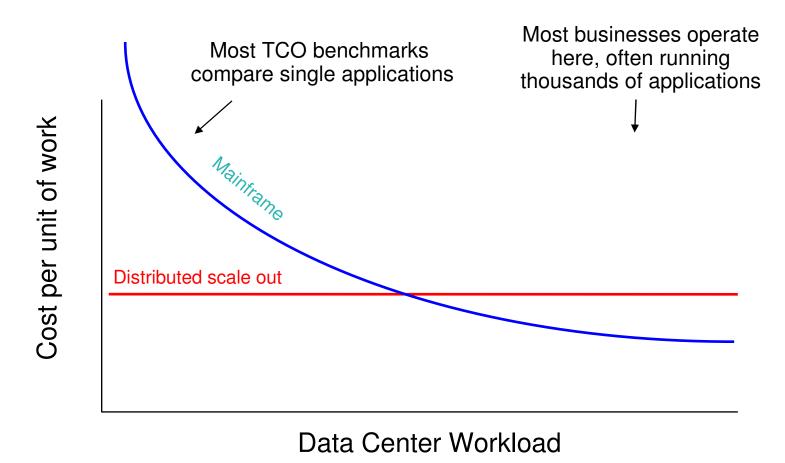
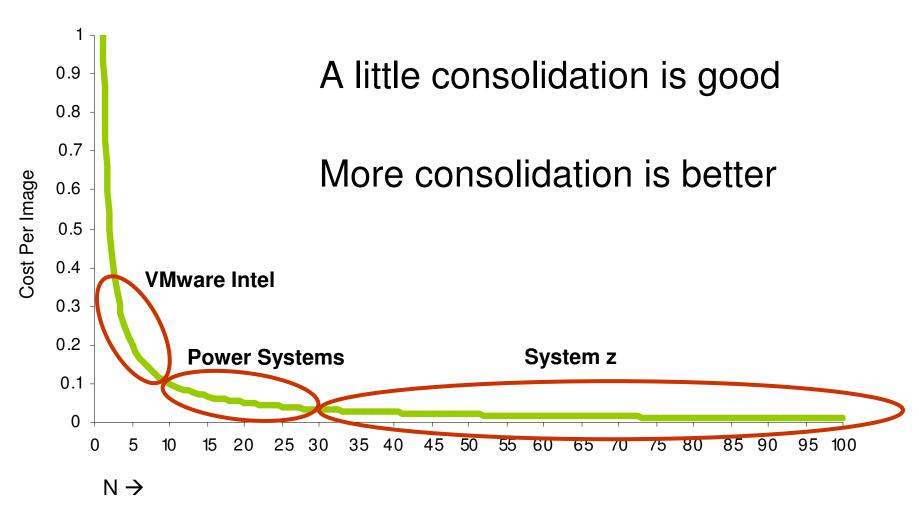
Working Smarter in 2011


How zEnterprise Drives Lower Cost for Workload Deployment

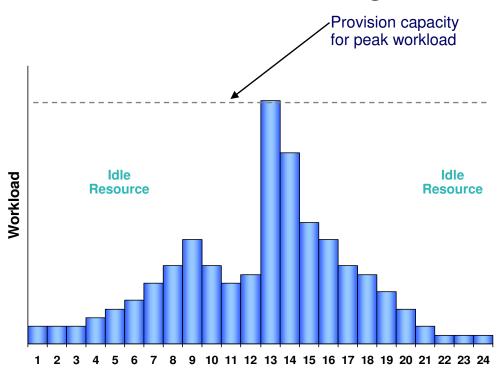
Ray Jones Vice President, Worldwide System z Software IBM Software Group



Mainframe Cost/Unit of Work Decreases as Workload Increases

Observed Consolidation Ratios

Utilization of Distributed Servers & Storage

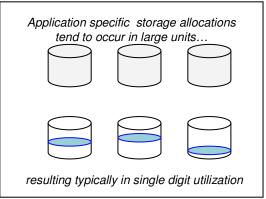

Typical utilization of:

Windows Servers 5-10% UNIX Servers 10-20% System z Servers 85-100%

Server dedicated to one application

The cost of storage is typically three times more in distributed environments

Storage Allocation


- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.

Storage Utilization

- Single digit utilization for distributed environments is not uncommon
- Storage utilization of 80% + is typical for mainframe

Storage Management

- Data disaster recovery, synchronization, and transfer requirements add complexity and cost

What Is A Typical Value Of Sigma?

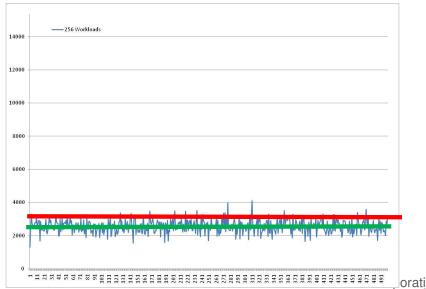
IBM Survey Of Workload Variability In 3200 Servers

Type Of Workload	Average Utilization	Peak Utilization	Sigma
Infrastructure	6%	35%	2.5 * Mean
Web Server	4%	24%	2.5 * Mean
Application	4%	34%	3.75 * Mean
Database	5%	37%	3.25 * Mean
Terminal	6%	45%	3.25 * Mean
E-Mail	4%	34%	3.75 * Mean

IBM System x™ Servers and VMware Virtual Machine Sizing Guide

Legacy workloads on XEON 2.5-2.8GHz Servers

Normal probability distribution


New Workload Scenarios – Beware Benchmarks

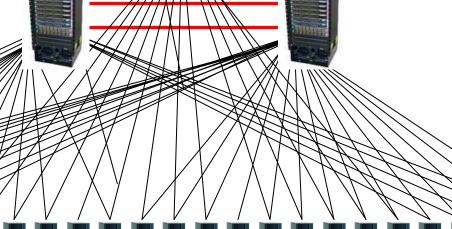
Stress test benchmarks have no variability!

- They drive the system under test to 100% utilization with no variation
- Comparing mean throughputs at 100% utilization doesn't give a realistic view of the resources required for deployment

Running a new workload with variability Sigma=2.5*Mean requires processing capacity equal to 6 times the Mean workload demand

Adding a new workload to a pool of 256 existing workloads will require incremental processing capacity equal* to the **Mean** workload demand

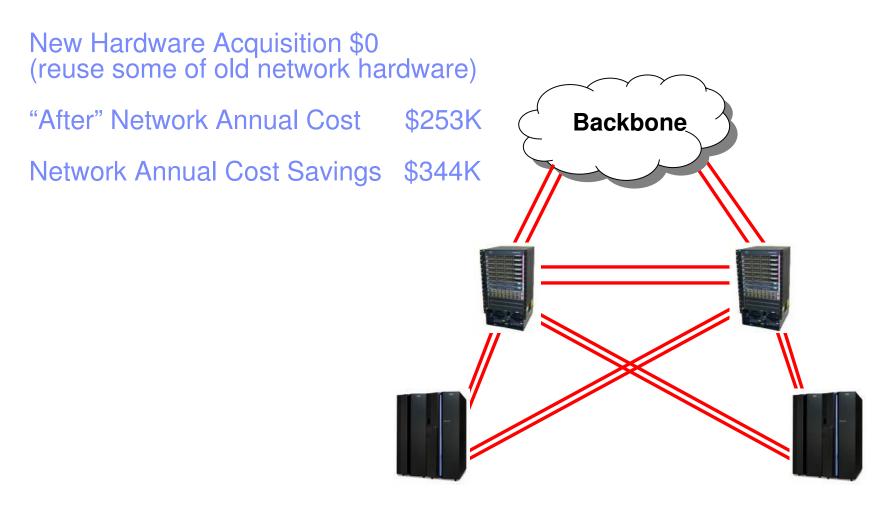
^{*} If we add one more workload to a pool of 256 consolidated workloads the computing resource required for the pool goes up by 1.00047 * Mean 6

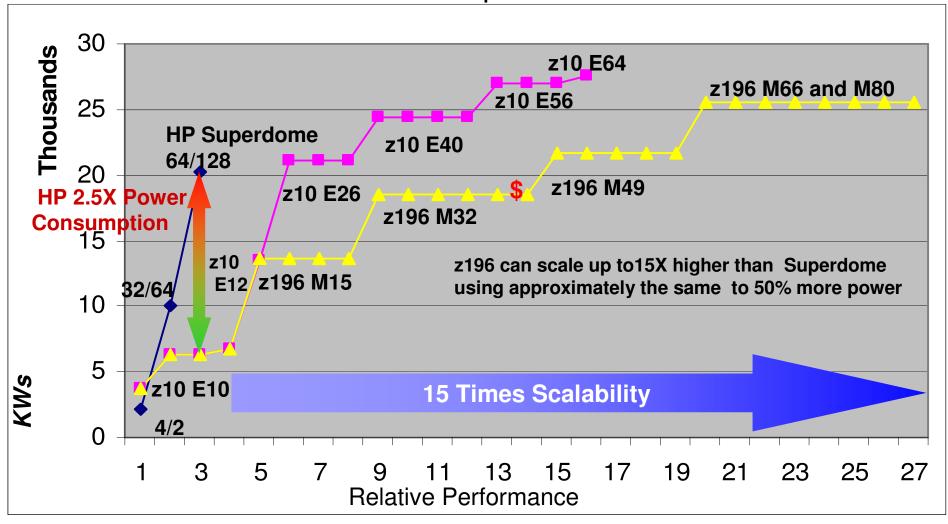

Case Study: Network Costs –Before Consolidation (483 Servers to 2

Backbone

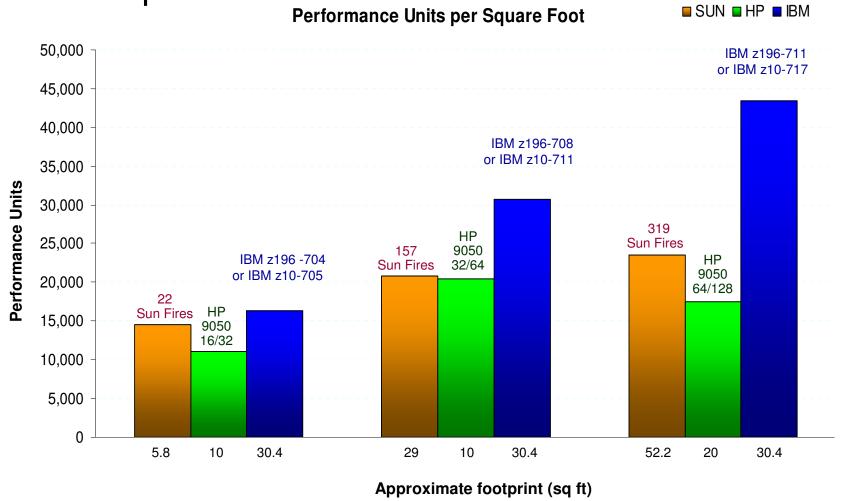
System z's)

High Utilization Switch Module	14
Low Utilization Switch Module	12
Switch Interconnect Module	6
50 Ft UTP Cable	966
10GB Eth Fiber Cable	12
Switch Chassis	3


Hardware Acquisition \$748K Network Annual Costs \$597K


Shows 30 of the 483 Servers

Case Study: Network Costs – After Consolidation (483 Servers to 2 System z's)


Mainframe Scales 2.5 to 15X Superdome

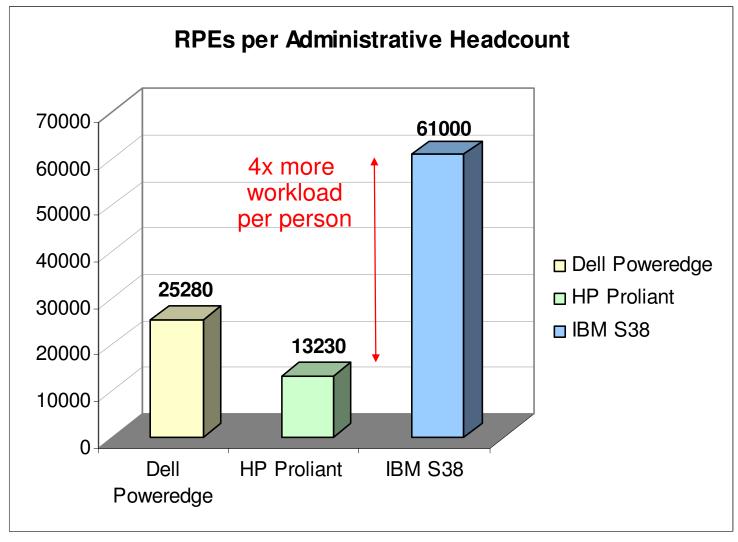
Notes: Performance as per Eagle TCO studies. Multiply by 2 for MIPS. HP performance based on 122 perf units / MIPS. z10 and z196 power is max value. It is very rare that any mainframe is even 80% of max. Typical mainframe power is less - gapproximately 60% of maximum as per field data. Mainframe Power scales by model or book package.

The Mainframe Also Delivers More Compute Power Per Footprint Unit

Based on 122 performance units per MIP

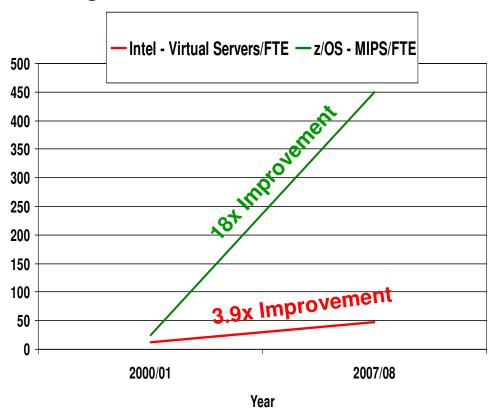
MainframeE10 EC and z196 footprint remains constant

Customer Survey – How Many People to Manage Servers?


# NT Servers	# People	Ratio (s/p)
1123	68	16.5
228	20	14.4
671	51	13.1
700	65	11.5
154	18	8.5
431	61	7.1
1460	304	4.8
293	79	3.7
132	54	2.0

# UNIX Servers	# People	Ratio (s/p)
706	99	7.1
273	52	5.2
69	15	4.6
187	56	3.3
170	51	3.3
85	28	3.0
82	32	2.6
349	134	2.6
117	50	2.3
52	52	1.0

Mainframe administration productivity surveys range 167-625 MIPS per headcount (500 is typical), so...


Source: IBM Scorpion Customer Studies NOTE: Figures for total administration cost

Manage More Workload Per Headcount

System z Labor Cost Trends Favor A Centralized Approach To Management

Large scale consolidation and structured management practices drive increases in labor productivity

Small scale consolidation achieves lesser gains

The more workloads you consolidate and manage with structured practices... the lower the management labor cost

© 2010 IBM Corporation Source: IBM Scorpion Studies

Average Costs for Customers System z vs distributed – Empirical Findings

Cost Ratios (z vs Distributed)

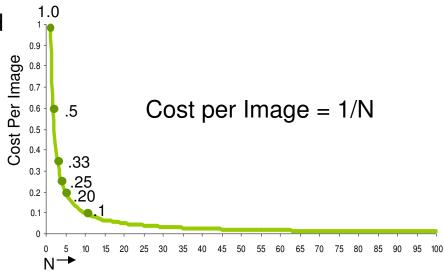
				,
		Z	Distributed	z vs distributed (%)
	5-Year TCO	\$29,428,593	\$51,965,131	56.63%
	Software	\$19,520,910	\$17,484,548	111.65%
БП	Hardware	\$7,183,032	\$9,327,146	77.01%
sti	System Support Labor	\$4,643,964	\$8,255,061	56.26%
Rehosting	Electricity	\$40,840	\$363,945	11.22%
Re	Space	\$61,277	\$225,078	27.22%
	Migration	\$371,847	\$7,067,787	5.26%
	DR	\$1,009,618	\$13,903,509	7.26%
	5-Year TCO	\$9,739,125	\$23,325,530	41.75%
_	Software	\$2,579,985	\$13,726,812	18.80%
₽	Hardware	\$4,813,952	\$5,425,007	88.74%
Conslidation	System Support Labor	\$1,100,500	\$4,237,050	25.97%
<u> </u>	Electricity	\$37,190	\$271,895	13.68%
Ö	Space	\$236,542	\$578,605	40.88%
O	Migration	\$2,297,676		
	DR			

Software costs on mainframe include production, batch and management Software costs on distributed often do not include systems management software

Understand The Cost Components

Annual Operations Cost Per Server (Averaged over 3917 Distributed Servers)

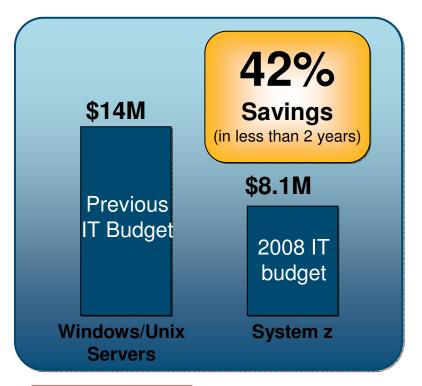
Power	\$731
Floor Space	\$987
Annual Server Maintenance	\$777
Annual connectivity Maintenance	\$213
Annual Disk Maintenance	\$203
Annual Software support	\$10,153
Annual Enterprise Network	\$1,024
Annual Sysadmin	\$20,359
Total Annual Costs	\$34,447


The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount

Source: IBM internal study

How Does Consolidation Reduce Costs?

- Costs shared by all "N" consolidated images
 - Hardware
 - Software
 - Power
 - Floor Space
 - Local Network Connectivity
- Costs not shared by consolidated images
 - Migration cost per image
 - Off premise network cost
 - Labor cost per image


Fixed cost per image

Fixed cost per image, but typically less than unconsolidated labor cost

The more workloads you can consolidate, the lower the cost per image

Optimize deployment of applications and data

Deploying SAP database and application servers

Top three reasons for savings

Software and hardware licensing costs dramatically reduced

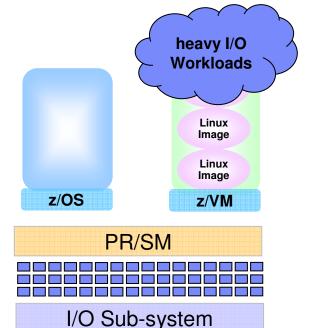
Software and hardware maintenance costs are significantly down

Networking costs plunged, while infrastructure was drastically simplified

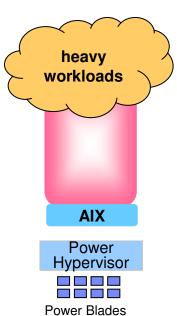
\$1.8 billion Electric motors manufacturer

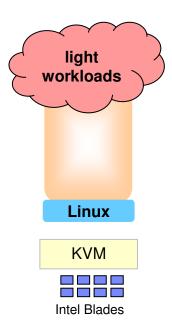
Expected Benefits Realized: Availability and PerformanceThe System z decision was driven by expected benefits:

- Reduced complexity
- High availability
- Ease of maintenance
- Dynamic Workload
- Good consistent application response time (SAP)
- zLinux for rich toolset, ease of use


Additional Benefits Realized: Significant Cost Savings

- +Reduced IT budget by 42% in less than 2 years
- +Reduced floor space by 70%
- +Reduced software and hardware maintenance by more than 50%
- +Reduced power consumption by more than 60%
- +Reduced total TCO from 2% of sales to below 1% and realized 1 year ahead of schedule




zEnterprise Extends Cost Advantages To A Broad Range Of Workloads

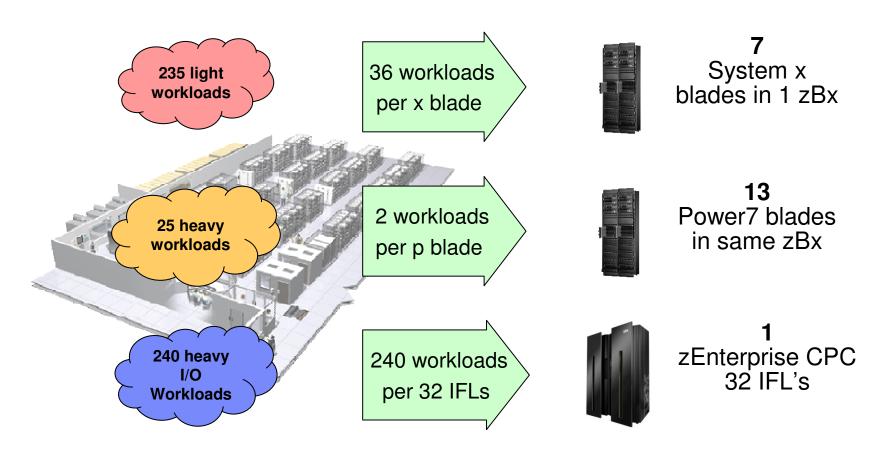
- Scale up to 80
 cores in a frame
 (z/OS clusters with sysplex)
- Dedicated I/O Sub System
- Superior qualities of service

- Scales to 8 cores per blade
- Larger number of fast processing threads
- Floating point accelerators

- Scales to 8-12 cores per blade
- Fast processing threads
- Commodity I/O
- Modest qualities of service

Large Data Center – What Did It Cost to Deploy 500 Workloads on Virtualized Intel Servers?

Deployed on **30** Intel Xeon Servers using VMware (8 cores each)


Deployed on 25 Intel Nehalem Servers (8 cores each, non-virtualized)

Deployed on 22 Intel Nehalem Servers using VMware (8 cores each)

500 workloads

77 servers

Large Data Center – What Does it Cost to Deploy 500 Workloads on zEnterprise?

Best fit assignments

Configuration is based on consolidation ratios derived from IBM internal studies. z196 32-way performance projected from z196 8-way and z10 32-way measurements. The zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics.

Compare Server Cost of Acquisition

240 heavy I/O workloads 25 heavy workloads

235 light workloads

Deployed on Intel

Best fit on zEnterprise

77 Intel Servers

616 cores

2 Frames 192 cores

\$15.2M TCA (3 years)

\$7.5M TCA (3 years)

51% less
Corporation 22

Compare Network Cost of Acquisition

Deployed on Intel

240 heavy I/O workloads

25 heavy workloads

235 light workloads

Best fit on zEnterprise

Additional network parts

16 switches

340 cables

308 adapters

664 total network parts

\$0.20M TCA

Additional network parts

1 switches

10 cables

10 adapters

21 total network parts

\$0.03M TCA

86% less

Compare Power Consumption

240 heavy I/O workloads 25 heavy workloads

235 light workloads

Deployed on Intel

Best fit on zEnterprise

77 Servers

289 kW

2 frames

67 kW

\$0.25M

3 years@\$0.10 per kWh

\$0.06M

3 years@\$0.10 per kWh

Server configuration based on IBM internal studies.
Calculations for Intel servers based on published power ratings
and industry standard rates. Prices are in US currency, prices
will vary by country

zEnterprise Fit For Purpose & TCO

77% less Corporation 24

Compare Server Infrastructure Labor Cost

235 heavy I/O workloads

25 heavy workloads

240 light workloads

As deployed on Intel

20,464 labor hours/yr **9.84** administrators

\$4.71M for labor

Best fit on zEnterprise

7,673 labor hours/yr **3.68** administrators

\$3.66M for labor + Tivoli software costs

Configuration based on IBM internal studies. Labor model based on customer provided data from IBM studies. Labor rates 25ill vary by country

22% less
10 IBM Corporation 25

Compare Storage Cost

235 heavy I/O workloads

25 heavy workloads

240 light workloads

Deployed on Intel

Best fit on zEnterprise

1 DS8700

1 XIV via SAN

1 SONAS

484.4 TB embedded storage 24% utilization 580 points of admin

\$9.1M TCO(3 years)

240GB active storage required per workload (2.4PB total)

172.3 PB provisioned storage67% utilization3 points of admin

\$6M TCO (3 years)

34% less
Corporation 26

Fewer Parts to Assemble and Manage

240 heavy I/O workloads 25 heavy workloads

235 light workloads

Deployed on Intel
-
77
664
289
10
580

Servers
Network (parts)
Power (KW)
Administrators
Storage admin
points

1	
Bes	t fit on
2 fra	ames
21	
67	
4	
3	

Three Year Cost Of	Deployed on Intel	Best fit on zEnterprise	
Servers	\$15.2M	\$7.5M	
Network	\$0.20M	\$0.03M	
Power	\$0.25M	\$0.06M	
Labor	\$4.71M	\$3.66M	
Storage	\$9.1M	\$6.0M	
Total	\$29.46M	\$17.25M	
Total cost per workload	\$59K	\$35K	ess

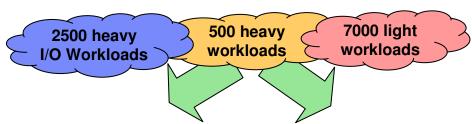
Simplification -

Fewer Parts To Assemble And Manage

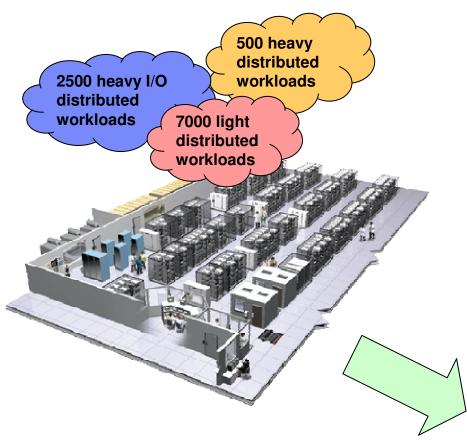
2500 heavy I/O Workloads 500 heavy workloads

7000 light workloads

Deployed on Intel
1603
13,763
2131
198
1603


Servers
Network (parts)
Power (KW)
Administrators
Storage admin
points

<u>/ </u>	
Best fit on zEnterprise	
21 frames	
223	
419	
76	
10	



Three Year Cost Of	Deployed on Intel	Best fit on zEnterprise	
Servers	\$314M	\$138M	
Network	\$3.8M	\$0.2M	
Power	\$5.6M	\$1.1M	
Labor	\$94.8M	\$36.4M	
Storage	\$211M	\$108M	
Total	\$629M	\$284M	
Total cost per workload	\$62K	\$28K	

zEnterprise Is A Roadmap To The Data Center Of The Future

- Lower cost per unit of work for large scale workloads
- Revolutionary cost reductions for smaller scale workloads
- Data center simplification
- Improve quality of service
- No other platform can match!

Hainframe workloads
+
distributed workloads
best fit for cost

