

A Fresh Look at the Mainframe When the Mainframe Really IS the Lowest Cost Platform

Ray Jones WW Vice President, z Software The future runs on System z

© 2008 IBM Corporation

Let's Break Down the Elements of Cost

Total Cost of Ownership =

Hardware/Maintenance

- + IBM Software
- + Environmentals
 - + Labor
- + required Quality-of-Service
- (Availability, Security, Disaster/Recovery...)
 - + other Elements
 - (Chargeback)

The total cost requires a total picture of your I/T assets and expenses

Mainframe Cost/Unit of Work Decreases as Workload Increases

Data Center Workload

This Was a Real Project – Why Couldn't The Same Workload Be Done With Faster Processors?

2x HP 16-way servers : external, HP rx8620 3x IBM P570 servers : Web Appl server

Some disaster recovery

Utilization of Distributed Servers & Storage

Storage Allocation

- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.
- Storage Utilization
 - Single digit utilization for distributed environments is not uncommon
 - Storage utilization of 80% + is typical for mainframe
- Storage Management
 - Data disaster recovery, synchronization, and transfer requirements add complexity and cost

Server Utilization at a Large Financial Institution

Average Server Utilization by Class Feb-06

25 20 Percentage CPU Busy 15-**10** 5 Unix Windows 0-Business Continuity Production OAllest Development Windows 5-10% Unix 10-20%

IBM

System z With DB2 Scales Further Than Best HP Superdome Banking Benchmark

Asian Bank

- ▶ IBM System z9 and DB2
- TCS BaNCS (Cobol)
- ▶ 15,353 Transactions/second
- 50 Million Accounts
- IBM benchmark for customer

Bank of China **

- IBM System z9 and DB2
- TCS BaNCS (Cobol)
- 8024*** Transactions/second
- 380 Million Accounts
- IBM benchmark for customer

HP/Temenos *

- HP Itanium
- Temenos T24 (Java)
- 2,153 Transactions/second
- 13 Million Accounts
- Largest banking benchmark performance claimed by HP

System z and BaNCS Online Banking Benchmarks

* SOURCE: TEMENOS BENCHMARKS; http://h71028.www7.hp.com/enterprise/downloads/TemenosBenchmark.pdf

** SOURCE:http://www.enterprisenetworksandservers.com/monthly/art.php?2976 Source: InfoSizing FNS BANCS Scalability on IBM System z – Report Date: September 20, 2006 *** Standard benchmark configuration reached 8024 tps, a modified prototype reached 9445 tps

© 2007 IBM Corporation

Benchmark - Code Expansion When Moving From CICS/Cobol To Java On Wintel (Higher Is Worse)

IBM

System z Batch Processing Performance

SOURCE:*http://www.enterprisenetworksandservers.com/monthly/art.php?2976 **Source**: InfoSizing FNS BANCS Scalability on IBM System z – Report Date: September 20, 2006 **SOURCE**:**TEMENOS BENCHMARKS; http://h71028.www7.hp.com/enterprise/downloads/TemenosBenchmark.pdf

Disaster Recovery – Fast Failover For Less

TCO Case Studies – Core Proliferation Defeats Offload Savings

Scenarios	Cost of D	istrik	outed vs. z	Distributed Cost Ratio	Cores v Process	/s. z sors	Core Ratio	Performance Units per MIP
Offloading cases								
 Banking Benchmark NA financial company European financial Asian financial company 	\$43.3M \$84.7M \$17.9M \$119 M	VS VS VS VS	\$18.2M \$24.2M \$4.9M \$53 M	2.4x 3.5x 3.7x 2.2x	560 v 264 v 52 v 408 v	s 7 s 6 s 2 s 17	80:1 44:1 26:1 24:1	187:1 482:1 670:1 122:1
Offloading studies – European agency – Restaurant chain	€386M \$56.3M	VS VS	€204 M \$23.3M	1.9x 2.4x	568 V 32 V	s 30 s 4	19:1 8:1	185:1 116:1
Offloading studies pending – US Utility – US Manufacturer	\$13.4M \$64.0M	VS VS	\$6.2M \$43.3M	2.2x 1.5x	112 V 96 V	s 3 s 6	37:1 16:1	
				2.5x			32:1	294:1

Trade-In Value Reduces Mainframe Net Present Value Costs

- Upgrade to next generation mainframe
 - Specialty processors are upgraded to next generation free of charge
 - Growing customers typically receive credit for existing MIPS investment when upgrading to new generation
 - Full trade-in value applied to upgrade and growth MIPS
- Upgrade to next generation distributed systems
 - Life time of 3 to 5 years
 - Must repurchase existing processor capacity plus any growth
- Long term TCO implications can be important

Case Study: Québec Government Runs Oracle At IFL Prices

- Running 292 server instances on one z9-EC with 5 IFLs
 - 200 Oracle, 80 WebSphere, 12 WebSphere messaging
 - Reduced cost of hardware and software by 30%
 - Saved \$800,000 in licensing cost in the first year
 - Used RACF for consistent security
 - Each administrator can manage 100 consolidated Linux images
 - Fast provisioning
 - Create new Linux server in 30 min (vs. 1 week 3 months)
 - Clone Oracle DB instance in 30-45 min (vs. 10 14 hours)
 - Inherited benefits of z platform workload management, availability, disaster recovery, I/O bandwidth

Case Study: Consolidate On Mainframe vs. Keeping Dedicated Servers

<u>Mainframe Incremental Hardware</u>					Mainfra	<u>ne Softwa</u>	re	
OT	С	ANNUAL			OTC		ļ	ANNUAL
3 IFL Processors	\$375,000	Processor ² Maintenance	\$52,524	z/VM		\$67,500	z/VM ²	\$16,890
		Power/Space ¹	\$47,073					
Conn. + Disk Acquisition	\$639,033	Conn. + Disk Maintenance 1	\$87,480				Oracle S&S	² \$26,400
RAM (190GB)	\$1,140,000	System Admin 1	\$386,518				LINUX 5&5	φ+3,000
Migration	\$4,920,492	On-Premise Network Maintenance ¹	\$8,935					
TOTAL	\$7,074,525	TOTAL \$582,53	0 (year 2, 3)	TOTAL		\$67,500	TOTAL	\$88,290 (year 2, 3)
Dedicated Hardware				Dedicat	<u>ed Softwa</u>	re		
OT	С	ANNUAL			OTC		ŀ	ANNUAL
Sunk Cost	\$0	Disk Maintenance ¹	\$59,276	Sunk Co	sts	\$0	Oracle S&S	¹ \$2,569,600
		Server maintenance	\$226,884					
		Off-Premise Network	\$299,008				Linux S&S ¹	\$379,308
		Power/Floorspace ¹	\$501,656					
		System Admin ¹	\$5,944,828					
		On-Premise Network Maintenance ¹	\$62,196					
TOTAL	\$0	TOTAL	\$7,093,848	TOTAL		\$0	TOTAL	\$2,948,908

1 – Needs three years maintenance, 2 – Needs two years maintenance

Observed Consolidation Ratios

 $N \rightarrow$

Storage Costs: DB2 Provides More Storage Savings than Oracle

- DB2 for z/OS lowers TCO by reducing storage needed
 - TPC-H Benchmark: DB2 compression of 59% vs 29% for Oracle RAC
- Storage savings with DB2 vs. Oracle for a 10TB data base

	Oracle	DB2 for z/OS*	
Storage System	HP Enterprise Virtual Array 8100 Storage	IBM System Storage DS6800	
Overall database compression ratio (using TPC-H benchmark results)	29%	59%	
For 10 TB uncompressed data storage needed	7.5 TB of HP Storage	4.2 TB of IBM Storage	
Cost of storage (3 year TCA)	\$319,270 + \$15,113 x 3 = \$364,609	\$234,101 + \$13,164 x 2 ** = \$260,429	
With compression, store as far DD2 costs 200/ loss than far Oragle			

With compression, storage for DB2 costs 29% less than for Oracle

*DB2 for z/OS achieves similar compression ratios to those of DB2 for LUW **IBM storage maintenance fee for the first year is included in the warranty

Case Study: Network Before Consolidation (292 Servers To 1 System z)

Catalyst 3560E-24TD – 24 ports 1gbps	25
Catalyst 3560E-12D – 12 ports 10gbps	6
50 Ft UTP Cable	584
10GB Eth Fiber Cable	60

Case Study: Network After Consolidation (292 Servers To 1 System z)

Network Simplification!

Better Performance and Security

IBM Software Price Per Transaction is Going Down

Putting This in Perspective

- For a typical system of 1,400 MIPS, MLC software stack costs \$59 per incremental MIP
- If a transaction is 1 million instructions, an incremental MIP can perform >2½ million additional transactions per month for Δ\$59 software cost (44K transactions per dollar)
- If these are credit card transactions of average \$100 with a commission of 2%, the business makes \$5.2M per month for a software cost of \$59 per month (88,000 times return)
- If this is a bank account averaging 3 transactions a day, the business can do 40 years of account management for a software cost of \$1

International Restaurant Chain Avoids High Cost Software

- Existing environment of 1600 MIPS included high cost ISV system management software
- Competitor's proposal was only a partial offload
 - Complete offload projected to cost 2.3x more
 - \$56M vs \$24M over 5 years
- System management software costs more in the offload case
 - Mainframe systems management
 - \$2.0M Stream per year (48 products, mostly third party)
 - Distributed systems management
 - \$2.6M Yearly Maintenance (26 products)
 - \$13.3M One Time Charge
- Better: Replace higher cost System z ISV software with lower cost IBM Software

Portfolio Review and Analysis

"PRA" - a study for IBM zSeries customers

- helps understand the potential impact of processing growth on future software budgets by developing predictive costs models.
- provides you with a comparison of your current portfolio cost structure with those of other zSeries/S390 customers.
- analyzes your software portfolio to identify redundant or underutilized software products.
- identifies product alternatives and their cost/ benefit impact.
- provides you with negotiation leverage with incumbent product vendors.
- provides you with the latest Software Asset Management tips to help proactively manage your zSeries/S390 software portfolio

http://www-3.ibm.com/software/solutions/softwaremigration/sps.html Or contact Linda Beckner at (614) 659-7192 or at Becknel@us.ibm.com.

Mainframe Consumes Less Power Than HP Superdome

Source for HP Servers: Ideas International, Nov 06 Note: Uses equivalence ratio of 122 RPE's per MIP

Do the Math

- HP Itanium 2 Superdome 9050 (64ch/128co)* consumes a maximum of 24,392 watts
 - [24,392 X \$.09 X (24 X 365)]/1000 = \$19,230 per year for electricity
- Mainframe with similar computing capacity a System z9 S08 machine using 6.3 kW
 - \$4,967 per year for electricity
- Similar savings on cooling capacity
 - Cost of cooling is about 60% additional
 - Superdome total \$30,768 per year vs. Mainframe \$7947
 - Cost of mainframe power and cooling is \$22,821 per year less than HP

*Rated at 350,041 RPE

IBM

IBM Storage Also Saves Energy Costs

An Inconvenient Truth!

Equivalent CO2 Emissions in one year

© 2007 IBM Corporation

The Mainframe Also Requires a Smaller Footprint

per MIP

Mainframe Labor Costs Are Going Down

Data Center Staffing Levels for System z Have Not Increased Despite Large Increase in MIPS

Labor Cost Per Transaction on System z is Decreasing

First National Bank of Omaha

	Servers	Reliability	Utilization	Staff
First move: Implemented distributed computing architecture that became too difficult to monitor, maintain, upgrade and scale	 30+ Sun Solaris servers 560+ Intel ser 	Un-acceptable Staff growth by consolic the mainfra	12% h reversed lating to me	24 people growing at 30% year
<i>Next move:</i> Consolidated back on the mainframe	z990	Much improved	84% with additional reserve capacity on- demand	Reduced to 8 people

Customer Survey – How Many People to Manage Servers?

# NT Servers	# People	Ratio (s/p)
1123	68	16.5
228	20	14.4
671	51	13.1
700	65	11.5
154	18	8.5
431	61	7.1
1460	304	4.8
293	79	3.7
132	54	2.0

# UNIX Servers	# People	Ratio (s/p)
706	99	7.1
273	52	5.2
69	15	4.6
187	56	3.3
170	51	3.3
85	28	3.0
82	32	2.6
349	134	2.6
117	50	2.3
52	52	1.0

Mainframe administration productivity surveys range 167-625 MIPS per headcount (500 is typical), so...

Source: IBM Scorpion Customer Studies NOTE: Figures for total administration cost

Manage More Workload Per Headcount

Compared at 122 RPE's = 1 MIP © 2007 IBM Corporation

New York Financial Services Company – Useful Lifetime Of 36 Month Lease

Fractional Availability Improvements Are Important

Example 1: Financial Services Company

- \$300B assets, 2500+ branches, 15M customers
- Retail banking, loans, mortgages, wealth management, credit cards
- CRM System branches, financial advisors, call centers, internet
- Number of users 20,000+

	Unix/	zSeries/
	Oracle	DB2
Availability %	99.825%	99.975%
Annual outage	15h 20m	2h 11m
Cost of Downtime	\$45.188M	\$3.591M

Sources: ITG Value Proposition for Siebel Enterprise Applications, Business case for IBM eServer zSeries, 2004 & Robert Frances Group, 2005

Financial Impact of Downtime Per Hour

Industry segment	Cost
Energy	\$2,818K
Telecommunications	\$2,066K
Manufacturing	\$1,611K
Financial	\$1,495K
Information Technology	\$1,345K
Insurance	\$1,202K
Retail	\$1,107K
Pharmaceuticals	\$1,082K
Banking	\$997K
Consumer Products	\$786K
Chemicals	\$704K
Transportation	\$669K

Cost of a Security Breach

- Total costs per compromised record
 - \$182 per record or \$4.8 million per incident
 - Incident costs reported ranged from \$226,000 to \$22 million
 - Total of \$148 million in costs across the sample of 31 companies
- Average customer loss was 2 percent of all customers, with some reporting up to 7%

IBM

Charge Back Practices Were Improved Over Time at a Large Financial Institution

More Accurate Charge Back Can Correct Perceptions of Relative Costs

Understand The Cost Components

Annual Operations Cost Per Server (Averaged over 3917 Distributed Servers)

Power	\$731
Floor Space	\$987
Annual Server Maintenance	\$777
Annual connectivity Maintenance	\$213
Annual Disk Maintenance	\$203
Annual Software support	\$10,153
Annual Enterprise Network	\$1,024
Annual Sysadmin	\$20,359
Total Annual Costs	\$34,447

The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount

Source: IBM internal study

IBM

Key Points:

Mainframe Costs	Distributed Costs
The cost of running incremental workload on the mainframe goes down as the total workload grows	The cost of running additional workload on distributed servers goes up more linearly
 Labor costs hold steady as workload grows 	 Labor is now the highest cost element in distributed environments Administrative staff costs increase in proportion to the number of servers
 IBM pricing policies designed to favor the addition of more workload 	 New workload requires additional servers and licenses
-Highly Efficient Power and Cooling - Small Footprint	 Energy and Space cost is more linear
 Lower software costs per transaction as workload grows – and PRA can lower ISV tool costs 	 Cost of software licenses is more linear
 High Availability and Security Translate into low cost 	 Fractionally less Availability and Security can drive Significant downstream costs
Customers have learned that mainframes deliver economies of scale, especially as the workload grows	Result – scale out strategies do not deliver equivalent economies of scale as the workload grows

This pricing discussion uses published list prices