtime
At a very high-level, you may think the IBM WebSphere Java Batch function as a
"batch container" operating alongside the other containers of WAS itself:

Container-managed Services

Web Container

Application
Web Modules

Container-managed Services

EJB Container

Application
EJB Modules

Container-managed Services

Batch Container

Batch Applications

WebSphere Application Server Runtime Environment

Batch job dispatching and
management system

Job resiliency services
(skip record, step retry)

Data record read and
write support services

Parallel job management
and execution services

Checkpoint and job
restart services

COBOL module call
services



11

Overview of the Management and Execution Model
This picture illustrates some of the key components of the WebSphere Java
Batch model as provided in Compute Grid V8 and WAS V8.5:

Job
Dispatching

FunctionJob Properties
Declaration File

Job Execution
Endpoint

Batch
Applications

Job Execution
Endpoint

Batch
Applications

Development
Libraries and

Tooling Support

Job
Management

Console
1

2

3

4

5

1. Job Management Console (JMC) provides a view into the batch
environment and allows you to submit and manage jobs

2. Job declaration file (xJCL) provides information about the job to be
run, such as the steps, the data input and output streams and the
batch class files to invoke

3. The Job Dispatching function interprets the xJCL, dispatches the
job to the endpoint where the batch application resides, and
provides ability to stop and restart jobs

4. The Execution Endpoint is a WAS server in which the deployed
batch applications run

5. The development libraries and tooling assist in the creation of the
batch applications

A comprehensive Java
batch execution platform

Built on the proven Java runtime environment
of WebSphere Application Server



12

Batch Job and Batch Job Steps
A batch job consists of one or more steps executed in order specified in xJCL:

xJCL

Properties of the overall job

Job Step 1
• Java class

• Input and output declarations

• Other properties of the step

Job Step 2
• Java class

• Input and output declarations

• Other properties of the step

Job Step n
• Java class

• Input and output declarations

• Other properties of the step

Job The xJCL is submitted through the Job
Management Console
Interfaces provided: HTTP browser, command Line, Web Services, RMI

The Job Dispatching function interprets
xJCL and determines which endpoint has
batch application class files deployed

Dispatching Function invokes job and
passes to the endpoint an object
containing all the properties in xJCL

Steps are executed in order, with
conditional step processing if declared

Dispatching Function maintains
awareness of job state

When job ends, job output file accessible
through Job Management Console



13

Job Execution "State"
The following picture illustrates a simplified view of the job states ... it helps
illustrate a key point: executing jobs can be acted upon; failed jobs restarted.

Submitted

Executing

Ended

Restartable

Stop or Cancel

Problem

Restart

The Job Management Console
provides you ability to act upon
an executing job

The Batch Container is
maintaining checkpoint status
and will restart at the last
checkpoint interval

This is possible because of the Java
batch runtime services that are part of

the batch container model
If you were to write this yourself then just what's shown here would
require a significant amount of custom batch middleware code. IBM

WebSphere Java Batch provides that as part of the product.



14

Batch Data Stream Framework (BDSF)
This is a key function service provided by the batch container - it abstracts data
read and write operations so your code may focus on the business logic:

Batch Data Stream Framework

Supplied "patterns" for data access:

• JDBC read or write operations

• JPA read or write operations

• File read or write operations

• z/OS Data Set read or write operations

Your Java class that implements the
supplied framework and provides the

specific data access logic
Example: SQL query for JDBC

Your job step Java class, which
implements the business logic

required for the batch processing
Data object

passed based on
your mapping in

BDSF class

Batch Data Stream retrieves result set
from data persistence store (DB, file, etc.)

Batch Data Stream maps data fields to
data object

For each record in result set, BDSF
invokes your job step, passing a data
object mapped to your specifications

Your job step code stays focused on
business logic, not Java stream handling
and data object formatting



15

Integration with Enterprise Scheduler Functions
The Job Dispatching Function has a Message Driven Bean (MDB) interface. IBM
supplies a program that integrates schedulers with WebSphere Java Batch:

Enterprise
Scheduler
Example: IBM Tivoli

Workload Scheduler, CA
Workload Automation CA 7,

or BMC Control-M

WSGRID Program
Shell script, BAT file or JCL job

Input Queue

Output Queue

Message Driven
Bean Interface

WSGRID is seen by Scheduler as any other batch job it starts and monitors

WSGRID interacts with Job Dispatching, submitting the job and processing
Java batch job output back to STDOUT or JES Spool if z/OS

WSGRID program stays up for life of job in WebSphere Java Batch

To the Scheduler, WGRID is the Java Batch job ... but behind WSGRID is all
the WebSphere Java Batch function we'll discuss

WebSphere MQ or the integrated
Default Messaging of WAS



16

Feature Focus
A closer look at some of the features
and functions of the IBM WebSphere

Java Batch model



17

Transactional Checkpoint Processing
The batch container provides the ability to checkpoint at intervals based on
either record count or time. The container keeps track of last checkpoint.

Batch Container

Java Batch
Application

xJCL says:

Checkpoint = 5

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Commit
Processing

Last good
checkpoint
persisted

Checkpoint interval (record or
time) specified in the xJCL

This is a function of the batch
container, not your application
code

As checkpoint intervals are
reached, container commits and
records the checkpoint attained

In the event of a failure, job may
be restarted at the last good
checkpoint

Set the checkpoint interval based
on your knowledge of balance
between recoverability and
efficiency



18

Skip-Record Processing
Provides a container-managed way of tolerating data read or write errors so the
job itself may continue on. Information about data errors may be logged.

Batch Data Stream
Framework

Java Batch
Application

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

Data Record

xJCL tells BDSF:

• How many data read
or write exceptions to
consume

• What exceptions to
consider for skip-
record processing

• Alternatively, what
exceptions to exclude
from skip-record
processing

Objective: allow job to continue if a data read or
write exception occurs in BDSF

• Skip-Record processing allows BDSF to keep
exception and not surface it to your application

• A "skip-record listener" may be called so your
code may log information about skipped records

• xJCL properties allow you to specify how many
records may be skipped and what exceptions to
include or exclude from consideration

• When skip limit is reached, further exceptions
are surfaced to application. That may result in
job failing and going into a restartable state



19

Retry-Step Processing
Provides a means of retrying a job step in the event of an exception thrown. If
successful on retry then the job continues and your processing completes.

xJCL tells Container:

• How many step retries may be
attempted

• What exceptions to consider for
retry-step processing

• Alternatively, what exceptions to
exclude from retry-step processing

• Whether to process a delay before
attempting a retry of the step

Objective: retry step in attempt to allow overall job
to continue and complete when an unanticipated
exception is thrown

• This is at level higher than skip-record ... this is if
an unhandled exception is thrown when the job
step function is called

• Batch container falls back to last good checkpoint
and restarts from there

• A "retry-step listener" may be called so you can
perform custom action upon retry-step
processing

• xJCL properties allow you to specify how many
retry attempts will be performed and what
exceptions to include or exclude from
consideration

• When retry limit is reached, job will go into
restartable state

On exception, retry
up to n times



20

Batch "Listeners"
These are callout points where your customer "listener" code will be called
when key events occur. The callouts are managed by the batch container:

Job Listener
• Callouts occur:

Start of the job; Start of each step; End of each step; End of job

• Register your code to container with property in xJCL

• Use this to perform any special setup or cleanup actions at those
points in the lifecycle of a batch job

Retry-Step Listener
• Callouts occur:

When the exception is thrown; When the retry is attempted

• Register your listener with code in application createJobStep()

method

• Use this to take action at these points, such as logging
information about the exception and the point in the processing
where it occurred

Skip-Record Listener
• Callouts occur:

On skipped read or skipped write operation

• Register your listener with code in application createJobStep()

method

• Use this to take action at these points, such as logging
information about the exception and the record skipped

Job Listener

Retry-Step Listener

Skip-Record Listener

Listeners provide ability
to have your code called
at key points during batch
job execution



21

Parallel Job Manager
The Parallel Job Manager (PJM) provides a way to "parameterize" logic so
parallel sub-jobs may act on a slice of the overall batch job data:

One job processing 1M customer records

1 - 100K

100K - 200K

900K - 1M

Ten sub-jobs
acting on a
1/10th slice of
data each

Sub-job

Sub-job

Sub-job

or

Time = 0 Time = 1 Time = 10

Objective is reduction in
overall job completion time
Which shortens overall batch window if other
jobs are dependent on this job for completion

xJCL specifies whether job is to be
run in parallel, and if so how:

• One JVM, multiple threads

• Multiple JVMs

Your "parameterizer" code is called
at start so data range may be
segmented into sub-job slices

Job is submitted, then PJM
dispatches "sub-jobs" to act on
each data range
"Parameterizer" code constructs data range query
strings to be used by each sub-job

PJM manages "top-job" and all
subordinate "sub-jobs" to
completion



22

Java Batch on z/OS
A review of what IBM WebSphere Java

Batch brings specific to z/OS



23

The Value Statements of WebSphere Batch on z/OS
If we start from a high level, we see the following platform benefits that accrue
up to Java batch running on the platform:

WebSphere Java Batch

WebSphere
Application Server

z/OS Operating System

z/OS Parallel Sysplex

System z Hardware

Java Batch Applications

• Batch runtime services

• Batch development tooling

• Proven Java runtime environment

• WAS deployment and management model

• WAS Qualities of Service

• Decades of maturity, stability and reliability

• Consolidated operation and management model

• Rich set of system facilities: WLM, SMF, RMF, SAF

• z/OS instance clustering with central data sharing

• Elimination of single points of failure for availability

• Near linear scalability up to 32 nodes

• Engineered from beginning for reliability and stability

• Engineered for high levels of I/O

• Extremely long mean time between failure

• Speciality engines for specific work offload

• Dynamic capacity expansion

• Logical partitioning using PR/SM hypervisor



24

A Steady History of WAS on z/OS Performance Enhancements
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Java 5) on z9 to WAS 8.5
(Java 7) on zEC12

~5x aggregate hardware and software improvement comparing WAS 6.1 Java5 on z9 to WAS 8.5 Java7 on zEC12

History of WAS on z/OS Hardware/Software Performance

1.0

1.6

2.2

3.1

3.9

5.2

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Version 6.1 on z9 Version 6.1 on z10 Version 7.0 on z10 Version 7.0 on z196 Version 8.5 on z196 Version 8.5 on EC12

A
g

g
re

g
a

te
P

e
rf

o
rm

a
n

c
e

Hardware Improvement

Software Improvement

+25%

+40%

+32%

+43%

+57%

Java5 Java5 Java6 Java6 Java7 Java7



25

Scaling Up the Java Batch Solution on z/OS
There are several ways in which a WebSphere Java batch solution can be
scaled up to provider greater batch throughput and shorter execution windows:

Controller
Region

Servant Region

Servant Region

Controller
Region

Servant Region

Servant Region

Sysplex-Enabled Data Subsystems
DB2, CICS, IMS, MQ

Sysplex-Enabled Data Subsystems
DB2, CICS, IMS, MQ

Parallel Sysplex Data Sharing

WebSphere eXtreme Scale
Caching Grid

PJM

1

3

4

5

1. Vertical
WAS z/OS servant regions provide a
type of "vertical cluster," giving you
additional batch compute resources

2. Capacity on Demand
CPU processors may be dynamically
added to a z/OS LPAR, increasing the
capacity for processing work

3. Horizontal
WAS z/OS clustering on top Parallel
Sysplex provides near-linear
scalability up to 32 nodes with a
central data sharing model

4. Parallel Processing
The Parallel Job Manager may be used
to partition data into sub-jobs, which
may then be run on multiple threads,
different servants, or different servers
on other LPARs.

5. Data Caching
WebSphere eXtreme Scale provides a
data caching grid from which Java
batch may fetch and store data

2



26

WLM Classification
The submitted job can be tagged with a WLM "transaction class," which may
then be used to map the job to a WLM Service Class or Reporting Class:

Job
Dispatching

Function

Job Execution
Endpoint

Batch
Applications

Configurable rules map job
submission to a "Transaction

Class" (TC) name

xJCL

TC name sent to endpoint
where batch job will run

WLM "CB" subsystem rules
map TC name to Service

Class and Reporting Class

z/OS WLM

Batch job runs under that
Service Class and data is

gathered under the
Reporting Class

Classifying to a Service Class
allows WAS z/OS to place work
into separate servant regions
based on Service Class

Classifying to a Reporting Class
allows WLM to gather system
information for all work running
under that Class



27

SMF 120.9 Activity Recording
WAS z/OS supports the use of activity recording using the SMF 120.9 record.
WebSphere Java Batch extends the record with batch activity information:

WebSphere Java Batch
Compute Grid z/OS V8

WAS z/OS V8.5

SMF Buffers and
Data Sets

Job activity records allow you to
understand how your system is being used
and to provide chargeback data

Activity recording available on all platforms,
but only z/OS uses SMF, which is an
extremely efficient logging mechanism

Provides historical records for usage
analysis and batch capacity planning

Information captured:
• Job submitter

• Date and time of submission

• Final job state

• Total CPU used for job

• General processor used for job

• zAAP usage derived: Total - GP = zAAP



28

Use of JZOS Services
JZOS is a set of functions that make using Java on z/OS much easier and
useful. The JZOS class libraries may be used in batch application development:

Job Execution
Endpoint

Batch
Applications

JZOS Libraries

z/OS

Examples of some z/OS services available:
DfSort - interface for invoking DFSORT

MvsConsole - class with static methods to interface with the MVS console.

MvsJobSubmitter - class for submitting batch jobs to JES2 or JES3 from a Java program

PdsDirectory - class for opening a PDS directory and iterating over its members.

WtoMessage - simple data object/bean for holding a WTO message and its parameters.

ZUtil - static interface to various z/OS native library calls other than I/O.

WebSphere Java Batch and JZOS are not
mutually exclusive ... the JZOS class

libraries may provide exactly what you
need for your batch application to access

z/OS functions and services



29

COBOL Container
The COBOL Container provides a way to call and execute COBOL modules in
the WAS z/OS server address space ... a very efficient way to call COBOL

1. Batch application runs in the WAS
z/OS servant region address space

2. The COBOL container is created as a
separate LE enclave in the address
space

3. COBOL DLLs are accessed using
STEPLIB or LIBPATH

4. COBOL Container code provides the
"glue" between the Java environment
and the native COBOL

5. Java batch code uses supplied class
methods to create the container and
use it

6. Call stubs provide an easy way to call
the COBOL DLL and marshal data
back and forth

7. The call stubs are generated by a
supplied utility that uses COBOL
source to understand data bindings

8. JDBC Type 2 connections created in
the Java batch program may be
shared into the COBOL module in the
COBOL Container

COBOL
Container
Call Code

WebSphere Java
Batch Container

COBOL Container LE Enclave

COBOL Module

Call
Stubs

WAS z/OS Servant Region Address Space
Separate LE Enclave from COBOL Container

Call Stub
Generator

IBM Rational
Application Developer

Compiled COBOL Library
PDSE or USS Directory

1

2

3

4

5

6

7

Lines of code needed to invoke COBOL many times
less than other means of calling COBOL from Java

8



30

Deployment Scenarios
A review of some potential ways to deploy

the WebSphere Java Batch function



31

Co-Location on z/OS
With the WebSphere Java Batch function on z/OS several advantages surface:

Job Execution
Endpoint

Batch
Applications

Data
SubSystems
DB2, CICS, IMS, MQ

z/OS

Use of cross-memory connectors for high-speed
and low-latency access to data

• JDBC Type 2 connector for access to DB2

• CICS Transaction Gateway (CTG) local EXCI

• WebSphere Optimized Local Adapters (WOLA)

Much more secure -- cross memory data exchanges
can not be 'sniffed' or intercepted

Parallel Sysplex data sharing provides highly
available clustered environment without reliance on
a single instance of a data subsystem

Use of COBOL Container technology for re-use of
COBOL assets in very efficient calling pattern

Use of WebSphere MQ Bindings Mode for
integration with Enterprise Scheduler for very fast
job submission and job output return

Reduction of per-access latency is critical when dealing with large
volumes of records where job completion time is important



32

Linux for System z and Hipersocket Access to z/OS Data
Hipersockets is a technology that maps a TCP/IP network onto the memory
backplane of a System z divided into multiple logical partitions (LPAR):

Job Execution
Endpoint

Batch
Applications

Data
SubSystems
DB2, CICS, IMS, MQ

z/OS LPAR Linux for System z

Memory Backplane of System z CEC

TCP/IP Network

To programs and processes that
use Hipersockets it looks like a
routed TCP/IP network

Advantages of Hipersockets
• Secure -- does not go over adapters or external wires

• Efficient -- memory transfer speeds implies lower overall latency

Advantages of Linux for System z
• Consolidation -- host many Linux images in a virtualized environment

Virtualizing on the zVM hipervisor provides a means of quickly
scaling up in Linux instances to meet requirements



33

zEnterprise and zBX
The zEnterprise system is designed around principle of right-fit placement:

Job Execution
Endpoint

Batch
Applications

Data
SubSystems
DB2, CICS, IMS, MQ

z/OS
zBX Virtual

Servers

10Gb Intra-Ensemble Data Network

System z LPAR serves as the
anchor for a zEnterprise "node"

A zBX blade extension rack hosts
IBM p or IBM x blades capable of
hosting AIX, Linux or Windows
virtual servers

A 10Gb network connects it all

WebSphere Java Batch endpoints
may be placed where the work they
do makes best sense:

• Batch processes requiring a highly available and
highly secure environment may operate on z/OS

• Batch processes that use relatively more CPU may
be offloaded to zBX blade servers

• WebSphere Java Batch Dispatching function
would be able to "see" all the different endpoints
and dispatch based on where batch applications
were deployed



34

A Sampling of Customer Scenarios
Batch scenarios spanning both mainframe and distributed solutions:

Selected Java and Compute Grid for OLTP and batch modernization

• Availability of Java skills

• Control costs via Java offload

• Leverage shared infrastructure for OLTP and Java batch

z/OSMainframe batch modernization –
OLTP and batch moved to Java

Insurance
Company

Dynamically adjust IT resources to meet changing business needs

• Reduce load on backend data store to manageable levels

• Improve transaction throughput and response times

• Improve developer productivity

• Scale easily as business transactions grow

AIX

z/OS

Convert z/OS batch statement
generation to Java and execute on
AIX

German
Insurance
Company

ETL tool was being used for a large amount of transactional batch
workloads; proving to be an expensive solution to maintain. WebSphere
Compute Grid outperformed the solution and provided a cost effective
alternative to replace the tool.

LinuxUse WebSphere Batch for
complementing ETL batch workload

Bank/Credit
card company

• Deployed a horizontally scalable java batch environment

• Developer and operational productivity with reuse of code between web
and batch applications, reuse of admin scripts from WAS environment

• Stability through isolating resource intensive apps to their own clusters

• Operational simplicity through reuse of applications by pushing the
input and output descriptors into the xJCL

LinuxReplace home grown batch
framework with WebSphere Batch

Insurance
Company

High Performance, Highly-Parallel Batch Jobs with WebSphere Compute
Grid and eXtreme Scale on Distributed Platforms at about 400K
transactions/hour

DistributedExtreme batch payments
transaction processing

Wall Street
Bank

Optimize batch processes, run 24x7 to help with the strategy to reduce
batch development, operating and runtime costs.

z/OSMainframe batch modernization –
optimize MIPS usage

Investment &
Trading co

Operational simplicity with out-of-box connector to Enterprise Scheduler
(TWS). Process 20 Million records a week, with database of 35 TB with
100 billion rows and 40,000 batch jobs.

z/OSMainframe batch modernization –
COBOL to Java conversion

Large Re-
insurance
company

Business ResultsPlatformScenarioCustomer



35

Wrap-Up and Summary



36

WebSphere Java Batch

Key Features:
 Java Batch programming model

 Java Batch container built on WAS QoS

 Development and deployment tooling

 Batch execution environment

 Concurrent OLTP and batch workloads

 Enterprise scheduler integration

 Parallel processing of batch jobs

 Container based checkpoint and restart

 Skip record processing

 COBOL support on z/OS

WebSphere Application Server v8.5 integrates capabilities from WebSphere
Compute Grid and delivers a complete enterprise level Java batch
processing solution

Compute Grid
capabilities
integrated

into
WAS 8.5



37

WebSphere Java Batch – Key Use Cases

 Batch Modernization – Migrate from a native batch runtime, typically
developed in programming languages like C, C++, PL/I, and COBOL, to Java.

 Highly Parallel Batch Jobs – Execute a single large batch job that is broken
into chunks and executed concurrently across a grid of resources.

 Dynamic OLTP & Batch Runtime – Dynamically provision resources for
execution to meet operational goals.

 Batch as a Service – Expose business capabilities as a service and leverage
usage accounting features for tracking and chargeback.

 Replace Homegrown Batch Frameworks – Eliminate costly proprietary
batch infrastructures and focus development resources on business logic.

 Shared business logic across OLTP and Batch – Leverage the proven
WebSphere platform to share logic across both batch and OLTP.

Evolve to a single infrastructure for both OLTP and Batch that enables you
to leverage existing applications and focus resources on business logic



38

WebSphere on z/OS and Java Batch – Links to Collateral

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1778Training – z/OS Wildfire Workshops

- WAS for z/OS v8.5, WebSphere Compute Grid

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102205Guide to WebSphere on z/OS Collateral

- Updated master list of links to collateral

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532Why WAS for z/OS

- Executive Brochure

- Technical Presentation

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101783WebSphere Java Batch

- Overview and z/OS Specifics

- Presentation, whitepaper, videos

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490WebSphere Optimized Local Adapters (WOLA)

- Overview, whitepapers, videos

- History of WOLA updates

http://www.websphereusergroup.org/zosWebSphere on z Virtual User Group

- Download Sept webcast – WAS 8.5 / Liberty

- Register for Dec webcast – WebSphere Batch

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110WAS for z/OS Liberty Profile

- Executive Brochure

- Quick Start Guide and Samples

LinkTopic



39


