

Analyzing IT Value and Cost Considerations – Maximizing The Value of Your Mainframe

Karmjeet Kahlon,

Director Sales, Worldwide System z Software IBM Software Group

June 2013

Mainframe Cost/Unit of Work Decreases as Workload Increases

Most businesses operate Most TCO benchmarks here, often running compare single applications thousands of applications Distributed scale out

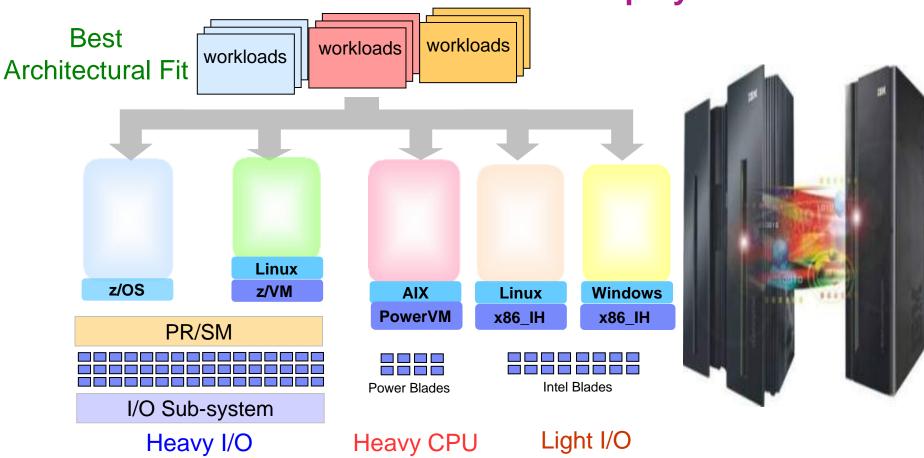
Data Center Workload

Smarter Computing

Strategies to achieve breakthrough reductions in IT cost

Ascertain true elements of cost:

New metric for the age of Smarter Computing


Hardware/Software/Maintenance Networking Energy Labor

COST PER WORKLOAD

Storage

Workload Characteristics Influence The Best Fit **Deployment Decision**

Deploy or consolidate workloads on the environment best suited for each workload to yield lowest cost
Maximizing the value of your mainframe

Qualities of service

Deploying Stand Alone Workloads With Heavy CPU Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

2 workloads per Intel blade

cores

Scale to 16

Virtualized on Intel 16 core HX5 Blade \$200,055 per workload

Best Fit

Heavy CPU workloads 1 workload per POWER7 blade

PowerVM on PS701 8 core POWER7 Blade \$216,658 per workload

- IBM WebSphere ND
- Monitoring software
- On 8 core Nehalem servers

Online banking workloads, each driving **460** transactions per second with light I/O

10 workloads per 32-way z/VM

z/VM on z196 CPC

\$328,477 per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer

Deploying Stand Alone Workloads With Light CPU Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

47 workloads per Intel blade

Virtualized on Intel 16 core HX5 Blade \$8,165 per workload

Light workloads

IBM WebSphere NDMonitoring software

28 workload per POWER7 blade

Fast low cost threads

PowerVM on PS701 8 core POWER7 Blade \$7,738 per workload Best Fit

On 4 core "older" Intel
Online banking
workloads, each driving

22 transactions per second with moderate

155 workloads per 32-way z/VM

z/VM on z196 CPC

\$21,192 per workload

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer workload profiles/characteristics. Prices will vary by country. Maximizing the statement of the control of t

Deploying Stand Alone Workloads With Heavy I/O Requirements

Benchmark to determine which platform provides the lowest TCA over 3 years

1 workload per Intel blade

Virtualized on Intel 16 core HX5 Blade \$400,109 per workload

Heavy I/O workloads

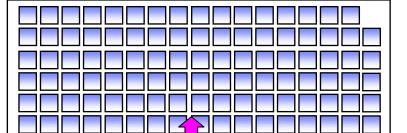
1 workload per POWER7 blade

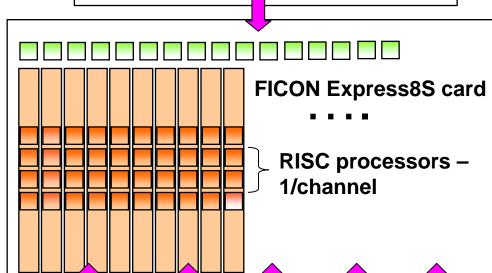
PowerVM on PS701 8 core POWER7 Blade \$216,658 per workload

- IBM WebSphere ND
- Monitoring software
- On 4 core "Older" Intel

Online banking workloads, each driving 22 transactions per second, with 1 MB I/O per transaction

40 workloads per 32-way z/VM

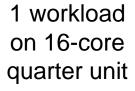

z/VM on z196 CPC 32 IFLs \$82,119 per workload


Best Fit

Consolidation ratios derived from IBM internal studies. HX5 2.13GHz 2ch/16co performance projected from x3550 2.66GHz 2ch/12co measurements. zBX with x blades is a statement of direction only. Results may vary based on customer

zEnterprise Has A Dedicated I/O Subsystem For High I/O Bandwidth

EC12


- Up to 101 general purpose processors or Specialty Engines
 - Execute business logic
- Up to 16 System Assist Processors to manage I/O requests
 - Can sustain up to 2.4M IOPS*
- Up to 160 physical FICON cards for I/O transfers
 - Up to 320 RISC processors
- Up to 1,024 channels
- IBM DS8800 Storage System
 - Up to 440K IOPS capability
- Delivers efficiency at scale

^{*} Recommend 70% max SAP Utilization – 1.7M IOPS Numbers represent High Performance FICON traffic

zEnterprise Efficiency At Scale – Lower Cost Per Consolidated Workload

Which platform can achieve the lowest cost per workload?

Pre-integrated
Competitor
Multi-Tenant Private
Cloud

\$2.27M/workload

200GB TPC-E 250 tps

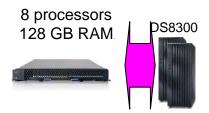
Brokerage TPC-E workload, each driving 250 transactions per second on 200GB database 5 multi-tenant workloads* on zEC12 2 GPs + 2 zIIPs

DB2 10 for z/OS on zEC12

\$1.73M/workload

25% lower cost

Benchmarks Show System z And z/OS Are Optimized For Batch Processing


Intel x3550

12 processors 128 GB RAM

Sorting Average CPU 89%

Source: Internal IBM study

Power PS701

Sorting Average CPU 92%

Linux on z

8 processors 128 GB RAM DS8800

Sorting Average CPU 90%

z/OS

8 processors 128 GB RAM

Sorting Average CPU 72%

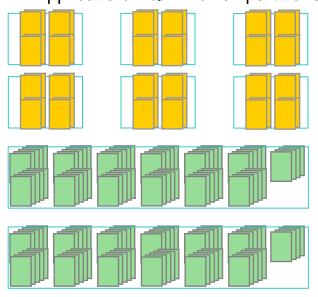
SORT Job: Sort a 3 GB transaction file – Repetitions: 300

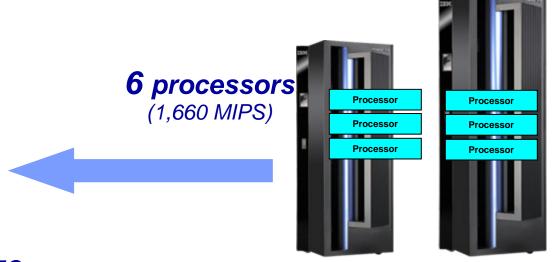
Total Time (secs)	7,680	6,900	2,590	644
Concurrency	12	20	18	45
Rate (MB/sec)	240	280	746.2	3,000

MERGE Job: Merge 30 sorted files into a 90 GB master file – Repetitions: 10

Total Time (secs)	11,709	7,920	2,799	558
Concurrency	10	[^] 10	10	10
Rate (MB/sec)	157	244	690.5	3,460

Results:


- 1. Running same software, x86 batch window is 3.6x greater than System z
- 2. On System z, Linux batch window is 4.5x greater than z/OS
- 3. Off-loading batch from z/OS to x86 leads to as much as 16x increase in batch window


Core Proliferation for a Mid-sized Offload Project

6x 8-way Production / Dev 2x 64-way Production / Dev Application/MQ/DB2/Dev partitions

2x z900 3-way Production / Dev / QA / Test

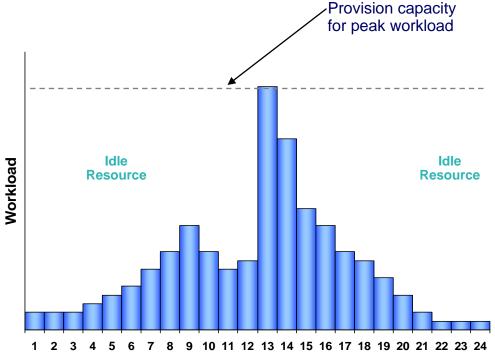
\$25.4M TCO (5yr)

176 distributed processors (800,072 Performance units)

\$17.9M TCO (5yr)

482 Performance Units per MIPS

Útilization of Distributed Servers & Storage

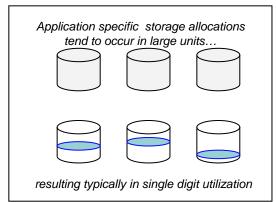

Typical utilization of:

Windows Servers 5-10%
UNIX Servers 10-20%
System z Servers 85-100%

Server dedicated to one application

The cost of storage is typically three times more in distributed environments

Storage Allocation


- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.

Storage Utilization

- Single digit utilization for distributed environments is not uncommon
- Storage utilization of 80% + is typical for mainframe

Storage Management

- Data disaster recovery, synchronization, and transfer requirements add complexity and cost

What Is A Typical Value Of Sigma?

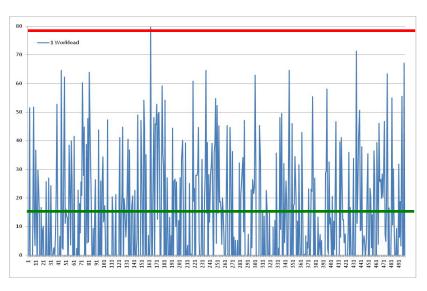
IBM Survey Of Workload Variability In 3200 Servers

Type Of Workload	Average Utilization	Peak Utilization	Sigma
Infrastructure	6%	35%	2.5 * Mean
Web Server	4%	24%	2.5 * Mean
Application	4%	34%	3.75 * Mean
Database	5%	37%	3.25 * Mean
Terminal	6%	45%	3.25 * Mean
E-Mail	4%	34%	3.75 * M ean

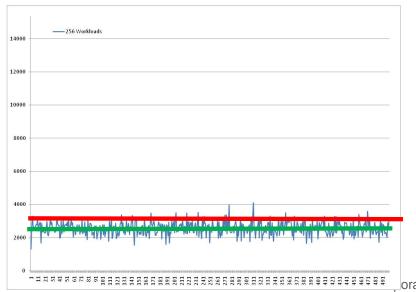
IBM System x[™] Servers and VMware Virtual Machine Sizing Guide

Legacy workloads on XEON 2.5-2.8GHz Servers

Normal probability distribution

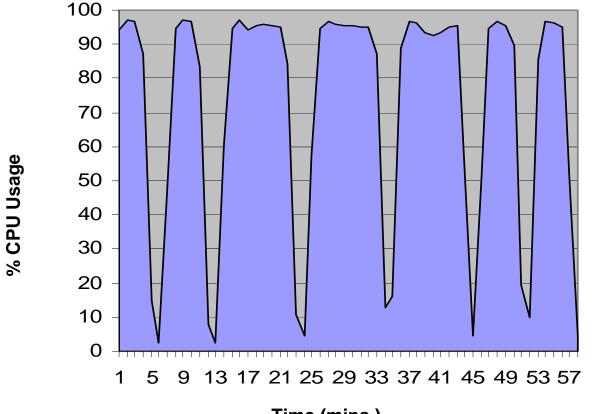


New Workload Scenarios – Beware Benchmarks


Stress test benchmarks have no variability!

- They drive the system under test to 100% utilization with no variation
- Comparing mean throughputs at 100% utilization doesn't give a realistic view of the resources required for deployment

Running a new workload with variability Sigma=2.5*Mean requires processing capacity equal to 6 times the Mean workload demand


Adding a new workload to a pool of 256 existing workloads will require incremental processing capacity equal* to the **Mean** workload demand

^{*} If we add one more workload to a pool of 256 consolidated workloads the computing resource required for the pool goes up by 1.00047 * Mean

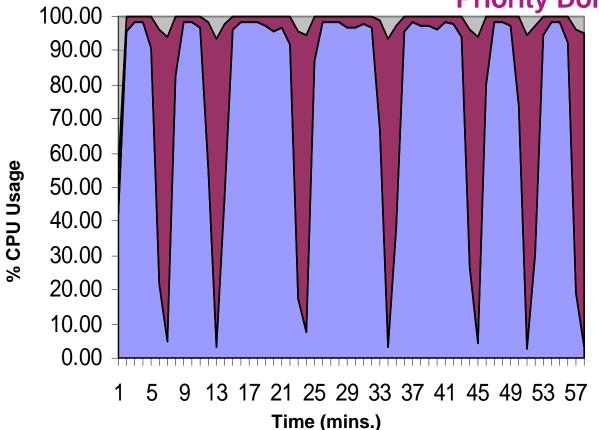
Priority Workload With Varying Demand Running Standalone On System z PR/SM

High Priority Workload
Demand Curve

Priority Workload

Time (mins.)

Capacity Used


High Priority - 72.2% CPU Minutes Unused (wasted) - 27.8% CPU Minutes

Priority Workload Metrics

Total Throughput: 9.125M Avg Response Time: 140ms

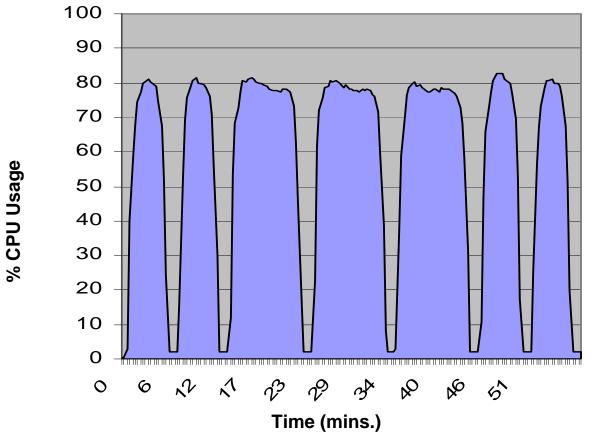
Priority Workload On System z Does Not Degrade When Low Priority Donor Workload Is Added

Run High Priority
And Low Priority
Workloads Together

- Donor Workload
- Priority Workload

NO
throughput leakage
NO
response time
increase

Capacity Used


High Priority - 74.2% CPU Minutes Low Priority - 23.9% CPU Minutes Wasted – 1.9% CPU Minutes

Priority Workload Metrics

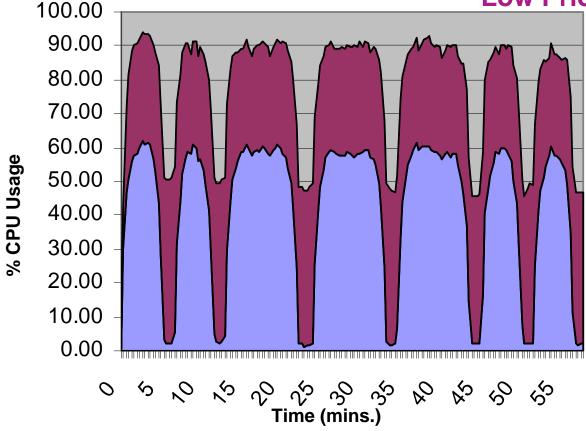
Total Throughput: 9.125M Avg Response Time: 140ms

Priority Workload With Varying Demand Running Standalone On x86

High Priority Guest CPU Demand

Priority Workload

Capacity Used


High Priority - 57.5% CPU Minutes Unused (wasted) – 42.5% CPU Minutes

Priority Workload Metrics

Total Throughput: 6.47M Avg Response Time: 153ms

Priority Workload On x86 Hypervisor Degrades Severely When Low Priority Workload Is Added

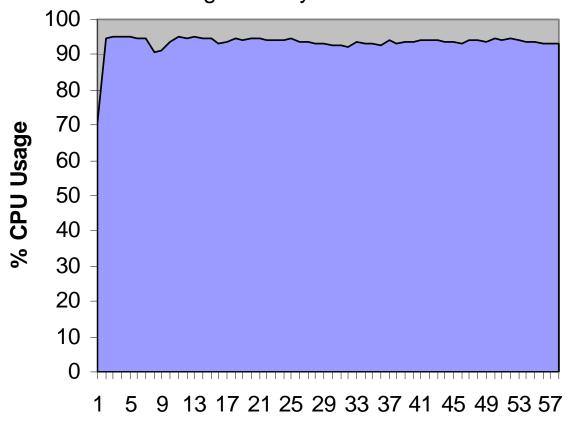
Run High Priority
And Low Priority
Workloads Together

- Donor Workload
- Priority Workload

30.7%
throughput leakage
45.1%
response time increase
21.9%
wasted CPU minutes

Capacity Used

High Priority - 42.3% CPU Minutes Low Priority - 35.8% CPU Minutes Wasted - 21.9% CPU Minutes


Priority Workload Metrics

Total Throughput: 4.48M Avg Response Time: 220ms

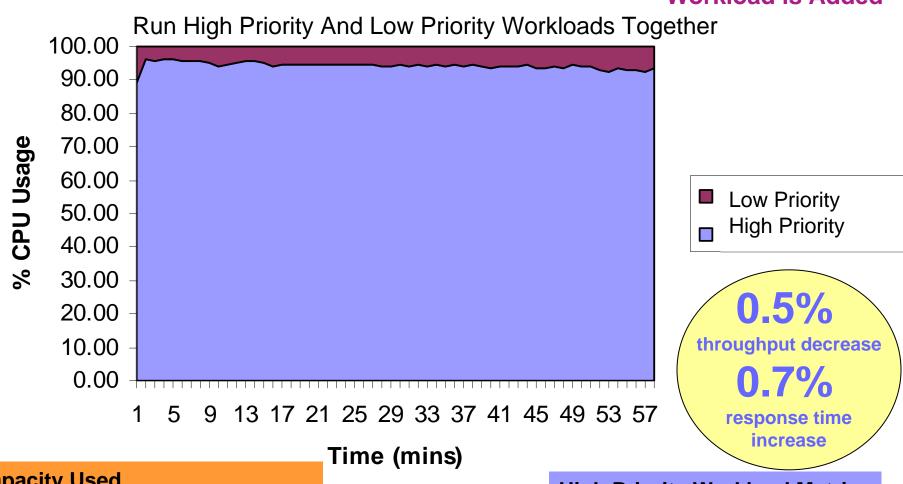
High Priority Web Workload with Constant Demand Running
Standalone on System z

■ Usage - FB Standalone

Time (mins)

Capacity Used

High Priority – 93.4% CPU Minutes Wasted – 6.6% CPU Minutes

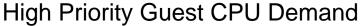

High Priority Workload Metrics

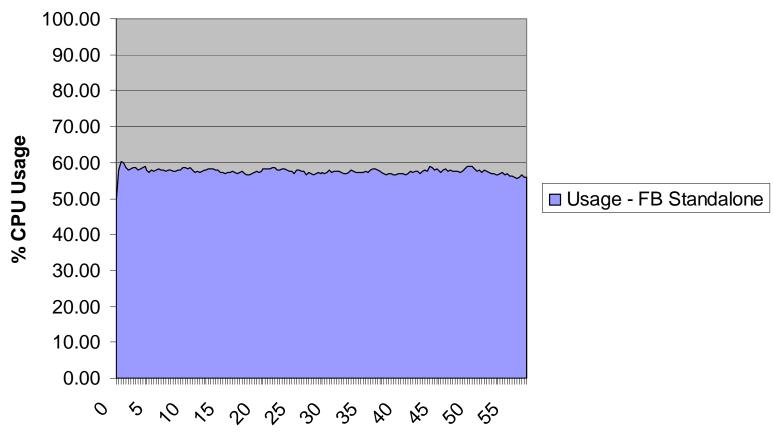
Total Throughput: 11.95M Avg Response Time: 149ms

© 2013 IBM Corporation

High Priority Workload on System z Does Not Degrade When Low Priority Workload is Added

Capacity Used


High Priority – 94.3% CPU Minutes Low Priority – 5.7% CPU Minutes Wasted - 0% CPU Minutes

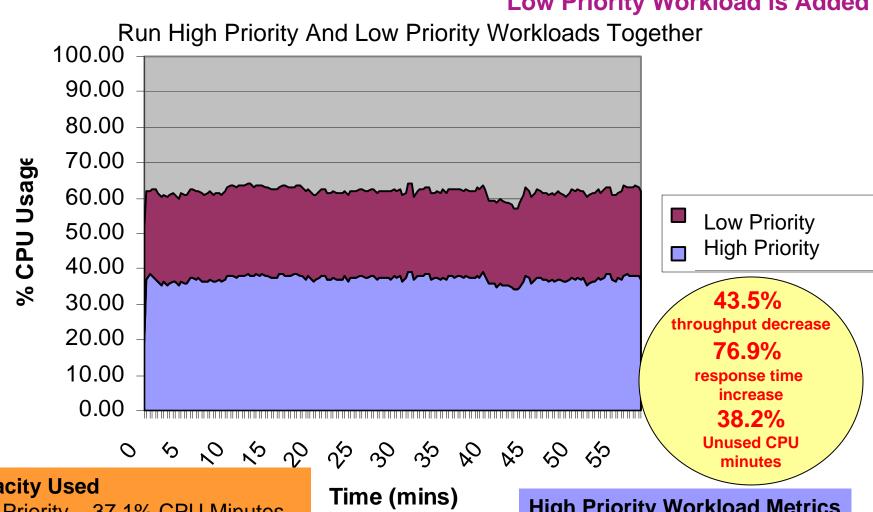

High Priority Workload Metrics

Total Throughput: 11.89M Avg Response Time: 150ms

High Priority Web Workload with Constant Demand Running Standalone on High Priority Guest CDL Demand x86/Common Hypervisor

Time (mins)

Capacity Used


High Priority – 58% CPU Minutes Wasted – 42% CPU Minutes **High Priority Workload Metrics**

Total Throughput: 9.68M

Avg Response Time: 277ms

High Priority Workload on x86/Common Hypervisor Degrades Severely When **Low Priority Workload is Added**

Capacity Used

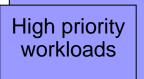
High Priority – 37.1% CPU Minutes Low Priority – 24.7% CPU Minutes Wasted - 38.2% CPU Minutes

High Priority Workload Metrics

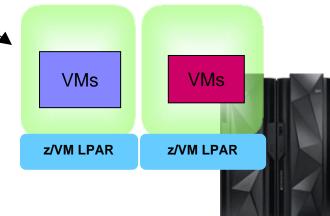
Total Throughput: 5.47M Avg Response Time: 490ms

Deliver High And Low Priority Workloads Together While Maintaining SLA

Comparison to determine which platform provides the lowest TCA over 3 years



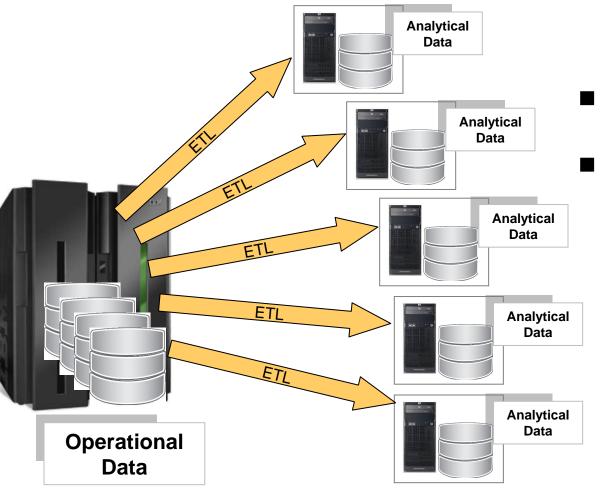
Virtualized on 3 Intel 40 core servers


\$13.66M (3 yr. TCA)

Low priority workloads

- IBM WebSphere 8.5 ND
- IBM DB2 10 AFSF
- **Monitoring software**

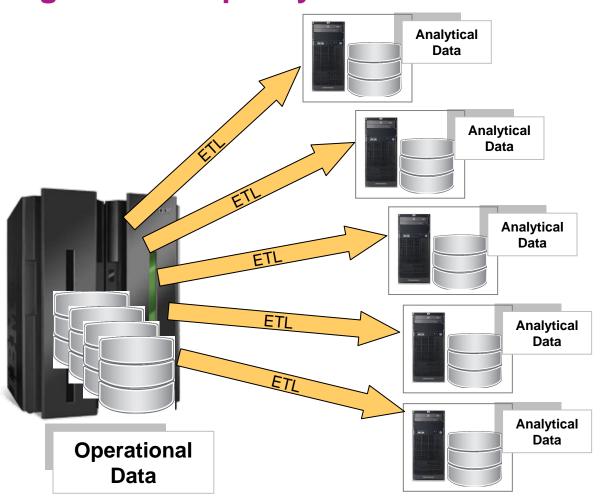
High priority online banking workloads driving a total of 11.89M transactions per hour and low priority discretionary workloads


z/VM on zFC12 32 IFLs

\$5.77M (3 yr. TCA)

What is "Mainframe Blockade"?

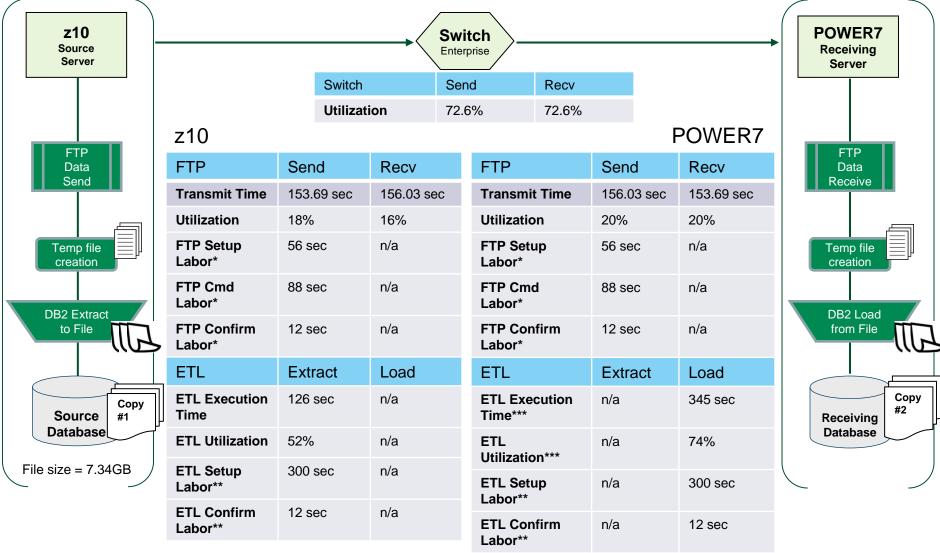
- Isolation of the mainframe
- Large proliferation of local solutions (applications and databases)


Businesses fall for common misperceptions:

- Distributed servers are cheap
- Offloading will reduce costs by reducing MIPS
- Cost of data transfers in insignificant

In Many Cases, "Mainframe Blockade" Results in Significant Capacity Burn

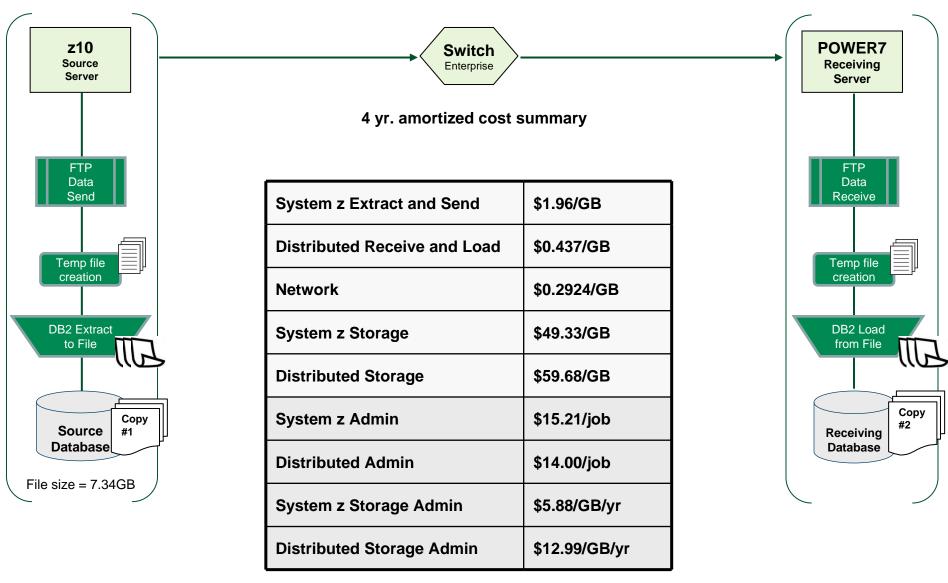
Asian Government Agency:


- Mainframe supports Batch in maintenance mode only – no new development
- All applications reside on x86 cluster
- Yet 20% of MIPS consumed in moving the data, primarily off to distributed cluster

A large Asian bank:

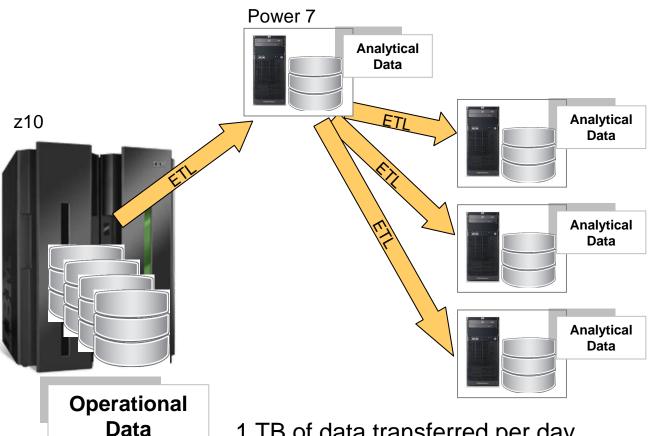
- One mainframe devoted exclusively to bulk data transfers
- ETL consuming 8% of total distributed core and 18% of total MIPS

Data Transfer is Mistakenly Perceived to be Insignificant, But Tests Show Times Add Up...



^{*} Estimates based on measurements from previous FTP test

^{**} Estimate based on work performed

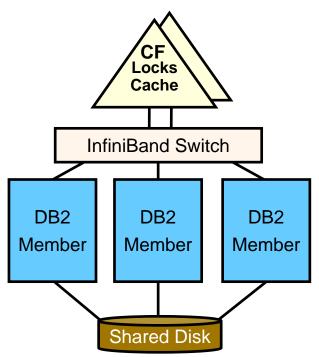

And the Cost of Data Transfer Adds Up Also!

Here is a Typical Situation...

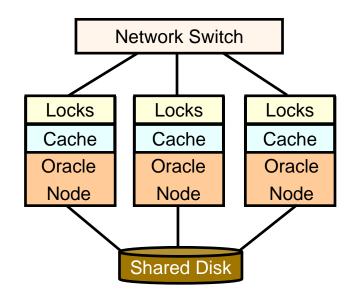
1 TB of data transferred per day– one initial copy, plus threederivative copies

Source: CPO internal study. Assume dist. send and load is same cost as receive and load.. Also, assume 2 switches and 2 T3 WAN connections.

4 yr. amortized cost summary


System z Extract and Send	\$2,861,600
Distributed Receive and Load	\$4,466,140
Network	\$430,408
System z Storage	\$49,330
Distributed Storage	\$238,720
System z Admin	\$22,207
Distributed Admin	\$143,090
System z Storage Admin	\$5,880
Distributed Storage Admin	\$51,960

Clusters Grow Database Processing Power Beyond Single Server Solutions


DB2 for z/OS

Centralized Coupling Facility Design

Efficient lock and buffer management achieve near linear scalability

Oracle RAC Distributed Design

Inefficient distributed locking and buffer management limits scaling

zEnterprise Is Optimized For Operational Analytics

Standalone
Pre-integrated
Competitor
Quarter Unit

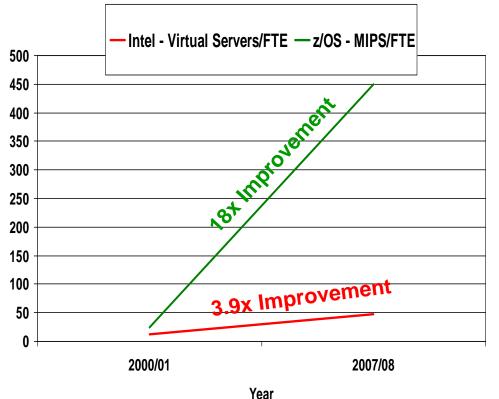
Unit Cost (3yr TCA) \$905/RpH

Workload Time	3,043 mins
Reports per Hour (RpH)	3,178
Competitor ¼ Rack (HW+SW+Storage)	\$2,876,561

30

IBM zEnterprise

Unit Cost (3yr TCA) \$71/RpH


Workload Time	294 mins
Reports per Hour (RpH)	32,891
zEC12 (1 GP + 1 zIIP, HW+SW+50TB Storage) + IDAA	\$2,337,400

10x performance at 1/10 the cost!

Source: Customer Study running 161,166 concurrent reports. Intermediate and complex reports automatically redirected to IBM DB2 Analytics Accelerator for z/OS. Results may vary based on customer workload profiles/characteristics. Note: Indicative ISAS 9700 pricing only internal to IBM, quotes to customer require a formal pricing request with configurations.

System z Labor Cost Trends Favor A Centralized Approach To Management

Large scale consolidation and structured management practices drive increases in labor productivity

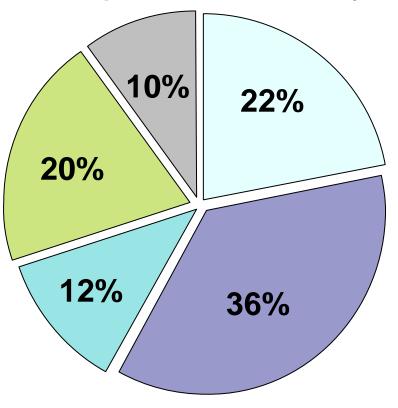
Small scale consolidation achieves lesser gains

The more workloads you consolidate and manage with structured practices...
the lower the management labor cost

Source: IBM Scorpion Studies

Accumulated Field Data For Labor Costs

- Average of quoted infrastructure labor costs
 - 30.7 servers per FTE (dedicated Intel servers)
 - 67.8 hours per year per server for hardware and software tasks
 - 52.5 Virtual Machines per FTE (virtualized Intel servers)
 - 39.6 hours per year per Virtual Machine for software tasks and amortized hardware tasks
 - Typical 8 Virtual Machines per physical server

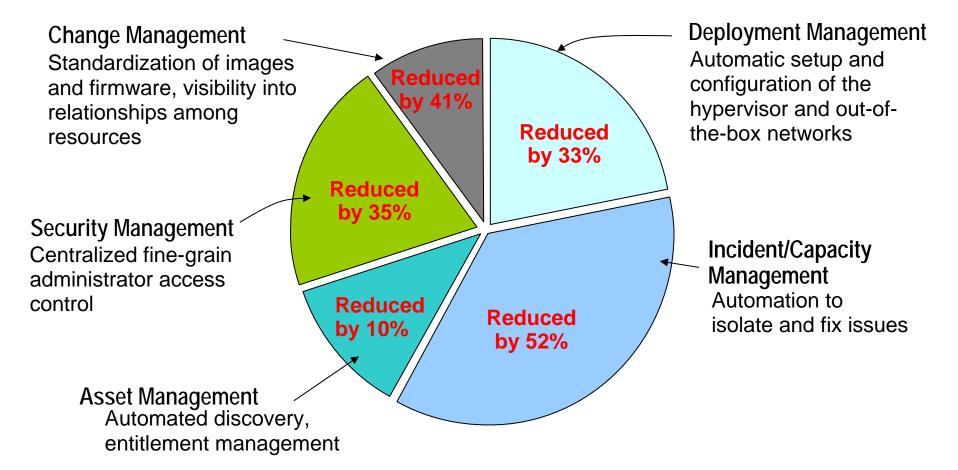

Best fit data indicates

- Hardware tasks are 32 hours per physical server per year
 - Assume this applies to Intel or Power servers
 - Internal IBM studies estimate 320 hours per IFL for zLinux scenarios
- Software tasks are 36 hours per software image per year
 - Assume this applies to all distributed and zLinux software images

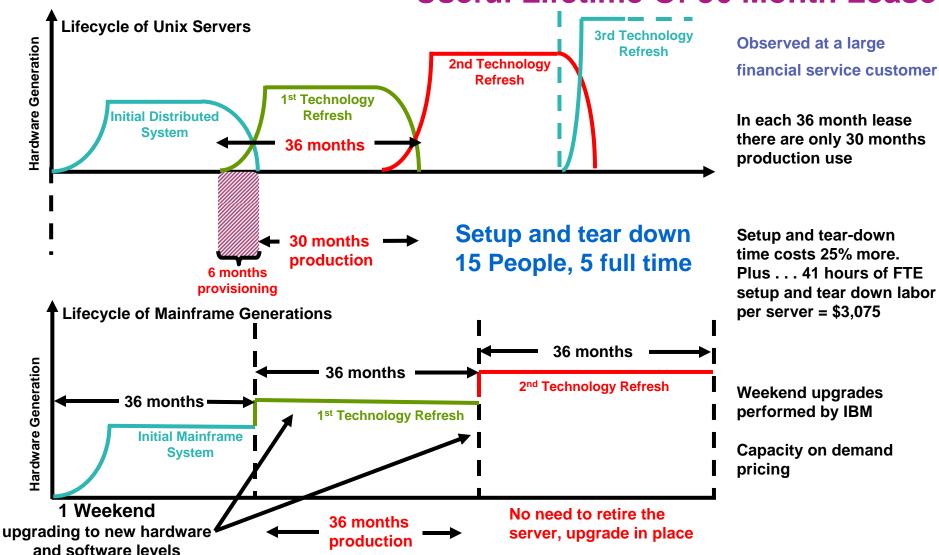
Five Key IT Processes For Infrastructure Administration

Time spent on each activity

Deployment Management


- Hardware set-up and software deployment
- Incident/Capacity Management
 - Monitor and respond automatically
- Asset Management
 - Hardware and software asset tracking
- Security Management
 - Access control
- Change Management
 - Hardware and software changes

zManager Labor Cost Reduction Benefits


Case Study

5032 total hours per year reduced by 38% to 3111 hours per year

New York Financial Services Company – Useful Lifetime Of 36 Month Lease

Fewer Parts to Assemble and Manage

Deployed on Intel
183
1592
124
19
70

Servers

Network (parts)
Power (KW)
Administrators

Storage points

Best fit on zEnterprise
1 z196 + 1 zBX (with 105 blades total)
21
53
13
1

Cost Ratios in all TCO Studies

Average Cost Ratios (z vs Distributed)

		z	Distributed	z vs distributed (%)
	5-Year TCO	\$16,351,122	\$31,916,262	51.23%
	Annual Operating Cost	\$2,998,951	\$4,405,510	68.07%
	Software	\$10,932,610	\$16,694,413	65.49%
ad	Hardware	\$3,124,013	\$3,732,322	83.70%
Offiload	System Support Labor	\$3,257,810	\$4,429,166	73.55%
δ	Electricity	\$45,435	\$206,930	21.96%
	Space	\$59,199	\$154,065	38.42%
	Migration	\$438,082	\$10,690,382	4.10%
	DR	\$854,266	\$2,683,652	31.83%
	Average MIPS	3,954		
	Total MIPS	217,452		
	5-Year TCO	\$5,896,809	\$10,371,020	56.86%
_	Annual Operating Cost	\$716,184	\$1,646,252	43.50%
Consolidation	Software	\$2,240,067	\$6,689,261	33.49%
dat	Hardware	\$2,150,371	\$1,052,925	204.23%
∺	System Support Labor	\$1,766,403	\$2,395,693	73.73%
ns	Electricity	\$129,249	\$365,793	35.33%
ပိ	Space	\$84,033	\$205,860	40.82%
	Migration	\$678,449	\$0	
	DR	\$354,735	\$411,408	86.22%
	Average MIPS	10,821		
	Total MIPS	292,165		

Understand The Cost Components

Updated Annual Operations Cost Per Small Server Image

Power, Floor Space	\$1,500
Annual Hardware Maintenance (prepaid)	\$0
Annual Connectivity Maintenance	\$240
Annual Disk Maintenance	\$203
Annual Software Support	\$10,153
Annual Enterprise Network	\$1,024
Annual Sysadmin	\$6,000
Total Annual Costs	\$19,120

Source: IBM Eagle Studies

Save Approx. \$10K By Consolidating To z/VM

Updated Annual Operations Cost Per Small Server Image

Power, Floor Space	\$38
Annual Hardware Maintenance	\$1,500
Annual Connectivity Maintenance	\$4
Annual Disk Maintenance	\$203
Annual Software Support	\$3,626
Annual Enterprise Network	\$1,024
Annual Sysadmin	\$3,000
Total Annual Costs	\$9,395

Source: IBM Eagle Studies, IBM ECM project

Realize Significant Cost Reductions With Consolidation On Linux For System z

Oracle Consolidations on Linux for System z

Distributed cores to IFLs

Major Transportation Company: Software costs reduced by 84%, TCO reduced by 50% 46:1

Middle East Bank:

Software costs reduced by 76%, TCO reduced by 64%

50:1

IBM's 'Big Green' Consolidation Project

Distributed cores to mainframes

Distributed servers running variety of workloads consolidated onto Linux for System z

Average across-the-board reduction in TCO of 70%

130 : 1

Planned ratio for continued consolidation to z196s

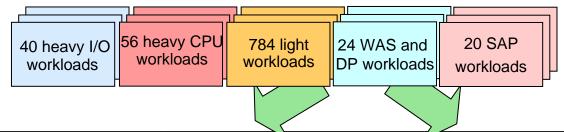
200 : 1

Projected ratio for continued consolidation to zNext

290 : 1

- Cost per workload is the key metric for the new IT economics
 - Mainframe cost per work goes down as workload increases

- Fit for purpose reduces cost of acquisition per workload
- zEnterprise's integrated management reduces cost per workload with extreme automation for simplicity



Thank you

The Savings Are Cumulative

Three Year Cost Of	Deployed on Intel	Best fit on zEnterprise	
Servers	\$46.0M	\$26.1M	
Network	\$0.45M	\$0.03M	
Power	\$0.33M	\$0.14M	
Labor	\$9.02M	\$6.09M	
Storage	\$8.58M	\$4.6M	
Total	\$64.38M	\$36.96M	
Total cost per workload	\$70K	\$40K 43%	less