
07- IMS Application: 11

07- IMS Application: 22

07- IMS Application: 33

The topics on this visual show the comprehensive support IMS 13 has added for this new

application model.

07- IMS Application: 44

application model.

The existing DL/I ICAL in IMS allows IMS applications to synchronously call out to external

resources. Specifically, IMS applications can request access to and wait for replies from:

07- IMS Application: 55

resources. Specifically, IMS applications can request access to and wait for replies from:

•WebSphere EJBs/MDBs using the IMS TM Resource Adapter

•To any Web Service Provider using the IMS SOAP Gateway

•User-written IMS Connect clients

With IMS V13, a new capability is added to the DL/I ICAL support so that not only is access to

resources outside IMS supported, but also the ability to synchronously call another IMS

07- IMS Application: 66

resources outside IMS supported, but also the ability to synchronously call another IMS

transaction running in any of the dependent region types. The called or target program can be

an MPP, JMP, IFP, or Message-Driven BMP in the same or different IMS.

There are many benefits for IMS DB/TM and IMS TM environments that are looking to

modernize their application infrastructure. Synchronous program switching provides many

07- IMS Application: 77

modernize their application infrastructure. Synchronous program switching provides many

opportunities including:

•Modernization of the application infrastructure while continuing to use DL/I functionality to

access various destinations

•Support for an internal service flow template that allows multiple IMS transactions to

synchronously participate in a business process

•Encouragement of new IMS application development to support business logic on the host.

•Reduction of unnecessary network traffic with a broker implementation that uses synchronous

program switching techniques

The highlights include:

07- IMS Application: 88

•Automatic invocation of OTMA which is an inherent part of IMS.

•A new OTMA destination descriptor type of IMSTRAN which designates an IMS transaction as

the target destination for both single and multi-segment ICAL messages.

•Extensions to the DL/I ICAL to provide additional AIB return and reason codes to provide

information about errors that could be experience in this new environment.

•Control of late replies. If the ICAL times out before its target transaction returns a reply, the late

response message is automatically purged unless a reroute designation was previously defined

in the destination descriptor.

•Support for security. The userid associated with the transaction issuing the ICAL is the same

userid that is used to determine whether the target of the ICAL can be accessed.

Note the upfront restrictions:

07- IMS Application: 99

•ICAL is only supported in IMS TM or IMS TM/DB environments. BMPs or JBPs running in

DBCTL are not able to issue the ICAL.

•The IMS application program issuing the ICAL can be a participant in a protected transaction but

the target of the ICAL cannot be part of the RRS (resource recovery services) commit scope.

•Additionally, the IMS program that is invoked by the ICAL can read but not update MSDBs and

cannot be an IMS conversational transaction. MFS services are never invoked.

Restrictions involving exit routines include:

07- IMS Application: 1010

•The DFSYIOE0 (OTMA Input/Output Edit Exit routine) is not called for synchronous program

switch messages and responses. It can be called, however, for a late response that is not

purged but instead routed to an OTMA destination.

•The DFSBSEX0 (Build Security Environment Exit Routine) is not invoked for the target

transaction of the synchronous program switch.

•Unlike the regular ISRT/CHNG call, DFSMSCE0 user exit will not be called for the synchronous

program switch using the DL/I ICAL call.

IMS shared queues support requires all systems must be at IMS 13 and a DBRC MINVERS of

13.1.

In IMS V13, the function of this DL/I ICAL has been extended to allow customers to call another

IMS application, which can be in the same IMS, in the shared-queues back-end IMS, or in the

07- IMS Application: 1111

IMS application, which can be in the same IMS, in the shared-queues back-end IMS, or in the

remote IMS via MSC. The ICAL synchronously receives the response back during the same unit

of work. This new function is called “Synchronous Program Switch.”

This new synchronous program switch function expands the usage of the OTMA destination

descriptor to serve the ICAL requests so that the transaction data can be sent to another IMS

application for processing. Multi-segment messages and responses are supported and the target

of the call can be an IFP, MPP, BMP, JMP, or JBP running in the same or another IMS TM or

IMS TM/DB system

The overall structure of the DLI ICAL continues to be the same as in previous releases. The
functionality, however, has been expanded to allow the IMS application program to call another

07- IMS Application: 1212

functionality, however, has been expanded to allow the IMS application program to call another
IMS application.

request_area

Specifies the request area to use for this call. This parameter is an input parameter. This request
area contains the request message data that is sent from the IMS application program to the
application that is specified in the OTMA descriptor. The AIBOALEN field specifies the length of
the request message data. If the data is destined for a non-IMS application program or service
that runs in a z/OS or distributed environment, the ICAL call will bypass IMS TM message
queuing and the format of the request area does not require the LLZZ fields. If the data is
destined for an IMS application program, the request data will require the LLZZ fields and the
transaction code needs to be specified in the first 8 bytes of the data area following the LLZZ. For
transactions specified with MULTSEG, the request data will need to include the entire segments.
The standard IMS LLZZ format is required for each segment. The transaction code is only
required in the first segment.

response_area

Specifies the response area to use for this call. This parameter is an output parameter. This
response area should be large enough to hold the response that is returned from the application
that is specified in the OTMA descriptor. If the response area is not large enough to contain all of
the returned data, IMS returns partial data. When partial data is returned, the AIBOAUSE field
contains the length of the returned data in the response area, and AIBOALEN contains the actual
length of the response message. If the request data is destined for a non-IMS application
program or service that runs in a z/OS or distributed environment, the format of the response
area does not require the LLZZ fields. If the request data is destined for an IMS application
program, the format of the response data will follow the standard LLZZ format for each segment
in the response data area, and the response data area will include the entire output segment if
the space has been defined as large enough.

Additionally, new return codes, reason codes and extended reason codes for the ICAL are

introduced to explain errors that could be encountered in this new type of interaction. The visual

07- IMS Application: 1313

introduced to explain errors that could be encountered in this new type of interaction. The visual

shows some examples but the full list is available in the IMS documentation.

Note that if the response_area is too small and only partial data is returned, then the new ICAL

with a sub-function of “RECEIVE” can be used to retrieve the entire message. Detailed

information on the RECEIVE subfunction can be found in the OTMA Enhancements section.

The DFSYDTx member of IMS.PROCLIB has been enhanced to support a new type of

destination descriptor, IMSTRAN, to perform the synchronous program switch via the DL/I ICAL

07- IMS Application: 1414

destination descriptor, IMSTRAN, to perform the synchronous program switch via the DL/I ICAL

call in the IMS application. They are read and loaded at IMS initialization.

The optional parameters include: TMEMBER, TPIPE, SMEM, SYNCTP, EXIT, LTERMOVR and

REPLYCHK. The TMEMBER, TPIPE, SYNCTP, and SMEM parameters for this new type of

descriptor can be used to specify the destination of the late response for the synchronous

program switch request. The EXIT parameter allows the message control/error exit routine

(DFSCMUX0) user exit to override the destination for the late response for the synchronous

program switch. The LTERMOVR parameter can be specified to set the LTERM name of the

IOPCB for the target transaction of the synchronous program switch. The REPLYCHK parameter

can be optionally used when multiple response messages are competing to be sent back to the

ICAL call.

These new descriptor type and the corresponding parameters for the synchronous program

switch can be specified by using the DFSYDTx member of IMS PROCLIB or the type-2

commands

The supported parameters for TYPE=IMSTRAN are as follows:

07- IMS Application: 1515

•LTERMOVR= Specifies the LTERM name used to override the LTERM name in the IMS

application program’s I/O PCB.

•TMEMBER= A 1- to 16-character OTMA TMEMBER name. This parameter is optional when

TYPE=IMSTRAN. When specified, IMS will queue the late response of a synchronous program

switch to this OTMA TMEMBER. And TPIPE= is required when TMEMBER= is specified.

•TPIPE= A 1- to 8-character TPIPE name. This parameter is optional. IMS uses this TPIPE to

queue the late response for synchronous programs switch when TYPE=IMSTRAN. And

TMEMBER= is required when TPIPE= is specified.

•SMEM= Specifies whether (YES) or not (NO) this destination is a supermember.

•EXIT= Specifies whether (YES) or not (NO) the IMS user exit (DFSCMUX0) can override the

descriptor routing information for late messages when TYPE=IMSTRAN. It is an optional

parameter and defaults to NO.

•REPLYCHK= Specifies whether (YES) or not (NO) IMS application replies to the IOPCB. When

REPLYCHK=YES and the ICAL switch-to application does not reply to the IOPCB nor message

switch to another transaction, IMS will return a bad return code X’0100’, reason code X’0110’,

and extended reason code X’0061’ instead of a timeout to the ICAL call. It defaults to YES.

•SYNCTP = Specifies whether (YES) or (NO) a synchronous TPIPE is to be created with

recoverable sequence numbers for input and output messages. Optional parameter. Primarily

used with WebSphere MQ and can apply to late response messages

•SYNTIMER= Specifies the ICAL timeout value for synchronous program switch. If timeout value

is also specified in the AIB interface, IMS will compare the timeout values and select the lower

one for this ICAL call. This is an optional parameter.

The destination descriptor with TYPE=IMSTRAN for synchronous program switch requests can
be used on behalf of multiple target transactions. The actual trancode is specified in the

07- IMS Application: 1616

be used on behalf of multiple target transactions. The actual trancode is specified in the
message sent by the ICAL and not in the destination descriptor. Creating multiple of the
TYPE=IMSTRAN descriptors is useful if different processing characteristics are needed.

In lieu of creating descriptors, the Type-2 commands can be used to update, create, or delete
OTMA descriptor entries. Additionally, a QUERY command can be used to display information

07- IMS Application: 1717

OTMA descriptor entries. Additionally, a QUERY command can be used to display information
associated with a descriptor. For synchronous program switch support, the new optional sub-
parameters (SYNCTP, REPLYCHK, EXIT, and LTERMOVR) can be SET as well as queried.

IMS internally schedules transactions initiated by the ICAL as OTMA transactions. Using OTMA,

however, for the synchronous program switch support will be transparent and automatic. This

07- IMS Application: 1818

however, for the synchronous program switch support will be transparent and automatic. This

means that there will be no need to specify OTMA=Y in the IMS PROCLIB member DFSPBxxx

nor will there be a need to issue a /START OTMA command.

Once a DL/I ICAL for synchronous program switch is accepted, IMS first checks to see if

authorization is required and, if so, check to ensure the user is allowed to access the target

transaction. Once the authorization process is complete, IMS internally use the OTMA send-

then-commit (CM1) protocol with SyncLevel=CONFIRM to process this request. An internal ACK

for the CM1 response will always be generated. The response is not sent until the IMS syncpoint

is complete.

The OTMA TMEMBER DFSYICAL with the TPIPE name DFSTPIPE will be created.

A /DIS OTMA command can be used to see the existence of the DFSYICAL TMEMBER and

associated properties.

07- IMS Application: 1919

associated properties.

In this example, message processing program IAPMD127 is processing transaction IAPMD127

which is waiting for a response to a synchronous callout request (WAIT-CALLOUT). This request

07- IMS Application: 2020

which is waiting for a response to a synchronous callout request (WAIT-CALLOUT). This request

is making a synchronous program switch using DL/I ICAL to a target transaction SKS1. The

timeout value of this ICAL was used to compute the end time of this ICAL request which is

displayed in the END TIME field.

•The /PSTOP command wakes up an application program that is waiting for the response from a
DL/I ICAL wait so the program can terminate. If a tran name is specified following the SYNC

07- IMS Application: 2121

DL/I ICAL wait so the program can terminate. If a tran name is specified following the SYNC
parameter, it will also apply to an ICAL that is performing synchronous program switch.
Additionally, the ICAL call that is in the wait state will be posted and received AIB return code
X’0100’ with reason code X’010C’.

•The /STOP TMEMBER DFSYICAL can be used to disable the synchronous program switch
support. Application programs issuing ICAL requests after this command will receive: AIB return
code X'00000100', reason code X'00000110' and extended reason code X’00000005’. If the
command also includes TPIPE DFSTPIPE the subsequent synchronous program switches from
IMS application issuing ICAL will be rejected with AIB return code X'00000100', reason code
X'00000110' and extended reason code X’00000006’.

•The /START TMEMBER DFSYICAL command allows the support to once again be activated. If
an INPUT flood_limit is specified then the flood_limit value initiates flood control support and
limits the number of synchronous program switch requests that can be active.

•The /DISPLAY OTMA command can be used to determine if this IMS has been used to process
any synchronous program switch requests. The information displayed includes whether or not
there are any active requests waiting for a response and how many of them there are. The
OTMA member DFSYICAL is created only for processing the ICAL calls for synchronous
program switches. The TIB column can be used to identify how many active synchronous
program switches exist in this IMS. Since the DRU exit has meaning to the DFSYICAL member,
the DRUEXIT column for its member will have N/A. A new user status “SYNC P2P” has been
introduced for the OTMA internal member DFSYICAL which initiated the synchronous program
switch using the DL/I ICAL calls. When the flood limit has been set via the /START TMEMBER
DFSYICAL INPUT flood_limit command and the flood value has been reached, the user status
will show “SYNC P2P+FLOOD”. The TIB column also displays a value. For the OTMA internal
member DFSYICAL, this indicates the current number of IMS regions waiting for the response of
synchronous program switch. When this number reaches the optional flood limit (if set) then no
more ICAL for synchronous program switch will be accepted.

Additional messages that can be issued in a synchronous program switch scenario include:

07- IMS Application: 2222

•DFS4687E is a new message that indicates that an error has occurred in the synchronous

program switch processing. It provides a short summary that describes the processing failure

•DFS1190I is issued to indicate that a /PSTOP AOITOKEN or /PSTOP REGION

SYNC command was entered but the region was not waiting for the specified AOI token or ICAL

response.

IMS application programs might additionally receive the following status codes:

A1:

•The OTMA destination descriptor entry used for a CHNG call specified a TYPE of IMSTRAN. A

TYPE=IMSTRAN is only applicable to the ICAL.

•An OTMA ALTPCB output destination was specified with an OTMA member name of

DFSYICAL which is a reserved name.

AX:

•An OTMA user exit (DFSYPRX0, DFSYDRU0, or client DRU exit) returned invalid routing

information. The OTMA return codes in the 67D0 log record can provide more information.

Security for ICAL is similar to CHNG/ISRT DLI calls. Depending on the transaction security

specifications (TRN) the IMS region will call RACF and/or DFSCTRN0 user exit to check if the

07- IMS Application: 2323

specifications (TRN) the IMS region will call RACF and/or DFSCTRN0 user exit to check if the

user is authorized to issue the ICAL for the target transaction. For APPC/OTMA transaction it

also depends on the security option specified for APPC/OTMA. If the security of NONE has

been specified for APPC/OTMA transactions, RACF and/or DFSCTRN0 will not be called even if

TRN=Y has been specified.

As mentioned earlier, IMS schedules the transaction initiated by the ICAL as an OTMA

transaction which means that OTMA security settings (NONE/ CHECK/ FULL/ PROFILE) are all

supported. With or without the activation of OTMA, the OTMA security is set to FULL as the

default. This security for ICAL processing can be changed by issuing /SECURE OTMA

TMEMBER DFSYICAL CHECK|NONE command. Note that the DFSBSEX0 user exit routine will

not be called.

When the /SECURE OTMA command is issued, it sets the security setting for the OTMA

internal member DFSYICAL. This member has been created internally by OTMA to process the

DL/I ICAL calls for synchronous program switches.

Even when the DFSYICAL member does not exist in the IMS system, this command can still be

issued to create this member and to set the security level for the subsequent DL/I ICAL calls.

07- IMS Application: 2424

issued to create this member and to set the security level for the subsequent DL/I ICAL calls.

For IMS shared queues (SQ) customers, all of the IMS systems in the same SQ group must

have the same MINVERS value of 13.1 in order to use this function.

07- IMS Application: 2525

have the same MINVERS value of 13.1 in order to use this function.

Note that IMS leverages the APPC/OTMA XCF shared queues function (introduced in IMS 12) to

process the switched-to transaction at a shared queues front-end and back-end IMS. This

processing for synchronous callout message does not require the specification of AOS= or RRS=

in the IMS PROCLIB members, and is compatible with any existing AOS= and RRS= settings

used by the customers. What this means is that if an IMS system already uses AOS= and RRS=

specifications to process its shared queues transactions, the non-ICAL transactions will continue

to use these settings but synchronous program switch message using ICAL calls will be

executed in the shared queues environment independently using AOS=X.

As a reminder, AOS=X allows synchronous transactions with synclevel of NONE|CONFIRM to

be processed in a Shared Queues back-end system using XCF communications. The

processing of synclevel SYNCPT requests is equivalent to AOS=N.

All of the IMS subsystems in an MSC network can process synchronous programs switch

messages, as long as the MSC link exists in the front-end IMS.

07- IMS Application: 2626

messages, as long as the MSC link exists in the front-end IMS.

A new type of OTMA message header is introduced for the synchronous program switch. This

type of message consists of OTMA control data header, OTMA state data header, OTMA

07- IMS Application: 2727

type of message consists of OTMA control data header, OTMA state data header, OTMA

security header, OTMA user data header, and the request data of the ICAL.

In the control data header, a new flag x’04’ is added to the message type field to identify the

message for the synchronous program switch:

TMAMSP2P EQU X'04' Msg type=Synchronous program switch

In the state data header, the commit-mode=1, Synclevel=CONFIRM, and recovery token from

LCRETOKN are specified.

In the security data header, the userid from PSTUSID is included.

In the user data header, OTMA prepares a special format of user data for the processing of the

synchronous program switch.

07- IMS Application: 2828

When EXIT=YES is specified in the OTMA descriptor for the synchronous program switch and a

late response message is created, DFSCMUX0 user exit will be called to take actions. The

07- IMS Application: 2929

late response message is created, DFSCMUX0 user exit will be called to take actions. The

supported actions are either to dequeue the late response message or to reroute it. If reroute

action is requested and the destination information is provided, the late response message can

be rerouted to an LTERM or OTMA destination. If the reroute TMEMBER and TPIPE names are

also specified in the OTMA descriptor (associated with the original synchronous program switch),

they will be passed in the MSNB COPY for the DFSCMUX0 user exit. The new exit flag,

MSNBDESC, can be set to reroute the late response message using the reroute TMEMBER and

TPIPE information specified in the descriptor. If a non-supported action is specified for the late

response message, IMS will ignore it and discard the late response messages.

A new flag was added to the flag byte at offset +24 of the input parameter list of DFSYPRX0

(OTMAS Pre-Routing Exit Routine). This new flag indicates that this OTMA ALTPCB output

07- IMS Application: 3030

(OTMAS Pre-Routing Exit Routine). This new flag indicates that this OTMA ALTPCB output

message was originally triggered by a synchronous program switch DL/I ICAL call.

Additionally, enhancements to the MCI and STATE DATA parameter of the input parameter list

of the exit indicate that the OTMA prefix may have been generated by the system rather than

07- IMS Application: 3131

of the exit indicate that the OTMA prefix may have been generated by the system rather than

reflect the original OTMA transaction which invoked the ICAL.

DFSYDRU0 (OTMA Destination Resolution Exit Routine) has also been enhanced to provide a

new flag at offset +24 of the input parameter list. This new flag indicates that the OTMA ALTPCB

07- IMS Application: 3232

new flag at offset +24 of the input parameter list. This new flag indicates that the OTMA ALTPCB

output message was originally triggered by a synchronous program switch DL/I ICAL call

The MCI and STATE DATA parameters of the input parameter list of the exit indicate that OTMA

prefix may have been generated by the system are not from the original OTMA transaction which

07- IMS Application: 3333

prefix may have been generated by the system are not from the original OTMA transaction which

invoked the ICAL.

DFSYIOE0 (OTMA Input/Output Edit Exit Routine) is never invoked for synchronous program

switch request and reply messages but it can be called for late responses that are destined for

07- IMS Application: 3434

switch request and reply messages but it can be called for late responses that are destined for

an OTMA client.

For OTMA destinations, IMS relies on the information in the 1024-byte user data prefix of the late

response.

•If the synchronous program switch call was initiated by an OTMA transaction from an OTMA

client, then IMS will propagate the initial client user data to the user data prefix of the late

response message. This user data prefix can remain as it is or can optionally be updated by the

DFSYIOE0 user exit.

•On the other hand, if the program that initially issued the synchronous program switch call was

not initiated by an OTMA client, such as IMS Connect, then this prefix will be initialized to zeroes

and DFSYIOE0 must be used to build the client specific user data so that it can be correctly sent

to the OTMA client.

07- IMS Application: 3535

(1) When a transaction issues an ICAL, e.g., TRAN_A, the OTMA message header that is built

for the synchronous program switch message is carries the ICAL timeout value which is used

07- IMS Application: 3636

for the synchronous program switch message is carries the ICAL timeout value which is used

for the target transaction expiration process.

(2) If the ICAL times out before a response is receives, then TRAN_A receives an AIB return

code/ reason code indicating the condition.

(3) When TRAN_B is finally scheduled and the application issues a GU IOPCB, transaction

expiration is detected. Since the OTMA message header contains the transaction expiration

information with TRAN_A’s ICAL timeout value, the transaction expiration process discards

the input message and a 67D0 log record is written. No DFS message is sent back to the

ICAL call since it is no longer waiting, and no symptom dump is produced.

Note that the transaction expiration process does not occur:

07- IMS Application: 3737

•When the target of the ICAL also issues program-to-program switches. Only the initial called

program can be expired.

•For ICAL messages sent across an MSC link. If the calling program issuing the ICAL times out,

any response message from the remote MSC system is processed as a late response message.

•For Fastpath transactions.

•If the descriptor defines parameters that can deal with a late response.

An IOPCB reply is a late response message when IMS attempts to return to a calling
synchronous program switch program (issuer of the ICAL) after that program has either: timed

07- IMS Application: 3838

synchronous program switch program (issuer of the ICAL) after that program has either: timed
out, or already received a previous response message.

The bottom picture on the visual gives an example of the latter. Note that in this scenario, the
target of the synchronous program switch TRAN_B does not reply to the IOPCB but rather
issues two program-to-program switches. TRAN_C and TRAN_D which both respond to the
IOPCB can be ultimately responsible for responding to TRAN_A’s ICAL request. The first one to
process an application GU,IOPCB gets the responsibility of sending the CM1 response. The
other transaction’s reply becomes a CM0 reply and is considered a late response.

By default, IMS logs and dequeues late response messages if detected. However, customers
can save the late response messages by informing IMS to route the late response messages to

07- IMS Application: 3939

can save the late response messages by informing IMS to route the late response messages to
a LTERM, LU62, or OTMA queue.

The TMEMBER= and TPIPE= parameters in the descriptor of the synchronous program switch
can specify an OTMA TPIPE queue so that the late response can be retrieved by an OTMA
client, such as IMS Connect or WebSphere MQSeries. Optionally, the SMEM= parameter for
super member and SYNCTP= parameter for WebSphere MQ synchronous TPIPEs can be used
to further specify special TPIPE queues for the message retrieval request. When the
TMEMBER= and TPIPE= parameters are specified without EXIT=YES, all of the late messages
are queued to the specified TPIPE and TMEMBER

Specifying the EXIT parameter with YES allows DFSCMUX0 user exit (described earlier) to
determine the final fate of the late response message even without TMEMBER and TPIPE
specification.

If the TMEMBER, TPIPE, and EXIT=YES are all specified, then the DFSCMUX0 user exit is
invoked with the member-name and tpipe-name as defined in the descriptor.

The REPLYCHK parameter can optionally be used when multiple response messages are

competing to be sent back to the ICAL call and specifies whether or not IMS should check that a

07- IMS Application: 4040

competing to be sent back to the ICAL call and specifies whether or not IMS should check that a

“target” transaction responds to the IOPCB. To better understand this setting (detail in the

following visuals) some concepts need to be clarified.

A “target” transaction is the transaction that has the responsibility of replying to the outstanding

ICAL request. It could be the only transaction in the ICAL path (e.g., TRAN_B in picture on the

left) or it could be the first one that is switched to that issues a GU IOPCB (e.g., TRAN_D in the

picture on the right). The assumption is that the “target” will issue an ISRT IOPCB to send a

reply.

Additionally, the REPLYCHK specification influences the process that IMS uses for the DFS2082

message. Historically, the DFS2082 message has been used by OTMA to inform the OTMA

client that the target transaction does not insert back to IOPCB and does not issue the program

to program switches. This is needed so that the client does not need to: wait for an IMS response

that will not come, or wait until a timeout occurs.

For synchronous program switches, the caller of the ICAL call will never receive a DFS2082

message but it may receive AIB return/reason codes instead.

There is no reroute or late message processing for the DFS2082 message for ICAL calls.

REPLYCHK=YES

07- IMS Application: 4141

Before an ICAL timeout:

•The target transaction (previous visual) is responsible for sending a reply. If there is no IOPCB

reply then DFS2082 processing occurs but instead of sending the message the ICAL receives

AIB error codes to clear the outstanding wait.

•On the other hand, if there are multiple responses that could be returned to the ICAL, the CM1

message takes precedence over any CM0 replies.

After an ICAL timeout:

•All replies are considered late and are either dequeued or rerouted.

•Additionally, there could be some transaction expiration considerations. If the initial target

transaction of the synchronous program switch expires at application GU time, this target

transaction is simply discarded. If the initial target transaction issues the application GU before

ICAL timeout and then issues subsequent program-to-program switches, these will be performed

without transaction expiration even if the ICAL timer then expires. Multiple late response

messages can be generated for the ICAL. These late response messages by default will be

discarded if there is no reroute option specified.

REPLYCHK=NO

07- IMS Application: 4242

In the case of REAPLYCHK=NO in the descriptor, IMS expects that there could be multiple

responses for the ICAL call. Since the DFS2082 message is not a real response, it will be

ignored and not be sent back to ICAL.

Before an ICAL timeout:

If there are multiple response messages for the ICAL, the first response message received,

either a send-then-commit output or commit-then-send output, will be accepted as the response

message. The rest of the response messages are all late response messages. In the example on

the visual, TRAN_A issues an ICAL to TRAN_B. TRAN_B does not reply to the IOPCB but

instead issues 3 program-to-program switches. TRAN_C is the first to issue a GU IOPCB and

would ordinarily have the responsibility to send the CM1 IOPCB reply to release the ICAL wait.

In this example TRAN_C terminates without a reply. Meanwhile the other two transactions,

TRAN_D and TRAN_E have processed and replied to the IOPCB. Both the messages are CM0

replies. With the specification of REPLYCHK=NO, IMS chooses one of the messages to be the

ICAL response. The other is considered a late response.

After an ICAL timeout:

Processing is the same as for REPLYCHK=YES (described on the previous visual) with the

transaction expiration considerations.

DFS2082 messages are ignored.

07- IMS Application: 4343

07- IMS Application: 4444

The default LTERM name in the target transaction’s IOPCB is the symbolic PSTSYMBO. This

value can be overriden in one of two ways: either by specifying a value in AIBRSNM2 of the AIB

07- IMS Application: 4545

value can be overriden in one of two ways: either by specifying a value in AIBRSNM2 of the AIB

block used in the ICAL, or by specifying a value in the LTERMOVR parameter of the associated

OTMA descriptor. If a value is specified using both methods then the name in the AIB is used.

When an IMS application program processing the target transaction of the synchronous program

switch issues an ISRT call to an alternate PCB, or issues CHNG call, to generate an ALTPCB

07- IMS Application: 4646

switch issues an ISRT call to an alternate PCB, or issues CHNG call, to generate an ALTPCB

output message, IMS checks the originator of the ICAL message to determine the default routing

destination. For example, If a terminal initiates a synchronous program switch then the legacy

destination by default will be used to process the ALTPCB output. If an OTMA client, such as

IMS Connect, initiates a synchronous program switch, the ALTPCB output by default will be

delivered back to the incoming TPIPE.

The OTMA Pre-Routing and OTMA Destination Resolution exit routines can specify alternate

routing destinations. As a reminder, these exit routines have flags that indicate that the ALTPCB

message invoking the routine was originally triggered by a synchronous program switch DL/I

ICAL call.

An IMS application can issue ICALs to remote destinations such as web services and also to

other IMS applications.

07- IMS Application: 4747

other IMS applications.

The ICAL for synchronous program switching can be invoked in a recursive manner. There is no

limit for the number of recursions allowed. The timeout values of the ICAL(s) should be

07- IMS Application: 4848

limit for the number of recursions allowed. The timeout values of the ICAL(s) should be

considered when a recursion is used.

DFSDDLTO can be used to test the synchronous program switch.

07- IMS Application: 4949

When implement the Synchronous Program Switch capability, care should be taken to

understand the environment and design accordingly. For example:

07- IMS Application: 5050

understand the environment and design accordingly. For example:

•Understand the implication of using synchronous program switches to the existing IMS

environment. More dependent regions might need to be defined to address possible elongation

of the dependent regions that contain programs issuing ICALs. As described in the Systems

Enhancements section, IMS 13 increases the MAXPT value to 4095.

•If needed, IMS provides the ability to control where work is process through its ability to define

classes to transactions and dependent regions.

•The default action for late replies is to purge them. If rerouting is to occur instead then this

decision has to be built into the design.

•Review the REPLYCHK capabilities and decide which set of actions is more appropriate to your

environment.

•Determine an appropriate value for the SYNTIMER parameter of the TYPE=IMSTRAN

descriptor so that the calling IMS program does not wait for too long a time.

•Remember that database locks can be held by the application issuing the ICAL. This is not a

new consideration. If applicable, leverage the use of the DL/I RLSE call which releases locks

currently held for unmodified data.

RLSE call reminder:

For fast path databases, the RLSE call releases all locks held for unmodified data that are owned

by an application. For full function databases, the RLSE call releases the locks held by the DB

PCB that is referenced in the call. There are considerations, however, to the use of the RLSE.

After the RLSE call, all database position information is lost even though there may be no locks

to release. Also, a RLSE call between ISRTs will lose the insert position so if no new position is

established before inserting a dependent segment then it could possibly go under the wrong root.

Note that locks protecting a resource that has been updated will not be released.

07- IMS Application: 5151

SSA qualification with the position and length of the target data instead of a DBD-defined field name.

07- IMS Application: 5252

IMS SSA processing has been enhanced. Instead of requiring a field name in a

07- IMS Application: 535353

IMS SSA processing has been enhanced. Instead of requiring a field name in a

qualification statement, it will be possible to provide the position and length of the field

instead. This will allow non-DBD defined fields to be included in segment search

arguments.

IMS V12 PTF UK81837 & UK81838 provide maintenance which enables a new SSA

Command Code ‘O’, allowing IMS database calls to use a position and length instead of

a field name for the SSA qualification.

IMS V12 PTF UK81917 provides maintenance which enables the IMS Universal Drivers

to allow SQL calls to use ‘columns’ not defined in the DBD. The ‘column’ will be

converted internally to position and length.

Users can now search for any field in a segment by specifying a position in the segment

and a length. This feature allows non-DBD defined fields to be included in Segment

Search Arguments and continues IBM’s IMS database modernization efforts. This

enhances the IMS Simplification story by removing any required special affinity between

IMS and JDBC tooling products that generate queries. Qualify by position will greatly

enhance IMS support of JDBC tools. JDBC tools such as Data Source Explorer and

Cognos generate SQL queries and do not have a concept of searchable and non-

searchable fields. Currently when a non-searchable field is placed in the WHERE(SSA)

clause the search will fail. This enhancement provides a method of generating

searchable SSAs for non-searchable fields.

When the IMS catalog is enabled, the non-DBD fields can be defined using the

EXTERNALNAME within the DBD providing support for SQL predicates using the non-

searchable fields.

SSA processing is enhanced. Instead of requiring a field name in a qualification statement, it will

instead be possible to provide the position and length of the field. This will allow non-DBD

07- IMS Application: 5454

instead be possible to provide the position and length of the field. This will allow non-DBD

defined fields to be included in segment search arguments when accessing HDAM, HIDAM,

PHDAM, PHIDAM, DEDB. Command Code “O” is not supported for FP Secondary Index DBs

and will return an “SD” status code if used.

To qualify an SSA, you must specify the field position. The field position is either a field, the

sequence field of a virtual child or a position and a length. A qualified SSA describes the

segment occurrence that you want to access. This description is called a qualification statement

and has three parts. The following table shows the structure of a qualified SSA.

The field position and the field value are connected by a relational operator which tells IMS how

you want the two compared. The field value contains the data that you want IMS to use as the

comparative value. When the field position specifies a field name then the field value must be

the same length as the field specified by field name. When command code “O” is specified the

field name can be replaced with a position and length. When the field position specifies a

position and then the field value must be the same length as the length specified in the

qualification. The position and length apply to the physical segment layout.

54

SSA component Field length

Segment name 8

* 1

Command code Variable

(1

Field position 8

Relational operator 2

Field value variable

) 1

IMS can only search on fields that are defined in the DBD – sequence/key or search

fields. As a result, the Universal Drivers cannot support an SQL predicate containing

07- IMS Application: 555555

fields. As a result, the Universal Drivers cannot support an SQL predicate containing

columns that are not defined in a DBD.

The following is an example exception message users may receive upon issuing a SQL

query containing columns not defined by a DBD: java.sql.SQLException:

com.ibm.ims.drda.base.DrdaException: com.ibm.ims.dli.SSAConversionException: An

error occurred converting the SSA for segment <segmentName>:

com.ibm.ims.dli.SSAQualificationConversionException: The field <fieldName> in

database segment <segmentName> is not a searchable field.

IMS has been enhanced to allow a search based on offset and length. This removes the

requirement that fields need to be defined in the DBD. The Universal drivers have been

enhanced to allow SQL predicates containing columns that are not defined in the DBD

by internally converting to an offset and length.

This removes any required special affinity between IMS and JDBC tooling products that

generate queries. Qualify by position will greatly enhance IMS support of JDBC tools.

JDBC tools such as Data Source Explorer and Cognos generate SQL queries and do

not have a concept of searchable and non-searchable fields. Currently when a non-

searchable field is placed in the WHERE(SSA) clause the search will fail. This

enhancement provides a method of generating searchable SSAs for non-searchable

fields.

If segment is in a logical relationship -> position & length apply to only the 1st physical

segment, not the combined segment

If PCB uses SENFLD statements -> position applies to physical segment, and fields not

available to the PCB cannot be searched

07- IMS Application: 565656

07- IMS Application: 575757

07- IMS Application: 585858

07- IMS Application: 595959

Response from IMS

FINEST: [ibm][ims][drda] [t4][thread:1][tracepoint:2][Reply.fill]

07- IMS Application: 606060

FINEST: [ibm][ims][drda] [t4][thread:1][tracepoint:2][Reply.fill]

[ibm][ims][drda][t4] RECEIVE BUFFER: OPNQRYRM (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

[ibm][ims][drda][t4] 0000 0010D0520001000A 2205000611490000 ...R...."....I.. ..}.............

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: QRYDSC (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001CD05300010016 241A0676D0260000 ...S....$..v.&.. ..}.........}...

[ibm][ims][drda][t4] 0010 0671E0D000010671 F0E00000 .q.....q.... ..\}....0\..

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: QRYDTA (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 011AD05300010114 241B000000038400 ...S....$....... ..}...........d.

[ibm][ims][drda][t4] 0010 0000000000000000 0000000000C4C5C4 DED

[ibm][ims][drda][t4] 0020 C2D1D5F2F1F0F140 40C8D6E2D7C9E3C1 @@....... BJN2101 HOSPITA

[ibm][ims][drda][t4] 0030 D3000000000CD9F1 F2F1F0F0F1F0F0F0 L.....R121001000

[ibm][ims][drda][t4] 0040 F0C1D9F1F2F1F0F0 F1F0F0F0F0C10000 0AR1210010000A..

(lines removed to save space)(lines removed to save space)(lines removed to save space)(lines removed to save space)

[ibm][ims][drda][t4] 00C0 F2F1F0F0F3F0F0F0 F0C1D9F1F2F1F0F0 210030000AR12100

[ibm][ims][drda][t4] 00D0 F3F0F0F0F0C10000 0003840000000000 30000A....d.....

[ibm][ims][drda][t4] 00E0 0000000000000000 00C4C5C4C2D1D5F2 DEDBJN2

[ibm][ims][drda][t4] 00F0 F1F0F14040C8D6E2 D7C9E3C1D3000000 ...@@........... 101 HOSPITAL...

[ibm][ims][drda][t4] 0100 000CD9F1F2F1F0F0 F4F0F0F0F0C1D9F1 R1210040000AR1

[ibm][ims][drda][t4] 0110 F2F1F0F0F4F0F0F0 F0C1 210040000A

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] RECEIVE BUFFER: ENDQRYRM (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 003CD00200010036 220B000611490004 .<.....6"....I.. ..}.............

[ibm][ims][drda][t4] 0010 002CCC0200000000 0000000900000000 .,..............

[ibm][ims][drda][t4] 0020 00000000000000C4 C5C4C2D1D5F2F1F0 DEDBJN210

[ibm][ims][drda][t4] 0030 F0C7C24040404040 404040FF ...@@@@@@@@. 0GB

Performance should be no different than doing a call using a non-key search field.

07- IMS Application: 616161

It is possible that the call will scan the entire database and not find a match based on

the position, length and qualifier, only to return a “GE” status code – just as it would

today if you searched on a non-key field and did not find a match.

Users can now search for any field in a segment by specifying a position in the

segment and a length. This feature allows non-DBD defined fields to be included in

07- IMS Application: 626262

segment and a length. This feature allows non-DBD defined fields to be included in

Segment Search Arguments and continues IBM’s IMS database modernization efforts.

This enhances the IMS Simplification story by removing any required special affinity

between IMS and JDBC tooling products that generates queries. Qualify by position will

greatly enhance IMS support of JDBC tools. JDBC tools such as Data Source Explorer

and Cognos generate SQL queries and do not have a concept of searchable and non-

searchable fields. Currently when a non-searchable field is placed in the WHERE(SSA)

clause the search will fail. This enhancement provides a method of generating

searchable SSAs for non-searchable fields.

07- IMS Application: 636363

For troubleshooting and diagnostic purposes, the Connection.nativeSQL(String)

method will come in handy.

07- IMS Application: 646464

method will come in handy.

By using it, one can see the DLI call generated by IMS in place of the JDBC SQL call.

Tracing can be enabled for the universal drivers. The DRDA log can be sent to a file, console or joblog.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apg/ims_odbdli4jtracing.htm

07- IMS Application: 656565

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apg/ims_odbdli4jtracing.htm

Sample SQL and Trace output:

SQL Query: SELECT * FROM PCB01.HOSPITAL

FINEST: [ibm][ims][drda] [t4][thread:1][tracepoint:1][Request.flush]

[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

[ibm][ims][drda][t4] 0000 0029D05100010023 200C00062141001F .).Q...# ...!A.. ..}.............

[ibm][ims][drda][t4] 0010 0009C907D7C3C2F0 F100082114000080 !.... ..I.PCB01.......

[ibm][ims][drda][t4] 0020 0000082156000003 69 ...!V...i

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: DLIFUNC (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 0012D0530001000C CC05D9C5E3D9C9C5 ...S............ ..}.......RETRIE

[ibm][ims][drda][t4] 0010 E5C5 .. VE

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: AIB (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001BD05300010015 CC010009C901D7C3 ...S............ ..}.........I.PC

[ibm][ims][drda][t4] 0010 C2F0F10008C90400 000384 B01..I....d

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: RTRVFLD (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 0012D0530001000C CC04000000020000 ...S............ ..}.............

[ibm][ims][drda][t4] 0010 000C

[ibm][ims][drda][t4]

[ibm][ims][drda][t4] SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)SEND BUFFER: SSALIST (ASCII) (EBCDIC)

[ibm][ims][drda][t4] 0000 001DD00300010017 CC060006C9050001 }.........I...

[ibm][ims][drda][t4] 0010 000DC906C8D6E2D7 C9E3C1D340 @ ..I.HOSPITAL

(Trace output for IMS Response will follow)

Sample DFSDDLT0 control cards and output

07- IMS Application: 666666

Sample DFSDDLT0 control cards and output

07- IMS Application: 676767

07- IMS Application: 6868

IMS 13 delivers an SQL engine that is capable of evaluating SQL statements (a subset of the

SQL keywords supported by the IMS 13 Universal JDBC Driver) and converts them to DL/I calls.

07- IMS Application: 696969

SQL keywords supported by the IMS 13 Universal JDBC Driver) and converts them to DL/I calls.

The IMS Native SQL Engine is used to support COBOL and DRDA access.

Note The IBM IMS Enterprise Suite Data Provider for Microsoft .NET and IMS 13 TYPE-4

Universal Drivers will provide the DRDA support via the service process.

This slide provides a mapping of IMS hierarchical database concepts and relational database

concepts.

07- IMS Application: 7070

concepts.

IMS Native SQL Processor views a Segment as a Table, A field as column and segment

instance as a row.

This slide provides a mapping of IMS hierarchical database concepts and relational database

concepts. IMS SQL views Segment as a Table, A field as column and segment instance as a

07- IMS Application: 7171

concepts. IMS SQL views Segment as a Table, A field as column and segment instance as a

row.

The purpose of the IMS foreign key fields is to maintain referential integrity, similar to foreign

keys in relational databases. This allows SQL SELECT, INSERT, UPDATE, and DELETE

queries to be written against specific tables and columns located in a hierarchic path.

This slide shows how information from PSB,DBD and COBOL copybooks is used to populate

IMS Catalog and how SQL statements can be coded with External Names to access IMS

07- IMS Application: 7272

IMS Catalog and how SQL statements can be coded with External Names to access IMS

databases

IMS COBOL application programs running in MPP,IFP,BMP for IMS DB/DC and DBCTL BMP .

07- IMS Application: 7373

•DL/I Batch, CICS, and DB2 Stored Procedures are not supported

•SQL to GSAM is not supported.

Static SQL refers to the type of SQL statement that is embedded inside an application and its

source form is known before runtime. This is not supported by IMS SQL for COBOL.

Dynamic SQL refers to the type of SQL statement that the actual content of the statement is

constructed and prepared at run time. Segment and field names associated with the SQL calls

are defined in the program source and are pre-processed when the program is being compiled.

Programs that contain embedded dynamic SQL statements must be precompiled like those that

contain static SQL, but unlike static SQL, the dynamic statements are constructed and prepared

07- IMS Application: 7474

contain static SQL, but unlike static SQL, the dynamic statements are constructed and prepared

at run time.

The source form of a dynamic statement is a character string that is passed to IMS by the

program using the SQL PREPARE statement. A statement that is prepared using the PREPARE

statement can be referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE statement.

In IMS 13, only dynamic SQL is supported for COBOL.

SQL statements let you retrieve, insert, update, or delete data in IMS databases. When you write

an SQL statement, you specify what you want done, not how to do it. To access data, for

07- IMS Application: 7575

an SQL statement, you specify what you want done, not how to do it. To access data, for

example, you need only to name the segment and fields that contain the data. You do not need

to describe how to get to the data.

In accordance with the relational model of data:

•The database is perceived as a set of tables.

•Relationships are represented by values in tables.

•Data is retrieved by using SQL to specify a result table that can be derived from one or more

tables.

IMS transforms each SQL statement, that is, the specification of a result table, into a sequence of

operations for data retrieval or modifications. All executable SQL statements must be prepared

before they can run.

If your program includes any of the following statements, you must include an SQLIMSDA in your

program:

07- IMS Application: 7676

program:

•DESCRIBE statement-name INTO descriptor-name

•FETCH … INTO DESCRIPTOR descriptor-name

An SQLIMSDA is a collection of variables that is required for execution of the SQLIMS

DESCRIBE statement, and can be optionally used by the FETCH statements. An SQLIMSDA

can be used in a DESCRIBE statement, modified with the addresses of host variables, and then

reused in a FETCH statement. The meaning of the information in an SQLIMSDA depends on the

context in which it is used. For DESCRIBE, IMS™ sets the fields in the SQLIMSDA to provide

information to the application program. For FETCH, the application program sets the fields in the

SQLIMSDA to provide IMS with information:

DESCRIBE statement-name

With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to provide information

to an application program about a prepared statement. Each SQLIMSVAR occurrence

describes a column of the result table.

FETCH

The application program sets fields of the SQLIMSDA to provide information about host

variables or output buffers in the application program to IMS. Each SQLIMSVAR

occurrence describes a host variable or output buffer. For FETCH, each SQLIMSVAR

occurrence describes a host variable or buffer in the application program that is to be

used to contain an output value from a row of the result.

An SQLIMSCA is a structure or collection of variables that is updated after each SQL statement

executes. An application program that contains executable SQL statements must provide exactly

07- IMS Application: 7777

executes. An application program that contains executable SQL statements must provide exactly

one SQLIMSCA.

In COBOL, the INCLUDE statement can be used to provide the declaration of the SQLIMSCA.

•When IMS processes an SQL statement, it places return codes that indicate the success or

failure of the statement execution in SQLIMSCODE and SQLIMSSTATE.

•When IMS processes a FETCH statement, and the FETCH is successful, the contents of

SQLIMSERRD(3) in the SQLIMSCA is set to the number of returned rows.

•When IMS processes a FETCH statement, the contents of SQLIMSCODE is set to +100 if the

last row in the segment has been returned with the set of rows.

•When IMS processes an UPDATE, INSERT, or DELETE statement, and the statement

execution is successful, the contents of SQLIMSERRD(3) in the SQLIMSCA is set to the number

of rows that are updated, inserted, or deleted.

An SQLIMSDA consists of four variables, a header, and an arbitrary number of occurrences of a

sequence of variables collectively named SQLIMSVAR. It is a collection of variables that is

07- IMS Application: 7878

sequence of variables collectively named SQLIMSVAR. It is a collection of variables that is

required for execution of the SQLIMS DESCRIBE statement, and can be optionally used by the

FETCH statements. An SQLIMSDA can be used in a DESCRIBE statement, modified with the

addresses of host variables, and then reused in a FETCH statement.

The meaning of the information in an SQLIMSDA depends on the context in which it is used. For

DESCRIBE, IMS™ sets the fields in the SQLIMSDA to provide information to the application

program. For FETCH, the application program sets the fields in the SQLIMSDA to provide IMS

with information:

DESCRIBE statement-name

With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to provide information

to an application program about a prepared statement. Each SQLIMSVAR occurrence

describes a column of the result table.

FETCH

The application program sets fields of the SQLIMSDA to provide information about host

variables or output buffers in the application program to IMS. Each SQLIMSVAR

occurrence describes a host variable or output buffer.

For FETCH, each SQLIMSVAR occurrence describes a host variable or

buffer in the application program that is to be used to contain an output

value from a row of the result.

Any segment and field names associated with the SQL calls are defined in the program source

and are pre-processed when the program is being pre-compiled. There is no need to use a

07- IMS Application: 7979

and are pre-processed when the program is being pre-compiled. There is no need to use a

separate precompile step.

Each executable SQL statement calls IMS through the SQLTDLI language interface with a list of

parameters that is generated by the IMS co-processor function. The parameter list contains a

collection of addresses for the input and output host variables, the SQL statement string, the

SQL call type, the execution parameters and other information. IMS uses this information to

determine how the call should be processed

Define an SQL communications area (SQLIMSCA) for your COBOL program which is used to

check whether an SQL statement executed successfully.

07- IMS Application: 8080

check whether an SQL statement executed successfully.

Use cursors to select a set of rows and then process one row at a time. Only one prepared

statement at a time is allowed for database access and a statement cannot be prepared if

07- IMS Application: 8181

statement at a time is allowed for database access and a statement cannot be prepared if

a cursor is open for another statement.

Only one prepared statement at a time is allowed for database access and a statement cannot

be prepared if a cursor is open for another statement. Only support 1 PCB, 1 cursor.

07- IMS Application: 8282

be prepared if a cursor is open for another statement. Only support 1 PCB, 1 cursor.

07- IMS Application: 8383

07- IMS Application: 8484

During compilation, the IMS co-processor takes an SQL statement enclosed between the EXEC

SQLDLI and END-EXEC keywords and processes it as follows:

07- IMS Application: 8585

SQLDLI and END-EXEC keywords and processes it as follows:

•Translate an executable SQL statement to a COBOL CALL statement to invoke the IMS

language interface

•Initialize and map host variables for input and output data

•Include and add data structures for SQL processing

IMS SQL is an SQL-to-DLI processor or translator that intercepts a SQL calls and translates

them into DLI calls for execution. This diagram shows an example on how a SQL call from a

07- IMS Application: 8686

them into DLI calls for execution. This diagram shows an example on how a SQL call from a

COBOL application is processed by IMS:

1. The COBOL program is first pre-compiled by the IMS co-processor which converts the EXEC

SQLDLI statements to COBOL call statements to the new IMS language interface (SQLTDLI).

This interface is used to pass the SQL statement with the host variable information to IMS for

processing.

2. Once the COBOL program runs, the SQLTDLI interface uses the native SQL processor.

3. The native SQL processor retrieves the corresponding PSB/DBD metadata from catalog

based on the SQL call.

4. The SQL statement is parsed and validated by the native SQL processor based on the IMS

SQL syntax rules and metadata information.

5. The native SQL processor builds and executes the appropriate DLI call(s) based on the SQL

statement to access IMS DB.

6. The native SQL processor processes the result data from IMS DB using 64 bit storage and

performs column / aggregation functions if needed.

7. The native SQL processor returns and puts the data back to the host variables for the COBOL

application

Dynamic SQL refers to the type of SQL statement where the actual content of the statement is

constructed and prepared at run time. For an example, a dynamic SQL statement can be

07- IMS Application: 8787

constructed and prepared at run time. For an example, a dynamic SQL statement can be

passed to the application as an input message, or the statement is dynamically constructed

based on other values at runtime. For Dynamic SQL, the statement type, table or column names

are not known when the program is pre-compiled. Since the source of the SQL statement is not

known during pre-compile time, the SQL statement is parsed and validated by the database

during runtime each time the SQL statement is executed

Using the LL field with COBOL

The LL field is treated as a normal column in the standard SQL result set for all operations. You

can read, insert, or update the LL field data directly. Deleting the LL field data also deletes the

rest of the associated database record. To set a field to the null state, set the length of the

segment (the value of the LL field column) to be smaller than the offset of the field within the

segment.

The LL field is 2 bytes long and must be handled as BINARY, SHORT, or USHORT data.

07- IMS Application: 8888

07- IMS Application: 8989

07- IMS Application: 9090

07- IMS Application: 9191

The IMS Universal Drivers are enhanced to support the IMS catalog for retrieving database and

application metadata. This support allows for greater application scalability and support for

07- IMS Application: 9292

application metadata. This support allows for greater application scalability and support for

complex datatypes (arrays and structures), and segment maps, which are different cases (sets of

fields) within a segment where each case is only valid for a unique value of the map's control

field. The drivers have also been enhanced with the ability to search on a qualifier based on an

offset and length within a segment instance instead of a field name. This enhancement allows for

greater search capabilities as search fields do not need to be defined within the DBD source.

The two new Connection Properties listed below are added to the list of topics in "IMS Version 13

Application Programming" (SC19-3646-00):

07- IMS Application: 9393

Application Programming" (SC19-3646-00):

Under the following high level path:

Java application development for IMS > Programming with the IMS Universal drivers >

Programming using the IMS Universal DB resource adapter > Connecting to IMS with the IMS

Universal DB resource adapter

> Connecting using the IMS Universal JCA/JDBC driver in a managed environment.

> Connecting using the IMS Universal DB resource adapter in a managed environment

Under the following high level path:

Java application development for IMS > Programming with the IMS Universal drivers >

Programming with the IMS Universal JDBC driver > Connecting to IMS using the IMS Universal

JDBC driver:

> Connecting to an IMS database using the JDBC DataSource interface

> Connecting to an IMS database by using the JDBC DriverManage interface

The following two Connection Properties that have been added are:

- signedCompare: When this property is set to true, special SSAs are generated to support

ranged queries over signed data types. If the property is set to false, standard binary

comparisons are performed based on the binary representation of the data type value. Setting

the value to false can increase performance but might result in incorrect results.

- t2OutputBufferSize: The size of the output buffer in bytes for the results from a SELECT

operation for a Type-2 connection.

07- IMS Application: 94

