
IBM WebSphere Compute Grid and WebSphere Java Batch in WAS V8.5

Getting Started with Java BatchGetting Started with Java Batch
See the WP101783 White Paper for more details

Introduction
A common question that comes up is this:

"I'm interested in WebSphere Java Batch. How do I start?
What are some common approaches to begin working with
this solution?"

It should be no surprise the answer is not to rip-and-replace
everything you have working today. Indeed, the approach patterns
are all about incremental adoption. The objective is to minimize
processing disruptions and move to WebSphere Java Batch in a
controlled manner.

This document will provide an overview of several proven
approaches for beginning the use of WebSphere Java Batch1.

Any Platform
WebSphere Java Batch runs on many different operating system
platforms2. The first several approach patterns spelled out in this
document apply to any supported platform; the final two focus on
z/OS patterns where z/OS-exclusive features involved.

Overview
The following list provides a high-level view of the patterns
discussed in this document:

Develop net-new batch in Java and WebSphere Java Batch
If new batch processes are called for, make the decision to develop new
processes in Java. Leave existing non-Java batch as is and refocus new
batch development on Java. Integrate non-Java and Java into larger batch
processes with your enterprise scheduling software.

Reuse existing Java "main" programs
If your environment has an inventory of Java batch programs written as
Java "main" programs, those may be easily packaged (or "wrappered") in
a WebSphere Java Batch program pattern to allow execution in the
WebSphere Java Batch runtime.

Re-architect existing non-Java into Java batch
You may have existing non-Java batch programs you wish to re-architect
for some reason, such as new business requirements imposed on the batch
design. The decision to re-architect provides an opportunity to change
the programming model to take advantage of WebSphere Java Batch.

z/OS: Take advantage of System z Specialty Engines
On z/OS you may wish to rewrite existing non-Java into Java to take
advantage of offload to System z specialty engines (zAAP, or zAAP-on-
zIIP). The objective is not so much to re-architect (though some of that
may take place), but to simply replace non-Java with Java.

z/OS: Call existing COBOL from new Java batch programs
If you have COBOL modules that provide useful batch services, you may
choose to leverage those within the context of a Java batch program.
WebSphere Java Batch on z/OS provides a "COBOL Container" function
to do just that.

And of course combinations of these approaches may be considered
when planning your approach to using WebSphere Java Batch.

1 Another term commonly used is "Compute Grid," which is a reference to the IBM
program product by that name. Compute Grid is still available, with the function
also included with the WebSphere Application Server V8.5 product as well.

2 Windows, AIX, Linux, Linux for System z, HP-UX, Solaris, IBM i, and z/OS.

Note about Enterprise Scheduler Integration
A common question that comes up is how to integrate non-Java
with Java in broader batch processing flows. The answer to that is
to use a supplied WebSphere Java Batch function that allows
integration with existing enterprise scheduler functions. That
function is often referred to as WSGRID, which is the name of the
supplied utility that performs the linkage between the enterprise
scheduler and WebSphere Java Batch.

WSGRID works with any enterprise scheduler. If the scheduler is
capable of issuing a command, invoking a shell script or submitting
JCL, it can use WSGRID to integrate batch processes with Java
batch running in WebSphere Java Batch3.

Develop New Batch in Java
This approach provides a clean dividing line between existing non-
Java batch processes (which continue to serve the business well)
and net-new batch processes written in Java.

An advantage of this approach is it represents a minimal risk of
disruption to existing batch processing. Existing batch is left
unaffected; this approach addresses new batch requirements. This
affords you a good opportunity to prototype and test the new Java
batch routines before putting them into production.

Reuse Existing Java Main Batch Programs
In many environments the journey with Java batch started with
simple Java programs written to be invoked by launching a JVM
and running the program. These are sometimes referred to as "Java
main" programs, or "legacy Java batch."

A common motivation to consider WebSphere Java Batch is the concern
about how to manage a growing environment of Java "main" programs.
These programs tend not to have much management structure around
them. Beyond a small handful of such programs, concerns about
management and support become a very real and pressing issue.

It is not necessary to discard or rewrite these programs when
moving to WebSphere Java Batch. WebSphere Java Batch has a
program pattern that allows these Java "main" programs to be
wrappered with code that allows them to run within a WebSphere
Java Batch managed environment. That provides a rapid path to
reuse for those existing assets.

While this approach allows those assets to be quickly used in a
WebSphere Java Batch environment, the approach does not provide
much in the way exercising the rich set of features provided by the
WebSphere Java Batch runtime4.

A good practice is to plan time to rewrite these wrappered programs
into Java batch applications that better leverage the WebSphere Java
Batch runtime. The wrapper approach certainly works, but it leaves
the full power of WebSphere Java Batch under-utilized.

3 WSGRID provides a message-based linkage between WebSphere Java Batch and
the enterprise scheduler. The scheduler invokes the supplied WSGRID utility
program, which sends a Java batch submit message to WebSphere Java Batch. The
instance of WSGRID then stays active for the life of the Java batch execution in
WebSphere Java Batch. Java Batch output streamed back over message interface.

4 Such as transaction management, checkpoint services, the Batch Data Stream
framework for data read and write stream handling, and many others.

© 2013, IBM Corporation
IBM Advanced Technical Skills

WP101783 at ibm.com/support/techdocs
Version Date: May 6, 2013

Re-architect Existing non-Java Batch
A move to Java Batch may well afford an opportunity to revisit the
underlying architecture of the existing batch. It may be that new
business requirements call for an update to the batch processing,
and this may provide a good justification to consider re-architecting
the batch process.

The desire to re-architect existing processes is not uncommon.
Often what is needed is a good catalyst for making the change. The
decision to adopt WebSphere Java Batch may provide the needed
spark to undertake the architectural review. WebSphere Java Batch
does not mandate it; it simply helps make the decision.

Note that the decision to re-architect existing non-Java does not mean all
your non-Java batch needs review. Indeed, you may well have a very
small subset of existing non-Java batch in mind for such review and
update. That is also very common: where re-architecting is considered, it
is often quite carefully limited to a few batch processes when starting out.
In time other processes then come under review.

z/OS: Take advantage of Specialty Engines
The approach here is to identify existing non-Java batch processes
and simply rewrite them to do the same thing in Java running in
WebSphere Java Batch. The desire is to leverage System z
specialty engines (zAAP or the newer zAAP-on-zIIP), which enable
a cost advantage by offloading Java workloads from the general
processor.

The key question here is what existing non-Java batch should serve
as candidates rewrite. The primary considerations early in this
process are: (a) reasonably limited scope, and (b) risk containment.

Limiting the scope makes simpler and more manageable the rewrite
project. An effort to rewrite a company's entire batch process
would likely fail under the weight of the sheer complexity of it.
Better to identify a smaller subset to begin with. Better still if this
subset is one with limited inter-dependencies with other parts of the
overall batch process. Over time more and more batch processes
become converted to WebSphere Java Batch.

Risk containment is also an important criteria for early rewrite
candidates. Batch processing often has components that are part of
the processing critical path5, and other components that are
supporting but peripheral to the core. So initially the focus is often
on components with limited inter-dependencies, which reduces the
risk exposure.

Once again we stress the importance of remembering this is not an all-or-
nothing exercise. Our experience is the incremental approach works very
well when proper evaluation of critical path and inter-dependencies are
taken into account.

z/OS: Call COBOL from Java Batch
On z/OS there is a tremendous amount of business value invested in
existing z/OS COBOL batch programs. Many wish not to replace
that COBOL, but rather to use it effectively within a Java batch
process. The question that remains is then how best to call the
existing COBOL modules.

WebSphere Java Batch on z/OS has a feature called the "COBOL
Container." It is designed to let you call and run COBOL modules
in the same z/OS address space as your Java batch programs6. That

5 A term used frequently in project management and applicable to batch processing
as well. The critical path is the longest necessary sequence of activities that must
be completed to complete the overall project.

6 Or, for those familiar with WAS z/OS, in the servant region where the Java batch
program executes.

makes calling the COBOL very efficient, with very low latency.

In addition, the COBOL container allows JDBC Type 2 connections
to DB2 to be shared between the Java batch container and the
COBOL, with transactional context maintained between the two.
That allows the Java batch component to cooperate with the
COBOL in a logically consistent transactional manner.

The value statement here is all about effective and efficient re-use of
existing COBOL assets within a Java batch framework. The COBOL
Container feature of WebSphere Java Batch on z/OS is able to provide this
because of the design of z/OS itself. This is another example of how
WebSphere Application Server for z/OS takes advantage of the platform7.

For more on the COBOL Container, see the WP101783 Techdoc at
ibm.com/support/techdocs and look for the COBOL
Container PDF under "Specific Feature Brochures".

Summary
The message of this short document is that adopting WebSphere
Java Batch as the execution framework for Java Batch does not
require wholesale disruptive change to your environment. There
are in fact several incremental approach patterns. The objective in
the incremental approach is reduced complexity, better chances for
project success, and limiting the risk of disruption by limiting the
scope of each incremental change.

And remember: existing enterprise scheduler programs may
integrate with WebSphere Java Batch on any supported platform
using WSGRID. The ability to integrate Java and non-Java at the
enterprise scheduler provides a way to create higher-level batch
process orchestration flows.

WebSphere Java Batch provides value to your business in many different
ways. With proper planning, concerns about disruptive adoption should
not be part of your thinking. Proven incremental approach patterns exist.
Take advantage of them to take advantage of the power of WebSphere
Java Batch.

More Details
See the WP101783 Techdoc at ibm.com/support/techdocs.
That Techdoc website has many presentations, papers and
documents related to WebSphere Java Batch.

For more, contact Jeff Summers, Product Manager - WebSphere
Application Foundation, at summerje@us.ibm.com

End of Brochure

7 WebSphere Java Batch is built on top the WebSphere Application Server
foundation. WAS z/OS has many points of platform integration where value
derives to the application above by the way the platform features are exploited.
For more on this, see WP101532 at ibm.com/support/techdocs.

© 2013, IBM Corporation
IBM Advanced Technical Skills

WP101783 at ibm.com/support/techdocs
Version Date: May 6, 2013

