
Information Management
IBM Software Group September 2012

DB2 10 for z/OS Query
Optimization Update
Terry Purcell
IBM Silicon Valley Lab

Introduction
IBM® DB2® for z/OS® customers expect improved performance in
each release, while maintaining the stability and reliability to which
they have grown accustomed from the mainframe environment. And
DB2 10 for z/OS continues this theme, with significant attention given
to improved plan management, runtime optimizations and new access
path choices.

The DB2 optimizer goal is to provide continual improvement in
performance for new and existing workloads, while maintaining
the stability and reliability of the access path choices on which our
customers rely for their traditional workloads. Optimizer theorists
and academics will point out the challenges for any query optimizer
to guarantee perfection in access path selection. But the reality is,
our DB2 for z/OS customers don’t want excuses. They need solutions
that deliver this reliability in performance without increasing cost.

So how is IBM addressing these challenges? What you will see are
the following major themes for enhancements to the DB2 10 for
z/OS Optimizer:

•	 Predicate processing improvements regardless of access path
•	 New access path choices to improve common query patterns
•	 Enhancements to plan management

Contents

1 Introduction

2 Access path management

10 Predicate processing and
runtime optimizations

19 SORT Performance
Enhancements

20 New choices for the
query optimizer

23 Improving parallelism efficiency
and removing limitations

27 Improving the inputs to the
query optimizer

29 Summary

Information Management
IBM Software Group September 2012

2

Predicate processing improvements are just that — more
efficient predicate evaluation to reduce CPU consumption.
New access path choices are provide opportunities for
improved performance for query patterns that have been
identified as important to our DB2 customers. And finally,
Plan Management provides the capability to recover a prior
static package upon access path regression and new to DB2 10
is the ability to reuse the prior access path for BIND/REBIND.

This three-pronged approach to enhancing query performance
is anticipated to provide a more positive customer experience
for the performance of your workloads than any release in
recent memory. This is also likely to serve as the model for
future DB2 releases to provide improved performance with
reduced exposure to regression risk.

Access path management
The reason customers historically embraced static SQL
over dynamic is that static is more attractive to a DBA, as
its dictionary definition includes the phrase “showing little
or no change,” while dynamic implies ever-changing.

Just because an SQL or application is dynamic in nature
does not mean that the DB2 optimizer will have a problem
in its access path selection. There is a benefit to leaving the
access path alone if it is already performing well. You have
greater control over this for static SQL. Stability is only
one consideration. The other consideration is avoiding the
overhead of BIND/PREPARE, if there is no desire to explore
a new access path.

The topic of access path management encompasses both
the reduction in dynamic PREPARE overhead by avoiding
PREPARE where possible, and also addressing the potential
instability that can occur from large scale BINDs or REBINDs.

Dynamic statement cache enhancements
In a dynamic SQL environment, minimizing the overhead
of PREPARE by exploiting the dynamic statement cache is
one goal. The dynamic statement cache allows subsequent
executions of the same SQL statement to reuse the previously
PREPAREd access path, rather than preparing the statement
again for every execution.

For effective reuse of a prior execution, the statement must
match between executions. This is why applications are
encouraged to code the SQL using parameter markers,
rather than using literal values.

Not all applications have been coded to use parameter markers,
and therefore will require a new PREPARE for each execution
unless a recent execution of the same statement has occurred
with exactly the same literal values. This is often unlikely.

Literal Replacement
DB2 10 for z/OS introduces the capability to replace the
literals with a marker so that queries with literals can now
be re-used in the cache. The literals will be replaced with
an ampersand, which is similar to, but not the same as, a
parameter marker. This is referred to as literal replacement
or literal concentration. The idea is that you concentrate all
various literal values into a single common ampersand for
each predicate.

Repeat executions of the same query can subsequently benefit
from a previously cached copy of the query in the dynamic
statement, rather than issuing a new PREPARE.

To enable literal concentration, you can perform one of
the following:

1. On the client, the PREPARE ATTRIBUTES clause can be
coded to include the ‘CONCENTRATE STATEMENTS
WITH LITERALS’ clause.

2. The JCC driver on the client side can be changed to
include the keyword “enableliteralReplacement=‘YES’”

3. Or you can set LITERALREPLACEMENT in the ODBC
initialization file in z/OS. This enables all SQL coming into
DB2 through ODBC to have literal replacement enabled.

Information Management
IBM Software Group September 2012

3

The lookup sequence for the SQL execution is to first
lookup the cache for the SQL with literals to see if a prior
copy has been cached with the same literals. If found, then
the PREPARE is avoided and the prior access path used.

If not found, then the literals are replaced with an ampersand
and the lookup is repeated.

If it is found, the matched access path is reused. If not found,
then a new PREPARE is issued and the resultant query and
access path are stored in the dynamic statement cache.

For transactional workloads with repeated, short, running
queries, there is significant benefit to avoiding the overhead
of PREPARE for each execution of the query. While replacing
a literal with an ampersand or coding a parameter marker
can result in reduced PREPARE overhead, it also means
that the optimizer cannot take advantage of the literal values
to improve its access path decision using FREQVAL or
HISTOGRAM statistics.

For example, if statistics show that STATUS=‘Y’ is 99 percent
of the data, and STATUS=‘N’ is 1 percent, then a query with
WHERE STATUS=‘N’ will recognize that an index may be a
good choice for the access path.

However, WHERE STATUS=‘Y’ would be best served with
a tablespace scan. Replacing the literal with an ampersand
means WHERE STATUS=& cannot take advantage of the
frequency statistics.

Provided an efficient access path is chosen for transactional
queries, reducing PREPARE overhead should be the goal.
Therefore, this is a tradeoff that most DBAs are willing to
accept, since PREPARE overhead can be easily observed.

Parameter markers will still provide better performance than
the literal replacement technique due to literal replacement
potentially requiring an additional cache lookup. There is also
additional storage needed for the original predicate attributes
such as datatype and length with literal replacement.

Regardless of whether coding parameter markers may be
more efficient than literal replacement, the key point is that
this enhancement is focused on applications that cannot or
did not use parameter markers. Therefore, for transactional
workloads, the literal replacement technique is likely to be
more efficient than issuing a PREPARE — assuming no access
path regressions result from hiding the literal values from the
optimizer. Transactional workloads generally comprise many
repeated executions of the same query.

In reporting, ad hoc, or query workloads, it is preferable to
allow the optimizer to see the literal values for improved
access path selection. For those queries, the PREPARE
overhead is a small percentage of the overall query cost.
Thus, the focus is on providing the optimizer with sufficient
information to determine an efficient access path choice
rather than short-cutting PREPARE. In general, these
workloads do not repeat executions of the same query
patterns, so there is minimal benefit to avoiding PREPARE.

Workloads that need both reduced PREPARE overhead and
improved information for the optimizer may consider using
REOPT(ONCE) BIND option in conjunction with literal
replacement. The optimizer will use the set of literals from the
first execution of the query for its access path determination.
This is a good choice if the query consistently looks for the
same values/ranges for the skewed or range predicates.

However, it may not result in the best performance if,
for example, the query flips from STATUS=‘Y’ to ‘N’,
because the access path determination will be based upon
the first execution.

The target for this enhancement is applications that cannot
or have not used parameter markers. Therefore, if a query
currently contains a mixture of parameter markers and
literal values, then this query will not be eligible for literal
replacement — because the application can obviously tolerate
parameter markers.

Information Management
IBM Software Group September 2012

4

The assumption is that there is an intention to code parameter
markers for predicates that change frequently but whose change
will not impact the access path, and literals for those for which
optimizer would benefit from seeing the literal.

An example would be: WHERE ACCOUNT_NUMBER = ?
AND STATUS = ‘Y’. There may be millions of distinct
ACCOUNT_NUMBERs, and each execution of the query
uses a different value, which means the predicate is a good
candidate for a parameter marker. The STATUS=’Y’ predicate
may have two possible values, and is likely to be skewed.
Therefore, this is a good candidate for a literal value. A query
coded this way would not be a candidate for literal replacement
because of the mix of parameter markers and literals.

Limitations exist for literal replacements, including lack of
support for LIKE predicates. Also, the replaced SQL text
with ampersands is not considered valid external syntax.
It is an internal representation only. Therefore, externalized
copies of the SQL with literals replaced cannot be fed into
EXPLAIN or used for statement-level optimization hints
or options (which are new to DB2 10).

Access plan stability or plan management.
DB2 9 for z/OS delivered plan management that supported
a backup and recovery capability for the access plans of
statically bound packages. DB2 10 provides some incremental
enhance-ments to the original plan management usability
while also introducing some quantum leaps forward in
reducing impact of access path regression for static SQL.

It should be noted that one of the most common comments
or questions related to the DB2 9 enhancement is regarding
the name — plan management. Since it only applies to
static packages. The reason for this name is that, in query
optimization, “plan” refers to the access plan or access path.
Optimizer development therefore does not use the term
“plan management” to refer to a plan or package, but the
access plan chosen by the optimizer.

Given that DB2 9 has been generally available for more
than five years, the retort to this question about the name
plan management has improved. To this date, there is no
good answer as to why there are no questions about the
PLAN_TABLE.

The success of plan management in DB2 9, has resulted in the
first enhancement to simply change the zparm default from
OFF in DB2 9, to PLANMGMNT=ENABLED in DB2 10.
We want you to exploit this backup and recovery capability as
an insurance policy for your access paths. Query performance
has become mission critical for many of our customers, who
cannot tolerate performance regressions either because of
service level agreements, or because of the high utilization
rates for their mainframe applications.

The zparm PLANMGMT (and associated BIND option)
only control the capability for backup/recovery (REBIND
SWITCH) of static packages. The zparm does not need to
be enabled to support the new DB2 10 plan management
and EXPLAIN functions. However, I will repeat the
recommendation to enable PLANMGMT as per the
DB2 10 default.

A new catalog table SYSIBM.SYSPACKCOPY has
been added to hold the metadata for the previous and
original copies which was previously only available in the
SYSPACKAGE catalog table.

To see information in DB2 9 for the previous/original copies,
the user had to REBIND(SWITCH) that copy to become
the current and thus populate SYSPACKAGE. This was
inconvenient if the requirement was only to view this detail
for the saved copies. SYSPACKCOPY is populated during
the ENFM process in DB2 10.

Space usage in SPT01 was one concern for DB2 9 customers
due to the 64 GB dataset limit for SPT01. DB2 V8 and V9
supported compression of SPT01. Several solutions exist to
reduce SPT01 space consumption and avoid the 64 GB limit
in DB2 10.

Information Management
IBM Software Group September 2012

5

First, SPT01 becomes a PBG (partition by growth) tablespace,
and with APAR PM27811, the use of inline LOBs and thus
support for the compression of SPT01.

An additional enhancement is the APRETAINDUP REBIND
(and REBIND TRIGGER) package option. This option
specifies whether an access plan is saved as either an original
or previous if the newly generated plan is equivalent. The
default is YES — retain the duplicates. Arguably using
APRETAINDUP(NO) would result in space savings when
using plan management basic or extended (DB2 10 default),
because duplicate access plans are not saved.

When using APRETAINDUP(NO) in DB2 10, the existing
(current) plan that is being replaced must have been bound in
DB2 9 or 10 for the access plan comparison to occur.

That concludes the incremental enhancements to the backup
and recovery capability of plan management in DB2 10.

DB2 10 takes Plan Management to the next level
The backup and recovery capability of the DB2 9 plan
management was a very welcome addition to REBIND.
However, DB2 10 brings significantly more to reduce the
risk of access path regression across REBIND. From DB2 9,
a new BIND/REBIND resulted in a compressed copy of the
PLAN_TABLE rows for each SQL in the package to be saved
in the directory/SPT01. The internal representation of the
PLAN_TABLE, which DB2 development refers to as the
Explain Data Block (EDB), is used as the basis for numerous
enhancements to Plan Management — which will be outlined
in the upcoming section. What this means however, is that
many of these enhancements are only available for BINDs/
REBINDs that have occurred in DB2 9 or later.

Many customers associate the recommendation to REBIND
as a way to expose their queries to the improvements in the
optimizer. But there are numerous situations where a
customer may not be ready to expose themselves to access
path changes, but REBIND is recommended or forced.

Across a DB2 release, REBIND is recommended to take
advantage of the new release runtime structures. While
prior release runtime structures are tolerated in the new
release (This is true for runtime structures from DB2 V6
and later in DB2 10.), optimizations such as SPROCs are
disabled. However, during a migration, it is reasonable to
assume that system stability is desired from the migration
before exposing the application to access path changes,
due to concerns about regression.

There is another, often less discussed reason for REBINDing
in each new release. And that is that older runtime structures
are at greater risk of instability from either an abend or incorrect
output. DB2 tolerates prior release runtime structures from V6
onwards in DB2 10, but there is still the question as to whether
DB2 was able to test your V6 or V7 runtime structure in DB2
10 testing. Considering the number of possible access paths,
and the specific maintenance level when the package was
bound, it is difficult to imagine that every combination received
test coverage. The bottom line is that it is safer to be more
current than two or more releases prior with your REBINDs.

Given that DB2 development encourages a REBIND at least
once per release, it is important that we also address the main
reason why customers avoid REBIND — which is generally
because of the risk of regression.

For this reason, a new parameter has been added for BIND
and REBIND that provides the capability to control when
a new access path is considered for BIND/REBIND.
APREUSE (Access Path Reuse) will attempt to BIND/
REBIND using the prior access path as an internal hint to
drive the new access path choice. The only supported options
are NO/NONE (default and standard BIND/REBIND
behavior) or ERROR — whereby the BIND/REBIND will
attempt to reuse the prior access path, and if the prior access
path cannot be reused, then an error is issued and the BIND/
REBIND fails. The level of granularity is on the package,
which means a failure of any single SQL to reuse the prior
access path, then all SQLs in the package will fail in their reuse.

Information Management
IBM Software Group September 2012

6

Another way of looking at APREUSE is that DB2 10 gives you
greater control over when you want to expose your application
to new access path choices. Rather than being forced to open
up new access path choices when REBIND is recommended
across migration, or APAR ++HOLD information recommends
REBIND, or when a schema change invalidates the package,
APREUSE allows you to differentiate REBIND (and BIND)
when you do and do not want to expose your application to
new access path choices. This is a significant leap forward in
providing further stabilization and avoidance of regression
for static SQL.

A second additional BIND/REBIND parameter choice
— APCOMPARE performs an access path comparison
between the prior access path and the newly generated
access path. The options are NO/NONE (default and no
comparison performed), WARN (warning messages are
written to the PLAN_TABLE.REMARKS column to
identify access path differences) or ERROR (any access
path difference will result in failure of the BIND/REBIND).

Arguably, APCOMPARE(WARN) should be the default for
customers performing a BIND or REBIND of their static
packages, since this simply externalizes meaningful infor-
mation to the PLAN_TABLE about changes in the access
path. APCOMPARE(ERROR) may be less useful, as it allows
a BIND/REBIND to seek a new access path choice, but due
to the ERROR option, will fail the BIND/REBIND if a new
access path is chosen.

To clarify both APREUSE and APCOMPARE, APREUSE
asks BIND/REBIND to attempt to reuse the prior access
path. APCOMPARE, without APREUSE, will allow a new
access path choice (which is the same as BIND/REBIND
prior to APREUSE), but issue PLAN_TABLE messages to
identify changes in the access path.

Note: APREUSE or APCOMPARE are only valid for packages
bound in DB2 V9 or later. Any use of APREUSE/APCOMPARE
on a pre-DB2 9 package will be unable to internally use the
EDB for reuse or comparison. However, this will not fail the
package which may be misleading to some users.

EXPLAIN enhancements
The theme of plan management is not complete without
discussing the externalization of the access path in the
PLAN_TABLE and other extended explain tables.

It has been a long-standing requirement from our customers
to be able to explain the existing access path for a previously
bound package. This is necessary for cases where the prior
BIND/REBIND used EXPLAIN(NO), or when the PLAN_
TABLE rows are no longer in existence. Issuing a new
EXPLAIN will potentially produce a new access path and
thus not represent what is currently executing.

Thus, the requirement is to “tell me what I have.” And the
DB2 solution will be discussed next, and also a solution for
the requirement to “tell me what I would get if I performed
a BIND/REBIND today.”

DB2 10 adds a new option to EXPLAIN — EXPLAIN
PACKAGE, for the requirement to “tell me what I have.”
This allows extraction of the existing access path from the
package explain data block EDB). The output from
EXPLAIN PACKAGE is inserted into the PLAN_TABLE.
No other extended explain tables are populated by EXPLAIN
PACKAGE. And it is possible to specify the COPY as the
current, previous or original to extract — as can be seen in
the syntax diagram in Figure 1.

Figure 1. EXPLAIN PACKAGE syntax diagram

Information Management
IBM Software Group September 2012

7

In this scenario, the term “EXPLAIN” is really a misnomer.
This is actually an “EXTRACT,” as an EXPLAIN implied a
new access path choice. However, instead of introducing a
new EXTRACT keyword, DB2 has piggybacked on the
EXPLAIN statement for this enhancement.

As with many of the DB2 10 plan management enhancements
that rely on the internal representation of the access path
from the EDB, this enhancement is only supported if the
package is from DB2 9 or later.

If you want to ask the question, “What would the new access
path be if I performed a BIND/REBIND today?” Then
there is a new EXPLAIN(ONLY) option for BIND/
REBIND.EXPLAIN has always had options YES/NO,
and the addition of “ONLY” allows this “what if?” question
to be easily answered without impacting the existing package.
Customers may have accomplished this previously by
performing a BIND to a dummy collection or manually
explaining the SQL outside the package.

Although it should be noted that extracting the SQL outside
of the package and issuing an EXPLAIN may not always be
equivalent — as this would become a dynamic EXPLAIN rather
than a static explain. A dynamic explain will not consider
indexes in a restricted state, whereas a static EXPLAIN will.
Also, datatype or length differences between the host variable
and predicate column are masked if a dynamic EXPLAIN is
performed — and despite the fact that DB2 V8 improved
indexability for mismatched datatype/length predicates,
there still exist some behavioral differences.

For EXPLAIN(ONLY), the BIND/REBIND is performed,
and the chosen access path is written out to the PLAN_
TABLE, and finally the BIND/REBIND is rolled back. The
PLAN_TABLE entries remain and are flagged with “Y” in
the new BIND_EXPLAIN_ONLY column so that customers
can determine that these PLAN_TABLE rows — despite the
fact that they are associated with a package, came from a
BIND/REBIND with EXPLAIN(ONLY) and may not
correlate to any current access path in the catalog. Locking/
concurrency requirements are the same with EXPLAIN(ONLY)
as a standard BIND/REBIND.

An additional parameter is available for BIND/REBIND
to perform a syntax check also without creating the actual
package. This option, SQLERROR(CHECK), can be
used independently of EXPLAIN(ONLY). This
SQLERROR(CHECK) BIND/REBIND parameter was
specifically targeted to those customers who may have their
development and test systems on another DB2 platform,
and their only opportunity to validate the package is in
their production DB2 for z/OS system.

With all of these new additions to EXPLAIN, it becomes a
challenge for users to understand the usage scenario for each
EXPLAIN option. Therefore, it is important to summarize
the various EXPLAIN usages to help clarify their function.

What is the difference of each EXPLAIN usage?
Options in bold red are new to DB2 10.

•	 BIND/REBIND with EXPLAIN(YES)
 – Generates a new access path, populates
PLAN_TABLE and creates new package

•	 BIND/REBIND with EXPLAIN(ONLY)
 – Generates a new access path, populates PLAN_
TABLE, but does NOT create a new package

•	 EXPLAIN PLAN (issued in SPUFI/QMF/DSNTEP2 etc)
 – Generates a new access path and populates
PLAN_TABLE

•	 EXPLAIN PACKAGE
 – Does not generate new access path. Extracts
existing access path from package and populates
PLAN_TABLE.

•	 EXPLAIN STMTCACHE STMTID/STMTOKEN
 – Does not generate new access path. Extracts
existing and populates PLAN_TABLE.

Figure 2. EXPLAIN usage scenarios

Information Management
IBM Software Group September 2012

8

As outlined in Figure 2, the following summarizes the key
usages of EXPLAIN:
BIND/REBIND with EXPLAIN(YES) is an existing choice,
and performs the following:

•	 Generates a new access path (or attempts to reuse prior
if APREUSE(ERROR)

•	 Populates the PLAN_TABLE
•	 Creates a new copy of the package

BIND/REBIND with EXPLAIN(ONLY) is a new choice,
and performs the following:

•	 Generates a new access path (or attempts to reuse prior
if APREUSE(ERROR)

•	 Populates the PLAN_TABLE
•	 Does NOT create a new copy of the package

EXPLAIN PLAN is an existing choice executed from
SPUFI/QMF/DSNTEP2, etc., and performs the following:

•	 Generates a new access path
•	 Populates the PLAN_TABLE

EXPLAIN PACKAGE is a new choice, and performs
the following:

•	 Does NOT generate a new access path. Extracts the
existing access path from the package

•	 Populates the PLAN_TABLE

EXPLAIN STMTCACHE STMTID/STMTOKEN is
an existing choice, and performs the following:

•	 Does NOT generate a new access path. Extracts the
existing access path.

•	 Populates the PLAN_TABLE

Instance-based statement hints
Optimization Hints (opthints), first delivered in DB2 V6,
have been embraced by some customers as a way to override
a problem access path choice or stabilize queries to avoid
access path change. It is also fair to say that opthints have
been avoided by many customers due to their cumbersome
nature or due to the challenges for customers to micromanage
access paths. The DB2 10 plan management enhancements
may reduce the need for hints used to stabilize an access path.

In addition to the plan management enhancements, DB2 10
also improves the infrastructure and usability of opthints, so
that customers continue to have a way to override an inefficient
access path choice if other more suitable solutions aren’t viable.

The first enhancement related to opthints introduces a catalog
infrastructure to support a more general form of hints. This is
referred to as the access path repository, which holds important
query metadata (such as query text), query access paths and
other information, such as optimization options.

The repository has three new catalog tables:

•	 SYSIBM.SYSQUERY is the central table of the access
path repository. This table holds one row for each static
or dynamic SQL query that is to exploit user-specified
hints or options.

•	 SYSIBM.SYSQUERYPLAN holds the plan hint information
for the queries in the SYSIBM.SYSQUERY table.

•	 SYSIBM.SYSQUERYOPTS SYSIBM.SYSQUERYOPTS
holds the option information (if options are specified) for
each query in SYSIBM.SYSQUERY.

Information Management
IBM Software Group September 2012

9

The original opthints delivered in DB2 V6 have often
presented challenges for customers to maintain, because they
are tied to a query number. This means for a static SQL, if the
application programmer adds or removes lines of code, and the
precompiler will generate a new query number for each SQL
statement occurring after the code change. DB2 V6 also
added the QUERYNO clause that could be added to an SQL
statement. This would ensure the same query number is used
across application changes. For dynamic SQL, this was the
required way to match a statement to a hint. Either for static
or dynamic however, altering the SQL is often impractical
and thus was often not adopted as a solution.

DB2 10 adds an alternative way to associate a statement and
a hint — using the query text. Similar to the concept of a
dynamic statement cache text match, the SQL text is tied to
the hint such that a static BIND or dynamic PREPARE will
attempt to lookup the statement text to find a matching hint.
A hint can therefore be created irrespective of its use for
dynamic or static SQL — and thus the hint can be given a
global scope or package-level scope.

The hints are stored in the access path repository. The
PLAN_TABLE isn’t going away however. Instead, there
is now an alternate method for looking up the hint which
makes it simpler for dynamic SQL and more stable for
application changes in static SQL.

While tying the hint to the statement text means that changes
in query numbers will not affect the hint, changes to the SQL
statement will result in the match failing.

To take advantage of the new hints process, the following
steps should be followed:

•	 Enable the OPTHINTS zparm
•	 Populate the user table DSN_USERQUERY_TABLE

with the query text
 – Insert from SYSPACKSTMT (static) or DSN_
STATEMENT_CACHE_TABLE (dynamic) to
ensure that the correct DB2 representation of the
SQL text is used.

•	 Populate PLAN_TABLE with the corresponding hints
 – Note: Choose any arbitrary QUERYNO. QUERYNO
must match between PLAN_TABLE
and DSN_USERQUERY_TABLE. Duplicate query
numbers in the PLAN_TABLE may result in
difficulty matching the PLAN_TABLE and DSN_
USERQUERY_TABLE rows.

•	 Execute the new command BIND QUERY to integrate
the hint into the repository.

•	 The next package BIND/REBIND or dynamic PREPARE
can pickup hint.

To remove the query from the repository, use the FREE
QUERY command.

Instance-based (or statement-level) options
The same infrastructure that allows an access path hint to
be matched to the statement text is also extended to allow
statement level scope for a small number of BIND parameters
and zparms, namely:

•	 REOPT
•	 STARJOIN enablement and number of tables

qualified for STARJOIN
•	 Parallelism enablement and number of degrees

This has been another long-standing customer requirement
to provide improved granularity for the REOPT BIND
option. Once a query is identified that would benefit from
REOPT(ALWAYS), it is common that the customer does
not want the overhead of REOPT for all other statements
in the package, but only the identified query. The previous
recommendation has been to separate out the targeted
query into a separate package which is often impractical.

Information Management
IBM Software Group September 2012

10

The steps to implement these statement level options
are similar to that for statement level hints — minus the
PLAN_TABLE input:

•	 Enable the OPTHINTS zparm
•	 Populate the user table DSN_USERQUERY_TABLE

with the query text
 – Insert from SYSPACKSTMT (static) or DSN_
STATEMENT_CACHE_TABLE (dynamic) to
ensure that the correct DB2 representation of the
SQL text is used.

 – Note: Choose any arbitrary QUERYNO that does
NOT currently exist in the PLAN_TABLE. The
reason is that BIND QUERY will first look to find
the PLAN_TABLE rows, and if not found, will look
at the options in DSN_USERQUERY_TABLE.

•	 Execute the new command BIND QUERY to integrate
the statement level options into the repository.

•	 The next package BIND/REBIND or dynamic PREPARE
can pickup the new options.

Hints and options are mutually exclusive. Therefore at this
stage, it is only possible to have either a hint or options for a
given statement in SYSQUERY.

Predicate processing and
runtime optimizations
The most welcome performance improvements for customers
are those that require minimal action or intervention. And
the performance enhancements in DB2 10 for z/OS include
predicate processing improvements and runtime optimizations
that can be exploited within existing access path choices, and
also those that offer new choices to the DB2 for z/OS optimizer.

It is well understood by DB2 development that customers
are continually pushed to do more with less — whether that
is individual DBAs having to manage more DB2 subsystems,
or the systems themselves increasing data volumes and
throughput without a corresponding increase in available
capacity. Thus, improving performance is among the highest
priorities for DB2 development.

Improvements to predicate application for IN and
OR predicates
DB2 10 delivers several enhancements to IN-list and
OR predicate processing.

The first enhancement involves an improvement to the
execution performance of long IN-lists and complex AND/
OR predicates that are chosen as index screening or stage 1.
The improvement comes from DB2 being able to exit the
predicate application process as soon as a true or false
condition is triggered that allows further processing to be
avoided. While DB2 has always been able to stop processing
once the row is qualified or disqualified, DB2 10 delivers
additional optimizations to traversing the predicate tree.

Unfortunately, there is no way to identify a query as a
candidate for this optimization. Which raises the question,
“Why is there any detail at all here about this enhancement?”
The answer is because of customer questions as to why they
have seen some queries achieve CPU reductions without an
access path change that would warrant the improvement. And
one possible explanation is the aforementioned enhancement.

The next enhancement relates to IN-list predicates that are
candidates for index matching. When IN-list predicates are
filtering, then matching index access is often desirable using
these IN-list predicates. Prior to DB2 10, DB2 could match
on the first IN-list (based upon the index key column order)
and continue matching on available predicates until a second
IN-list was encountered.

Basically, DB2 could only match on one IN-list and any
subsequent IN-list predicates would be applied as index
screening. In situations where the second IN-list was more
filtering, then the performance may not be optimal.

Similarly, when choosing matching IN-list access, DB2 would
not choose list prefetch, which is preferred if the index has a
poor cluster ratio. Instead, DB2 may choose to match on one
less column (without the IN-list) so that list prefetch could
be exploited. Thus DB2 would trade improved data I/O
performance for less index matching, and instead apply the
IN-list as screening.

Information Management
IBM Software Group September 2012

11

DB2 10 addresses these issues with IN-list predicates by
allowing the optimizer to consider converting the IN-list to
a table such that the IN-list processing performs more like a
join. This allows matching on multiple IN-lists and also list
prefetch to be supported.

However, this IN-list table will only be chosen if matching
on multiple IN-lists is chosen, or list prefetch is chosen with
matching IN-list access. Otherwise, the previous type of
IN-list matching is considered (ACCESSTYPE=‘N’).

In the EXPLAIN output in the PLAN_TABLE, this access to
the in-memory table is associated with a new table type ‘I’ and
new access type ‘IN’. Figure 3 shows the PLAN_TABLE
output for IN-list table access with list prefetch.

To put that into a query predicate perspective, if A=B and
A=1, then B also =1. DB2 has supported transitive closure for
=, <, <=, >, >= and BETWEEN for many releases, but DB2 10
adds support for IN-lists.

Figure 4 demonstrates an example where IN-list predicate
transitive closure (PTC) is now possible.

LTSELECTT1_IX_C11IT1121

ISELECT0INDSNIN001(01)011

PREFETCHTBTYPEQBTYPEACNAMEMCACTYPETNAMEMETHODPLANNOQBNO

I

SELECT *
 FROM T1
 WHERE T1.C1 IN (?, ?, ?);

Figure 3. IN-list table example with list prefetch.

It should be noted that list prefetch will execute once per
IN-list element. It is not a consolidated list prefetch access
for all elements. Therefore, if the IN-list elements are each
of a high cardinality, then there may be no benefit to choosing
list prefetch.

Another enhancement to IN-list predicate processing is
transitive closure support for IN-lists. The National Institute
of Standards and Technology defines Transitive Closure as:
“An extension or superset of a binary relation such that
whenever (a,b) and (b,c) are in the extension, (a,c) is also
in the extension.”

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
 AND T1.C1 IN (?, ?, ?)
 AND T2.C1 IN (?, ?, ?) Optimizer can generate
 this predicate via PTC

Figure 4. IN-list Predicate Transitive Closure example

Without PTC, DB2 is likely to choose T1 as the leading table
in the join sequence because there is only filtering on T1.

By generating an additional predicate AND T2.C1 IN (?,?,?),
DB2 may consider the alternate join sequence with T2 as the
first (outer) table in the join sequence. This gives DB2 greater
opportunity to choose the most efficient access path,
regardless of how the query is coded.

OR predicate processing improvements—Online
cursor scrolling
We have already discussed some enhancements to predicate
processing for IN, and OR predicates, and the improved
index matching capabilities for IN-lists. In prior releases
of DB2, there has always been a link between OR and IN
predicates, with DB2 rewriting simple OR conditions against
the same column to become IN-lists. A simple example is;
WHERE C1 = 1 or C1 = 2, which is rewritten by DB2 to
become WHERE C1 IN (1,2). This hasn’t changed in DB2 10.

Information Management
IBM Software Group September 2012

12

The DB2 10 enhancements target more complex OR
predicates that are not candidates for rewrite to IN-lists. To
improve processing for OR predicates, DB2 introduces a new
access type — Range-list access. Range-list access refers to a
“list of ranges” separated by OR. This is similar to IN-list
access in its processing, but without representing the more
complex OR conditions as a simplified IN-list predicate.

The two original targets for range-list access are:

•	 Scrolling/paging SQL – common in CICS and other online
web applications whereby the application wishes to fetch
the next ‘n’ rows to fill a screen. This is not to be confused
with scrollable cursors which require the application to
keep the transaction open for scrolling forward/backward
through the result.

•	 Complex OR predicates against the same columns – whereby
the OR predicates are not simple equal predicates that
DB2 would convert to an IN, but may include range
predicates and/or compound predicates within each OR.
The construct is common in SAP and other applications
that write predicates in disjunctive normal form.

For both query patterns, the following conditions must be
true to support range-list access:

•	 The OR predicate must refer to a single table.
•	 Each OR predicate can be mapped to the same index.
•	 Each OR has at least one matching predicate, given the

chosen index.

In this first section, we will discuss the (online) scrolling query
pattern. Consider the example in Figure 5:

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')
 OR (LASTNAME>'JONES')
ORDER BY LASTNAME, FIRSTNAME;

Figure 5. Cursor scrolling example as a range-list candidate

The above range-list example demonstrates scrolling through
the phone book with current cursor position at “JONES,
WENDY”. To scroll forward from this position, the user
may code the WHERE clause predicates as shown in Figure
5. The first OR condition (LASTNAME=’JONES’ AND
FIRSTNAME>’WENDY’) requests the remaining “JONES”
after the current position. And the second OR condition
(LASTNAME>’JONES’) requests the rows for the
subsequent last names after “JONES”.

The new access method can convert this OR predicate
into a range-list with two ranges (one range for each OR).
Therefore, there will be at most two index probes given the
PHONEBOOK index on LASTNAME, FIRSTNAME.
The first probe is for LASTNAME=’JONES’ and
FIRSTNAME>’WENDY’. And once FETCHing exhausts
all qualified rows from the first probe, the second probe will
be issued for LASTNAME > ‘JONES’.

These rows appear in the index in ascending order which
satisfies the ORDER BY and thus there is no requirement
to sort the rows.

Information Management
IBM Software Group September 2012

13

Prior to DB2 10, matching index access for this example
required multi-index access, list prefetch and a final sort to
satisfy the ORDER BY. For this reason, it was common for
users to code a redundant predicate “AND LASTNAME >=
‘JONES’ “ to support single matching index access. This is
shown in Figure 6.

DB2 is not more aggressive when choosing range-list, since
DB2 does not know whether the same pattern is for an
online or batch application. As previously mentioned, the
OPTIMIZE FOR or FETCH FIRST clauses are the best
way to indicate to DB2 that this is an online query that is
requesting a subset of the qualified rows.

OR predicate processing improvements—other
range-list usages
Range-list does not only apply to the scrolling type
SQL — but any complex OR conditions that can map
to a single index.

WHERE ((LASTNAME='JONES' AND FIRSTNAME>'WENDY')
 OR (LASTNAME>'JONES'))
AND (LASTNAME >= 'JONES')
ORDER BY LASTNAME, FIRSTNAME;

Figure 6. Scrolling example with redundant predicate for matching
index access.

In Figure 6, with the added (redundant) predicate, “AND
(LASTNAME >= ‘JONES’) DB2 was able to choose single
matching index access. Although prior to DB2 10, the best
that DB2 could do was matching on one column using this
redundant predicate. And the original predicates were applied
as index screening — which means DB2 would position in the
index as matching on LASTNAME=’JONES’, and then have
to scan through all FIRSTNAMES from ‘A’ to ‘W’ to reach
‘FIRSTNAME>’WENDY’ using the pre-DB2 10 approach.
With range-list, DB2 can use both predicates on LASTNAME
and FIRSTNAME to start the initial position in the index at
JONES, WENDY.

In DB2 10, the optimizer may choose range-list or any
existing access method including multi-index access. It is
important to note that the optimizer will make a cost-based
decision. One factor that is often unknown to the optimizer
is whether the application will FETCH 10 or 20 rows and
close the cursor — unless the query has OPTIMIZE FOR
‘n’ ROWS coded (or FETCH FIRST n ROWS ONLY).

Therefore, it is not guaranteed that range-list will be chosen
for this query pattern. There is a second usage case which
also fits this scrolling type pattern, but is unrelated to online
applications. That is batch restart logic. Range-list access is
targeted more towards the online scrolling pattern, and not
towards the batch restart usage, which is one reason why

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY')
 OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

Figure 7. Non-scrolling range-list candidate

In Figure 7, range-list can be chosen with each OR leg
having two matching columns on the index on LASTNAME,
FIRSTNAME. Range-list is also applicable if the index was
on FIRSTNAME, LASTNAME, or if the index was only
on LASTNAME, or only on FIRSTNAME. As previously
mentioned, one requirement for consideration of range-list
access is that each OR leg must support matching index access
for the same index.

Prior to DB2 10, the optimizer could only choose multi-index
access for matching index access due to the OR conditions.
And in DB2 10, the optimizer can choose either range-list or
multi-index access based upon cost. Since range-list does not
support list prefetch, but multi-index access requires list
prefetch, it is not unexpected to see range-list chosen for
this type of SQL with a high cluster ratio index or if very
few rows qualify, and multi-index access chosen for lower
cluster ratio indexes.

Information Management
IBM Software Group September 2012

14

Range-list EXPLAIN representation
The PLAN_TABLE representation for range-list includes
a new access type — ACCESSTYPE=‘NR’. And one row
will appear for each OR condition, since each OR may
have a different number of MATCHCOLS. And column
MIXOPSEQ (multi-index operation sequence) provides
an ordering of the range-list rows.

Figure 8 borrows the range-list example from Figure 5
and reverses the order of the WHERE clause predicates to
highlight an interesting nuance of the EXPLAIN output.
The simplified EXPLAIN output shows the single predicate
(LASTNAME > ‘JONES’) with MATCHCOLS=1 listed first
in the PLAN_TABLE, followed by the MATCHCOLS=2
predicates. This PLAN_TABLE output matches the coding
sequence, and in this example, does not represent the order
that the values associated with those predicates would appear
in the index.

The DB2 implementation of range-list will re-order the OR
conditions at runtime based upon the literal values. Thus, it is
not possible for BIND/PREPARE to know the order in which
these will be executed.

Customers might ask the question, “But for the ‘screen-
scrolling SQL’ — such as the example in Figure 8, you
know the order of the execution even with host variables,
as it is most MATCHCOLS to least MATCHCOLS. Why
don’t you order the PLAN_TABLE rows to reflect this?”

First, this takes a very narrow view of the range-list enhance-
ment. As outlined, the enhancement covers more than the
screen-scrolling scenario. But more importantly, because
DB2 implemented the ordering of execution of the OR
predicates at runtime (execution time), BIND/PREPARE
is not aware of the ordering. And enhancing DB2 to also
provide recognition of the likely order is of minimal value.

The reason is because it is not a guarantee without knowing
the literal values — and most SQLs use parameter markers
or host variables. DB2 will always order the OR predicates
based upon the literals values used to support moving through
the index in the direction to support ORDER BY/GROUP
BY ordering, or in ascending sequence if no particular order
is required.

Therefore, for effective access path analysis, all that is important
to understand is that ACCESSTYPE=‘NR’ is chosen AND
how many MATCHCOLS for each leg. The order in the
PLAN_TABLE will be the sequence it has coded in the SQL.
This allows the customer to match the PLAN_TABLE to the
SQL. The actual order of execution will be dependent on the
literal values used at runtime.

WHERE (LASTNAME='JONES')
OR (LASTNAME='JONES') AND FIRSTNAME='WENDY')
ORDER BY LASTNAME, FIRSTNAME;

QBlockNo PlanNo Accessname Access_Type Matchcols Mixopseq

1 1 1X1 NR 1 1

New access type (NR = IN-List Range) Coding Seq

Figure 8. Range-list EXPLAIN representation.

Range-list, if chosen, will access the index in the sequence
that allows a sort to be avoided (if ORDER BY or GROUP
BY is coded). The PLAN_TABLE is populated at BIND/
PREPARE, and for queries with host variables or parameter
markers, it is not known what literal values will be used in
the query.

Information Management
IBM Software Group September 2012

15

OUTER JOIN Merge and Subquery improvements
In general, materialization is more expensive for the execution
of an SQL statement compared with merging a view or table
expression. Therefore, in each release, DB2 continues to
extend cases where MERGE occurs instead of materialization,
and DB2 10 is no exception.

When there are CASE, VALUE, COALESCE, NULLIF
or IFNULL expressions on the preserved side of an OUTER
JOIN, DB2 will be enhanced to merge the view/table
expression. The merge is blocked if it would result in a stage 2
predicate, such as a CASE expression in the ON clause.

Thus, the SQL in Figure 9 will merge the ‘A’ table
expression in DB2 10, while table expression ‘B’ will
continue to materialize. Prior to DB2 10, both table
expressions will materialize.

Figure 10 provides a SQL example of a subquery on the
NULL-supplied table of a LEFT OUTER JOIN. In DB2 10,
this table expression (or view) can be merged to the ON clause.

These views and table expressions must only contain a
reference to a single table. DB2 will do so by converting the
subquery predicate to a “before join” predicate — in the ON
clause of a NULL-supplied table. When the table in the table
expression is very large or there is significant filtering from
the preserved side (left-hand side of a LEFT OUTER JOIN),
performance will be improved due to lack of materialization.

Note: Coding a subquery in an ON clause is not permitted.
However, DB2 can merge the original table expression and
execute as if this was coded.

If the table expression with subquery is on the preserved row
table (left-hand side of the table of a LEFT OUTER JOIN),
then DB2 would merge the table expression with subquery
to the WHERE clause to apply before the join. Coding a
subquery in the WHERE clause for a preserved row table
(left-side of LEFT OUTER JOIN) is valid syntax, and a
user can code this.

The second OUTER JOIN merge enhancement involves
a view or table expression containing a subquery.

SELECT A.C1, B.C1, A.C2, B.C2
FROM T1, (SELECT COALESCE(C1, 0) as C1 ,C2
 FROM T2) A <--table expression 'A' will be Merged
 LEFT OUTER JOIN
 (SELECT COALESCE(C1, 0) as C1 ,C2
 FROM T3) B <-- B will be Materialized
 ON A.C2 = B.C2
WHERE T1.C2 = A.C2;

Figure 9. OUTER JOIN merge/materialization example

SELECT *
FROM T1 LEFT OUTER JOIN
 (SELECT * FROM T2
 WHERE T2.C1 = (SELECT MAX(T3.C1) FROM T3)) TE <--subquery
ON T1.C1 = TE.C1;

SELECT *
FROM T1 LEFT OUTER JOIN T2 <-- table expression is merged
ON T2.C1 = (SELECT MAX(T3.C1) FROM T3) <-- subquery ON-predicate
AND T1.C1 = TT.C1;

Figure 10. OUTER JOIN with subquery merge example

Information Management
IBM Software Group September 2012

16

Correlated subquery to non-correlated rewrite
Although not strictly related to materialization, the following
subquery rewrite enhancement is likely to be the most
common query pattern of any of the previously discussed
SQL examples within the merge/materialization topic.

The SQL in Figure 11 seeks to return the most recent
transaction for a given ACCOUNTNO (hence the
MAX subquery). It is common to see this coded as a
correlated subquery.

Although the predicates on ACCOUNTNO in the outer
query and the subquery are each indexable, the comparison
of A.TRANDATE to the subquery result is stage 2, which
means all transactions for a given account must be retrieved
from the outer table.

DB2 10 can rewrite this construct to a non-correlated
subquery if it is semantically equivalent. Therefore, the
subquery will be executed before accessing the outer query
block, and the subquery result would become indexable.

DB2 could then choose two matching columns on the outer,
and only the desired transaction would need to be accessed.

Stage 2 predicate pushdown
Stage 2 predicates are the most expensive for DB2 to apply.
This is a message that has been repeated for many years and
customers have been encouraged to rewrite stage 2 predicates
to be stage 1 and/or indexable, where possible.

Of course, not all SQL is under the control of developers who
heed the recommendation, or the SQL may be application-
generated. Also, not all stage predicates are easily rewritten to
a more efficient form. So it is clear that DB2 cannot ignore
the performance challenge.

DB2 10 enhances predicate application by enabling index
manager and data manager (stage 1) to call RDS (stage 2)
to evaluate stage 2 predicates. Therefore, these can be
potentially applied as index screening before data page access.

Note: These pushed down predicates cannot be applied as index
matching. Index on expression (delivered in DB2 9) should be
considered for index matching of stage 2 expressions.

This enhancement applies to arithmetic and date-time
expressions, scalar built-in functions and CAST operations.
Limitations include:

•	 OR predicates must be able to be applied all at the
same stage.

•	 Access paths involving list prefetch are not candidates
for predicate pushdown.

•	 CASE expressions are not supported.
•	 IN-list predicates are not supported.

If the query qualifies, then the predicates will be marked in the
DSN_FILTER_TABLE under the column — PUSHDOWN.
The DSN_FILTER_TABLE is one of the extended explain
tables. The DB2 10 Managing Performance manual provides
more detail.

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
FROM T1 B
WHERE B.ACCOUNTNO = A.ACCOUNTNO)

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
FROM T1 B
WHERE B.ACCOUNTNO = ?)

DB2 10
Rewrite

Indexable Indexable
IndexableStage 2

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
FROM T1 B
WHERE B.ACCOUNTNO = A.ACCOUNTNO)

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
FROM T1 B
WHERE B.ACCOUNTNO = ?)

DB2 10
Rewrite

Indexable Indexable
IndexableStage 2

Figure 11. Correlated subquery to non-correlated rewrite example

Information Management
IBM Software Group September 2012

17

Figure 12 provides examples that demonstrate the eligibility
for stage 2 predicate pushdown:

•	 WHERE SUBSTR(C1,1,1) = ? OR C3 = (SELECT ….)
 – This is not an index screening candidate because
predicates are separated by OR, and the subquery is
not a candidate for pushdown. Thus, both predicates
remain stage 2.

•	 WHERE SUBSTR(C1,1,1) = ? AND C3 = (SELECT ….)
 – The subquery is stage 2, but since the predicates
are separated by AND, the SUBSTR is an index
screening candidate.

This predicate pushdown enhancement does require a
REBIND to take effect.

Predicate simplification
Despite the eligibility to pushdown stage 2 predicates to an
earlier stage, the fact remains that stage 2 predicates are the
least efficient predicates for DB2 to apply. To clarify, it is still
true that a stage 1 predicate is more efficient to apply than a
stage 2 predicate that is pushed down to stage 1.

In recognition of some important query patterns for customers
migrating from other platforms, DB2 V8 and 9 introduced
some enhancements to predicate REWRITE that were enabled
by zparm PREDPRUNE. Since few customers enabled the
zparm, these enhancements do not become available for the
majority of customers until DB2 10, where the zparm is removed.

The first enhancement is to remove simple “always false”
predicates. The targeted example is demonstrated in Figure 13:

Suppose there exists index on (C1,C3)
• WHERE SUBSTR(C1,1,1) = ? ==> index screening
• WHERE SUBSTR(C1,1,1) = ? OR C3 = ? ==> index screening
• WHERE SUBSTR(C1,1,1) = ? OR C4 = ? ==> stage 1
• WHERE SUBSTR(C1,1,1) = ? AND C4 = ? ==> index screening
 and stage 1
• WHERE SUBSTR(C1,1,1) = ? OR C3 = (SELECT...) ==> stage 2
• WHERE SUBSTR(C1,1,1) = ? AND C3 = (SELECT...) ==> index scr.
 and stage 2

Figure 12. Stage 2 predicate pushdown examples

Based on Figure 12, where an index exists on C1, C3, prior to
DB2 10, the Figure 12 SUBSTR predicate was always stage 2.
In DB2 10, the following describes the eligibility of each
predicate shown in Figure 12:

•	 WHERE SUBSTR(C1,1,1) = ?
 – Index screening candidate

•	 WHERE SUBSTR(C1,1,1) = ? OR C3 = ?
 – Despite the OR predicate, this is an index screening
candidate because both sides of the OR can be applied
at the same stage — index screening.

•	 WHERE SUBSTR(C1,1,1) = ? OR C4 = ?
 – This example is not an index screening candidate,
because the predicate on C4 must be applied on the
data row because it is not contained in the index.
The compound predicate can however be pushed
down to stage 1.

•	 WHERE SUBSTR(C1,1,1) = ? AND C4 = ?
 – The SUBSTR expression is an index screening
candidate because it is not separated by OR.

WHERE ('A' = 'B' OR COL1 IN ('B', 'C'))

WHERE COL1 IN ('B', 'C')

Figure 13. Always False predicate simplification

The “always false” ‘A’=‘B’ predicate renders the entire
OR predicate stage 2. In DB2 10 (or V8/9 with zparm
PREDPRUNE enabled), the “always false” predicate will
be removed, leaving the indexable predicate WHERE
COL1 IN (‘B’, ‘C’).

Information Management
IBM Software Group September 2012

18

WHERE (‘A’ = ‘A’ OR LASTNAME = ‘ZZZZZZ’)
AND (‘A’ = ‘B’ OR CITY = ‘NEW YORK’)

Why would anyone code the original predicate? This query
pattern came from a query generator where this construct
was used to enable or disable predicates within a common
framework to simplify query generation.

For simplicity, assume I have two predicates and the user may
wish to search by only one or the other, or both. If the user
wanted to search by LASTNAME, the code generator would
create the predicates from Figure 14:

If you have read through these predicate pruning examples
and have understood this construct, then you would realize
that this is another variation of coding a generic SQL to cover
all potential search combinations. Other common solutions
include coding all predicates as BETWEEN or LIKE
predicates, and setting the values to cover the full range if a
value is not required — although only the aforementioned
query pattern is the target of this enhancement.

And if you are wondering what this means for documented
tricks such as “OR 0=1” ? “OR 0=1” is not pruned, although
other “always false” equal predicates such as “OR 1=2” are
pruned. And since this enhancement only applies to always
false equal and IN predicates, any other false conditions such
as “OR 1>2” or “OR 0<>0” are not pruned.

Note: This enhancement only applies to literal values,
and not parameter markers or host variables, and also does
not apply when REOPT is used with parameter markers or
host variables.

Removing Unnecessary Tables
Continuing the theme of query simplification and removing
redundancy from the query. An additional enhancement
under the guise of PREDPRUNE in DB2 V8/9 and enabled
by default in DB2 10 is the removal of unnecessary tables in
outer joins.

An OUTER JOIN is generally coded because the join
relationship between two or more tables is optional. And
while an INNER JOIN will only return rows that match
across the join, an OUTER JOIN allows rows to be
returned even if a match across the join is not found.

So, take the scenario if you were to code a LEFT OUTER
JOIN, but not select any columns or apply filtering based
upon the result from that optional table. If the join does not
introduce duplicates, then that table join was redundant.

WHERE (‘A’ = ‘B’ OR LASTNAME = ‘PURCELL’)
AND (‘A’ = ‘A’ OR CITY = ‘ZZZZZ’)

Figure 14. Search by LASTNAME example

Figure 15. Search by CITY example

In the example shown in Figure 14, only the LASTNAME
predicate is relevant. For each WHERE clause predicate to
be true, one side of the OR must be true. Since ‘A’=‘B’ is false,
LASTNAME=‘PURCELL’ must be true for the row to
qualify. And since ‘A’=‘A’ is true, it is irrelevant what the result
is for the other side of the OR (CITY=‘ZZZZZ’).

Thus, to enable the CITY predicate, the query generator
would create the predicate structure shown in Figure 15:

Now the LASTNAME predicate has been “disabled,” and
the CITY predicate “enabled.”

Information Management
IBM Software Group September 2012

19

Figure 16 shows an example of a redundant or unnecessary
table join.

In DB2 9, an in-memory replacement technique is used to
achieve the desired order if the result is guaranteed to fit in
a 32K page. In DB2 10, this is extended to 128K.

Scan C1
9
6
4

9
6
4

10
1
3

1
2
3

7
8
2
5

Memory

1st Fetch
3rd Fetch
2nd Fetch

Select C1
FROM T
ORDER BY C1
FETCH FIRST 3 ROWS ONLY

Figure 17. In-memory replacement sort

SELECT DISTINCT T1.C3
FROM T1 LEFT OUTER JOIN T2
ON T1.C2 = T2.C2
WHERE T1.C1 = ?

SELECT DISTINCT T1.C3
FROM T1
WHERE T1.C1 = ?

Figure 16. Removing unnecessary tables from OUTER JOINs

Since the query only selects from T1 and no duplicates can
be introduced by the join because of the DISTINCT in the
query, then the join to T2 is unnecessary and DB2 will prune
that table from the query with this new enhancement.

If a DISTINCT is not coded on the query, then the table is
only considered redundant if the join columns have a unique
index guaranteeing that duplicates cannot be introduced by
the join.

Note: If DB2 recognizes this pattern are removes tables
from the query, these tables will not appear in the PLAN_
TABLE output.

SORT Performance Enhancements
Moving from predicate processing to runtime optimizations
related to sort.

sort is often an area of contention in query processing, as sort
is required for all workloads from OLTP through to reporting
and BI queries. And these queries are all competing for the
same BP resources and sort work datasets.

DB2 9 introduced numerous enhancements to the efficiency
of sort which have also been extended further in DB2 10.

For a query with ORDER BY + FETCH FIRST n ROWS
ONLY, if a sort for ORDER BY cannot be avoided with the
use of an index, then it can be inefficient to sort a large result
set when only a small number of rows are fetched.

Figure 17 demonstrates an example of the in-memory
replacement sort that was introduced in DB2 9 for FETCH
FIRST “n” ROWS ONLY queries that require order
(ORDER BY is coded). As the data is scanned, the ordered
result is stored in-memory. As a new value is found that
deserves to be in the first “n” rows, then this value is swapped
in, and the highest stored value swapped out. This continues
until all rows are processed by the chosen access path. Finally,
the rows are returned in the required order.

To calculate whether this in-memory replacement technique
will be used, multiply ”n” times the sort key (for ORDER BY
or GROUP BY) + the data length – where ”n” is the value of
FETCH FIRST “n” ROWS ONLY.

It should be noted that EXPLAIN does not show which sort
technique was used.

Information Management
IBM Software Group September 2012

20

DB2 9 also avoids allocating a physical workfile for final sort
(for GROUP BY, ORDER BY, DISTINCT) if the number
of rows from sort is less than 256 rows and the result can fit
in a 32K page. DB2 10 extends this to intermediate sort in
many situations.

And finally, GROUP BY queries with less than 32,000
groups will benefit from a hash assist to the input to sort.
This allows rows to be hashed to the same location as other
keys of the same value upon input to the sort process. Thus,
it is more likely that the sort will be able to complete in one
MERGE pass — which reduces workfile usage for sort and
improves performance.

The above mentioned sort enhancements are considered
runtime optimizations, and therefore explain is not aware
whether these will take place.

New choices for the query optimizer
As previously discussed, the DB2 optimizer must continually
evolve, both with new choices in response to challenging
query patterns, and cost model changes in response to the
evolution of query workloads and associated performance
challenges experienced by existing customers.

Since our customers have grown accustomed to certain
optimizer behavior from their existing workloads, then
one challenge is to ensure that the gradual evolution of
improvements do not greatly disturb this balance.

Minimizing Optimizer Challenges for the optimizer
cost model
Query performance regressions are a possibility with any
database management system. Fortunately for our DB2
for z/OS customers, their experiences are that regressions
represent a very small percentage of their workload.

The reasons as to why cost-based optimization may not
always generate the optimal plan include the following:

•	 Insufficient statistics.
•	 Unsubstantiated query optimization assumptions due to lack

of knowledge of the actual values to be used at execution time.
•	 Unpredictable runtime resource availability, for example,

RID pool usage and other concurrent activity.

In all, the plan picked by purely cost-based optimization may
lack some robustness to PREPARE for various scenarios
on some queries. To deal with some uncertainties, DB2 10
begins to introduce the concept of risk into the cost estimation
process. The optimizer can choose the plan that has the lowest
risk associated with it, within the range of access paths that
are considered close to the lowest cost.

The simplest example is for the optimizer to answer the
question, “How many rows qualify WHERE BIRTHDATE < ?”
Since the predicate is a parameter marker or host variable,
then the optimizer cannot accurately estimate the selectivity
of the predicate until the literal value is known. It is entirely
possible that anywhere from 0 to 100 percent of the rows
could qualify, depending on the value used at execution time.

But since a majority of queries use parameter markers or host
variables, then this type of predicate remains a challenge for
the optimizer to estimate accurately. DB2 10 considers the
risk of the estimate associated with such a predicate in its
cost estimation.

This enhancement is not something that can be controlled by
customers, and is an enhancement to the internal optimizer
cost model to help choose an access path that has both the
lowest cost and lowest risk.

Minimizing risk of RID failure
Another area of risk for execution performance regression
is when the optimizer chooses a list prefetch plan, and an
inaccurate estimation results in a RID-pool overflow or other
RID limit is reached. When this happens, RID access falls
back to tablespace scan and it loses all index filtering.

Historically, the DB2 optimizer will perform RID threshold
checking as part of query optimization to avoid this runtime
performance degradation. However, the optimizer may
mistakenly estimate the number of qualified rows, or many
concurrent queries may compete for the RID resources.
Each of which could cause a limit to be reached.

DB2 10 is enhanced to failover to writing the RIDs to a
workfile and continue RID processing rather than falling
back to tablespace scan in many situations.

Information Management
IBM Software Group September 2012

21

There is a zparm to control the maximum amount of workfile
usage for RID processing — MAXTEMPS_RID. However, it
is recommended that this zparm be used as a safety net, rather
than a general use setting. The recommendation to use the
default avoids a scenario of reaching a RID threshold, and
failing over to a workfile and continuing processing only to
reach the zparm limit and finally fallback to tablespace scan.

Hybrid join already supports incremental RID processing
once a RID limit is reached, and DB2 9 Dynamic Index
ANDing already supports writing RIDs to workfile instead of
falling back to tablespace scan. Therefore, the major targets
for this enhancement are list prefetch and multi-index access.
There still exist cases where fallback to tablespace scan will
occur, such as queries involving column functions (MAX,
MIN etc.).

To reduce the incidences of RID pool overflow, DB2 10
also increases the RID pool default (zparm MAXRBLK)
from 8 MB to 400 MB.

OPTIMIZE FOR 1 ROW fix
OPTIMIZE FOR 1 ROW (OF1R) has been documented for
many releases that it will attempt to choose an access path that
avoids a sort in an effort to return the first row quickly.

DB2 development received requirements from DB2 9 and
DB2 10 beta customers to strengthen this OF1R sort avoidance
behavior based upon seeing some queries choose an access
path that sorted when OF1R was coded. This is because the
imple-mentation of OF1R encouraged a sort avoidance plan,
but still allowed a cost-based decision for a sort path to be
chosen if estimated to be efficient.

These requirements led to an enhancement to DB2 10
before GA for the optimizer to block SORT plans if OF1R
was coded. Unless of course, no sort avoidance plans exist.

A year after GA, a small number of customers saw access
path regressions where OF1R queries switched from
matching index access plus sort, to a sort avoidance plan
that was less efficient.

For example, DB2 may have chosen a non-matching index
scan to avoid the sort instead of the matching index plan
that sorted. Non-matching index scan can be an inefficient
choice if a large number of rows need to be scanned to
find the first row that qualifies against the WHERE
clause predicates.

Figure 18 demonstrates this challenge.

IDX1 (FIRSTNAME)
IDX2 (LASTNAME, FIRSTNAME)

SELECT *
FROM PHONEBOOK
WHERE FIRSTNAME = ?
ORDER BY LASTNAME, FIRSTNAME
OPTIMIZE FOR 1 ROW

Figure 18. OPTIMIZE FOR 1 ROW example.

In Figure 18, should the optimizer choose to match on IDX1
and sort? Or should the optimizer choose non-matching index
scan (with index screening on FIRSTNAME) and avoid the sort
using IDX2? The answer (unfortunately) is data dependent.

Using the first names of two recent US presidents as an
example to demonstrate:

WHERE FIRSTNAME=‘GEORGE’ may return many
rows with IDX1 and thus sort this larger number of rows
to retrieve the first qualified row by LASTNAME,
FIRSTNAME order. But a non-matching index will avoid
the sort and find the first ‘GEORGE’ early in the scan,
thus avoiding processing and sorting a large number of rows.

However, FIRSTNAME=‘BARACK’ is likely to scan a
large percentage of IDX2 before finding a match due to this
being an uncommon first name. This means that IDX1 is
a safer choice for this example because it will match to find
all occurrences of FIRSTNAME=‘BARACK’ quickly, and
since a small number of rows are likely to qualify, the sort
will be efficient.

Information Management
IBM Software Group September 2012

22

From this customer experience, we learned that we have
two potential users of OF1R:

1. Customers who used OF1R to guarantee sort avoidance
(and/or list prefetch, etc.) for targeted queries.

2. Customers who may have used OF1R more pervasively.
This may be because it was adopted as a site standard for
their online transactions, or to solve a one-time query
performance issue that has now gone, or by programmers
inadvertently copying SQL that included the OF1R clause.

APAR PM56845 adds zparm OPT1ROWBLOCKSORT
which controls OF1R behavior. The default is DISABLE,
meaning that the optimizer attempts to choose an access
path that avoids a sort if it is estimated to be cost effective in
returning the first row quickly. However, the optimizer is free
to consider plans that require a sort. Setting the zparm to
ENABLE disables plans that require a sort, and chooses the
lowest cost plan that avoids a sort. DISABLE is more
consistent with the behavior of OF1R prior to DB2 10.

Extending VOLATILE TABLE usage
Another option widely used by customers to influence a
particular optimizer behavior is the VOLATILE table
attribute. VOLATILE table support was added in DB2 V8
based upon a requirement from SAP to support their Cluster
tables. The requirement was to always preference index
access over a tablespace scan, and guarantee that the data
rows would be accessed in the index sequence, which meant
no list prefetch.

Many customers have true volatile tables — where the data
volumes grow and shrink continually — making it difficult to
collect a representative and reliable set of RUNSTATS data.

However, these true volatile data tables do not always fit the
SAP model for VOLATILE. The limitation on list prefetch
would cause index access to be avoided if the only matching
index plan requires list prefetch.

DB2 10 extends the VOLATILE table support to the general
use case, without impacting the SAP case. To do this, if a table
has only one index, and that index is unique, then DB2 10 will
continue to follow the original SAP cluster table rules. Since
SAP cluster tables only have one index — and that index is
defined as unique, then this rule in DB2 10 preserves the
SAP-specific behavior.

If the table has more than one index (or the only index is
non-unique), then DB2 uses the NPGTHRSH zparm rules
which prioritize matching index access over tablespace
scan or non-matching index scan. With NPGTHRSH,
list prefetch is permitted.

Note: The goal of both VOLATILE (at the table level) and
NPGTHRSH (at the subsystem level) is to choose the index
with the most matching predicates. If multiple indexes have
the same high matching columns, then these indexes compete
on cost. There is still a benefit to attempting to collect
representative statistics on VOLATILE tables because this
will be used in the optimizer cost-based decision.

Index INCLUDE columns
While not strictly related to the optimizer, the following
enhancement can improve query performance if used
correctly, and can also simplify the choices available to the
optimizer. The enhancement is called index INCLUDE
column support, which has been a long-standing requirement
from customers.

It is very common to see customers create indices to
support index-only access. However, for cases where you
add columns to a unique index, then prior to DB2 10, the
customer is required to keep two indices. One index supports
the uniqueness of the business rule, and the other supports
index-only access.

DB2 10 adds support for “include columns” to be added to a
unique index.

Information Management
IBM Software Group September 2012

23

In Figure 19 below, assume that IDX1 guarantees the unique-
ness of C1, and IDX2 is created to provide index-only access
for some queries:

This comment should seem obvious, but adding more
columns to an index increases the size of the index. Adding
include columns may degrade the performance of queries
that were previously using the original (smaller) index.

Improving parallelism efficiency and
removing limitations
The introduction of zIIP processors has increased the
motivation for many customers to exploit parallelism.
This is in addition to the traditional reason for parallelism
to reduce the elapsed time of long running queries. DB2 10
continues the theme from prior releases of reducing parallelism
limitations, and also introduces enhancements to improve
distribution of work across child tasks.

Removing parallelism limitations
In previous releases, when multi-row fetch is used, parallelism
is disabled for the last parallel group in the top-level query
block for many queries.

For example, for a simple query SELECT * FROM TABLE,
if multi-row fetch is used, then parallelism is disabled. This
restriction forces customers to choose between multi-row
fetch and parallelism. Alternatively, if the customer does
attempt both, then DB2 may choose to introduce a final
SORT, if possible, so that parallelism and multi-row fetch
can co-exist.

DB2 10 removes this restriction, but only if the query
explicitly contains the FOR FETCH/READ ONLY clause.
The restriction still exists for an ambiguous cursor (a query
that is not explicitly a read-only query).

Another parallelism restriction that is removed in DB2 10
is when the parallel group contains a workfile. In many
situations, parallelism was disabled when a workfile was
contained within a parallel group. But in DB2 10, the
workfile can be shared across parallel child tasks. This
enhancement only applies to CPU parallelism, and does
not extend to FULL OUTER JOINs.

IDX1 UNIQUE (C1)
IDX2 (C1,C2)

Consolidate to
IDX1 UNIQUE (C1) INCLUDE (C2)

Figure 19. Index INCLUDE columns.

In DB2 10, you can alter IDX1 to add C2 as an “INCLUDE”
column, and then drop IDX2. Alternatively, you can create a
new index as IDX3 UNIQUE (C1) INCLUDE (C2). And
then drop the original indexes — IDX1 and IDX2. Regardless
of the method used, the goal as demonstrated in Figure 19 is
to consolidate the two existing indexes into one.

Columns that are included cannot be matching columns for
queries and cannot provide ordering for GROUP BY or
ORDER BY. However, since the preceding columns are
unique, matching on all columns preceding the included
columns will guarantee one row or less is returned.

Therefore, while some queries may see a reduction in
matching columns if there are predicates on all columns of
the larger index, there is not expected to be any measurable
performance difference.

Note: The true motivation for this enhancement is to
reduce the number of indices on a table where additional
indices have been added for index-only. Fewer indices can
improve INSERT/UPDATE/DELETE performance,
utility performance, reduce space and potentially improve
buffer pool hit ratios as fewer indices are competing for
BP resources.

Information Management
IBM Software Group September 2012

24

Effectiveness of query parallelism
Once parallelism is chosen for a query, it is often a challenge
for DB2 to ensure that the data is distributed evenly across
each parallel child task. To effectively reduce the overall
elapsed time of a query using parallelism, it is important that
each child task executes approximately the same amount of
work, otherwise the elapsed time is dictated by the single
longest running task.

The key ranges for each child task are decided at BIND/
PREPARE time based on statistics such as LOW2KEY,
HIGH2KEY, and/or histogram statistics. It is assumed
by the optimizer that the data is uniformly distributed
throughout the range of LOW2KEY and HIGH2KEY,
unless histogram statistics exist to provide more detail about
the data distribution throughout the range.

This makes DB2 too dependant on the availability and
accuracy of the statistics. Since histograms are not generally
collected by customers, the problem of uneven distribution
of the parallel child tasks can be all too common.

This challenge of uneven distribution of the parallel child
tasks is most evident when DB2 uses the index key ranges or
IN-list elements to cut the parallel degrees. When parallelism
degrees are cut based on page ranges or partition boundaries,
the work is often more evenly distributed. Key range
partitioning is used, in general, when the access path is driven
by an available index — which is often desirable if this index
also provides other predicate filtering.

Given the query in Figure 20, DB2 will consider the
LOW2KEY and HIGH2KEY of the date column C1, and
distribute the keys across the number of degrees. At execution
time, each parallel child task operates against its defined range
of keys. But if the data is not evenly distributed across those
key values, then some parallel tasks may be processing fewer
rows than other tasks — or zero rows.

Dynamic Record Range Partitioning
DB2 10 introduces dynamic record range partitioning to
help address the problem of uneven distribution of the
parallel child tasks. In dynamic record range partition, DB2
introduces a sort into the access path so that the exact number
of rows and key values are known at execution time. The
resultant rows from the sort will be evenly divided across
the parallel child tasks for subsequent join operations.

This division of work doesn’t have to be on the key boundary,
unless it is required to support GROUP BY or DISTINCT
ordering. Record range partitioning is therefore dynamic
because partitioning is no longer based on the key ranges
decided at BIND/PREPARE time.

Instead, the key ranges are based on the number of composite
records and the number of work elements (parallel child
tasks). All the problems associated with key partitioning, such
as the limited number of distinct values, lacking of statistics,
data skew or data correlation, are bypassed and the composite
side records are distributed evenly based upon the actual
number or rows sorted at query execution.

This sort is not free however, and therefore the cost of
the sort is taken into consideration by the optimizer in its
cost-based access path decision.SELECT *

FROM MEDIUM_TABLE M, LARGE_TABLE L
WHERE M.C2 = L.C2
AND M.C1 BETWEEN CURRENT DATE – 90 DAYS AND CURRENT DATE;

Figure 20. Sample query for determining parallel ranges

Information Management
IBM Software Group September 2012

25

Select *
FROM Medium _T M,
 Large_T L
WHERE M.C2 = L.C2
And M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

Three degree of
parallelism Workfile

Partition the records:
Each range has same

number of record

2,500 rows

Medium_
10,000 rows

C1 C2

Large_
10,000,000 rows

C2 C3

SORT
ON C2

Figure 21. Even distribution of work with dynamic record range partitioning.

Figure 21 provides an example of how the output of the sort
is evenly distributed between the parallel child tasks, such
that each child task processes the same number of rows for
the next join step.

While this enhancement overcomes data skew or uneven
distribution of work on the driving table in a join operation,
it is still possible that subsequent joins introduce a further
unevenness to the number of rows being processed.

And as previously mentioned, dynamic record range
partitioning is a new cost-based decision for the optimizer
when parallelism is enabled for a query.

Straw model parallelism
The second solution in DB2 10 to deal with this uneven
distribution challenge is straw model parallelism. The
concept behind straw model is the DB2 will break up the
access into more work elements than there are concurrent
parallel degrees. And therefore with straw model, there is
an opportunity to ensure that no single task is monopolizing
the work.

For straw model, zparm PARAMDEG still drives the number
of concurrent parallel degrees, but since more work elements
are created, there is a queue of elements waiting. As each child
task completes, it takes the next work element from the queue
and begins processing.

Information Management
IBM Software Group September 2012

26

50

100

40

30

20

 0

degree = 3
degree =3
#ranges=10

index on C1 index on C1

50

100

47
44
41
38
35
32
29
26
23
20

0

Medium _T
10,000 rows

C1 C2

Medium _T
10,000 rows

C1 C2

Select *
FROM Medium _TM
WHERE M.C1 BETWEEN 20 AND 50

Divide in Key ranges before DB2 10 Divide in Key ranges with Straw Model

Figure 22. Straw model parallelism example.

Figure 22, assume PARAMDEG is 3. The left side of the
figure shows the work distributed without the benefit of straw
model, and the right side using straw model. For the straw
model example, DB2 has chosen to create 10 work elements,
with PARAMDEG=3 dictating the number that actually
execute concurrently.

Note: the number of work elements is influenced by factors
such as the number of partitions if parallelism cuts on page
ranges, or the number of keys if parallelism cuts on key ranges.

Thus, for the straw model example in Figure 22, tasks 1 to 3
will process the first three work elements. If child task #2
completes first, it will take the fourth work element to begin
processing. Next, if task #3 completes, it will take the fifth
work element, and so on, until all work elements are complete.

This straw model process allows parallelism to cut the work
into a finer degree of granularity. If the work is not evenly
distributed, then the shorter running tasks will complete
quicker and begin on the next element in the queue.

Cutting to a finer degree of granularity increases the
likelihood that more tasks will share the work, and avoid
the situations where one task processes all of the rows and
other child tasks process zero rows.

Both straw model and dynamic record range partitioning are
new choices available to the optimizer in DB2 10 for z/OS.

Information Management
IBM Software Group September 2012

27

Improving the inputs to the query optimizer
While a discussion on RUNSTATS is not technically an
optimizer topic, the RUNSTATS utility is the method to
capture the catalog statistics that the optimizer uses for
access path selection. And therefore, any enhancements to
RUNSTATS may ease the burden associated with the
statistics collection process and also improve the stability
of access path choices.

When discussing RUNSTATS and the optimizer, it is
common to hear the question, “When is the optimizer
going to take advantage of real-time statistics (RTS)?”
The answer is: in DB2 10.

But what needs an explanation is the other questions that also
arise, such as, “When, or can I, stop running RUNSTATS
and rely on RTS?” This question implies some misunder-
standing of what information RUNSTATS and RTS can
both provide to the DB2 optimizer.

In simple terms, RTS provides volume information, for
example, how many INSERTS/UPDATES/DELETES
have occurred since the last REORG or RUNSTATS, and
for indexes, how many pseudo-deleted index entries and
near/far leaf pages.

While some of the optimizer decisions are based on object
size (because it can cost more to access a one million row
table compared with a one hundred row table), the optimizer
needs to determine the selectivity of WHERE/ON clause
predicates to estimate the cost associated with accessing
each object. This means it needs column cardinalities
(COLCARDF) and frequencies/histograms and more.
 And RTS does not provide this information.

Since the optimizer still relies on RUNSTATS, DB2 10 also
includes improvements to the usability and performance of
the RUNSTATS utility.

Optimizer Validation with Real Time Statistics (RTS)
If RTS doesn’t provide all of the information necessary for
the optimizer, how does the optimizer use RTS in V10?

The simple answer is that RTS is being used as a “sanity
check” for certain exception conditions.

The situations where the optimizer will validate the catalog
statistics against RTS include:

•	 Catalog shows that the table, or the qualified partitions
are empty,

•	 or if the table is marked as VOLATILE
•	 or the table qualifies for NPGTHRSH (NPAGESF <

NPGTHRSH zparm).

In the above scenarios, DB2 will read the RTS tables during
static BIND/REBIND or dynamic PREPARE to validate the
number of rows in the table. This value is then used in the
optimizer’s access path selection.

Note: Since RTS was integrated into the DB2 catalog in DB2 9
NFM, customers migrating to DB2 10 from DB2 9 are able
to exploit optimizer validation with RTS in DB2 10 CM9.
Customers migrating from DB2 V8 must wait until DB2 10
NFM before the optimizer can exploit RTS.

In addition to reading RTS, DB2 10 adds a further validation
for WHERE clause predicates using a probe of index non-leaf
pages for exception conditions. If a WHERE clause predicate
is estimated by the optimizer to qualify zero rows, and there
exists an index that would support matching index access, then
DB2 will also probe the index non-leaf pages during BIND/
PREPARE to validate the predicate estimate.

This index probing only applies if the optimizer has the literal
value at BIND/PREPARE to use for the index probe. This
means the query must contain literals rather than host variables
or parameter markers, or the query uses the REOPT BIND
parameter. RTS validation however, does not require the
literal values or REOPT to validate the number or rows in
the table or partition.

This predicate and table size validation is externalized in a
new EXPLAIN table called the DSN_COLDIST_TABLE.

Information Management
IBM Software Group September 2012

28

RUNSTATS Problem Summary and automation
Understanding what RUNSTATS options to collect, and
when to collect them, is a complex task. Answering the
question, “When to collect statistics?” has been made easier
with the stored procedure — DSNACCOX.

But the second question, “What to collect?” still remains
a challenging task without the benefit of some tooling.
Fortunately, IBM has the Data Studio Statistics Advisor as
a standalone tool that can analyze a query or a workload
and determine which statistics would benefit.

In addition to the above solutions that are already available,
DB2 10 has taken steps to improve the automation of
statistics collection.

The DB2 10 solution for automating statistics maintenance
is through a set of stored procedures that can monitor the
need for statistics collection and schedule the execution
of RUNSTATS.

The DB2 10 for z/OS Managing Performance Guide contains
a section titled, Automating statistics maintenance. This
section provides more detailed information, including the
steps required to setup the monitoring.

This process will issue RUNSTATS alerts for out-of-date
statistics, missing and conflicting database statistics. However,
it should be noted that this process is not determining tailored
RUNSTATS for your query workloads, which is the goal of a
statistics advisor tool.

Once the required statistics are identified, then executing
RUNSTATS through this automated process can collect
those statistics through the exploitation of statistics profiles
which are discussed in the next section.

Note: The target for these stored procedures is to simplify
integration with tooling provided by various vendors. However,
this does not preclude a customer from integrating this into
their existing statistics collection process.

In addition to RUNSTATS automation, there are additional
DB2 10 enhancements that attempt to help with RUNSTATS
complexity and cost.

RUNSTATS simplification
The first enhancement related to RUNSTATS simplification
is related to the KEYCARD option becoming the default
for index RUNSTATS — regardless of whether it is explicitly
specified or not. This is in response to the ongoing recommen-
dation by IBM for customers to collect KEYCARD to provide
more accurate information to the optimizer about the inter-
mediate multi-column cardinalities for indexes with three or
more columns.

The general recommendation for statistics has been to collect
RUNSTATS TABLE(ALL) INDEX(ALL) KEYCARD, and
now with KEYCARD defaulted, the recommendation can be
simplified to RUNSTATS TABLE(ALL) INDEX(ALL).
A generalized recommendation for additional FREQVAL,
HISTOGRAM or COLGROUP statistics is more complicated
however. The requirement for these additional statistics is
based on the predicates from an individual query or workload.
This is why tooling is often necessary to assist in the
identification of this requirement.

Once additional statistics requirements are identified, then
DB2 10 allows you to create an individual statistics profile for
each table such that the execution of RUNSTATS can simply
use the option USE PROFILE to collect these targeted
statistics for a table.

Figure 23 provides some examples of the statistics profile
options in DB2 10.

RUNSTATS options to SET/UPDATE/USE a stats profile
 Integrate specialized statistics into generic RUNSTATS job
 RUNSTATS … TABLE tbl COLUMN(C1)… SET PROFILE
 Alternatively use SET PROFILE FROM EXISTING STATS
 RUNSTATS … TABLE tbl COLUMN(C5)… UPDATE PROFILE
 RUNSTATS … TABLE tbl USE PROFILE

Figure 23. RUNSTATS profile options

Information Management
IBM Software Group September 2012

29

The statistics profile options include the ability to:

•	 SET PROFILE,
•	 UPDATE PROFILE,
•	 DELETE PROFILE,
•	 and USE PROFILE.

When included in a RUNSTATS execution, SET and
UPDATE do not physically execute the RUNSTATS job
to collect statistics. They simply create or update the profile.

One nice feature of this statistics profile is the ability to SET
PROFILE FROM EXISTING STATS whereby DB2 will
create the statistics profile based upon that statistics that exist
in the catalog for this table. This can be beneficial if you have
collected FREQVAL, HISTOGRAM and/or COLGROUP
at different stages in the past but do not know all of the
options that have been used in the past.

UPDATE PROFILE can merge the existing profile
information with the new options when you wish to add
new options to a profile. If you wish to truly replace the
profile, then it is preferable to DELETE PROFILE
followed by a new SET PROFILE.

The only concern with this approach is that deleting a profile
does not delete existing statistics. Leaving statistics in the
catalog that are no longer being recollected will cause those
statistics to become stale. Therefore, an additional step is to
manually delete those statistics from the catalog that are no
longer part of a profile.

The statistics profiles are not without their own usability
challenges. When USE PROFILE is specified, all tables
specified in the RUNSTATS job must have a profile.
Therefore, if you have 10,000 objects to collect statistics
on, and only 50 have specialized RUNSTATS requirements,
then you cannot integrate the 9950 default RUNSTATS
tables with the statistics profile tables. The current imple-
mentation of statistics profiles does however, simplify the
RUNSTATS syntax when issuing a single table RUNSTATS.

RUNSTATS performance
The other important enhancement to RUNSTATS is in
the area of performance. The existing SAMPLE option of
RUNSTATS can reduce CPU cost because it only performs
the CPU-intensive cardinality calculation on the percentage
specified by the sample keyword. However, with SAMPLE,
all 100 percent of the rows are still read by the RUNSTATS
job. DB2 10 adds the option to sample at the page/row
level — which means a reduction in the rows that RUNSTATS
will read. This can have a more significant improvement in
the CPU and elapsed time performance of RUNSTATS.

When given the option to choose a percentage, the most
obvious question is, “What percentage to use?” DB2 provides
the TABLESAMPLE SYSTEM AUTO option, which allows
DB2 to choose the correct percentage based on the table size.
When specifying the AUTO option, tables with less than
500,000 rows will use a 100 percent sample, and after 500,000
rows, the percentage will scale down from 100 percent to
a low value of 10 percent. RUNSTATS will adjust the
percentage with the AUTO option, or you can override with
a specific numeric value.

Being more aggressive with a lower percentage SAMPLE
value can reduce the RUNSTATS cost. However, there is
some risk of being too aggressive since RUNSTATS is unable
to estimate the values for the rows that are skipped. For this
reason, DB2 implements a lower value of 10 percent.

TABLESAMPLE only applies to single-table tablespaces and
does not apply to LOB tablespaces. Indices do not exploit this
page and row-level sampling.

Summary
DB2 10 for z/OS is a significant release for query performance
and optimization. It acknowledges the increased focus our
customers are placing on reducing total cost of ownership
while maintaining the stability and reliability of their
mainframe environments.

While prior releases of DB2 have brought new optimizer
access path choices, this additional focus on predicate and
runtime optimizations, and plan management, should help
achieve the goal of improved performance with lower risk
than before. A focus that is expected to continue for future
releases of DB2.

© Copyright IBM Corporation 2012

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
September 2012

U.S. Government Users Restricted Rights — Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM’s statements regarding its plans, directions, and intent are subject to
change or withdrawal without notice at IBM’s sole discretion. Information
regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing
decision. The information mentioned regarding potential future products
is not a commitment, promise, or legal obligation to deliver any material,
code or functionality. Information about potential future products may not
be incorporated into any contract. The development, release, and timing
of any future features or functionality described for our products remains
at our sole discretion.

IBM, the IBM logo, ibm.com, DB2, and DB2 for z/OS are trademarks or
registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered
or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Other company, product, or service names may be trademarks or service
marks of others.

IMW14646-USEN-00

Please Recycle

http://www.ibm.com/legal/copytrade.shtml

	Introduction
	Access path management
	Predicate processing and
runtime optimizations
	SORT Performance Enhancements
	New choices for the query optimizer
	Improving parallelism efficiency and removing limitations
	Improving the inputs to the query optimizer
	Summary

