
ibm.com/redbooks

Front cover

Flexible Decision Automation
for Your zEnterprise with
Business Rules and Events

Fiona Crowther
Andy Flatt
Guy Hindle

Mike Johnson
Tim Wuthenow

Understand the benefits of operational
decision management

Build dynamic solutions with
business events and business rules

Learn by example with
practical scenarios

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Flexible Decision Automation for Your zEnterprise with
Business Rules and Events

November 2013

SG24-8014-01

© Copyright International Business Machines Corporation 2013. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (November 2013)

This edition applies to Version 8.0.1 IBM Operational Decision Manager for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xix.

Contents

Figures . ix

Tables .xv

Examples . xvii

Notices . xix
Trademarks .xx

Preface . xxi
Authors. xxi
Now you can become a published author, too! . xxii
Comments welcome. xxiii
Stay connected to IBM Redbooks . xxiii

Part 1. zEnterprise with business rules and events . 1

Chapter 1. The case for Operational Decision Manager . 3
1.1 What is Operational Decision Manager. 4
1.2 When to think about Operational Decision Manager. 5
1.3 Why Operational Decision Manager in z/OS applications. 6
1.4 Where Operational Decision Manager can be used . 7
1.5 Who is involved in deploying Operational Decision Manager . 8
1.6 How business rule and event externalization enables application modernization. 9
1.7 Key concepts to understand decision management . 10
1.8 Overview of the scenario used in this book. 11

Chapter 2. Operational Decision Manager on z/OS . 13
2.1 Operational Decision Manager for z/OS overview . 14
2.2 Operational concepts . 15
2.3 Decision Center for z/OS . 17

2.3.1 Features . 17
2.3.2 Directory structure. 18
2.3.3 Decision Center console . 18
2.3.4 Rule Solutions for Office . 19

2.4 Decision Server for z/OS. 19
2.4.1 Directory structure. 20
2.4.2 Features . 21
2.4.3 Decision Server rules . 21
2.4.4 Decision Server events . 24

2.5 New in Operational Decision Manager Version 8 . 27
2.5.1 High performance engine for Rule Execution Server for z/OS 28
2.5.2 Decision Center Business console . 31
2.5.3 Testing and simulation support for rule-based decisions on z/OS 31
2.5.4 Usability improvements for COBOL management . 31
2.5.5 Scenario Service Provider (SSP) support on zRule Execution Server 31
2.5.6 Revised IMS support. 32
2.5.7 WebSphere Optimized Local Adapters . 32
2.5.8 Decision Warehouse. 32
© Copyright IBM Corp. 2013. All rights reserved. iii

Chapter 3. Getting started with business rules . 33
3.1 Overview of the example used in this chapter . 34

3.1.1 Business scenario . 34
3.1.2 Business model. 34
3.1.3 Scenario rule model . 34
3.1.4 Project structure of a business rule on z/OS. 35

3.2 Getting started from a COBOL copybook . 35
3.2.1 Scenario overview. 35
3.2.2 Creating a rule project. 36
3.2.3 Creating COBOL XOM from a COBOL copybook. 37
3.2.4 Creating a business object model from the Java XOM. 46
3.2.5 Declaring ruleset parameters . 49
3.2.6 Adding BOM methods and mapping them to the XOM. 51
3.2.7 Creating the ruleflow . 58
3.2.8 Authoring rules . 62
3.2.9 Preparing the rule execution . 65
3.2.10 Building a COBOL application for rule execution . 71

3.3 Getting started from an existing rule project . 73
3.3.1 Scenario overview. 73
3.3.2 Generating a copybook from the BOM . 76
3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS. 82
3.3.4 Building a COBOL application for rule execution . 83

Chapter 4. Managing business decisions through the full lifecycle 87
4.1 What is the lifecycle of rule artifacts in decisions . 88
4.2 Working with rules through the lifecycle . 89

4.2.1 Managing artifacts. 91
4.2.2 What roles are involved in the decision lifecycle. 92

4.3 Sharing decision artifacts between z/OS and a distributed environment 94
4.4 Installation topologies for Decision Center and Business Center 95

4.4.1 Basic topologies . 96
4.4.2 Advanced topologies. 97

4.5 Managing artifacts through the lifecycle . 98
4.5.1 Rules Designer . 98
4.5.2 Decision Center . 100
4.5.3 Business Center . 101
4.5.4 REST API . 101
4.5.5 ANT scripts . 102

4.6 Usage of defined rules . 102

Chapter 5. Invoking the rules server from COBOL clients . 103
5.1 Designing the decision interface . 104
5.2 Coding the COBOL client application . 104

5.2.1 HBRWS header structure . 105
5.2.2 HBRCONN API call. 107
5.2.3 HBRRULE API call . 107
5.2.4 HBRDISC API call. 107

5.3 Mapping from the COBOL copybook . 107
5.3.1 Structure of a COBOL-based rule project . 107
5.3.2 Supported COBOL data types . 109
5.3.3 Creating custom converters . 110
5.3.4 Mapping level-88 constructs into BOM domain types . 112

5.4 Configuring the client application to reach the rule server . 115
5.4.1 Batch application. 115
iv Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5.4.2 IMS application . 115
5.4.3 CICS application . 115
5.4.4 WebSphere Optimized Local Adapters (WOLA) batch application 116

Chapter 6. Decision testing and simulation . 117
6.1 Making the right testing and simulation decisions. 118

6.1.1 Decision Validation Services. 118
6.1.2 Verifying the business logic implementation by testing. 119

6.2 Types of scenario suites . 120
6.2.1 Test suites. 120
6.2.2 Simulation . 122

6.3 Development and authoring tools . 122
6.3.1 Rule Designer . 123
6.3.2 Decision Center . 124
6.3.3 Rule Execution Server console and Rule Execution Server for z/OS console . . 124

6.4 Testing and simulation architecture for z/OS decision services 124
6.4.1 Test and simulation artifacts . 125
6.4.2 Formatting options . 126
6.4.3 Test and simulation reports. 130
6.4.4 Runtime components . 133

6.5 Testing and simulation lifecycle . 135
6.5.1 Early development . 135
6.5.2 Project ready for deployment . 135
6.5.3 Project deployed and enabled . 136

Chapter 7. Advanced topics for decision authoring . 137
7.1 Starting from an existing Java-based BOM project . 138

7.1.1 Mapping Java data structures to COBOL . 138
7.2 Extending the capability of the rule execution with BOM methods 140

7.2.1 Preferred practices for using virtual methods . 141
7.3 Considerations for sharing rules between z/OS and distributed applications 143

7.3.1 Sharing a COBOL-based project with Java applications 143
7.3.2 Sharing a Java BOM-based project with COBOL applications on z/OS 144

7.4 Authoring considerations for performance . 144

Chapter 8. Decision Server events . 145
8.1 Scenario overview. 146
8.2 Building the event application . 147

8.2.1 Event project overview . 147
8.2.2 Creating the event project . 148
8.2.3 Creating the business objects and event from a COBOL copybook. 148
8.2.4 Creating the action . 150
8.2.5 Creating the event rule . 151
8.2.6 Configuring the technology connectors. 152

8.3 Deploying the event application to the event run time . 154
8.3.1 Creating the event runtime connection . 154
8.3.2 Deploying the event project to the event run time. 155

8.4 Emitting events from CICS . 157
8.4.1 CICS event support. 157
8.4.2 CICS Event Binding Editor . 157
8.4.3 Creating the CICS Bundle project . 157
8.4.4 Creating the event binding . 157
8.4.5 Creating the event specification . 158
8.4.6 Creating the capture specification. 160
 Contents v

8.4.7 Defining the adapter . 163
8.4.8 Deploying the bundle to CICS. 164

8.5 Running the scenario . 168
8.5.1 Enabling history in the Decision Server Event run time 168
8.5.2 Sample COBOL application to emit the Request event 169
8.5.3 Emitting the event and firing the FollowUp action . 170

8.6 Using connectors to receive events from various z/OS sources. 172
8.6.1 Connectors running in WebSphere Application Server. 172
8.6.2 Connectors running as a stand-alone batch job . 173

Part 2. System configuration . 175

Chapter 9. Prerequisites and considerations before you start. 177
9.1 Runtime environments on z/OS . 178

9.1.1 Configuring the run times . 178
9.1.2 Prerequisite checklist . 179

9.2 Teams needed for installation and configuration . 180
9.3 Gathering the customizable information . 181
9.4 Migration considerations . 181

Chapter 10. zRule Execution Server for z/OS stand-alone server 183
10.1 Running on z/OS stand-alone . 184

10.1.1 Configuring the stand-alone zRule Execution Server for z/OS 184
10.1.2 Creating data sets for the zRule Execution Server for z/OS instance. 185
10.1.3 Creating the working datasets using HBRUUPTI . 186
10.1.4 Creating the working directories in UNIX System Services 187

10.2 Configuring the stand-alone zRule Execution Server for z/OS 188
10.2.1 Defining a new subsystem for zRule Execution Server for z/OS 188
10.2.2 Creating the started tasks (HBRXCNSL and HBRXMSTR) 188
10.2.3 Securing the zRule Execution Server for z/OS for z/OS resources 189
10.2.4 Starting the new instance . 194
10.2.5 Logging on and performing diagnostics . 195

10.3 Managing multiple zRule Execution Server for z/OS servers on one LPAR 197
10.3.1 Adding a zRule Execution Server for z/OS to a running console 198
10.3.2 Creating the working directory . 199
10.3.3 DB2 persistence . 199
10.3.4 Defining the subsystem for the new instance . 199
10.3.5 Modifying and adding the started tasks to the PROCLIB 200
10.3.6 Security setup for the new stand-alone zRule Execution Server for z/OS 200
10.3.7 Starting the new instance . 200

10.4 Setting up the database connection . 200
10.4.1 Setting up a type 2 configuration for the console . 201
10.4.2 Updating the database parameters in HBRPSIST . 201
10.4.3 Setting up the DB2 identifying file . 201
10.4.4 Updating the PARM members . 202
10.4.5 Using your own jobs . 202

Chapter 11. Configuring CICS to work with Operational Decision Manager 203
11.1 Configuring CICS to invoke a stand-alone Rule Execution Server for z/OS 204

11.1.1 Setting the parameters for CICS. 204
11.1.2 Defining the required resources . 205
11.1.3 Updating the GRPLIST parameter . 205
11.1.4 Updating the CICS JCL. 205
11.1.5 Scenario for installation verification. 205
vi Flexible Decision Automation for Your zEnterprise with Business Rules and Events

11.1.6 Starting zRES and CICS. 206
11.1.7 Installing HBRGROUP . 206
11.1.8 Testing the configuration. 206
11.1.9 Automatically connecting CICS to a running zRES instance 206

11.2 Configuring a CICS JVM server to run a Rule Execution Server 206
11.2.1 HBRINST changes . 207
11.2.2 Creating the working directories . 209
11.2.3 Creating the JVM profile . 209
11.2.4 Defining the CICS resources. 209
11.2.5 Adding HBRLIST to the system initialization table . 210
11.2.6 Setting the JVMPROFILEDIR . 210
11.2.7 Changing the CICS region JCL. 210
11.2.8 Scenario for installation verification. 211
11.2.9 Security for the zRES on CICS JVM server . 211
11.2.10 CEDA installation of HBRGROUP resources . 211
11.2.11 Database connect for the CICS region . 211
11.2.12 Connecting the zRES to the CICS JVM server . 211
11.2.13 Deploying the installation verification program . 212

11.3 Configuring a zRES dedicated to a CICS region with HBRMODE set to NORULE . 212
11.3.1 Why a NORULE zRES address space is needed. 213
11.3.2 Configuration parameter . 213

11.4 Working with an IBM CICSPlex. 214
11.4.1 Using a CICSPlex for zRES . 214
11.4.2 Configuring the use of a CICSPlex with zRES . 215

11.5 Working with multiple CICS JVM servers . 216

Chapter 12. Configuring IMS to work with Operational Decision Manager 221
12.1 IMS and Operational Decision Manager . 222
12.2 Configuration. 222

12.2.1 BMP and DLI. 223
12.2.2 Message Processing Region (MPR). 223

12.3 IMS and Rules Execution Server on WebSphere Application Server for z/OS. 223

Chapter 13. Configuring WebSphere Optimized Local Adapters support 225
13.1 Overview of WebSphere Operational Local Adapters. 226

13.1.1 Configuring WOLA . 226
13.1.2 JCL variables for using WOLA . 226

13.2 Sample configuration of WebSphere Application Server to use WOLA 226
13.3 Batch programs and Rule Execution Server using WOLA on z/OS 238
13.4 CICS and Rule Execution Server using WOLA on z/OS. 238
13.5 IMS and Rule Execution Server using WOLA on z/OS. 239

Chapter 14. Configuring decision warehousing. 241
14.1 Introducing the Decision Warehouse . 242
14.2 Configuring the Decision Warehouse . 242

Chapter 15. Configuring and running Decision Validation Services 245
15.1 Decision Validation Service for stand-alone zRES . 246

15.1.1 Running from Rules Designer . 246
15.1.2 Running from Decision Center . 253

15.2 DVS using RES on WebSphere Application Server for z/OS 258
15.2.1 Running from Rules Designer . 258
15.2.2 Running from the Decision Center . 264

15.3 Service scenario provider and key performance indicator architecture. 270
 Contents vii

15.3.1 Runtime client API . 271
15.3.2 Service scenario provider . 271
15.3.3 Key performance indicator . 273

15.4 Example . 275
15.4.1 Creating an Excel test suite in Rule Designer. 275
15.4.2 Running the Excel test suite in Rule Designer and then displaying the execution

report . 285
15.4.3 Repackaging the SSP. 291
15.4.4 Publishing the insurance eligibility project in Decision Center 300
15.4.5 Configuring Decision Center to use the SSP to run tests and simulations 302
15.4.6 Creating a test suite in Decision Center . 306

Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP
addressing. 311

16.1 Overview of a multiple LPAR environment . 312
16.1.1 Hot deployment of rules in Operational Decision Manager. 312
16.1.2 Cold deployment of rules in Operational Decision Manager 313

16.2 Using Virtual IP addressing to allow more than one zRules console to be used . . . 313
16.2.1 What happens if the LPAR that hosts the zRules console fails 314
16.2.2 Using virtual IP addressing . 314
16.2.3 How VIPA maintains hot deployment . 315

Part 3. Appendixes . 321

Appendix A. Calling out from a ruleset to a VSAM file to augment data 323

Appendix B. Configuring runtime values by using variables defined in HBRINST . 327
Rules z/OS . 328
CICS. 329
CICS JVM server . 330
IMS. 330
DB2 database . 331
WebSphere Application Server . 332
WebSphere Optimized Local Adapters (WOLA) script parameters 333
WebSphere Application installation script parameters . 333
Subsystem ID used by COBOL management . 334

Appendix C. Additional material . 335
Locating the web material . 335
Downloading and extracting the web material . 335

Abbreviations and acronyms . 337

Related publications . 339
IBM Redbooks . 339
Other publications . 339
Online resources . 339
Help from IBM . 340
viii Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figures

1-1 What is decision management . 5
1-2 Sample insurance company application modernization project 12
2-1 Overview of Operational Decision Manager for z/OS . 15
2-2 Operational concepts . 16
2-3 Operational Decision Manager on z/OS environment options 19
2-4 Decision Server for z/OS components . 20
2-5 Operational Decision Manager for z/OS business rules options. 23
2-6 Runtime options to invoke business rules from a COBOL application 24
2-7 Operational Decision Manager Decision Server event . 26
2-8 Decision engine for zRule Execution Server for z/OS. 30
2-9 Setting the Decision Engine for zRule Execution Server of z/OS 31
3-1 Creating a new rule project . 37
3-2 New rule project in the Rule Explorer view . 37
3-3 Importing a XOM into a rule project map . 37
3-4 Selecting the COBOL Execution Object Model. 38
3-5 Adding a COBOL Execution Object Model . 38
3-6 Importing the COBOL XOM . 39
3-7 Selecting the COBOL copybook . 39
3-8 Importing the selected COBOL copybook. 40
3-9 Adding a converter for LIC-DATE item . 41
3-10 Configuring the date converter . 42
3-11 Configuring the Boolean converter . 43
3-12 Finishing the data type configuration . 44
3-13 Generating the COBOL XOM . 45
3-14 COBOL XOM artifacts. 45
3-15 Select Create BOM from the Rule Project Map . 46
3-16 Creating a BOM entry from a Java XOM . 46
3-17 Selecting a generated Java XOM . 47
3-18 Selecting a XOM package to import all classes . 47
3-19 Viewing the generated BOM . 48
3-20 Viewing the generated BOM Entry model in the BOM editor 48
3-21 Viewing the default verbalization . 49
3-22 Selecting Define parameters option . 49
3-23 Adding the ruleset parameter for request . 50
3-24 Add the ruleset parameter for response . 51
3-25 Selecting the Response class. 52
3-26 Creating a new member . 52
3-27 Creating a new method for addMessage . 53
3-28 Adding the method argument . 53
3-29 addMessage method created . 54
3-30 Creating verbalization . 54
3-31 Keeping the default verbalization . 54
3-32 Activating the BOM to XOM Mapping editor . 54
3-33 Adding method implementation . 55
3-34 Creating a new reject method . 55
3-35 Defining the method argument . 56
3-36 Defining verbalization for the reject method . 56
3-37 Implementing the reject method . 57
© Copyright IBM Corp. 2013. All rights reserved. ix

3-38 Viewing the new BOM methods . 57
3-39 Adding a new rule package. 58
3-40 Entering the validation package name . 58
3-41 Adding a new ruleflow. 58
3-42 Entering the ruleflow name . 59
3-43 Dragging the validation package to the canvas . 60
3-44 Designing the ruleflow. 60
3-45 Refining the ruleflow . 61
3-46 Creating an action rule . 62
3-47 Entering the rule name . 63
3-48 Viewing the MaxiMinimumAge rule . 63
3-49 View the generated rules . 64
3-50 Decision table example. 64
3-51 Creating a RuleApp project . 65
3-52 Entering the RuleApp name . 65
3-53 Viewing the Rule Projects tab . 66
3-54 Viewing the insuranceApp project. 66
3-55 RuleApp editor for insuranceApp . 67
3-56 Deploying the RuleApp . 67
3-57 Selecting the deployment type . 67
3-58 Configuring the RuleApp deployment . 68
3-59 Deploying the RuleApp confirmation. 68
3-60 Exploring the rule project . 69
3-61 Viewing the deployed ruleset . 69
3-62 Viewing the deployed ruleset view . 70
3-63 Viewing deployed Java XOM and marshaller XOM . 70
3-64 Importing existing projects . 74
3-65 Importing the insurance projects . 75
3-66 Existing rule project structure . 76
3-67 Navigating to the COBOL enabled BOM . 77
3-68 Selecting the BOM model . 77
3-69 Configuring the BOM to COBOL type mapping . 78
3-70 Changing the COBOL names . 79
3-71 Changing the default mapping of the message item of the xom.Response class. . . . 79
3-72 COBOL enabled BOM . 80
3-73 Copybook generation information . 80
3-74 Copybook generation preview . 81
3-75 COBOL copybook settings . 81
3-76 Generated copybook. 82
3-77 Deploying the RuleApp . 83
4-1 Users and management of rules. 88
4-2 Refactoring the business application . 89
4-3 Movement of a rule through the lifecycle . 90
4-4 Artifacts within the decision lifecycle . 91
4-5 Example permission settings for a business user . 93
4-6 Deployment of decision artifacts . 94
4-7 Deployment options for Decision Center repository and console 96
4-8 Example of an advanced layout for Decision Center consoles and repositories 97
4-9 Deployment and export from Rules Designer . 99
4-10 Decision Center on startup . 100
4-11 Business Center . 101
4-12 Deploying a rule artefact by using REST API services without using HTTP. 102
5-1 Generating a Java XOM from the COBOL copybook . 108
x Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5-2 Converter dialog with custom converter . 112
5-3 Converter dialog to set up the domain type . 114
5-4 A sample decision table using the COBOL domain . 114
6-1 Services available in the different consoles of Operational Decision Manager. 118
6-2 Example of the lifecycle of a rule including testing . 120
6-3 List of test suites in the Explore tab of the Decision Center console 121
6-4 List of simulations in the Explore tab of the Decision console 122
6-5 Rules Designer showing some of the DVS features . 123
6-6 Decision Validation Services on the Analyze tab of the Decision Center console . . . 124
6-7 Sample simulation shown in Decision Center . 125
6-8 Importing a DVS archive into Rules Designer. 126
6-9 Selecting a scenario suite format . 126
6-10 Launch configuration of the SSP in Rule Designer . 127
6-11 Scenario suite format editor in Rule Designer . 128
6-12 Sample spreadsheet with scenarios . 129
6-13 Launch configuration for an Excel test suite in Rule Designer 129
6-14 A test suite report in Rule Designer . 131
6-15 Detailed reporting options for a test suite in Decision Center 132
6-16 Testing and simulation runtime components . 133
6-17 Monitoring asynchronous scenario suite execution in Decision Center 134
6-18 Testing and simulation lifecycle . 135
7-1 The structure of a business application . 141
7-2 Artifact deployment . 143
8-1 The event processing overview for the request for quote scenario. 146
8-2 Event project artifacts . 147
8-3 Creating the event project . 148
8-4 Creating the event objects . 149
8-5 Creating the business objects . 150
8-6 Creating the Action Object from the business object . 151
8-7 Entering the event logic in the Event Rule editor . 152
8-8 The Connector panel of the Event editor . 153
8-9 Entering the information for a new runtime connection. 154
8-10 The new Event Runtimes tab with an empty repository . 155
8-11 The deployed assets as shown in the Event Runtimes tab 156
8-12 The wbehttpconnector web application on WebSphere Application Server 156
8-13 The new event binding with an error message displayed . 158
8-14 The newly created event specification . 159
8-15 The emitted business information is created . 159
8-16 Filtering which TS Queue causes the event to be emitted . 160
8-17 Editing from where the event fields receive their data . 161
8-18 Importing the COBOL copybook . 162
8-19 The COBOL copybook is used to define the event data mapping 163
8-20 The completed adapter specification that CICS uses to transmit the events 164
8-21 The completed bundle definition . 165
8-22 Installing the RFQ resource bundle . 166
8-23 Creating the URI mapping definition . 167
8-24 Creating the TS model definition. 168
8-25 Logging in to the Administration console for events . 170
8-26 Running the generate reports function for the events run time. 171
8-27 The events run time receives the Request event . 171
8-28 The FollowUp action fired . 171
9-1 Runtime configurations on z/OS . 178
10-1 zRes stand-alone server . 184
 Figures xi

10-2 Changing the INLINES line . 187
10-3 Rule Execution Server console Welcome panel . 196
10-4 Rule Execution Server Diagnostics view . 196
10-5 Rule Execution Server Diagnostics successful test . 197
10-6 One console managing multiple stand-alone zRule Execution Servers for z/OS . . . 198
11-1 CICS COBOL application and stand-alone server . 204
11-2 CICS COBOL application and CICS JVM server . 207
11-3 HBRINST members to consider when you are setting up zRES within a CICS

environment . 207
11-4 Console showing that the rules run under CICS JVM. 213
11-5 Multiple CICS JVM servers . 214
11-6 Multiple separate CICS JVM servers . 216
11-7 HBRCRTCI prior to code change . 217
11-8 HBRCRTCI after the code change . 218
11-9 HBRCJVMP prior to code change . 218
11-10 HBRCJVMP after code change . 219
12-1 IMS calling into zRES . 222
13-1 WebSphere Application Server console menu . 227
13-2 Selecting the scope. 228
13-3 Setting WAS_DAEMON_ONLY_enable_adapter . 228
13-4 Typical values for different WOLA-related variables . 228
13-5 Resources menu in the administrative console . 229
13-6 Selecting Install RAR . 229
13-7 Installing the Resource Archive file . 230
13-8 Installing the resource adapter . 231
13-9 List of resource adapters . 232
13-10 Optimized Local Adapter details . 232
13-11 J2C connection factories page . 233
13-12 Populating the fields for the J2C connection factory . 233
13-13 WebSphere Application Server New Application panel . 234
13-14 Preparing for the application installation . 234
13-15 Selecting the options for installing the application . 235
13-16 Step 5: Provide JNDI names for beans. 236
13-17 Mapping the EJB reference to the bean . 236
13-18 Summary of application installation . 237
13-19 List of installed applications that include WOLA Endpoint 238
14-1 Ruleset view . 242
14-2 Monitoring options. 243
14-3 Monitoring properties . 244
15-1 Selecting to deploy XOM for remote DVS testing . 247
15-2 Deploying the XOM to the Rule Execution Server . 248
15-3 Deployment.xml file. 249
15-4 Changing the port to the SSP port . 249
15-5 Selecting the DVS Project wizard . 250
15-6 Creating the DVS project and specifying the project name 250
15-7 Creating the DVS project and specifying the customization name 251
15-8 Configurations in the customization panel . 251
15-9 Selecting the environment to configure. 251
15-10 Entering the URL for the DVS configuration . 252
15-11 Adding the rule project . 252
15-12 Setting up the run configuration . 253
15-13 Using the Decision Center to configure DVS . 253
15-14 Selecting Manage Servers from the Configure tab . 253
xii Flexible Decision Automation for Your zEnterprise with Business Rules and Events

15-15 Entering the new server details. 254
15-16 Adding a Smart folder . 254
15-17 Entering the name of the new Smart folder . 255
15-18 Selecting the object of the query. 255
15-19 The selected query . 255
15-20 Selecting the displayed properties . 256
15-21 Resources smart folder displayed in the Smart Folders list 256
15-22 Displaying the contents of the META-INF folder . 256
15-23 Downloading the deployment.xml file . 257
15-24 Editing the deployment.xml file . 257
15-25 Selecting Edit . 257
15-26 Uploading a replacement deployment.xml file . 257
15-27 Selecting to deploy XOM for remote DVS testing . 259
15-28 Populating the fields to deploy to a remote server . 260
15-29 Selecting the DVS project wizard . 261
15-30 Creating the DVS project and specifying the project name 261
15-31 Creating the DVS project and specifying the customization name 262
15-32 Configurations in the customization panel . 262
15-33 Selecting the environment for your WebSphere Application Server 262
15-34 Entering the URL for the DVS configuration . 263
15-35 Adding the rule project . 263
15-36 Setting up the run configuration . 264
15-37 WebSphere Enterprise Applications panel . 264
15-38 Selecting the SSP file . 265
15-39 Preparing for the application installation. . 265
15-40 Install New Application: Step 1 Select installation options 266
15-41 Install New Application: Step 10 Map security roles to users or groups 267
15-42 Install New Application: Step 13 Summary . 268
15-43 Enterprise applications with installed SSP . 269
15-44 Displaying the jrules-ssp-WAS7 application . 269
15-45 Selecting the IBM ILOG® Scenario Service Provider . 270
15-46 Selecting the class loader order . 270
15-47 The scenario provider Java API . 272
15-48 The test and simulation KPI Java API. 274
15-49 The insurance-rules project opened in the Rule Explorer . 275
15-50 Checking the project . 276
15-51 DVS Project Validation view that displays no incompatibilities 277
15-52 The Generate Excel Scenario File Template wizard. 277
15-53 Generation Settings panel . 278
15-54 Expected results for an Excel test suite . 279
15-55 Expected Results panel after the selection of tests . 280
15-56 Expected execution details . 281
15-57 Adding a test on the execution details . 281
15-58 Selecting a “contains” test that is defined for the list of rules fired 282
15-59 The testsuite.xls file generated in the insurance-rules project 282
15-60 Selecting the Open With System Editor menu option . 283
15-61 Worksheets in an Excel test suite . 283
15-62 Initial content of the Scenarios worksheet . 283
15-63 Two test scenarios for the insurance-rules ruleset . 284
15-64 Testing the output parameter of the insurance-rules ruleset 284
15-65 Testing the list of rules fired for the insurance-rules ruleset 284
15-66 Run Configurations menu . 285
15-67 Run Configurations editor . 286
 Figures xiii

15-68 Selecting the DVS Excel File type . 286
15-69 DVS Excel File Run Configurations editor . 287
15-70 The run configuration for the insurance-rules Excel test suite 288
15-71 Test suite execution logs in the Console view of Rule Designer. 289
15-72 Refresh menu option for the insurance-rules project . 289
15-73 Opening a test report with the Rule Designer web browser 290
15-74 Rule Designer Execution Report for the insurance-rules test suite. 290
15-75 Creating a new DVS project . 291
15-76 Selecting the new DVS Project wizard . 292
15-77 Specifying a project name for the new DVS project . 293
15-78 Specifying the name of the new customization. 294
15-79 DVS Customization editor . 295
15-80 DVS Configuration wizard. 296
15-81 Configuration URL for a DVS configuration . 296
15-82 DVS Configuration editor for a WebSphere Application Server 7.0 instance 297
15-83 DVS customization updated with a new server configuration 297
15-84 Selecting the rule project for the DVS customization . 298
15-85 Adding the insurance rules project . 298
15-86 Option to repackage only the SSP . 299
15-87 The message that is displayed after a successful repackaging of the SSP 299
15-88 Selecting Decision Center  Connect . 300
15-89 Connection information for a Decision Center configuration. 300
15-90 Creating a project on Decision Center from Rule Designer 301
15-91 Publishing a project in Decision Center . 301
15-92 Confirmation that the publication in Decision Center is complete 302
15-93 Signing on to Decision Center . 302
15-94 Selecting the insurance-rules project in Decision Center . 303
15-95 Configure menu for Decision Center. 303
15-96 The Manage Servers page in Decision Center . 304
15-97 Create Server page in Decision Center . 304
15-98 Manage Servers page displays information for a server definition 305
15-99 Project menu in Decision Center . 305
15-100 Edit Project Options in Decision Center . 306
15-101 Compose tab with the Action Rule type default selection 307
15-102 Compose page with the Test Suite type selected. 307
15-103 Test suite creation wizard in Decision Center: Properties. 308
15-104 Test suite creation wizard in Decision Center: Rules tested. 308
15-105 Test suite creation wizard in Decision Center: Scenarios 309
15-106 The Run Test suite page in Decision Center . 309
15-107 Test suite execution report in Decision Center . 310
16-1 Multiple LPAR Operational Decision Manager system . 312
16-2 Hot deployment in a multiple LPAR environment . 313
16-3 Configuration of VIPA using two zRules consoles . 316
16-4 Failover to zConsole on LPAR B . 317
16-5 Update RuleApps on zRules console Explorer tab . 317
16-6 LPAR A restored . 318
16-7 Operational Decision Manager system following a restart of zConsole (BackUp) . . 319
A-1 Adding the JzOS JAR to the project class path . 324
xiv Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Tables

2-1 Tasks across Operational Decision Manager tools and environments 17
2-2 zRule Execution Server for z/OS feature comparison. 24
2-3 Differences between the classic rule engine and the Decision Engine. 29
5-1 Supported COBOL to Java mappings. 109
5-2 Unsupported COBOL types . 110
7-1 Java to COBOL mapping . 140
8-1 The fields defined in the event specification . 159
9-1 Configuration parameters . 179
9-2 Prerequisites . 180
10-1 zRES instance configuration data sets . 184
10-2 RACF classes created by ++HBRWORKDS++.SHBRJCL(HBRCRECL). 191
10-3 Resource profiles to disable parts of security on the zRule Execution Server 191
10-4 zRule Execution Server for z/OS console security profiles . 193
10-5 zRule Execution Server for z/OS command security profiles 194
10-6 HBRINST customization values for rules on z/OS . 199
11-1 Return codes. 206
11-2 Members requiring modification if manual update is used . 208
B-1 Variables for rules on z/OS. 328
B-2 Variables for CICS . 329
B-3 Variables for CICS JVM server. 330
B-4 Variables for IMS . 330
B-5 Variables for DB2 . 331
B-6 Variables for WebSphere Application Server . 332
B-7 Variables for WOLA script parameters . 333
B-8 Variables for WebSphere Application installation script parameters 333
B-9 Subsystem ID used by COBOL management . 334
© Copyright IBM Corp. 2013. All rights reserved. xv

xvi Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Examples

3-1 Sample COBOL copybook [INSDEMO.cpy] . 36
3-2 Validation with the MaxiMinimumAge rule . 63
3-3 Validation with the NumberOfAccidents rule. 64
3-4 COBOL application sample to call the rules on zRule Execution Server for z/OS 71
3-5 Rule execution result . 73
3-6 Generated copybook INSSHAR.cpy . 84
3-7 COBOL application INSSHAR.cbl. 84
3-8 Results of compiling and running the COBOL application . 85
5-1 Layout of the HBRWS header structure . 105
5-2 Custom converter code (part 1 of 2) . 111
5-3 Custom converter code (part 2 of 2) . 111
5-4 COBOL copybook . 112
5-5 Java class for domain vehicle type . 113
5-6 Static factory method in the domain class VehicleType . 115
7-1 A BOM with two classes . 138
7-2 Copybook with two similar groups . 139
7-3 A BOM with an array and list . 139
7-4 Copybook for array and list sample . 139
8-1 The COBOL copybook describing a client’s request . 146
8-2 COBOL application that emits the Request event . 169
8-3 Combining a rule execution with an event emission . 170
10-1 Example zRES runtime configuration data sets . 184
10-2 List of variables that are used for database persistence. 186
11-1 MINI output . 212
16-1 TCP PARMS for LPAR A . 314
16-2 TCP PARMS for LPAR B . 314
16-3 TCP PARMS for LPAR A and LPAR B . 315
16-4 HBRCMMN parms for each zRES . 315
16-5 HBRCNSL parm for each zRES . 315
A-1 ReadKsdsVsam.java . 324
© Copyright IBM Corp. 2013. All rights reserved. xvii

xviii Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2013. All rights reserved. xix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
CICS Explorer®
CICSPlex®
DB2®
IBM®

ILOG®
IMS™
RACF®
Rational®
Redbooks®
Redpaper™

Redbooks (logo) ®
System z®
WebSphere®
zEnterprise®
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xx Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://www.ibm.com/legal/copytrade.shtml

Preface

The IBM® Operational Decision Manager product family provides value to organizations that
want to improve the responsiveness and precision of automated decisions. This decision
management platform on IBM z/OS® provides comprehensive automation and governance of
operational decisions that are made within mainframe applications. These decisions can be
shared with other cross-platform applications, providing true enterprise decision
management.

This IBM Redbooks® publication makes the case for using Operational Decision Manager for
z/OS and provides an overview of its components. It is aimed at IT architects, enterprise
architects, and development managers looking to build rule-based and business event-based
solutions. Step-by-step guidance is provided about getting started with business rules and
creating business events by using a scenario-based approach. This book provides detailed
guidelines for testing and simulation and describes advanced options for decision authoring.
Finally, it describes and documents multiple runtime configuration options.

Authors

This second edition of this IBM Redbooks publication was produced by a team of specialists
from around the world working at the International Technical Support Organization, Raleigh
Center.

Second edition: This second edition, SG24-8014-01, of this IBM Redbooks publication
updated the information presented in this book to reflect function available in IBM
Operational Decision Manager for z/OS Version 8.0.1. It is also important to note that the
product name has changed from IBM WebSphere® Operational Decision Management for
z/OS to IBM Operational Decision Manager for z/OS.

Fiona Crowther is part of the development team for IBM
Operational Decision Management on z/OS in Hursley, UK. She
has a Masters degree in Information Systems from the Robert
Gordon University in Aberdeen, Scotland, and has worked as a
software engineer in IBM for 16 years. She moved to Hursley in
2000, where she has worked on various products including IBM
WebSphere Message Broker, WebSphere Enterprise Service Bus,
and WebSpere Service Registry and Repository.

Andy Flatt is part of the development team for Operational
Decision Management on z/OS. He has delivered key z/OS
features, such as the support of multiple execution environments
and rule execution from IBM CICS® applications. He is based in
the IBM Hursley Development laboratory in the UK.
© Copyright IBM Corp. 2013. All rights reserved. xxi

Thanks to the authors of the first edition of this book: Janet Wall, Chris Backhouse, Sebastien
Brunot, Pierre Feillet, Mark Hiscock, Youngxin Pan, and Wand Wenjie. We thank them for
their excellent work, much of which is still contained in this second edition.

The second edition of this IBM Redbooks project was led by:

Debbie Landon
International Technical Support Organization, Raleigh Center

Thanks to the following people for their contributions to this project:

Chris Backhouse
Operational Decision Manager on z/OS Architect

Kieron Brear
WebSphere Operational Decision Management on z/OS Development Manager

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your

Guy Hindle is the team lead for Operational Decision Manager on
z/OS development based in the IBM Hursley development
laboratory in the UK. He has worked in IBM for 17 years and in IT
for 24 years. Previous IBM roles include team lead, software
development, test, and education roles on projects including
application software development, middleware, and services
engagements. Prior to joining IBM, he developed application
generation tools for HR solutions and tools for corporate
management accounting. His expertise is in usability, software
application design, and database development.

Mike Johnson is a senior developer for Operational Decision
Manager on z/OS in the IBM Hursley development laboratory in the
UK. In this role, he also acts as an ambassador for Operational
Decision Manager at various technical conferences. He has a
number of patents and publications and was one of the authors of
the first edition of this publication. Mike holds a Combined Honours
degree in Computing and Statistics from Aston University.

Tim Wuthenow is an IT Specialist for WebSphere on
IBM System z®. He holds a degree in Chemical Engineering from
North Carolina State University. His area of expertise is in the
configuration of WebSphere Operational Decision Management on
z/OS and CICS. He has developed numerous client demonstrations
using the new capabilities of WebSphere Operational Decision
Management within the CICS and z/OS environments. He was also
one of the authors of the first edition of this publication.
xxii Flexible Decision Automation for Your zEnterprise with Business Rules and Events

network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xxiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

xxiv Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Part 1 zEnterprise with
business rules and
events

This part describes Operational Decision Manager for z/OS and contains the following
chapters:

� Chapter 1, “The case for Operational Decision Manager” on page 3
� Chapter 2, “Operational Decision Manager on z/OS” on page 13
� Chapter 3, “Getting started with business rules” on page 33
� Chapter 4, “Managing business decisions through the full lifecycle” on page 87
� Chapter 5, “Invoking the rules server from COBOL clients” on page 103
� Chapter 6, “Decision testing and simulation” on page 117
� Chapter 7, “Advanced topics for decision authoring” on page 137
� Chapter 8, “Decision Server events” on page 145

Part 1
© Copyright IBM Corp. 2013. All rights reserved. 1

2 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 1. The case for Operational
Decision Manager

This chapter introduces operational decision management and describes using IBM
Operational Decision Manager for z/OS to address the agility needs of an organization’s
CICS, IBM IMS™, and batch COBOL applications.

The following topics are covered in this chapter:

� 1.1, “What is Operational Decision Manager” on page 4

� 1.2, “When to think about Operational Decision Manager” on page 5

� 1.3, “Why Operational Decision Manager in z/OS applications” on page 6

� 1.4, “Where Operational Decision Manager can be used” on page 7

� 1.5, “Who is involved in deploying Operational Decision Manager” on page 8

� 1.6, “How business rule and event externalization enables application modernization” on
page 9

� 1.7, “Key concepts to understand decision management” on page 10

� 1.8, “Overview of the scenario used in this book” on page 11

1

© Copyright IBM Corp. 2013. All rights reserved. 3

1.1 What is Operational Decision Manager

Smarter business outcomes require the ability to quickly adapt to change. But, corporate
leadership in every industry is struggling to keep pace with change especially in this less
predictable, complex economic environment. These changes directly affect the corporation’s
business policies and those business decisions that are required to consistently apply
business policies.

For example, a bank might have a lending policy stating, “Customers whose credit rating is
above average are entitled to a discounted rate on their loan”. The traditional application
development lifecycle requires a business analyst to document the detailed requirements to
design and develop this policy into one or more business applications. Then, one or more
developers take those requirements and code or embed the requirements into the various
application programs. The development is then followed by a lengthy testing process.
Unfortunately, the decisions are now hidden in the code in one or more programs, and over
time as additional changes are added to the business policy, the code becomes more
complex, making it difficult for change and traceability.

Decision management is emerging as an important capability for delivering agile business
solutions. Decision management is the “business discipline, supported by software that
enables organizations to automate, optimize and govern repeatable business decisions
improving the value of customer, partner and internal interactions.” Decision management is
the tool to help corporations accelerate their reaction to the pace of the growing complexity of
business changes.

Accurate real-time business decisions provide many benefits within an organization. Better
decisions help companies identify opportunities for increased revenue and profitability, such
as in marketing and sales. Better decisions also help companies enforce compliance with
external and internal policies, such as in claims processing or eligibility determination. Finally,
better decisions help companies manage and reduce risk, such as with fraud detection and
credit approvals.

Figure 1-1 on page 5 shows the two emerging forms of decision management technology:

� Operational decision management
� Analytical decision management

The objective of this book is to describe how Operational Decision Manager capabilities (a
combination of business rules and business events) can address the agility needs of the
CICS, IMS, and batch COBOL applications of an organization.

For more information about operational decision management, see the IBM Redpaper™
publication Making Better Decisions using WebSphere Operational Decision Management,
REDP-4836.

Business policy: A business policy is a statement of guidelines governing business
decisions.
4 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 1-1 What is decision management

1.2 When to think about Operational Decision Manager

Organizations today have their core business processes automated in application systems
that were developed over the course of years or even decades, making the applications
difficult for a person to comprehend. As these software assets mature, they tend to become
increasingly complex. Unfortunately, this complexity is compounded by a decline in technical
and business understanding of how these assets support business goals and priorities.

Corporations need to identify solutions that support business change and cycles far more
effectively than traditional application development methods and take direct advantage of
business expertise. A decision management approach separates decision logic from
application code so that the business logic can be modified without affecting the rest of the
application. This approach enables users to assess, implement, test, and deploy changes
quickly, allowing them to react to market conditions or new regulations in a timely manner.

Business decisions are made every day in business transactions incorporated in web or
online business applications and batch applications. These business decisions can be
categorized in three categories:

� The first type is identifying opportunities to increase revenue and profitability. This type
includes decisions that are used by marketing and sales to make targeted offers based on
customer profiles, demographics, and analytical models.

Operational Decision Management Analytical Decision Management

Business Processes, Applications, and Solutions

Decision
Services

Internal and External Data

 Policy
 Regulation
 Best Practices
 Know-how

 Risk
 Clustering
 Segmentation
 Propensity

Scenario Analysis
and Simulation

Decision
Services

Business
Rules and Events

Predictive Analytics
and Optimization
Chapter 1. The case for Operational Decision Manager 5

� The second type of automated decision concerns consistency and compliance. This type
of automated decision can be found in all industries, such as financial, insurance, and
government sectors. Examples are claims validation and straight-through processing (the
ability to process a claim without manual intervention). A key goal for many organizations
is not only to automate the claims process but generally to improve the quality of claims
validation, while simultaneously speeding up response time, saving money, and improving
customer satisfaction. The same goal is true for compliance-related decisions, such as
eligibility determination or payment processing.

� The third type of automated decision includes those decisions that help reduce and
mitigate risk. Examples are credit decisioning, fraud detection, and insurance
underwriting.

1.3 Why Operational Decision Manager in z/OS applications

Organizations embark on application modernization projects to focus on how their core
System z business applications can respond rapidly to emerging opportunities. To manage
agile solution delivery, it is essential to be able to understand these business applications in
terms of the business decisions they implement and the effect of decision changes on key
business processes.

Organizations can rapidly and efficiently advance into their application modernization projects
by incrementally externalizing their business decisions from COBOL applications and moving
them into a decision management system. Most companies begin using Operational Decision
Manager with one or possibly two business decisions at a time. Examples are deciding when
to reorder products in a specific region and identifying the eligibility of a new customer. Taking
an incremental approach with decision management in your core business applications
provides organizations with a return on investment (ROI) in their first phase of their projects.
An incremental approach avoids embarking on a lengthy, labor-intensive “rip and replace”
project. It also enables the team to understand the design and management techniques of
decision management.

Operational Decision Manager combines the authoring, testing, and management of business
rules and business events that are required for implementing business decisions. Operational
Decision Manager enables organizations to adapt incrementally the business decisions in
their System z while avoiding lengthy application development cycles.

Operational Decision Manager offers these features:

� A set of tools for business users, administrators, and developers to edit and manage rules

� A powerful decision engine to execute business decisions

� A robust decision repository to tie everything together

� An extensive library to define and extend the decision execution and management
environment

Applying Operational Decision Manager to application modernization projects can
incrementally address projects in the following areas:

� Effective application maintenance: z/OS development teams need to address their long list
of maintenance projects for their core COBOL business applications. If a maintenance
project requires updates to the decisions that are implemented in a specific application (for
example, calculating preferred customer discounts or determining credit fraud), redesign
those rules in Operational Decision Manager for enhanced ongoing management.
6 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

� Consolidating or restructuring existing applications: Most organizations have duplicate
functionality in multiple applications, which is a high cost whenever changes occur.
Duplicated functionality causes a company to spend more time and resources maintaining
applications than is necessary. Consolidation combines the same functionality into a core
business application. Incorporating Operational Decision Manager technology into those
modernization projects centralizes the business decisions that were redundant in the
duplicated function into one source for ease of change and management.

� Sharing business decisions across applications and platforms. This area is an effective
way to obtain a higher ROI. Operational Decision Manager for z/OS provides the tooling to
design business decisions for your COBOL applications that can be reused or shared for
execution in Java applications on z/OS or distributed platforms.

1.4 Where Operational Decision Manager can be used

Operational Decision Manager combines the management of business events and business
rules and, in this combination, enables intelligent and responsive decision automation. It
enables organizations to flexibly build solutions that can detect and react to event patterns as
they occur within a specified time period. Then, it provides the appropriate automated
decision response to transactional and process-oriented business systems.

Business event processing focuses on sense and response. Business event processing
executes a continuous evaluation of events from multiple sources. It attempts to detect
patterns of events that occur or do not occur as expected that represent situations to which
the business wants to respond. Business event processing is primarily focused on situational
awareness by detecting patterns in the overall flow of events in the enterprise.

Business rules are the specific statements that enforce a policy. The policies are translated
into business rules, which are the detailed conditions and actions that unambiguously enforce
the policy. The business rules expand upon the policy by stating in detail the circumstances
under which the policy is applicable and the actions that enforce it. Business decisions can be
defined that result in new application behaviors, offering a quick and productive route to
enhance the business responsiveness of CICS and IMS operations. Also, by putting the
business owner in control of the management of business decisions and at the same time
retaining good governance and change management.

Designing, maintaining, testing, implementing, and managing business decisions within
Operational Decision Manager provides these benefits:

� A convenient communication channel between IT and business teams
� Easy implementation and reuse of business decisions across the enterprise
� Flexible options for progressive IT modernization

Operational Decision Manager can benefit your organization in many ways:

� Customer relationship: By improving customer interaction and personalization:

– Achieve finer-grained personalization in customer interactions. Business rules enable
business users to implement more tailored promotions, pricing, risk models, and so on,
therefore, increasing the precision and personalization of operational decisions.

– Move decision-making to the point of contact with customers and enable enterprises to
deploy decisions at the contact point with customers and improve consistency in
decisions about customers and customer interaction.
Chapter 1. The case for Operational Decision Manager 7

� Enterprise processes: By improving business alignment, compliance, and transparency:

– Achieve high pass-through rates in process automation. Centrally managing business
decisions enables you to streamline processes and helps you achieve higher levels of
automation and higher pass-through rates by externalizing decisions and automating
more complex decisions.

– Maximize decisions for resources, risk, and value. Managed business decisions enable
businesses to tie sources of insight (from historical data, predictive knowledge,
simulation, and events) and decision automation capabilities to achieve consistently
better business outcomes and maximize resources and value.

� Business agility and speed: By improving business-led agility and responsiveness:

– Empower business users to manage and improve decisions. Managed business
decisions provide an agile platform to enable business users to manage decisions and
changes in a short time frame.

– Shorten response time to changing market conditions and events.

– Increase enterprise responsiveness to unforeseen events, as well as shortened
response time and time-to-business due to higher levels of automation.

1.5 Who is involved in deploying Operational Decision Manager

For a team to be effective, it is necessary to have the right set of skills on the team or
available to the team for consultation. As stated in the IBM Redpaper publication Making
Better Decisions using WebSphere Operational Decision Management, REDP-4836, the
responsibility for specifying and managing the business needs to be considered from the
point of view of the business roles.

Business analysts are responsible for specifying how the business needs to behave,
identifying key performance indicators (KPIs) that reflect how well the business is doing, and
defining the processes and decision points that are needed to manage the business.

Line-of-business (LOB) users are responsible for the day-to-day management of the business
using the solutions. They are responsible for monitoring the KPIs and modifying the way that
decisions are made in order to optimize the business. In a decision management solution,
these roles have the responsibility for optimizing decisions to meet the business need.

Users are responsible for using the solution and need to consider the solution from a
consumability and process-efficiency perspective. In many cases, the user role might be the
subject of KPIs that the solution is designed to support.

The responsibility for the delivery and maintenance of these systems lies with the IT
department. When embarking on a project using Operational Decision Manager technology,
there are new and expanded project roles. There are several key roles to include in these
projects:

� Application subject-matter expert (SME)

A SME on the application that is being mined is an essential member of the team. This
individual provides awareness of the programming styles in use and an understanding of
the role that the application serves. Ideally, this SME is aware of the application’s
programming history, including the original purpose and design and how the application
changed over time.
8 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

� Enterprise architect

The enterprise architect can provide valuable context for the application’s role in the
business decisions that are managed.

� Business rule analyst/rule designer

This role understands the business decisions and rules for the new implementation. This
person provides input to the new design of the rules. This role is normally combined with
the business rule designer/implementer.

� Business object modeler

This role defines the business object model for the target application and maps the
COBOL structures to business-friendly vocabulary.

� Business rule repository administrator

This role is responsible for ensuring that the business object model and rules are defined
consistently for all phases of the project and ensures that the rules can be shared across
platforms.

� Business rule miner

This role is optional. Normally, this person is the COBOL developer or a technical business
analyst responsible to “drive through the code” to identify the candidate business rules.
This person enters them in the rule authoring user interface.

1.6 How business rule and event externalization enables
application modernization

Companies can more rapidly and efficiently advance their application modernization projects
by incrementally externalizing business rules and events from COBOL applications and
moving them into a decision management system. Operational Decision Manager for z/OS
can play a major role in application modernization initiatives:

� Refactor/application structure modernization. Business rules and events are externalized
from core application code into a layered and modular architecture for better
maintainability, reuse, and service enablement. Business rules can then be executed
through a call to the appropriate Decision Server run time.

� Documentation modernization. After the business rules and events are externalized and
managed using Decision Center, Decision Center continues to manage and document all
the changes through its version control and audit management features. The
natural-language format of the rule authoring allows the rule implementation to be the
documentation. Through the Decision Center’s Rule Solution for Office component,
business rules and their associated metadata can also be integrated into Microsoft Word
and Excel documents.

� Reuse modernization. Business rule and event externalization helps identify the reusable
components of the existing application and facilitates the reuse of business decisions that
span applications. Extracting business rules from application code empowers business
user subject matter experts (SMEs) to manage the rules in a manner that focuses on how
decision logic is used to support overall business objectives, regardless of individual
applications. This method enables a decision logic change to be implemented one time
and then easily deployed by any application that requires it.
Chapter 1. The case for Operational Decision Manager 9

Operational Decision Manager for z/OS is designed to increase business agility by helping
to revitalize existing application portfolios of an organization. By providing multiple rule and
event execution capabilities, Operational Decision Manager for z/OS offers flexible options
when adopting a business rules approach for application modernization on mainframe
systems.

1.7 Key concepts to understand decision management

IBM Operational Decision Manager for z/OS provides comprehensive automation and
governance of operational decisions that are made within mainframe applications.

To explain how Operational Decision Manager for z/OS works, this section explains its
nomenclature. Every organization has people responsible for setting the policies by which
they do business. In this context, a business policy is a statement of guidelines governing
business decisions. An insurer might have an underwriting policy, for example, that states “an
underage applicant for insurance on high-powered sports cars is ineligible for coverage”.

A general policy statement is not sufficient to form the basis of an automated decision. A
policy manager must translate the policy into more specific statements that specify the details
of how the policy is enforced. In this insurance example, the policy manager is a SME for the
automobile underwriting domain.

The specific statements that enforce the policy are business rules. Business rules are
translations of the policies into detailed conditions and actions that unambiguously enforce
decision outputs. To begin, you must start with an understanding of the data, interactions, and
terminology included in the specific domain of the business policy. The understanding of this
information leads to the definition of a vocabulary that is used to write the rules. These rules
are used by various business systems that require them through an object model, which is
developed by IT and mapped to specific data sources within the software infrastructure. To
the policy manager, the interaction of the rules with the object model is through the
non-technical vocabulary, allowing the policy manager to author and maintain rules using a
business syntax. Business rules expand on policies, by stating the detailed circumstances
under which the rule is applicable and the actions that enforce it. One policy can translate into
many business rules.

Another concept relating to policies is business events, which focus on occurrences of
significance in a process or transaction that result in a change of state. Examples are, in the
auto insurance scenario, the submission of an application into the underwriting system, or the
change of an application from “pending” to “accepted”. Definitions describing patterns of
interest across multiple business events can be defined to enforce business policies or other
organizational objectives. These definitions also take the form of conditions and actions,
although the conditions tend to be based on the aggregation of multiple occurrences or
correlating event patterns that span a period of time. Business rules, however, tend to be
based on an individual occurrence at a specific point in time.

Because both the definition of business rules and business events patterns use a common
condition-action form, they are both referred to as rules. The terms “business rules” and
“event rules” are used to distinguish between them.

Even one policy domain, such as personal auto insurance underwriting in our example, can
require hundreds or thousands of rules. The rules frequently change over time and differ
throughout jurisdictions, customers, products, channels, or any other partition of a business
policy domain. The process by which a company manages and governs changes to policies is
called the rule lifecycle.
10 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

1.8 Overview of the scenario used in this book

The scenario that illustrates how Operational Decision Manager can be implemented in an
existing core CICS, IMS, and batch COBOL business application is based on a fictional
insurance company. The insurance company needs to provide greater agility to sense,
respond to, and decide when and what to do, when a customer needs to contact the
insurance company. In addition, the company currently is unable to detect when the same
customer or household contacts it from multiple channels of the company. This issue caused
customer dissatisfaction, as well as many fraud situations of multiple requests for quotes from
the same customer or household.

There are disparate business applications that manage customer channels. The call center
uses a web application, and the branch offices use a CICS application to manage the
insurance company’s claims business processes. The insurance company initiated an
application modernization project to focus on its business decisions that relate to customer
contact within these channel applications.

The use of business rules ensures more consistent results and can detect fraud when a
customer household submits similar quote requests. Business rules for customer validation
and fraud detection need to be shared across the applications. Business rules can be used
for customer profiling: identify the customer, its products with the company, and the previous
quotes provided to the customer on certain products.

Business events in the CICS application and web applications can be used to identify whether
there are similar requests for quotes and alert the insurance officer of possible fraud. The
applications can reject a request for a quote if the number of events in a specific amount of
time on the same product is reached.

The chapters in this book use this scenario and describe how to use Operational Decision
Manager for z/OS for both the business rules and business events for the web and CICS
COBOL applications to address the insurance company application modernization project.

Figure 1-2 depicts this scenario.
Chapter 1. The case for Operational Decision Manager 11

Figure 1-2 Sample insurance company application modernization project

CICS Application
Algor ithms

Call Center

Agency

Event

Event

Event

Event

Event

V 4.5
V 4.5

V 4.5

V 1.0
V 1.1

V 1.2

IBM Operational Decision
Manager for z/OS

B
u
si

n
es

s
D

e
ci

si
o
n
s

Web quote request and direct
contact for the same vehicle;
different dr iver: Provide duplicate
error and trigger Inquiry

Two web quote requests and one
direct contact in three days:
Trigger agent call back to assist

The same VIN with diff erent
addresses on call-in and web
request: Trigger inquiry

Has aut o insurance:

Propose home coverage

Existing customer:

Offer a 5% discount

Insurance Company
12 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 2. Operational Decision Manager
on z/OS

This chapter provides an overview of IBM Operational Decision Manager on z/OS.

The following topics are covered in this chapter:

� 2.1, “Operational Decision Manager for z/OS overview” on page 14
� 2.2, “Operational concepts” on page 15
� 2.3, “Decision Center for z/OS” on page 17
� 2.4, “Decision Server for z/OS” on page 19
� 2.5, “New in Operational Decision Manager Version 8” on page 27

2

© Copyright IBM Corp. 2013. All rights reserved. 13

2.1 Operational Decision Manager for z/OS overview

The IBM Operational Decision Manager product family provides value to organizations that
want to improve the responsiveness and precision of automated decisions on z/OS and
distributed applications. On z/OS, this decision management platform provides
comprehensive automation and governance of the operational decisions that are made within
mainframe applications.

Operational Decision Manager for z/OS consists of two orderable products, illustrated in
Figure 2-1 on page 15, which together form a platform for the management and execution of
business rules and event rules:

� IBM Decision Center for z/OS provides an integrated repository and management
components for line-of-business (LOB) subject matter experts (SMEs) to directly
participate in the governance of business rule-based and business event-based decision
logic. Through the capabilities of the Decision Center, business and IT functions can work
collaboratively. They align the entire organization in the implementation of automated
decisions and accelerate the maintenance lifecycle as they evolve, based on new external
and internal requirements.

Decision Center provides the following features:

– Comprehensive decision governance, including role-based security, custom metadata,
multiple branch release management, non-technical testing and simulation, and
historical reporting

– Team collaboration through multiple user access for business users and integrated
synchronization between IT and business user environments

Decision Center packaging includes these environments and tools:

– Decision Center console
– Decision Center repository
– Rule Solutions for Office

For additional information about Decision Center for z/OS, see 2.3, “Decision Center for
z/OS” on page 17.

� IBM Decision Server for z/OS provides the runtime components to automate event and
rule-based decision logic on mainframe systems. This product enables the detection of
actionable business situations and the response of precise decisions based on the context
of each interaction.

With Decision Server for z/OS, an organization can monitor a business network to
discover and act on event-based data patterns. Then, an organization can process this
information against hundreds or even thousands of business rules to determine how to
respond within both front-end and back-end systems.

This product includes these components:

– Specific run times

These run times are designed to handle the unique aspects of business rule and
business event execution. For business rule execution, this product offers several
mainframe runtime options. These options allow development teams to choose a
deployment strategy that best fits their mainframe applications and architecture.

– Eclipse-based development tooling

Rule Designer and Event Designer provide application development environments,
sharing a similar high-level approach and technology.
14 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

For additional information about the Decision Server for z/OS, see 2.4, “Decision Server
for z/OS” on page 19.

Figure 2-1 Overview of Operational Decision Manager for z/OS

2.2 Operational concepts

Operational Decision Manager for z/OS delivers the decision management features and
applies them on mainframes.

Operational Decision Manager for z/OS includes these products and modules:

� Rule Designer is used as the starting point to create the model on which you author the
business rules. Rule Designer is the Eclipse-based development toolkit for business rules.
It is installed on a workstation.

� Event Designer is used as an entry point to develop event rules. It consists of the
Eclipse-based development toolkit for event rules and is installed on a workstation.

� Decision Center is used as the team repository to govern the business rules and event
rules, and to author them through a web interface. Decision Center runs on WebSphere
Application Server on z/OS, Linux for System z, or a distributed environment.

Rule Designer
Event Designer

Decision Center
Console

Rule Solutions
for Office

Design

Management

Operational Decision Manager

Decision Center

Decision Artifacts
Versioning

Access and Control

Repository

Rule
Execution

Rule
Execution

Event
Execution

Event
Execution

Decision
Monitoring
Decision

Monitoring ConnectorsConnectors

Decision Server

Define

Deploy

Update

Measure

Visibility & Visibility &
GovernanceGovernance

Decision Center
Business Console
Chapter 2. Operational Decision Manager on z/OS 15

� Decision Server run times are split into two types:

– For Business rules, three approaches are possible: zRule Execution Server for z/OS,
Rule Execution Server running on WebSphere Application Server on z/OS, or COBOL
source generation. The core runtime stack is common across Rule Execution Server
(RES) and zRule Execution Server for z/OS (zRES), which share the rule engine.
zRES is a runtime solution to manage and operate decision services that are invoked
from COBOL applications running in batch, CICS, or IMS on z/OS.

– For Event rules, a run time exists on WebSphere Application Server on z/OS to
process business events.

Figure 2-2 shows the relationships among the various modules and the separation between
development and execution.

Figure 2-2 Operational concepts

zRule Execution Server Rule Execution Server
on WebSphere

Application Server
for z/OS

Developer

Event runtime Rule engine Administrator

Execution

RuleApp and XOM
storage

Developer

Event Designer

Rule designer

Architect

Defines
BOM/XOM
business rules

Uses COBOL
structures for
z/OS

Defines events,
actions, business
objects, and
event rules

Synchronizes
rule project to
repository

Decision Center
repository

Eclipse
16 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Table 2-1 shows the tasks across Operational Decision Manager tools and environments.

Table 2-1 Tasks across Operational Decision Manager tools and environments

2.3 Decision Center for z/OS

Decision Center for z/OS provides an integrated repository and the management components
for LOB SMEs to directly participate in the governance of decision logic. Through the
capabilities of Decision Center, business and IT functions can work collaboratively. Decision
Center helps you to align the entire organization in the implementation of automated
decisions. It helps you to accelerate the maintenance lifecycle as the automated decisions
evolve based on new external and internal requirements.

2.3.1 Features

Decision Center is the central hub that coordinates the decision lifecycle across the business
and IT parts of your organization. It provides the following features for business users to
manage their decisions:

� Rule authoring

Decision Center includes editors for both business rules and event rules. These editors
are available in a web console. They are also available in Microsoft Office for business
rules only.

� Rule synchronization between users and developers

Synchronization is the key to collaborative work between business and IT users. You can
adopt a developer-centric or a business user-centric approach to managing
synchronization.

Tasks Business rules Event rules

Synchronizing Rule Designer Event Designer

Authoring Decision Center console
Decision widget
Rules Solution for Office

Decision Center console
Decision widget

Reviewing and managing Decision Center console
Decision widget

Decision Center console
Decision widget

Validating Decision Center console Testing widgets:
� Event Tester
� Event Capture
� Event Replay

Monitoring widgets:
� Event Chart
� Event Chart Manager
� Event Layout

Deploying Decision Center console
Decision widget

Decision Center console
Decision widget

Administering Decision Center repository
Decision Center console

Decision Center repository
Decision Center console
Chapter 2. Operational Decision Manager on z/OS 17

� Rule review and management

In the Decision Center console and in the Decision widget, business users can run queries
and publish reports on the content of their projects. Decision Center provides ways to
customize how business users can view the items in their projects with smart folders.
Business users can also manage releases and work in progress with branches and
baselines.

� Rule validation

Decision Center provides tools for validating that decisions are implemented as expected.
For business rules, Decision Center provides testing and simulation of rulesets. For event
rules, the Testing and Monitoring widgets help business users analyze the processing of
business events.

� Rule deployment

Following verification, you can deploy your decision logic as business rules or event rules
to the production system.

� Administration

After you configure Decision Center, you perform several regular administrative tasks to
provide optimum service to the business users.

Decision Center can reside on z/OS or Linux for System z. It can be deployed, as well, in a
distributed environment to edit the business rules and event rules. It can be connected to a
Decision Server running on z/OS.

2.3.2 Directory structure

The following top-level directories are created under the <InstallDir> directory for each
component in Decision Center for z/OS. These components correspond to modules or other
services that provide related functionality or data:

� events: This directory contains the necessary resources to configure the Event widgets:

– config
– widgets

� teamserver: This directory contains the necessary resources to deploy and configure
Decision Center on the WebSphere Application Server on z/OS:

– applicationservers
– bin
– lib

� shared: This directory contains the shared third-party tools.

2.3.3 Decision Center console

Decision Center console is a web application that is shared across business rules and
business events. This web application empowers business users to author and manage their
rules for business rules and events. All decision authoring assets are versioned and persisted
in an underlying database repository (Figure 2-3 on page 19).

Authoring artifacts: The authoring artifacts are transformed into executable assets and
then deployed to a runtime repository. The console can be deployed on z/OS and run on
WebSphere Application Server on z/OS. The console deployment is also allowed on Linux
for System z and distributed environments.
18 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 2-3 Operational Decision Manager on z/OS environment options

2.3.4 Rule Solutions for Office

Rule Solutions for Office is used for sharing business rules offline. Policy managers and rule
authors can author business rules in Rule Solutions for Office. With Rule Solutions for Office,
rule authors write rules in Microsoft Word and edit decision tables in Microsoft Excel. They
can create mixed rule and non-rule content in a RuleDoc, which retains semantic information
together with the actual implementation content of the rules.

You can integrate business rule authoring and management extensions that are developed in
Rule Designer into Rule Solutions for Office. The RuleDocs can be synchronized with the
Decision Center console.

2.4 Decision Server for z/OS

Decision Server for z/OS provides the runtime components to automate decision logic. These
components enable the detection of actionable business situations and the response of
precise decisions based on the specific context of an interaction. With Decision Server,
organizations can monitor a business network to discover and act on event-based data
patterns. Then, organizations process this information against business rules to determine
how to respond within both front-end and back-end systems.

Decision Server is split into the following independent components, as illustrated in Figure 2-4
on page 20:

� Decision Server Rules:

– Rule Designer, which is an Eclipse-based integrated development environment (IDE)
for business rule development

– Rule Execution Server on WebSphere Application Server on z/OS

– zRule Execution Server (zRES)

Decision Server

Decision Center
(Windows, AIX, Linux, z/OS)

Multiple
z/OS
deployment
options

Windows AIX Linux z/OS

Repository
Chapter 2. Operational Decision Manager on z/OS 19

� Decision Server Events:

– Event Designer, which is an Eclipse-based IDE for business event development

– Event Execution Runtime, which runs on WebSphere Application Server on z/OS

Decision Server Rules and Events have their own dedicated stacks and executable artifact
repositories.

Figure 2-4 Decision Server for z/OS components

2.4.1 Directory structure

The following top-level directories are created under the <InstallDir> directory for each
component in Decision Server for z/OS. These components correspond to modules or other
services that provide related functionality or data:

� events: This directory contains the necessary resources to deploy and configure the event
run time.

� executionserver: This directory contains the necessary resources to deploy and
configure Rule Execution Server on the WebSphere Application Server on z/OS:

– applicationservers:

• WebSphere7
• WebSphere8
• WebSphere85
• WOLA

– bin

– lib

� shared

� zexecutionserver: This directory contains the necessary libraries and files to configure a
zRES for a z/OS instance.

The following set of Decision Server for z/OS data sets is added to your system during
installation:

� HBRHLQ.SHBRAUTH: Authorized program facility (APF)-authorized modules
� HBRHLQ.SHBRCICS: CICS modules

Decision Server for z/OS

Event Execution
Runtime

Rule Execution
Server

Rule Designer Event Designer

zRule Execution
Server
20 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

� HBRHLQ.SHBRCOBC: COBOL copybooks
� HBRHLQ.SHBRCOBS: COBOL sample code
� HBRHLQ.SHBREXEC: Installation-specific exec
� HBRHLQ.SHBRINST: Install and configuration jobs
� HBRHLQ.SHBRJCL: Runtime sample jobs
� HBRHLQ.SHBRLOAD: Product modules
� HBRHLQ.SHBRPARM: Runtime configuration parameters
� HBRHLQ.SHBRPROC: Runtime JCL procedures
� HBRHLQ.SHBRWASC: Generated properties file for WebSphere Application Server

configuration

2.4.2 Features

Depending on their role (architect, COBOL developer, QA tester, business user, policy
manager, and so on), users are interested in various aspects of developing a business rule
application and integrating it with the calling application on z/OS. Decision Server for z/OS
offers these features:

� Business rule application development for z/OS

To develop a business rule application for z/OS, you design business rules independently
from the application logic. Using Rule Designer, you develop rule projects from which you
extract a ruleset. Then, you create a contract between the application and the ruleset. An
application can call the ruleset in a number of ways using various execution options.

� Validation of ruleset execution on z/OS

With Rule Execution Server on WebSphere Application Server on z/OS, you can test the
ruleset execution and simulate scenarios.

� Integrating ruleset execution into z/OS

You have a number of options to execute a ruleset on z/OS. When you need a managed
execution environment on z/OS, you must choose between WebSphere Application
Server or zRES. In both cases, you can audit and monitor the performance of the
application using the administrative console. In a Java Platform, Enterprise Edition (Java
EE) environment, you can also use Decision Warehouse.

Decision Server on z/OS offers multiple deployment options with and without a WebSphere
Application Server base.

See 2.4.3, “Decision Server rules” on page 21, which focuses on the business rule aspects of
Decision Server.

2.4.3 Decision Server rules

This section describes Decision Server rules.

Rule Designer
Rule Designer is used for the base rule authoring. This tooling is Eclipse-based and installed
on a workstation. It cooperates with the Decision Center, which is installed on a distributed
operating system or on WebSphere Application Server installed on z/OS.
Chapter 2. Operational Decision Manager on z/OS 21

This split-platform configuration enables users to implement full business rule management
system (BRMS) functionality with the ability to define a business object model from COBOL
definitions, run and test rules on COBOL data, and call the rule engine from existing CICS,
IMS, and batch applications. Users who want to eliminate the duplication of application
functionality on z/OS and distributed applications can consolidate applications and identify
the rules that they can share between the two platforms.

The inclusion of COBOL management in Rule Designer enables users to author rules and
develop object models that can be shared with COBOL and Java applications. Developers
import a COBOL eXecutable Object Model from a copybook and create a Java eXecutable
Object Model along with a marshaller project to provide the mapping between Java and
COBOL.

You do not have to re-engineer or rewrite an entire COBOL application to start managing the
business rules for your z/OS applications. You can base the scope of your rules on one, or a
combination, of the following objects:

� A set of rules for a specific region, territory, or type of customer
� A process or subprocess within a z/OS application
� As a replacement for rules that might be hardcoded in your COBOL application

A rule authoring environment is set up in the Rule Designer. Rule projects are created in the
Rule perspective.

This Rule Project can be synchronized with Decision Center and Rules Solution for Office to
finally deploy executable rules with separate approaches.

Methods to invoke business rules from COBOL
When it comes to deployment, Operational Decision Manager for z/OS does not impose a
rigid architectural or technical choice. Instead, it provides a set of options of which you can
take advantage, depending on your strategy and architectural preferences.

This solution provides three options on Decision Server for z/OS for deploying business rules
on System z:

� Rule Execution Server on WebSphere Application Server for z/OS

This option brings the full power of WebSphere Application Server for z/OS to the rule
execution on z/OS. Full high availability and scalability are provided by the underlying
application server, and the full suite of decision management services is available.
Because of the ability to consume COBOL data structures directly, the Rule Execution
Server environment can be easily integrated with existing COBOL applications. This
integration occurs through the use of technologies, such as the WebSphere Optimized
Local Adapter or WebSphere MQ.

For details about the decision engine for zRES, see 2.5, “New in Operational Decision
Manager Version 8” on page 27.

� zRule Execution Server for z/OS (zRES)

This option provides more local integration with existing COBOL applications. A supplied
COBOL stub program provides an interface that can call COBOL directly into the rule
execution. This rule execution environment provides COBOL applications with access to
the full rule-authoring constructs through three available runtime options:

– Stand-alone mode provides a rule execution address space that can be invoked from
existing COBOL applications by way of the supplied callable stub.
22 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

– In IBM CICS Transaction Server for z/OS V4.1 and V4.2, an optimized local execution
option uses the new Java virtual machine (JVM) server environment to allow execution
within the CICS region.

– An option of a COBOL application with the HBR API and zRule Execution Server
Runtime (RT) and the zRES Console.

� COBOL code generation

This option is for clients who want to retain their existing application architecture and
manage their business decisions within COBOL application code. However, they want a
cleaner and more manageable form than through standard application development
methods. The rules in a COBOL application can be incrementally migrated to a central
business rule repository for external management, directly by business users. Then, the
rules can be generated back into COBOL code to be inserted into and called directly from
the application. This option can also be a first step toward the incremental modernization
of applications.

All of the previous options provide the following values:

� Reduced risk, disruption, cost, and time to implement change
� Better visibility and maintainability of decision logic
� Improved decision logic reuse across applications

Decision Service is deployed as COBOL source code. It offers a pure COBOL approach but
without giving full agility, such as the Rule Execution Server on WebSphere Application
Server for z/OS or zRES options. The difference is the compiled and linked code. Additionally,
this source generation option does not offer support for Decision Validation Service (DVS)
and is limited to the Sequential algorithm. See Figure 2-5.

Figure 2-5 Operational Decision Manager for z/OS business rules options

Rule Development and Management Rule Deployment

Rule Designer
Application

Developer, Architect

Business
Analyst,
Business
Manager

Development

Rule
Management

Decision Center

Rule Execution Server
on WAS for zOS

Decision Center
Repository

zRule Execution Server
for zOS

COBOL code
Generation

COBOL Management
Chapter 2. Operational Decision Manager on z/OS 23

A feature comparison between zRES and the Rule Execution Server on WebSphere
Application Server for z/OS is shown in Table 2-2.

Table 2-2 zRule Execution Server for z/OS feature comparison

Figure 2-6 shows the run times to invoke business rules from a COBOL application.

Figure 2-6 Runtime options to invoke business rules from a COBOL application

2.4.4 Decision Server events

This section describes Decision Server events.

Feature zRule Execution
Server for z/OS
(zRES)

Rule Execution Server on
WebSphere Application
Server for z/OS (RES)

COBOL source
generation

Execution from Java No Yes No

Execution from COBOL Yes Yes, through WebSphere
Optimized Local Adapter

Yes

OOTB COBOL marshalling Yes No N/A

Testing No Yes No

Simulation No Yes No

Hosted transparent decision services No Yes No

zRule Execution Server
Stand Alone WebSphere Application Server for

z/OS

WOLA

CICS

COBOL
Application

WOLA Stub

Rule Execution Server
for WAS for z/OS

COBOL <-> Java
Marshaller

COBOL
Generation

Rules

Generated
COBOL

JVMServer

zRule
Execution

Server

zRule
Execution

Server

zRES Stub

IMS

COBOL
Application

WOLA Stub

z/OS Batch

COBOL
Application

WOLA Stub

COBOL
Generation

Rules

Generated
COBOL

zRES Stub

COBOL
Generation

Rules

Generated
COBOL

SOAP Connector

Web Service
24 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Event Designer
Event Designer is a Decision Server Events component that supports the definition of the
metadata layer that is required for business event processing (BEP). You can use Event
Designer to create all the building blocks for your application, including events, business
objects, actions, and event rules. Event Designer is based on Eclipse.

Event Designer brings an Eclipse event perspective, in which you manage event projects.

Event run time for WebSphere Application Server on z/OS
The event run time consists of a number of components that manage the real-time business
event coordination that was defined during application development. The event run time
consists of the following components (Figure 2-7 on page 26):

� The Decision Server Events application for BEP, which is called wberuntimeear

� A Java Message Service (JMS) message queue that is managed by a message queue
server, such as the WebSphere Application Server Network Deployment service
integration bus or WebSphere MQ

� A database manager to serve as a message store for persistent messages

� WebSphere Application Server Network Deployment

� A relational database to contain the event run time

� Event connectors and action connectors for touchpoint systems

� Appropriate Java Database Connectivity (JDBC) drivers for the event runtime database
manager and any databases accessed in a Decision Server Events application
Chapter 2. Operational Decision Manager on z/OS 25

Figure 2-7 Operational Decision Manager Decision Server event

The event run time manages the real-time business event coordination that was defined
during application development (the following numbers correspond to the numbers that are
shown in Figure 2-7):

1. When an event occurs in a touchpoint system that potentially requires one or more actions
in other touchpoint systems, the relevant data (field name, field type, and value), which is
called an event payload, is passed to the JMS topic by using the connector of the
touchpoint system. Web services environments that employ SOAP to package messages
and other protocols, such as HTTP, can direct those messages through the JMS queue.

2. The event run time retrieves the message from the JMS queue and populates the
appropriate business objects with the values that are contained in the event payload.

3. The event run time identifies the event rules that reference the event and determines
whether any filters exist that require further evaluation.

If a rule includes a condition, the event run time evaluates that condition to determine
whether the conditions for an action are met. For complex event processing, this
evaluation includes determining whether referenced events or actions occurred as
described in the conditions. If any values are missing, the event run time attempts to
retrieve the missing information from an external data connection. The action is triggered
only if the condition is true.

If the rule does not include any conditions, the specified action is triggered.

Business Objects

Event Runtime

Event Rule Groups

Dynamic
Data

Retrieval

Data
Resolver

4

1

5

Folder

Folder

Folder
Action

Payload

Result
Event

Result
Event

ActionAction

Decision Server Events:
User Console

Decision Server Events:
Administration

Console
commands

Reports

Event

Event

Decision Server Events:
Dashboard

History

Charts

Data Connection

2

SOAP

Topic (JMS)

Service
RequestCustomer

3

Action
Connector

CustID
DiscountPCT

Event
Connector

Event
Connector
26 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. The event run time passes the relevant data (field name, field type, and value) associated
with the action from business objects as an action payload to the outbound message
queue, where it is picked up by the appropriate connector. The connector pushes the data
to the appropriate touchpoint systems, initiating the appropriate activity. The connector
might return a result back to the JMS queue, where it is retrieved by the event run time as
a new event and processed appropriately.

If the action requires human intervention, it is directed to the user console, where you can
access it. When you respond to the information that is displayed, the response is sent
back to the JMS queue as a result event, where it is retrieved by the event run time as a
new event and processed appropriately.

5. The history for events, actions, and filters that are used in event rule group evaluation is
stored in a History database manager.

2.5 New in Operational Decision Manager Version 8

Several new features are available in Operational Decision Manager for z/OS V8:

� 2.5.1, “High performance engine for Rule Execution Server for z/OS” on page 28
� 2.5.2, “Decision Center Business console” on page 31
� 2.5.3, “Testing and simulation support for rule-based decisions on z/OS” on page 31
� 2.5.4, “Usability improvements for COBOL management” on page 31
� 2.5.5, “Scenario Service Provider (SSP) support on zRule Execution Server” on page 31
� 2.5.6, “Revised IMS support” on page 32
� 2.5.7, “WebSphere Optimized Local Adapters” on page 32
� 2.5.8, “Decision Warehouse” on page 32

For more details, see the following links:

� For Operational Decision Manager V8.0:

– What’s new in Decision Center for z/OS

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.zos.dserv
er.overview/topics/tpc_dsz_whatsnew.html

– What’s new in Decision Server for z/OS

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.zos.dcent
er.overview/topics/tpc_dcz_whatsnew.html

– What's new in Operational Decision Manager V8.0.1

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm
.wodm.family.overview%2Ftopics%2Fcon_whats_new.html

� The following announcement letters also contain information about new features:

– IBM Operational Decision Manager V8.0.1 enhances the user experience for
managing change and the implementation of decision logic that drives critical business
systems.

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htm
lfid=897/ENUS212-326&appname=USN#h2-descx

Note: The first edition of this IBM Redbooks publication, Flexible Decision Automation for
Your zEnterprise with Business Rules and Events, SG24-8014-00, was based on Version
7, Release 5 of WebSphere Operational Decision Management for z/OS. This second
edition includes updates for Version 8.
Chapter 2. Operational Decision Manager on z/OS 27

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=%2Fcom.ibm.wodm.zos.dcenter.overview%2Ftopics%2Ftpc_dcz_whatsnew.html&resultof%3D%2522%2577%2568%2561%2574%2573%2522%2520%2522%2577%2568%2561%2574%2522%2520%2522%256e%2565%2577%2522%2520
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.zos.dserver.overview/topics/tpc_dsz_whatsnew.html?resultof=%22%77%68%61%74%73%22%20%22%77%68%61%74%22%20%22%6e%65%77%22%20
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.overview%2Ftopics%2Fcon_whats_new.html
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS212-326&appname=USN#h2-descx
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS212-326&appname=USN#h2-descx

– IBM WebSphere Operational Decision Management for z/OS V8.0 provides
end-to-end, rule, and lifecycle support for decisions that are used in CICS, IMS, and
COBOL applications.

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htm
lfid=897/ENUS212-101&appname=USN

2.5.1 High performance engine for Rule Execution Server for z/OS

A new high performance engine, which is called Decision Engine, is now available to execute
rules on zRule Execution Server for z/OS (zRES).

Decision Engine for zRES is a new implementation of the rule engine that improves the
overall performance of rule execution. The Decision Engine compiles rule artifacts into an
archive that contains code that is ready to execute. Ruleset loading in the new engine is faster
than the previous engine and there is no ruleset parsing at run time and no interpreted code.

What is a rules engine
A rules engine hosts the business rules that pertain to a given decision. These rules are
organized for execution and stored in a ruleset. Rulesets are executable containers that
correspond to a decision. Rules are atomic expressions of policies. The automation of these
policies and their application to events can generate decisions.

After you develop your business rules and group them into rulesets, these rulesets are then
deployed to the rules engine. The rules engine hosts these business rules.

An application wanting to ask for a decision from the rules engine makes a connection to the
engine, which runs the request and returns the decision. The rule engine reads rules from a
ruleset archive, evaluates rule conditions against application objects, and executes the rules
for the objects that meet the conditions. You can maintain the rule engine independently from
the business applications.

The rules engine has the following functions:

� Read rules dynamically at run time
� Evaluate the rules against the application objects
� Keep track of changes to application objects

The are two types of rules engine:

� Classic rule engine
� Decision engine for zRule Execution Server of z/OS

Decision Engine for zRES
Decision Engine optimizes the execution performance of your copybook-based ruleset. The
Decision Engine works in a similar way to the classic rule engine, although there are
differences in the compilation and loading of the rules. This gives Decision Engine better
performance results but it means that support for some of the features of the classic engine is
unavailable.

Table 2-3 on page 29 shows the main differences between the two rules engine technologies.
28 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS212-101&appname=USN

Table 2-3 Differences between the classic rule engine and the Decision Engine

Limitations over the Classic engine
The product documentation details the limitations in the Decision Engine:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.rules.designer.run%2Fexecuting_decision_topics%2Fcon_decision_limitations.
html

Enabling the ruleset to use the Decision Engine
To enable the Decision Engine, the “build mode” of the project needs to be changed to
execute the rules with the Decision Engine.

The Decision Engine compiles rule artifacts into an archive that contains executable code.
There is no ruleset parsing at run time and no interpreted code. The archive already contains
all the Java classes. Therefore, the loading of the ruleset in the engine involves class loading
only. The compiled rules are quickly created in memory from their binary representation, the
business object model (BOM)-to-execution object module (XOM) mapping is applied, and the
engine instances can be created.

The process of compilation and execution for the decision engine goes through different
stages from the initial compilation of rules until the execution of the engine as shown in
Figure 2-8 on page 30.

Classic rule engine Decision engine

The classic rule engine processes the rule artifacts in different ways:
� The ruleflow and the RetePlus rule actions are interpreted.
� The RetePlus rule conditions that use the useJit property are

compiled to bytecode.
� The rules that use the sequential and Fastpath algorithms are

compiled to bytecode.

The rules are compiled to bytecode before
deployment, which reduces the loading time of
the ruleset.

The loading into the rule engine includes the parsing of the rules, the
compilation, a partial generation of the bytecode, and the loading of
the Java classes.

The loading into the rule engine only involves
the loading of Java classes because the rules
are already compiled to bytecode.
Chapter 2. Operational Decision Manager on z/OS 29

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.rules.designer.run%2Fexecuting_decision_topics%2Fcon_decision_limitations.html

Figure 2-8 Decision engine for zRule Execution Server for z/OS

The build mode of the project can be changed in the properties of the rule project by
performing the following steps:

1. Right-click the rule project and select Properties.

2. In the Properties dialog, click Ruleset Build Mode, and select one of the following rule
engines to execute your rules:

– Classic rule engine: The default rule engine to execute rules on both distributed and
z/OS platforms.

– Decision engine for zRule Execution Server for z/OS: A high performance rule
engine to execute rules on zRule Execution Server for z/OS.

See Figure 2-9 on page 31.

Decision
algorithm

optimization

Compilation

Bytecode
generation

Ruleset
archive
(.dsar)

Java class
loading

Ruleset

Business
rules

Decision engine

Authoring
in Rule Designer

Deployment

Loading

Run time

Execution
30 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 2-9 Setting the Decision Engine for zRule Execution Server of z/OS

2.5.2 Decision Center Business console

The Decision Center Business console is targeted at non-advanced business users. This new
console contains a subset of the features available in the previous console, which is now
referred to as the Decision Center Enterprise console. The new Decision Center Business
console also includes new features, such as streams and posts, that let you see and
comment on activities with other users.

2.5.3 Testing and simulation support for rule-based decisions on z/OS

A new sample has been added that covers the use of a Scenario Service Provider (SSP) on
zRES. This demonstrates testing data from a VSAM file.

2.5.4 Usability improvements for COBOL management

The marshaller project no longer appears as a separate project in Rule Designer. It is now
possible to select multiple copybooks by using the copybook importer.

It is also possible to import copybooks and generate COBOL programs to a remote system
resource when Rule Designer is integrated with IBM Rational® Developer for System z.

2.5.5 Scenario Service Provider (SSP) support on zRule Execution Server

You can now test and simulate a rule project by using COBOL data.
Chapter 2. Operational Decision Manager on z/OS 31

2.5.6 Revised IMS support

Support for IMS to call into Decision Server for z/OS has been added:

� Bean-managed persistence (BMP) and Data Language/I (DLI) programs can call into the
Decision Server for z/OS to execute rules. This support was added in Operational
Decision Manager V8.0.

� Applications that run in a message processing region (MPR) can call Decision Server for
z/OS to execute rules. This support was added in Operational Decision Manager V8.0.1.

For more information about using IMS with Operational Decision Manager, see Chapter 12,
“Configuring IMS to work with Operational Decision Manager” on page 221.

2.5.7 WebSphere Optimized Local Adapters

WebSphere Application Server can now be accessed using WebSphere Optimized Local
Adapters (WOLA), improving the performance when using WebSphere Application Server.
For more information about WOLA, see Chapter 13, “Configuring WebSphere Optimized
Local Adapters support” on page 225.

2.5.8 Decision Warehouse

Decision Warehouse is a tool of the Rule Execution Server console for monitoring ruleset
execution. It stores execution traces in a database.

The execution trace contains information about how a decision was made. It records the
executed ruleflow, the path of executed ruleflow tasks, and the rules executed. These details
are intended to help users, such as an auditor, understand what happened as a result of
executing a ruleset. Users can access Decision Warehouse in the Rule Execution Server
console.

For more information about Decision Warehouse, see Chapter 14, “Configuring decision
warehousing” on page 241.

Note: IMS version 10 is not supported after Decision Server V8.0.
32 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 3. Getting started with business
rules

This chapter describes and demonstrates the use of business rules on System z.

The following topics are covered in this chapter:

� 3.1, “Overview of the example used in this chapter” on page 34
� 3.2, “Getting started from a COBOL copybook” on page 35
� 3.3, “Getting started from an existing rule project” on page 73

3

© Copyright IBM Corp. 2013. All rights reserved. 33

3.1 Overview of the example used in this chapter

This section provides an overview of the business scenario and the related models that are
used in this chapter.

3.1.1 Business scenario

The business scenario that is used in this book describes a fictitious auto insurance company
that has a solution in place for validating an insurance application for its customers. The
company wants to manage and share this validation logic with other business applications on
System z.

The status of the in-place application and the way in which a company wants the business
rules to be executed on System z determine the approach that is chosen. This chapter uses
the following typical approaches:

� Getting started from a COBOL copybook (see 3.2, “Getting started from a COBOL
copybook” on page 35)

� Getting started from an existing Java-based rules project (see 3.3, “Getting started from
an existing rule project” on page 73)

3.1.2 Business model

The business model used in this chapter represents an insurance quote application. This
model is simplified as one insurance quote request and one insurance quote response.

Insurance quote request
The insurance quote request includes the following information:

� Driver

This information includes personal information about the driver to assess the risk, such as
age, address, and license status.

� Vehicle

This information includes the make, model, year, and vehicle identification number,
together with a categorization of the vehicle type and a vehicle value. The insurance
discount policies differ based on the vehicle type.

Insurance quote response
The response to an insurance request includes the following information:

� The validation status of this insurance quote
� The validation message of this insurance quote
� The pricing and discount information of this insurance quote

3.1.3 Scenario rule model

The rules are designed to validate a customer’s eligibility for the quote application. These sets
of rules validate the customer’s age or accident history and provide the validation result and
possible reasons.
34 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Both scenarios use the following rules:

� A maximum or minimum age rule, called MaxiMinimumAge, validates that the age of
customer is between lower and upper age limits.

� A number of accidents rule, called NumberOfAccidents, validates that the number of
accidents of the customer is below the set upper limits.

3.1.4 Project structure of a business rule on z/OS

This section illustrates a common project structure for business rule execution on zRule
Execution Server for z/OS (zRES). The following typical artifacts are used in zRule Execution
Server for z/OS projects:

� The rule project, which is used to design, debug, and manage the business rule

� The Java Execution Module (Java XOM), which is used to create a rule project and which
is deployed as a Java archive (JAR) resource for rule execution at run time

� The marshaller, which handles the conversion between COBOL data items and Java data
items at run time

� The RuleApp project, which is used to deploy business rules to the runtime configuration
of the zRule Execution Server

3.2 Getting started from a COBOL copybook

This section includes detailed instructions about creating a rule application on z/OS that is
started from a COBOL copybook.

3.2.1 Scenario overview

In this scenario, an insurance company has a large COBOL application that runs on z/OS.
This COBOL application validates insurance applications. The company wants to manage the
logic codes that are scattered throughout the COBOL application and share them with other
business applications on System z. The company decides to migrate and manage the
business logic as a business rule application on System z.

In an actual scenario, you identify or create a COBOL copybook that contains the COBOL
data items that are required for the business rules. Example 3-1 on page 36 shows a sample
COBOL copybook (INSDEMO), which is designed for the first rule application on System z in
this scenario.

Important: The marshaller is a generated artifact. Never modify it yourself.
Chapter 3. Getting started with business rules 35

Example 3-1 Sample COBOL copybook [INSDEMO.cpy]

01 REQUEST.
 05 DRIVER.

 10 FIRST-NAME PIC X(20).
 10 LAST-NAME PIC X(20).

 10 ZIPCODE PIC X(8).
 10 HOUSE-NUM PIC 9(8).
 10 AGE PIC 9(2) USAGE COMP-3.
 10 LIC-DATE PIC X(8).
 10 LIC-STATUS PIC X.
 10 NUMBER-ACCIDENTS PIC 99.
 05 VEHICLE.
 10 VEC-ID PIC X(15).
 10 MAKE PIC X(20).
 10 MODEL PIC X(20).
 10 VEC-VALUE USAGE COMP-1.
 10 VEC-TYPE PIC X(2).
 88 SUV VALUE 'SU'.
 88 SEDAN VALUE 'SD'.
 88 PICKUP VALUE 'PU'.
 01 RESPONSE.
 05 APPROVED PIC X.
 05 BASE-PRICE USAGE COMP-2.
 05 DIS-PRICE USAGE COMP-2.
 05 MSG-COUNT PIC 9(5) VALUE 0.
 05 MESSAGES PIC X(100)
 OCCURS 0 TO 100 TIMES
 DEPENDING ON MSG-COUNT.

3.2.2 Creating a rule project

You can create a rule project in Rule Designer. A rule project enables you to manage, build,
and debug the items that make up the business logic of your application.

Follow these steps to create the rule project in Rule Designer:

1. Click File  New  Rule Project. Select Standard Rule Project and click Next.

2. In the New Rule Project dialog, Project name field, enter insurance-rules, as shown in
Figure 3-1 on page 37. Click Finish.

Additional resources: You can find the INSDEMO.cpy copybook file in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 335.
36 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 3-1 Creating a new rule project

The new rule project is created in the Rule Designer, as shown in Figure 3-2. For now, the
rule project contains only empty folders.

Figure 3-2 New rule project in the Rule Explorer view

3.2.3 Creating COBOL XOM from a COBOL copybook

To execute rules in a COBOL application, you generate the COBOL XOM from a COBOL
copybook. A COBOL XOM provides the necessary COBOL-to-Java mapping so that you can
create and execute your rules from a COBOL application.

To use the Rule Project Map to guide you through the COBOL XOM generation, follow these
steps:

1. Select the rules folder in the newly created rule project (highlighted in Figure 3-2).

2. In the Design part of the Rule Project Map tab, click Import XOM (Figure 3-3).

Figure 3-3 Importing a XOM into a rule project map
Chapter 3. Getting started with business rules 37

3. In the Import XOM dialog, select COBOL Execution Object Model (Figure 3-4). Click
OK.

Figure 3-4 Selecting the COBOL Execution Object Model

4. On the Properties for insurance-rules dialog, click Add to add a COBOL Execution Object
Model (Figure 3-5).

Figure 3-5 Adding a COBOL Execution Object Model
38 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. On the Import COBOL XOM dialog, in the Execution Object Model name field, enter
insurance-xom, as shown in Figure 3-6. Click Add.

Figure 3-6 Importing the COBOL XOM

6. On the Select COBOL Copybook dialog, select a COBOL copybook by using one of the
Browse buttons and select the INSDEMO.cpy copybook (Figure 3-7). Click OK.

Figure 3-7 Selecting the COBOL copybook

Additional resources: You can find the INSDEMO.cpy copybook file in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory.
See Appendix C, “Additional material” on page 335.
Chapter 3. Getting started with business rules 39

7. On the resulting Import COBOL XOM dialog (Figure 3-8), click Next.

Figure 3-8 Importing the selected COBOL copybook
40 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. On the Configure COBOL XOM Mapping dialog, use the type converter to map two
COBOL string items (PIC X) to a Java Date and a Boolean. Perform the following steps to
change LIC-DATE from type String to Date by using the type converter:

a. Expand the REQUEST item. Then, right-click the row that contains the LIC-DATE data
item, and click Add Converter, as shown in Figure 3-9.

Figure 3-9 Adding a converter for LIC-DATE item
Chapter 3. Getting started with business rules 41

b. On the Configure Converter settings dialog, select Built-in String to Date Converter.
Then, for the Date format field, enter yyyyMMdd, as shown in Figure 3-10. Click OK.

Figure 3-10 Configuring the date converter

LIC-DATE: Use yyyyMMdd here to parse the LIC-DATE item value, such as 20110908.
42 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

9. Next, change APPROVED from type String to Boolean, by using the type converter:

a. Expand the RESPONSE item. Then, right-click the row that contains the APPROVED
data item and click Add Converter.

b. On the Configure Transform settings dialog, select Built-in String to boolean
Converter.

c. For the True value field, type T and for the False value field, type F, as shown in
Figure 3-11.

d. Click OK.

Figure 3-11 Configuring the Boolean converter

Values: The T and F values are COBOL values that represent True and False. You
can also customize these values as Y/N, YES/NO, and so on.
Chapter 3. Getting started with business rules 43

10.Click Finish to create the COBOL XOM (Figure 3-12).

Figure 3-12 Finishing the data type configuration
44 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

11.Click OK to close the Properties window (Figure 3-13).

Figure 3-13 Generating the COBOL XOM

12.The following artifacts are created, as shown in Figure 3-14:

– Java XOM project: insurance-xom
– COBOL XOM:

• Configuration file: CobolXomConfig.xml
• Marshaller: insurance-xom-xmarshaller.jar

Figure 3-14 COBOL XOM artifacts

Important: The insurance-xom project and COBOL XOM files are generated artifacts.
Do not change these artifacts manually.
Chapter 3. Getting started with business rules 45

3.2.4 Creating a business object model from the Java XOM

The business object model (BOM) is a business layer that is used to author business rules.
This section describes how to create a BOM in Rule Designer that is based on the Java XOM
that you created in 3.2.3, “Creating COBOL XOM from a COBOL copybook” on page 37.

Follow these steps to create a BOM from the COBOL XOM:

1. In the Design part of the Rule Project Map tab, click Create BOM, as shown in
Figure 3-15.

Figure 3-15 Select Create BOM from the Rule Project Map

2. In the New BOM Entry dialog, in the Name field, accept the default name for the BOM
entry. In this scenario, the default name is model. Ensure that the Create a BOM entry
from a XOM option is selected (Figure 3-16) and click Next.

Figure 3-16 Creating a BOM entry from a Java XOM
46 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. On the BOM Entry dialog, in the Choose a XOM entry field, click Browse XOM. On the
Browse XOM dialog, select insurance-xom, as shown in Figure 3-17, and click OK.

Figure 3-17 Selecting a generated Java XOM

4. In the Select classes field of the BOM Entry dialog, select the XOM package. When you
select the package, you automatically select all the classes that it contains, as shown in
Figure 3-18. Click Finish.

Figure 3-18 Selecting a XOM package to import all classes
Chapter 3. Getting started with business rules 47

5. In the Rule Explorer view, the bom folder contains a new BOM entry model, as shown in
Figure 3-19.

Figure 3-19 Viewing the generated BOM

6. View the generated BOM and its verbalization:

a. In the Rule Explorer view, double-click bom  model to open the BOM editor.

b. In the BOM Editor, expand the insdemo package to view the generated BOM, as
shown in Figure 3-20.

c. Double-click the Driver class to view the default class verbalization.

Figure 3-20 Viewing the generated BOM Entry model in the BOM editor
48 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

d. The resulting Class Verbalization section (of the Class Driver window) is shown
(Figure 3-21).

Figure 3-21 Viewing the default verbalization

3.2.5 Declaring ruleset parameters

Ruleset parameters provide the means to exchange data between a COBOL application and
the rule application. You define ruleset parameters by name, type, and direction.

In this example, you decide on the status of an insurance request and response, so that you
create ruleset parameters for the Request and Response classes. You use the IN direction for
the request parameter. The value of the request parameter is provided as input from the
COBOL client application on execution. The direction for the response parameter must be
IN_OUT. The value of the request parameter is set by the IN value passed by the client and
then updated by the engine on the way OUT. The updated value is returned to the client.

Follow these steps to declare ruleset parameters:

1. In the Design part of the Rule Project Map tab, click Define parameters, as shown in
Figure 3-22.

Figure 3-22 Selecting Define parameters option

Language: The default verbalization is in English. If you are working in a localized
version of Rule Designer, you can verbalize the BOM classes in the language of
your locale.

Important: You cannot use the OUT parameter direction with zRES, because COBOL
programs do not support memory allocation dynamically.
Chapter 3. Getting started with business rules 49

2. In the Ruleset Parameters dialog, select Enable type check for COBOL XOM.

3. To define a request parameter, click Add. Then, change the following default values, as
shown in Figure 3-23:

– In the Name column, type request.

– In the Type column, click the ellipsis (…) on the right of the cell, and select Request.
The xom.Request entry is entered in the cell automatically.

– In the Direction column, select the IN direction.

– In the Verbalization column, type the insurance request.

Figure 3-23 Adding the ruleset parameter for request
50 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. To define the response parameter, click Add. Then, change the following default values,
as shown in Figure 3-24:

– In the Name column, type response.

– In the Type column, select Response. The xom.Response entry is added to the cell
automatically.

– In the Direction column, select the IN_OUT direction.

– In the Verbalization column, type the insurance response.

Click OK.

Figure 3-24 Add the ruleset parameter for response

3.2.6 Adding BOM methods and mapping them to the XOM

You use methods to specify conditions and actions in your rules. You create methods in the
Rule Designer. When you add methods to the BOM, you use BOM to XOM mapping in the
BOM Editor to implement the method.

This section describes how to add the following BOM methods:

� addMessage: Defines what is needed to pass information from the rules.
� reject: Identifies whether the insurance request was rejected.

Important: You cannot map the BOM method to a Java XOM method, because you must
not change the XOM.
Chapter 3. Getting started with business rules 51

Adding the addMessage method
To add the addMessage method, follow these steps:

1. In the Outline view, expand the model package, and double-click the Response class, as
shown in Figure 3-25.

Figure 3-25 Selecting the Response class

2. On the Class Response page of the BOM editor, to the right of the Members section, click
New, as shown in Figure 3-26.

Figure 3-26 Creating a new member
52 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. In the New Member dialog (Figure 3-27), enter the following information:

– For the Type, select Method.
– For the Name, enter addMessage.
– For the Type, enter void.

Click Add.

Figure 3-27 Creating a new method for addMessage

4. In the Method Argument dialog (Figure 3-28), enter the following information:

– For the Name, enter msg.
– For the Type, enter java.lang.String.

Click OK, and then click Finish on the New Member dialog.

Figure 3-28 Adding the method argument
Chapter 3. Getting started with business rules 53

5. On the Class page of the BOM editor, the Members list now includes the
addMessage(String) method, as shown in Figure 3-29. Double-click the addMessage
method.

Figure 3-29 addMessage method created

6. In the Member Verbalization section of the BOM editor (Figure 3-30), click Create to view
the default verbalization.

Figure 3-30 Creating verbalization

7. The default verbalization of the addMessage class is now displayed. Keep the default
verbalization of add {0} to the messages of {this}, as shown in Figure 3-31.

Figure 3-31 Keeping the default verbalization

8. Scroll down to the BOM to XOM Mapping section of the BOM editor and expand it to
activate the BOM to XOM Mapping editor, as shown in Figure 3-32.

Figure 3-32 Activating the BOM to XOM Mapping editor
54 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

9. Enter the following Java code (Figure 3-33):

this.messages.add(msg) ;

Figure 3-33 Adding method implementation

10.Save your work.

Adding the reject method
To add the reject method, follow these steps:

1. Double-click the Response class in the Rule Explorer. Under the Members section, click
New, as shown in Figure 3-34.

Figure 3-34 Creating a new reject method
Chapter 3. Getting started with business rules 55

2. In the New Member dialog (Figure 3-35), enter the following information:

– For the Type, select Method.

– For the Name, enter reject.

– For the Type, enter void.

Click Finish.

Figure 3-35 Defining the method argument

3. Create the default verbalization for the reject method. Double-click the reject() method.
Then, click Create and accept the default verbalization of reject {this}, as shown in
Figure 3-36.

Figure 3-36 Defining verbalization for the reject method
56 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. Scroll down to the BOM to XOM Mapping section of the BOM editor and expand it to
activate the BOM to XOM Mapping editor. Enter the following Java code, as shown in
Figure 3-37.

Type this.approved = false;

Save your work.

Figure 3-37 Implementing the reject method

The Rule Explorer now shows that these members are present in their classes, as shown in
Figure 3-38.

Figure 3-38 Viewing the new BOM methods
Chapter 3. Getting started with business rules 57

3.2.7 Creating the ruleflow

Before writing the rules, you orchestrate how the rules execute. You control the order in which
rules are executed by using ruleflows. When defining the flow of execution, you organize
rules into packages that contain related rules. This section explains how to create a package
that relates to the validation rules.

Follow these steps to create a ruleflow:

1. In Rule Designer, in the Orchestrate part of the Rule Project Map, click Add rule package,
(Figure 3-39).

Figure 3-39 Adding a new rule package

2. In the New Rule Package dialog, in the Package field, enter validation and click Finish,
(Figure 3-40).

Figure 3-40 Entering the validation package name

3. To create the ruleflow, in the Orchestrate part of the Rule Project Map, click Add ruleflow,
(Figure 3-41).

Figure 3-41 Adding a new ruleflow
58 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. In the New Ruleflow dialog, in the Name field, enter mainflow and click Finish
(Figure 3-42).

Figure 3-42 Entering the ruleflow name

5. To create a ruleflow by using the Ruleflow diagram that is shown in Figure 3-43 on
page 60 and Figure 3-44 on page 60, complete the following steps:

a. Add the start node, which is the starting point of the ruleflow. Click the start node icon
() in the ruleflow diagram toolbar and drop it in the ruleflow diagram.

b. Add the end node, which is the endpoint of the ruleflow. Click the end node icon () in
the ruleflow diagram toolbar and drop it in the ruleflow diagram.
Chapter 3. Getting started with business rules 59

c. Add the task for the validation rule package, which is the rule task of the ruleflow. Click
the validation rule package in the Rule Explorer view and drag it into the ruleflow
diagram as shown in Figure 3-43.

Figure 3-43 Dragging the validation package to the canvas

d. Connect the elements:
i. Click the arrow icon () to start connection mode.
ii. Click the start node icon () and then click the validation task box.
iii. Click the validation task box again, and finally, click the end node icon ().

Figure 3-44 Designing the ruleflow
60 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. Next, you can optionally refine the diagram by clicking the button. Figure 3-45 shows
the diagram.

Figure 3-45 Refining the ruleflow

7. Save your work.
Chapter 3. Getting started with business rules 61

3.2.8 Authoring rules

This section explains how to write action rules and put them into the relevant package. You
can create the following rules in Rule Designer for the validation packages:

� MaxiMinimumAge rule
� NumberOfAccidents rule

To create the action rules, follow these steps:

1. Create the MaxiMinimumAge rule:

a. In the rules project, right-click validation and then click New  Action Rule, as
indicated in Figure 3-46.

Figure 3-46 Creating an action rule
62 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

b. In the New Action Rule dialog, enter MaxiMinimumAge in the Name field, as shown in
Figure 3-47. Click Finish.

Figure 3-47 Entering the rule name

c. The new action rule, MaxiMinimumAge, is displayed in the Rule Explorer view and the
Intellirule Editor opens. Enter the validation with the MaxiMinimumAge rule, as shown
in Example 3-2.

Example 3-2 Validation with the MaxiMinimumAge rule

if
 the age of the driver of 'the insurance request' is less than 18
 or the age of the driver of 'the insurance request' is more than 60
then
 add "The age exceeds the maximum or minimum" to the messages of 'the
insurance response' ;
 reject 'the insurance response' ;

Figure 3-48 shows the generated action rule.

Figure 3-48 Viewing the MaxiMinimumAge rule
Chapter 3. Getting started with business rules 63

2. Create a second action rule by repeating step 1 on page 62 with a name of
NumberOfAccidents, as shown in Example 3-3.

Example 3-3 Validation with the NumberOfAccidents rule

if
 the number accidents of the driver of 'the insurance request' is more than
3
then
 add "Accidents number exceeds the maximum" to the messages of 'the
insurance response' ;
 reject 'the insurance response' ;

Figure 3-49 shows the generated action rule.

Figure 3-49 View the generated rules

3. Save your work.

You can also use a Decision Table or Decision Tree to write decision rules, as shown in the
example in Figure 3-50.

Figure 3-50 Decision table example
64 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3.2.9 Preparing the rule execution

This section shows you how to deploy rules to the zRule Execution Server for z/OS (zRES)
and how to view the deployed ruleset on the zRule Execution Server web console.

Step 1: Creating a RuleApp project
First, you must create a RuleApp project to contain the rulesets that you want to execute. To
create a RuleApp project, follow these steps:

1. In Rule Designer, in the Deploy and Integrate section of the Rule Project Map, click
Create RuleApp project (Figure 3-51).

Figure 3-51 Creating a RuleApp project

2. In the New RuleApp Project dialog, enter insuranceApp in the Project name field as the
name for your RuleApp project. Ensure that Use default location is selected
(Figure 3-52). Click Next.

Figure 3-52 Entering the RuleApp name
Chapter 3. Getting started with business rules 65

3. The rule project is listed in the Rule Projects tab, as shown in Figure 3-53. Click Finish.

Figure 3-53 Viewing the Rule Projects tab

4. The RuleApp project is created and displayed in the Rule Explorer view, as shown in
Figure 3-54.

Figure 3-54 Viewing the insuranceApp project

Step 2: Deploying the RuleApp to the zRule Execution Server for z/OS
To be able to execute the ruleset with zRule Execution Server for z/OS (zRES), you must
deploy the following artifacts to zRule Execution Server for z/OS:

� RuleApps containing the business rules within rulesets
� A JAR resource or library that contains Java classes that are used by the rules

Important: The RuleApp must be deployed to zRule Execution Server for z/OS. Ensure
that you start zRule Execution Server for z/OS successfully before you continue this step.
For information, see the Deployment of RuleApps and XOMs topic in the IBM Operational
Decision Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com:/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.zos.dserv
er.zres/topics/con_zres_deploy_ruleapps_xoms.html
66 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com:/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.zos.dserver.zres/topics/con_zres_deploy_ruleapps_xoms.html

To deploy the XOM, marshaller, and RuleApp, follow these steps:

1. Within the insuranceApp RuleApp project, double-click the archive.xml file to open the
RuleApp editor (Figure 3-55).

Figure 3-55 RuleApp editor for insuranceApp

2. In the Deployment pane, click Deploy to deploy the RuleApp to the Rule Execution Server
(Figure 3-56).

Figure 3-56 Deploying the RuleApp

3. In the Deploy RuleApp Archive dialog, select the default option Increment RuleApp
major version for deployment type (Figure 3-57) and click Next.

Figure 3-57 Selecting the deployment type
Chapter 3. Getting started with business rules 67

4. Select Create a temporary Rule Execution Server configuration and enter the
following details, as shown in Figure 3-58:

– URL: http://<your.server.address>:<PORT>/res
– Login: resAdmin
– Password: resAdmin

Select Deploy XOM of rule projects and archives contained in the RuleApp and click
Finish.

Figure 3-58 Configuring the RuleApp deployment

In the Console tab, you can see the confirmation that the project has been deployed, as
shown in Figure 3-59. The artifacts are now deployed to the zRule Execution Server for z/OS
server.

Figure 3-59 Deploying the RuleApp confirmation

Step 3: Viewing deployed rule artifacts in the Rule Execution Server
console
You can log in to the zRule Execution Server console and use the Navigator pane to view the
deployed RuleApp and XOM. To view your deployed artifacts, follow these steps:

1. In a web browser, open the web console for zRule Execution Server for z/OS by using the
following URL:

http://<your.server.address>:<PORT>/res
68 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. At the login prompt for the Rule Execution Server console, enter the following login details:

– Login: resAdmin
– Password: resAdmin

3. On the Rule Execution Server, click Explorer (Figure 3-60).

Figure 3-60 Exploring the rule project

4. In the Navigator pane, click RuleApps to view the deployed RuleApp (Figure 3-61).

Figure 3-61 Viewing the deployed ruleset
Chapter 3. Getting started with business rules 69

5. With the RulesApps tree fully expanded, click the /insurancerules/1.0 ruleset to see the
Ruleset View (Figure 3-62).

Figure 3-62 Viewing the deployed ruleset view

6. In the Navigator pane, click Resources to view the deployed XOM and the marshaller file
(Figure 3-63).

Figure 3-63 Viewing deployed Java XOM and marshaller XOM
70 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3.2.10 Building a COBOL application for rule execution

To execute the rules, you call the ruleset from the COBOL application. You can use the zRule
COBOL stub API to invoke the rule execution in a running instance of zRule Execution Server
for z/OS.

To build the COBOL application, follow these steps:

1. Include the required copybooks for the zRule COBOL stub API:

01 WS-REASON-CODES.
COPY HBRC.
COPY HBRWS.

2. Specify the ruleset path to initialize the values that are passed to zRule Execution Server
for z/OS:

* ruleset path from the zRules Execution Server
 MOVE "/insuranceApp/insurancerules" TO HBRA-CONN-RULEAPP-PATH

3. Configure the ruleset parameter:

– Set the name of the parameter:

MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)

– Set the length of the parameter:

MOVE LENGTH OF REQUEST TO HBRA-RA-DATA-LENGTH(1)

– Set the address of the parameter:

SET HBRA-RA-DATA-ADDRESS(1) TO ADDRESS OF REQUEST

4. Connect to zRule Execution Server for z/OS:

CALL 'HBRCONN' USING HBRA-CONN-AREA.

5. Execute the ruleset:

CALL 'HBRCONN' USING HBRA-CONN-AREA.

6. Disconnect from zRule Execution Server for z/OS:

CALL 'HBRDISC' USING HBRA-CONN-AREA.

COBOL application sample
Example 3-4 includes a sample COBOL application that you can use to call the rules that you
designed in the insurance-rules project.

Example 3-4 COBOL application sample to call the rules on zRule Execution Server for z/OS

IDENTIFICATION DIVISION.
 PROGRAM-ID. "INSMAIN".
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY INSDEMO.
 01 WS-REASON-CODES.
 COPY HBRC.
 COPY HBRWS.

Additional resources: You can find the INSMAIN.cbl application sample in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 335.
Chapter 3. Getting started with business rules 71

 01 WS-MESSAGE-IDX PIC 9(2).
 01 WS-MAX-TABLE-LEN PIC 9(18).

 PROCEDURE DIVISION.
 * Init ruleset parameter data
 MOVE 'John' TO FIRST-NAME
 MOVE 'Smith' TO LAST-NAME
 MOVE 'XA123456' TO ZIPCODE
 MOVE 123456 TO HOUSE-NUM
 MOVE 17 TO AGE
 MOVE '20110908' TO LIC-DATE
 MOVE 'F' TO LIC-STATUS
 MOVE 4 TO NUMBER-ACCIDENTS
 MOVE 'F' TO APPROVED
 MOVE 100 TO BASE-PRICE
 MOVE 0 TO MSG-COUNT
 * Move ruleset parameters to table HBRA-RA-PARMETERS
 MOVE ZERO TO HBRA-CONN-RETURN-CODES
 MOVE LOW-VALUES TO HBRA-RA-PARMETERS
 MOVE "/insuranceApp/insurancerules"
 TO HBRA-CONN-RULEAPP-PATH
 * Parameter Borrower
 MOVE LOW-VALUES TO HBRA-RA-PARMETERS.
 MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)
 MOVE LENGTH OF REQUEST TO HBRA-RA-DATA-LENGTH(1)
 SET HBRA-RA-DATA-ADDRESS(1)
 TO ADDRESS OF REQUEST
 * Parameter Loan
 MOVE 'response' TO HBRA-RA-PARAMETER-NAME(2)
 MOVE LENGTH OF RESPONSE TO HBRA-RA-DATA-LENGTH(2)
 * For ODO Table, the length represents the max length.
 COMPUTE WS-MAX-TABLE-LEN = LENGTH OF Messages * 100
 ADD WS-MAX-TABLE-LEN TO HBRA-RA-DATA-LENGTH(2)
 SET HBRA-RA-DATA-ADDRESS(2)
 TO ADDRESS OF RESPONSE
 * Get connection to rule execution server
 CALL 'HBRCONN' USING HBRA-CONN-AREA.
 IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-OK
 DISPLAY "connect zRules failed"
 DISPLAY "CC code " HBRA-CONN-COMPLETION-CODE
 DISPLAY "RC code " HBRA-CONN-REASON-CODE
 DISPLAY "Message " HBRA-RESPONSE-MESSAGE
 ELSE
 DISPLAY 'connect zRules successful'
 END-IF
 * Invoke rule execution server
 CALL 'HBRRULE' USING HBRA-CONN-AREA
 IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-OK
 DISPLAY "invoke zRules failed"
 DISPLAY "CC code " HBRA-CONN-COMPLETION-CODE
 DISPLAY "RC code " HBRA-CONN-REASON-CODE
 DISPLAY "Message " HBRA-RESPONSE-MESSAGE
 ELSE
 DISPLAY 'invoke zRules successful'
 END-IF
72 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

 * Get disconnect to rule execution server
 CALL 'HBRDISC' USING HBRA-CONN-AREA
 * Display result
 DISPLAY "********** EXECUTION RESULT *********"
 DISPLAY "DRIVER NAME: " FIRST-NAME
 DISPLAY "RESPONSE APPROVED: " APPROVED
 IF approved = "F"
 DISPLAY "Reject messages:"
 PERFORM VARYING WS-MESSAGE-IDX FROM 1 BY 1
 UNTIL WS-MESSAGE-IDX > MSG-COUNT
 DISPLAY messages (WS-MESSAGE-IDX)
 END-PERFORM
 END-IF
 DISPLAY "**************************************"
 STOP RUN.

Rule execution
You can compile and run the COBOL application on z/OS. In the COBOL application sample
that is shown in Example 3-4 on page 71, you hardcoded the following input values:

� AGE: 17
� NUMBER-ACCIDENTS: 4

Example 3-5 shows the results after the rule execution.

Example 3-5 Rule execution result

********** EXECUTION RESULT *********
DRIVER NAME: John
RESPONSE APPROVED: F
Reject messages:
Accidents number exceeds the maximum
The age exceeds the maximum or minimum

3.3 Getting started from an existing rule project

This section provides guidance about how to share business rules from an existing
Java-based rule project to a COBOL application on z/OS.

3.3.1 Scenario overview

In this scenario, an insurance company has an existing business rule application to perform
user validation for an insurance application. The rule projects, which the company currently
uses, contain a BOM that is based on a Java XOM. The company deploys the rules to the
Rule Execution Server in a distributed environment.

The company now wants to share the Java rule projects with COBOL applications that run on
z/OS and to manage the changes that are made to these rules. To share rules with COBOL
applications, the company must add the necessary COBOL structures to the BOM and then
generate a COBOL copybook. With these structures in the rule project, the company can then
deploy the rules application to zRule Execution Server for z/OS so that the COBOL
application can call the rulesets and execute the rules.
Chapter 3. Getting started with business rules 73

This section provides an existing rule project, sharinginsurance-rules, that has a BOM that
is generated from a Java XOM (sharinginsurance-xom). It also uses a RuleApp project
(sharinginsuranceApp) that is used for rule deployment to the runtime environment.

You can import the existing rule project from the source code that is delivered with this book.
See Appendix C, “Additional material” on page 335 for details.

To import the example rule project, follow these steps:

1. From the Rule Explorer view, right-click and then select Import from the menu.

2. In the Import dialog, select Existing Projects into Workspace, as shown in Figure 3-64.
Click Next.

Figure 3-64 Importing existing projects

Tip: You can quickly reduce the list of import sources by typing part of the name of the
import source in the Select an import source field.
74 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. In the Import Projects dialog, select the Select Archive File option and browse to the
sharinginsurance.zip file. Select all three projects, as shown in Figure 3-65, and click
Finish.

Figure 3-65 Importing the insurance projects
Chapter 3. Getting started with business rules 75

4. Figure 3-66 shows the existing rule project structure in Rule Designer.

Figure 3-66 Existing rule project structure

3.3.2 Generating a copybook from the BOM

You use the COBOL Enabled BOM feature of Rule Designer to generate a copybook from the
BOM in the existing rule project.

Use the following configuration for the BOM:

� Specify each Java class type that you want to use as top-level data items in the copybook.

� Enter a name for the runtime marshaller project and package, which are created during
the copybook generation.
76 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

To configure the BOM for copybook generation, follow these steps:

1. In the Rule Explorer, right-click the sharinginsurance-rules rule project, and select
Properties  COBOL Management  COBOL Enabled BOM (Figure 3-67). Click Add.

Figure 3-67 Navigating to the COBOL enabled BOM

2. In the Select BOM entry dialog, select model, and click OK (Figure 3-68).

Figure 3-68 Selecting the BOM model

3. In the Resource Configuration section, accept the default names for the runtime
Marshaller Project and Marshaller Package. Click Next.
Chapter 3. Getting started with business rules 77

A table shows the proposed mapping between the Java structures in the BOM and the
COBOL structures, as shown in Figure 3-69.

Figure 3-69 Configuring the BOM to COBOL type mapping

Important: Several yellow warning triangles show on certain lines. They are present
because the Java attribute name is not a valid COBOL name. Those fields have not
been enabled.
78 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. For each of the fields with a warning, amend the COBOL name to make it suitable, for
example, by converting each underscore (_) character to a dash (-) character
(Figure 3-70).

Figure 3-70 Changing the COBOL names

5. Click the COBOL Picture field for the messages item of the xom.Response class and
change the default length for messages from X(20) to X(60), as shown in Figure 3-71.
Click Finish.

Figure 3-71 Changing the default mapping of the message item of the xom.Response class

Important: The default mapping from Java String to COBOL Picture length is 20. You
adjust this value per rule project. In this scenario, the sharinginsurance-rules project
uses a COBOL Picture length mapping value of 60, as required by the real reject
message in rules.
Chapter 3. Getting started with business rules 79

6. The BOM model is now listed as a COBOL enabled BOM, as shown in Figure 3-72. Click
Manage.

Figure 3-72 COBOL enabled BOM

7. In the Copybook Generation dialog (Figure 3-73), review the information and click Next.

Figure 3-73 Copybook generation information
80 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. You see the Copybook Generation preview dialog, as shown in Figure 3-74. Review the
information and click Finish.

Figure 3-74 Copybook generation preview

9. Returning to the COBOL Enabled BOM dialog, you see that a new copybook has been
created in the COBOL copybook setting section (Figure 3-75). Click OK.

Figure 3-75 COBOL copybook settings
Chapter 3. Getting started with business rules 81

You can view the generated copybook and marshaller project, as shown in Figure 3-76:

� INSSHAR.cpy generated copybook
� model-marshaller generated marshaller project

Figure 3-76 Generated copybook

3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS

To execute a ruleset with zRule Execution Server for z/OS, you must deploy the rule project
and the Java XOM to a zRule Execution Server for z/OS. The deployment process is the
same as the process that is described in 3.2, “Getting started from a COBOL copybook” on
page 35.

Important: Do not change the generated copybook. When a change occurs to the BOM of
the rule project, use the COBOL enabled BOM feature to update the copybook.

Important: Ensure that you start a zRule Execution Server for z/OS successfully before
you attempt to deploy rules.
82 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

To deploy rule artifacts to zRule Execution Server for z/OS, follow these steps:

1. Deploy the sharinginsuranceApp by using one of the following options:

– Opening the project and double-clicking the archive.xml file to open the RuleApp
editor. Then, in the Deployment pane of the RuleApp editor, click Deploy.

– Using the menu options by right-clicking the project and selecting Validate  Deploy,
as shown in Figure 3-77.

Figure 3-77 Deploying the RuleApp

2. For the deployment type, accept the Increment RuleApp major version default option,
and click Next.

3. Select Create a temporary Rule Execution Server configuration, and enter the
following details:

– URL: http://<your.server.address>:<PORT>/res
– Login: resAdmin
– Password: resAdmin

Click Finish.

Your artifacts are deployed to zRule Execution Server for z/OS. You can now build a COBOL
application to invoke the rule execution.

3.3.4 Building a COBOL application for rule execution

You deployed the rule artifacts to zRule Execution Server for z/OS. You can now use the
generated copybook to build a COBOL application for rule execution on z/OS.
Chapter 3. Getting started with business rules 83

Generated copybook example
First, you must know the structure of the generated copybook, as shown in Example 3-6.

Example 3-6 Generated copybook INSSHAR.cpy

01 request.
 02 driver.
 03 age pic S9(5).
 03 first-name pic X(20) value SPACE.
 03 house-num pic S9(10).
 03 last-name pic X(20) value SPACE.
 03 lic-date pic 9(8).
 03 lic-status pic X.
 88 BoolValue value 'T'.
 03 number-accidents pic S9(5).
 03 zipcode pic X(20) value SPACE.
 02 vehicle.
 03 make pic X(20) value SPACE.
 03 model pic X(20) value SPACE.
 03 vec-id pic X(20) value SPACE.
 03 vec-type pic X(20) value SPACE.
 03 vec-value usage COMP-1.
 01 response.
 02 approved pic X.
 88 BoolValue value 'T'.
 02 base-price usage COMP-2.
 02 dis-price usage COMP-2.
 02 messages-Num pic 9(9).
 02 messages pic X(60) value SPACE Occurs 10 Times.

COBOL application example
Now, you can build a COBOL application according to the generated copybook, as shown in
Example 3-7.

Example 3-7 COBOL application INSSHAR.cbl

IDENTIFICATION DIVISION.
 PROGRAM-ID. "INSSHAR".
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * include the generated copybook
 COPY INSSHAR.
 01 WS-REASON-CODES.
 COPY HBRC.
 COPY HBRWS.
 PROCEDURE DIVISION.
 * Init ruleset parameter data
 MOVE 'John' TO FIRST-NAME
 MOVE 17 TO AGE

Additional resources: You can find the examples that are used in this section in the
additional information that is included in this book. For details, see Appendix C, “Additional
material” on page 335.
84 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

 MOVE 4 TO NUMBER-ACCIDENTS
 ……
 * Move ruleset path to table HBRA-RA-PARMETERS
 ……
 MOVE "/sharinginsuranceApp/sharinginsurancerules"
 TO HBRA-CONN-RULEAPP-PATH
 * move ruleset parameter for request and response
 MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)
 ……
 MOVE 'response' TO HBRA-RA-PARAMETER-NAME(2)

……
 * Get connection to rule execution server
 CALL 'HBRCONN' USING HBRA-CONN-AREA.
 ……
 * Invoke rule execution server
 CALL 'HBRRULE' USING HBRA-CONN-AREA
 ……
 * Get disconnect to rule execution server
 CALL 'HBRDISC' USING HBRA-CONN-AREA
 ……
 * Display result
 DISPLAY "RESPONSE APPROVED: " APPROVED
 ……
 STOP RUN.

Rule execution result
You can compile and run the COBOL application on z/OS. The COBOL application example
in Example 3-7 on page 84 produces the results that are shown in Example 3-8.

Example 3-8 Results of compiling and running the COBOL application

********** EXECUTION RESULT *********
DRIVER NAME: John
RESPONSE APPROVED: F
Reject messages:
Accidents number exceeds the maximum
The age exceeds the maximum or minimum

Chapter 3. Getting started with business rules 85

86 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 4. Managing business decisions
through the full lifecycle

This chapter looks at the lifecycle of a decision and considerations when deploying to a z/OS
environment.

The following topics are covered in this chapter:

� 4.1, “What is the lifecycle of rule artifacts in decisions” on page 88
� 4.2, “Working with rules through the lifecycle” on page 89
� 4.3, “Sharing decision artifacts between z/OS and a distributed environment” on page 94
� 4.4, “Installation topologies for Decision Center and Business Center” on page 95
� 4.5, “Managing artifacts through the lifecycle” on page 98
� 4.6, “Usage of defined rules” on page 102

4

© Copyright IBM Corp. 2013. All rights reserved. 87

4.1 What is the lifecycle of rule artifacts in decisions

Rule artifacts within Operational Decision Manager follow a general lifecycle that can be
tailored by the particular setup of your system. Rules can pass through one or more of the
available tools and through one or more repositories or databases before being deployed to
the production server. Your lifecycle can contain development, testing, production, and
maintenance areas, that are maintained by developers and business users as appropriate.

A typical lifecycle includes rulesets and flows that are being developed by the development
department and saved in a central repository. Specific rules can then be accessed and
maintained by business users without the necessity of returning the rules to development to
be implemented in the software. From this point, rule artifacts are tested and then can be
deployed to the main production system. Maintenance can be carried out either by the
business users (for rules modifications) or by development (for more substantial changes). A
diagram of this process is shown in Figure 4-1.

Figure 4-1 Users and management of rules

One of the key reasons for extracting decisions into a decision management system is that it
allows you to separate the lifecycle of the decisions from the lifecycle of the application that
invokes the decision. This separation is important particularly on System z where the
application deployment cycles are often long, and the business wants to be able to change
the business behavior of the application more quickly. By separating the decision lifecycle
from the application lifecycle, you can gain agility in your business applications without
sacrificing the reliability of the core logic of your business applications.

Application Developer,
Architect

Business Analyst,
Business Manager

Systems Programmer,
Deployer

Rule Designer

Decision Center
Repository

zRES

Decision Center
Console

Deploy

Publish

Manage

Deploy

Management

Decision
Changes

Development

Business Center
ConsoleDecision

Changes

Update
88 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4.2 Working with rules through the lifecycle

The decision lifecycle starts with the initial location of the rules within the business
applications. After the rules are identified, the data that is associated with the decisions can
be identified and a copybook can be created that contains the required information.

The business application must be refactored to remove the current implementation of the
business decision and replace it with calls out to the Rule Execution Server for z/OS (zRES).
The application might have decision logic and business logic interspersed throughout it. To
optimize the application, refactor the application so that it makes the fewest calls possible to
decisions, as shown in Figure 4-2.

Figure 4-2 Refactoring the business application

After the copybook containing the required data for the decision is created or identified, the
business rules for the initial version of the business decision can be authored. The initial
creation of the business object model (BOM) and verbalization is done in Rule Designer. This
action is generally considered an IT project, because it requires knowledge of the COBOL
data structure.

After the BOM is created, the IT department typically creates the initial version of the
business rules for the decision based on the rules that were previously embedded in the
application. After the first version of the business rules is created, the decision can be
deployed to a zRES environment and tested with the application.

With the first version of the decision now deployed, you must decide how to manage the
ongoing lifecycle of the decision. There are multiple approaches to this problem. In certain
development shops, the management of the business decisions remains a purely IT-based
process, using the Rule Designer environment for managing and maintaining the decisions.
Now that the business rules from the decision are authored in a far more accessible
language, it is often advantageous to allow the business team to interact directly with the
authored rules.

Business Application

Business
Logic

Decision
Logic

Business
Logic

Decision
Logic

Business
Logic

Before

Business Application

Business
Logic

Decision
Service Stub

Business
Logic

After
Refactoring

zRES
Chapter 4. Managing business decisions through the full lifecycle 89

Business users can view and modify rules using Decision Center or Business Center as
shown in Figure 4-3. Testing can still be carried out in the Decision Center without needing to
involve the IT department.

Figure 4-3 Movement of a rule through the lifecycle

After the initial deployment of the rules, the application developer can also publish the rules to
the Decision Center repository. Other roles can become involved in the decision lifecycle.

The Decision Center console provides two distinct functions:

� The ability to change the rules of decisions that are published to the repository
� The ability to manage versions and deploy decisions from the repository to the rule

runtime environments

An important part of the decision lifecycle is the ability to test the changes to the decision
before deploying it to the final server. You can use Decision Center to define scenarios or test
cases using, for example, a spreadsheet format to define the input and expected output.
Decision Center can then take this data, deploy the ruleset to a configured zRES, and
execute the decisions based on the supplied data. Decision Center can report situations
where expected results are not returned. This function gives you the ability for the decision
lifecycle to happen completely in isolation from the application lifecycle. Changes to the
decision behavior can be tested in isolation from the application before they are deployed into
the production system. For information about decision testing, see Chapter 6, “Decision
testing and simulation” on page 117.

Also, the Business console is available. It allows searching, viewing, and updating rules but it
does not give users any other access. The Business console also allows users to view the
modifications of a rule on a timeline. It does not currently offer the testing facilities that are
available to the Decision Center.

Decision Center
Repository

zRESDecision Center
Console

Decision Center
Console

System Programmer
Deployer

Update

Rule
requires
update

Business Analyst/
Business Manager

Rule for updating Deploy
90 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4.2.1 Managing artifacts

There are a number of artifacts in the decision lifecycle that require managing, as shown in
Figure 4-4:

� Ruleset
� Java execution object module (XOM)
� RuleApp

Figure 4-4 Artifacts within the decision lifecycle

Ruleset
The ruleset contains a number of elements:

� The business object model (BOM)
� The verbalization of that model
� The authored rules from the decision
� The ruleflow that guides the execution of the decision
� The declaration of the required parameters for this decision

The ruleset is the primary artifact that requires management. It contains the rules themselves
and the BOM on which they are based. The ruleset is the artifact that is published to Decision
Center. You can access the Decision Center to change the rules within a decision.

A ruleset can inherit from another ruleset. In this case, the decision contains the BOM,
verbalization, and rules from both rulesets. This approach is a useful way to reuse rules that
are shared across multiple decisions and manage the changes to the shared rules in a single
project.

The name of a ruleset is significant. It forms part of the ruleset path that is used by the client
to identify the decision that it wants to invoke on the server.

Any changes to the rules within a decision require the ruleset to be redeployed to make the
new decision behavior available. A preferred practice is to increment the minor version of the
decision when redeploying behavioral changes in the decision.

D
ep

loy

Rule Designer

zRES

RuleApp

RuleSet

Decision Center
Repository

Source Code
Repository

System

Java XOM
Chapter 4. Managing business decisions through the full lifecycle 91

Java XOM
The Java execution object module (XOM) is standard Java code that is the Java
representation of the imported COBOL copybook. zRES uses this Java XOM at run time for
mapping the COBOL data structure before rules can be executed. The Java XOM can be
deployed to the zRES server directly from Rule Designer or by using scripts on the server
instance.

Because the code is standard Java code, it must be managed and maintained by using a
source code management system. Rule Designer is based on Eclipse. Many of the standard
source code management systems have plug-ins that allow you to manage and handle
versioning for the Eclipse Java project directly from the Rule Designer environment. If the
starting point for the project is an imported copybook, this code is generated by Rule
Designer and must not be edited. If possible, mark this code as read only within the source
code management system.

Only deploy the Java XOM if there are changes to the underlying data structures that define
the interface to this decision. This situation occurs when a change is made to the COBOL
copybook that was imported to create the BOM. A change of this nature also requires a
corresponding change in the COBOL client applications to use the new copybook structure.
For this reason, changes to the COBOL copybook are considered an IT project and happen
less frequently than changes to the decision behavior in the rules. A preferred practice is to
increment the major version number of the decision when making these interface changes.

RuleApp
The RuleApp is the deployment container for one or a number of related rulesets. RuleApps
are created for deployment either within Rule Designer or Decision Center. They are a
compressed (.zip) file that contains the required artifacts to execute the decision.

A RuleApp can be deployed directly to a server from either Rule Designer or Decision Center.
Or, a RuleApp can be exported as a JAR file that can be managed externally to the
Operational Decision Manager tool and deployed to a server by using scripts. This approach
can be useful when defining the process of performing decision updates where there is no
access from Rule Designer or Decision Center to the production zRES for z/OS.

The name of a RuleApp is significant. The name forms part of the ruleset path that is used by
the client to identify the decision that it wants to invoke on the server.

4.2.2 What roles are involved in the decision lifecycle

There are three roles that are involved in the lifecycle of a decision. The names vary from
company to company, but there are normally people who can be attributed to one or more of
the following roles:

� Application/decision developer
� Systems administrator/programmer
� Business team member

The major interaction among the team members occurs in the Decision Center environment.
Here, a developer synchronizes the RuleApps on which the developer is working in Rule
Designer. The systems administrator goes to Rule Designer to version and deploy decisions.
The business team accesses Rule Designer to view or change decisions.
92 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The Decision Center environment provides role-based access authorities to allow the
systems administrator to give people the correct authority to access the rulesets for which
they are responsible. The granularity of access authority is delivered at the ruleset level. But,
with a little customizing, the granularity of management can be changed to match whatever is
required by the organization. Figure 4-5 shows how a set of permissions might appear for a
particular group of users.

Figure 4-5 Example permission settings for a business user

Rule developer
The rule developer is generally an IT-based person. In most organizations, the rule developer
is also part of the application development team that is responsible for the application that is
being modernized by having its decisions extracted. In a larger organization, a dedicated
team with the skill to externalize and develop decisions might exist, outside of the application
development team.

The rule developer is responsible for creating the initial version of the BOM and the
verbalization of that model. The rule developer normally writes the first draft or pass at the
rules within the decision based on what currently exists within the application code. The rule
developer’s primary tool is Rule Designer. The rule developer is responsible for publishing the
ruleset to Decision Center. This person also ensures that the Java XOM code is maintained in
a source code management system.

Systems administrator
The systems administrator is responsible for the production zRES servers and their actions.
In the rule lifecycle, the systems administrator generally is responsible for versioning and
deploying new versions of a decision into the zRES. The systems administrator is also
responsible for maintaining the security model within the Decision Center environment to
ensure that users have access to only the rulesets for which they are responsible.

Business team
The business team is ultimately responsible for the business policies, which are enforced
through the business decisions. The business team provides the input to the behavior of the
business decisions. Depending on the level of adoption, the business team’s interaction
varies.

The business team provides input to the rule development team for business policy changes
to implement in the decisions. In one scenario, the business team can use Business Center to
search, view, and modify specific rules from the existing system, requesting assistance from
the rules development team if it is required.

In another scenario, the business team can view the rules from existing decisions in Decision
Center and make recommendations to the rule development team to update specific rules
that must be made to implement new business policies. In this mode, the business team has
read-only access to the rulesets that contain the applicable rules.
Chapter 4. Managing business decisions through the full lifecycle 93

|n a third scenario, the business team changes the rules within a decision directly to
implement changes that are required as business policies are updated. The business team
tests the changes to the decisions by using the testing and simulation capabilities that are
accessed through Decision Center. The business team then notifies the systems
administrator that a new version of a decision is available and must be deployed.

4.3 Sharing decision artifacts between z/OS and a distributed
environment

When considering sharing decisions between z/OS and other platforms, ensure that the
correct decision artifacts are available on each platform. As part of the decision lifecycle, the
required artifacts can come from separate management systems.

Figure 4-6 shows the artifacts that are involved in a decision and the artifacts that are
required to be deployed to various platforms.

Figure 4-6 Deployment of decision artifacts

Normally, only the rulesets and the Java XOM are required on the distributed platform. Often
in this configuration, the client is local to the Rule Execution Server for distributed. The Java
XOM is part of the client application class path, so it is not explicitly deployed to the server as
a resource. The rule session inherits the class path of the client application.

Java marshaller: The Java marshaller that is shown in Figure 4-6 is used to convert the
COBOL data to Java so that it can be accessed by the Java based ruleset. In Rules
Designer and Decision Center, it is contained within the Java XOM and only appears as a
separate entity when deployed to the zRES server on a z/OS platform. It is only required
on the z/OS platform and must not be adjusted.

Required for
deployment to

distributed
environment

Required for
deployment to
z/OS environment

COBOL
Copybook

COBOL – Java
Marshaller

Java XOM

RuleSetRuleSet
94 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

On zRES, the COBOL copybook that was either imported into, or generated by, Rule
Designer is required by the client COBOL application. The COBOL copybook ensures that the
data layout is exactly the layout that is expected by the marshalling code. Because the client
in this case is COBOL and the connection to the server is managed by the zRES API stub,
the Java XOM resource must be deployed to the server. This deployment can be done either
from the Rule Designer environment or locally using supplied scripts.

In both cases, the Rule Execution Server requires that the ruleset is deployed within a
RuleApp. This deployment is from either Rule Designer, Decision Center, or locally by using
scripts.

When sharing the decision across multiple platforms, it is important to make sure that the
decision lifecycle updates and deploys the correct parts of the decision when changes are
made. If the underlying data structure definitions are not changed when updating a decision,
only the rulesets within a RuleApp must be redeployed to make the new decision version
available. If changes are made to the copybook that is used to create the BOM, or if the Java
XOM was used to create the copybook, you need to redeploy artifacts. Redeploy artifacts on
all platforms where the decision is implemented to minimize the chances of unexpected
behavior or failures. For this reason, changes to the data model must be minimized after the
decisions are in production and considered an IT project to implement.

4.4 Installation topologies for Decision Center and Business
Center

The locations of the Decision Center repository and the Decision Center and Business Center
consoles are largely independent of where the decision executes. Figure 4-7 on page 96
shows possible options for installing a Decision Center to be used with zRES. However, it is
likely that more than one Decision Center console will be employed, possibly in different
locations. The Business Center console can also be in one or more locations.
Chapter 4. Managing business decisions through the full lifecycle 95

4.4.1 Basic topologies

Figure 4-7 shows three topologies using only one instance of the Decision Center console
and the Decision Center repository.

Figure 4-7 Deployment options for Decision Center repository and console

The Decision and Business Center consoles require deployment to a web container. This web
container can be any one of the supported Java Platform, Enterprise Edition (Java EE)
application servers for distributed or WebSphere Application Server for z/OS. The Decision
and Business Center consoles also require Java Database Connectivity (JDBC) access to the
repository database.

The following sections provide a brief description of the topologies that are shown in
Figure 4-7.

Topology 1: Decision Center console and repository on distributed
In this topology, both the Decision Center console and repository are hosted on a distributed
or Linux for System z platform. The standard deployment from the Decision Center console to
Rules Execution Server for z/OS (zRES) is by HTTP-based communication. As long as
access is granted to the specific ports that are configured for deployment on the zRES or
other Rule Execution Server instances, it is straightforward to deploy to any zRES instance.
To Decision Center, the deployment interface to zRES looks the same as other Java EE
deployed Rule Execution Server instances.

All security to the console is role-based using the underlying application server to perform
authentication checks. You might prefer this configuration, because it does not require all
users of the Decision Center console to be defined to z/OS security.

Topology 2: Decision Center console on distributed and repository on
z/OS
This topology is similar to Topology 1. However, the database is on a z/OS logical partition
(LPAR). In this case, the Decision Center console must also have ports that are enabled in
any firewall to allow remote client access to the database on z/OS. Generally, Decision Center

Distributed

Decision
Center
Console

Repository

Distributed

Decision
Center
Console

Distributed

z/OS

Rule
Execution

z/OS

Rule
Execution

z/OS

Decision
Center
Console

Repository

Rule
Execution

Deploy Deploy

Repository

Deploy
96 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

is used less than the Decision Server, so the remote location of the database is not a
performance problem.

You might prefer this configuration if the rule repository is required to have z/OS qualities of
services (QoS) associated with it or if the rule repository is managed on the same platform as
the COBOL source code repository. Generally, in this case, the security access to the remote
database is delegated to an application server-level connection. That way, each Decision
Center console user does not have to be defined to z/OS security.

Topology 3: Decision Center console and repository on z/OS
This topology places both the Decision Center console and repository on z/OS. The Decision
Center console requires a WebSphere Application Server for z/OS instance in which to run
and the repository requires an IBM DB2® instance. This topology can also be deployed to
distributed Rule Execution Server instances, as well as to zRES instances.

You might prefer this configuration if all administration and deployment of a project are
contained within the z/OS teams.

4.4.2 Advanced topologies

More complex topologies can also be used, with multiple Decision or Business Center
consoles, in more than one location. It is also possible to use multiple repositories, for
example, to separate out rules under development, rules under test, and rules currently in
production. This can lead to any number of topologies combining the different resources that
are in use. Figure 4-8 shows an example of this type of layout.

Figure 4-8 Example of an advanced layout for Decision Center consoles and repositories
Chapter 4. Managing business decisions through the full lifecycle 97

In Figure 4-8 on page 97, three Decision Centers consoles are in use, and they are accessing
three separate repositories. Rules under development are developed in Rules Designer by
the IT department and are published to a Development repository so that they can be viewed
by the business department in a Decision Center console that runs on a distributed platform.
These rules can then be deployed to a zRES, which is maintained by a Decision Center
console running on distributed, but using a Decision Center repository that is on z/OS. The
rules can be modified, as required, and are stored in the Decision Center repository. After the
rules are finalized, they are exported and then deployed directly to the production zRES. They
are imported into a production repository that is stored on z/OS so that they can be viewed by
a Decision Center console, which is also running on z/OS, and deployed directly to the zRES
using the Representational State Transfer (REST) API.

4.5 Managing artifacts through the lifecycle

This section describes how the tools that are available in Operational Decision Manager for
z/OS can be used to manage artifacts through the lifecycle.

4.5.1 Rules Designer

The Rules Designer is primarily a tool for creating rule artifacts. It is used for the creation of
rules, ruleflows, decision trees, and other rules artifacts. It can be used to deploy rules to the
zRES.

Because this tool is primarily aimed at an IT department rather than a system programmer, it
is unlikely that it will be used to deploy a rule artifact to the production system. The main
communication for the Rules Designer is with development and the test Rules Execution
Servers, and with Decision Center repositories in these areas. It can, however, be used to
export rules artifacts for later deployment to a rule server by using external scripts that
implement the REST API.
98 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 4-9 shows the export window for a RuleApp.

Figure 4-9 Deployment and export from Rules Designer

Anything that is deployed from the Rule Designer to a zRES takes effect immediately.

The Rule Designer can also be used to publish rules to a Decision Center repository by first
connecting to the appropriate Decision Center and then synchronizing with it. This allows for
publishing rules to the main root or to one of the branches. Roots and branches are described
in “Versioning” on page 100.
Chapter 4. Managing business decisions through the full lifecycle 99

4.5.2 Decision Center

The Decision Center, as shown in Figure 4-10, can be configured to support a variety of
users, allowing it to be a central tool in managing artifacts currently in use. Anything deployed
from the Decision Center will be effective immediately on the zRES to which it has been
deployed.

Figure 4-10 Decision Center on startup

When configured for business users, it might allow the modification of specific rules and
events and viewing of more complex scenarios. Deploying might not be appropriate in these
circumstances. Rules can be updated or modified. Testing a specific rule can also be done.

When used by a developer, rule artifacts can be created and modified, and then deployed to a
zRES. Although, more often, the Rule Designer is used for the main development and
Decision Center is used as a maintenance tool.

When used by a system programmer, it is likely that the majority of functions are enabled.
Although in some cases, it might be useful to disable the editing capabilities on artifacts that
have been developed by the other teams. The system programmer’s primary use of the
Decision Center is to deploy the rule artifacts to the appropriate Rule Execution Servers. The
Decision Center might also be used for exporting so that rules can be deployed to the
production server by using the REST APIs, as described in 4.5.4, “REST API” on page 101.

Versioning
When a new version of an element is modified, the Decision Center creates an archived
version of that element. Therefore, the history of a particular element can be tracked by
reviewing those archived versions.

Important: The Decision Center cannot be used to deploy rules directly to the zRES.
100 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4.5.3 Business Center

The Business Center, as shown in Figure 4-11, is primarily a tool for use by business users,
and it has little capability in the lifecycle. It allows for the searching, viewing, and editing of
rules. It also allows timelines to be used to see the history of a rule. However, it has no
testing, deploying, or publishing capabilities, and its editing capabilities are limited.

The editing of rules in the Business Center causes an archived version of the rules to be
created as described in “Versioning” on page 100.

Figure 4-11 Business Center

4.5.4 REST API

Operational Decision Manager allows for the deployment of a rule’s artifacts by using the
REST API services. Therefore, the deployment of a rule artifact can be scripted to ensure that
it is deployed in the same way each time. It also means that rule artifacts can be published
without using an HTTP connection between the tool and zRES. This is a very useful method
when deploying to a production environment, because it preserves security on the production
system.

As shown in Figure 4-12 on page 102, to use this method, first the rule artifact is exported,
and then, it is deployed to the zRES server by using scripts by using the REST API. The
archive file can be copied to the appropriate location, which means that HTTP connections
are not involved.
Chapter 4. Managing business decisions through the full lifecycle 101

Figure 4-12 Deploying a rule artefact by using REST API services without using HTTP

4.5.5 ANT scripts

Using the ANT scripts method of rules deployment affects only the database and does not
inform running applications (such as the zRES) that changes have occurred. Therefore, any
changes that use this method need the zRES to be restarted for the changes to take effect.

4.6 Usage of defined rules

After a rule artifact is defined to the Decision Server, it is available for use by calling
applications. If the artifacts are deployed by a method other than the ANT scripts, no restart of
the Decision Server is required. This is a preferable method when the zRES is a production
one.

The rule can then be modified separately to the application by using the methodologies
described in this chapter. The application using the rule does not require modification for an
update to be made to that rule. By using a deployment method that requires no restart, there
does not need to be any interruption of service for the rules to be updated.

Rule Designer zRES

Rule
Artifact
Archive

Deploy
(Scripts using

REST API)

Export

Tip: It is a preferred practice that REST APIs are used rather than the ANT scripts method.
102 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 5. Invoking the rules server from
COBOL clients

This chapter describes the design of the decision interface. It describes the mapping between
the COBOL data structures passed into the decision run time and the Java structures that are
used to execute the rules. This chapter explains how you can then customize this mapping.

This chapter also describes starting a new project for deployment from a COBOL copybook.

The following topics are covered in this chapter:

� 5.1, “Designing the decision interface” on page 104
� 5.2, “Coding the COBOL client application” on page 104
� 5.3, “Mapping from the COBOL copybook” on page 107
� 5.4, “Configuring the client application to reach the rule server” on page 115

5

© Copyright IBM Corp. 2013. All rights reserved. 103

5.1 Designing the decision interface

The starting point for any successful decision project is to design the decision interface
correctly. Often, there is an existing copybook that is used by the application that is being
enabled to access Operational Decision Manager. The natural starting point seems to be to
reuse this data structure as the interface to the decision. Although this approach might seem
to be the easiest, there are benefits to be gained by giving the interface more consideration.

When designing the decision interface, consider why you are externalizing business rules into
an external decision server. One of the main reasons might be that the business decisions
change on a shorter lifecycle than the applications that invoke them. Therefore, you might
want to isolate the application from changes to the business rules in the decision. However,
you also might want to isolate the business decision from maintenance changes that occur in
the application, as well.

Changes in the application can alter the copybook that the application uses. Application
changes result in the need to import the copybook again to update the business object model
(BOM) that is used in the rules. These changes can potentially disrupt rules that are already
authored.

Also, the data in the copybook might not be suitable for use with rule authoring. Application
copybooks in COBOL are often a mix between a representation of the business data and its
specific entries. For example, often COBOL FILLER statements are put in to align data, or
fields are created to hold return codes or other diagnostic information. These fields have no
business relevance to the decision and are confusing if they are included in the BOM.

It is important to ensure that the data passed across to the business decision contains all the
required information to successfully make the decision. When thinking about the data,
consider information that might not be used in the business rules that is embedded in the
application today. This information might be useful to develop a better business decision after
it is externalized. It is far easier to pass more data across when designing the decision
interface from the outset than to re-engineer the interface at a later date or to add code into
the decision to retrieve external data.

It is a preferred practice to design the interface to a business decision in the same way that
you design a service interface. Consider the following information:

� The data that is used in the decision today
� The data that is easily available to the application
� The data that is required today, and potentially in the future, to maintain the decision after

it is externalized

Create a copybook to hold that information specifically for the decision interface that can be
versioned for that purpose. The additional cost of a few COBOL MOVE statements is
outweighed by the flexibility that this approach provides in isolating changes in both the
decision and the calling application.

5.2 Coding the COBOL client application

To access the Rules Execution Server for z/OS (zRES), the COBOL application must use the
supplied client API. This API consists of the following API calls:

HBRCONN To connect to the server
HBRRULE To execute a decision
HBRDISC To disconnect from the server
104 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Each API call takes the HBRWS copybook-defined structure as a parameter. These calls are
shown in 3.2.10, “Building a COBOL application for rule execution” on page 71.

5.2.1 HBRWS header structure

The HBRWS header structure is required for all zRule Execution Server for z/OS (zRES)
client API calls. It is in the <INSTALL-ROOT>.SHBRCOBS data set. It must be included in any client
programs that call the zRule Execution Server for z/OS.

Example 5-1 shows the layout of the HBRWS header structure.

Example 5-1 Layout of the HBRWS header structure

01 HBRA-CONN-AREA.
 10 HBRA-CONN-EYE PIC X(4) VALUE 'HBRC'.
 10 HBRA-CONN-LENTH PIC S9(8) COMP VALUE +3536.
 10 HBRA-CONN-VERSION PIC S9(8) COMP VALUE +2.
 10 HBRA-CONN-RETURN-CODES.
 15 HBRA-CONN-COMPLETION-CODE PIC S9(8) COMP VALUE -1.
 15 HBRA-CONN-REASON-CODE PIC S9(8) COMP VALUE -1.
 10 HBRA-CONN-FLAGS PIC S9(8) COMP VALUE +1.
 10 HBRA-CONN-INSTANCE.
 15 HBRA-CONN-PRODCODE PIC X(4) VALUE SPACES.
 15 HBRA-CONN-INSTCODE PIC X(12) VALUE SPACES.
 15 HBRA-CONN-SSID PIC X(4) VALUE SPACES.
 15 HBRA-CONN-GRPID PIC X(4) VALUE SPACES.
 10 HBRA-RESERVED01 PIC S9(8) COMP VALUE 0.
 10 HBRA-RESERVED02 PIC S9(8) COMP VALUE 0.
 10 HBRA-RESERVED03 PIC S9(8) COMP VALUE 0.
 10 HBRA-CONN-RULE-CCSID PIC S9(8) COMP VALUE 0.
 10 HBRA-CONN-RULEAPP-PATH PIC X(256) VALUE SPACES.
 10 HBRA-RESPONSE-AREA VALUE SPACES.
 15 HBRA-RESPONSE-MESSAGE PIC X(1024).
 10 HBRA-RA-INIT VALUE LOW-VALUES.
 15 HBRA-RESERVED04 PIC X(1792).
 10 HBRA-RA-PARMETERS
 REDEFINES HBRA-RA-INIT.
 15 HBRA-RA-PARMS OCCURS 32.
 20 HBRA-RA-PARAMETER-NAME PIC X(48).
 20 HBRA-RA-DATA-ADDRESS USAGE POINTER.
 20 HBRA-RA-DATA-LENGTH PIC 9(8) BINARY.
 10 HBRA-RESERVED.
 15 HBRA-RESERVED05 PIC X(12).
 15 HBRA-RESERVED06 PIC X(64).
 15 HBRA-RESERVED07 PIC X(64).
 15 HBRA-RESERVED08 PIC X(128).
 15 HBRA-RESERVED09 PIC X(132).

The entire HBRA-CONN-AREA must be passed on each of the three API calls to zRule
Execution Server for z/OS. The following sections describe the important elements of this
structure.
Chapter 5. Invoking the rules server from COBOL clients 105

HBRA-CONN-RETURN-CODES
The HBRA-CONN-RETURN-CODES element provides response and reason codes to the
requested API call. If these responses do not have a zero value on their return from an API,
the user documentation provides more details about the error that occurred.

HBRA-CONN-RULEAPP-PATH
The HBRA-CONN-RULEAPP-PATH element is important for the data structure. This value is
used by zRule Execution Server for z/OS to identify which decision to execute on the specific
data. After a decision is deployed to zRule Execution Server for z/OS, the value for the
RULEAPP-PATH can be identified by logging on to the administrator console and viewing the
deployed decision.

The RULEAPP-PATH uses this structure:

/<RULEAPP-NAME>/<RULEAPP-VER>/<RULESET-NAME>/<RULESET-VER>

The RULE-APP-VER and RULESET-VER are generally required only if the client wants to
execute a particular version of a decision that is deployed to zRule Execution Server for z/OS.
In most cases, this will be the latest version of the decision. In this case, the path is simplified
to this structure:

/<RULEAPP-NAME>/<RULESET-NAME>

For example, the Miniloan example that is supplied with Operational Decision Manager uses
this structure:

/zRulesMiniLoanDemoRuleApp/zRulesMiniLoanDemo

HBRA-RESPONSE-AREA
If any text messages or warnings are returned by the Java portion of the server, they are
returned in the HBRA-RESPONSE-AREA data area to help you diagnose any problems. A
preferred practice is to write this area out to an application log if a nonzero return code is
received.

HBRA-RA-PARAMETERS
The HBRA-RA-PARAMETERS section is required only on the HBRRULE API call. The
HBRA-RA-PARAMETERS section provides the user data that is used to evaluate the
decision. The structure is a list of triplets to pass the parameter name, a pointer to the data in
working storage, and the length of the data:

� HBRA-RA-PARAMETER-NAME is the name of the parameter as it is known to the
decision. This parameter name is defined as part of the rule-authoring process. The
parameter name is case-sensitive and must be added as a character string, exactly as it is
defined in the ruleset.

� HBRA-RA-DATA-ADDRESS is a pointer to the location of the parameter in your working
storage. Normally, this element points to the address of the 01-level element in your
copybook that you imported to define this parameter to the decision. It is normally set like
the following example:

set HBRA-DATA-ADDRESS(1) to address of Borrower

� HBRA-RA-DATA-LENGTH defines the length of the data structure to which the
HBRA-DATA-ADDRESS points. Ensure that you set this element correctly so that all
necessary data is passed across to the decision execution. You can use COBOL-intrinsic
functions to calculate this value, for example:

move LENGTH OF Borrower to HBRA-DATA-LENGTH(1)
106 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

When the data definition depends on the table structure, ensure that the supplied length of
the data structure is calculated assuming the maximum length of any tables.

5.2.2 HBRCONN API call

You use the HBRCONN API call to establish a connection to the Rule Execution Server for
z/OS server or for the Rules Execution Server for WebSphere Application Server on z/OS.
The HBRA-CONN-AREA data structure is passed as a parameter to this call.

In CICS, when using a Rule Execution Server for z/OS stand-alone server, Rule Execution
Server on WebSphere Application Server for z/OS, or the locally optimized Java virtual
machine (JVM) server deployment, the connection call is made at startup or when the HBRC
transaction is run and not during the HBRCONN call.

5.2.3 HBRRULE API call

The HBRRULE API call actually invokes the decision for evaluation. The HBRA-CONN-AREA
data structure is passed as a parameter and must contain references to the ruleset parameter
data that is required for evaluating the decision.

Multiple HBRRULE calls can be made within a single HBRCONN/HBRDISC pair.

5.2.4 HBRDISC API call

You use the HBRDISC API call to disconnect from the server after all decisions are evaluated
for this application. The HBRA-CONN-AREA is passed as a parameter.

In CICS, HBRDISC does not disconnect the CICS region explicitly. Instead, for CICS, this is
achieved by using the HBRD transaction.

5.3 Mapping from the COBOL copybook

This section describes the following topics:

� Structure of a COBOL-based rule project
� Supported COBOL data types
� Creating custom converters
� Mapping level-88 constructs into BOM domain types

5.3.1 Structure of a COBOL-based rule project

In Chapter 3, “Getting started with business rules” on page 33, when importing a COBOL
copybook, two Java projects are generated: the Java Execution Module (XOM) project and
the marshaller project.

XOM project
The XOM project contains a Java representation of the structure of the data in the COBOL
copybook. Each level-01 item in the copybook, both group and elementary items, is mapped
to a Java class. Each non-level-01 group item is also mapped to a class.
Chapter 5. Invoking the rules server from COBOL clients 107

Figure 5-1 is an example of this mapping.

Figure 5-1 Generating a Java XOM from the COBOL copybook

Marshalling
During the processing of requests from a COBOL application, the zRule Execution Server for
z/OS server first converts the COBOL data into Java XOM objects. After executing the
ruleset, the zRule Execution Server for z/OS then converts the Java objects back to COBOL
data.

The marshaller classes are intended to be called by zRule Execution Server for z/OS only.
You must not change a marshaller project because any change is likely to cause runtime
errors.

Imported COBOL Copybook

01 Driver.
05 Name PIC X(10).
05 Age PIC 9(3).
05 Address.

10 HouseNum PIC 9(4).
10 Street PIC X(30).
10 District PIC X(30).
10 City PIC X(30).
10 PostCode PIC X(10).

01 QuotePrice PIC 9(5).

Generated Java XOM

Class Driver
String name
short age
AddressDets addressDets

Class AddressDets
short houseNum
String street
String district
String City
String postCode

Class QuotePrice
int quotePrice

Important: You can use the classes that are mapped from a level-01 group only as ruleset
parameters that define the interface to the decision.
108 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5.3.2 Supported COBOL data types

This section describes the supported and unsupported COBOL data types.

Basic mapping
Table 5-1 lists the supported COBOL-type to Java-type mappings.

Table 5-1 Supported COBOL to Java mappings

COBOL type COBOL usage and
compile options

PICTURE string Example XOM Java type

AlphaNumeric DISPLAY Combination of A, X, and 9 PIC X(12) String

Numeric COMP-5 or BINARY,
COMP, COMP-4 with
TRUNC(BIN)

S9(1) through S9(4) PIC S9 BINARY short

S9(5) through S9(9) PIC S9(6) BINARY int

S9(10) through S9(18) PIC S9(10) BINARY long

9(1) through 9(4) PIC 9 BINARY int

9(5) through 9(9) PIC 9(6) BINARY long

9(10) through 9(18) PIC 9(10) BINARY BigInteger

9(10) through 9(18), with
decimal (V or P)

PIC S999V9 BINARY BigDecimal

DISPLAY, COMP-3,
PACKED-DECIMAL or
BINARY, COMP, COMP-4
and not TRUNC(BIN)

S9(1) through S9(4)
9(1) through 9(4)

short

S9(5) through S9(9)
9(5) through 9(9)

int

S9(10) through S9(18)
9(10) through 9(18)

long

S9(10) through S9(18) and
9(10) through 9(18), with
decimal (V or P)

BigDecimal

DISPLAY, COMP-3,
PACKED-DECIMAL and
ARITH(extend)

S9(19) through S9(31)
9(19) through 9(31)

BigInteger

DISPLAY, COMP-3,
PACKED-DECIMAL and
ARITH(extend)

S9(19) through S9(31)
9(19) through 9(31)
Decimal (V or P)

BigDecimal

DBCS DBCS G, B, or N with DISPLAY-1 PIC G(10) String

InternalFloat COMP-1 float

COMP-2 double

Level 88 methods

National NATIONAL PIC N(8) String

PIC 999V9
SIGN LEADING
SEPARATE, SIGN
TRAILING SEPARATE

BigDecimal
Chapter 5. Invoking the rules server from COBOL clients 109

Unsupported types
Table 5-2 lists the unsupported COBOL types. These types are not supported because there
are no suitable Java types to which to map. Do not include these types in the import
copybook.

If the copybook structure cannot be changed, for example, for compatibility with existing
applications, consider this work-around. In the copybook for importing, change the data item
to a corresponding ordinary alphanumeric or national type of the same length. Then, these
data items are mapped to Java strings in the generated XOM class.

There are also two unsupported Occurs Depending On (ODO) table situations:

� ODO table within a fixed-length table
� ODO table sharing the ODO object

Consider using a fixed-length table to work around these limitations.

Table 5-2 Unsupported COBOL types

Converter
You can use type converters to change the Java type to which a COBOL data item is mapped.
There are two built-in converters:

� String to boolean converter
� String to Date converter

You can also implement custom converters or set a XOM field to a custom-defined domain
class.

5.3.3 Creating custom converters

In Chapter 3, “Getting started with business rules” on page 33, you learned about how to use
the built-in type converters to map a COBOL data item to Java Boolean or Date type. There
are cases when the built-in converter cannot meet your need. You can then write a custom
converter.

Consider this example. In a COBOL program, instead of using only T to indicate true, the
program also accepts t, Y, and y as true values. But the built-in Boolean converter can accept
only one character as the true value. So, in this case, you need to write a custom converter.

A custom converter is a normal Java class. The class must be annotated with the
TypeConverter annotation. In the Converter dialog, users can select those classes with only
the TypeConverter annotation, along with the built-in converters.

COBOL type COBOL usage and
compile options

PICTURE string Example

Alphabetic DISPLAY A PIC A(20)

AlphaNumericEdited DISPLAY A X 9 B 0 / PIC XBX

NumericEdited DISPLAY B P V Z 9 0 / , . + - CR DB * cs PIC 9B9

ExternalFloat DISPLAY +9 -9 0 . V E 9. PIC +99V9E99

NationalExternalFloat NATIONAL PIC +9.9E+99 PIC NBN

NationalEdited NATIONAL PIC NBN
PIC $9.9
110 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

You then need to implement an init method. This method is called by the run time to initialize
the converter with user-defined properties. There is also an optional TypeConverterProperties
annotation with which you can define the list of expected property keys. In this example, two
keys are defined:

true-values A comma-separated list of characters that indicate true
false-value The default value that indicates false

In the init method, the values of these properties are retrieved. Then, the list of true values to
the trueValues field is saved and the falseValue field is set to the false-value character. See
Example 5-2.

Example 5-2 Custom converter code (part 1 of 2)

@TypeConverter
@TypeConverterProperties({ "true-values", "false-value" })
public class MyBooleanConverter {

private List<String> trueValues;
private String falseValue;

public void init(Map<String, String> props) {
String trueStr = props.get("true-values");
trueValues = Arrays.asList(trueStr.split(","));
falseValue = props.get("false-value");

}

Now, you can define two conversion methods:

public <TargetType> convertToTarget(<SourceType> value)
public <SourceType> convertToSource(<TargetType> value) {

The <SourceType> is the default Java type that is directly mapped from COBOL data and the
<TargetType> is the type that you want to use in the generated XOM. The convertToTarget is
called during unmarshalling, and the convertToSource is called during marshalling.

In Example 5-3, if the value that comes from COBOL is within the trueValues, the result is
true. Any other values convert to false. During marshalling, if the Java value is true, the first of
the possible true values is used, which is T in this case. If the Boolean value is false, the false
value F is used.

Example 5-3 Custom converter code (part 2 of 2)

public synchronized boolean convertToTarget(String value) {
return trueValues.contains(value);

}
public synchronized String convertToSource(boolean value) {

return value ? trueValues.get(0) : falseValue;
}

}

After the custom converter is implemented, you must add the Java project to the XOM path of
the rule project. Then, when adding a COBOL XOM, in the Converter dialog, you can choose
the converter that you defined and set the property values (see Figure 5-2).

In the generated marshaller code, the user-provided properties in this dialog are sent as
parameters in the call of the init method. Therefore, the converter is initialized before any
conversion operation.
Chapter 5. Invoking the rules server from COBOL clients 111

Figure 5-2 Converter dialog with custom converter

5.3.4 Mapping level-88 constructs into BOM domain types

A domain can restrict the possible values that a type element in BOM can accept. During rule
authoring, the editor suggests values according to the enumerated domains. A semantic
check is also performed to check that the business rule does not use a value outside the
defined domain.

The copybook that is shown in Example 5-4 was used in Chapter 3, “Getting started with
business rules” on page 33.

Example 5-4 COBOL copybook

05 VEHICLE.
 10 VEC-ID PIC X(15).
 10 MAKE PIC X(20).
 10 MODEL PIC X(20).
 10 VEC-VALUE USAGE COMP-1.
 10 VEC-TYPE PIC X(2).
 88 SUV VALUE 'SU'.
 88 SEDAN VALUE 'SD'.
 88 PICKUP VALUE 'PU'.
112 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The vehicle type VEC-TYPE data item has three level-88 items, which define the valid values
for this item: SU, SD, and PU. When importing this copybook into the Rule Designer, the level-88
items are mapped to methods. These methods are helpful to check the value of the field or to
assign the correct value to the field, but they cannot prevent the field from being assigned
incorrect values. Ideally, a user might use valid values only with the vehicle type, or the user
can use actual vehicle types instead of codes to represent the vehicle types. A domain must
be defined to meet this requirement. In the COBOL XOM import wizard, a domain converter
to map the vehicle type to a Java domain type needs to be defined.

Follow these steps:

1. Implement a Java class as the XOM for the domain definition. Example 5-5 is the sample
code. In this class, define a constructor with a string parameter. This constructor accepts
the vehicle type codes and creates a VehicleType object. You must also implement a
getValue method to retrieve the string code from the VehicleType object.

Example 5-5 Java class for domain vehicle type

package redbook;
public class VehicleType {
 public final static VehicleType SUV = new VehicleType("SU");
 public final static VehicleType SEDAN = new VehicleType("SD");
 public final static VehicleType PICKUP = new VehicleType("PU");
 private String code;
 public VehicleType(String code) {
 this.code = code;
 }
 public String getValue() {
 return code;
 }
}

2. In Rule Designer, add the project to the Java XOM path of the rule project.

3. When you import a COBOL copybook, define a converter for the vehicle-type item. In the
dialog that is shown in Figure 5-3 on page 114, when you select Set Domain Support for
the Converter field, you can select the From type. The From type is the Java type when the
COBOL data is first unmarshalled and before the converter is applied.

You need to provide the domain class name that you want to use. You can then provide
detailed information for the domain class. Select Using Constructor to convert the string
codes to the domain object and then select the GetValue Method to convert the domain
object to string.
Chapter 5. Invoking the rules server from COBOL clients 113

Figure 5-3 Converter dialog to set up the domain type

4. You must create a BOM entry for the domain class. Then, create a BOM entry for the
COBOL XOM. With the correct verbalization, you can use the domain in rule authoring
(Figure 5-4).

Figure 5-4 A sample decision table using the COBOL domain
114 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. In the converter dialog, you can also use a static factory method instead of a constructor to
define a domain converter. Example 5-6 is a sample implementation of a static factory
method.

Example 5-6 Static factory method in the domain class VehicleType

public static VehicleType getVehicleType(String code) {
 if (SUV.code.equals(code))
 return SUV;
 else if (SEDAN.code.equals(code))
 return SEDAN;
 else if (PICKUP.code.equals(code))

return PICKUP;
 else

return null;
 }

5.4 Configuring the client application to reach the rule server

The job that runs the client application needs to be configured depending on the server that
will make the business decision.

5.4.1 Batch application

For a batch application, the client application needs to be bound to the Operational Decision
Manager stub:

//HBRLIB DD DSN=++HBRHLQ++.SHBRLOAD
INCLUDE HBRLIB (HBRBSTUB)

The job that runs the client application will also have the following line that tells the application
which server to connect:

//HBRENVPR DD DISP=SHR,DSN=&HBRWDS..SHBRPARM(HBRBATCH)

5.4.2 IMS application

For an IMS application, the client application needs to be bound with the Operational Decision
Manager stub for IMS:

//HBRLIB DD DSN=++HBRHLQ++.SHBRLOAD
INCLUDE HBRLIB (HBRISTUB)

More information about working with IMS is in Chapter 12, “Configuring IMS to work with
Operational Decision Manager” on page 221.

5.4.3 CICS application

For a CICS application, the client application needs to be bound to the Operational Decision
Manager stub:

//HBRLIB DD DSN=++HBRHLQ++.SHBRCICS
INCLUDE HBRLIB (HBRCSTUB)
Chapter 5. Invoking the rules server from COBOL clients 115

More information about working with the CICS JVM is in Chapter 11, “Configuring CICS to
work with Operational Decision Manager” on page 203.

5.4.4 WebSphere Optimized Local Adapters (WOLA) batch application

For a WebSphere Optimized Local Adapters (WOLA) batch application, the client application
is bound as described in 5.4.1, “Batch application” on page 115. However, in addition, the job
that runs the application needs to include the WOLA parameter file:

//HBRENVPR DD DISP=SHR,DSN=&HBRWDS..SHBRPARM(HBRWOLA)

More information about working with WOLA is in Chapter 13, “Configuring WebSphere
Optimized Local Adapters support” on page 225.
116 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 6. Decision testing and simulation

This chapter provides an overview of the decision testing and simulation facilities that are
available with Operational Decision Manager.

The following topics are covered in this chapter:

� 6.1, “Making the right testing and simulation decisions” on page 118
� 6.2, “Types of scenario suites” on page 120
� 6.3, “Development and authoring tools” on page 122
� 6.4, “Testing and simulation architecture for z/OS decision services” on page 124
� 6.5, “Testing and simulation lifecycle” on page 135

6

© Copyright IBM Corp. 2013. All rights reserved. 117

6.1 Making the right testing and simulation decisions

There are two critical aspects of all software development projects. One critical area is testing
the business logic before deploying it into production. The other critical area is optimizing the
decisions by running a what-if analysis on a set of reference data. You run the analysis to
evaluate the effect of business logic modifications that are deployed into production.

Developers might use their traditional development toolset to run tests and simulations
against a decision service. However, business users generally do not have access to these
tools. Implementing and deploying a custom solution to provide them with these essential
services can generate extra costs and delays to the project.

Because the business users are involved in the definition and the deployment of decision
services that are developed with Operational Decision Manager for z/OS, dedicated testing
and simulation tools are provided with the product using Decision Validation Services (DVS).

6.1.1 Decision Validation Services

Operational Decision Manager for z/OS provides Decision Validation Services (DVS) for
handling test suites. This tool integrates using Rules Designer, Decision Center, and Rules
Execution Server for z/OS (zRES). A summary of the various services is shown in Figure 6-1.

Figure 6-1 Services available in the different consoles of Operational Decision Manager

When a rule project is authored, developers can define a set of tests to be saved as artifacts
of the rule project. They can then access a detailed execution report to analyze the results of
the execution.

After a rule project is published into Decision Center, business users can define other tests.
These are also saved as artifacts of the rule project and can be run against any version of the
ruleset or any subset of its rules.

zRES

Decision Center Console

Rule Designer

DVS
Enable testing
Create, deploy, and
run tests suites

DVS
Create and run test
suites
Compare reports

DVS
Run suites
Audit traces
118 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

A detailed report is then available to them and includes the following information:

� Various levels of detail are available in the execution reports. A business user can
generate a Microsoft Excel file that contains all the inputs and outputs of the decision
service under test. The business user can reuse the file to generate custom reports using
familiar business intelligence tools.

� Because the same tests and simulation scenarios can be run against various versions of
the same ruleset, business users can compare two or more execution reports to spot the
differences between them.

� A public Java API is available to author custom formats of tests and simulations and
deploy them into Decision Center to make them available to business users. Rule
Designer provides a set of dedicated editors and a wizard to streamline both the
development and the deployment of a customization.

� A common use case for customization is the deployment of a custom scenario format that
can run simulations using reference data stored in an enterprise database or a set of
pre-existing reference files.

6.1.2 Verifying the business logic implementation by testing

Decision Verification Services assists with the initial verification of business logic by the IT
department, making it easier for testing to be tracked, and also easing future regression
testing by this department. Because the suite is specifically tailored toward Operational
Decision Manager, the layout is ideally suited to such testing.

The availability of Decision Verification Services in the Decision Center means that during
rules development, the business team can be involved, allowing them to verify that the tools
exactly meet the needs of their clients. Furthermore, through a rule lifecycle, changes can be
verified by the business team without involving the IT team.

Scenario suite: Operational Decision Manager for z/OS uses the term scenario suite to
refer to a set of test cases or a set of simulation cases that can be run against a ruleset. A
scenario suite is defined as a set of scenario cases. Each scenario defines the value of the
decision service inputs and optionally a set of expectations about the output (if the
scenario suite is a test suite).
Chapter 6. Decision testing and simulation 119

Figure 6-2 shows a typical environment where a developer develops and tests rules locally
and then tests the product on a development Rule Execution Server for z/OS. The rule
projects are then passed to the business team who can test them from Decision Center and
modify the rules. If necessary, the business team can request assistance from the
development department where either more debugging is required or if a much larger
modification is required in a rule project.

Figure 6-2 Example of the lifecycle of a rule including testing

6.2 Types of scenario suites

Scenario suites are customized by using the Scenario Service Provider (SSP). More details
about the SSP are in 15.3, “Service scenario provider and key performance indicator
architecture” on page 270. This section describes the different types of testing suites that are
available and their uses.

6.2.1 Test suites

The first type of scenario suite that can be created with Operational Decision Manager for
z/OS is the test suite, which defines a list of tests to run against a ruleset. Each test suite is
defined as a list of test cases, and each test case is defined by these characteristics:

� Name

� The value of the input parameters to submit to the decision service

� An optional list of expectations about the output parameters of the decision service (for
example, “the price of the proposal equals …”, “the reward level of the customer is …”, and
so on)

� An optional list of expectations about the execution details

zRES
(Development)

Application Developer,
Architect

RES (Local)

Business Analyst,
Business Manager

Test / Update

Deploy when ready

Test

Deploy

Deploy

R
e

qu
es

t
fo

r
A

ss
is

ta
nc

e

Develop / Test /
Publish / Deploy

Publish

Decision Center
Repository

zRES (Test)

Rule Designer
120 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 6-3 shows a list of test suites in the Explore tab of the Decision Center console.

Figure 6-3 List of test suites in the Explore tab of the Decision Center console

Execution details provide detailed information about what is happening in the rule engine
during the execution of a ruleset. When the user who defines a test suite also implements the
ruleset, the user can define tests on the following execution details:

� The lists of rules that were or were not executed during the execution of the ruleset

� The total number of rules that were or were not executed during the execution of the
ruleset

� The lists of tasks that were or were not executed during the execution of the ruleset

� The total number of tasks that were or were not executed during the execution of the
ruleset

� The duration of the ruleset execution, which can be used for basic performance testing

In this way, the decision service author can test, for example, whether certain values for the
input parameters trigger the execution of certain rules.

Initial testing
The first test suites that are generally run against a decision service are the tests that verify
that the decision service behaves as expected before its deployment to production.

After the signature of a decision service has been defined, Decision Verification Services
supports the creation of a test suite to support test-driven development. Operational Decision
Manager test suites can be initially created with empty expectations. A first “dry” run of the
test suite against the ruleset helps to populate these expectations by using copy and paste to
transfer them from an execution report to the test suite definition in Microsoft Excel.

After successful testing, a decision service can be deployed into production.

Regression testing
Subsequent changes to the decision service logic generally imply that you perform regression
testing on the updated decision service before deploying these changes into production. This
way, you can ensure that the new business logic does not cause unwanted side effects.
Chapter 6. Decision testing and simulation 121

By providing versioning of the test suites and an execution reports comparison feature,
Operational Decision Manager for z/OS allows users to easily run regression testing
campaigns before deploying an update of the business logic of a decision service. Rules can
be tested easily by business users, as well as developers, allowing for easy updates to the
rule artifacts.

6.2.2 Simulation

Simulation is the second type of scenario suite that you can create with Operational Decision
Manager. Figure 6-4 shows a list of simulations that are displayed in the Explore tab of the
Decision Console.

Figure 6-4 List of simulations in the Explore tab of the Decision console

A list of simulation cases can be defined to run against a decision service and a list of key
performance indicators (KPIs) to be calculated during the execution. Key performance
indicators measure rule performance and are described in “Key performance indicator” on
page 134.

A simulation case is defined by its name and the values of the input parameters to submit to
the decision service.

In the simulation report, the values of all calculated KPIs are displayed. The same simulation
can be run against separate versions of the same ruleset. Separate reports can be compared
to check the differences between the KPI values. This capability allows the business user to
fine-tune the content of the business logic between various executions of the same simulation
until the desired KPI values are attained.

Regression testing can also be used to confirm that future versions of the rulesets are also
providing the desired KPIs before deployment into production.

6.3 Development and authoring tools

This section describes the various development and authoring tools that are available by
using DVS.

KPIs: KPIs are defined at the scenario-suite format level and are not defined by the
business user.
122 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6.3.1 Rule Designer

You can perform the following operations that relate to testing and simulation from within Rule
Designer by using the provided tooling:

� Check that a rule project is compatible with the Excel scenario suite formats, and correct it
if necessary. A list of actions, which are required to perform this check, is provided by Rule
Designer.

� Generate an Excel workbook to define a scenario suite for a rule project using one of the
Excel scenario suite formats.

� Deploy the execution object module (XOM) (or repackage the Scenario Service Provider
(SSP) with the XOM) before the first execution of a scenario suite for a ruleset.

� Create a custom scenario suite format manually or by extending the existing scenario
suite formats using a set of specialized wizards and editors, as shown in Figure 6-5.

� Deploy a custom scenario suite into the SSP and Decision Center to make it available to
the business users.

� Run a test suite by using a launch configuration. This launch configuration can access a
remote server, which is required for testing on z/OS.

� Import a DVS archive produced by a Decision Center.

Figure 6-5 Rules Designer showing some of the DVS features
Chapter 6. Decision testing and simulation 123

6.3.2 Decision Center

Before the Decision Center can test any rule project, that project must have been published to
it by the Rules Designer. You can perform the following operations that relate to testing and
simulation from within Decision Center by using the provided tooling:

� Run a test suite or simulation against all the rules of a rule project or against a subset of
the rules.

� Enable or disable a custom scenario suite format for a rule project.

� Create a test suite.

� Create a simulation.

� Display a previous execution report for a test suite or simulation.

� Compare two execution reports side by side.

Test suites and simulations are created and edited on the Explore and Compose tabs of the
Decision Center console. Other Decision Validation Services show on the Analyze tab, as
shown in Figure 6-6.

Figure 6-6 Decision Validation Services on the Analyze tab of the Decision Center console

6.3.3 Rule Execution Server console and Rule Execution Server for z/OS
console

You can perform the following operations that relate to testing and simulation from within
Decision Center by using the provided tooling:

� Run remotely submitted tests against rule projects that have been deployed to the server.

� Audit traces that are stored in the Decision Center Warehouse database.

6.4 Testing and simulation architecture for z/OS decision
services

This section describes the parts of the z/OS decision services that need to be considered for
testing and simulation, including the artifacts, the formatting options, and the reports that are
produced.
124 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6.4.1 Test and simulation artifacts

This section details the different types of artifacts that are created.

Scenario suites
A scenario suite is an artifact that is created in Decision Center to define either a test suite or
a simulation. A typical example is the simulation that is shown in Figure 6-7.

A scenario suite is attached to a rule project (or a ruleset), for which it defines tests or
simulation cases. After its creation, you can run a scenario suite from within Decision Center
at any time. Each execution creates an execution report that is stored along with the scenario
suite in the Decision Center database.

Figure 6-7 Sample simulation shown in Decision Center

Decision Validation Services archives
A DVS archive is an artifact that contains both a scenario suite and its associated ruleset in a
single file that is easy to share. Scenario suite archives can be exported from Decision Center
and imported into Rule Designer for execution and debugging by a developer.

Figure 6-8 on page 126 shows the import function, which is a standard part of the Rule
Designer. This archive is used when errors occur in the ruleset during the execution of a
scenario suite and the business user needs help from a support team to understand what
happened.
Chapter 6. Decision testing and simulation 125

Figure 6-8 Importing a DVS archive into Rules Designer

6.4.2 Formatting options

This section describes the various types of formatting options that are available to create a
test suite or simulation.

Scenario suite formats
When creating a test suite or a simulation in Decision Center, the business user is presented
with a list of available supported formats by the scenario suite creation wizard (Figure 6-9).
These formats are the scenario suite formats. They encapsulate the information that is
required by the testing and simulation features to understand how a scenario suite is defined
and needs to run.

Figure 6-9 Selecting a scenario suite format

Scenario suite formats are created by using dedicated wizards and editors in Rule Designer.
They are then published in Decision Center to be viewed by the business user.

After a scenario suite format is published in Decision Center, it needs to be enabled on a per
project basis by a Decision Center administrator. A business user can then use the scenario
suite format to create a test suite or simulation. For this reason, a custom scenario suite
format with a list of dedicated custom KPIs that you define for running a simulation on a
particular rule project is not visible in other projects.
126 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

A scenario suite format defines the following information:

� Fully qualified names for the rendered class and the launch configuration plug-in

� Fully qualified name for the scenario provider implementation

� The precision (number of meaningful digits after decimal point) to use when testing
numbers

� List of execution details that can be tested when using this format to create a test suite

� Type of ruleset parameter values to be returned in an Excel file

� Location of the execution report for viewing in Decision Center

� List of KPIs to be calculated when a simulation is run using this format

� Scenario provider implementation to use at run time

A sample scenario suite is shown in the simulation in Figure 6-7 on page 125.

Scenario provider
The scenario provider performs the following actions:

� Retrieves scenario data and returns a set of input parameter values for each scenario
case.

� If the scenario is a test suite, it provides the set of tests to be run on each scenario case
execution result.

� The scenario provider typically retrieves the scenario data and the test specification from a
dedicated data store (a relational database or a file, for example) that is provided at
creation time by the user running a test suite or simulation.

Information about the data store to use for a scenario provider is retrieved from a dedicated
graphical user interface (GUI) in Decision Center and Rule Designer. For Decision Center,
this user interface is defined by a scenario suite resource renderer class. For Rule Designer,
this user interface is defined by an Eclipse launch configuration plug-in, as shown in
Figure 6-10.

Figure 6-10 Launch configuration of the SSP in Rule Designer
Chapter 6. Decision testing and simulation 127

For more details about the scenario provider, see 15.3, “Service scenario provider and key
performance indicator architecture” on page 270.

Predefined scenario provider
Testing and simulation for DVS on z/OS comes with a predefined scenario provider. This
scenario provider retrieves both the scenario data and test specifications from a Microsoft
Excel workbook that was previously generated for a ruleset in Decision Center or in Rule
Designer. This predefined scenario provider is referred to as the Excel scenario provider and
is shown in Figure 6-11.

Figure 6-11 Scenario suite format editor in Rule Designer

Available scenario suite formats
Several scenario suite formats are available in Decision Center after a standard installation of
the product. In each scenario suite format, the user defines a test suite or simulation using a
Microsoft Excel workbook. One page is dedicated to the definition of the scenario case. Each
input parameter is defined in a table, one column per attribute, and the tests are defined in
dedicated pages. Figure 6-12 on page 129 shows a page of such a workbook.
128 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The default format is the Excel (2007-2010) format.

Figure 6-12 Sample spreadsheet with scenarios

All Excel formats are suitable for running test suites initially, but they do not define any KPIs.
The KPIs are specific to a rule project. You must customize the KPIs for these formats before
you use the formats for simulations.

More information about the different supported Excel formats is available in the Excel
scenario files topic of the Operational Decision Manager Decision Server V8.0.1 Information
Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.rules.designer.test%2Ftopics%2Fcon_excelfiles.html

DVS launch configurations
In Rule Designer, you can only run test suites (simulations can only be run from Decision
Center). Two types of Eclipse launch configurations are provided to run test suites:

� The DVS Excel File launch configuration is provided so that you can run a test suite that is
defined in a Microsoft Excel workbook locally or against a remote server, as shown in
Figure 6-13.

Figure 6-13 Launch configuration for an Excel test suite in Rule Designer
Chapter 6. Decision testing and simulation 129

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.rules.designer.test%2Ftopics%2Fcon_excelfiles.html

� The DVS Archive launch configuration is provided so that you can run a test suite that is
defined in a DVS archive that is retrieved from Decision Center locally or against a remote
server.

In addition, you can create custom launch configurations using the Eclipse plug-in extension
to run test suites, which are defined using a custom scenario suite format. They are not based
on the Excel scenario provider.

6.4.3 Test and simulation reports

Two types of test and simulation execution reports are provided. One type is for developers
running test suites from Rule Designer. The more extensive type is for business users running
test suites or simulation from Decision Center.

Execution reports for developers
The test suite execution report for developers is generated as an HTML file in the Rule
Designer workspace after the execution of a test suite (Figure 6-14 on page 131). It includes
the following information:

� Date and time that the test suite was run

� Type of execution (local or remote)

� Number of digits after the decimal point that is used for number comparisons

� Total number of scenarios in the test suite

� Total number of tests in the test suite

� Success rate for the test suite (percentage of test cases that were successfully verified)

� Total number of test failures

� Total number of test errors

� For each scenario, the name of the scenario, the success rate for the scenario, the number
of tests in the scenario, the number of failures, and the number of errors

� For each test of a scenario, the name of the test, the result of the test execution (success,
failure, or error), and a message that explains the result of the test execution
130 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 6-14 A test suite report in Rule Designer

Execution reports for business users
In Decision Center, an execution report is generated internally and stored in the Decision
Center database along with the scenario suite information every time that a scenario suite is
run. A report can be retrieved at anytime from the scenario suite artifact in the Decision
Center Explorer. Various reports for separate versions of the same ruleset can be compared
to help you detect regressions.
Chapter 6. Decision testing and simulation 131

When running a scenario suite from Decision Center, many options are available to customize
the content of the scenario suite execution report (Figure 6-15).

Figure 6-15 Detailed reporting options for a test suite in Decision Center

The additional reporting options are useful to analyze the results of an execution in detail.
However, you must use them sparingly, because they have a large impact on the performance
of the runtime execution.

A scenario suite execution report for business users displays the following information:

� Name of the report.

� Version of the test suite or the simulation for which the report was generated.

� If the scenario suite uses the Excel scenario provider, a link is provided in the report to
download the Excel workbook.

� Date and time that the scenario suite was run.

� Name of the user that launched the scenario suite.

� The rule selector that was applied to the set of rules for running the scenario suite and the
baseline that was used.

� The starting ruleflow task for the execution.

� The testing and simulation server against which the scenario suite was run.

� Total number of scenarios and the success rate for the execution.

� The following information is included for each scenario:

– Name of the scenario

– Status of the scenario

– List of rules fired

– List of executed ruleflow tasks

– Duration of the execution, if requested

– For test suites, a list of tests with the status of each test and a message explaining the
status.

– For simulation, the value of the KPI that was calculated during the simulation
132 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6.4.4 Runtime components

At the heart of the runtime architecture for testing and simulation is the Scenario Service
Provider (SSP) component. The SSP is a Java Platform, Enterprise Edition (Java EE) web
application to be deployed into a WebSphere Application Server on z/OS application server
(on the same server with Decision Center or another instance). The SSP provides a test and
simulation runtime execution service to both Rule Designer and Decision Center. It can be
deployed on multiple servers to dispatch the test and simulation load across several nodes.
The diagram that is shown in Figure 6-16 shows the connections among the different runtime
components.

Figure 6-16 Testing and simulation runtime components

The SSP is a stand-alone component. In heavy workloads, for example, when your business
users plan to run many tests and simulations on a resource-intensive decision service, you
can size the SSP independently of Decision Center.

The SSP is a back-end component that does not provide a graphical user interface. A test or
simulation execution is always triggered from either Rule Designer, Decision Center, or a Java
application that uses the Java 2 Platform, Standard Edition (J2SE) testing and simulation
runtime API.

The SSP provides both a synchronous and an asynchronous execution service. The
asynchronous execution service is available from Decision Center and the testing and
simulation runtime client API only. Figure 6-17 on page 134 shows the monitoring tool for an
asynchronous scenario suite in Decision Center.

Rule Designer

Create and run
scenario suites

Decision Center

Create and run
scenario suites

Synchronous

Synchronous
or

asynchronous

Ruleset
Repository

Decision
Warehouse

SSP

Run tests and
simulations

RES Console

Deploy ruleset
Stores

execution
traces

WAS on z/OS
Chapter 6. Decision testing and simulation 133

Figure 6-17 Monitoring asynchronous scenario suite execution in Decision Center

When a scenario suite execution is triggered, either synchronously or asynchronously, the
SSP performs the following operations:

� Deploys the ruleset under test or simulation into the ruleset repository that is defined for
the application server execution unit (XU)

� Executes each scenario case, using the input parameters that are defined in the scenario
suite, using the XU component that is deployed in the application server

� If the scenario suite is a test suite, performs tests on the execution results

� If the scenario suite is a simulation suite, performs KPI calculations on the input
parameters and execution results

� Undeploys the ruleset under test or simulation

� Returns an execution report

Decision Warehouse database
Because the SSP is not a native z/OS component, it benefits from the Decision Warehouse
database that is available for executions using Decision Server in a WebSphere Application
Server on z/OS application server. The SSP uses the Decision Warehouse database to store
additional reporting data when requested by a business user in Decision Center. Whenever a
business user requests the creation of an Excel file with the values of the output parameters,
or any execution traces, such as the list of rules fired or the execution time, the corresponding
traces are stored in the Decision Warehouse. The information stays in the Decision
Warehouse so that the Decision Center database is not overloaded with extra report data.

Key performance indicator
A key performance indicator (KPI) defines how to calculate the performance of a simulation.
KPIs are used to compare the performance of the executions of rules. You can use multiple
KPIs on the same simulation. They can then be configured to correctly present the results as
required in simulation reports.

For information about the architecture and use of KPIs, see 15.3, “Service scenario provider
and key performance indicator architecture” on page 270.

Important: To execute the ruleset under test or simulation, the SSP needs to have access
to its Java Execution Module (XOM). Prior to running a scenario suite or a simulation on a
ruleset, its XOM must be deployed in the XOM repository or repackaged into the SSP
archive by using the tooling that is provided in Rule Designer. You execute this operation
only one time, unless the XOM is updated, in which case, it must be redeployed.
134 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6.5 Testing and simulation lifecycle

The lifecycle of a project undergoing testing during its development is similar to the example
that is shown in Figure 6-18.

Figure 6-18 Testing and simulation lifecycle

6.5.1 Early development

The rule project is not available in Decision Center. The Developer performs these tasks:

1. Creates the rule project in Rule Designer.

2. Checks that the project is compatible with the scenario provider so that tests and
simulations can be run (and corrects, if necessary).

3. Develops custom scenario suite formats with custom KPIs using the wizards and editors
that are provided in Rule Designer.

4. Repackages the SSP and Decision Center with the XOM of the rule project and the client
scenario format.

6.5.2 Project ready for deployment

The project is now ready to be published to Decision Center for the first time:

1. The Administrator publishes the SSP and Decision Center to WebSphere Application
Server for z/OS.

2. The Administrator configures the URLs of the SSP servers that will be used to perform
testing and simulation in Decision Center.

Rule Designer

Application Developer

Administrator

Decision Center
Console

Business Analyst
Business Manager

Create project
Check compatible

Develop scenario suite
Package SSP and Decision Center with XOM

Publish SSP and Decision Center

Create and run scenario

Export DVS archive

Archive to Developer for debugging

Configure URLs

Publish Rules Project

Enable format

Archive
Chapter 6. Decision testing and simulation 135

3. The Developer publishes the rule project into Decision Center.

4. The Administrator enables the custom scenario suite formats for the rule project in
Decision Center.

6.5.3 Project deployed and enabled

The project is deployed and enabled in Decision Center, with the scenario suite formats to
test it or run simulations. These steps occur:

1. The Business user creates and runs scenario suites.

2. When a problem occurs, the Business User exports the DVS archive and requests
assistance from the Developer in debugging this archive.
136 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 7. Advanced topics for decision
authoring

This chapter describes the authoring rules for deployment to z/OS. It does not explain general
rule authoring. However, it does describe in more detail the mapping between the COBOL
data structures that is passed into the decision run time and the Java structures that are used
to execute the rules. This chapter also explains how you can customize that mapping.

This chapter describes starting a new project for deployment from both a COBOL copybook
and an existing Java-based rule project. It then explains how you can extend the capabilities
of the decision execution by adding custom methods into the business object model (BOM).

The following topics are covered in this chapter:

� 7.1, “Starting from an existing Java-based BOM project” on page 138

� 7.2, “Extending the capability of the rule execution with BOM methods” on page 140

� 7.3, “Considerations for sharing rules between z/OS and distributed applications” on
page 143

� 7.4, “Authoring considerations for performance” on page 144

7

© Copyright IBM Corp. 2013. All rights reserved. 137

7.1 Starting from an existing Java-based BOM project

If rule projects are currently in production on distributed systems, and you want to migrate the
rule application to the mainframe, you can enable the business object model (BOM) for a
COBOL application and generate a COBOL copybook.

7.1.1 Mapping Java data structures to COBOL

This section explains mapping Java data structures to COBOL.

Aggregation data structure
When mapping Java BOMs to COBOL, only BOM classes with aggregation relationships are
supported. If there are object references, a simple hierarchical data structure is supported.
Complex object graphs are not supported. For example, in the sample application that is used
in this document, the Insurance class has a field called Vehicle of type Vehicle. The vehicle
information is part of the insurance data, and it is a simple hierarchical data structure. This
example is supported.

But, if the Vehicle class references Insurance either directly or indirectly through other
classes, the data structure is not hierarchical. It contains loops. In this case, the BOM to
COBOL mapping is not supported. In addition, class inheritance is not supported. The BOM
must not include the following usage:

� Inheritance
� Loop reference, including self-reference
� Static attribute

Also, ensure that the BOM classes follow JavaBeans naming guidelines, such as well-formed
getters and setters; otherwise, the generated marshaller classes contain incorrect code.

General mapping rule
A BOM class is mapped to a COBOL group. Fields of the basic Java type are mapped to child
elementary data items. And, fields of the class type are mapped as subgroups (Example 7-1).

Example 7-1 A BOM with two classes

package xom;
public class Request {
 public xom.Driver primaryDriver;
 public xom.Driver secodaryDriver;
}
public class Driver {
public short age;
public string name;
}

Important: Only a BOM that originated from a Java execution object module (XOM) is
supported. A BOM that originated from an XML-based dynamic XOM is not supported.
138 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

When this BOM is mapped to a COBOL copybook, the primaryDriver and secondaryDriver
fields are generated as two groups with the same structure (Example 7-2).

Example 7-2 Copybook with two similar groups

01 request.
 02 primaryDriver.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.
 02 secodaryDriver.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.

An array is mapped to a table, and a collection is mapped to a size data item and a table
(Example 7-3).

Example 7-3 A BOM with an array and list

package xom;
public class Request {
 public xom.Driver[] drivers;
 public java.util.List vehicles domain 0,* class xom.Vehicle;
}
public class Driver {
public short age;
public string name;
}
public class Vehicle {
 public string vehicleId;
 public double vehicleValue;
}

The drivers field is an array, so the COBOL data item is a fixed-length table. The vehicles field
is a list of Vehicle objects. So, in the generated copybook, vehicles-Num is used as the actual
size of the table vehicles (Example 7-4).

Example 7-4 Copybook for array and list sample

01 request.
 02 drivers Occurs 10 Times.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.
 02 vehicles-Num pic 9(9).
 02 vehicles Occurs 10 Times.
 03 vehicleId pic X(20) value SPACE.
 03 vehicleValue usage COMP-2.
Chapter 7. Advanced topics for decision authoring 139

Mapping the basic Java type
Table 7-1 lists the Java to COBOL mapping.

Table 7-1 Java to COBOL mapping

You can change the default Java to COBOL mapping in the Default COBOL Type Setting tab
on the COBOL Code Generation property page.

The following classes are unsupported Java types:

� Any Java classes, except the classes that are listed in Table 7-1
� The java.lang.Object class
� Classes that are defined in another BOM entry

7.2 Extending the capability of the rule execution with BOM
methods

The Business Action Language (BAL) that is used to define rules is flexible and extensible.
Generally, business rules are written from a vocabulary that is based on the structure of the
data that is passed in, for example:

If the age of the borrower is less than 18
then ……

It is also possible to verbalize methods to be invoked from rules, as well. These methods can
come from either methods from the imported Java XOM classes or be defined directly in the
BOM as virtual methods, for example:

public void rejectTheLoan()
{
 this.approved = false;
}

Java type Default COBOL mapping Configuration

byte S9(3) Sign and length
USAGE BINARY, PACKED-DECIMAL,
COMP-5short S9(5)

int S9(10)

long S9(18)

java.math.BigInteger S9(18)

float COMP-1 Sign and length
USAGE BINARY, PACKED-DECIMAL,
COMP-5, and COMP-1double COMP-2

java.math.BigDecimal S9(9)V9(8)

java.lang.String X(20) X/N, length

java.util.Date 9(8) [yyyyMMdd] 9/X, date format

boolean
140 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The method in this example can be verbalized as reject the loan and then used for rule
authoring:

If the age of the borrower is less than 18
then reject the loan ;

Here, the method ‘reject the loan’ can be used in place of the BAL statement:

make it false that the loan is approved ;

This approach greatly simplifies the rule authoring experience.

Although BOM methods are useful, ensure that the business decision can still be managed by
the business and that the decision is still reusable across multiple platforms. The next section,
7.2.1, “Preferred practices for using virtual methods” on page 141, describes several of the
preferred practices for BOM methods and shows you an example of using them.

7.2.1 Preferred practices for using virtual methods

To the IT-focused decision developer, the BOM methods might appear to be an attractive way
to augment the capabilities of a business decision. However, you can negate the value of
externalizing a business decision into a business rule engine if you do not use the BOM
methods correctly. This section describes a few of the preferred practices to help you avoid
misusing the BOM methods.

Do not bury business logic in the business decision
When you realize that you can access custom Java code from within a business decision call,
it can be tempting to add business logic to the decision. Adding business logic to the decision
is generally a bad idea. This statement might seem counterintuitive, because often the terms
business logic and business rules are used interchangeably. When looking at the business
decisions, you must consider them only the rules part of the business application.

Figure 7-1 shows a simplified representation of a business application.

Figure 7-1 The structure of a business application

Business Application

Business Logic

Application
Control Flow

Data
Persistence

Business
Rules

Presentation
Logic

End User

Data
Chapter 7. Advanced topics for decision authoring 141

Figure 7-1 on page 141 shows that a business application is normally made up of the
following elements:

� Presentation logic handling the user interaction
� Application control flow handling the flow of the logic through the application
� Business rules that are the implementation of the business behavior
� Data persistence layer that handles interaction with data sources

It is important to point out that the business rules do not interact with anything outside of the
application. If you want to be able to hot-deploy new versions of decisions, you must be
certain that changes to the business rules cannot break the application. If the business rules
call out to external data sources, any changes must be tested within the full application,
forcing a full regression test.

If the changes to the business rules change only the business behavior within the application,
you can test the business rules in isolation to the full system. You only test to ensure that the
rules implement the business requirement correctly. Ensure that the rules do not cause an
issue for the application, for example, by forcing a divide by zero error. This level of testing is
only appropriate if the business rules are encapsulated within the application.

Do not add platform-specific logic if sharing rules
In most cases, Java is platform-independent. However, it is still possible to code Java
methods that only run in certain environments. For example, the JzOS Java libraries, which
are part of the base Java Runtime Environment (JRE) 6.0 for z/OS, provide a collection of
methods that are useful when coding Java on the mainframe. They contain methods for
accessing z/OS resources and formatting data, plus other useful features. After you code a
BOM method that uses the JzOS libraries, this business decision cannot be reused on a
distributed platform. The only way to share is to create either two versions of the Java XOM or
two separate rulesets, each containing a separate implementation of the BOM method,
depending on where the method is coded. Both of these options lead to greater complexity in
the rule management that is required to keep consistent decisioning across the platforms.

Use BOM methods sparingly
One of the key values of externalizing your business decisions as business rules is the ability
to author them in natural language, making them accessible to the business team. If you use
too many BOM methods, the result is recoding the business decision from the application into
BOM methods in the business rules rather than as BAL rules that are accessible. In the
extreme case, it is possible to code so much of the logic in BOM methods that the
externalized business decision is no more accessible to the business team than the original
business application from which the decision was extracted. The key is to use BOM methods
sparingly where they add value to the rule authoring by simplifying the language and the logic
required to author the decision.

BOM methods are useful in the following examples:

� Coding a formula that does not change but is used repeatedly within the decision.

One example is calculating the after-tax income of a client where the tax amount is
available as a variable to the BOM method.

� Simplifying the language that is required to perform a business operation to abstract from
the data model.

An example of this BOM method is where the business user has this capability:

reject the loan rather than having to know the relevant part of the data model
to alter to create this behavior
142 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

� Handling more complex data structures within the data model.

The XOM model can contain more complex data structures, such as ordered lists. You can
use a simple BOM method, such as addMessage(), to isolate the business user from this
complex data structure.

7.3 Considerations for sharing rules between z/OS and
distributed applications

One advantage of externalizing your business decisions is that you can identify decisions that
are duplicated across multiple applications. The next logical step is to remove the duplication
and manage the duplicated decisions as one decision to ensure consistency across the
solution. Situations can occur where a decision is deployed for both a z/OS-based application
and a distributed application. This type of deployment is possible, although certain
considerations exist.

7.3.1 Sharing a COBOL-based project with Java applications

When you start from a COBOL copybook as your definition for the data that is passed into the
decision (the XOM), the tooling initially generates a Java representation of the COBOL data
structure. These Java objects are used at run time by the decision server for evaluating the
business rules. After you import the copybook and develop your rules, the following artifacts
are left:

� The copybook
� A Java project that represents the data from the copybook
� A Java marshaller project
� One or more rulesets that define the rules in the decision

All these artifacts are required to deploy the rules to the zRule Execution Server for z/OS
environment, as shown in Figure 7-2.

Figure 7-2 Artifact deployment

Required for
deployment to

distributed
environment

Required for
deployment to
z/OS environment

COBOL
Copybook

COBOL – Java
Marshaller

Java XOM

RuleSetRuleSet
Chapter 7. Advanced topics for decision authoring 143

If you want to reuse this decision in a distributed environment, deploy the Java project that
was created from the COBOL and the rulesets together to a distributed version of Operational
Decision Manager. In this case, you use the standard Java APIs to access the decision. The
client passes the data into and out of the decision using the Java objects that are generated
from the COBOL copybook.

You must not edit or change the generated Java classes in any way. Any change to the
COBOL copybook requires the regeneration of the Java XOM. Any changes that you made
are lost. In this example, consider the COBOL copybook as the master copy of the data
model. Any required changes must be made to the COBOL copybook, and all other artifacts
regenerated.

7.3.2 Sharing a Java BOM-based project with COBOL applications on z/OS

Section 7.1, “Starting from an existing Java-based BOM project” on page 138, describes the
process of enabling a Java BOM-based project for use with COBOL applications on z/OS.
When planning to enable a Java-based BOM project, it is important to consider the
restrictions on the Java types that can be supported in this process. It is also important to
note that new artifacts are created in this process. The most important artifact to the run time
is the Java project that contains the code to marshal between the COBOL data structures and
the Java used at run time. This artifact must be deployed to the zRule Execution Server for
z/OS run time with the Java XOM and ruleset projects.

When any changes are made to the Java XOM or to the generated BOM, you must rerun the
process to update the COBOL artifacts to synchronize them with the Java changes. In this
case, consider the Java XOM as the master data model. You must not change the COBOL
copybook after it is generated.

When using an existing Java project as a starting point to deploy to z/OS, ensure that no
platform-specific code is in the Java XOM. As described in 7.2, “Extending the capability of
the rule execution with BOM methods” on page 140, rules can invoke methods that exist on
classes in the Java XOM. Ensure that if any methods are used in the rules, the methods do
not invoke any platform-specific code. Java code is independent of any platform. However,
Java code can become specific to a platform if it tries to access a data source that exists only
in the solution on particular servers. For example, the solution might use a client record
database that is hosted locally to the decision execution on IBM AIX® server1 but is not
accessible to z/OS server2 due to the firewall configuration.

7.4 Authoring considerations for performance

When authoring the rules, consider the implications on the performance of the decision. For
more information, see the IBM Redbooks publication Proven Practices for Enhancing
Performance: A Q & A for IBM WebSphere ILOG BRMS 7.1, REDP-4775, which provides
guidance about configuring and authoring for performance.
144 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 8. Decision Server events

This chapter enhances the request for a quote scenario that was introduced in 1.8, “Overview
of the scenario used in this book” on page 11 using IBM Operational Decision Manager for
z/OS to perform event pattern detection.

The following topics are covered in this chapter:

� 8.1, “Scenario overview” on page 146
� 8.2, “Building the event application” on page 147
� 8.3, “Deploying the event application to the event run time” on page 154
� 8.4, “Emitting events from CICS” on page 157
� 8.5, “Running the scenario” on page 168
� 8.6, “Using connectors to receive events from various z/OS sources” on page 172

8

© Copyright IBM Corp. 2013. All rights reserved. 145

8.1 Scenario overview

In this version of the scenario, the request for quote application running on CICS is designed
to emit (create) a business event each time that a quote is requested.

Using this event, Operational Decision Manager identifies the situation where a client submits
more than three requests for a quotation within the same hour. When this situation is
identified, Operational Decision Manager generates an action that notifies the sales team to
follow up with the client to ensure that the policy is purchased.

Figure 8-1 shows the event processing overview for the request for a quote scenario.

Figure 8-1 The event processing overview for the request for quote scenario

The business event that is generated for each quotation request is modeled on the original
COBOL copybook, which is described in Chapter 3, “Getting started with business rules” on
page 33. The original COBOL copybook is included in Example 8-1.

Example 8-1 The COBOL copybook describing a client’s request

01 REQUEST.
 05 DRIVER.
 10 FIRST-NAME PIC X(20).
 10 LAST-NAME PIC X(20).
 10 ZIPCODE PIC X(8).
 10 HOUSE-NUM PIC 9(8).
 10 AGE PIC 9(2) USAGE COMP-3.
 10 LIC-DATE PIC X(8).
 10 LIC-STATUS PIC X.
 10 NUMBER-ACCIDENTS PIC 99.
 05 VEHICLE.
 10 VEC-ID PIC X(15).
 10 MAKE PIC X(20).
 10 MODEL PIC X(20).
 10 VEC-VALUE USAGE COMP-1.
 10 VEC-TYPE PIC X(2).
 88 SUV VALUE 'SU'.
 88 SEDAN VALUE 'SD'.
 88 PICKUP VALUE 'PU'.

Request
for

Quote

z/OS

CICS

Request
Event

FollowUp
Action

Decision Server
Events

If there are more
than 3 requests in

the same hour
then…
146 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The copybook describes the data structure of both the driver and the vehicle in the scenario.
The copybook is used in the Event Designer to build an event application. Section 8.2,
“Building the event application” on page 147, describes the steps to build the application.
Section 8.3, “Deploying the event application to the event run time” on page 154, describes
how to deploy the event application to the Decision Server Events run time.

In 8.4, “Emitting events from CICS” on page 157, the CICS Event Binding Editor is used to
build an event within a CICS bundle that tells CICS how to emit the business event when a
client requests a quotation. Section 8.5, “Running the scenario” on page 168, then describes
how to deploy a CICS COBOL application to trigger the emission of the request for quote
event. Decision Server Events tooling is used to show the events that are received and the
action that is fired.

Finally, 8.6, “Using connectors to receive events from various z/OS sources” on page 172
describes how business events can be received from other sources on z/OS, such as files
and message queues.

8.2 Building the event application

This section explains how to use the Event Designer to build the event application. The Event
Designer is a Decision Server Events component that supports the definition of the metadata
layer that is required for business event processing (BEP). You can use the Event Designer to
create all the building blocks for your event application, including events, business objects,
actions, and event rules. The Event Designer is an Eclipse-based tool that can be run on a
Microsoft Windows or Linux workstation.

8.2.1 Event project overview

The Event Designer uses an event project to store all the artifacts that are required for event
processing. Figure 8-2 illustrates an overview of the artifacts that can be created in an event
project.

Figure 8-2 Event project artifacts

Additional resource: You can find the INSDEMO.cpy copybook file in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 335. You can ignore the 01 level RESPONSE
structure, because it is required only for rule executions.
Chapter 8. Decision Server events 147

For more information about the artifacts that are created in an event project, review the Event
projects topic in the Operational Decision Manager Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.events.ref%2Ftopics%2Fref_dse_eventprojects.html

8.2.2 Creating the event project

To create the event project in the Event Designer, follow these steps:

1. Start the Event Designer in Windows by selecting Start  All Programs  IBM
Operational Decision Management V8.0.1  Event Designer.

2. From the Event Designer, select File  New  Event Project.

3. On the New Event Project dialog, provide the name of the new event project as
RequestForQuote (see Figure 8-3) and click Finish.

Figure 8-3 Creating the event project

8.2.3 Creating the business objects and event from a COBOL copybook

In the new event project, you create the business objects that represent the vehicle and driver
structures in the COBOL copybook. In Rule Designer, which is described in Chapter 3,
“Getting started with business rules” on page 33, the copybook can be imported to
automatically generate the required objects. There is no equivalent functionality in the Event
Designer, and therefore, you must create the business objects manually or import an XML
representation of the business event and create the business objects from this
representation.

The .xsd file that is used to create the business event and business objects can be created as
described in 8.4.3, “Creating the CICS Bundle project” on page 157. You can obtain the
Request.xsd file in the additional material provided with this publication (see Appendix C,
“Additional material” on page 335). This .xsd file is used to define the event and business
objects.

Creating the event and business objects
The event object stores the information that is required to populate the business objects. The
business event is received from CICS. The event contains an event object that stores the
information that is required to populate the business objects.
148 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.events.ref%2Ftopics%2Fref_dse_eventprojects.html

To define the event and business object, follow these steps:

1. Right-click the new RequestForQuote project, and select New  Event.

2. Select the option Create an event based on an XML Schema.

3. Navigate to the path where the XML file is located. Click Next, and then click Finish.

4. An event called Request will be created as shown in Figure 8-4.

Figure 8-4 Creating the event objects

5. Right-click the Request_Data  Create Business Object from the Event Object.

6. Enter the name Driver to create the Driver business object. Click Next.

7. Clear the ID, Make, Model, Value, and Type. Click Finish.

8. Repeat steps 5 to 7 to create a business object called Vehicle. This time, clear the fields
First_Name through to Number_Accidents. Click Finish.

Request_data event object: When emitting events from CICS, you can have only one
event object in which all the data fields are stored. This event object is called
Request_Data. This limitation means that the fields for both the driver and the vehicle are
placed in the Request_Data event object and then mapped to the correct fields of the
necessary business object.

Note: The XML file, Request.xsd, that is used in this example is supplied in the
additional resources for this book. For details, see Appendix C, “Additional material” on
page 335.
Chapter 8. Decision Server events 149

9. Two business objects, Driver and Vehicle, are created, as shown in Figure 8-5.

Figure 8-5 Creating the business objects

8.2.4 Creating the action

The action that fires when the event pattern is identified is now created from the business
object.

Creating the action
To create the action, follow these steps:

1. Right-click the RequestForQuote project, and select New  Action.

2. Select Create a blank Action, and click Next.

3. Enter the name FollowUp for the Action, and click Next.

4. Leave the connector set to None, and click Finish.

Creating the action objects
To create the action objects, follow these steps:

1. Right-click the Driver business object, and select Create Action Object from this
business object.
150 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. Enter the name Driver, and select the RequestForQuote project and FollowUp action,
as shown in Figure 8-6.

Figure 8-6 Creating the Action Object from the business object

3. Click Finish, and the action object is generated. Using this method ensures that the action
object has all of the required field constructors to map the data from the business object to
the action. This technique also avoids the manual mapping steps that are required for the
event object fields.

4. Repeat this step to create the Vehicle Action Object, specifying Vehicle as the name for
the new action object.

8.2.5 Creating the event rule

All the necessary artifacts for the event application are created. Event logic can now be
written. It is triggered by events. Then, it acts on the business objects and emits actions.

Creating the event rule
The event logic is stored in an event rule. To create the event rule, follow these steps:

1. To create the event rule, right-click the RequestForQuote project, and select New 
Event Rule.

2. Enter IdentifyFollowUp as the name of the event rule, and click Next.

3. Select the Request event as the event to trigger this event rule, and click Next.

4. Select the ID of the vehicle as the context relationship, and click Finish.
Chapter 8. Decision Server events 151

Using a context relationship for the event rule
In this scenario, Decision Server Events must identify whether the same client requested
more than three quotes in the same hour. To enable this function, a context relationship must
be defined so that Decision Server Events has a field that it can use to identify events from
the same client.

For this scenario, the ID of the vehicle was selected as the unique identifier to allow you to
identify the pattern of more than three quotes within the same hour.

Writing the event rule
The event rule is entered directly in to the Event Rule editor, as shown in Figure 8-7.

The event uses the following logic:

if past occurrences of request within 1 hour is at least 3 then followUp;

Figure 8-7 Entering the event logic in the Event Rule editor

8.2.6 Configuring the technology connectors

The final authoring stage for the event application is to configure the event and action
technology connectors (connectors). The connectors define which protocol the Decision
Server Events run time uses to receive the event and send the action.

Decision Server Events supports the following multiple event and action connectors, as
described in the Defining technology connectors topic of the Decision Server V8.0.1
Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.events.dev%2Ftopics%2Ftsk_dse_definingtechnologyconnectors.html

� Available event connectors:

– Email: Receive an event by POP3

– File: Receive an event when a file is added or modified in a folder
152 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.events.dev%2Ftopics%2Ftsk_dse_definingtechnologyconnectors.html

– FTP: Receive an event when a file is added or modified on an FTP site

– HTTP: Receive an event by HTTP

– Java Database Connectivity (JDBC): Receive an event by executing an SQL statement

– Java Message Service (JMS): Receive an event directly from a JMS destination

– SOAP: Receive events by SOAP

� Available action connectors:

– Email: Send an action by Simple Mail Transfer Protocol (SMTP)

– File system: Save the action as a file in a folder

– FTP: Save the action as a file on an FTP site

– HTTP: Send the action by HTTP

– JDBC: Send an action by executing an SQL statement

– JMS: Send an action directly to a JMS destination

– Representational State Transfer (REST): Send an action to an application by using the
REST interface

– SOAP: Invoke a web service by using SOAP 1.1

– User console: Send an action to the user console for review and response

Configuring the event connector
This example uses the HTTP connector to receive the Request Event from CICS. Follow
these steps:

1. Double-click the Request event to open the Event editor.

2. Select the connector tab to navigate to the Connector panel, as shown in Figure 8-8.

a. From the Connector Type drop-down menu, select HTTP as the connector type for the
Request event.

b. From the Event format drop-down menu, select the Connector packet option.

c. Save the changes, and close the Event editor.

Figure 8-8 The Connector panel of the Event editor
Chapter 8. Decision Server events 153

Configuring the action connector
For this scenario, you do not configure a connector for the FollowUp action. Instead, the
Events tooling is used to verify that the action fired when the business rule is met.

In an actual scenario, an appropriate connector is used to send the generated action to the
required system. For example, the FollowUp action can be delivered through email to the
sales team to notify them to call the client to follow up on the client’s requests for a quotation.

8.3 Deploying the event application to the event run time

The Decision Server events run time on z/OS is a WebSphere application that is hosted
inside the WebSphere Application Server for z/OS.

8.3.1 Creating the event runtime connection

To deploy the event application to Decision Server Events, the Event Designer creates an
event runtime connection. Using this connection, you can both deploy and view assets on the
server.

To create the event runtime connection, follow these steps:

1. Select the Event Runtimes tab, and right-click in the empty white space.

2. Click New runtime connection, and enter the server information, as shown in Figure 8-9:

– For Host name, enter the name of your z/OS logical partition (LPAR).
– For Port, enter the appropriate port number for the Events runtime server.

Click Finish to create the connection and connect the Event Designer to the Decision
Server Events run time.

Figure 8-9 Entering the information for a new runtime connection
154 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. Figure 8-10 shows the Event Designer connected to the Decision Server Events run time,
which has no assets deployed.

Figure 8-10 The new Event Runtimes tab with an empty repository

8.3.2 Deploying the event project to the event run time

To deploy the event project to the event run time, follow these steps:

1. Right-click the RequestForQuote event project, and select Deploy.

2. Select Deploy all assets, and click Next.

3. Select Use a known runtime, and highlight the recently created runtime definition.

4. Click Finish to deploy the assets.
Chapter 8. Decision Server events 155

After the deployment completes, the assets are shown in the Event Runtimes tab, as shown
in Figure 8-11.

Figure 8-11 The deployed assets as shown in the Event Runtimes tab

Because this event project uses the HTTP connector, you now see that a new application is
automatically deployed to your WebSphere Application Server, as shown in Figure 8-12.

Figure 8-12 The wbehttpconnector web application on WebSphere Application Server

The HTTP event connector is used to receive an event by using an HTTP POST and to send
an action by using HTTP.

Configuring the HTTP connector for security
When Decision Server Events is installed on a WebSphere Application Server with security
enabled, you must specify a user role mapping for the wbehttpconnector application. The user
role mapping determines which users have permission to send events through HTTP to the
connector.

To specify the user role mapping by using the WebSphere Application Server administrative
console, complete the following steps:

1. Log in to the WebSphere Application Server administrative console.

2. In the menu, expand Applications  Application Types, and click WebSphere
enterprise applications.

3. In the main panel, click the HTTP connector application, wbehttpconnector.

4. Under Detailed Properties, click Security role to user/group mapping. Select the
HTTPEventConnectorUser role, and map one or more users to the role. To allow
unrestricted access when security is enabled, map the role to the Everyone special
subject.

5. Click Save.

Note: These steps are required only when an event project that uses the HTTP connector
is first deployed. When subsequent projects are deployed, the existing mappings are
maintained.
156 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8.4 Emitting events from CICS

The event project is now deployed to the event run time, and Decision Server Events is
waiting to receive events through HTTP. For this example, CICS is configured to send the
Request event each time that a client requests a quotation.

8.4.1 CICS event support

Given the considerable amount of business processing that is performed in CICS systems
across the world (over 30 billion transactions a day), CICS is a significant source of business
events. Events can provide enhanced business flexibility and help to meet governance and
compliance regulations.

Using event specifications that are defined to CICS, events can be captured from existing
business application programs without altering the original code. These capture points
include relevant CICS application programming interface (API) calls and when a program
starts. Each time that a program executes a capture point, CICS checks each enabled
capture specification that matches the capture point.

Each matching capture specification contains optional filters to compare against the
application context, several command options on the API call, and data passed on the API
call. If the filters match, CICS collects the payload information from information sources
described in the capture specification, enriches it with context data, and then queues the
event for dispatch so that the application can continue to execute quickly.

8.4.2 CICS Event Binding Editor

The CICS Event Binding Editor in IBM CICS Explorer® is used to create an event binding that
contains an event specification for our program. The following instructions contain the
information that is required to create the CICS Bundle project for this scenario. For
information about CICS event processing, see the IBM Redbooks publication Implementing
Event Processing with CICS, SG24-7792.

You can download CICS Explorer onto your workstation from the CICS Explorer website:

http://www-01.ibm.com/software/htp/cics/explorer/

8.4.3 Creating the CICS Bundle project

To create the CICS Bundle project, follow these steps:

1. Start CICS Explorer from the location to which it was downloaded.

2. Switch to the Resource perspective in CICS Explorer.

3. Create a CICS Bundle project by selecting Explorer  New Wizards  CICS Bundle
project.

4. Enter RequestForQuote as the name, and click Finish.

8.4.4 Creating the event binding

This section describes the steps for creating a business event; however, files from the
supporting material can be used to populate CICS Explorer.
Chapter 8. Decision Server events 157

http://www-01.ibm.com/software/htp/cics/explorer/

From CICS Explorer, click Import  File, select the RequestForQuote directory, and click
Finish. The result supplies the CICS bundle if this route has been chosen. Continue with
8.4.8, “Deploying the bundle to CICS” on page 164.

Alternatively, continue with the following steps in this section.

An event binding defines a business event to CICS. An event binding can be created by using
the CICS Event Binding Editor by business analysts and developers or by an application
analyst in response to a business requirement. An event specification describes an event and
its processing in natural language.

To create the Event Binding, follow these steps:

1. Right-click the RequestForQuote project, and select New  CICS Event Binding.

2. Enter quotation as the name, and click Finish.

A new event binding is created and an error message is also displayed, as shown in
Figure 8-13. A new event specification must now be created.

Figure 8-13 The new event binding with an error message displayed

8.4.5 Creating the event specification

The event specification describes to CICS the information that is contained in the event that is
emitted to the Decision Server Events run time.

To create the event specification, follow these steps:

1. Click Add, as shown in Figure 8-13.

2. Enter Request as the name for the specification, and click Finish.
158 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. The event specification is now created and must be edited. Click Edit Details, as shown in
Figure 8-14.

Figure 8-14 The newly created event specification

4. You must define the fields that CICS emits in this event. To add the first field, click Add in
the Emitted Business Information table, as shown in Figure 8-15.

Figure 8-15 The emitted business information is created

5. Enter the first field as First_Name with the data type as Text and click OK.

6. Repeat step 5 with the field names and data types that are listed in Table 8-1.

Table 8-1 The fields defined in the event specification

Field name Field data type

First_Name Text

Last_Name Text

ZIP_Code Text

House_Number Numeric

Age Numeric

License_Date Text
Chapter 8. Decision Server events 159

8.4.6 Creating the capture specification

Now that the event specification is complete, you can tell CICS how to capture the event and
how to emit it to the Decision Server Events run time.

To create the capture specification, follow these steps:

1. Click Add a Capture Specification on the Event specification tab.

2. Enter Request as the name, and click Finish.

3. Click the newly created Request capture specification.

4. Scroll down and select WRITEQ TS as the Application Capture Point.

5. Next, click the Filtering tab at the top. In the Event Options section, specify that the
QNAME Equals REQUESTS, as shown in Figure 8-16.

Figure 8-16 Filtering which TS Queue causes the event to be emitted

License_Status Text

Number_Accidents Numeric

ID Text

Make Text

Model Text

Value Numeric

Type Text

Field name Field data type
160 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. Click the Information Sources tab to display the event data fields. The COBOL copybook
is used to describe how the data that is written to the TS queue is mapped in to the event
fields.

7. Select the first row in the table, the First_Name field, and click Edit, as shown in
Figure 8-17.

Figure 8-17 Editing from where the event fields receive their data
Chapter 8. Decision Server events 161

8. In the new window, select FROM in the Available Data view. Click Select from imported
language structure, as shown in Figure 8-18.

Figure 8-18 Importing the COBOL copybook

9. Click Choose Language Structure File, navigate to the COBOL copybook that is used
for this scenario, and click OK.

10.Ensure that the Source Language is specified as COBOL, and click OK.
162 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

11.In the new Language Structure window, expand the driver section and select the
first_name field, as shown in Figure 8-19.

Figure 8-19 The COBOL copybook is used to define the event data mapping

12.Click OK to finish the mapping of the COBOL data to the event field.

13.Repeat these steps for the remaining fields on the Information Sources tab. Ensure that
the correct field is selected from the COBOL copybook for the event field that you are
editing.

8.4.7 Defining the adapter

The adapter defines the protocol that CICS uses to send the event to the Decision Server
Events run time. In this scenario, the HTTP adapter is used to send the event.

To configure the adapter, follow these steps:

1. Select the Adapter tab of the Event binding editor.

2. Enter the following information, as shown in Figure 8-20 on page 164:

a. Select Use an adapter defined here.

b. Select HTTP from the list of adapters.

c. Enter the name DSEVENTS as the Urimap. This name is defined to CICS in a later step.

d. For the Data Format, select WebSphere Business Events (XML) from the drop-down
list.

3. Save the event binding, and close the CICS Event Binding Editor.

Note: The adapter is defined in the event bundle here for a quick deployment. In an
actual scenario, it is suggested that the you define the adapter as an EPADAPTER in
CICS. This approach separates the creation and management of the adapter from the
event binding file.
Chapter 8. Decision Server events 163

Figure 8-20 The completed adapter specification that CICS uses to transmit the events

8.4.8 Deploying the bundle to CICS

The RequestForQuote CICS bundle now contains the completed Request event binding. The
event binding describes the fields that are emitted in the Request event, how the event is
triggered, and how data from the COBOL application is mapped into the event fields.

The next step is to configure CICS to emit the Request event to the Decision Server Events
run time each time that a client requests a quotation.

Enabling CICS for events
First, CICS must be enabled for event processing. Event processing is enabled, by default,
when a START=INITIAL or START=COLD parameter is used during the startup of your CICS TS
V4.1 or V4.2 system. When a START=WARM or START=EMERGENCY parameter is used, the settings
from the previous run of CICS are used. So, unless the setting changed, event processing is
enabled.

You can inquire on EVENTPROCESS to check whether event processing is enabled, for
example, by using CICS Explorer. You can stop and start event processing from the IBM
CICS Explorer, the CICSPlex® SM Web User Interface, or the CICS SPI or API command.
You might want to stop event processing for an upgrade or system maintenance, and then
start event processing again.

Deploying the bundle
The CICS bundle must be transferred to a directory in the z/OS Distributed File Service (zFS)
for CICS to use it. CICS Explorer provides the required functionality to transfer the CICS
bundle to the zFS.

To transfer the bundle, follow these steps:

1. Ensure that you configure an FTP connection under Window  Preferences  CICS
Explorer  Connections.
164 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. Next, right-click the RequestForQuote bundle, and select Export Bundle Project to
z/OS UNIX File System.

3. Navigate to a directory to which you have write access, typically in your home directory, for
example, /u/hiscm/RequestForQuote, and click Finish.

CICS Explorer deploys the bundle to the specified directory.

Creating a bundle definition
After the bundle is deployed to the zFS, its location must be defined to CICS by using a
bundle definition (BUNDEF).

To create the bundle definition, follow these steps:

1. Select Explorer  New Wizards  Other.

2. Expand the CICS Definitions folder, select Bundle Definition, and click Next.

3. On the New Bundle Definition dialog, enter the following information as shown in
Figure 8-21:

a. Enter the group as WODMEV.

b. Enter the name of the bundle definition as RFQ.

c. Enter the Bundle Directory as the same location that you specified previously, for
example, /u/hiscm/RequestForQuote.

Click Finish to complete the creation of the bundle definition.

Figure 8-21 The completed bundle definition

Now that the bundle definition is created, it must be installed into CICS. Follow these steps to
install the new bundle definitions:

1. Open the Bundle Definitions view by selecting Window  Show View and select Bundle
Definitions.

2. Right-click the newly created RFQ bundle.

3. Select install.
Chapter 8. Decision Server events 165

4. Then, select IYGBNCAI, which is the CICS into which to install the bundle, and click OK,
as shown in Figure 8-22.

Figure 8-22 Installing the RFQ resource bundle

Creating the URI mapping definition
The URI mapping definition DSEVENTS was used on the event adapter to tell CICS how to
send the event to the Decision Server Events run time. Create this URI mapping definition:

1. Open the URI Mapping Definition view by selecting Window  Show View and select
URI Mapping Definition.

2. Right-click in the new view and select New.

3. On the New URI Mapping Definition dialog, enter the following information, as shown in
Figure 8-23 on page 167:

a. Enter the resource group as WODMEV.

b. Enter the name as DSEVENTS.

c. Enter the host where the Decision Server Events run time is located.

d. Enter the path as /wbeca/HTTPEventConnector.

e. Click Client and enter the port on which the Decision Server Events run time is
listening.

Click Finish.

User ID access: Ensure that the user ID under which CICS is running has the appropriate
access to the UNIX System Services directory to which the event binding is transferred.
166 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Figure 8-23 Creating the URI mapping definition

4. Right-click the newly created URI mapping definition, and select Install.

5. Select the CICS to which to install the definition, and click OK.

Creating the TS Queue
You can create the TS Queue by using CICS Explorer:

1. Open the TS Model view in CICS Explorer.

2. Right-click in the white space in the view, and right-click New.

3. Fill in the following information, as shown in Figure 8-24 on page 168:

a. For Data Repository, type IYGBNCAI.

b. Select Region (CSD) and IYGBNCAI.

c. For Resource Group, type WODMEV.

d. For Name, type REQUESTS.
Chapter 8. Decision Server events 167

e. For Prefix, type REQUESTS.

f. Select Open editor.

Click Finish to create the TS model definition.

Figure 8-24 Creating the TS model definition

4. Right-click the newly created definition, and click Install.

5. Select your CICS, and click OK.

8.5 Running the scenario

CICS is now configured to emit the Request event when any CICS program writes the
Request COBOL structure to the REQUESTS TS Queue.

When this event is emitted, it is received by the Decision Server Events run time and
processed using the Event rule.

8.5.1 Enabling history in the Decision Server Event run time

Before running the sample COBOL application, configure the Decision Server Event run time
to record history. This function allows the run time to remember the received events and the
actions that are sent.

Important: The use of this function affects the performance of the Decision Server. It
should be carefully considered whether this is required when running in a system in which
high performance is required.
168 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Enabling this feature allows you to monitor the events sent from CICS. To enable history in the
Decision Server Events run time, see the Configuring the event runtime to record history topic
in the IBM Operational Decision Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.was%2Ftopics%2Ftsk_dse_config_runtime_recordhistory.html

8.5.2 Sample COBOL application to emit the Request event

To emit the Request event from CICS, the COBOL application that is shown in Example 8-2 is
provided. The application imports the Request copybook and fills out the necessary data
fields. It then writes the Request data structure to the REQUESTS TS queue to trigger the
event emission.

Example 8-2 COBOL application that emits the Request event

CBL XOPTS(APOST SP COBOL3)
 PROCESS APOST
 PROCESS TRUNC(BIN) LIB RENT LIST
 PROCESS MAP XREF(FULL) NONAME

 IDENTIFICATION DIVISION.
 PROGRAM-ID. HBRRFQ.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY REQUEST.
 PROCEDURE DIVISION.
 Move "First" TO FIRST-NAME
 Move "Driver" TO LAST-NAME
 Move "00000" TO ZIPCODE
 Move 3 TO HOUSE-NUM
 MOVE 30 TO AGE
 MOVE "19000101" TO LIC-DATE
 MOVE "E" TO LIC-STATUS
 MOVE 0 TO NUMBER-ACCIDENTS
 Move "ABC123" TO VEC-ID
 MOVE "FASTCAR" TO MAKE
 MOVE "FASTEST" TO MODEL
 MOVE 1000 To VEC-VALUE
 MOVE "SU" TO VEC-TYPE

 EXEC CICS WRITEQ TS QUEUE('REQUESTS') FROM (REQUEST)
 END-EXEC.
 GOBACK.

Compile this COBOL program by using the Enterprise COBOL compiler for z/OS and install it
into the same CICS into which the bundle definition was installed. Finally, define a transaction
in CICS to run the HBRRFQ program.

This application is a stand-alone example of emitting an event from CICS by using a COBOL
application. You can combine this example with the rule application in Chapter 3, “Getting
started with business rules” on page 33. That way, the Request event is only emitted when a
successful rule execution is completed.
Chapter 8. Decision Server events 169

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.was%2Ftopics%2Ftsk_dse_config_runtime_recordhistory.html

For example, Example 8-3 shows a rule invocation that emits the Request event when a
successful rule invocation is made.

Example 8-3 Combining a rule execution with an event emission

CALL 'HBRRULE' USING HBRA-CONN-AREA
 IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-OK
 DISPLAY "invoke request rule failed"
 ELSE
 DISPLAY 'invoke request rule successful'
 EXEC CICS WRITEQ TS QUEUE('REQUESTS') FROM (REQUEST)
 END-IF

8.5.3 Emitting the event and firing the FollowUp action

This section describes how to emit and receive an event and then check the FollowUp action.

Emitting the event
Ensure that the Decision Server Events run time starts and runs the transaction in CICS,
which causes the HBRRFQ program to run. This program causes the Request event to be
emitted with the data, as shown in the sample COBOL application in 8.5.2, “Sample COBOL
application to emit the Request event” on page 169.

The transaction must be run four times in quick succession to emulate a client requesting
more than three quotations within the same hour. These transactions then cause the Decision
Server Events run time to send the FollowUp action.

Receiving the event
Verify that the Decision Server Events run time received the Request event by logging in to
the events administration console at this address:

http://[hostname]:9088/wbe/common/login.jsp

Then, follow these steps:

1. Select the Administration view, as shown in Figure 8-25.

Figure 8-25 Logging in to the Administration console for events
170 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. When logged in, select the Reports tool, as shown in Figure 8-26.

Figure 8-26 Running the generate reports function for the events run time

3. Click Events by touch point by time and click Generate Report. This selection shows all
events that are received by the Decision Server Events run time, as shown in Figure 8-27.

Figure 8-27 The events run time receives the Request event

Checking the action
Because four Request events were received within one hour, a FollowUp action was
generated. To check the actions that fired, return to the Reports Tool. Click Actions by
touchpoint by time and click Generate Report. This selection shows all actions that are
fired by the events run time, as shown in Figure 8-28.

Figure 8-28 The FollowUp action fired
Chapter 8. Decision Server events 171

This step completes the scenario for sending an event from CICS to the Decision Server
Events run time. The next section, 8.6, “Using connectors to receive events from various z/OS
sources” on page 172, describes various considerations when running the event technology
connectors on z/OS.

8.6 Using connectors to receive events from various z/OS
sources

Technology connectors are components that provide codeless connections for events and
actions by various protocols, including SMTP, HTTP, and FTP. There are two categories of
technology connectors: event connectors and action connectors. An event connector is used
to receive events into the event run time. An action connector is used to send an action from
the event run time to a target system.

A technology connector is associated with an individual event or action. All the specifications
are defined as properties of that event or action in the Event Designer. When a technology
connector is defined for an event or action, the icon of the event or action changes to help
identify the type of technology connector. Enabling a technology connector requires no
coding.

Section 8.2.6, “Configuring the technology connectors” on page 152, describes the full list of
connectors that are available on z/OS. Considerations are listed when running these
connectors on z/OS. If a connector was not described in this section, it has no special
considerations for z/OS. For example, the Email connector uses SMTP to send or receive an
email. The Email connector is configured in the same way for z/OS as for any other platform.

8.6.1 Connectors running in WebSphere Application Server

The event run time on Operational Decision Manager introduces a new type of connector that
runs inside WebSphere Application Server. The HTTP, JMS, REST, SOAP, JDBC, and File
connectors are available as WebSphere applications and are installed to the server where the
event run time is installed. The connector applications are installed and updated automatically
as required in response to the event run time reloading.

For information about the WebSphere connectors, see the Running connector applications
within the WebSphere Application Server environment topic in the Decision Server V8.0.1
Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.events.admin%2Ftopics%2Ftsk_dse_runningconnectorapps_wasenvt.html

The JMS queue connector runs as a WebSphere application and can be used to receive
events and send actions by using WebSphere MQ on z/OS.

In this chapter, the HTTP connector was used to send an event from CICS to the Decision
Server event run time. CICS also supports the JMS queue connector, which can be used to
send the same event by using WebSphere MQ. Using WebSphere MQ increases the
reliability of the transport, ensuring that the event is received despite any planned or
unplanned interruptions.
172 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.events.admin%2Ftopics%2Ftsk_dse_runningconnectorapps_wasenvt.html

8.6.2 Connectors running as a stand-alone batch job

The traditional method for running the technology connectors on z/OS is by using a
stand-alone batch job that launches the Java process in which the connectors run. Use the
WebSphere Application Server connectors where possible because they build on the
WebSphere framework. This framework provides high availability and increased
manageability of the connectors.

For more information, see the Running the stand-alone technology connector application on
z/OS topic in the Decision Server V8.0.1Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.events.admin%2Ftopics%2Ftsk_dse_runningstandaloneconnectorapp_zos.html
Chapter 8. Decision Server events 173

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.events.admin%2Ftopics%2Ftsk_dse_runningstandaloneconnectorapp_zos.html

174 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Part 2 System configuration

Multiple runtime environments are possible with Operational Decision Manager for z/OS. This
part describes these environments and how to configure them. It contains the following
chapters:

� Chapter 9, “Prerequisites and considerations before you start” on page 177
� Chapter 10, “zRule Execution Server for z/OS stand-alone server” on page 183
� Chapter 11, “Configuring CICS to work with Operational Decision Manager” on page 203
� Chapter 12, “Configuring IMS to work with Operational Decision Manager” on page 221
� Chapter 13, “Configuring WebSphere Optimized Local Adapters support” on page 225
� Chapter 14, “Configuring decision warehousing” on page 241
� Chapter 15, “Configuring and running Decision Validation Services” on page 245
� Chapter 16, “Configuring the Rules Execution Servers for z/OS console with virtual IP

addressing” on page 311

Part 2
© Copyright IBM Corp. 2013. All rights reserved. 175

176 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 9. Prerequisites and considerations
before you start

This chapter provides an overview of the teams that are needed to complete a configuration
of Operational Decision Manager on z/OS. This chapter also includes a checklist to be
completed with the client values before embarking on a configuration.

The following topics are covered in this chapter:

� 9.1, “Runtime environments on z/OS” on page 178
� 9.2, “Teams needed for installation and configuration” on page 180
� 9.3, “Gathering the customizable information” on page 181
� 9.4, “Migration considerations” on page 181

9

© Copyright IBM Corp. 2013. All rights reserved. 177

9.1 Runtime environments on z/OS

The runtime environments on z/OS all support the COBOL execution object model (COBOL
XOM), including the Rule Execution Server running on WebSphere Application Server on
z/OS.

Figure 9-1 shows the runtime environments that can be configured on z/OS:

� zRule Execution Server for z/OS (zRES) hosted on CICS
� Stand-alone zRule Execution Server (zRES) for z/OS
� Rule Execution Server (RES) hosted on WebSphere Application Server

All of these run times support the COBOL XOM capability.

Figure 9-1 Runtime configurations on z/OS

9.1.1 Configuring the run times

You set up each runtime configuration by changing the related parameter values that are
grouped into a number of partitioned data set (PDS) members as listed in Table 9-1 on
page 179.

Important: However, the COBOL XOM capability is not supported by the rule engine
running on WebSphere Application Server on a distributed platform.

Distributed or System z

CICS

Batch

COBOL
Application

COBOL
Application

zRES

Decision
Service

Business
Rules

Decision
Service

Business
Rules

zRES

Decision
Service

Business
Rules

Decision
Service

Business
Rules

RES on WAS

Decision
Service

Business
Rules

Decision
Service

Business
Rules
178 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Table 9-1 Configuration parameters

For more information about the descriptions of the parameters in these members, see the
z/OS configuration and runtime variables topic in the IBM Operational Decision Manager
Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Fcon_ds_jcl_and_runtime_vars.html

Each configuration parameter is updated with the site-specific values when the HBRUUPTI
job is used to configure a zRule Execution Server for z/OS instance. Use the job HBRUUPTI
to help configure an Operational Decision Manager z/OS instance. This job takes the client
values from the member HBRINST and stamps them into the related configuration parameter
members and configuration JCL jobs for that runtime instance.

See Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 327 for the client values that need to be gathered before you configure Operational
Decision Manager for z/OS.

9.1.2 Prerequisite checklist

Use Table 9-2 on page 180 to check that the z/OS system is at the correct prerequisite level.
For the current information, see the IBM Decision Center for z/OS 8.0.1 on z/OS website:

http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwa
reReqsForProduct?deliverableId=1312191818820&osPlatform=z/OS#

Member name Description

HBRBATCH Used by the client to connect to the server.

HBRCICSD DB2 on CICS.

HBRCICSJ Used for CICS setup.

HBRCICSZ Execution server with which CICS connects.

HBRCMMN Common parameters between zRule Execution Server for z/OS and console.

HBRCNSL Console parameters.

HBRPSIST Member that defines the type of persistence used by the zRule Execution Server
instance. This can be either DB2 or file system-based that is located in UNIX
System Services.

HBRINST Custom configuration values for the zRES instance.

HBRSCEN Input for the Miniloan sample.

HBRWOLA The member that defines the WebSphere Optimized Local Adapters (WOLA)
connection for Operational Decision Manager to connect a COBOL program to a
WebSphere Application Server instance of the Rule Execution Server.
Chapter 9. Prerequisites and considerations before you start 179

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Fcon_ds_jcl_and_runtime_vars.html
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1312191818820&osPlatform=z/OS#
http://pic.dhe.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1312191818820&osPlatform=z/OS#

Table 9-2 Prerequisites

9.2 Teams needed for installation and configuration

Before installing and configuring Operational Decision Manager on z/OS or Operational
Decision Manager on WebSphere Application Server for z/OS, it is necessary to involve
various groups that administer the products involved with Operational Decision Manager and
to have the correct authorities to carry out the various initialization steps. Without these
people, the configuration is likely to be unsuccessful. In particular, the jobs for creating the
database can be precustomized by following the initial customization steps from the product
documentation, but the customized jobs might not be applicable to every site. These JCL jobs
are a suggested way of working and are examples that might require editing further for each
location.

When considering an Operational Decision Manager environment, a number of infrastructure
teams might need to be consulted. The following team functions can be grouped into one or
many teams:

� Installation group: Responsible for installing products by using SMP/E for z/OS

� System programmers: Responsible for creating and starting tasks, z/OS file systems,
datasets, and system configuration

� Security managers: Responsible for setting up IBM RACF® or equivalent groups and
profiles

� Database administrators: Responsible for creating the rules and events DB2 repositories

� WebSphere Application Server administrators, if running on WebSphere Application
Server

� CICS configurators, if running the rules engine in CICS

� IMS administrators, when running with IMS

Item Value

z/OS level z/11

Java level + service 6.0.1 (64-bit support)

DB2 + service 9.1

CICS + service � CICS 4.1 + UK57632, UK69637, UK69654, and UK9655 or CICS 4.2.
However, you can use CICS 3.x to run programs that connect to a
stand-alone zRule Execution Server for z/OS.

� CICS 5.1

Logical partition (LPAR) environment

zaap/ziip java/db2 workload

WebSphere Application Server level � V7 with Fix Pack 17
� V8 with Fix Pack 4
� V8.5

Operational Decision Manager � HDM8010-ODM Base z/OS (mandatory)
� HDM8011-ODM and BR Common (mandatory)
� JDM8012-Events Component z/OS
� HDM8013-Rules Component z/OS
� JDM8014- Decision Center z/OS
180 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

9.3 Gathering the customizable information

After help is committed from the groups that are mentioned in 9.2, “Teams needed for
installation and configuration” on page 180, gather all the information that is required to
customize the JCL jobs. The task of customizing the JCL jobs is done by the job HBRUUPTI
and uses the input that is supplied by the member HBRINST.

See Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 327 for details of the variables that are available in HBRINST.

9.4 Migration considerations

Operational Decision Manager is a collection of pieces that allow the business rules to be
encapsulated away from the business application program. To migrate the rules on a different
version of Operational Decision Manager requires the rules to be redeployed from one
version of Operational Decision Manager to the new version of Operational Decision
Manager. To “migrate to another version of Operational Decision Manager” is therefore a
deployment task and a configuration of the new versioned server.

You use the following steps:

1. Back up the working directories for the server instances.

2. Take an image copy of your database.

3. Synchronize and export the rule projects.

4. Remove the instance directories.

5. Drop the database artifacts. The sequences need to be dropped separately if you run
Decision Center because they are not related to the database.

6. Remove the PROC members from the SYSx.USERPROC or equivalent location.

7. Perform a full SMP/E for z/OS installation of the new version.

8. By using the same client values from the old version, place these values into the new
HBRINST and update any new variables. Keep the name of the instances the same and
run all the configuration steps.

9. Start the versioned instances and check the diagnostics.

10.Import and re-deploy the ruleapp.
Chapter 9. Prerequisites and considerations before you start 181

182 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 10. zRule Execution Server for z/OS
stand-alone server

This chapter describes the process of setting up a stand-alone zRule Execution Server for
z/OS (zRES) server. This chapter also describes how the different types of database
connections are set up from the zRES server.

The following topics are covered in this chapter:

� 10.1, “Running on z/OS stand-alone” on page 184

� 10.2, “Configuring the stand-alone zRule Execution Server for z/OS” on page 188

� 10.3, “Managing multiple zRule Execution Server for z/OS servers on one LPAR” on
page 197

� 10.4, “Setting up the database connection” on page 200

10
© Copyright IBM Corp. 2013. All rights reserved. 183

10.1 Running on z/OS stand-alone

This section describes how to run the rule engine on z/OS to consume batch work. The
following components make up the zRES server:

� A stand-alone address space that hosts the rules engine
� A zRES console to administer the zRES server
� A database to hold the rules

Figure 10-1 shows the runtime environment of a stand-alone zRule Execution Server for
z/OS.

Figure 10-1 zRes stand-alone server

10.1.1 Configuring the stand-alone zRule Execution Server for z/OS

To configure the stand-alone zRule Execution Server for z/OS server, you must edit the
values in the HBRINST member and run the HBRUUPTI job using the HBRINST member as
input to this job. This action creates a set of data sets that are configured for this zRES
instance.

For example, the output from HBRUUPTI can produce the runtime configuration data sets
that are shown in Table 10-1 and Example 10-1 for one zRES instance.

Table 10-1 zRES instance configuration data sets

Example 10-1 Example zRES runtime configuration data sets

++HBRWORKDS++.HBR1.SHBRJCL
++HBRWORKDS++.HBR1.SHBRPARM
++HBRWORKDS++.HBR1.SHBRPROC
++HBRWORKDS++.HBR1.SHBRWASC

z/OS

zRES Console

zRES INS1
/u/INS1/wodm

Decision Server

zRES
INS1

Runtime Rule Repository

DB2

Data set Description

…..SHBRJCL Instance configuration jobs

….SHBRPARM Instance configuration values

…..SHBRPROC Configured zRule Execution Server for z/OS started tasks

…..SHBRWASC WebSphere Application Server configuration
184 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

This step is repeated for each zRule Execution Server for z/OS instance that you want to
create. Each zRule Execution Server for z/OS has a unique identifier that is given by the
HBRSSID value.

Defining the zRule Execution Server for z/OS instance working directory
In addition to a set of data sets for each zRule Execution Server for z/OS instance, each
instance also has a file system location. The run time uses the file system location, which is
called a working directory.

Running the HBRCRTI job from the instance data set SHBRJCL sets up the working directory
in z/OS UNIX System Services for the zRule Execution Server for z/OS instance.

10.1.2 Creating data sets for the zRule Execution Server for z/OS instance

This section describes how to create the data sets that are changed for the zRule Execution
Server for z/OS instance.

Customizing the HBRINST member of SHBRPARM
This section details which values must be updated. For more information, see Appendix B,
“Configuring runtime values by using variables defined in HBRINST” on page 327. This
appendix contains tables that explain how to customize the values in SHBRPARM(HBRINST)
for your system environment.

Setting up database persistence
When setting up the first zRES server, there are several values within the HBRINST member
that need to be updated. Example 10-2 on page 186 lists the variables that are updated in the
first instance using database persistence.

For more information about each of these variables, see Appendix B, “Configuring runtime
values by using variables defined in HBRINST” on page 327.

Preferred practice: A preferred practice is to copy the target library SHBRPARM
partitioned data set (PDS) member HBRINST as a new member within the PDS, for
example, HBR1INST. The HBRUUPTI job is modified to point to this instance of
HBR1INST.

The INLINES data definition (DD) card must point to this new HBRINST member:

//INLINES DD DISP=SHR,DSN=++HBRHLQ++.SHBRPARM(HBR1INST)

When this job completes, the output to the HBRWORKDS puts this member as HBRINST
instead of HBR1INST (or your member name) within the customized SHBRPARM data set.

When creating a new instance of zRES, a copy of the HBRINST member is created to track
all server changes. For example, the first data set that is created can be called HBR1INST,
which covers HBR1 (and its corresponding list of subsystem identifiers (SSIDs)).

Type 2 connection: By default, zRES establishes a type 4 connection. For details about
how to use a type 2 connection, see 10.4, “Setting up the database connection” on
page 200.
Chapter 10. zRule Execution Server for z/OS stand-alone server 185

Example 10-2 List of variables that are used for database persistence

DB2HLQ
DB2RUNLIB
DB2SUBSYSTEM
DB2LOCATION
DB2VCAT
DB2ADMIN
DB2CURRSQLID
RESDATABASE
RTSDATABASE
EVDATABASE
RESSTOGROUP
RTSSTOGROUP
EVSTOGROUP
DB2TABLEBP
DB2INDEXBP
DB2LOBBP
DB2SAMPLEPROGRAM
DB2SAMPLEPROGRAMPLAN
DB2BP4K
DB2BP8K
DB2BP32K
DB2USER
DB2PSWD
DB2CONSTR
DB2JARLOCN
DB2NATIVELOC

10.1.3 Creating the working datasets using HBRUUPTI

The HBRUUPTI member that is within the ++HBRHLQ++.SHBRJCL data set uses the values
in the HBRINST member to populate the SHBRJCL, SHBRPARM, SHBRPROC, and
SHBRWASC data sets that are changed to your system environment.

Changing HBRUUPTI
You must perform the following steps to change HBRUUPTI to create the new working data
sets for the zRule Execution Server for z/OS server. Customize the HBRINST data set to your
system environment by using the tables in Appendix B, “Configuring runtime values by using
variables defined in HBRINST” on page 327.

The preferred practice is to copy the target library SHBRPARM member HBRINST as a new
member within the SHBRPARM PDS and to create a new PDS with a name similar to
HBRINST (for example, HBR1INST).

Preferred practice: If using the preferred practice for the installation, update the INLINES
DD card as described with the member for the current configuration. For example, if the
first instance is HBR1, the member that is created is HBR1INST.

When running the customization job, SHBRJCL(HBRUUPTI), the HBRINST field update to
the INLINES DD card must be changed to reflect this new location of the HBRINST file:

//INLINES DD DISP=SHR,DSN=++HBRHLQ++.SHBRPARM(HBR1INST)

When you run this job with the new HBRINST, the output working data set member does
not show the updated values in the member HBRINST, but all the other members are
modified to the user’s values.
186 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

To change HBRUUPTI, follow these steps:

1. Update the following line in HBRUUPTI that shows the target library high-level qualifier
(HLQ) that is set to the value HBRHLQ. Update this line with the value of your HBRHLQ
from Table B-1 on page 328. In this example, it is set to ODM.V8R0M1.TLIB:

SET HBRHLQ=ODM.V8R0M1.TLIB

2. Update the INLINES line, as shown in Figure 10-2, to match where the customization
member is created, which, by default, is in HBRHLQ.SHBRPARM(HBRINST). This points
to the instance of HBRINST that you use for the customization. If you use the preferred
practice, ensure that you update this to the correct value you have set.

Figure 10-2 Changing the INLINES line

3. Submit the job to create the working data sets for the zRule Execution Server instance.
This job creates the following data sets:

– ++HBRWORKDS++.++HBRSSIDLIST++.SHBRJCL
– ++HBRWORKDS++.++HBRSSIDLIST++.SHBRPARM
– ++HBRWORKDS++.++HBRSSIDLIST++.SHBRPROC
– ++HBRWORKDS++.++HBRSSIDLIST++.SHBRWASC

For this example, if the HBRSSIDLIST were HBR1 and HBR2, and the HBRWORKDS was
WODM.V8R0M1, the following datasets are created:

– WODM.V8R0M1.HBR1.SHBRJCL
– WODM.V8R0M1.HBR1.SHBRPARM
– WODM.V8R0M1.HBR1.SHBRPROC
– WODM.V8R0M1.HBR1.SHBRWASC
– WODM.V8R0M1.HBR2.SHBRJCL
– WODM.V8R0M1.HBR2.SHBRPARM
– WODM.V8R0M1.HBR2.SHBRPROC
– WODM.V8R0M1.HBR2.SHBRWASC

10.1.4 Creating the working directories in UNIX System Services

After submitting the HBRUUPTI job, navigate to the following PDS, and open the job
HBRCRTI:

++HBRWORKDS++.++SSID++.SHBRJCL

This job runs an hbrcrtin.sh script that is in the ++HBRINSTPATH++, which is set in
Table B-1 on page 328. This job creates the ++HBRWORKPATH++ directory in the UNIX
System Services, which contains the following directories:

� config
� logs
� res_data

// SET HBRHLQ=WODM.V8R0M1.TLIB
//HBRUUPTI EXEC PGM=IKJEFT01,REGION=2M,DYNAMNBR=99
//SYSPROC DD DISP=SHR,DSN=&HBRHLQ..SHBREXEC
//INLINES DD DISP=SHR,DSN=&HBRHLQ..SHBRPARM(HBR1INST)
//SYSTSIN DD *

 ++HBRSSIDLIST++ : From this point, the ++HBRSSIDLIST++ is simplified to
++SSID++, because the first member in the SSID is used where this is referenced. So,
if the HBRSSIDLIST is HBR1 and HBR2, SSID refers to HBR1.
Chapter 10. zRule Execution Server for z/OS stand-alone server 187

� res_xom
� work

The config directory contains the XML files that are required for the zRule Execution Server
to start, including the run time and the console.

10.2 Configuring the stand-alone zRule Execution Server for
z/OS

This section covers configuring the stand-alone zRule Execution Server for z/OS or one
zRule Execution Server group with one console.

For every type of setup, you must initially configure a group of stand-alone zRule Execution
servers (if you choose, this group can have only one member, although no failover for
execution is present) and one console that connects these. This is required when setting up
the other configurations that are described later in this document.

10.2.1 Defining a new subsystem for zRule Execution Server for z/OS

The first step for the configuration of the stand-alone zRule Execution Server for z/OS is to
define the subsystem in which the new instances run. The systems programmer must perform
this task.

The following SETSSI command must be run, where ++HBRSSID++ is the subsystem ID that
was set in Table B-1 on page 328 under ++HBRSSIDLIST++. Run this command for each
instance:

SETSSI ADD,SUBNAME=++HBRSSID++

For example, if HBR1 and HBR2 are in the list, this command is run for each instance. Using
the example of HBR1 and HBR2 as the SSIDs, the following commands are correct:

SETSSI ADD,SUBNAME=HBR1
SETSSI ADD,SUBNAME=HBR2

10.2.2 Creating the started tasks (HBRXCNSL and HBRXMSTR)

The next task in the configuration is to copy HBRXCNSL and HBRXMSTR to the system
PROCLIB. The HBRXCNSL and HBRXMSTR members are for the started tasks. These
started tasks are attached to three PARMLIB members that are used for the definitions of
various parameters for the zRule Execution Server. If you use the HBRUUPTI job, you do not
need to modify these attached PARMLIB members unless your environment requires the
change.

Production usage: You can use the file system setup in proofs of concept (POC) and the
initial configuration. However, for production, the configuration must have a DB2
persistence layer. This is set by the member HBRPSIST and was set in Table B-1 on
page 328 with the value for ++HBRPERSISTENCETYPE++.
188 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Adding HBRXMSTR and HBRXCNSL to SYS1.PROCLIB
The next task is to copy HBRXMSTR and HBRXCNSL to SYS1.PROCLIB (or a similar
PROCLIB on your environment). When copying over the data set members, you must change
the names from HBRXMSTR to ++HBRSSID++MSTR and from HBRXCNSL to
++HBRSSID++CNSL. Follow these steps:

1. Copy the ++HBRWORKDS++.++SSID++.SHBRPROC(HBRXMSTR) to
SYS1.PROCLIB(++SSID++MSTR).

2. Copy the ++HBRWORKDS++.++SSID++.SHBRPROC(HBRXCNSL) to
SYS1.PROCLIB(++SSID++CNSL).

3. Repeat the process for HBRXMSTR for all members of the HBRSSIDLIST.

Authorizing the server instance as a started task
Authorize both ++HBRSSID++MSTR and ++HBRSSID++CNSL as started task procedures
executing with the same user ID. Use the following commands:

RDEFINE STARTED ++HBRSSID++MSTR.* STDATA(USER(<HBRSSID_USER>)
GROUP(<HBRSSID_GROUP>)

RDEFINE STARTED ++HBRSSID++CNSL.* STDATA(USER(<HBRSSID_USER>)
GROUP(<HBRSSID_GROUP>)

HBRSSID_USER is the server user ID and HBRSSID_GROUP is the RACF security group
name that is provided to you by your security administrator.

The started task definitions
Whether you are starting the stand-alone zRule Execution Server for z/OS started task or the
CICS zRule Execution Server for z/OS started task, both started tasks require that the
configuration parameters are provided to the job. The parameters are provided by the DD
card HBRENVPR on each started task. The DD card HBRENVPR specifies the input
parameter members.

10.2.3 Securing the zRule Execution Server for z/OS for z/OS resources

With Operational Decision Manager, you can secure the resources, files, and functions with
RACF. This section describes how to create this security for the server using RACF.

Security options
If running the zRule Execution Server for z/OS in production, you might want to secure all or
part of the zRule Execution Server for z/OS resources. However, if you plan to run the server
in a testing environment, you might want security disabled. You can use the following options
for security.

Within the file system, you can secure the following resources:

� The working directory so that only the authorized user IDs can access internal data

� The installation directory so that only the authorized user IDs can access the files that are
needed to run the server

SYS1.PROC: SYS1.PROCLIB is the default. You need to change it to match your
environment. ++HBRSSID++ was set in Table B-1 on page 328.
Chapter 10. zRule Execution Server for z/OS stand-alone server 189

Using RACF, you can secure the following resources:

� You can secure the server resources that you use to perform the following tasks:

– Issue zRule Execution Server for z/OS commands from the z/OS console (or
equivalent).

– Sign on to the Rule Execution Server console.

– Connect to the zRule Execution Server for z/OS to execute rulesets.

� You can secure a subset of server resources. For example, you can secure access to the
Rule Execution Server console only.

Securing access to the working directory and installation directory
The working directory contains data that includes logs from the zRule Execution Server for
z/OS, component details, and trace output. The installation directory contains the necessary
files to run the zRule Execution Server for z/OS server. The server user ID needs to read and
execute access for ++HBRWORKPATH++, ++HBRINSTPATH++, the zRule Execution Server
for z/OS work path, and the Operational Decision Manager installation directory, if the
permissions are to be changed on these directories.

Creating the RACF classes for securing server resources
You can manage zRule Execution Server for z/OS by using RACF classes. You must create
the three RACF classes through the use of the ++HBRWORKDS++.SHBRJCL(HBRCRECL)
job. To secure the resources for the zRule Execution Server for z/OS instance, your RACF
administrator must run the HBRCRECL job. This job can be run from any of the members
within the ++HBRSSIDLIST++.

Creating the RACF classes
Using RACF, you can secure the following information:

� Ask the RACF administrator to run the HBRCRECL job or extract the code to use the
preferred execution methods to perform the following tasks:

– Issue zRule Execution Server for z/OS commands from the z/OS console (or
equivalent).

– Sign on to the Rule Execution Server console.

– Connect to the zRule Execution Server for z/OS to execute rulesets.

� You can secure a subset of server resources. For example, you can secure access to the
Rule Execution Server console only.

When your RACF administrator runs the HBRCRECL job, the job creates three RACF
classes: HBRADMIN, HBRCONN, and HBRCMD. Table 10-2 on page 191 explains the
characteristics of these classes.
190 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Table 10-2 RACF classes created by ++HBRWORKDS++.SHBRJCL(HBRCRECL)

After running the HBRCRECL job, give the server user ID read access to the class profile by
using the following commands:

PERMIT BPX.SERVER CLASS(FACILITY) ID(<HBRSSID_USER>) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

In this example, <HBRSSID_USER> represents the server user ID, which is the ID under
which the server runs.

Disabling types of security
In Operational Decision Manager, you can optionally disable all types of security or parts of
the security. When the HBRADMIN class is created, security is enabled on all zRule
Execution Server for z/OS instances. Security can be enabled and disabled, as required. On
a test system, you might want no security on the instance so that you can test more freely, but
you do not have to disable the security to all instances that are used.

To disable levels of security, you must apply separate profiles to the HBRADMIN class.
Table 10-3 lists the profiles that can be added to the HBRADMIN class by using the following
commands:

RDEFINE HBRADMIN <RESOURCE_PROFILE> UACC(NONE)
SETROPTS RACLIST(HBRADMIN) REFRESH

Table 10-3 Resource profiles to disable parts of security on the zRule Execution Server

Class Description

HBRADMIN This class controls whether server security and security for specific server
resources are enabled or disabled.

HBRCONN This class specifies the user IDs that are authorized to connect to the zRule
Execution Server for z/OS and to execute rulesets. This class is ignored if server
security is disabled.

HBRCMD This class specifies the user IDs that are authorized to issue zRule Execution
Server for z/OS commands, such as START, STOP, PAUSE, or RESUME from the z/OS
console (or equivalent). This class is ignored if server security is disabled.

POSIT: The supplied JCL in HBRCRECL gives a POSIT value of 128. Change POSIT, as
required, to match your security environment requirements.

Resource profile Description

++HBRSSID++.NO.SUBSYS.SECURITY This profile disables all security for a particular server instance. If
server security is disabled, HBRCONN and HBRCMD classes are
not used.

++HBRSSID++.NO.CONNECT.SECURITY This profile disables connection security for a particular server
instance, but it maintains other types of security.

++HBRSSID++.NO.RESCONSOLE.SECURITY This profile disables console security for a particular server
instance, but it maintains other types of security.

++HBRSSID++.NO.COMMAND.SECURITY This profile disables command security for a particular server
instance, but it maintains other types of security. If you disable
command security, any user can issue a zRule Execution Server
for z/OS command from the z/OS console.
Chapter 10. zRule Execution Server for z/OS stand-alone server 191

Replace ++HBRSSID++ with a value from the ++HBRSSIDLIST++ variable. Repeat for each
server listed in the ++HBRSSIDLIST++ variable for which you want to disable security.
Table B-1 on page 328 has details about the ++HBRSSIDLIST++ variable.

For more information, see the Managing server security topic in the IBM Operational Decision
Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Ftpc_ds_manage_zres_security.html

Continue to one of the following sections, depending on the profile that you plan to use:

� If the CONNECT profile is used, go to “Managing connection security” on page 192.
� If the RESCONSOLE profile is used, go to “Managing console security” on page 193.
� If the COMMAND profile is used, to go “Managing command security” on page 194.

Managing connection security
You set up connection security to ensure that only authorized user IDs can connect to the
zRule Execution Server for z/OS instance to execute rulesets. Connection security uses the
HBRCONN RACF class to authorize user IDs to connect to the server instance.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY or
++HBRSSID++.NO.CONNECT.SECURITY is used, the HBRCONN class is ignored.

To implement connection security, you must authorize the user ID under which the server
runs and the user IDs of any applications that execute rulesets. The following steps are
required for authorizing user IDs to the HBRCONN class:

1. The resource profile needs the server instance defined to the HBRCONN class. Execute
the following command first to create the resource profile:

RDEFINE HBRCONN ++HBRSSID++ UACC(NONE)

2. Give the server user ID UPDATE access to the ++HBRSSID++ resource profile by using
the following command:

PERMIT ++HBRSSID++ CLASS(HBRCONN) ID(<HBRSSID_USER>) ACCESS(UPDATE)

3. Refresh the ++HBRSSID++ resource profile by using the following command:

SETROPTS RACLIST CLASS(HBRCONN) REFRESH

Next, authorize the applications by running the following steps:

1. Give READ access to the ++HBRSSID++ resource profile to each user that you want to
authorize. Use the following command:

PERMIT ++HBRSSID++ CLASS(HBRCONN) ID(<USER_ID>) ACCESS(READ)

2. Refresh the ++HBRSSID++ resource profile by using the following command:

SETROPTS RACLIST(HBRCONN) REFRESH

UPDATE access: The server instance fails to initialize if the HBRCONN class does not
have UPDATE access. This requirement does not affect a server instance with
++HBRSSID++.NO.SUBSYS.SECURITY or
++HBRSSID++.NO.CONNECT.SECURITY.

User IDs: For batch jobs, <USER_ID> is the RACF user ID that is used by the batch
job. For CICS transactions, <USER_ID> is the user ID that is assigned to the CICS
address space.
192 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftpc_ds_manage_zres_security.html

Managing console security
You use console security to ensure that there is control on the users that can access the
zRule Execution Server for z/OS console. The zRule Execution Server for z/OS console
security controls the ability to sign on to the zRule Execution Server for z/OS console. If
security is enabled, users must enter a user ID and password to sign on.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY or the profile
++HBRSSID++.NO.RESCONSOLE.SECURITY is used, the HBRADMIN class is ignored.

A standard set of roles exists within the zRule Execution Server for z/OS that gives access
rights to users. Enable console security by assigning user IDs to roles and then authorizing
the roles to access the console.

Table 10-4 shows the profiles and the roles that they represent. The roles are listed in order of
increasing authority. RESMON is the lowest authority, and RESADMIN is the highest
authority. ++HBRSSID++ is the ID of the subsystem where the server runs.

Table 10-4 zRule Execution Server for z/OS console security profiles

Perform the following steps to enable console security:

1. Define each resource profile, as shown in Table 10-4 to the HBRADMIN class. Use the
following commands to define all three roles:

RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESMON UACC(NONE)
RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESDEP UACC(NONE)
RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESADMIN UACC(NONE)

2. Assign each user ID to one of the resource profiles by using the following commands for
the three roles:

PERMIT ++HBRSSID++.ROLE.RESMON UACC(NONE)
PERMIT ++HBRSSID++.ROLE.RESDEP UACC(NONE)
PERMIT ++HBRSSID++.ROLE.RESADMIN UACC(NONE)

3. Refresh the HBRADMIN class using the following command:

SETROPTS RACLIST(HBRADMIN) REFRESH

Resource profile Role description

++HBRSSID++.ROLE.RESMON Users with monitoring rights are only allowed to view and explore RuleApps,
rulesets, decision services, Execution Units (XUs), and statistics. These users are
not allowed to modify these entities. They can also select a trace configuration
and view and filter trace information in Decision Warehouse. This authority
applies only to Rule Execution Server on WebSphere Application Server for z/OS.

++HBRSSID++.ROLE.RESDEP In addition to monitoring rights, users with deploying rights are allowed to deploy
RuleApp archives, to edit and remove entities (RuleApps, rulesets, decision
services, Java execution object module (XOM) resources, and libraries), and to
run diagnostics.

++HBRSSID++.ROLE.RESADMIN Users with administrator rights have full control over the deployed resources and
access to information about the server. They can perform the following actions:
� Deploy, browse, and modify RuleApps, Java XOM resources, and libraries
� Monitor the decision history, purge the history, and back up the history.
� Select a trace configuration, view and filter trace information, and clear trace

information in Decision Warehouse.
� Run diagnostics and view server information.
Chapter 10. zRule Execution Server for z/OS stand-alone server 193

Managing command security
You use command security to ensure that only authorized users can issue zRule Execution
Server for z/OS commands on the zRule Execution Server for z/OS console. Command
security uses the HBRCMD RACF class to authorize user IDs to issue zRule Execution
Server for z/OS commands.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY or the profile
++HBRSSID++.NO.COMMAND.SECURITY is used, the HBRCMD class is ignored.

When enabling command security on the zRule Execution Server for z/OS console, you must
define a resource profile to the HBRCMD class for each command that you want to secure.
Use the commands that are listed in Table 10-5 to secure the zRule Execution Server for
z/OS console commands. ++HBRSSID++ is the ID of the subsystem where the server runs.

Table 10-5 zRule Execution Server for z/OS command security profiles

To authorize users to issue zRule Execution Server for z/OS commands, perform the
following steps:

1. If you want to limit any of the commands in Table 10-5 to authorized user IDs, you must
define the resource profiles to the following HBRCMD class commands:

RDEFINE HBRCMD ++HBRSSID++.SET.TRACE UACC(NONE)
RDEFINE HBRCMD ++HBRSSID++.SET.RESCONSOLE UACC(NONE)
RDEFINE HBRCMD ++HBRSSID++.SET.PAUSE UACC(NONE)
RDEFINE HBRCMD ++HBRSSID++.SET.RESUME

2. If you want to limit any of the commands in Table 10-5 to authorized user IDs, you must
permit the resource profiles to the following HBRCMD class commands:

PERMIT ++HBRSSID++.SET.TRACE CLASS(HBRCMD) ID(<USER_ID>) ACCESS(UPDATE)
PERMIT ++HBRSSID++.SET.RESCONSOLE CLASS(HBRCMD) ID(<USER_ID>) ACCESS(UPDATE)
PERMIT ++HBRSSID++.SET.PAUSE CLASS(HBRCMD) ID(<USER_ID>) ACCESS(UPDATE)
PERMIT ++HBRSSID++.SET.RESUME CLASS(HBRCMD) ID(<USER_ID>) ACCESS(UPDATE)

3. Refresh the HBRCMD class by using the following command:

SETROPTS RACLIST(HBRCMD) REFRESH

10.2.4 Starting the new instance

After completing the security setup and configurations, start the new server instance through
the z/OS console.

Resource profile Command Command description

++HBRSSID++.SET.TRACE SET TRACE Ability to turn trace on or off

++HBRSSID++.SET.RESCONSOLE SET RES-CONSOLE Start or stop the zRule Execution Server for z/OS
console

++HBRSSID++.SET.PAUSE PAUSE Pause a job on the zRule Execution Server for z/OS

++HBRSSID++.SET.RESUME RESUME Resume a job on the zRule Execution Server for z/OS

User IDs: For batch jobs, <USER_ID> is the RACF User ID that is used by the batch
job. For CICS transactions, <USER_ID> is the user ID that is assigned to the CICS
address space.
194 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Authorizing the load library
If you are setting up your first instance on the logical partition (LPAR), you must authorize the
load library. You must perform the following steps:

1. Add the ++HBRHLQ++.SHBRAUTH load library to the authorized program facility
(APF)-authorized libraries by using the following command:

SETPROG APF,ADD,DSNAME=++HBRHLQ++.SHBRAUTH,SMS

2. Provide the RACF authorization for the ++HBRHLQ++.SHBRAUTH load library by using
the following two commands:

RALTER PROGRAM * ADDMEM(‘++HBRHLQ++.SHBRAUTH’//NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH

Note that ++HBRHLQ++ is the product installation target library HLQ for the SHBRAUTH
PDS.

Starting a server instance
To start a new server instance, issue the following command:

START ++HBRSSID++MSTR

Replace ++HBRSSID++ with each member of the ++HBRSSIDLIST++ to start all of the
MASTER address spaces.

If the server does not start, look at the output of the HBRMSTR job to see why it did not start.
Typically, the server does not start for following reasons:

� The load library was not APF-authorized.

� ++HBRINSTPATH++ does not point to the correct UNIX System Services directory (if you
go to the location that you put in the ++HBRINSTPATH++, it shows directories that include
IBM0, IBM1, IBM2, IBM3, IBM4, lib, shared, and so on).

� If you use symbolic links on ++HBRINSTPATH++ or ++HBRWORKPATH++, these links
might not link correctly. Therefore, you must verify the link.

� You did not execute the RACF security commands. Verify whether the RACF security
commands were run by using the resource profile setup. Ensure that the commands
executed and ensure that the user that started the server is authorized to start the server.

� The ports that were used for ++HBRCONSOLEPORT++ and
++HBRCONSOLECOMHOST++ were already in use by another application.

� The same port is used for ++HBRCONSOLEPORT++ and
++HBRCONSOLECOMHOST++.

10.2.5 Logging on and performing diagnostics

Now that the stand-alone zRule Execution Server for z/OS console is up and running, you
must run diagnostics on it. You must use a RACF ID that is part of the RESADMIN group,
which can run the diagnostics on the Rule Execution Server. This section describes logging
on to the zRule Execution Server for z/OS console and performing diagnostics.

Perform the following steps:

1. Go to the following URL and log in with a RACF user ID and password combination that is
part of the RESADMIN group:

http:// ++HBRCONSOLECOMHOST++:++HBRCONSOLEPORT++/res
Chapter 10. zRule Execution Server for z/OS stand-alone server 195

2. When you are logged in, you see a console similar to the console that is shown in
Figure 10-3. Click the Diagnostics tab.

Figure 10-3 Rule Execution Server console Welcome panel

3. The Diagnostics view is displayed. Click Run Diagnostics, as shown in Figure 10-4.

Figure 10-4 Rule Execution Server Diagnostics view
196 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. When you run the diagnostics, successful diagnostics show results with green check
marks. If there are any issues, the diagnostics tool helps you troubleshoot the problem.
Figure 10-5 shows a successful deployment.

Figure 10-5 Rule Execution Server Diagnostics successful test

The Rule Execution Server is now available for use. You can start using this instance of the
zRule Execution Server for z/OS in your environment for rules execution.

10.3 Managing multiple zRule Execution Server for z/OS
servers on one LPAR

Figure 10-6 on page 198 shows one LPAR with two zRule Execution Server for z/OS batch
servers that are administered by one console. The second zRule Execution Server for z/OS
(INS2) is started with the parameter HBRCONSOLE=NO, so that INS2 does not launch another
console. By default, when you set up the HBRSSIDLIST, INS2 is already set up this way.
However, after you set up the initial zRule Execution Servers, if you require more servers,
follow the steps that are described in this section to add more servers to the same console.

The same HBRPSIST member is used by both zRule Execution Server for z/OS instances so
that they connect to the same repository. The same HBRCMMN member can be used by
each zRule Execution Server for z/OS instance. The value HBRCONSOLECOMPORT must
be the same for both zRule Execution Server for z/OS instances, because both zRule
Chapter 10. zRule Execution Server for z/OS stand-alone server 197

Execution Server for z/OS instances communicate with the same zRule Execution Server for
z/OS console.

Figure 10-6 One console managing multiple stand-alone zRule Execution Servers for z/OS

10.3.1 Adding a zRule Execution Server for z/OS to a running console

This section describes an Operational Decision Manager topology of adding a zRule
Execution Server for z/OS server to a zRule Execution Server for z/OS console that is already
running. This topology is created so that you can have multiple zRule Execution Server for
z/OS servers running within a single LPAR.

When you set up a new zRule Execution Server for z/OS, the process is similar to the process
to set up the first zRule Execution Server for z/OS.This section explains the necessary
changes that you make to the HBRINST job. With these changes, you can quickly and easily
set up a new zRule Execution Server for z/OS that operates under the same console as an
existing zRule Execution Server for z/OS.

Changing HBRINST
When you add a stand-alone zRule Execution Server for z/OS to an existing zRule Execution
Server for z/OS console, you make a few changes (see Table 10-6 on page 199):

� Create a new ++HBRSSIDLIST++ to start a new group of zRule Execution Server for z/OS
instances.

� Create a ++HBRWORKPATH++ so that the logs, configuration data, res_data, res_xom,
and work paths exist for this group. If you are using file-based persistence, share this
directory with your previous WORKPATH. Your logs will show the subsystem ID (SSID) on
them. However, if you are using file persistence, this work path can be split into separate
UNIX System Services paths so that you can keep the tasks separate.

z/OS

zRES Console

zRES INS1
/u/INS1/wodm

zRES INS2
/u/INS2/wodm

Runtime Rule Persistence

DB2

Decision Server

zRES
INS2

Decision Server

zRES
INS1
198 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Table 10-6 HBRINST customization values for rules on z/OS

Updating HBRUUPTI
Similar to the first configuration, you must update HBRUUPTI so that the new
++HBRWORKDS++ sets are created for the new instance of the stand-alone zRule Execution
Server for z/OS. See 10.1.3, “Creating the working datasets using HBRUUPTI” on page 186
for the procedure to update the corresponding lines in the JCL to create the new zRule
Execution Server data sets for the new instances. This procedure creates four new PDSs
similar to the first instance, but using the ++HBRSSIDLIST++ to build the new data sets.

10.3.2 Creating the working directory

Next, you run the job HBRCRTI in the ++HBRWORKDS++ to create the working directory in
the path that was set by ++HBRWORKPATH++. This job creates the UNIX System Services
directory for the specific server instance.

10.3.3 DB2 persistence

The DB2 persistence layer that was set with the first group of stand-alone zRule Execution
Servers remains the same, so do not repeat this step.

10.3.4 Defining the subsystem for the new instance

The next step for the configuration of a new instance of the stand-alone zRule Execution
Server is to define the subsystem in which the new instance runs. The systems programmer
must perform this task. Execute the following command, ++HBRSSID++, for each SSID from
the ++HBRSSIDLIST++ set in Table 10-6:

SETSSI ADD, SUBNAME=++HBRSSID++

Column one value Your chosen value Example value Reason to update, change, or leave the
default

++HBRSSIDLIST++ HBR3,HBR4 Every time that a new zRule Execution Server for
z/OS is set up, you must modify this value.
Setting a naming convention that can scale with
your system is important. This value must be four
characters or fewer.

++HBRWORKPATH++ /u/HBR3 This value is the work path for the specific
instance of the server. You must update this
value for each new zRule Execution Server for
z/OS instance that you create. A preferred
practice is to create a common directory for the
work path directories. Then, create a directory
within this common directory for each new
instance.

Reusing a copy of the zRule Execution Server for z/OS HBRINST: If you use the
preferred practice, you can reuse and update a copy of the existing zRule Execution Server
for z/OS HBRINST if you deploy to the same zRule Execution Server for z/OS console.
Using this approach, you make only the necessary updates.
Chapter 10. zRule Execution Server for z/OS stand-alone server 199

10.3.5 Modifying and adding the started tasks to the PROCLIB

When you add an instance to an existing console, you create only one started task for this
new instance, ++HBRSSID++MSTR. You copy HBRXMSTR as ++HBRSSID++MSTR to
SYS1.PROCLIB or the equivalent in your environment.

At this time, you must change the data member called HBRMSTR, which is in the
++HBRWORKDS++.SHBRPARM(HBRMSTR). In this data set member, change the
HBRCONSOLE parameter:

HBRCONSOLE = NO

If you do not change this data member to NO, when the instance is started later, it tries to start
its own console. If the other instance is already running, this instance fails because the ports
are already in use.

Copy ++HBRWORKDS++.SHBRPROC(HBRXMSTR) to SYS1.PROCLIB because
++HBRSSID++MSTR. ++HBRSSID++ is the SSID of the new server instance that was
created for the specific instance.

Authorizing the server instance as a started task
Authorize the ++HBRSSID++MSTR as a started task procedure that executes with the same
user ID. Use the following command for each zRule Execution Server instance:

RDEFINE STARTED ++HBRSSID++MSTR.* STDATA(USER(<HBRSSID_USER>)
GROUP(<HBRSSID_GROUP>)

10.3.6 Security setup for the new stand-alone zRule Execution Server for z/OS

Complete the security setup for the new stand-alone zRule Execution Server for z/OS by
using the same method that is described in 10.2.3, “Securing the zRule Execution Server for
z/OS for z/OS resources” on page 189. See this section to perform the security setup for the
zRule Execution Server instance using the ++HBRSSID++ value that was set in Table 10-6
on page 199.

10.3.7 Starting the new instance

Similar to the first zRule Execution Server for z/OS instance, enter the following command to
start the new zRule Execution Server for z/OS instance:

START ++HBRSSID++MSTR

10.4 Setting up the database connection

Connection to the database can be either a type 4 connection or a type 2 connection. See the
DB2 documentation to determine which type is preferable for your environment. For more
information, see the How JDBC applications connect to a data source topic in the DB2 10 for
z/OS Information Center:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.
db2z10.doc.java%2Fsrc%2Ftpc%2Fimjcc_cjvjdcon.htm

SYS1.PROCLIB: SYS1.PROCLIB is the default. Change it to match the equivalent library in
your environment. ++HBRSSID++ was set in Table 10-6 on page 199.
200 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.db2z10.doc.java%2Fsrc%2Ftpc%2Fimjcc_cjvjdcon.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.db2z10.doc.java%2Fsrc%2Ftpc%2Fimjcc_cjvjdcon.htm

Both the zRule engine and the zRule console make a connection to the database, so both
need to be configured to connect to DB2.

The default database connection that is created by zRES is type 4, which is documented in
the Step 5: Configuring a DB2 persistence layer topic of the IBM Operational Decision
Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Ftpc_ds_create_db2_persist.html

This section explains how to set up a type 2 database connection for the console and for
zRES.

10.4.1 Setting up a type 2 configuration for the console

You need to include the DB2 library in the STEPLIB in the PROC member. Obtain these in
++HBRWORKDS++.++HBRSSID++.SHBRPROC (from where they are copied to the
SYSTEM.PROCLIB data set, as described in 10.2.2, “Creating the started tasks (HBRXCNSL
and HBRXMSTR)” on page 188).

For HBRXCNSL, and for each HBRXMSTR that accesses the database, add the DB2
libraries to the STEPLIB, for example:

//STEPLIB DD DISP=SHR,DSN=&HBRHLQ..SHBRAUTH
// DD DISP=SHR,DSN=SYS2.DB2.V910.SDSNLOAD
// DD DISP=SHR,DSN=SYS2.DB2.V910.SDSNLOD2
// DD DISP=SHR,DSN=SYS2.DB2.V910.SDSNEXIT

10.4.2 Updating the database parameters in HBRPSIST

The URL that specifies the location of the database is in
++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRPSIST). This needs to be updated,
and the necessary JARs must be added in an HBRDBJARS parameter, for example:

* URL associated with the database.
HBRDBURL=jdbc:db2:DSN910GP+
 :currentSQLID=ZRES;

* Jars required by the database.
* HBRDBJARS= set to the DB2 jars
HBRDBJARS=/usr/lpp/db2910/classes/db2jcc.jar:+
/usr/lpp/db2910/classes/db2jcc_license_cisuz.jar:+
/usr/lpp/db2910/classes/db2jcc_javax.jar:+
/usr/lpp/db2910/classes/sqlj.zip:

10.4.3 Setting up the DB2 identifying file

You need to create an identifying file that indicates the SSID of the DB2 subsystem. This file
can then be read by the relevant Java Message Services (JVMs). This file needs to be an
EBCDIC file in the UNIX System Services, and it contains the SSID of the database. For
example, for the DB2 SSID DHGP, this file contains the following line:

db2.jcc.ssid=DHGP
Chapter 10. zRule Execution Server for z/OS stand-alone server 201

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftpc_ds_create_db2_persist.html

10.4.4 Updating the PARM members

You need to update the PARM members that are associated with the CONSOLE and each
zRES that accesses the database. The members are HBRCNSL and HBRMSTR, and they
are in ++HBRWORKDS++.++HBRSSID++.SHBRPARM. For each of these members,
perform the following steps:

1. Include a LIBRARY_SUFFIX in the PARM member that points to the DB2 libraries on
UNIX System Services. Add a line that indicates the LIBPATH_SUFFIX, for example:

LIBPATH_SUFFIX=/usr/lpp/db2910/lib

2. Indicate the DB2 subsystem to the JVM by pointing the JVM at the file that is created in
10.4.3, “Setting up the DB2 identifying file” on page 201, using the parameter
JAVA_OPTIONS. For example, if you use the identifying file DB2_SSID in the /u/db2Id
directory, your JAVA_OPTIONS might read this way:

JAVA_OPTIONS=-Ddb2.jcc.propertiesFile=/u/db2Id/DB2_SSID -Xmx256M -Xms256M

10.4.5 Using your own jobs

If you use your own jobs to configure the databases, ensure that CAPS ALL is turned off.
202 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 11. Configuring CICS to work with
Operational Decision Manager

This chapter describes Rule Execution Server for z/OS when it is run within the CICS Java
Message Service (JVM) server. It considers the configuration of CICS and Rule Execution
Server for z/OS required for this environment. It also considers the use of multiple CICS JVM
servers, each running an instance of Rule Execution Server for z/OS.

The following topics are covered in this chapter:

� 11.1, “Configuring CICS to invoke a stand-alone Rule Execution Server for z/OS” on
page 204

� 11.2, “Configuring a CICS JVM server to run a Rule Execution Server” on page 206

� 11.3, “Configuring a zRES dedicated to a CICS region with HBRMODE set to NORULE”
on page 212

� 11.4, “Working with an IBM CICSPlex” on page 214

� 11.5, “Working with multiple CICS JVM servers” on page 216

11
© Copyright IBM Corp. 2013. All rights reserved. 203

11.1 Configuring CICS to invoke a stand-alone Rule Execution
Server for z/OS

A CICS region can be configured so that a CICS program can call the Rule Execution Server
for z/OS (zRES). Currently, the supported versions of CICS are V3.2, V4.1, V4.2, and V5.1,
as shown in Figure 11-1. This section describes the required configuration to enable this
feature.

Figure 11-1 CICS COBOL application and stand-alone server

11.1.1 Setting the parameters for CICS

The parameters that are required for zRES to run with CICS are in HBRINST and are
described in detail in Appendix B, “Configuring runtime values by using variables defined in
HBRINST” on page 327.

The following parameters are required to configure CICS to call rules in zRES:

� CICSHLQ
� CICSCSDDSN
� CICSLIST

Set these parameters in ++HBRHLQ++.SHBRPARM(HBRINST).

After you set these parameters, run the following job to apply them to the working data set
jobs:

++HBRHLQ++.SHBRJCL(HBRUUPTI)

For more information about these parameters, see “CICS” on page 329 or the z/OS
configuration and runtime variables topic in the IBM Operational Decision Manager Version
8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Fcon_ds_jcl_and_runtime_vars.html

Note: Other CICS parameters are only necessary when you set up to run zRES in a CICS
JVM server. These parameters are described in 11.2, “Configuring a CICS JVM server to
run a Rule Execution Server” on page 206.
204 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Fcon_ds_jcl_and_runtime_vars.html

11.1.2 Defining the required resources

The resources required for CICS are defined by the JCL job:

++HBRWORKDS++.++HBRSSID++.SHBRJCL(HBRCSD)

Submit this job to create the resources.

11.1.3 Updating the GRPLIST parameter

After defining the resources, add HBRLIST to the GRPLIST parameter in the system
initialization table:

GRPLIST=(CICSHTAP,HBRLIST)

11.1.4 Updating the CICS JCL

Modify the CICS region JCL to include the lines calling to the zRES on the CICS JVM server.
You must add the following lines to the components of the CICS JCL.

DFHRPL
In the CICS program library, DFHRPL, add the SHBRCICS PDS to the DFHRPL section:

// DD DSN=++HBRHLQ++.SHBRCICS,DISP=SHR

Passing the runtime variables to the CICS region
It is necessary to inform the application in which server to run the rules. Add the following
runtime variables from the SHBRPARM PDS to the CICS region:

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRCICSZ)
// DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRCMMN)

11.1.5 Scenario for installation verification

If you plan to add the installation verification procedure (IVP) to test the zRES on the CICS
JVM server, add the following line in the runtime variables section:

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRSCEN)

After the configuration is complete and the region is restarted later, this line enables the CICS
MINI transaction (miniloan sample application). The miniloan sample application can be used
to verify that the rule engine is connected and working.

If you want to run the miniloan sample application, you must submit the job for deploying the
sample rule artifacts. Submit the following job:

++HBRWORKDS++.++HBRSSID++.SHBRJCL(HBRDPLOY)

This job deploys the rule artifacts to be used by the zRES and can be used directly in the
persistence layer. Therefore, it can be used to deploy the sample application to any
configuration.
Chapter 11. Configuring CICS to work with Operational Decision Manager 205

11.1.6 Starting zRES and CICS

Start zRES and CICS now (or restart them if CICS is already running). To start zRES, use the
following command:

START ++HBRSSID++MSTR

11.1.7 Installing HBRGROUP

Install the HBRGROUP resources to CICS by running the following command:

CEDA INSTALL GROUP(HBRGROUP)

11.1.8 Testing the configuration

The configuration can be tested by using the HBRC transaction. This transaction enables
CICS to call zRES. The return code that is shown in Table 11-1 indicates the success of the
transaction.

Table 11-1 Return codes

11.1.9 Automatically connecting CICS to a running zRES instance

This optional step means that it is not necessary to run the HBRC transaction to connect to a
running zRES. The zRES must be started before the CICS region. Otherwise, you need to
connect the CICS region by manually running HBRC.

There are two ways to automatically connect CICS to the running zRES instance:

� If you do not have a program list table defined, add the following parameter to the CICS
system initialization table:

PLTPI=HB

� If you have a program list table defined and specified in your CICS system initialization
table, add the HBRCCONN program to the list by using this statement:

DFHPLT TYPE=ENTRY,PROGRAM=HBRCCON

11.2 Configuring a CICS JVM server to run a Rule Execution
Server

Another runtime feature of Operational Decision Manager is the addition of a Rule Execution
Server for z/OS (zRES) that runs within the CICS JVM server on CICS V4.1, V4.2, and V5.1.
The setup is similar for all versions of CICS, although the version of supported Java that is
required to operate the CICS JVM servers within the region differs depending on the CICS

Code Meaning

GBRZC9000 An error has occurred when executing the HBRC transaction.

GBRZC9001 CICS has connected to zRES.

GBRZC9002 CICS has disconnected from zRES.

GBRZC9003 The CICS region is already connected to zRES.
206 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

version. This section describes the setup of this server instance. The configuration that is
created for running zRES on a CICS JVM server is shown in Figure 11-2.

Figure 11-2 CICS COBOL application and CICS JVM server

11.2.1 HBRINST changes

You must update the HBRINST member for the CICS zRES to create a zRES running on a
CICS JVM server. The values that you need to update vary on the configuration setup that
you want to create. The following sections outline the different versions of CICS and the
variables within HBRINST that are important for these versions of CICS.

Building a zRES with CICS JVM server attached to an existing zRES
stand-alone instance

If there is an existing zRES stand-alone instance configured and started, the updates in the
HBRINST member are limited to the CICS values within the member.

When configuring a CICS JVM server, the values that are listed in Figure 11-3 need to be
updated to build the necessary environment for the first CICS region. These parameters are
described in detail in Appendix B, “Configuring runtime values by using variables defined in
HBRINST” on page 327.

Figure 11-3 HBRINST members to consider when you are setting up zRES within a CICS environment

CICS V4.1 requires HBRJAVA31HOME because it only supports Java to 31 bits. It is used to
help build a zRES on a CICS JVM that operates with a 31-bit JVM server. CICS V4.2 and
V5.1 use HBRJAVAHOME because they support Java 64.

CICSWORKPATH
CICSHLQ
CICSCSDDSN
CICSINSTPATH
CICSLIST
HBRJAVA31HOME (CICS V4.1 only)
HBRJAVAHOME (CICS V4.2 and above)
JDBCPLAN
Chapter 11. Configuring CICS to work with Operational Decision Manager 207

The following jobs are updated:

� HBRCSD, HBRCSD41, and HBRCJS41 for CICS V4.1
� HBRCSD, HBRCSDJ, and HBRCJVMP for CICS V4.2 and V5.1

The following Java levels are supported:

� The CICS 4.1 environment supports Java 6.0.1-32 bit only.
� The CICS 4.2 environment supports Java 6.0.1-64 bit only.
� The CICS 5.1 environment supports Java 7.0-64 bit only.

If your zRES uses a different level of Java from the level that is required by the CICS
environment, ensure that this is changed in the HBRINST member to account for the required
level of Java. Otherwise, the CICS region JVM in which the zRES is installed does not start.

Producing the working datasets
After you complete the update of the HBRINST member, the HBRUUPTI job needs to be
submitted to incorporate the new values. The following datasets are updated:

++HBRWORKDS++.++HBRSSID++.SHBRPARM
++HBRWORKDS++.++HBRSSID++.SHBRJCL

If these datasets exist from a previous installation, you can replace the existing instances with
the new ones by deleting and rerunning HBRUUPTI. This gives the members the values from
both the previous installation and the newly updated CICS pieces.

The other option is to manually update the necessary members. The members that require
updating for CICS are listed in Table 11-2. These members are directly affected by CICS.
Members that are not directly affected by CICS modifications, such as for DB2 changes, are
not included.

Table 11-2 Members requiring modification if manual update is used

For the original versions of the members that must be updated, look at the original target
libraries of the members that are in ++HBRHLQ++.SHBRJCL and
++HBRHLQ++.SHBRPARM.

Tip: CICSWORKPATH and HBRWORKPATH (from the zRES stand-alone configuration)
must differ for the configuration to succeed. A preferred practice is to append /CICS to the
HBRWORKPATH to build the new CICSWORKPATH. So if the HBRWORKPATH is
/u/HBR1, the CICSWORKPATH is /u/HBR1/CICS. This practice prevents the use of any
common configuration files from the two setups.

++HBRWORKDS++.
++HBRSSID++.SHBRJCL

++HBRWORKDS++.
++HBRSSID++.SHBRPARM

CICS V4.1 HBRCRTCI
HBRCSD
HBRCSD41
HBRCJS41
HBRCWOLA

HBRCICSD
HBRCICSJ

CICS V4.2
CICS V5.1

HBRCRTCI
HBRCSD
HBRCSDJ
HBRCJVMP
HBRCWOLA

HBRCICSD
HBRCICSJ
208 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

11.2.2 Creating the working directories

For CICS zRES for z/OS, you need to create a workpath that is dedicated to the CICS
system. This workpath cannot be the same workpath as the HBRWORKPATH.

Submit the job HBRCRCTI. This job creates the CICS working path directories within UNIX
System Services with the required configuration pieces, as well as a separate directory for the
CICS JVM server logs.

If there is not an existing zRES stand-alone server, see 11.3, “Configuring a zRES dedicated
to a CICS region with HBRMODE set to NORULE” on page 212 for instructions to set up a
dedicated console to CICS regions with no other execution.

11.2.3 Creating the JVM profile

Create the CICS JVM server profile for the correct version of CICS. This step depends on the
version of CICS JVM server, either 31 bit on CICS V4.1 or 64 bit on CICS V4.2 and
CICS V5.1.

To create the correct profile, submit one of these jobs:

� CICS V4.2/5.1: Run job HBRCJVMP to create the JVM profile for a CICS V4.2/5.1 region.
� CICS V4.1: Run job HBRCJS41 to create the JVM profile for a CICS V4.1 region.

This job creates the profile within the ++HBRCICSWORKPATH++ directory, which is created in
11.2.2, “Creating the working directories” on page 209.

11.2.4 Defining the CICS resources

Next, you define the CICS resources that are required by the server. Submit the two jobs that
relate to the resources, which are both in the following data set:

++HBRWORKDS++.++HBRSSID++.SHBRJCL

The first job is the same job for both CICS V4.1, CICS V4.2, and CICS V5.1:

� HBRCSD: This job defines the resources that are required by CICS V4.1, V4.2, and V5.1.

The next step depends on the CICS version:

� HBRCSDJ: This job defines the necessary resources for a CICS V4.2 region or CICS V5.1
region.

� HBRCSD41: This job defines the necessary resources for a CICS V4.1 region.

Important: Within CICS, ensure that the level of Java that is used is supported by the
CICS version that you are running. For CICS v4.1 and v4.2, this level is Java V6.0.1. For
CICS v5.2, this level is Java V7.0.
Chapter 11. Configuring CICS to work with Operational Decision Manager 209

11.2.5 Adding HBRLIST to the system initialization table

After you define the resources, add HBRLIST to the system initialization table that is specified
by the GRPLIST parameter:

GRPLIST=(CICSHTAP,HBRLIST)

11.2.6 Setting the JVMPROFILEDIR

If you do not already have a defined JVM profile directory, you need to set the default JVM
profile to point at the working directory that you created for CICS in “Building a zRES with
CICS JVM server attached to an existing zRES stand-alone instance” on page 207.

In the CICS system initialization table, create the variable JVMPROFILEDIR. It needs to point to
the CICS working directory:

JVMPROFILEDIR=++CICSWORKPATH++

If you use a JVMPROFILEDIR that cannot correspond to the ++CICSWORKPATH++, you must
copy the profile that is created 11.2.3, “Creating the JVM profile” on page 209 to the correct
JVMPROFILEDIR directory.

11.2.7 Changing the CICS region JCL

The CICS region JCL must be modified to include the lines that call the zRES on the CICS
JVM server.

DFHRPL
In the CICS program library, DFHRPL, add the SHBRCICS PDS to the DFHRPL section:

// DD DSN=++HBRHLQ++.SHBRCICS,DISP=SHR

Passing the runtime variables to the CICS region
Add the following runtime variables from the
++HBRWORKDS++.++HBRSSID++.SHBRPARM PDS to the CICS region. The following data
definition (DD) statements are required:

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRCICSJ)
// DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRCMMN)
// DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRCICSD)

The HBRCICSD member in ++HBRWORKDS++.++HBRSSID++.SHBRPARM sets up the
database environment.

STEPLIB
Add the ++HBRHLQ++.SHBRAUTH library to the STEPLIB concatenation. This has the
requisite APF Authorization members required for the CICS region, for example:

// DD DSN=++HBRHLQ++.SHBRAUTH,DISP=SHR

The STEPLIB of the region must also contain the members SDSNLOAD and SDSNLOD2.
210 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

11.2.8 Scenario for installation verification

If you plan to add the installation verification procedure (IVP) to test the zRES on the CICS
JVM server, add the following line in the runtime variables section:

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.++HBRSSID++.SHBRPARM(HBRSCEN)

After the configuration is complete and the region is restarted later, this line enables the CICS
MINI transaction (miniloan sample application). The miniloan sample application can be used
to verify that the rule engine is connected and works.

Before you run the IVP, you must submit the job for deploying the rule artifacts by submitting
the following job:

++HBRWORKDS++.++HBRSSID++.SHBRJCL(HBRDPLOY)

This job deploys the rule artifacts directly to the persistence layer. Therefore, it can be used to
deploy the sample application to any configuration.

11.2.9 Security for the zRES on CICS JVM server

For the security setup for the zRES on the CICS JVM server, perform the steps in 10.2.3,
“Securing the zRule Execution Server for z/OS for z/OS resources” on page 189. You perform
the same steps for all zRES servers. The CICS region’s user for the started task must be
granted access to the Connect security so that it can connect to the zRES instance for rule
execution.

11.2.10 CEDA installation of HBRGROUP resources

After you start the CICS region, you must install the resources that were defined earlier. Run
the following command in CICS:

CEDA INSTALL GROUP(HBRGROUP)

11.2.11 Database connect for the CICS region

If you use the database configuration, run the following command to connect the database to
the CICS region of the zRES:

CEMT INQUIRE DB2CONN

Then, change the CONNECTST property from Notconnected to Connected.

11.2.12 Connecting the zRES to the CICS JVM server

After the started task is up and the resources are connected, connect the zRES to the CICS
JVM server by using the CICS transaction HBRC. This task sets up storage in the CICS JVM
for connection to zRES and checks and initializes the JVM. If successful, this transaction
returns the following message:

GBRZC9001I RC=0000

Tip: You can also use the DB2START SIT parameter to perform this connection.
Chapter 11. Configuring CICS to work with Operational Decision Manager 211

If the connection is unsuccessful, it returns GBRZC9001E RC=XXXX, where XXXX is the return
code message. If it is a 3006 message, you did not start the ++HBRSSID++MSTR task yet. If
it is a 3014 message, you did not enable the CICS JVM server yet.

For more information about these return codes, see the Completion codes topic in the
Decision Server for z/OS V8.0.1 product documentation:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
zos.dserver.ref%2Fhtml%2Freasoncodes%2Fhtml%2Fcodes_zres.html

11.2.13 Deploying the installation verification program

If you set up the CICS region to have HBRSCEN, perform the following steps to run the IVP:

1. Deploy the RuleApp for database persistence by running the job HBRDPLOY.

2. After you deploy the RuleApp, go back to the CICS region and run the CICS transaction
MINI. Your region then displays the output that is shown in Example 11-1.

Example 11-1 MINI output

MINICICS--msg-The yearly income is lower than the basic request
MINICICS --Loan customer 0000000006
MINICICS --about to call # Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Michelle loan amount-0001000100-approved-F
MINICICS--msg-The loan cannot exceed 1000000
MINICICS --Disconnect from zRule Execution Server
MINICICS --SUCCESSFUL COMPLETION of demo
MINICICS--name-John loan amount-0000250000-approved-F
MINICICS--msg-The age exceeds the maximum.
MINICICS --Loan customer 0000000003
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Sarah loan amount-0000500000-approved-F
MINICICS--msg-Credit score below 200
MINICICS --Loan customer 0000000004
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Andy loan amount-0000500000-approved-F
MINICICS--msg-Too big Debt-To-Income ratio
MINICICS --Loan customer 00000000 5
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-David loan
amount-0000250000-approved-F

The setup of the zRES on the CICS JVM server is complete.

11.3 Configuring a zRES dedicated to a CICS region with
HBRMODE set to NORULE

There are instances where batch and CICS environments are not allowed to coexist due to
rules within an enterprise. In this case, you need to change the configuration to run a console,
212 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.zos.dserver.ref%2Fhtml%2Freasoncodes%2Fhtml%2Fcodes_zres.html

which is similar to setting up an address space and database in the configuration in
Chapter 10, “zRule Execution Server for z/OS stand-alone server” on page 183.

This section describes how to set up a console address space that is dedicated to a CICS
region on a logical partition (LPAR), but without a ZRES engine and, therefore, not allowing
any batch rule executions.

11.3.1 Why a NORULE zRES address space is needed

There are cases where it is not appropriate to have a batch environment running along with a
CICS environment, therefore disallowing the standard method of running a console address
space. This situation might occur because the enterprise wants to maintain a difference
between the batch and online systems, the rules are different, the organizations that maintain
them are different, and so on.

In these situations, it might be necessary to create a dedicated zRES address space on an
LPAR that handles the runtime repository only for CICS. This configuration is explained in this
section. The primary purpose is to start the console without the zRES engine, therefore
reducing the memory footprint and not creating the zRES address space.

11.3.2 Configuration parameter

NORULE is one of the settings for the ++HBRMODE++ parameter, the details of which are in
Table B-1 on page 328.

The parameter is present in the SHBRPARM(HBRINST) and SHBRPARM(HBRMSTR)
members. Setting this in HBRINST before running HBRUUPTI to create the HBRWORKDS
data set sets it as the default in HBRMSTR. However, it can be set at a later stage in
HBRMSTR.

After this variable is set, the MSTR is started with no rules, which the job log indicates with
the following message:

HBRMODE is NORULE. The server does not execute rules locally.

When HBRC is next run from CICS (which might be on the initialization of the JVMs), it
connects to the console. When you start the console, look on the Server Info tab. On the far
right of the Execution Units grid, you see an indication that CICS JVM is being used, as
shown in Figure 11-4.

Figure 11-4 Console showing that the rules run under CICS JVM
Chapter 11. Configuring CICS to work with Operational Decision Manager 213

11.4 Working with an IBM CICSPlex

Rule execution can be run in multiple CICS servers at a time, all controlled by the same
console and running from the same DB2 database. This allows multiple CICS systems within
a CICSPlex to access zRES, as shown in Figure 11-5.

Figure 11-5 Multiple CICS JVM servers

The CICS application in a region (for example, Region 1 in Figure 11-5) makes a rule call into
the Rule Execution Environment. The environment then uses the CICSPlex System Manager
address space (CMAS) that manages this CICSPlex to route the call through to run on the
most appropriate CICS JVM server to run the application, based on the current workload
constraints. Although the rule might be run on any of the CICS JVM servers, this selection is
invisible to the calling application.

11.4.1 Using a CICSPlex for zRES

The benefits of using IBM CICSPlex are described in the Introduction to CICSPlex SM topic in
the CICS Transaction Server for z/OS, Version 4 Release 2 Information Center:

http://pic.dhe.ibm.com/infocenter/cicsts/v4r2/index.jsp?topic=%2Fcom.ibm.cics.ts.c
psmconcepts.doc%2Ftopics%2Feyue3am.html

For zRES, using a CICSPlex in the layout displayed in Figure 11-5 on page 214 allows work
to be routed to the most appropriate CICS JVM server for workload managing that matches
214 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/cicsts/v4r2/index.jsp?topic=%2Fcom.ibm.cics.ts.cpsmconcepts.doc%2Ftopics%2Feyue3am.html

the workload management goals. Using a CICSPlex helps to ensure the optimum
performance for zRES.

11.4.2 Configuring the use of a CICSPlex with zRES

To set up multiple CICS JVM servers, first set up a single connection to the calling CICS JVM
server by using the method that is described in 11.2, “Configuring a CICS JVM server to run a
Rule Execution Server” on page 206. You can also see the Configuring zRule Execution
Server for z/OS to execute rules on a CICS JVM server topic in the IBM Operational Decision
Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Ftsk_ds_config_cics_jvm.html

The working directory that is created as part of this process can be used by all servers in the
CICSPlex. All servers can also use the default CICS JVM profile in that working directory.

Changing the HBRCSD job
Each of the CICS regions needs to be set up using the HBRCSD job. At the moment, this job
is pointing to the calling CICS JVM server.

In the job ++HBRWORKDS++.++HBRSSID++.SHBRPARM(SHBRJCL), the following two
lines need to be changed:

//STEPLIB DD DISP=SHR,DSN=<CICS INSTALL>.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=<CICS REGION>.DFHCSD

Change these lines so that they are appropriate for the first CICS region to be included. For
example, they now look like the following lines:

//STEPLIB DD DISP=SHR,DSN=CTS510.CICS680.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=CTS510GP.IYGDNCAZ.DFHCSD

Rerun the job for this new CICS region.

Repeat for each CICS region.

Completing the configuration for each region
For each region, run the following steps:

1. Update the CICS region startup JCL by using the procedure that is defined in 11.2.7,
“Changing the CICS region JCL” on page 210 for each region.

2. Configure security, as described in 11.2.9, “Security for the zRES on CICS JVM server” on
page 211.

3. Start the zRES on the CICS JVM server by using the procedure that is described in
11.2.10, “CEDA installation of HBRGROUP resources” on page 211.

Note: This section assumes that you use the HBRCSD job. Depending on your
configuration, it might be appropriate to use HBRCSD41 or HBRCSDJ instead.

Note: You might want to save the original HBRCSD for future use or reference. You might
want to make copies of this job for each of the regions, for example, HBRCSD01,
HBRCSD02, and so on.
Chapter 11. Configuring CICS to work with Operational Decision Manager 215

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftsk_ds_config_cics_jvm.html

4. Perform the CEDA installation of HBRGROUP by using the procedure that is described in
11.2.10, “CEDA installation of HBRGROUP resources” on page 211.

5. If you use a database, connect the database by using the procedure that is described in
11.2.11, “Database connect for the CICS region” on page 211.

6. Connect to the zRES by using the procedure that is described in 11.2.12, “Connecting the
zRES to the CICS JVM server” on page 211.

7. If required, you can test the CICS JVM server by using the procedure that is described in
11.2.13, “Deploying the installation verification program” on page 212.

11.5 Working with multiple CICS JVM servers

Rules execution can be run through multiple separate CICS systems on the same LPAR, with
the execution units (XU) being deployed to each CICS system. This topology is displayed in
Figure 11-6.

Figure 11-6 Multiple separate CICS JVM servers

Using this method allows different CICS systems to simultaneously access the same set of
rules. They might be running different applications or have different uses that require them to
be separate from each other.

To set up multiple CICS JVM servers, first set up a single server by using the method that is
described in 11.2, “Configuring a CICS JVM server to run a Rule Execution Server” on
page 206.
216 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Additional information is in the Configuring zRule Execution Server for z/OS to execute rules
on a CICS JVM server topic of the IBM Operational Decision Manager Version
8.0.1Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Ftsk_ds_config_cics_jvm.html

The working directory that is created as part of this process can be used by all servers in the
CICSPlex. All servers can also use the default CICS JVM profile in that working directory.

Changing the jobs
If you want to use the same working directory for all the CICS servers that use the same
zRES, you need to change the HBRCSD job for each server. Follow the procedure that is
described in “Changing the HBRCSD job” on page 215. Then, correct the CICS region
startup JCL, as described in 11.2.7, “Changing the CICS region JCL” on page 210.

If you want to use a different JVM profile for each server, you also need to create new working
directories and JVM profiles for each of the servers. Each of the CICS regions needs
modifications to the jobs in HBRWORKDS, and then those jobs need to be run again.

For each of the new regions, you need to perform the following actions.

Creating the new working directories
If you want to use different directories, you can use the job HBRCRTCI. You need to modify
the name of the working directory so that it points to the directory that is required for the new
CICS region.

Modify the SYSTSIN of the job to indicate the new area to use. For example, see the code
extract that is shown in Figure 11-7.

Figure 11-7 HBRCRTCI prior to code change

Note: This section assumes that you use the HBRCSD job. Depending on your
configuration, it might be appropriate to use HBRCSD41 or HBRCSDJ instead.

TIP: Although the following steps indicate that the jobs must be modified, you might want to
make copies of the jobs, therefore retaining the original jobs for future reference and use.

//SYSTSIN DD *
 BPXBATCH SH . +
 /usr/lpp/zDM/V8R0M1/zexecutionserver+
 /bin/hbrcrtin.sh +
 /usr/lpp/zDM/V8R0M1 +
 /u/HBR1/HBR1CICS42A
/*
Chapter 11. Configuring CICS to work with Operational Decision Manager 217

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftsk_ds_config_cics_jvm.html

This code then becomes the code extract that is shown in Figure 11-8.

Figure 11-8 HBRCRTCI after the code change

After you modify the code, submit the job to create the new directory.

Creating the new profile
Now that the new directory is created, you can optionally create a new JVM profile within this
directory:

� For CICS V4.2 and later, use the job HBRCJVMP.
� For CICS V4.1, use the job HBRCJS41.

The following instructions assume that the job HBRCJVMP is used.

Modify the job HBRCJVMP to indicate the working directory for the new CICS region. This
directory is within the SYSTSIN area of the JCL. For example, see the code extract that is
shown in Figure 11-9.

Figure 11-9 HBRCJVMP prior to code change

//SYSTSIN DD *
 BPXBATCH SH . +
 /usr/lpp/zDM/V8R0M1/zexecutionserver+
 /bin/hbrcrtin.sh +
 /usr/lpp/zDM/V8R0M1 +
 /u/HBR1/HBR1CICS42B
/*

Tip: If you extend the length of the directory to be created, ensure that you do not extend it
beyond the allowable width for the JCL format.

//SYSTSIN DD *
 BPXBATCH SH . +
 /usr/lpp/zDM/V8R0M1/zexecutionserver+
 /bin/hbrcjvmp.sh +
 /usr/lpp/zDM/V8R0M1 +
 /u/HBR1/HBR1CICS42A +
 /java/java601_bit64_GA/J6.0.1_64 +
 /usr/lpp/db2910/classes +
 /usr/lpp/db2910/lib
 /*
218 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

This code becomes the code extract that is shown in Figure 11-10.

Figure 11-10 HBRCJVMP after code change

Updating HBRCSD
The new CICS region needs to be set up by using the HBRCSD job.

In the job ++HBRWORKDS++.++HBRSSID++.SHBRPARM(SHBRJCL), you need to change
the following two lines:

//STEPLIB DD DISP=SHR,DSN=<CICS INSTALL>.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=<CICS REGION>.DFHCSD

Change these lines so that they are appropriate for the new CICS region to be included, for
example:

//STEPLIB DD DISP=SHR,DSN=CTS510.CICS680.SDFHLOAD
//DFHCSD DD DISP=SHR,DSN=CTS510GP.IYGDNCAZ.DFHCSD

Rerun the job for this new CICS region.

Completing the configuration for each region
To complete the configuration for each region, follow the instructions that are described in
“Completing the configuration for each region” on page 215.

//SYSTSIN DD *
 BPXBATCH SH . +
 /usr/lpp/zDM/V8R0M1/zexecutionserver+
 /bin/hbrcjvmp.sh +
 /usr/lpp/zDM/V8R0M1 +
 /u/HBR1/HBR1CICS42B +
 /java/java601_bit64_GA/J6.0.1_64 +
 /usr/lpp/db2910/classes +
 /usr/lpp/db2910/lib
 /*
Chapter 11. Configuring CICS to work with Operational Decision Manager 219

220 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 12. Configuring IMS to work with
Operational Decision Manager

This chapter describes the use of Operational Decision Manager on z/OS from IMS.

This chapter contains the following topics:

� 12.1, “IMS and Operational Decision Manager” on page 222
� 12.2, “Configuration” on page 222
� 12.3, “IMS and Rules Execution Server on WebSphere Application Server for z/OS” on

page 223

12
© Copyright IBM Corp. 2013. All rights reserved. 221

12.1 IMS and Operational Decision Manager

Using Operational Decision Manager from IMS allows the rules that influence the business
logic to be kept outside the IMS environment. Encapsulating the rules from these decision
points outside of the IMS application decouples the rules from the IMS applications. This
allows the business rules to be more reactive to changes without having to modify the IMS
applications. IMS can call Operational Decision Manager from programs running in the
Message Processing Regions (MPR), Batch Message Processing (BMP), or Data
Language/Interface (DL/I) programs. IMS and the Rule Execution Server for z/OS (zRES)
must reside on the same logical partition (LPAR).

IMS uses the same API calls that are used by batch and CICS programs:

� HBRCONN: To connect to the server group
� HBRRULE: To run rules
� HBRDISC: to disconnect from the server group

However, these API calls use IMS-dedicated stubs that are contained in a separate library, as
shown in Figure 12-1.

Figure 12-1 IMS calling into zRES

12.2 Configuration

This section describes the required configuration for the different types of programs within
IMS.

For all types of programs, to resolve the API calls of HBRCONN, HBRRULE, and HBRDISC,
the IMS program needs to be link-edited with the HBRISTUB module. Include the following
link-edit step when binding the client program:

INCLUDE HBRLIB (HBRISTUB)

There are three configuration parameters that relate to IMS:

� IMSHLQ: The high-level qualifier (HLQ) of the IMS installation
� IMSREGID: The region ID of the IMS region to be used
� IMSREGHLQ: The HLQ of the IMS region to be used

These three configuration parameters are used in the creation of the provided sample
programs (HBRMINI and HBRMINIT). Although it is useful to set them up, it is not necessary.
zRES can be used without them being set up, provided that the other configuration steps are
followed.
222 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

12.2.1 BMP and DLI

There is no additional setup required for BMP and DL/I programs to call into the zRES.

12.2.2 Message Processing Region (MPR)

Message Processing Region (MPR) programs require additional setup to access zRES. In
the message processing JCL, you need to add the following information:

1. An HBRENVPR statement that gives the location of the data set member that contains the
details about the location of the rules environment:

//HBRENVPR DD DISP=SHR,
// DSN=WODM.V80.CUSTMISE.HBR1.SHBRPARM(HBRBATCH)

2. Include the zRES load library in the STEPLIB and DFSESL statements:

// DD DSN=WODM.V80.HBR1.BASE.SHBRLOAD,DISP=SHR

3. Restart your IMS Message Processing Region so that it uses the changes that you made
to the JCL.

12.3 IMS and Rules Execution Server on WebSphere
Application Server for z/OS

Further configuration steps are necessary to run rules on a Rules Execution Server on
WebSphere Application Server for z/OS. These steps are described in 13.5, “IMS and Rule
Execution Server using WOLA on z/OS” on page 239.
Chapter 12. Configuring IMS to work with Operational Decision Manager 223

224 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 13. Configuring WebSphere
Optimized Local Adapters
support

WebSphere Optimized Local Adapters (WOLA) is a feature of WebSphere Application Server
for z/OS that manages communication between WebSphere Application Server and an
external address space, such as CICS, batch, or IMS, that resides in the same logical
partition (LPAR).

For more information about WOLA, see the Configuring WebSphere Optimized Local
Adapters (WOLA) topic in the IBM Operational Decision Manager Version 8.0.1 Information
Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config
.zos/topics/con_ds_install_config_wola.html

The following topics are covered in this chapter:

� 13.1, “Overview of WebSphere Operational Local Adapters” on page 226
� 13.2, “Sample configuration of WebSphere Application Server to use WOLA” on page 226
� 13.3, “Batch programs and Rule Execution Server using WOLA on z/OS” on page 238
� 13.4, “CICS and Rule Execution Server using WOLA on z/OS” on page 238
� 13.5, “IMS and Rule Execution Server using WOLA on z/OS” on page 239

13
© Copyright IBM Corp. 2013. All rights reserved. 225

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config.zos/topics/con_ds_install_config_wola.html

13.1 Overview of WebSphere Operational Local Adapters

WebSphere Operational Local Adapters (WOLA) is a component of WebSphere Application
Server for z/OS. It uses cross-memory mechanisms to provide a bidirectional, high volume
exchange of messages between WebSphere Application Server for z/OS and the calling
application.

When Operational Decision Manager is installed on WebSphere Application Server for z/OS,
WOLA can be used as a way for COBOL applications to execute rules using the Rule
Execution server (RES) within Operational Decision Manager on WebSphere Application
Server for z/OS rather than running the z/OS native Rule Execution Server. COBOL
applications do not need any changes to connect to Operational Decision Manager using
WOLA because the redirection is achieved by runtime JCL variables. This allows Operational
Decision Manager to benefit from this method of high volume message exchange.

13.1.1 Configuring WOLA

When calling to RES using WOLA, it is necessary for WOLA to know the correct WebSphere
Application Server with which to connect. There might be more than one WebSphere
Application Server running on the same system and you need to connect to the one running
RES. This information is included in the required JCL variables.

13.1.2 JCL variables for using WOLA

Use the following JCL variables for WOLA:

� The first variable indicates that the target RES is accessed using WOLA. Set
++HBRTARGETRES++ to WOLA.

� RES also needs to know where the WOLA load library can be located. This is the load
library that was created as part of the WOLA setup. The ++HBRWOLALOADLIB++
indicates the location of your WOLA load library. This load library is created as part of the
configuration process that is described in step 1 on page 227.

� Indicate the details of the WebSphere Application Server to use by using the Cell, Node,
and Server name, which lead to a unique WebSphere Application Server. The following
variables give a unique identifier to the correct WebSphere Application Server:
– ++HBRWOLACELL++
– ++HBRWOLANODE++
– ++HBRWOLASERVER++

For more information about the WOLA-related variables that can be set in the HBRINST
member, see “WebSphere Optimized Local Adapters (WOLA) script parameters” on
page 333.

13.2 Sample configuration of WebSphere Application Server to
use WOLA

The exact configuration of WOLA depends on the version of WebSphere Application Server
for z/OS that is used.
226 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

For complete details, see the Configuring WebSphere Optimized Local Adapters (WOLA)
topic in the IBM Operational Decision Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config
.zos/topics/tsk_ds_install_wola_was8.html

This section provides an example of a configuration that only uses the following steps to
configure WOLA:

1. Create a load library that contains the modules that are required by WOLA from within the
WebSphere Application Server installation directory in UNIX System Services. In this
example, it is assumed the WebSphere Application Server is installed in the /was/V8.0
directory. The library is created at the selected location. This example used
WODM.OLA.LOADLIB:

/was/v8.0/profiles/default/bin/copyZOS.sh OLAMODS WODM.OLA.LOADLIB

2. On the WebSphere Application Server console, set the environment variables that are
required for WOLA. For more information about these variables for WebSphere
Application Server, see the Optimized local adapters environment variables topic in the
WebSphere Application Server, Network Deployment, Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websp
here.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Fcdat_olacustprop.html

It is possible to set the environment variables automatically by using the script olaRar.py
that is described in the olaRar.py script file topic in the WebSphere Application Server,
Network Deployment (z/OS), Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websp
here.zseries.doc%2Finfo%2Fzseries%2Fae%2Fcdat_wsadminola.html

However, if you want to set the environment variables manually, complete the following
steps:

a. Expand Environment and select WebSphere variables, as shown in Figure 13-1.

Figure 13-1 WebSphere Application Server console menu
Chapter 13. Configuring WebSphere Optimized Local Adapters support 227

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config.zos/topics/tsk_ds_install_wola_was8.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Fcdat_olacustprop.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.zseries.doc%2Finfo%2Fzseries%2Fae%2Fcdat_wsadminola.html

b. Select the Scope cell in the drop-down menu, as shown in Figure 13-2.

Figure 13-2 Selecting the scope

c. Add the new variable WAS_DAEMON_ONLY_enable_adapter and set it to true, as shown in
Figure 13-3.

Figure 13-3 Setting WAS_DAEMON_ONLY_enable_adapter

d. There are three other variables that can be added (or updated if already present) to the
appropriate values for your system. The values can be used when setting up a sample
server to ensure that WOLA is working. (You need different values for your
development, test, and production systems.) These values (shown in Figure 13-4) are
for tuning purposes and are not actually required for WOLA to work in the first instance:

• WAS_DAEMON_ONLY_adapter_max_conn

The maximum number of connections needed for this WOLA

• WAS_DAEMON_ONLY_adapter_max_serv

The maximum number of outbound services needed for this WOLA

• WAS_DAEMON_ONLY_adapter_max_shrmem

The maximum amount of shared memory allocated to the WOLA

Figure 13-4 Typical values for different WOLA-related variables
228 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

e. Save the variables.

3. WOLA requires a resource adapter, which now needs to be installed from an archive, and
also a connection factory. This resource archive is called ola.rar. To install this resource
adapter, complete the following steps:

a. In the WebSphere Application Server administrative console, select the Resources
menu, expand Resource Adapters, and select Resource Adapters, as shown in
Figure 13-5.

Figure 13-5 Resources menu in the administrative console

b. On the Resource adapters page, click Install RAR, as shown in Figure 13-6.

Figure 13-6 Selecting Install RAR
Chapter 13. Configuring WebSphere Optimized Local Adapters support 229

c. Select Remote file system and select the ola.rar file from the installableApps
directory within your WebSphere Application Server installation directory, as shown in
Figure 13-7. Click Next.

Figure 13-7 Installing the Resource Archive file
230 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

d. Accept the defaults on the Resource adapters page, as shown in Figure 13-8. Click OK
to save.

Figure 13-8 Installing the resource adapter
Chapter 13. Configuring WebSphere Optimized Local Adapters support 231

e. The RAR file is now in the list of installed resource adapters, as shown in Figure 13-9.
Create a connection factory by clicking the OptimizedLocalAdapter resource.

Figure 13-9 List of resource adapters

f. On the OptimizedLocalAdapter page, as shown in Figure 13-10, under Additional
Properties, click J2C connection factories.

Figure 13-10 Optimized Local Adapter details
232 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

g. On the J2C connection factories page (Figure 13-11), click New.

Figure 13-11 J2C connection factories page

h. Enter the details, as shown in Figure 13-12. Fields that are unavailable do not need to
be populated. Save your changes.

Figure 13-12 Populating the fields for the J2C connection factory

4. Restart WebSphere Application Server to pick up the changes. You see messages in the
WebSphere Application Server logs that indicate the WOLA status:

Support is activated: BBOMOOO1I enable_adapter:1
Chapter 13. Configuring WebSphere Optimized Local Adapters support 233

5. It is now necessary install the WOLA Enterprise JavaBeans (EJB) into WebSphere
Application Server. This application is used to listen for the WOLA input.

Complete the following steps:

a. In the WebSphere Application Server administrative console, select Application 
New Application and select New Enterprise Application from the New Application
panel, as shown in Figure 13-13.

Figure 13-13 WebSphere Application Server New Application panel

b. On the Preparing for the application installation panel, select Remote file system and
click Browse to help you select the location of the WOLA EAR file on the z/OS server.
It is in the /executionserver/applicationservers/WOLA directory of your installation.
An example is shown in Figure 13-14.

Figure 13-14 Preparing for the application installation

Note: The following instructions are specific for WebSphere Application Server V8.0. If
you are using a different version, other configuration might be necessary. For more
information, see the Enabling the server environment to use optimized local adapters
topic in the WebSphere Application Server, Network Deployment, Version 8.0
Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.we
bsphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_enableconnector.html
234 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_enableconnector.html

c. On the following window, select Detailed for the type of installation. Expand Choose to
generate default bindings and mappings and check Generate Default Bindings,
as shown in Figure 13-15. Click Next.

Figure 13-15 Selecting the options for installing the application

d. On the Install New Application window, click Next until you reach step 5.

e. For res-wola-proxy-ejb-8.0.1.jar, select JNDI for all interfaces. If it is not already
entered, enter ejb/com/ibm/rules/wola/ProxyExecutionSessionBean for the Target
Resource JNDI Name.

For res-wola-worker-ejb-8.0.1.jar, select JNDI for all interfaces. If it is not already
entered, enter ejb/com/ibm/rules/wola/PojoExecutionSessionBean for the Target
Resource JNDI Name.
Chapter 13. Configuring WebSphere Optimized Local Adapters support 235

Figure 13-16 shows the step to provide JNDI names for beans. Then, click Next until
you reach step 7.

Figure 13-16 Step 5: Provide JNDI names for beans

f. Step 7 requires the mapping of EJB references to beans. For the Module column for
res-wola-proxy-ejb-8.0.1.jar, if it is not already entered, enter the Target Resource
JNDI Name of ejb/com/ibm/rules/wola/PojoExecutionSessionBean, as shown in
Figure 13-17. Click Next until you reach the Summary window.

Figure 13-17 Mapping the EJB reference to the bean
236 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

g. On the Summary window, as shown in Figure 13-18, click Finish. The application is
installed. Click Save to save the changes.

Figure 13-18 Summary of application installation
Chapter 13. Configuring WebSphere Optimized Local Adapters support 237

h. The application can be displayed by selecting Applications  Application Types 
WebSphere Enterprise Applications, as shown in Figure 13-19, where the
application is listed as Decision Server WOLA EndPoint. Start the application by
selecting it and clicking Start.

Figure 13-19 List of installed applications that include WOLA Endpoint

13.3 Batch programs and Rule Execution Server using WOLA
on z/OS

With the previous configurations already in place (setting up the variables as described in
13.1, “Overview of WebSphere Operational Local Adapters” on page 226 and setting up the
WebSphere Application Server as described in 13.2, “Sample configuration of WebSphere
Application Server to use WOLA” on page 226), there are no further requirements to connect
a batch program to a RES running in WebSphere Application Server for z/OS using WOLA.

13.4 CICS and Rule Execution Server using WOLA on z/OS

Several of the steps described in this section are the same steps that are required for setting
up CICS to work with RES. These steps are indicated. However, there are some differences
to ensure that CICS is aware of the location of WOLA and the details about which WebSphere
Application Server for z/OS WOLA is accessing. Complete the following steps:

1. Check the value of the ola_cicsuser_identity_propagate variable. This variable is used to
specify permissions for CICS application level identities to be used for authentication when
calling the rule. By default, it is set to 0, which indicates undefined. More information about
this variable is in the Optimized local adapters environment variables topic of the
WebSphere Application Server, Network Deployment, Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websp
here.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Fcdat_olacustprop.html

2. Similar to setting up CICS for RES, submit the JCL job HBRCSD to define the resources
that are required by CICS.
238 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Fcdat_olacustprop.html

3. Submit the job HBRCWOLA. This job defines the resources that are required for WOLA
under CICS.

4. Edit the CICS system initialization table. For setting up CICS for RES, add the value of the
CICSLIST parameter to the list of resource definition groups specified by the GRPLIST
parameter. To work with WOLA, also add the name BBOLIST to the GRPLIST parameter to
ensure that CICS can locate the necessary transactions.

5. When setting up CICS for RES, the SHBRAUTH load libraries needed to be added to
STEPLIB and DFHRPL concatenations in the CICS JCL. To work with WOLA, you also
need to add the SHBRWOLA libraries, for example:

//STEPLIB DD DISP=SHR,DSN=WODM.V8R0M1.HBR1.CUSTMISE.HBR1.SHBRAUTH
// DD DISP=SHR,DSN=WODM.OLA.LOADLIB
//DFHRPL DD DISP=SHR,DSN=WODM.V8R0M1.HBR1.CUSTMISE.HBR1.SHBRCICS
// DD DISP=SHR,DSN=WODM.OLA.LOADLIB

6. Pass the necessary runtime variables to the server by adding the
SHBRPARM(HBRWOLA) and SHBRPARM(HBRCMMN) data set members to the
HBRENVPR data definition (DD) statement, as shown in the following DD statements:

//HBRENVPR DD DISP=SHR,DSN=WODM.V8R0M1.HBR1.CUSTMISE.HBR1.SHBRPARM(HBRWOLA)
// DD DISP=SHR,DSN=WODM.V8R0M1.HBR1.CUSTMISE.HBR1.SHBRPARM(HBRCMMN)

7. Start the WebSphere Application Server and CICS.

8. RES requires the HBRGROUP resources to be installed. WOLA requires the BBOACSD
group to be installed. Use the following commands:

CEDA INSTALL GROUP(HBRGROUP)
CEDA INSTALL GROUP(BBOACSD)

9. Activate the optimized local adapters TRUE program by using the following command:

BBOC START_TRUE

10.The configuration can be tested by running the HBRC transaction from CICS.

For more information, see the Use the CICS environment topic in the WebSphere Application
Server, Network Deployment, Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.webspher
e.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step4.html

13.5 IMS and Rule Execution Server using WOLA on z/OS

To connect IMS to RES using a WOLA interface, it is necessary to provide IMS with details of
the location of that WOLA. In each case, follow this process:

1. There needs to be an entry in the external subsystem member in the IMS PROCLIB to
contain an entry to indicate that WOLA must be used. If you do not already have a
member, you need to create one. Include this entry:

WOLA,BBOA,BBOAIEMT

2. Pass the SSM parameter into your IMS startup data.

3. The WOLA load library that is created during the WOLA setup needs to be included in the
IMS control region startup JCL in both the STEPLIB and the DFSESL DDs:

– BMP: You need to restart IMS in order to pick up the changes.

– MPR: MPR requires additional steps for setup:
Chapter 13. Configuring WebSphere Optimized Local Adapters support 239

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step4.html

a. Similar to setting up for calling out to RES (as described in 12.2, “Configuration” on
page 222), include an HBRENVPR DD in your message processing region JCL. In this
case, ensure that it points to a member that contains the WOLA parameters rather than
the RES group.

b. Similar to setting up for calling out to RES, add the WOLA load library to your STEPLIBR
and DFSESL DD statements in the message processing JCL.

The message processing region needs to be restarted for IMS to pick up the changes:

– DL/I: DL/I programs are currently not supported in this environment.

For information, see the Use the IMS environment topic in the WebSphere Application Server,
Network Deployment, Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.webspher
e.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step5.html
240 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step5.html

Chapter 14. Configuring decision
warehousing

This chapter describes the Decision Warehouse, which is part of the Rules Execution server.
This chapter explains the configuration of the Decision Warehouse and describes possible
uses.

The following topics are covered in this chapter:

� 14.1, “Introducing the Decision Warehouse” on page 242
� 14.2, “Configuring the Decision Warehouse” on page 242

14
© Copyright IBM Corp. 2013. All rights reserved. 241

14.1 Introducing the Decision Warehouse

The Decision Warehouse is used for monitoring and reporting on ruleset execution. With
ruleset monitoring enabled, details of each ruleflow used, the path, and the rules fired are
recorded. The purpose of the Decision Warehouse function is to help you understand what
happened when a ruleset was executed. This data might be required for auditing or
performance analysis. It can also be used when testing, as described in Chapter 15,
“Configuring and running Decision Validation Services” on page 245.

The Decision Warehouse is accessed by using the Rules Execution Server for z/OS (zRES)
console or the console for Rules Execution Server on WebSphere Application Server for z/OS
(RES). The details of recorded statistics are stored in a database for future reporting.

Decision Warehouse is shipped in a default configuration so that it can be used immediately.

14.2 Configuring the Decision Warehouse

Complete the following steps to configure the Decision Warehouse:

1. Set up the database resources. During the normal Operational Decision Manager
configuration, the Decision Warehouse Database definitions, customized to your
environment for the Decision Warehouse function, are presented in the partitioned data
set (PDS) member:

++HBRWORKDS++.SHBRJCL(HBRDSCTR)

Run the HBRDSCTR job to create the database entities that are required to store the rules
data that is traced during rule execution.

2. Enable ruleset monitoring. To monitor ruleset execution, you must set the monitoring
options in the Ruleset View, as shown in Figure 14-2 on page 243, by using the Rule
Execution Server console that is shown in Figure 14-1.

Figure 14-1 Ruleset view
242 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Follow these steps:

a. Select the Explorer tab.

b. From the Navigator view, select RuleApps, and then the ruleset.

c. On the Ruleset Parameters page (Figure 14-2), under the monitoring options section,
enable ruleset execution monitoring by selecting Enable tracing in the Decision
Warehouse. Click Save.

Figure 14-2 Monitoring options
Chapter 14. Configuring decision warehousing 243

d. Check that the following ruleset properties are set to true, as shown in Figure 14-3:

• monitoring.enabled
• ruleset.sequential.trace.enabled (if the ruleset contains tasks that use the

sequential or fast path execution mode)

Figure 14-3 Monitoring properties

3. Execute the ruleset. The execution trace data is written to the default Decision Warehouse
database.

4. View the results. From the Rule Execution Server console, select the Decision
Warehouse tab. Use the decision identifier (Decision ID) to locate a specific transaction
and view the executed rules. A decision identifier is automatically generated, by default,
and is equal to the identifier of the execution unit (XU) connection.
244 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 15. Configuring and running
Decision Validation Services

This chapter describes the configuration of Rules Execution Server for z/OS (zRES) and
Rules Execution Server on WebSphere Application Server for z/OS (RES) so that Decision
Validation Services (DVS) can be used. This chapter also describes the details of the Service
Scenario Provider (SSP) and the Key Performance Indicator (KPI) architectures.

An example of how to configure and run a typical test using DVS is included in this chapter.
This example can assist you with the configuration of DVS projects and demonstrate some of
the uses of DVS.

The following topics are covered in this chapter:

� 15.1, “Decision Validation Service for stand-alone zRES” on page 246
� 15.2, “DVS using RES on WebSphere Application Server for z/OS” on page 258
� 15.3, “Service scenario provider and key performance indicator architecture” on page 270
� 15.4, “Example” on page 275

15
© Copyright IBM Corp. 2013. All rights reserved. 245

15.1 Decision Validation Service for stand-alone zRES

This section describes how to configure zRES on z/OS so that simulations and test suites can
be run there. These steps are in addition to the standard steps in setting up DVS, as
described in the Configuring Decision Validation Services on WebSphere Application Server
for z/OS topic in the IBM Operational Decision Manager Version 8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
family.config.zos%2Ftopics%2Ftpc_dc_add_dvs_config_steps.html

During the initial configuration of zRES, ensure that the following variables are set:

� The ++HBRMODE++ variable must be set to TEST, which indicates that the server will run in
test mode.

� The ++HBRSSPPORT++ variable indicates the port on which the SSP is located.

For more information about these properties, see “Rules z/OS” on page 328.

15.1.1 Running from Rules Designer

After you set up zRES, complete the following steps in this section from the Rules Designer.

Important: The instructions in this section assume that your Rules Project has been
developed in Rules Designer.

Tip: By default, the zRES console and SSP on zRES run from different port numbers. To
use the same port number, follow the instructions in the Repackaging Decision Center to
locate the SSP topic in the IBM Operational Decision Manager Version 8.0.1 Information
Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wo
dm.family.config.zos%2Ftopics%2Ftsk_ssp_port_location.html
246 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftsk_ssp_port_location.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftpc_dc_add_dvs_config_steps.html

Deploying the XOM to zRES
Complete the following steps to deploy the execution object module (XOM) to zRES:

1. In Rules Designer, right-click the rules project, and select Decision Validation
Services  Deploy XOM for Remote DVS Testing, as shown in Figure 15-1.

Figure 15-1 Selecting to deploy XOM for remote DVS testing
Chapter 15. Configuring and running Decision Validation Services 247

2. On the Deploy XOM for Remote DVS Testing window, populate the fields with the details of
your zRES server, as indicated in Figure 15-2, and click Finish to deploy the XOM. On this
window, you need to use your console port.

Figure 15-2 Deploying the XOM to the Rule Execution Server
248 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Updating the deployment.xml file
Complete the following steps to correct the deployment.xml file to handle the zRES server:

1. After you deploy the XOM to your zRES, the deployment.xml file is created in the
resources/META-INF directory of your rule project, as shown in Figure 15-3. Open this file
for editing.

Figure 15-3 Deployment.xml file

2. In the deployment.xml file, correct the port for the rules server so that it points to the SSP
port. See Figure 15-4.

Figure 15-4 Changing the port to the SSP port

3. Save and close the deployment.xml file.

Tip: If you intend to redeploy the XOM, you need to restore the original port to deploy
the deployment.xml file correctly. After you redeploy the XOM, restore the
deployment.xml file to the SSP port. The system uses one port for deployment and
another port for SSP.
Chapter 15. Configuring and running Decision Validation Services 249

Setting up the DVS project
Complete the following steps to set up the DVS project:

1. Right-click and select New. Select the DVS Project wizard, as shown in Figure 15-5. Click
Next to open the wizard.

Figure 15-5 Selecting the DVS Project wizard

2. Enter your project name and click Next, as shown in Figure 15-6.

Figure 15-6 Creating the DVS project and specifying the project name
250 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. Enter the name for the customization and click Finish, as shown in Figure 15-7.

Figure 15-7 Creating the DVS project and specifying the customization name

4. Create a new configuration by clicking Create, as shown in Figure 15-8.

Figure 15-8 Configurations in the customization panel

5. Select Other and then click Next, as shown in Figure 15-9.

Figure 15-9 Selecting the environment to configure
Chapter 15. Configuring and running Decision Validation Services 251

6. Enter the details of your server by using the SSP port and pointing to the testing server, as
shown in Figure 15-10. Click Test connection to check that your connection is correct,
and then click Finish to create the configuration.

Figure 15-10 Entering the URL for the DVS configuration

7. As with all DVS projects, you now need to add the rule project to the Rule Projects list so
that it displays, as shown in Figure 15-11.

Figure 15-11 Adding the rule project
252 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. When you run your tests, after populating the tests to run, use the DVS Configuration tab
to select the DVS project. Enter the details, using the SSP port in this instance, as shown
in Figure 15-12. Click Apply to save the configuration, and click Run to run your tests.

Figure 15-12 Setting up the run configuration

15.1.2 Running from Decision Center

After you set up zRES, complete the following steps from the Decision Center:

1. Sign in to the Decision Center by using the administrator user name. On the Home tab,
select the rule project that you want to test, as shown in Figure 15-13.

Figure 15-13 Using the Decision Center to configure DVS

2. Click the Configure tab and select Manage Servers (Figure 15-14).

Figure 15-14 Selecting Manage Servers from the Configure tab
Chapter 15. Configuring and running Decision Validation Services 253

3. Click New to add a server. Enter the details for your server, as shown in Figure 15-15.
Click OK to create the server. The server then appears in the server list, from where you
can also check the connection.

Figure 15-15 Entering the new server details

4. Click the Explore tab. Click the icon that is indicated in Figure 15-16 to add a Smart folder.

Figure 15-16 Adding a Smart folder
254 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. In the Smart View wizard, follow these steps:

a. Type Resources as the name, as shown in Figure 15-17. Click Next.

Figure 15-17 Entering the name of the new Smart folder

b. On the Query panel, click the all business rules link to show the possible options, as
shown in Figure 15-18. Select all resources.

Figure 15-18 Selecting the object of the query

c. The query then displays, as shown in Figure 15-19. Click Next.

Figure 15-19 The selected query
Chapter 15. Configuring and running Decision Validation Services 255

d. From the list of Available Properties, select Folder, and click the right arrow to move it
to the Displayed Properties list, as shown in Figure 15-20. Click Finish to create the
Smart folder.

Figure 15-20 Selecting the displayed properties

6. Click the Explore tab to list the smart folders, as shown in Figure 15-21. The Resources
node in the list represents the new smart folder. You see that two folders are already listed:
cobol and META-INF.

Figure 15-21 Resources smart folder displayed in the Smart Folders list

7. Click META-INF. You see the deployment.xml file published by the Rules Designer, as
shown in Figure 15-22.

Figure 15-22 Displaying the contents of the META-INF folder
256 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. Click the download icon that is shown in Figure 15-23, and download the deployment.xml
file to a suitable location where you can edit it.

Figure 15-23 Downloading the deployment.xml file

9. Edit the deployment.xml file so that it points to the SSP port rather than the console port.
This is the SSP port that you specified earlier. The port that requires this change is shown
in Figure 15-24.

Figure 15-24 Editing the deployment.xml file

10.Return to the Decision Console and re-import the file by selecting the item and clicking
Edit, as shown in Figure 15-25.

Figure 15-25 Selecting Edit

11.You can now browse for the new version of the deployment.xml file and upload it, as
shown in Figure 15-26.

Figure 15-26 Uploading a replacement deployment.xml file
Chapter 15. Configuring and running Decision Validation Services 257

The managed XOM is now attached to the ruleset for the target server. Run the tests on RES
on WebSphere Application Server for z/OS.

15.2 DVS using RES on WebSphere Application Server for z/OS

This section describes the necessary steps for configuring DVS when it is installed with RES
on WebSphere Application Server for z/OS. You install the default SSP archive as an
enterprise application within WebSphere Application Server. Subsequent updates to this
archive are re-installed to replace the original.

The following configuration example assumes that you are using WebSphere Application
Server V8.0 for z/OS. If you use a different version, some of the installation steps might differ
slightly, but the following example is sufficient to assist you through the installation process.

15.2.1 Running from Rules Designer

Complete the following steps in this section from the Rules Designer.

Important: If you republish the project from Rules Designer, the deployment.xml file
might be overridden with the original version.
258 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Deploying the XOM to zRES
Complete the following steps to deploy the XOM to zRES:

1. In Rules Designer, right-click the rules project, and select Decision Validation
Services  Deploy XOM for Remote DVS Testing, as shown in Figure 15-27.

Figure 15-27 Selecting to deploy XOM for remote DVS testing
Chapter 15. Configuring and running Decision Validation Services 259

2. Populate the fields with the details of your RES on WebSphere Application Server for
z/OS, as shown in Figure 15-28. Click Finish to deploy the XOM.

Figure 15-28 Populating the fields to deploy to a remote server
260 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Setting up the DVS project
Complete the following steps to configure the DVS project:

1. Right-click and select New. Select the DVS Project wizard, as shown in Figure 15-29.
Click Next to open the wizard.

Figure 15-29 Selecting the DVS project wizard

2. Enter your project name and click Next, as shown in Figure 15-30.

Figure 15-30 Creating the DVS project and specifying the project name
Chapter 15. Configuring and running Decision Validation Services 261

3. Enter the name for the customization and click Finish, as shown in Figure 15-31.

Figure 15-31 Creating the DVS project and specifying the customization name

4. Create a new configuration by clicking Create, as shown in Figure 15-32.

Figure 15-32 Configurations in the customization panel

5. Select IBM WebSphere AS 8.0 and click Next, as shown in Figure 15-33.

Figure 15-33 Selecting the environment for your WebSphere Application Server
262 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. Enter the details of your server by using the SSP port and pointing to the testing server, as
shown in Figure 15-34. Click Test connection to check that your connection is correct,
and click Finish to create the configuration.

Figure 15-34 Entering the URL for the DVS configuration

7. As with all DVS projects, you need to add the rule project to the Rule Projects list so that
the project displays, as shown in Figure 15-35.

Figure 15-35 Adding the rule project
Chapter 15. Configuring and running Decision Validation Services 263

8. When you run your tests, after populating the tests to run, use the DVS Configuration tab
to select the DVS project. Enter the details, as shown in Figure 15-36. Click Apply to save
the configuration, and click Run to run your tests.

Figure 15-36 Setting up the run configuration

15.2.2 Running from the Decision Center

Complete the following steps from the Decision Center:

1. Start the console of WebSphere Application Server for z/OS, and select Applications 
Application Types  WebSphere Enterprise Applications. Click Install to install a new
application (Figure 15-37).

Figure 15-37 WebSphere Enterprise Applications panel
264 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. The default SSP file is in the following directory:

<installation>/executionserver/applicationservers/WebSphere8/jrules-ssp-WAS8.ear

See Figure 15-38. Click Next.

Figure 15-38 Selecting the SSP file

3. On the Preparing for the application installation panel, select Detailed - Show all
installation options and parameters. Expand Choose to generate default bindings
and mappings and check Generate Default Bindings, as shown in Figure 15-39. Click
Next.

Figure 15-39 Preparing for the application installation.
Chapter 15. Configuring and running Decision Validation Services 265

4. Click Continue to accept the security warning to display the Install New Application panel,
as shown in Figure 15-40.

Figure 15-40 Install New Application: Step 1 Select installation options
266 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. Click Next to step through all the steps until you reach step 10, which is shown in
Figure 15-41. If you are not using a federated repository, skip to step 6 on page 268. If you
are using a federated repository for security, you need to map the groups:

a. Select the resAdministrators check box and click Map Groups.

b. Click Search.

c. Select resAdministrators in the Available list and click the right arrow to move it to the
Selected column. Click OK to return to the Map security roles to users or groups panel.

d. Repeat these steps for the resDeployers group.

Click Next.

Figure 15-41 Install New Application: Step 10 Map security roles to users or groups
Chapter 15. Configuring and running Decision Validation Services 267

6. Click Next until the summary is displayed in step 13, as shown in Figure 15-42. Click
Finish. When prompted, click Save to save the changes.

Figure 15-42 Install New Application: Step 13 Summary
268 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

7. Select Applications  Application Types  WebSphere Enterprise Applications.
Click the newly installed jrules-ssp-WAS7 from the resulting list, as shown in Figure 15-43.

Figure 15-43 Enterprise applications with installed SSP

8. On the resulting window (Figure 15-44), under the Modules list, select Manage Modules.

Figure 15-44 Displaying the jrules-ssp-WAS7 application
Chapter 15. Configuring and running Decision Validation Services 269

9. In the Module list, select ILOG Scenario Service Provider, as shown in Figure 15-45.

Figure 15-45 Selecting the IBM ILOG® Scenario Service Provider

10.In the resulting window, change the Class loader order field to Classes loaded with local
class loader first (parent last), as shown in Figure 15-46. Click OK, and when prompted,
save the changes.

Figure 15-46 Selecting the class loader order

11.Select Applications  Application Types  WebSphere Enterprise Applications.
Select jrules-ssp-WAS7 and click Start to start the application.

15.3 Service scenario provider and key performance indicator
architecture

This section provides more details about the service scenario provider and the key
performance indicator architecture that was first described in 6.4.4, “Runtime components” on
page 133.

Tip: To work with an updated version, you uninstall the original application from the
WebSphere Enterprise Applications menu and then repeat this procedure to install the
new application.
270 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

15.3.1 Runtime client API

The Java runtime client API that is provided with Operational Decision Manager allows a
developer to write a Java application that runs an existing scenario suite either locally (in the
same Java virtual machine (JVM), without deploying an SSP module) or against a deployed
SSP. A typical use case is to write a batch that runs test suites and simulations every night
and generates a complete execution report.

The main entry point in the runtime client API for running a scenario suite against a deployed
SSP is the package ilog.rules.dvs.client. This package provides extensive online
documentation with code samples that explain how to use it. For more information, see the
Package ilog.rules.dvs.client topic in the Decision Server V8.0.1 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dserver.rules.ref.designer%2Fhtml%2Fapi%2Fhtml%2Filog%2Frules%2Fdvs%2Fclient%2Fpac
kage-summary.html

For running a scenario suite locally, the class ilog.rules.dvs.ssp.IlrLocalSSPService is the
main entry point. This class can be used with the previous code sample to replace the SSP
service implementation that is returned by the SSP service factory.

15.3.2 Service scenario provider

The scenario provider is specified in the scenario suite format. The scenario provider is the
low-level execution component that provides the scenario suite data in a suitable format for
execution by the rule engine. The scenario provider provides the test component in the case
of a test suite (see Figure 15-47 on page 272).

Unless you want to use an existing data store (a relational database or a set of files, for
example) to specify your scenario suite data, you do not write a custom scenario provider.
You can reuse ilog.rules.dvs.core.scenarioproviders.IlrExcel2003ScenarioProvider,
which is the Excel scenario provider, in all your scenario suite formats.

The Testing in Decision Center topic in the Decision Server V8.0.1 Information Center
includes a generic sample that explains how to retrieve scenario data from a relational
database:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
dcenter.samples%2Ftopics%2Ftpc_tstesting_toc.html

A more specific code sample is provided that demonstrates authoring a custom scenario
provider that accesses a VSAM data store:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.
zos.dcenter.samples%2Ftopics%2Fsmp_custprovider_vsam.html
Chapter 15. Configuring and running Decision Validation Services 271

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver.rules.ref.designer%2Fhtml%2Fapi%2Fhtml%2Filog%2Frules%2Fdvs%2Fclient%2Fpackage-summary.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dcenter.samples%2Ftopics%2Ftpc_tstesting_toc.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.zos.dcenter.samples%2Ftopics%2Fsmp_custprovider_vsam.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.zos.dcenter.samples%2Ftopics%2Fsmp_custprovider_vsam.html

Figure 15-47 shows the scenario provider Java API.

Figure 15-47 The scenario provider Java API

Scenario provider
A scenario provider is a Java class. It implements the
ilog.rules.dvs.core.IlrScenarioProvider interface from the testing and simulation API.
This component performs the following actions:

� Initialization

An initialization method that is provided by the component is called by the SSP before the
execution of a scenario suite. This method can access a context that contains the data
that the user entered in the Decision Center GUI (or in a Rule Designer launch
configuration) when the user created the scenario suite. This way, the scenario that was
provided can use this method to access the corresponding data store.

For example, the Excel scenario provider that is provided with the Excel scenario suite
formats uses this context to retrieve the Microsoft Excel file that was uploaded by the
Decision Center user (or that was selected in the Rule Designer launch configuration)
when the user created the scenario suite.

� Scenario count

After initialization, the component is expected to be able to return the total number of
scenarios in the suite when requested by the SSP that is running it.

� Scenario retrieval

After initialization, the component is expected to be able to return any scenario from the
suite. Each scenario is identified by its index in the suite.
272 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

� Resource cleanup

When requested, the component is expected to clean up any internal or external resource
that it uses, such as a connection to a database.

The Decision Center public API defines a component that provides a GUI to a business
user to initialize the scenario provider with data that is entered when a scenario suite is
created. This is
log.rules.teamserver.web.components.renderer.IlrScenarioSuiteResourcesRenderer.
A sample implementation of this component is provided in 15.4, “Example” on page 275.

Scenario
Every scenario in the suite is modeled by a scenario component, which is a Java class that
implements the ilog.rules.dvs.core.IlrScenario interface from the testing and simulation
API.

Primarily identified by its index in the scenario suite, a scenario also carries a name and
description that can be useful for identifying its purpose within this scenario suite. Both the
name and description are provided by the scenario component. In addition to this
identification data, the scenario component provides this important information:

� The map of Java input parameters to be used by the rule engine for the execution of the
ruleset under test or simulation

� The trace tester component that verifies the execution result if the scenario is a test
scenario

Trace tester
The trace tester component is a Java class that implements the
ilog.rules.dvs.core.IlrTraceTester interface. When the SSP makes a request, the trace
tester component performs tests on the execution result of a scenario to verify that this result
conforms to the user expectation.

The trace tester component is created by the scenario component, which is created by the
scenario provider component. The test specification is generally retrieved at the initialization
of the scenario provider, as part of the scenario data.

15.3.3 Key performance indicator

If authoring a custom scenario provider is not mandatory (unless you plan to use another data
store than Microsoft Excel to define your scenario suites), authoring a custom KPI is
mandatory if you want to run a simulation.
Chapter 15. Configuring and running Decision Validation Services 273

The test and simulation KPI API only defines two components, KPI and KPI result, that you
can use for all your simulation needs. These components are shown in Figure 15-48.

Figure 15-48 The test and simulation KPI Java API

The KPI component is a Java class that implements the ilog.rules.dvs.core.IlrKPI
interface. This component implements the following behavior:

� Initialization

An initialization method that is provided by the KPI component is called by the SSP before
the execution of a scenario suite. This method has access to the same context as the
scenario provider. This capability can be useful to retrieve information that is entered by
the user when the user created the simulation to share a single KPI
implementation/scenario suite format between multiple rule projects, using user data to
decide how the KPI calculation needs to be performed for the current simulation.

� Beginning of a scenario

The KPI component is notified by the SSP each time that a scenario is going to be
executed by the rule engine. To perform its calculation, if needed at this stage of the
processing, the KPI component has access to the scenario that is going to be executed
and to the technical request that is going to be sent to the rule engine.

� End of a scenario

The KPI component is notified by the SSP each time that a scenario is executed by the
rule engine. To perform its calculation, the KPI component has access to the scenario that
is executed and to the execution result (execution response) that is provided by the rule
engine. Generally, at this stage, the KPI implementation performs its most useful
calculations, based on the result of the scenario execution.

� End of the simulation

At the end of the simulation, when all scenarios are executed, the SSP requests that the
KPI component return a KPI result for the simulation.

KPI result
The KPI result component is a Java class that implements the interface
ilog.rules.dvs.common.output.IlrKPIResult. It implements two symmetrical methods that
are able to encode the KPI result as an array of bytes and to decode it.
274 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Two common KPI result implementations are predefined for your use. The
llog.rules.dvs.common.output.impl.IlrKPIResultInteger encapsulates a KPI result that is
an integer value. The ilog.rules.dvs.common.output.impl.IlrKPIResultString
encapsulates a KPI result that is a string value.

To be able to display a KPI result in a simulation report, you must author one more
component,
ilog.rules.teamserver.web.components.renderers.IlrScenarioSuiteKPIRenderer. This
component is not necessary if the simulations are run using only the testing and simulation
client API.

15.4 Example

This example tests the insurance eligibility project using the Excel scenario suite format from
Rule Designer and Decision Center. This example demonstrates the following functions on a
use case:

� Create an Excel test suite in Rule Designer

� Run the Excel test suite in Rule Designer and display the execution report

� Repackage the SSP with the insurance eligibility project XOM and redeploy the SSP

� Publish the insurance eligibility project in Decision Center

� Configure Decision Center to use the SSP for running tests and simulations

� Create a test suite in Decision Center, run it, and display the execution report

The prerequisite to this example is to install zRule Execution Server for z/OS and Decision
Center, including the testing and simulation modules, in a WebSphere Application Server
instance on z/OS.

15.4.1 Creating an Excel test suite in Rule Designer

Complete the following steps to create an Excel test suite in Rule Designer:

1. In Rule Designer, start by opening the insurance rules project that was created in
Chapter 3, “Getting started with business rules” on page 33, as shown in Figure 15-49.

Figure 15-49 The insurance-rules project opened in the Rule Explorer
Chapter 15. Configuring and running Decision Validation Services 275

2. Check that the business object module (BOM) of this project is compatible with the Excel
scenario suite format that was used to define a test suite for the project. Right-click the
insurance rules project and select Decision Validation Services  Check Project, as
shown in Figure 15-50.

Figure 15-50 Checking the project
276 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. A new view, DVS Project Validation, opens in Rule Designer. It displays a list of
incompatibilities between the project and the Excel scenario suite formats that are
provided for testing and simulation, along with the actions to resolve these
incompatibilities. For the insurance-rules project, no incompatibilities are displayed in the
DVS Project Validation view, as shown in Figure 15-51. Therefore, the project is
compatible with all the Excel scenario suite formats.

Figure 15-51 DVS Project Validation view that displays no incompatibilities

4. After you are sure that your project is compatible with the Excel scenario suite formats,
generate an Excel workbook to define your test suite. To generate the Excel workbook,
right-click the insurance rules project and select Decision Validation Services 
Generate Excel Scenario File Template. This action opens a new Generate Excel
Scenario File Template wizard, which is used to specify the types of tests that you want to
define in the Excel scenario suite.

The first panel of the wizard displays the name of the selected rule project for which the
scenario suite is created, as shown in Figure 15-52. Click Next.

Figure 15-52 The Generate Excel Scenario File Template wizard
Chapter 15. Configuring and running Decision Validation Services 277

5. The Generation Settings panel displays the options for the Excel scenario suite format as
shown in Figure 15-53. Select the version of Microsoft Excel to use to edit the test suite.
Leave the Default Excel Format option selected. Select the language in which to
generate the test suite. Click Next.

Figure 15-53 Generation Settings panel
278 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. In the Expected Results panel, Figure 15-54, define the set of tests that you want to
perform on the output of the insurance-rules ruleset.

Figure 15-54 Expected results for an Excel test suite
Chapter 15. Configuring and running Decision Validation Services 279

7. For this scenario, select a test on the approved attribute of the insurance response, with
the operator equals, and select a test on the messages attribute of the insurance
response, with the operator contains. You select these tests by checking the
corresponding attributes in the panel and then, in the Operator column, by selecting the
operator to use, as shown in Figure 15-55. Click Next.

Figure 15-55 Expected Results panel after the selection of tests
280 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. To add tests on the Expected Execution Details panel, click Next (Figure 15-56).

Figure 15-56 Expected execution details

9. To add a test on one execution detail, click Add, as shown in Figure 15-57.

Figure 15-57 Adding a test on the execution details
Chapter 15. Configuring and running Decision Validation Services 281

10.This example tests which rules are fired for each scenario. In the Element column, select
the Rules fired entry. Then, select the contains operator in the Operator column
(Figure 15-58). Click Finish.

Figure 15-58 Selecting a “contains” test that is defined for the list of rules fired

11.The file testsuite.xls is generated in the insurance-rules project directory, as confirmed
by a message in the console view (Figure 15-59).

Figure 15-59 The testsuite.xls file generated in the insurance-rules project
282 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

12.To open the file for editing in Microsoft Excel, right-click testsuite.xls in the Rule Explorer
and select Open With  System Editor (Figure 15-60).

Figure 15-60 Selecting the Open With System Editor menu option

13.In Microsoft Excel, you can see that the generated workbook contains four worksheets, as
shown by the tabs in Figure 15-61:

– Scenarios worksheet to enter data for each of your test scenarios

– Expected Results worksheet to optionally enter tests on the output parameters for each
scenario

– Expected Execution Details worksheet to optionally enter tests on the execution details
for each scenario

– HELP worksheet, which provides an embedded help page to help you define your test
suite in the workbook

Figure 15-61 Worksheets in an Excel test suite

14.Start by using the Scenarios worksheet to create the first scenario for the insurance-rules
ruleset. The Scenario worksheet displays a table in which each row represents a test
scenario. For each row, the first column of the table is to define the name of the scenario
and the second column is to define an optional description for the scenario. The other
columns are to define values for the input parameter attributes of the scenario. By default,
the worksheet displays an empty row to be filled with the values for the first scenario
(Figure 15-62).

Figure 15-62 Initial content of the Scenarios worksheet
Chapter 15. Configuring and running Decision Validation Services 283

15.Enter the values in the Scenario worksheet, as shown in Figure 15-63, to define two
similar scenarios that differ by the age of the driver. Both scenarios (Scenario 1 and
Scenario 2) are supposed to trigger the execution of the rule validation.MaxiMinimumAge.

Figure 15-63 Two test scenarios for the insurance-rules ruleset

16.The next step is to specify the tests on the output parameter for each scenario. Display the
Expected Results worksheet by clicking the Expected Results worksheet tab at the
bottom of the Excel workbook. Enter the rows that are shown in Figure 15-64 to define the
expectations for Scenario 1 and Scenario 2:

– For Scenario 1, type FALSE and The age exceeds the maximum or minimum
– For Scenario 2, type FALSE and The age exceeds the maximum or minimum

Figure 15-64 Testing the output parameter of the insurance-rules ruleset

17.Specify the tests on the execution details. Display the Expected Execution Details
worksheet by clicking the Expected Execution Details worksheet tab at the bottom of the
Excel workbook. Enter the rows that are shown in Figure 15-65:

– For Scenario 1, type validation.MaxiMinimumAge
– For Scenario 2, type validation.MaxiMinimumAge

Figure 15-65 Testing the list of rules fired for the insurance-rules ruleset

18.Save the content of the Excel workbook and proceed to 15.4.2, “Running the Excel test
suite in Rule Designer and then displaying the execution report” on page 285, which is
running the test suite in Rule Designer and displaying the execution report.
284 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

15.4.2 Running the Excel test suite in Rule Designer and then displaying the
execution report

Complete the following steps to run the Excel test suite in Rule Designer and display the
execution report:

1. To run an Excel test suite in Rule Designer, you must create a run configuration, which is
also called a launch configuration. To create a run configuration, click Run  Run
Configurations, as shown in Figure 15-66.

Figure 15-66 Run Configurations menu
Chapter 15. Configuring and running Decision Validation Services 285

2. The Run Configurations editor opens, as shown in Figure 15-67.

Figure 15-67 Run Configurations editor

3. To create a run configuration for the Excel test suite in this editor, select the DVS Excel
File entry in the left section of the editor. Then, click the New Launch Configuration icon
(the leftmost icon in the editor toolbar), as shown in Figure 15-68.

Figure 15-68 Selecting the DVS Excel File type
286 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

4. The right side of the editor is updated to display a dedicated editor for DVS Excel File run
configurations (Figure 15-69).

Figure 15-69 DVS Excel File Run Configurations editor
Chapter 15. Configuring and running Decision Validation Services 287

5. Update the name of this new run configuration from New_configuration to Run test suite
against insurance rules. Click Browse to select the following information for this run
configuration (Figure 15-70):

– For Excel File, select \insurance-rules\testsuite.xls
– For Rule Project, select insurance-rules
– For HTML Report, select \insurance-rules\report.html

Click Apply to save the run configuration. Then, click Run to execute the test suite. The
execution starts.

Figure 15-70 The run configuration for the insurance-rules Excel test suite
288 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. The content of the Console view is updated in real time with the execution logs for the test
suite (Figure 15-71).

Figure 15-71 Test suite execution logs in the Console view of Rule Designer

7. When the message “Execution finished” is displayed in the console view log
(Figure 15-71), the HTML execution report is generated. Display the HTML execution
report to see the result of the test suite execution. To see the report in the Rule Explorer,
first refresh the content of the insurance-rules project so that Rule Designer checks for
new files in the project directory. To refresh the content, right-click the insurance-rules
project in the Rule Explorer and select Refresh (Figure 15-72).

Figure 15-72 Refresh menu option for the insurance-rules project
Chapter 15. Configuring and running Decision Validation Services 289

8. After the content of the rule project is refreshed, the report file report.html, which was
generated after the execution of the test suite, is displayed in the Rule Explorer. Right-click
report.html and select Open With  Web Browser to display the report in Rule
Designer (Figure 15-73).

Figure 15-73 Opening a test report with the Rule Designer web browser

9. The Execution Report opens in the internal web browser of Rule Designer. You see that
the test suite executed successfully and that the test success rates are 100%, as shown in
Figure 15-74.

Figure 15-74 Rule Designer Execution Report for the insurance-rules test suite
290 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

15.4.3 Repackaging the SSP

Complete the following steps to repackage the SSP with the insurance eligibility project XOM
and redeploy the SSP:

1. To execute the same test suite from Decision Center against the SSP, first repackage the
XOM of the insurance eligibility project into the SSP and redeploy it. Create a new type of
project, which is a DVS project that defines a customization for testing and simulation in
the SSP and Decision Center. To create this project, right-click in the Rule Explorer white
space and select New  Other (Figure 15-75).

Figure 15-75 Creating a new DVS project
Chapter 15. Configuring and running Decision Validation Services 291

2. This action displays the New wizard panel that prompts you to select a wizard. Select the
wizard type Rule Designer  Decision Validation Services  DVS Project
(Figure 15-76). Click Next.

Figure 15-76 Selecting the new DVS Project wizard
292 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. This DVS Project wizard prompts you to specify a project name and location for the new
project (Figure 15-77). Keep the default options and click Next.

Figure 15-77 Specifying a project name for the new DVS project
Chapter 15. Configuring and running Decision Validation Services 293

4. On the Customization Name panel, specify the name of the new customization to create in
the project (Figure 15-78). Keep the default name for the customization and click Finish.

Figure 15-78 Specifying the name of the new customization
294 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. The DVS Customization editor is then displayed in Rule Designer, allowing you to edit the
new customization (Figure 15-79). First, add a server configuration to the customization
so that the repackaging mechanism knows to use WebSphere Application Server to host
the SSP and Decision Center. On the DVS Customization page that is shown in
Figure 15-79, in the Configurations section, click Create.

Figure 15-79 DVS Customization editor
Chapter 15. Configuring and running Decision Validation Services 295

6. On the Configure environment panel of the DVS Configuration wizard (Figure 15-80),
select IBM WebSphere AS 7.0 as the application server on which to deploy the SSP and
Decision Center. Click Next.

Figure 15-80 DVS Configuration wizard

7. On the Configuration URLs panel, enter the URL to your Scenario Service Provider
instance, which is the URL to your WebSphere Application Server 7 server, ending with
/testing. Enter the login and password credentials to connect to the SSP (Figure 15-81).
Click Test connection to check that the SSP can be contacted with the provided URL and
credentials. Click Finish.

Figure 15-81 Configuration URL for a DVS configuration
296 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

8. The DVS Configuration editor opens for the WebSphere Application Server instance that
was specified (Figure 15-82). On the DVS Configuration page that is shown in
Figure 15-82, click the Customization.sspc tab to display the DVS Customization editor,
and press Ctrl+S to save its content.

Figure 15-82 DVS Configuration editor for a WebSphere Application Server 7.0 instance

9. The Configurations section is updated with the new server configuration that was defined
(Figure 15-83). Add the insurance-rules rule project to the customization so that Rule
Designer is aware of the XOM to deploy to the SSP when repackaging it. Click Add in
Configurations section of the editor.

Figure 15-83 DVS customization updated with a new server configuration
Chapter 15. Configuring and running Decision Validation Services 297

10.A pop-up window opens to select the rule project to add to the customization
(Figure 15-84). Select the insurance-rules project and click OK to add insurance-rules to
the Rule Projects section of the Customization editor.

Figure 15-84 Selecting the rule project for the DVS customization

11.Figure 15-85 shows the insurance-rules project added to the Rule Projects section of the
DVS Customization editor. Save the content of the editor by pressing Ctrl+S. On the page
that is shown in Figure 15-85, in the Actions section of the editor, click the Repackage the
.ear/.war files link.

Figure 15-85 Adding the insurance rules project
298 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

12.A pop-up window opens so that you can specify the file to repackage (Figure 15-86).
Because you repackaged the SSP with the XOM of the insurance-rules project only (this
option was already selected), clear the Repackage Decision Center .ear/.war file option
and click OK.

Figure 15-86 Option to repackage only the SSP

13.When the repackaging is complete, a message window opens to confirm the status of the
repackaging operation. The last file path that is displayed in this message window informs
you of the location of the repackaged SSP, which is redeployed in the WebSphere
Application Server instance (Figure 15-87).

Figure 15-87 The message that is displayed after a successful repackaging of the SSP

14.Next, you redeploy the repackaged SSP. Complete the instructions in the Deploying a
repackaged SSP archive topic of the IBM Operational Decision Manager Version 8.0.1
Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wo
dm.family.config.zos%2Ftopics%2Ftsk_ds_redeploy_dvs_archive.html
Chapter 15. Configuring and running Decision Validation Services 299

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftsk_ds_redeploy_dvs_archive.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftsk_ds_redeploy_dvs_archive.html

15.4.4 Publishing the insurance eligibility project in Decision Center

Complete the following steps to publish the insurance eligibility project in Decision Center:

1. When the repackaged SSP is deployed in your application server, the next step is to
publish the insurance-rules project in Decision Center so that the business users can
access it and define a test suite for it. In the Rule Explorer, right-click the insurance-rules
project and select Decision Center  Connect (Figure 15-88).

Figure 15-88 Selecting Decision Center  Connect

2. This action displays the Decision Center configuration window. Update this content so that
the connection information matches the current Decision Center deployment
(Figure 15-89). Enter the URL, user name, and password. Click Connect.

Figure 15-89 Connection information for a Decision Center configuration
300 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

3. Figure 15-90 shows that a connection is established. After the connection to Decision
Center is successfully established, select the operation to perform in the Project
configuration section (Figure 15-90). In this case, you want to create the project in
Decision Center, so select Create a new project on Decision Center, and click Finish.

Figure 15-90 Creating a project on Decision Center from Rule Designer

4. A pop-up window opens to inform you of the progress of the publication of your project in
Decision Center (Figure 15-91).

Figure 15-91 Publishing a project in Decision Center

5. After the publication to Decision Center is complete, the first pop-up window opens to give
you the option to switch to the Team Synchronizing perspective (ignore this option and
stay on the Rules perspective).
Chapter 15. Configuring and running Decision Validation Services 301

6. A second pop-up window opens to inform you that the synchronization is complete. The
projects are now the same in both Rule Designer and Decision Center (Figure 15-92).

Figure 15-92 Confirmation that the publication in Decision Center is complete

15.4.5 Configuring Decision Center to use the SSP to run tests and
simulations

Complete the following steps to configure Decision Center to use the SSP for running tests
and simulations:

1. Before business users can define and run a test suite for the insurance-rules project in
Decision Center, a few administrative operations must be completed. Open a web browser
to the Decision Center URL and sign in as a Decision Center administrator (Figure 15-93).

Figure 15-93 Signing on to Decision Center
302 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

2. On the Decision Center Home page, select the newly published insurance-rules project
as the project in use (Figure 15-94). Then, click the Configure tab to display the Configure
menu for Decision Center.

Figure 15-94 Selecting the insurance-rules project in Decision Center

3. On the Configure menu for Decision Center (Figure 15-95), click the Manage Servers link.

Figure 15-95 Configure menu for Decision Center
Chapter 15. Configuring and running Decision Validation Services 303

4. Add the SSP to the list of servers known to Decision Center to run tests and simulation.
On the Manage Servers page (Figure 15-96), click New to create a server definition. This
operation is only performed one time. Then, the added SSP is available for all projects in
Decision Center.

Figure 15-96 The Manage Servers page in Decision Center

5. On the Create Server page (Figure 15-97), enter the connection information for your
server (URL and credentials). Select the usage options of Rule Execution Server and
Both. Select the All groups Authorized groups option. When finished, click OK to save
this new server definition.

Figure 15-97 Create Server page in Decision Center
304 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

6. The Manage Servers page opens again. Its content is updated with the new server
information (Figure 15-98). Click the Project tab to display the project menu that applies to
the currently selected project.

Figure 15-98 Manage Servers page displays information for a server definition

7. Now that a server definition is available to the business users, ensure that all the scenario
suite formats that are used to define scenario suites for the insurance-rules project are
enabled. Click the Edit Project Options link to edit the list of scenario suite formats that
are available for the current project (Figure 15-99).

Figure 15-99 Project menu in Decision Center
Chapter 15. Configuring and running Decision Validation Services 305

8. On the Edit Project Options page (Figure 15-100), in the Test Suite / Simulation Options
section, select the test suite and simulation formats that you want to make available for the
current project. If you used the Excel (2003) format to create the test suite in Rule
Designer, ensure that you enable it for the project in Decision Center. Only the Excel
(2007-2010) format is enabled, by default. After you complete the format selection, click
OK to save the changes.

Figure 15-100 Edit Project Options in Decision Center

15.4.6 Creating a test suite in Decision Center

Now that a server definition is created in Decision Center and the scenario suite formats to
define test suites and simulation are enabled for the project, create a test suite in Decision
Center. Then, run it and display its execution report.
306 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Complete the following steps to create a test suite in Decision Center, run it, and display the
execution report:

1. In the Decision Center, click the Compose tab, as shown in Figure 15-101.

Figure 15-101 Compose tab with the Action Rule type default selection

2. By default, the first time that you open the Compose page, Decision Center defaults to
creating an Action Rule (Figure 15-101). To create a Test Suite instead, click Test Suite.

After selecting Test Suite as the type of artifact to create, the right side of the page is
updated. To start the new test suite wizard, click OK on the right side of the page.

Figure 15-102 Compose page with the Test Suite type selected
Chapter 15. Configuring and running Decision Validation Services 307

3. On the Properties page that is shown in Figure 15-103, enter the name, folder (location),
group, and documentation for the new test suite. Click Next.

Figure 15-103 Test suite creation wizard in Decision Center: Properties

4. On the Rules tested page that is shown in Figure 15-104, you can choose to test the
ruleset in its current status or select another version of the ruleset from a baseline. Also,
you can limit the testing to a subset of the rules and select the entry point for the ruleset.
Leave the default options that are selected, and click Next.

Figure 15-104 Test suite creation wizard in Decision Center: Rules tested
308 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

5. On the Scenarios page that is shown in Figure 15-105, select the scenario suite format to
use. Select the scenario suite format that was used to create the test suite in Rule
Designer. Click Choose File to upload the Excel test suite that was created with Rule
Designer. Then, click Finish and Run to save the new test suite.

Figure 15-105 Test suite creation wizard in Decision Center: Scenarios

6. The Run Test age limits page is displayed (Figure 15-106).

Figure 15-106 The Run Test suite page in Decision Center
Chapter 15. Configuring and running Decision Validation Services 309

7. To run the test suite, click Run, and wait until the test report is displayed (Figure 15-107).

Figure 15-107 Test suite execution report in Decision Center
310 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Chapter 16. Configuring the Rules Execution
Servers for z/OS console with
virtual IP addressing

This chapter describes the use of virtual IP addressing (VIPA) to allow zRules consoles to
manage Rules Execution Servers for z/OS (zRES) on multiple logical partitions (LPARs) or
multiple systems. This allows for uninterrupted rules deployment to continue during LPAR
maintenance or downtime.

This chapter uses a scenario that consists of two LPARs, six rule execution environments, two
zRES consoles, and one database, as shown in the diagram in Figure 16-3 on page 316.

The following topics are covered in this chapter:

� 16.1, “Overview of a multiple LPAR environment” on page 312
� 16.2, “Using Virtual IP addressing to allow more than one zRules console to be used” on

page 313

16
© Copyright IBM Corp. 2013. All rights reserved. 311

16.1 Overview of a multiple LPAR environment

This environment is an Operational Decision Manager for z/OS system that consists of
multiple zRES instances, which reside on multiple LPARs that are supported by a single
zRules console that is connected to a single database. The ability to publish changed rules
applications to a running zRES without having to restart the server, which is called hot
deployment (16.1.1, “Hot deployment of rules in Operational Decision Manager” on
page 312), from the zRules console is supported by using an internal asynchronous
“publish/subscribe” (pub/sub) notification mechanism.

An example topology is a configuration that consists of two LPARs, LPAR A and LPAR B,
which reside in PLEX 1, as shown in Figure 16-1.

Figure 16-1 Multiple LPAR Operational Decision Manager system

There are two styles of rules application deployment:

� Hot deployment of rules
� Cold deployment of rules

16.1.1 Hot deployment of rules in Operational Decision Manager

Hot deployment of rules in Operational Decision Manager is the ability to publish changed
rules applications to a running rules execution server without having to restart the server. The
deployment feature works by deploying the Rule Application using the zRules console.

Rule deployment can be performed directly from the zRules console, Rule Designer, Rule
Team server, or Decision Center Business console. The zRules console uses asynchronous
messages to notify all rule execution environments that are registered to that zRules console.
The next invocation of that rule causes the zRES to go to the database to load the newest
level of that rule application.
312 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

After the zRES reads the rules from the database, it continues to use that version of the rules
until it is notified of another update. Figure 16-2 shows information flows that describe how
deployment, storage, registration, and notification occur.

Figure 16-2 Hot deployment in a multiple LPAR environment

16.1.2 Cold deployment of rules in Operational Decision Manager

Cold deployment is performed by using a deployment method that directly updates the rules
that are stored in the database. The rule execution environments load rules from the
database, which means that on the first invocation of a ruleset, the rule execution
environment goes to the database and retrieves the latest copy of the ruleset. On any
subsequent invocations, it reuses the same ruleset unless it is notified of an updated version.
To refresh rulesets in the rule execution environment to pick up ruleset changes, the rule
execution server must be restarted.

16.2 Using Virtual IP addressing to allow more than one zRules
console to be used

Any zRES that located on same LPAR as the zRules console can restart the zRules console,
if the console fails. However, if the LPAR that hosts the zRules console fails, there is no
means for the remaining zRESs to start (or restart) a zRules console. Consequently, hot
deployment is not available until the LPAR that hosts the zRules console is brought back
online.

This section explains the setup and behavior of a zRules console that uses VIPA to manage
zRESs on multiple LPARs (or systems), therefore allowing continued hot deployment during
LPAR maintenance or downtime.

The following sections describe the various elements that are associated with the loss of an
LPAR that hosts a zRES and a ZRules console:

� 16.2.1, “What happens if the LPAR that hosts the zRules console fails” on page 314
� 16.2.2, “Using virtual IP addressing” on page 314
� 16.2.3, “How VIPA maintains hot deployment” on page 315
Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP addressing 313

16.2.1 What happens if the LPAR that hosts the zRules console fails

If the LPAR that hosts the zRules console fails, for example, LPAR A in Figure 16-2 on
page 313, there is no means for the remaining zRES, which is on LPAR B, to start (or restart)
the zRules console (zConsole). Consequently, the hot deployment of rules is available until
LPAR A is brought back online.

The rule execution environments on LPAR B still continue to execute the rules from the
database. Rule deployment is still possible but only by using a cold deployment method
because hot deployment is unavailable.

16.2.2 Using virtual IP addressing

Hot deployment can be more flexible in a production environment by using virtualization to
allow the zRules console to be run on more than one LPAR. This situation is possible
because all of the zRules console communication is performed using TCP/IP.

To use a virtual IP address (VIPA), define a virtual host that maps to LPAR A and LPAR B,
which allows both LPARs to share the zRules console communication port and the zRules
console HTTP port.

Send all requests to one server until it becomes unavailable. So, for the example that is used
here, all traffic is sent to LPAR A until the connection to LPAR A is lost, and then all traffic be
sent or redirected to LPAR B.

There are many ways in which VIPA can be set up for a configuration. The following IBM
publication, z/OS Communications Server: IP Configuration Guide, SC31-8775-20, provides
all the required information to decide how to set up VIPA:

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.halz002/f
1a1b3b1151.htm#wq464

Example 16-1 and Example 16-2 are extracts from the TCP PARMS dataset from each LPAR.
You can use these extracts for an example setup, and they can help you with several default
settings.

Example 16-1 TCP PARMS for LPAR A

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.252 9.20.9.53
 VIPADISTRIBUTE 9.20.9.53 PORT
 24159 34159 44159
 DESTIP ALL
ENDVIPADYNAMIC

Example 16-2 TCP PARMS for LPAR B

VIPADYNAMIC
 VIPABACKUP 100 MOVE IMMEDIATE 255.255.255.252 9.20.9.53
ENDVIPADYNAMIC

Note: Do not use a balancing algorithm on the port sharing because you are not sharing
the load.
314 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.halz002/f1a1b3b1151.htm#wq464

In Example 16-1 on page 314 and Example 16-2 on page 314, the following entries are
underlined twice:

� 9.20.9.53: IP address for VIPA
� 24159: SSPPORT port number (not required for VIPA support)
� 34159: CONSOLEPORT port number
� 44159: CONSOLECOM port number

Descriptions of the ports are in Table B-1 on page 328.

The “share port” setup is also explained in the IBM publication, z/OS Communications Server:
IP Configuration Guide, SC31-8775-20. The configuration that is shown in Example 16-3 is
created by adding the following configuration to the TCP PARMS dataset on both LPARs.

Example 16-3 TCP PARMS for LPAR A and LPAR B

IPCONFIG DYNAMICXCF 192.168.x.x 255.255.255.0 1
PORT
34159 TCP OMVS SHAREPORT ; zRules Console Port
44159 TCP OMVS SHAREPORT ; zRules Console ComPort

After the VIPA and share port are set up, the zRES needs to use the virtual host. You must
modify the two zRES’s parms members. In the ++HBRWDS++.SHBRPARM(HBRCMMN)
member, modify the HBRCONSOLECOMPORT and HBRCONSOLECOMHOST parameters to use the virtual
host and share port, as demonstrated in Example 16-4.

Example 16-4 HBRCMMN parms for each zRES

HBRCONSOLECOMPORT=44159
HBRCONSOLECOMHOST=zodm.hursley.ibm.com

In the ++HBRWDS++.SHBRPARM(HBRCNSL) member, modify the parameter
HBRCONSOLEPORT to the shared port that is defined as shown in Example 16-5.

Example 16-5 HBRCNSL parm for each zRES

HBRCONSOLEPORT=34159

After these modifications, you must restart all zRESs.

16.2.3 How VIPA maintains hot deployment

This section describes the use of VIPA in the scenario that is presented in Figure 16-1 on
page 312. The following modes of operation are described:

� “Normal operation”
� “Failure of LPAR A” on page 317
� “Restoration of LPAR A” on page 318
� “Return to the normal operating environment” on page 318

Normal operation
With all the servers started, using the VIPA and shared ports, the zRules console works
normally. All traffic is routed to the zRules console on LPAR A, and therefore, all servers are
registered to the one zRules console on LPAR A.
Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP addressing 315

Share port enables the two zRules console address spaces to start and bind to the port. See
Figure 16-3 on page 316, which depicts an Operational Decision Manager for z/OS
configuration using VIPA.

The following four actions are performed for the hot deployment feature:

� Deployment
� Storage
� Registration
� Notification

The registration is performed during zRES startup. If the connection is lost, the zRES
attempts a reconnection. If the connection attempt fails, the zRES attempts to reconnect
every 10 seconds.

Deployment uses the virtual host and the shared console port. The zRules console,
zConsole, stores rulesets in the database and notifies all connected rule execution
environments, again, as though VIPA is not being used.

Figure 16-3 Configuration of VIPA using two zRules consoles
316 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Failure of LPAR A
This section describes the sequence of events if a failure occurs that results in the loss of
access to LPAR A. The scenario is depicted in Figure 16-4.

Figure 16-4 Failover to zConsole on LPAR B

The events occur in this sequence:

1. LPAR A fails.

2. VIPA routes all traffic aimed at the zRules console to the zRules console on LPAR B,
which is zConsole (BackUp).

3. The rule execution environments, HBR4, HBR5, and HBR6, lose their connection to the
LPAR A zRules console (zConsole) and try to reconnect.

4. The result of the reconnection attempt is an almost instantaneous connection to the
zRules console that runs on LPAR B zConsole (BackUp), which ensures that the hot
deployment can continue.

Standard rule execution and rule deployment continue from this point.

To work around the issue of this lack of awareness of rule changes made by another zRules
console, you need to manually refresh the zRES console on LPAR B, which forces new rules
to be visible.

To manually refresh the zRES console on LPAR B, click Update RuleApps on the Explorer
tab in the zRules console, as shown in Figure 16-5.

Figure 16-5 Update RuleApps on zRules console Explorer tab

Important: There is no function to make the zRules console on LPAR B aware of any rule
changes that are made by the zRules console that runs on LPAR A.
Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP addressing 317

Restoration of LPAR A
This section describes the scenario that is associated with the restoration of a failed LPAR
(LPAR A in this example) that hosts the Operational Decision Manager execution
environments and a zRES console.

The failed LPAR needs to be brought online normally, and Operational Decision Manager rule
execution environments also need to be started normally.

Traffic continues to be routed to zConsole (BackUp) on LPAR B, uninterrupted, until an
intervention occurs. See Figure 16-6.

Figure 16-6 LPAR A restored

Return to the normal operating environment
To return the Operational Decision Manager system to the original mode of operation, which
is routing traffic to LPAR A, the zRules console that runs on LPAR B, zConsole (BackUp),
needs to be restarted.

Important: The configuration will not automatically return operation to the zRules console
on LPAR A after LPAR A is restored.

Note: By using this example, fail back is a deliberate act after LPAR maintenance or
recovery is completed successfully. The behavior can be tailored in the VIPA setup to meet
other configuration requirements.
318 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

The result of restarting the LPAR B zRES console, zConsole (BackUp), is shown in
Figure 16-6 on page 318.

Figure 16-7 Operational Decision Manager system following a restart of zConsole (BackUp)

The result of restarting the zConsole (BackUp) is similar to the situation that is described in
“Failure of LPAR A” on page 317:

1. VIPA routes all traffic that is aimed at a zRules console to the zRules console on LPAR A,
zConsole.

2. The rule execution environments, HBR1, HBR2, and HBR3, lose their connection to the
LPAR B zRules console, zConsole (BackUp) and try to reconnect.

3. The result of the attempt to reconnect is an almost instantaneous connection to the zRules
console (originally used before the LPAR failure) that runs on LPAR A zConsole.

Hot deployment continues to be possible. A refresh might be required, as shown in
Figure 16-5 on page 317. This time, you update RuleApps on the zRules console Explorer
tab on the LPAR A zRES console, zConsole.
Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP addressing 319

320 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Part 3 Appendixes

Part 3 includes the following appendixes:

� Appendix A, “Calling out from a ruleset to a VSAM file to augment data” on page 323

� Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 327

� Appendix C, “Additional material” on page 335

Part 3
© Copyright IBM Corp. 2013. All rights reserved. 321

322 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Appendix A. Calling out from a ruleset to a
VSAM file to augment data

Occasionally, you are required to call out from a ruleset to augment the data that is required to
make a decision. Only call out from a ruleset to augment data in the following circumstances:

� The data is not easily accessible to the application program.
� The decision cannot be made without the data.
� The data is required only in exceptional circumstances by the decision.

The JzOS libraries that come with IBM Java Runtime Environment 6 for z/OS provide a set of
classes that can be used to access a record from a VSAM file. The following code shows an
example of using the JzOS library classes to read a specified record from a VSAM file. You
can use this code within a business object module (BOM) method to augment the data that is
available to a decision. To use the JzOS classes within a BOM method, you must first copy
the JzOS library to your computer to make it available to the rule project in which you want to
author your rules.

The JzOS library is in your z/OS installation directory:

<JAVA6_INSTALL_ROOT>/lib/ext/ibmjzos.jar

A

© Copyright IBM Corp. 2013. All rights reserved. 323

To allow these classes to be available to your BOM authoring, you must add this JAR file as
an external JAR to the Java Execution Model for your project. Use the project Properties
panel, as shown in Figure A-1.

Figure A-1 Adding the JzOS JAR to the project class path

The class ReadKsdsVsam has a constructor and one method on it (Example A-1). This class
is designed to read a single row from a key-sequenced data set (KSDS) format VSAM file,
based on a supplied record key, and to return the corresponding row as a byte array. By
knowing the format of the record structure, the required data can then be read out from the
byte array and copied into local rule variables. The byte array can be read simply by using
Java substringing. Or if the record is more complex, the byte array can be read by using the
Java record framework tooling. The Java record framework tooling is available in IBM Rational
Application Developer or IBM Rational Developer for System z.

Example A-1 ReadKsdsVsam.java

import java.io.UnsupportedEncodingException;
import com.ibm.jzos.ZFile;
import com.ibm.jzos.ZFileException;
public class ReadKsdsVsam
{

private ZFile zFile;
private String filename;
private String options;
private int lrecl;
private int keyLen;
private byte[] keyBytes;

public ReadKsdsVsam(String filenameInput, int lreclInput, int keyLenInput) throws
ReadKsdsVsamException
{

// Set the options to open the file as VSAM type file, read only
324 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

options = "rb,type=record";
this.filename = filenameInput;
this.lrecl = lreclInput;
this.keyLen = keyLenInput;
// Format the file name
if(!filename.startsWith("//"))
filename = "//" + filename;
try { // Check the file exists

if(!ZFile.exists(filename)) {
throw new ReadKsdsVsamException("File "+filename+" does not exist");

}
// Open the file
zFile = new ZFile(filename, options);

}
catch (ZFileException zfe)
{

throw new ReadKsdsVsamException(zfe);
}

}
}
public byte[] readRecord(String key) throws ReadKsdsVsamException
{

byte[] record = new byte[lrecl];
try {

keyBytes = key.getBytes(ZFile.DEFAULT_EBCDIC_CODE_PAGE);
boolean located = zFile.locate(keyBytes, 0, keyLen, ZFile.LOCATE_KEY_EQ);
if (!located) throw new ReadKsdsVsamException("Record: "+key+" cannot be

found");
zFile.read(record);

}
catch (ZFileException zfe) {

throw new ReadKsdsVsamException(zfe);
}

catch (UnsupportedEncodingException uee) {
throw new ReadKsdsVsamException(uee);

}
return record;

}
public void closeFile() throws ReadKsdsVsamException
{

try {
zFile.close();

}
catch (ZFileException zfe) {
throw new ReadKsdsVsamException(zfe);

}
}
}

Appendix A. Calling out from a ruleset to a VSAM file to augment data 325

In Example A-1 on page 324, the constructor public ReadKsdsVsam(String filenameInput,
int lreclInput, int keyLenInput) throws ReadKsdsVsamException takes the following
arguments:

filenameInput The fully qualified name of the file to read
lreclInput The length of the record
keyLenInput The length of the record key

The constructor checks to see whether the supplied file exists and then opens the file for
reading. If any of these operations fail, it throws a ReadKsdsVsamException with the reason for
the failure. This method can be verbalized and called in the initial actions section of the
ruleflow.

To read a record from the VSAM file, you then use the following method:

public byte[] readRecord(String key) throws ReadKsdsVsamException

This method takes in the key of the record to read as a String and returns the contents of the
record (including the key) as a byte[] array in the code page in which it was read.

Finally, the close() method is called to close the file. This method can be verbalized and called
in the final actions section of the ruleset ruleflow.
326 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Appendix B. Configuring runtime values by
using variables defined in
HBRINST

Operational Decision Manager can be customized in the HBRINST member of the
++HBRHLQ++.SHBRPARM dataset. Amending the variables in the member, when the
customizing job is run, results in the values that are in HBRINST being placed into the
customized members that are generated by the execution of the job.

Use the tables in the following sections, which group values into related areas, to amend the
HBRINST member variables to your system environment:

� “Rules z/OS” on page 328
� “CICS JVM server” on page 330
� “IMS” on page 330
� “DB2 database” on page 331
� “WebSphere Application Server” on page 332
� “WebSphere Optimized Local Adapters (WOLA) script parameters” on page 333
� “WebSphere Application installation script parameters” on page 333
� “Subsystem ID used by COBOL management” on page 334

For more details about the HBRINST member and other members, see the z/OS
configuration and runtime variables topic in the IBM Operational Decision Manager
Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config
.zos/topics/con_ds_jcl_and_runtime_vars.html

B

© Copyright IBM Corp. 2013. All rights reserved. 327

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config.zos/topics/con_ds_jcl_and_runtime_vars.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/topic/com.ibm.wodm.family.config.zos/topics/con_ds_jcl_and_runtime_vars.html

Rules z/OS

Table B-1 lists the variables to create a new instance of Decision Server for z/OS.

Table B-1 Variables for rules on z/OS

Variable Example value Description

++HBRSSIDLIST++ HBR1,HBR2 A zRule Execution Server for z/OS server group
consisting of a list of 1 - 32 subsystem IDs separated
by commas, for example: HBR1,HBR2,HBR3.

The first ID in the list is the primary server, from
which you start the shared console. Rule execution
is routed to the first available server in the list. Other
servers execute rulesets only if rule execution is
transferred to them. To route rule execution to a
particular server, specify its ID first.

++HBRHLQ++ HBR.V801 High-level qualifier (HLQ) for Decision Server for
z/OS data sets. This value is the installation target
library from the product installation.

++HBRINSTPATH++ /usr/lpp/zDM/V8R0M1 This value is the root installation directory for the
Operational Decision Manager product in z/OS
UNIX System Services.

++HBRWORKPATH++ /u/HBR1 Working directory for the server instance. The value
of this variable must differ from the value of the
++CICSWORKPATH++ variable.

++HBRWORKDS++ HBR.WORKDS HLQ for the working data sets that contain
customized JCL for creating an execution
environment instance.

For each new instance of the zRule Execution
Server, this can remain the same. The HBRUUPTI
job that appends the SSID to this value must be
updated to a value that references the new instance.
This value is the data set name for the changed
output from the HBRUUPTI job.

++HBRJAVAHOME++ /java/java/601_bit64_GA/
J6.0.1_64

This value is the root location of Java 6.0.1 on z/OS
in UNIX System Services.

++HBRSSPPORT++ 24114 Port number on which the Scenario Service
Provider (SSP) service exists and is the port value
for a zRule Execution Server that is set up in
TESTING mode to use. This is used in Decision
Validation Service (DVS) testing.

++HBRCONSOLEPORT++ 34114 This value is the port that is used for the zRule
Execution Server for the z/OS Execution Server
Console. This value is the port that you use to deploy
and view deployed artifacts.

++HBRCONSOLECOMPORT++ 44114 This value is the port that is used by the zRes
Console and zRule Execution Server for z/OS
instance to communicate with each other.
328 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

CICS

If you are configuring CICS to execute rules on an instance of zRule Execution Server for
z/OS, customize the variables that are listed in Table B-2.

Table B-2 Variables for CICS

++HBRCONSOLECOMHOST++ localhost Leaving this as localhost uses the default machine
address. For a cross-LPAR setup (see a later
section), this can be adjusted.

++HBRMODE++ NORMAL, NORULE, or TEST The zRule Execution Server has three possible
configurations:
� In NORMAL mode, the server accepts a COBOL

workload and processes it using its internal Java
virtual machine (JVM). The server settings can
be changed using the console. This mode is
used when executing and managing rules from a
mainframe.

� In NORULE mode, the server uses an external
JVM to process rules. This mode is used when
executing rules on a JVM Server under CICS.

� In TEST mode, the server is used for testing and
does not accept connections from local clients.
This mode is used to start SSP and execute
rules only from the console.

++HBRLANG++ En_US Language used by the server. The list of supported
languages is in the HBRCMMN data set member.
The default value is En_US.

++HBRTRACELEVEL++ ALL, FINE, INFO, WARNING,
SEVERE, or OFF

Trace level during execution:
� ALL: Logs all messages, including internal traces
� FINE: Logs debug messages, informational

messages, errors, and warnings
� INFO: Logs informational messages, errors, and

warnings
� WARNING: Logs errors and warnings
� SEVERE: Logs errors only
� OFF: No tracing

++HBRPERSISTENCETYPE++ DB2 or FILE Type of persistence layer that is used to store
deployed artifacts. Set this variable to DB2 or FILE.

Variable Example value Description

Variable Example value Description

++CICSHLQ++ CTS420.CICS This value is the HLQ for the CICS installation. Change this value to
match the CICS installation HLQ.

++CICSCSDDSN++ CTS420.APPLID.DFHCSD This value is the HLQ for the CICS region CICS system definition
data set (CSD) file. For each new region into which a zRule Execution
Server for z/OS is to be deployed, this value must be updated.

++CICSLIST++ DFHLIST CICS startup group list that is specified for the GRPLIST parameter.
Appendix B. Configuring runtime values by using variables defined in HBRINST 329

CICS JVM server

If you are configuring an instance of zRule Execution Server for z/OS running on a CICS JVM
server, customize the variables that are listed in Table B-3. Note that some of these variables
are repeated from Table B-2 on page 329.

Table B-3 Variables for CICS JVM server

IMS

If you are configuring IMS to execute rules on an instance of zRule Execution Server for z/OS,
customize the variables that are listed in Table B-4.

Table B-4 Variables for IMS

Variable Example value Description

++CICSWORKPATH++ /u/HBR1/CICS This value is the CICS UNIX System Services working
directory path. Set up each server so that each new zRule
Execution Server for z/OS instance has its own CICS
work path. This way, problem determination is easier with
separate logs for each zRule Execution Server for z/OS
instance.

The value of this variable must differ from the value of the
++HBRWORKPATH++ variable.

++CICSHLQ++ CTS420.CICS This value is the HLQ for the CICS installation. Change
this value to match the CICS installation HLQ.

++CICSCSDDSN++ CTS420.APPLID.DFHCSD This value is the HLQ for the CICS region CICS system
definition data set (CSD) file. For each new region into
which a zRule Execution Server for z/OS is to be
deployed, this value must be updated.

++CICSINSTPATH++ /cics/cics670/lib Location of the CICS TS 4.1 JVM server JAR files.

++CICSLIST++ DFHLIST CICS startup GRPLIST. List of groups containing the
resource definitions that are created when you run the
HBRCSD job.

++HBRJAVA31HOME++ /java/java601_bit31_GA/J6.0.1 If the system is installed in a CICS V4.1 region, the 31-bit
JVM must be set here. If the CICS region is CICS V4.2 or
higher, this is not used.

++JDBCPLAN++ DSNJCC This value is the planned use for Java Database
Connectivity (JDBC) connections and CICS.

Variable Example value Description

++IMSHLQ++ IMS.V10.DBDC HLQ for the data sets of the IMS installation.

++IMSREGID++ IM0A ID of the IMS instance to be used.

++IMSREGHLQ++ IMSDATA.IM0A HLQ of the IMS region data sets.
330 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

DB2 database

If you are using a DB2 database as the persistence layer, customize the variables that are
listed in Table B-5.

Table B-5 Variables for DB2

Variable Example value Description

++DB2HLQ++ SYS2.DB2.V9R1 HLQ of the DB2 installation.

++DB2RUNLIB++ DSN910GP.RUNLIB.LOAD DB2 runtime library.

++DB2SUBSYSTEM++ db2_subsystem_id DB2 subsystem name.

++DB2LOCATION++ DSN910GP DB2 location name that is used to connect to this
DB2 subsystem.

++DB2VCAT++ DSN910GP DB2 integrated catalog facility (ICF) catalog.

++DB2ADMIN++ DB2ADMINID User ID that is authorized to create Events DB2
databases.

++DB2CURRSQLID++ ODMDBUSR Current SQL ID. The owner of a table space,
database, or storage group. An authorization ID
with the same name as a schema implicitly has
CREATIN, ALTERIN, and DROPIN privileges for
that schema.

++RESDATABASE++ RESDB1 Name of the database that is used by the zRule
Execution Server for z/OS instance.

++RTSDATABASE++ RTSDB1 Name of the database that is used by the
Decision Center instance.

++EVDATABASE++ EVDB1 Name of the database that is used by the Events
runtime.

++RESSTOGROUP++ RESSTG1 Name of the storage group that is used by the
zRule Execution Server for z/OS instance.

++RTSSTOGROUP++ RTSSTG1 Name of the storage group that is used by the
Decision Center instance.

++EVSTOGROUP++ EVSSTG1 Name of the storage group that is used by the
Events runtime instance

++DB2TABLEBP++ BP1 Buffer pool name for the tables.

++DB2INDEXBP++ BP2 Buffer pool name for the indexes.

++DB2LOBBP++ BP3 Buffer pool name for large objects.

++DB2SAMPLEPROGRAM++ DSNTEP2 DB2 program name.

++DB2SAMPLEPROGRAMPLAN++ DSNTEP91 DB2 plan name.

++DB2BP4K++ BP4K Buffer pool name for 4 K objects.

++DB2BP8K++ BP8K Buffer pool name for 8 K objects.

++DB2BP32K++ BP32K Buffer pool name for 32 K objects.

++DB2USER++ ODMDBUSR User ID for accessing the DB2 database.

++DB2PSWD++ <your password> Password for accessing the DB2 database.
Appendix B. Configuring runtime values by using variables defined in HBRINST 331

WebSphere Application Server

If you are configuring Operational Decision Manager on WebSphere Application Server for
z/OS, customize the variables that are listed in Table B-6.

Table B-6 Variables for WebSphere Application Server

++DB2CONSTR++ host.db2.ipaddr.com:49100/DSN910GP Connection string for a Java Database
Connectivity (JDBC) universal driver type 4
connection, with the format:
ipaddress:portnumber/database_subsystem_ID

++DB2JARLOCN++ /usr/lpp/db2910/classes Location of the DB2 classes in UNIX System
Services.

++DB2NATIVELOC++ /usr/lpp/db2910/lib Location of the DB2 native library files.

Variable Example value Description

Variable Example value Description

++WASINSTPATH++ /WebSphere/V80IL2Z1/Appserver Installation directory of WebSphere Application
Server.

++WAS_HOME++ /WebSphere/AppServer/Profile WebSphere Application Server home directory. It
is unique for each server instance.

++SECURITYTYPE++ RACF Set to RACF if your WebSphere Application Server
system is configured to use RACF. Set to
WebSphere Application Server if your WebSphere
Application Server system is configured to use
federated security.

++DMGRPATH++ /WebSphere/V8ILGDM The DManager path in an WebSphere Application
Server Network Deployment environment.

Important: After you run HBRUUPTI, check the
following data set members to ensure that the
DManager path length did not exceed the
permitted length and get truncated:
� HBRDSWAS
� HBRDCWAS
� HBRDSDVS

++WASSERVERNAME++ Serveril2Base WebSphere Application Server instance name.

++PROFILE++ default WebSphere Application Server profile. Set to
default on z/OS.

++CELLNAME++ cell01 WebSphere Application Server cell name.

++NODENAME++ node1 WebSphere Application Server node name.

++ADMINHOST++ <WAS server IP name> Name of the host on which the WebSphere
Application Server is running.

++WASBOOTSTRAPPORT++ 1234 Boot strap port that is used by WebSphere
Application Server.

++ADMINUSER++ wasadmin Administration console user ID for the WebSphere
Application Server administration console.
332 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

WebSphere Optimized Local Adapters (WOLA) script
parameters

If you want your COBOL applications to connect to a Rule Execution Server on WebSphere
Application Server through WebSphere Optimized Local Adapters (WOLA), customize the
variables that are listed in Table B-7. For specific details about WOLA configuration, see
Chapter 13, “Configuring WebSphere Optimized Local Adapters support” on page 225.

Table B-7 Variables for WOLA script parameters

WebSphere Application installation script parameters

If you are configuring Operational Decision Manager for z/OS on WebSphere Application
Server using wsadmin scripts, customize the variables that are listed in Table B-8.

Table B-8 Variables for WebSphere Application installation script parameters

++ADMINPSWD++ <your password> Administration console user password for the
WebSphere Application Server administration
console for the above ID.

++EJBHLQ++ CLID System Authorization Facility (SAF) prefix for
EJBROLEs. This might be blank.

Variable Example value Description

Variable Example value Description

++HBRWOLALOADLIB++ USER.WOLA.LOADLIB.WAS8 Load library that is selected as part of setting up WOLA.

++HBRTARGETRES++ WOLA Location for rules execution, in this case, WOLA.

++HBRWOLACELL++ CILK Short name of the WebSphere Application Server cell to
which to connect using WOLA.

++HBRWOLANODE++ NILK Short name of the WebSphere Application Server node to
which to connect using WOLA.

++HBRWOLASERVER++ WSVR01 Short name of the WebSphere Application Server for the
connection.

Variable Example value Description

++RESADMIN++ resAdministrators Administrator user group for the Rule Execution Server.

++RESDEPLOY++ resDeployers Deployment user group for the Rule Execution Server.

++RESMONITOR++ resMonitors Monitor user group for the Rule Execution Server.

++RESADMINUSER++ resAdmin Administration user for the Rule Execution Server.

++RESDEPLOYUSER++ resDeployer Deployment user for the Rule Execution Server.

++RESMONITORUSER++ resMonitor Monitor user for the Rule Execution Server.

++RTSADMIN++ rtsAdministrator Administrator user group for Decision Center.

++RTSCONFIG++ rtsConfigManager Configuration user group for Decision Center.
Appendix B. Configuring runtime values by using variables defined in HBRINST 333

Subsystem ID used by COBOL management

If you are configuring an execution environment to run COBOL rule subprograms, customize
the variables that are listed in Table B-9.

Table B-9 Subsystem ID used by COBOL management

++RTSUSER++ rtsUser User group for Decision Center.

++RTSINSTALLER++ rtsInstaller Installer user group for Decision Center.

++RTSADMINUSER++ rtsAdmin Administration user for Decision Center.

++RTSCONFIGUSER++ rtsConfig Configuration user for the Decision Center.

++RTSUSERUSER++ rtsUser1 User for Decision Center.

++RTSDBDRIVERTYPE++ 4 JDBC universal driver type for the RTS data source connection.

++XOMDBDRIVERTYPE++ 4 JDBC universal driver type for the execution object module
(XOM) data source connection.

++RESDBDRIVERTYPE++ 4 JDBC universal driver type for the RES data source connection.

++DB2SERVNAME++ <host name> DB2 host name or IP address.

++DB2PORT++ 49100 DB2 connection port.

Variable Example value Description

Variable Example value Description

++R4CSSID++ SSID Variable to create a new subsystem ID for a COBOL rule subprogram.
334 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks web server:

ftp://www.redbooks.ibm.com/redbooks/SG248014

Alternatively, you can go to the IBM Redbooks website:

http://www.ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks
form number, SG248014.

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material .zip file into this folder.

C

© Copyright IBM Corp. 2013. All rights reserved. 335

ftp://www.redbooks.ibm.com/redbooks/SG248014
http://www.ibm.com/redbooks

336 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

ronyms
BAL Business Action Language

BEP Business Event Processing

BOM Business object model

BPM Business Process Management

DVS Decision Validation Services

HLQ High-level qualifier

IBM International Business Machines
Corporation

ITSO International Technical Support
Organization

IVP Installation verification procedure

JMS Java Message Service

JVM Java virtual machine

KPI Key performance indicator

RES Rule Execution Server

SSP Scenario service provider

XU Execution unit

zFS z/OS Distributed File Service

zRES Rules Execution Server for z/OS

Abbreviations and ac
© Copyright IBM Corp. 2013. All rights reserved.
 337

338 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that publications referenced in this list might be available in softcopy only.

� Implementing Event Processing with CICS, SG24-7792

� Proven Practices for Enhancing Performance: A Q & A for IBM WebSphere ILOG BRMS
7.1, REDP-4775

� Making Better Decisions using WebSphere Operational Decision Management,
REDP-4836

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Barbara von Halle, Business Rules Applied, Wiley, 2001, ISBN 978-0471412939

Online resources

These websites are also relevant as further information sources:

� IBM Operational Decision Manager product web site:

http://www.ibm.com/software/decision-management/operational-decision-management
/websphere-operational-decision-management/

� IBM WebSphere Operational Decision Management Version 8.0 Information Center:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp

� Operational Decision Management Library:

http://www.ibm.com/software/decision-management/operational-decision-management
/odm-library/

� To enable history in the Decision Server Events run time:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.even
ts.config/topics/tsk_configuring_history_runtime.html
© Copyright IBM Corp. 2013. All rights reserved. 339

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management/
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp
http://www.ibm.com/software/decision-management/operational-decision-management/odm-library/
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.config/topics/tsk_configuring_history_runtime.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.config/topics/tsk_configuring_history_runtime.html

� WebSphere connectors:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=%2Fcom.ibm.wodm
.dserver.events.admin%2Ftopics%2Frunningconnectorsinthewasenvironment.html

� Stand-alone connectors:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.even
ts.admin/topics/zos_runningtechnologyconnectors.html

� The ilog.rules.dvs.client package extensive online documentation with code samples that
explain how to use it:

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rule
s.ref.designer/html/api/html/ilog/rules/dvs/client/package-summary.html

� CICS Explorer:

http://www.ibm.com/software/htp/cics/explorer/

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
340 Flexible Decision Automation for Your zEnterprise with Business Rules and Events

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/index.jsp?topic=%2Fcom.ibm.wodm.dserver.events.admin%2Ftopics%2Frunningconnectorsinthewasenvironment.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.admin/topics/zos_runningtechnologyconnectors.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.rules.ref.designer/html/api/html/ilog/rules/dvs/client/package-summary.html
http://www.ibm.com/software/htp/cics/explorer/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Flexible Decision Autom
ation for Your zEnterprise w

ith Business Rules and Events

Flexible Decision Autom
ation for Your

zEnterprise w
ith Business Rules and

Flexible Decision Autom
ation for

Your zEnterprise w
ith Business

Rules and Events

Flexible Decision Autom
ation for Your zEnterprise w

ith Business Rules and Events

Flexible Decision Autom
ation for

Your zEnterprise w
ith Business

Rules and Events

Flexible Decision Autom
ation for

Your zEnterprise w
ith Business

Rules and Events

®

SG24-8014-01 ISBN 0738438855

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Flexible Decision Automation
for Your zEnterprise with
Business Rules and Events

Understand the
benefits of
operational decision
management

Build dynamic
solutions with
business events and
business rules

Learn by example
with practical
scenarios

The IBM Operational Decision Manager product family provides value
to organizations that want to improve the responsiveness and precision
of automated decisions. This decision management platform on IBM
z/OS provides comprehensive automation and governance of
operational decisions that are made within mainframe applications.
These decisions can be shared with other cross-platform applications,
providing true enterprise decision management.

This IBM Redbooks publication makes the case for using Operational
Decision Manager for z/OS and provides an overview of its
components. It is aimed at IT architects, enterprise architects, and
development managers looking to build rule-based and business
event-based solutions. Step-by-step guidance is provided on getting
started with business rules and creating business events by using a
scenario-based approach. This book provides detailed guidelines for
testing and simulation and describes advanced options for decision
authoring. Finally, it describes and documents multiple runtime
configuration options.

This second edition, SG24-8014-01, of this IBM Redbooks publication
updated the information presented in this book to reflect function
available in IBM Operational Decision Manager for z/OS Version 8.0.1.
It is also important to note that the product name has changed from
IBM WebSphere Operational Decision Management for z/OS to IBM
Operational Decision Manager for z/OS.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 zEnterprise with business rules and events
	Chapter 1. The case for Operational Decision Manager
	1.1 What is Operational Decision Manager
	1.2 When to think about Operational Decision Manager
	1.3 Why Operational Decision Manager in z/OS applications
	1.4 Where Operational Decision Manager can be used
	1.5 Who is involved in deploying Operational Decision Manager
	1.6 How business rule and event externalization enables application modernization
	1.7 Key concepts to understand decision management
	1.8 Overview of the scenario used in this book

	Chapter 2. Operational Decision Manager on z/OS
	2.1 Operational Decision Manager for z/OS overview
	2.2 Operational concepts
	2.3 Decision Center for z/OS
	2.3.1 Features
	2.3.2 Directory structure
	2.3.3 Decision Center console
	2.3.4 Rule Solutions for Office

	2.4 Decision Server for z/OS
	2.4.1 Directory structure
	2.4.2 Features
	2.4.3 Decision Server rules
	2.4.4 Decision Server events

	2.5 New in Operational Decision Manager Version 8
	2.5.1 High performance engine for Rule Execution Server for z/OS
	2.5.2 Decision Center Business console
	2.5.3 Testing and simulation support for rule-based decisions on z/OS
	2.5.4 Usability improvements for COBOL management
	2.5.5 Scenario Service Provider (SSP) support on zRule Execution Server
	2.5.6 Revised IMS support
	2.5.7 WebSphere Optimized Local Adapters
	2.5.8 Decision Warehouse

	Chapter 3. Getting started with business rules
	3.1 Overview of the example used in this chapter
	3.1.1 Business scenario
	3.1.2 Business model
	3.1.3 Scenario rule model
	3.1.4 Project structure of a business rule on z/OS

	3.2 Getting started from a COBOL copybook
	3.2.1 Scenario overview
	3.2.2 Creating a rule project
	3.2.3 Creating COBOL XOM from a COBOL copybook
	3.2.4 Creating a business object model from the Java XOM
	3.2.5 Declaring ruleset parameters
	3.2.6 Adding BOM methods and mapping them to the XOM
	3.2.7 Creating the ruleflow
	3.2.8 Authoring rules
	3.2.9 Preparing the rule execution
	3.2.10 Building a COBOL application for rule execution

	3.3 Getting started from an existing rule project
	3.3.1 Scenario overview
	3.3.2 Generating a copybook from the BOM
	3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS
	3.3.4 Building a COBOL application for rule execution

	Chapter 4. Managing business decisions through the full lifecycle
	4.1 What is the lifecycle of rule artifacts in decisions
	4.2 Working with rules through the lifecycle
	4.2.1 Managing artifacts
	4.2.2 What roles are involved in the decision lifecycle

	4.3 Sharing decision artifacts between z/OS and a distributed environment
	4.4 Installation topologies for Decision Center and Business Center
	4.4.1 Basic topologies
	4.4.2 Advanced topologies

	4.5 Managing artifacts through the lifecycle
	4.5.1 Rules Designer
	4.5.2 Decision Center
	4.5.3 Business Center
	4.5.4 REST API
	4.5.5 ANT scripts

	4.6 Usage of defined rules

	Chapter 5. Invoking the rules server from COBOL clients
	5.1 Designing the decision interface
	5.2 Coding the COBOL client application
	5.2.1 HBRWS header structure
	5.2.2 HBRCONN API call
	5.2.3 HBRRULE API call
	5.2.4 HBRDISC API call

	5.3 Mapping from the COBOL copybook
	5.3.1 Structure of a COBOL-based rule project
	5.3.2 Supported COBOL data types
	5.3.3 Creating custom converters
	5.3.4 Mapping level-88 constructs into BOM domain types

	5.4 Configuring the client application to reach the rule server
	5.4.1 Batch application
	5.4.2 IMS application
	5.4.3 CICS application
	5.4.4 WebSphere Optimized Local Adapters (WOLA) batch application

	Chapter 6. Decision testing and simulation
	6.1 Making the right testing and simulation decisions
	6.1.1 Decision Validation Services
	6.1.2 Verifying the business logic implementation by testing

	6.2 Types of scenario suites
	6.2.1 Test suites
	6.2.2 Simulation

	6.3 Development and authoring tools
	6.3.1 Rule Designer
	6.3.2 Decision Center
	6.3.3 Rule Execution Server console and Rule Execution Server for z/OS console

	6.4 Testing and simulation architecture for z/OS decision services
	6.4.1 Test and simulation artifacts
	6.4.2 Formatting options
	6.4.3 Test and simulation reports
	6.4.4 Runtime components

	6.5 Testing and simulation lifecycle
	6.5.1 Early development
	6.5.2 Project ready for deployment
	6.5.3 Project deployed and enabled

	Chapter 7. Advanced topics for decision authoring
	7.1 Starting from an existing Java-based BOM project
	7.1.1 Mapping Java data structures to COBOL

	7.2 Extending the capability of the rule execution with BOM methods
	7.2.1 Preferred practices for using virtual methods

	7.3 Considerations for sharing rules between z/OS and distributed applications
	7.3.1 Sharing a COBOL-based project with Java applications
	7.3.2 Sharing a Java BOM-based project with COBOL applications on z/OS

	7.4 Authoring considerations for performance

	Chapter 8. Decision Server events
	8.1 Scenario overview
	8.2 Building the event application
	8.2.1 Event project overview
	8.2.2 Creating the event project
	8.2.3 Creating the business objects and event from a COBOL copybook
	8.2.4 Creating the action
	8.2.5 Creating the event rule
	8.2.6 Configuring the technology connectors

	8.3 Deploying the event application to the event run time
	8.3.1 Creating the event runtime connection
	8.3.2 Deploying the event project to the event run time

	8.4 Emitting events from CICS
	8.4.1 CICS event support
	8.4.2 CICS Event Binding Editor
	8.4.3 Creating the CICS Bundle project
	8.4.4 Creating the event binding
	8.4.5 Creating the event specification
	8.4.6 Creating the capture specification
	8.4.7 Defining the adapter
	8.4.8 Deploying the bundle to CICS

	8.5 Running the scenario
	8.5.1 Enabling history in the Decision Server Event run time
	8.5.2 Sample COBOL application to emit the Request event
	8.5.3 Emitting the event and firing the FollowUp action

	8.6 Using connectors to receive events from various z/OS sources
	8.6.1 Connectors running in WebSphere Application Server
	8.6.2 Connectors running as a stand-alone batch job

	Part 2 System configuration
	Chapter 9. Prerequisites and considerations before you start
	9.1 Runtime environments on z/OS
	9.1.1 Configuring the run times
	9.1.2 Prerequisite checklist

	9.2 Teams needed for installation and configuration
	9.3 Gathering the customizable information
	9.4 Migration considerations

	Chapter 10. zRule Execution Server for z/OS stand-alone server
	10.1 Running on z/OS stand-alone
	10.1.1 Configuring the stand-alone zRule Execution Server for z/OS
	10.1.2 Creating data sets for the zRule Execution Server for z/OS instance
	10.1.3 Creating the working datasets using HBRUUPTI
	10.1.4 Creating the working directories in UNIX System Services

	10.2 Configuring the stand-alone zRule Execution Server for z/OS
	10.2.1 Defining a new subsystem for zRule Execution Server for z/OS
	10.2.2 Creating the started tasks (HBRXCNSL and HBRXMSTR)
	10.2.3 Securing the zRule Execution Server for z/OS for z/OS resources
	10.2.4 Starting the new instance
	10.2.5 Logging on and performing diagnostics

	10.3 Managing multiple zRule Execution Server for z/OS servers on one LPAR
	10.3.1 Adding a zRule Execution Server for z/OS to a running console
	10.3.2 Creating the working directory
	10.3.3 DB2 persistence
	10.3.4 Defining the subsystem for the new instance
	10.3.5 Modifying and adding the started tasks to the PROCLIB
	10.3.6 Security setup for the new stand-alone zRule Execution Server for z/OS
	10.3.7 Starting the new instance

	10.4 Setting up the database connection
	10.4.1 Setting up a type 2 configuration for the console
	10.4.2 Updating the database parameters in HBRPSIST
	10.4.3 Setting up the DB2 identifying file
	10.4.4 Updating the PARM members
	10.4.5 Using your own jobs

	Chapter 11. Configuring CICS to work with Operational Decision Manager
	11.1 Configuring CICS to invoke a stand-alone Rule Execution Server for z/OS
	11.1.1 Setting the parameters for CICS
	11.1.2 Defining the required resources
	11.1.3 Updating the GRPLIST parameter
	11.1.4 Updating the CICS JCL
	11.1.5 Scenario for installation verification
	11.1.6 Starting zRES and CICS
	11.1.7 Installing HBRGROUP
	11.1.8 Testing the configuration
	11.1.9 Automatically connecting CICS to a running zRES instance

	11.2 Configuring a CICS JVM server to run a Rule Execution Server
	11.2.1 HBRINST changes
	11.2.2 Creating the working directories
	11.2.3 Creating the JVM profile
	11.2.4 Defining the CICS resources
	11.2.5 Adding HBRLIST to the system initialization table
	11.2.6 Setting the JVMPROFILEDIR
	11.2.7 Changing the CICS region JCL
	11.2.8 Scenario for installation verification
	11.2.9 Security for the zRES on CICS JVM server
	11.2.10 CEDA installation of HBRGROUP resources
	11.2.11 Database connect for the CICS region
	11.2.12 Connecting the zRES to the CICS JVM server
	11.2.13 Deploying the installation verification program

	11.3 Configuring a zRES dedicated to a CICS region with HBRMODE set to NORULE
	11.3.1 Why a NORULE zRES address space is needed
	11.3.2 Configuration parameter

	11.4 Working with an IBM CICSPlex
	11.4.1 Using a CICSPlex for zRES
	11.4.2 Configuring the use of a CICSPlex with zRES

	11.5 Working with multiple CICS JVM servers

	Chapter 12. Configuring IMS to work with Operational Decision Manager
	12.1 IMS and Operational Decision Manager
	12.2 Configuration
	12.2.1 BMP and DLI
	12.2.2 Message Processing Region (MPR)

	12.3 IMS and Rules Execution Server on WebSphere Application Server for z/OS

	Chapter 13. Configuring WebSphere Optimized Local Adapters support
	13.1 Overview of WebSphere Operational Local Adapters
	13.1.1 Configuring WOLA
	13.1.2 JCL variables for using WOLA

	13.2 Sample configuration of WebSphere Application Server to use WOLA
	13.3 Batch programs and Rule Execution Server using WOLA on z/OS
	13.4 CICS and Rule Execution Server using WOLA on z/OS
	13.5 IMS and Rule Execution Server using WOLA on z/OS

	Chapter 14. Configuring decision warehousing
	14.1 Introducing the Decision Warehouse
	14.2 Configuring the Decision Warehouse

	Chapter 15. Configuring and running Decision Validation Services
	15.1 Decision Validation Service for stand-alone zRES
	15.1.1 Running from Rules Designer
	15.1.2 Running from Decision Center

	15.2 DVS using RES on WebSphere Application Server for z/OS
	15.2.1 Running from Rules Designer
	15.2.2 Running from the Decision Center

	15.3 Service scenario provider and key performance indicator architecture
	15.3.1 Runtime client API
	15.3.2 Service scenario provider
	15.3.3 Key performance indicator

	15.4 Example
	15.4.1 Creating an Excel test suite in Rule Designer
	15.4.2 Running the Excel test suite in Rule Designer and then displaying the execution report
	15.4.3 Repackaging the SSP
	15.4.4 Publishing the insurance eligibility project in Decision Center
	15.4.5 Configuring Decision Center to use the SSP to run tests and simulations
	15.4.6 Creating a test suite in Decision Center

	Chapter 16. Configuring the Rules Execution Servers for z/OS console with virtual IP addressing
	16.1 Overview of a multiple LPAR environment
	16.1.1 Hot deployment of rules in Operational Decision Manager
	16.1.2 Cold deployment of rules in Operational Decision Manager

	16.2 Using Virtual IP addressing to allow more than one zRules console to be used
	16.2.1 What happens if the LPAR that hosts the zRules console fails
	16.2.2 Using virtual IP addressing
	16.2.3 How VIPA maintains hot deployment

	Part 3 Appendixes
	Appendix A. Calling out from a ruleset to a VSAM file to augment data
	Appendix B. Configuring runtime values by using variables defined in HBRINST
	Rules z/OS
	CICS
	CICS JVM server
	IMS
	DB2 database
	WebSphere Application Server
	WebSphere Optimized Local Adapters (WOLA) script parameters
	WebSphere Application installation script parameters
	Subsystem ID used by COBOL management

	Appendix C. Additional material
	Locating the web material
	Downloading and extracting the web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

