
© 2012 IBM Corporation

Boost Performance with Smarter Application
Testing and Optimization

David Myers

Product Manager, IBM Rational

© 2012 IBM Corporation2

Enterprises want to… deliver end-to-end application enhancements
quickly to stay competitive, trust that complex enterprise systems can be
broadly integrated, and bolster confidence in application quality

But…
It takes weeks or even months to test and fix changes due to reliance on manual
processes and limited access to test resources

Development EnvironmentDevelopment Environment

Developer Tester

Promote
To QA

Feedback

Change
Request

Open
Defects

System
Programmer

© 2012 IBM CorporationLast Updated: 17 January 2012

Balancing
Quality and Speed

Increasing
Cost of Quality

Increasing
Development Complexity

Cost, complexity and velocity make today’s quality paradigm impractical
An estimated 60 - 80 percent of the cost of software development is in rework*

* Source:http://www.sei.cmu.edu/about/message/

Outsourcing labor is no longer
a sustainable model as global

wages are increasing

Product and application
complexity and size

are increasing

Productivity is inhibited as
test teams can no longer keep

up with development output

Mainframe Data Center

Public Services
Mid-tier

Data Warehouse Mainframe
Enterprise

Service Bus

Directory
Identity

File
systems

Collaboration

Web/
Internet

Routing
Service

Third-party
Services Portals

Content
Providers

EJB

Shared
ServicesArchives

Business
Partners

Messaging
Services

Traditional
Testing

Other costs

Testing costs

30-50%
The average amount of time
testing teams spend on setting up
test environments, instead
of testing  c

13%
The forecasted increase
in wages for India IT
workforce in 2011a

$5-30 million
The typical investment to build
a single test lab for a Fortune 500
company. Most have dozens  b…

© 2012 IBM Corporation4

4

Business constraints with mainframe development today
Limits the velocity of System z application delivery

“My development capacity
charge-back is consuming my
entire budget. I can’t afford

tools.”

“We don’t have the capital
budget to obtain more mainframe
test resources for my developers.”

“I can’t even work on Mondays!
Production workload kicks me

off.”

“It is difficult for my developers
to learn the mainframe.

Operations controls can prevent
experimentation by developers..”

“I can only test my batch
applications in offline hours.

Online apps consume the 9-5
cycles.”

“Operations tell me it will
take two months to get my

test system allocated.”

“The Mainframe isn’t cool
anymore.”

“I want to try out creating Event
Processing and ATOM apps,

but my system isn’t scheduled
for a CICS/IMS update till

2012.”

© 2012 IBM Corporation

Cost is a significant driver

During the
CODING phase

$80/defect

During the
BUILD phase

$240/defect

During the
QA/TESTING

phase

$960/defect

Once released
as a product

$7,600/defect
+

Law suits, loss
of customer trust,
damage to brand

80% of development costs are spent
identifying and correcting defects!*

*National Institute of Standards & Technology

Source: GBS Industry standard study

Defect cost derived in assuming it takes 8 hrs to find, fix and repair a defect when found in code and unit test.
Defect FFR cost for other phases calculated by using the multiplier on a blended rate of $80/hr.

If admitted or not most
development LPARs
are managed as if
starting here

© 2012 IBM Corporation6

Existing development environment

Steps to validate a change

• Edit source

• Find code line

• Change code

• Exit source

• Find JCL

• Edit JCL

• Submit compile job

• Swap to SDSF

• Select job

• Find error message

• Swap to JCL

• Exit JCL

• Find source file

• <repeat>

 Multiple screens

 Multiple disparate tools

 20 x 80 characters of content

© 2012 IBM Corporation7

Tomorrow’s development environment
 Information at your fingertips

 Easy navigation

 Automatic feedback
Steps to validate a change

• Edit source

• Find code line

• Change code w/feedback

© 2012 IBM Corporation8
8

Analyze applications automatically

 Integrate application analysis into
development

–Link code to data and runtime resources

–Visualize code structure and flow

 Understand the effect of changes

–Run impact analysis on code changes to
determine effected production modules

–Size testing efforts and create workspaces
for changes

–Locate dead code

© 2012 IBM Corporation9

Create enterprise services…

 Provide standardized access to
application assets

 Work across platforms

 Create abstract interfaces for loose
coupling

 Vary implementation without
affecting consumers

 Ease application reuse

 Improve application testability

© 2012 IBM Corporation10

IDE Efficiency Benchmarks
 100 common (daily) ISPF tasks used during maintenance and

support assignments

– ISPF workflow translated (click-for-click) to RDz development

– Project participants believed they were trying to find gaps
between RDz and ISPF functionality

 Apples-to-Apples and test scripts

 Mix of experienced (veteran) ISPF programmers and new-hire
developers

 Assumption was that only new-hire developers would be more
productive

– This turned out to be false

All ParticipantsAll Participants ISPF Top GunsISPF Top Guns

Based on IBM internalBased on IBM internal
productivity study.productivity study.

All performance dataAll performance data
contained in this presentationcontained in this presentation
was obtained in the specificwas obtained in the specific
operating environment andoperating environment and
under the lab conditions andunder the lab conditions and
is presented as an illustrationis presented as an illustration
only.only.

Performance obtained inPerformance obtained in
other operating environmentsother operating environments
may vary and customersmay vary and customers
should conduct their ownshould conduct their own
testing.testing.

© 2012 IBM Corporation11

Mainframe Tester Feedback

 Tester 1 - It takes us 5 to 6 weeks to complete z/OS application testing

– Over 1000 test cases to run

– Manual test effort because there are no z/OS automated test tools

– No end-to-end testing (one tool that does it all)

 Tester 2 – We can not respond to regulatory changes

– Test cycle takes a minimum of 12 weeks

– Competition between development teams for testing resources

– Build and maintain their own test tools. Manual operation.

– Long batch test runs

 Tester 3 – Testing applications with multiple teams, components, and runtimes is
complex

– Have major z/OS application resource constraints that results in long test cycle

– Off-Shore development and testing requirements

– Major application failed due to no end-to-end functional and performance testing

© 2012 IBM Corporation12

Testing and Delivery – where are customers today?

Compile
Automated

Unit Test
Install &
Configure

Promote
Results

Run Manual
Tests

Run
Automated

Tests

** Feedback from mainframe customers

Java / .Net teams goal state

Mainframe teams current state **

Compile
Promote
Results

Run Manual
Tests

Promote &
Configure

Hours to days

Weeks to Months

© 2012 IBM Corporation

IBM Rational Test Solutions for System z
A smarter solution to better quality Rational Test Workbench is a desktop solution that

enables testers/developers to:

– Capture and model virtual services

– Test services and applications long before their user interfaces
becomes available and do integration testing (SOA, BPM)

 Rational Test Virtualization Server is a server solution that:

– Provides a central environment to virtualize heterogeneous
hardware, software and services to provide 24x7 testing
capabilities

– Reduces infrastructure costs of traditional testing
environments

– Virtual Services can be built from the interface definition of the
system for a wide variety of protocols, including HTTP, web
services, SOA, JMS, TIBCO, IBM WebSphere MQ, CICS
Transaction Gateway, IMS Connect, Oracle, etc.

 Rational Performance Test Server enables Rational Test
Workbench users to reuse test scripts to drive performance testing

– Can be used in combination with Virtual Services

– Probe for identification of system bottlenecks

 Rational Development and Test Environment for System z
enables provisioning of System z test environments on x86 hardware

– Enables isolated testing of mainframe-centric applications

– Provides low cost System z environments for early cycle testing

– Lowers development MIPS requirements on mainframe
hardware

Databases Mainframe

applications

App Under Test

Third-party
Services

Packaged apps, messaging services, etc.

Rational Test Virtualization Server

Rational Test Workbench

Developers &
Testers

Rational Performance Test Server

13

© 2012 IBM Corporation14 14

Test LPAR

z/OS

…

Typical z/OS Testing Architecture
Organized by project team, vertically scaled, sharing resources, limited automation

Project
Team
[April Maintain]

Project
Team
[Prototype SOA]

Project
Team
[June New Func]

Project
Team
[Dec Sys Upgrade]

Test
Data

App

App

App

Problems Encountered

1.Shared resources combined
with overlapping schedules can
elicit conflicts, impede
innovation and slow code
delivery

2.Coordination of environmental
changes and releases cause
bottlenecks, delays and
additional overhead

3.Shared test data is difficult to
manage and can lead to over
testing or incorrect test results

© 2012 IBM Corporation15

What is Test Virtualization?

Test Virtualization enables to create “virtual
services”:

–Virtual Services simulate the behavior of an
entire application or system during testing

–Virtual Services can run on commodity
hardware, private cloud, public cloud

–Each developer, tester can easily have their
own test environment

–Developer and testers continue to use their
testing tools (Manual, Web performance, UI test
automation)

C
a
p

tu
re

&
M

o
d
e

l

C
a
p

tu
re

&
M

o
d
e

l

System dependencies are a key challenge in
setting up test environments:

Unavailable/inaccessible: Testing is constrained
due to production schedules, security restrictions,

contention between teams, or because they are still
under development

Costly 3rd party access fees: Developing or testing
against Cloud-based or other shared services can

result in costly usage fees

Impractical hardware-based virtualization:
Systems are either too difficult (mainframes) or remote

(third-party services) to replicate via traditional
hardware-based virtualization approaches

Heterogeneous Environments

Public Cloud
Private Cloud

Data Warehouse Mainframe
Enterprise

Service Bus

Directory
Identity

File
systems

Collaboration

App Under TestRouting
Service

Third-party
Services Portals

Content
Providers

EJB

Shared
ServicesArchives

Business
Partners

Messaging
Services

Databases Mainframe

applications

App Under Test

Third-party
Services

Packaged apps, messaging services, etc.

Virtual Services

© 2012 IBM Corporation

Supported Environments
and Technologies

• ActiveMQ

• CICS Transaction Gateway

• Email (SMTP, IMAP)

• Files

• FTP/S

• HTTP/S
JMS (JBOSS et al)
IBM WebSphere MQ

• IMS Connect

• JBoss MQ

• SAP IDoc, BAPI, RFC & XI/PI

• Software AG’s IB & IS

• Solace

• Sonic MQ

• TCP
TIBCO Rendezvous, Smart
Sockets & EMS

• Custom

• CentraSite

• Oracle Fusion

• SCA Domain

• Software AG IS, BPMS

• Sonic ESB

• TIBCO ActiveMatrix

• UDDI

• Web Services

• WebSphere RR

• WSDL

• BPM

• Databases

• Log Files

• .Net Objects

• Bytes

• COBOL Copybook

• ebXML

• EDI

• Fixed Width

• HL7

• IATA

• Java Objects

• MIME

• OAG

• SOAP

• Software AG Broker Docs

• SWIFT

• TIBCO ActiveEnterprise

• XML (DTD, XSD, WSDL)

• Custom

Messaging Protocols SOA, ESB, Others Message Formats

Note : Custom protocol support can be developed

© 2012 IBM Corporation

Incremental Integration TestingIncremental Integration Testing

Actual Service/App

Virtual Service/App

Test Virtualization is an enabler for
continuous Integration Testing

Services, applications, systems are
introduced into the continuous integration
cycle in a prioritized, controlled fashion.

IBM Rational Test Virtualization Solution
is a key enabler for Continuous Integration Testing

© 2012 IBM Corporation18

Rational Development and Test
Environment for System z

The ultimate in modern application development for System z

 Liberate developers to rapidly prototype new applications

 Develop and test System z applications anywhere, anytime!

 Free up mainframe development MIPS for production capacity

 Eliminate costly delays by reducing dependencies on operations staff

Note: This Program is licensed only for development , test, and internal training of applications that run on IBM z/OS. The Program may not be used to run production workloads of any
kind, nor more robust development workloads including without limitation production module builds, pre-production testing, stress testing, or performance testing.

RDz & ISPF user

ISPF user

RDz user

RDz user
RDz user

COBOL, PL/I, C++, Java, EGL, Batch,
Assembler, Debug Tool

x86 PC running Linux

RDz user

IMS

z/OS

WAS

DB2

MQ

CICS

18

© 2012 IBM Corporation19 19

Testing Organized for Flexibility and Quick Delivery
Organized by application team, horizontally sliced, dedicated resources, highly automated

Problems Encountered

1. Shared resources
combined with
overlapping schedules
can elicit conflicts,
impede innovation and
slow code delivery

2. Coordination of
environmental changes
and releases cause
bottlenecks, delays and
additional overhead

3. Shared test data is
difficult to manage and
can lead to over testing
or incorrect test results

4. Provisioning, managing,
and synchronizing project
test environments
including data

z/OS

…

Project
Team
[April Maintain]

Project
Team
[Prototype SOA]

Project
Team
[June New Func]

Project
Team
[Dec Sys Upgrade]

Integr.
Test
Data

z/OS
UTRD&T

Data

z/OS
UT

Front-
End +
RD&T

Data

z/OS
UT

Front-
End
only

Data

z/OS
UTzVM

LPAR

Data

© 2012 IBM Corporation

Significantly
Lesser Test Lab

costs

• Test lab infrastructure costs can be reduced by up to 90%

• Labor involved in setting up test environments can be reduced by
80%+

• Reduced or eliminated the cost of invoking 3rd party systems for
non-production use, fee-based web services

Reduced Cycle
Time

• Test environments can be configured in minutes vs weeks

• More testers can be focused on testing, rather than configuring test
environments

• More regression testing can be done independently from the User
Interface, during development

Lower Risk

• Developers have the means to test software earlier at the Service/API
level

• Large teams working on different parts of an application or system can
effectively do parallel development by virtualizing different parts of
the system

IBM Rational Test Solutions for System z
A Smarter Solution for Better Quality

20

© 2012 IBM Corporation21

Continuous Integration
Reduced delivery time, end-to-end visibility of test activities, safer and faster upgrades (V2V)

 Fast, dependable, automatic feedback speeds time to market

 Lower cost of application testing using off-mainframe z/OS test environment

 Enables confidence by automatically tracking and promoting code health

Development EnvironmentDevelopment Environment

Developer
Frequent, rapid
feedback earlier
to improve
quality

Frequent, rapid
feedback earlier
to improve
quality Rapid Feedback

Change
Request

Automated,
continuous testing
with isolated
development and
test environment

Automated,
continuous testing
with isolated
development and
test environment

Reusable
integration
tests simplify
testing across
layers

Reusable
integration
tests simplify
testing across
layers

Promote
To QA

Higher quality
going into QA

Higher quality
going into QA

© 2012 IBM Corporation22

 Maintain a code repository

 Automate the build

 Make the build self-testing

Commit to the baseline every
day

 Every commit should be built

What is Continuous Integration

Expedite feedback to developers on application quality

Principles of Continuous Integration

 Keep the build fast

 Test in a clone of production

 Make it easy to get latest
deliverables

 Everyone can see the latest build
results

 Automate deployment

?

?

?

?

?

© 2012 IBM Corporation23

IBM Continuous Integration Solution for System z
Reduced delivery time, end-to-end visibility of test activities, safer and faster V2V migrations

 Rational Development and Test Environment for System z 8.5
 Rational Testing Workbench powered by Green Hat

Technology

 Rational Team Concert 4.0
 Rational Quality Manager 4.0

RD&T, RTC, RTW*, RQMRD&T, RTC, RTW*, RQM

Developer
Frequent, rapid
feedback earlier
to improve
quality

Frequent, rapid
feedback earlier
to improve
quality Rapid Feedback

Change
Request

Automated,
continuous testing
with isolated
development and
test environment

Automated,
continuous testing
with isolated
development and
test environment

Reusable
integration
tests simplify
testing across
layers

Reusable
integration
tests simplify
testing across
layers

Promote
To QA

Higher quality
going into QA

Higher quality
going into QA

© 2012 IBM Corporation

Detailed Continuous Integration
Scenario

24

CI
Server

Test
Environment

Test
Execution
Manager

Test
Automation

1. Check-in code
2. Build code and Unit

tests
3. Deploy build results to

Test Environment
4. Execute Unit Tests

<Deploys App+Unit Tests>
<

D
riv

e
s
><Executes>

5. Kick-off Automated
Test Plan

6. Run automated
interface tests against
Test Environment

7. Mark execution
records Pass/Fail in
Test Execution
Manager

<Reports>

<Starts Tests>

8. Report test results
in dashboard/build
results/defect
records in CI
server.

<Results>

© 2012 IBM Corporation

System z

25

RTC

RD&T

RQM

RTW
(RIT)

1. Check-in code
2. Build code and zUnit

tests
3. Deploy build results

and test data to RD&T
4. Execute zUnit Tests

<Deploys App+zUnit Tests, Config environment>

<
D

riv
e

s
><Executes>

5. Kick-off Automated
Test Plan

6. Run automated
interface tests against
RD&T or System z

7. Mark RQM execution
records Pass/Fail

<Reports>

<Starts Tests>

8. Report test results
in dashboard/build
results/defect
records in RTC.

<Results>

Detailed Continuous Integration
for System z Scenario

© 2012 IBM Corporation26

Testing and Delivery –
moving one step forward

Compile
Automated

Unit Test
Install &
Configure

Promote
Results

Run Manual
Tests

Run
Automated

Tests

Java / .Net teams goal state

Mainframe teams after CIz

Hours to days

Days to Weeks

Compile
Promote
Results

Run Manual
Tests

Promote &
Configure

Run
Automated

Tests

© 2012 IBM Corporation27

Customer example

• Requirement

• Provide more responsive System z access for application developers

• Reduce application software delivery through faster test cycle

• Provide each application group their own unit test facility

• RD&T Solution

• Application developers have use of a uniquely defined RD&T feature for System z access

• RD&T provides a unique test environment for different application development groups

• Supports multiple RD&T development environments on Intel blade to reduce server hardware

• Has reduced application development test time

Development

RD&T A

RD&T B

RD&T C

RDz

RDz

RDz

PROD
z/OS

SCM

Large US Financial Customer - Implementation

© 2012 IBM Corporation

Customer story

“Normally it can take up to 5 days for the mainframe staff to process an request to make a
change to CICS. If a project is trying to get something to work, it may take many change
requests and several weeks to resolve a problem. However with CICS on RD&T, the project
architects or developers can try the changes themselves in real-time until they get the
configuration correct. Then an change request can be submitted with correct configuration
parameters to the systems people to implement on the mainframe. This saved the
development team weeks of delivery time!”

Mainframe process today (2 months)

CIz process using RD&T (5 days)

Dev

Ops

CR CR CR CR

Dev

Ops

CR CR CR CR

Promote

Promote

Project cycle time
reduced from 2

months to 1 week

© 2012 IBM Corporation

Compilers for zEnterprise
Improve application performance, productivity, and return on investment

Delivering…
 Performance improvements for applications with enhanced compiler optimization technology

 Exploitation of new zEnterprise 196 and POWER7 hardware

 Productivity improvements with enhanced reporting, problem determination, performance
tuning and code portability support

IBM zEnterprise 196 zEnterprise BladeCenter
Extension (zBX)

• z/OS XL C/C++

• Enterprise PL/I for z/OS

• Enterprise COBOL for z/OS

 XL C/C++ for AIX and Linux

 XL Fortran for AIX and Linux

 COBOL for AIX

 PL/I for AIX

© 2012 IBM Corporation30

Compiler Business Values
■ Increase return on investment

– Maximize application performance on System z

• Exploit z/Architecture and middleware

• Leverage advanced optimization technology

• Reduce total cost of ownership

■ Improve programmer productivity

– Simplify programming

– Improve usability

– Reduce risk, cost, and development time

■ Protect investment in business critical applications

– Modernize business critical applications

• Reduce risk, reduce cost

– Maintain release-to-release compatibility

– Support Industry programming language standards and extensions

© 2012 IBM Corporation31

IBM z/OS XL C/C++

 Optionally priced feature of z/OS

– Enables development of high performing business applications, system
programs and low level C applications

 IBM has been delivering leading edge C/C++ compilers on z/OS
for over 20 years

– Every release sets new standard for performance

– Includes advanced optimization technology originally designed for HPC
applications, and innovations to improve programmer productivity

 Provides system programming capabilities with Metal C option

– Allows developers to use C syntax to develop system programs and low level
free standing applications on z/OS without coding in HLASM

• Significantly shortens the learning curve

• Leverage advanced optimization technology to generate high performance
optimized code

© 2012 IBM Corporation32

What’s in z/OS v1.13 XL C/C++?
 Ships with z/OS v1.13

 Improved exploitation of zEnterprise 196 processor

– Improve support for new instructions with new New ARCH(9) functions

 Improved application performance1

– 4% over v1.12 for a compute intensive integer benchmark suite

– 7% over v1.12 for a compute intensive floating point benchmark suite

 Added language support to enable straightforward porting
of C/C++ applications to z/OS

 “Metal C” functional and performance enhancements

– Enabled advanced optimization with IPA and HOT options

 Improved debugging and programmability support

1Results are based on a compute-intensive integer and floating point benchmark suites compiled with z/OS C/C++ V1R13 executing on a
System zEnterprise 196 server. Performance gains from other applications may vary

© 2012 IBM Corporation33

Next release of z/OS XL C/C++ will be aligned with z/OS schedule
• Follow a new two-year release cycle announced in the April 2012 z/OS SOD

z/OS XL C/C++ V1.13 will provide initial support for zEC12 in the Sept. 2012 PTF

C/C++ compiler UK80670 and UK80671
C/C++ readme UK80039
C++RT builtins.h UK79899

• New “Arch(10)” and “Tune(10)” options
• Enable developers to exploit new Transactional Execution Facility via built-in functions
• PTF Web site: http://www-01.ibm.com/support/docview.wss?uid=swg21108506

Performance Improvements of up 23% for CPU intensive applications on zEC12
• From new hardware, No recompilation required

z/OS XL C/C++ v1.13 support for zEC12

© 2012 IBM Corporation34

Rocket Software, Inc. increases development efficiency on the IBM

System z platform
The Metal C feature of the IBM z/OS XL C/C++ compiler makes it easier to leverage its C
programming skills

The need:

Rocket Software, Inc. wanted to increase efficiency and improve time to market for
its IBM® System z® operating system-based software products.

The solution:

Rocket Software used the Metal C feature of the IBM z/OS® XL C/C++ compiler to
develop high performance system level programs. With the Metal C feature,
programmers can write code in the C syntax while taking advantage of advanced
optimization technology in the z/OS XL C/C++ compiler, resulting in high-
performance code that works seamlessly with code written in IBM High-Level
Assembler language (HLASM).

The benefits:

 Significantly increased development efficiency

 Reduced development time by half

 Enabled the company to leverage C programming skills

Solution components:

 IBM® z/OS® XL C/C++

 IBM® System z®

“Metal C in z/OS XL C/C++
is yet another powerful tool
helping turn the economics of
System z software
development into a complete
equation."

—Joseph Devlin, managing
director, R&D,

Rocket Software

© 2012 IBM Corporation35

Enterprise PL/I
 Strategic Programming Language

– Significant use in business applications but also in
some scientific and engineering applications

– Introduced new version (v4) in 2010

 Advanced optimization technology

– Shares optimizing back-end technology with z/OS XL C/C++

• Enables timely delivery of leading edge optimization
and hardware exploitation to PL/I customers

 Time proven

– First Enterprise PL/I product released in 2001 (Enterprise PL/I for z/OS and OS/390 v3.1)

– Latest release of Enterprise PL/I for z/OS (v4.3) is based on same architecture

• Provides easy migration

 Shipped new release every year since 1999

– Improved optimization technology, z/Architecture exploitation, usability, middleware support, and
application modernization features.

– Addressed customer requirements

© 2012 IBM Corporation36

What’s new in Enterprise PL/I for z/OS v4.3?
 Improved performance

– zEC12 exploitation with new ARCH(10) option

• Exploits new Decimal-Floating-Point Zoned-Conversion Facility

– Up to 40% faster for PICTURE to FIXED BIN conversions

– Up to 4X faster for PICTURE to FLOAT DEC conversions

• CPU-Intensive PL/I benchmarks running on zEC12 see an improvement of up
to 31% over zE196

 Enhanced middleware support

– Support latest middleware CICS, DB2 and IMS

– SQL improvements

• Support for ONEPASS option

• Improved display of EXEC SQL statements in listings

• Usability improvements

 Increased productivity (Requirements from users)

– New built-in functions for better UTF-8 support

– New Assert statement

– New options for compiler messages and enforcing coding rules.

© 2012 IBM Corporation

COBOL Overview

 COBOL celebrated its 50th birthday in September 2009.

 COBOL is still a dominant programming language for processing critical
business transactions around the world.

 COBOL programs are simple, readable and very maintainable.

 Today, most business transactions are still processed with COBOL on
IBM System z servers.

– There are 200 times more COBOL transactions per day than Google
Searches worldwide1

 COBOL is strategic

– IBM is investing in improving the underlying technology to bring more value
to customers.

37

1 eWeek.com: 20 Things You Might Not Know About COBOL

© 2012 IBM Corporation

 Validated on zEnterprise 196 and zEnterprise EC12 servers with IBM’s
latest middleware

– Support latest CICS, IMS, and DB2

 Provides significant improvements to UNICODE performance

 Enables the integration of existing applications with web applications

– Supports Java interoperability by object-oriented COBOL syntax

– Supports access to enterprise beans that run on WebSphere
Application Server or J2EE-compliant EJB server

– Supports Java 5, Java 6 SDK

 Built-in language support for high speed parsing
and validating of XML documents:

– Offloading of XML parsing to zAAP specialty processors

– Encoding in UTF-8, UTF-16, and various EBCDIC codepages

 Improved Debug Tool support for dynamically debugging optimized
production programs

Enterprise COBOL for z/OS v4.2
GA Sept. 2009

38

© 2012 IBM Corporation

Intentions for this release:

Incorporate leading-edge optimization and code-generation technology

– Improve delivery of z/Architecture exploitation

– Maximize hardware utilization

– Improve application performance

Establish solid foundation to support future z processors

– Advanced hardware features

– Exploit 64 bits architecture

Improve capabilities for modernizing business critical applications and
creating new applications

– XML, Java interoperability, UTF-8 Unicode,

– Usability and problem determination

39

COBOL VNext

© 2012 IBM Corporation

Compatibility

Our intent:

■ Provide Source and binary compatibility

– No need to recompile entire application

• “Old” and “new” code can be mixed within an application, and communicate with static or

dynamic call

– Most correct COBOL programs will compile without changes

• Correct programs will run to produce the same results

• Plan to remove some old/obsolete language extensions and options

40

IBM reserves the right to change strategy and plans at any time.

© 2012 IBM Corporation

Capabilities

Our intent:

■ New capability to select optimization and processor architecture levels

■ Improve capability to process large data items

■ Improve capability for modernizing business critical applications

– XML enhancements, web-services, Java interoperability

■ Provide support for latest Middleware

– CICS, DB2, IMS

■ New debugging interface

41

IBM reserves the right to change strategy and plans at any time.

© 2012 IBM Corporation42

COBOL VNext Managed Beta Program

■ Objectives

• Provide early access to ISVs to enable their tools to support the new COBOL compiler

• Provide early access to Enterprise COBOL v3 and v4 customers to enable them to preview
the new product

• Validate product acceptability

• Collect feedback/suggestions on areas of improvement

■ Requires active participation

• COBOL development team will be directly involved

• Regular calls will be held to discuss progress and exchange technical information

■ 4 Stages (i.e. code drops) planned:

1.Tools Interface (Started 04/12)

2.Compatibility (Started 07/12)

3.New features + Performance

4.Performance + Quality

ISVs participate in all 4 phases

Customers participate in phases 2 - 4
IBM reserves the right to change strategy and plans at any time.

© 2012 IBM Corporation43

COBOL VNext Managed Beta Program – more Information

 Submit Nomination Form

•Self nomination

https://www-304.ibm.com/software/support/trial/cst/forms/nomination.wss?id=3869

•Contact IBM rep.

 Program contacts:

Marie Bradford (mabrad@us.ibm.com)

Roland Koo (rkoo@ca.ibm.com)

IBM reserves the right to change strategy and plans at any time.

© 2012 IBM Corporation

Compilers and middleware
New releases of COBOL, PL/I and C/C++ provide improved
support for middleware
 Integrated CICS and SQL translators

– COBOL, PL/I and C/C++

– Enterprise PL/I v4.2 improved performance of processing SQL source by up to 40%

 Programming support for new middleware features

– CICS co-processor options, DB2 features (e.g. multiple-row insert, multiple-row fetch…)

– Support for new SQL new data types and SQL syntax first introduced in DB2 v9

 Problem determination support with program listings and Debug Tool

– Display SQL and CICS options in effect in COBOL and PL/I listing

– Debug COBOL, C/C++, and PL/I applications with CICS, DB2, and IMS

– Debug optimized COBOL applications in production

 Java Interoperability

– Support Java 5 and Java 6 runtimes

– Execute COBOL programs in IMS Java region

 XML Support

– COBOL and PL/I programs can send, receive and process XML documents from middleware
44

© 2012 IBM Corporation

Best practices

 Upgrade compilers when you upgrade System z hardware, or Middleware
(CICS, DB2, IMS)

– Minimize quality assurance effort

– Maximize performance

– Leverage compiler support for new middleware features

– Improve debugging and programmability

 Recompile only modified parts of the application

 Leverage new compiler features to modernize existing business critical
applications

– “Rip and Replace is expensive and risky

– Modernization promotes reuse and delivery of new solutions faster, at lower cost
and lower risk,

 Use Rational development tools to improve programmer productivity,
and help attract new talent

– Rational Developer for z, Rational Development and Test Environment for System
z, Rational Team Concert

45

© 2012 IBM Corporation46

© Copyright IBM Corporation 2012. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

www.ibm.com/software/rational

