

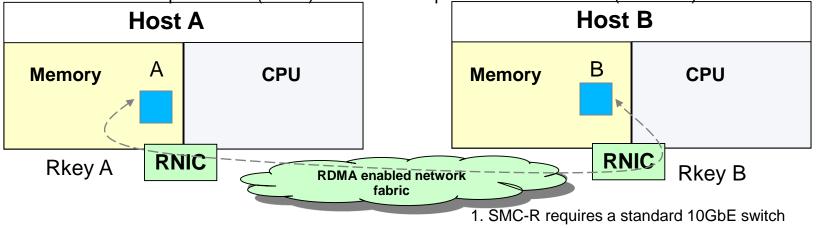
IBM z Systems z13[™] and z13s[™] SMC-D / ISM Introduction: z/OS Overview

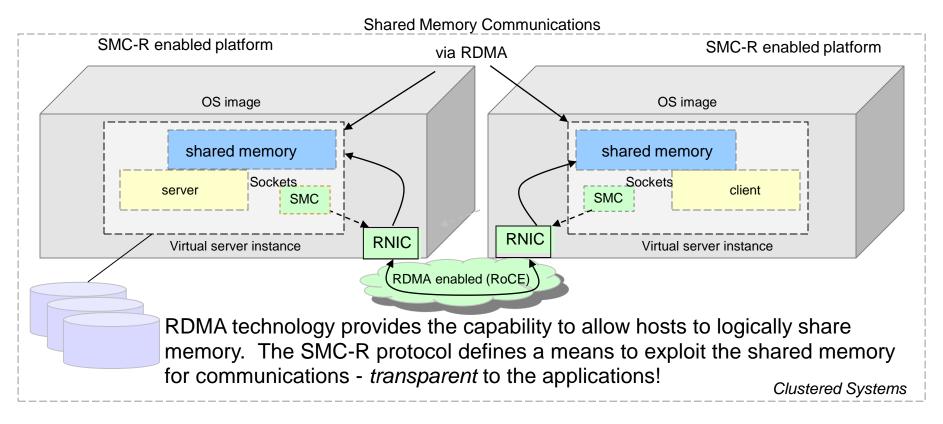
Jerry Stevens (sjerry@us.ibm.com)

March 16, 2016

IBM z Systems[™] z13 / z13s SMC-D and ISM Introduction: Topics

- 1. Brief review of SMC-R
- 2. Shared Memory Communications Direct Memory Access (SMC-D):
 - Introduction: SMC-D: Summary of SMC-D and ISM functions
 - Objectives / Value of SMC-D and ISM (performance overview)
- 3. IBM z System z13 Internal Shared Memory (ISM) virtual PCI function
- 4. Getting started: Setup requirements for enabling SMC-D:
 - z13[™] / z13s[™] system firmware and software requirements
 - ISM System definitions (defining FIDs in HCD)
 - z/OS Communications Server configuration requirements (enabling SMC-D)
 - IP connectivity and VLANs
- 5. Testing / verification / feedback of SMC-D (scenarios)
- 6. SMC Applicability Tool (SMC-AT)

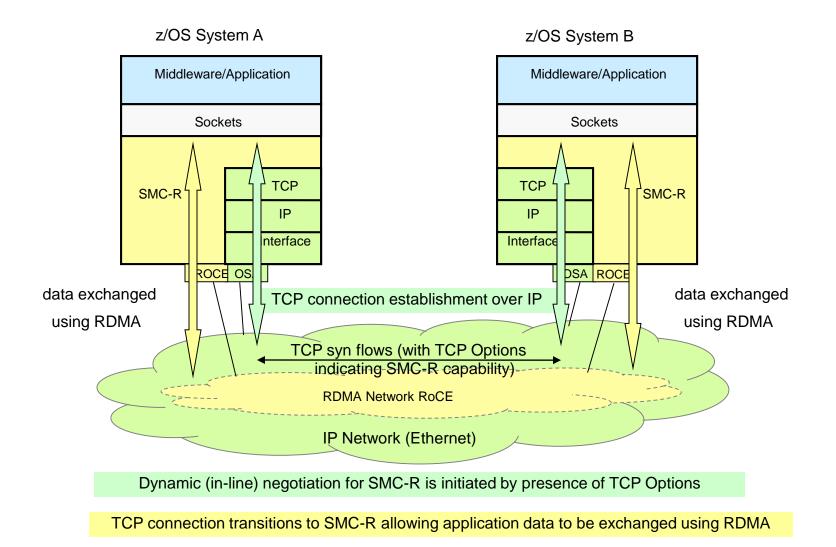

Topic 1. Review of SMC-R


Review: RDMA (Remote Direct Memory Access) Technology Overview

Key attributes of RDMA

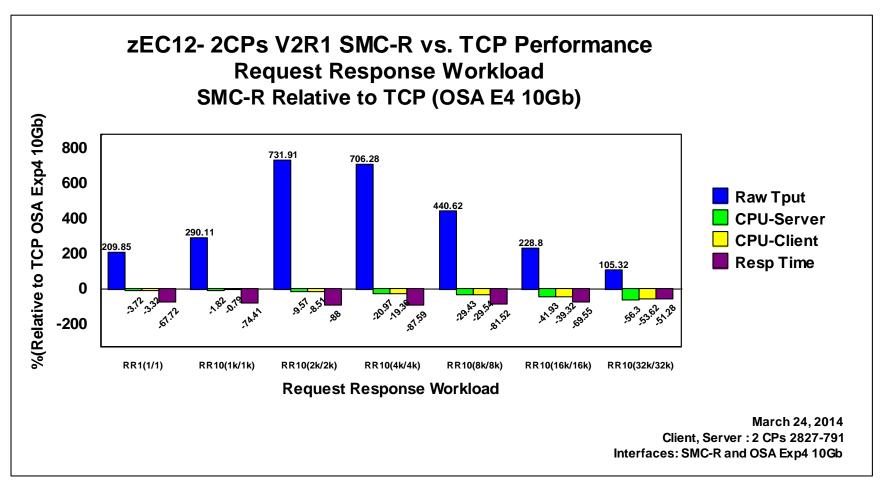
- Enables a host to read or write directly from/to a remote host's memory *without* involving the remote host's CPU
 - By registering specific memory for RDMA partner use
 - Interrupts *still required* for notification (i.e. CPU cycles are not completely eliminated)
- Reduced networking stack overhead by using streamlined, low level, RMDA interfaces
 - Low level APIs such as uDAPL, MPI or RDMA verbs allow optimized exploitation
 - > For applications/middleware willing to exploit these interfaces
- Key requirements:
 - A reliable "lossless" network fabric (LAN for layer 2 data center network distance)
 - An RDMA capable NIC (RNIC) and RDMA capable switched fabric (switches)¹

Review: Shared Memory Communications over RDMA (SMC-R)



SMC-R is an *open* sockets over RDMA protocol that provides transparent exploitation of RDMA (for TCP based applications) while preserving key functions and qualities of service from the TCP/IP ecosystem that enterprise level servers/network depend on! Draft IETF RFC for SMC-R:

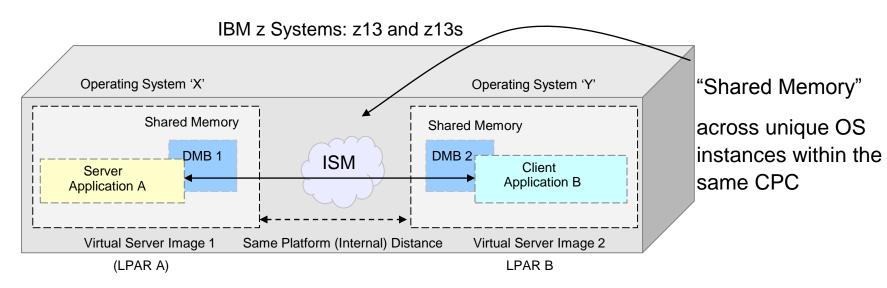
http://www.rfc-editor.org/rfc/rfc7609.txt


Review: Dynamic Transition from TCP to SMC-R

Review: z/OS SMC-R Performance Relative to TCP (OSA Ex4 10Gb)

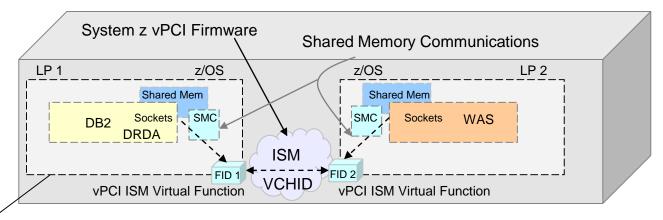
Request Response Workload with different payload. SMC-R provides significantly better performance compared to TCP (OSA Exp4 10Gb).

SMC-R Key Attributes - Summary


- Optimized Network Performance (leveraging RDMA technology)
- Transparent to (TCP socket based) application software
- Leverages existing Ethernet infrastructure (RoCE)
- Preserves existing network security model
- Resiliency (dynamic failover to redundant hardware)
- ✓ Transparent to Load Balancers
- Preserves existing IP topology and network administrative and operational model

Topic 2. Shared Memory Communications – Direct Memory Access (SMC-D Introduction)

IBM

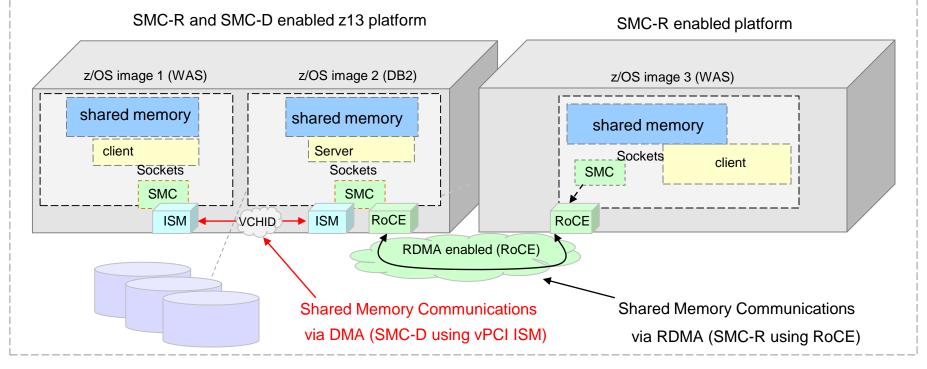

Shared Memory Communications-Direct Memory Access (SMC-D) over Internal Shared Memory (ISM)

SMC-D (over ISM) extends the value of the Shared Memory Communications architecture by enabling SMC for direct LPAR to LPAR communications. SMC-D is very similar to SMC-R (over RoCE) extending the benefits of SMC-R to same CPC operating system instances without requiring physical resources (RoCE adapters, PCI bandwidth, NIC ports, I/O slots, network resources, 10GbE switches etc.).

Note 1. The performance benefits of SMC-R (cross CPC) and HiperSockets (within CPC) are similar to each other. SMC-D / ISM provides significantly improved performance benefits above both within the CPC. Reference performance information: http://www-01.ibm.com/software/network/commserver/SMCR/

SMC-D over ISM: Internal Shared Memory vPCI Function with ISM VCHIDs

IBM z Systems: z13 and z13s


The Shared Memory Communications-Direct Memory Access (SMC-D) protocol can significantly optimize intra-CPC Operating Systems communications – transparent to socket applications!

- Tightly couples socket API communications / memory within the CPC.
- Eliminates TCP/IP processing in the data path.
- ISM is a z System firmware solution (leveraging existing OS virtual memory and does require additional hardware).

Shared Memory Communications within the enterprise data center (RoCE) and within System z (ISM)

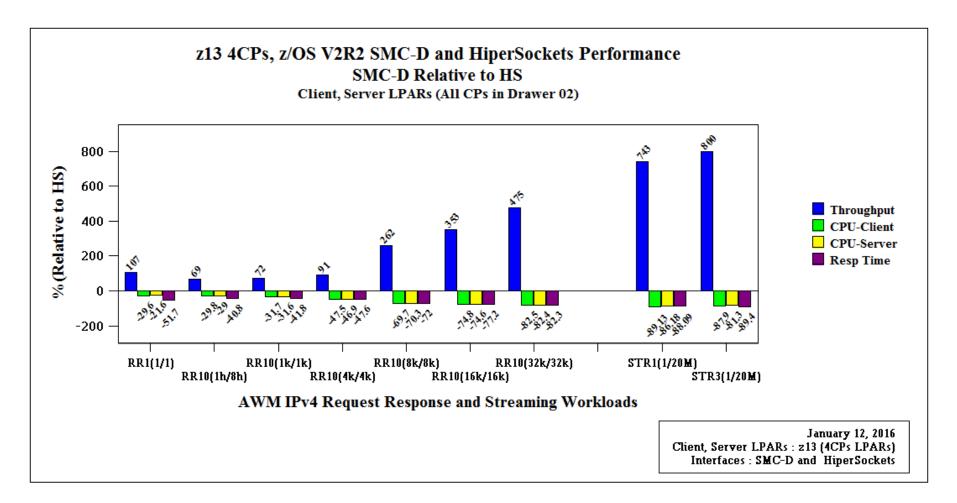
Clustered Systems: Example: Local and Remote access to DB2 from WAS (JDBC using DRDA)

Both forms of SMC can be used concurrently combining to provide a highly optimized solution.

Shared Memory Communications: via System z PCI architecture:

- 1. RDMA (SMC-R for cross platforms via RoCE)
- 2. DMA (SMC-D for same CPC via ISM)

Note. To better understand the IP connectivity shown in this example see chart $\underline{35}$.

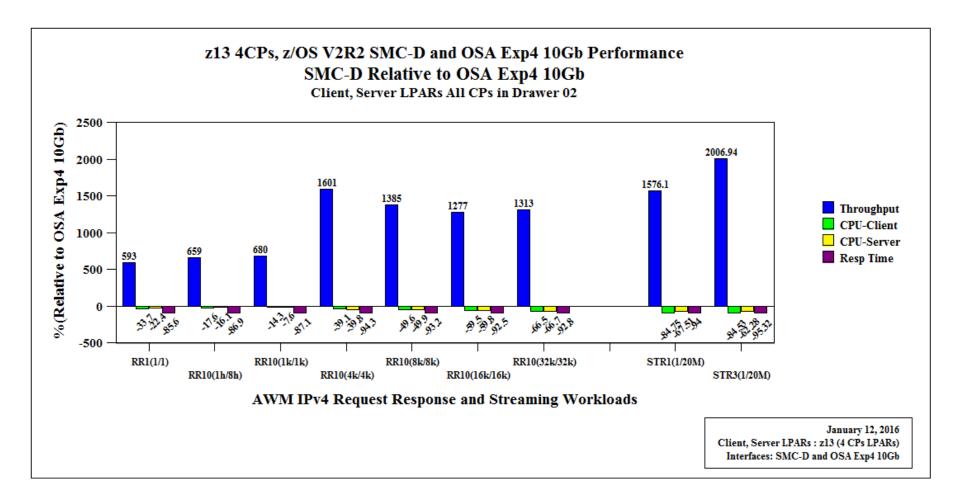

SMC-D Performance Benefits and Value (Performance Overview)

- The value of the next generation of highly optimized internal CPC communications is about providing significantly improved network performance¹ using tightly coupled socket API communications / memory within the CPC without additional hardware
- Network improvement attributes are typically described as latency, throughput, CPU cost and scalability. Improvements in network performance can potentially improve (increase) application workload transaction rates while reducing CPU cost.
- The network latency characteristics provided by SMC-D are compelling:
 - network latency is typically expressed as "network round trip time." This latency attribute can translate to an improved overall application transaction rate for z/OS to z/OS workloads.
 - Workloads that are network intensive and transaction oriented (sometimes described as "request/response" workloads) -- that require multiple and even hundreds of network ("client/server") flows to complete a single transaction will realize the most benefit.

^{1.} Refer to SMC-R website (URL in backup) for SMC-D detailed performance information (additional benchmarks to be added)

HiperSockets Comparison

Up to 9x the throughput! See breakout summary on next chart.



SMC-D / ISM to HiperSockets Summary Highlights

- Request/Response Summary for Workloads with 1k/1k 4k/4k Payloads:
 - Latency: Up to 48% reduction in latency
 - Throughput: Up to 91% increase in throughput
 - CPU cost: Up to 47% reduction in network related CPU cost
- Request/Response Summary for Workloads with 8k/8k 32k/32k Payloads:
 - Latency: Up to 82% reduction in latency
 - Throughput: Up to 475% (~6x) increase in throughput
 - CPU cost: Up to 82% reduction in network related CPU cost
- Streaming Workload:
 - Latency: Up to 89% reduction in latency
 - Throughput: Up to 800% (~9x) increase in throughput
 - CPU cost: Up to 89% reduction in network related CPU cost

IBM

OSA Comparison

Up to 21x the throughput! See breakout summary on next chart.

SMC-D / ISM to OSA Summary Highlights

- Request/Response Summary for Workloads with 1k/1k 4k/4k Payloads:
 - Latency: Up to 94% reduction in latency
 - Throughput: Up to 1601% (~17x) increase in throughput
 - -CPU cost: Up to 40% reduction in network related CPU cost
- Request/Response Summary for Workloads with 8k/8k 32k/32k Payloads:
 - Latency: Up to 93% reduction in latency
 - Throughput: Up to 1313% (~14x) increase in throughput
 - CPU cost: Up to 67% reduction in network related CPU cost
- Streaming Workload:
 - Latency: Up to 95% reduction in latency
 - Throughput: Up to 2001% (~21x) increase in throughput
 - CPU cost: Up to 85% reduction in network related CPU cost
- FTP:
 - For Binary Get and Put:
 - Up to 58% lower (receive side) CPU cost and
 - Up to 26% lower (send side) CPU cost and equivalent throughput

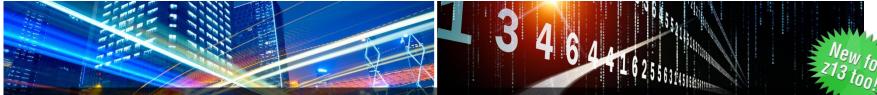
Shared Memory Communications architecture Faster communications that preserve TCP/IP qualities of service

 Shared Memory Communications – Direct Memory Access (SMC-D) optimizes z/OS for improved performance in 'within-the-box' communications versus standard TCP/IP over HiperSockets or Open System Adapter

Typical Client Use Cases:

- Valuable for multi-tiered work co-located onto a single z Systems server without requiring extra hardware
- Any z/OS TCP sockets based workload can seamlessly use SMC-D without requiring any application changes

SMC Applicability Tool (SMCAT) is available to assist in gaining additional insight into the applicability of SMC-D (and SMC-R) for your environment


Up to **61%** CPU savings for FTP file transfers across z/OS systems versus HiperSockets*

Up to **9x** improvement in throughput with more than a **88%** decrease in CPU consumption and a **90%** decrease in response time for streaming workloads versus using HiperSockets*

Up to **91%** improvement in throughput and up to **48%** improvement in response time for interactive workloads versus using HiperSockets*

Shared Memory Communications architecture Faster communications that preserve TCP/IP qualities of service

Memory-to-memory communications using high speed protocols and direct memory placement of data for faster communications

Shared Memory Communications Remote Direct Memory Access (SMC-R)

•Use the RoCE Express hardware feature to enable shared memory communications between two servers

•Up to 50% CPU savings for FTP file transfers across z/OS systems versus standard TCP/IP *

• z/OS V2.2 Communications Server now automatically selects between TCP/IP and RoCE

Shared Memory Communications Direct Memory Access (SMC-D)

 Use firmware-based Internal Shared Memory to optimize inter-system operating system communications LPAR to LPAR

•Valuable for multi-tiered work co-located onto a single z Systems server without requiring extra hardware

•Up to 61% CPU savings for FTP file transfers across z/OS systems versus HiperSockets **

Any z/OS TCP sockets-based workload can **seamlessly** use SMC-R or SMC-D without application changes SMC Applicability Tool (SMCAT) helps assess benefit of SMC-R and SMC-D for your environment Connection level security is preserved with SMC-R and SMC-D

* Based on internal IBM benchmarks in a controlled environment using z/OS V2R1 Communications Server FTP client and FTP server, transferring a 1.2GB binary file using SMC-R (10GbE RoCE Express feature) vs. standard TCP/IP (10GbE OSA Express4 feature). The actual CPU savings any user will experience may vary.
** All performance information was determined in a controlled environment. Actual results may vary. Performance information is provided "AS IS" and no warranties or guarantees are expressed or implied by IBM.

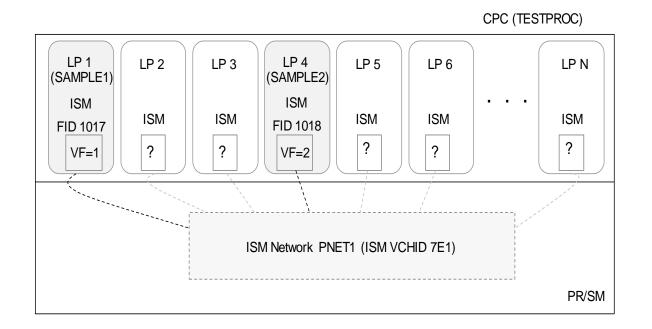
SMC-D and ISM (vPCI) Overall Value Points

Provides **Highly optimized:** improved throughput, reduced latency and CPU cost for intra-CPC communications along with:

- Provides the same list of key SMC-R value points:
 - Transparent to socket applications, no IP topology changes, preserves connection level security, VLAN isolation, transparent with load balancers, etc.
- ...without requiring hardware (adapters, card slots, switches, PCI infrastructure, fabric management, etc.)... cost savings
- Provides superior resiliency / High Availability (no hardware failures)
- Provides high scalability, bandwidth and virtualization (i.e. 8k virtual functions)
- Preserves security (connection level security + secure internal communications)
- Preserves value of z Systems co-location of workloads (e.g. highly optimized internal communications)
- Enabled in z/OS with a single TCP/IP profile keyword ¹

Topic 3. IBM System z13[™] Internal Shared Memory (ISM) (ISM Introduction)

IBM z Systems[™] z13[™] and z13s[™] SMC-D with ISM Introduction


Description

- The IBM z13 and z13s introduces Internal Shared Memory (ISM) virtual PCI function. ISM is a virtual PCI network adapter that enables direct access to shared virtual memory providing a highly optimized network interconnect for z Systems intra-CPC communications.
- ISM is supported by z/VM 6.3 (PTF) with pass thru guest support.
- IBM z/OS V2R2 (PTF) introduces the capability to exploit ISM with Shared Memory Communications-Direct Memory Access (SMC-D).
- For more information on new z13[™] and z13s[™]

http://www-03.ibm.com/systems/z/announcement.html

Introduction: IBM System z13 / z13s Internal Shared Memory (ISM) virtual PCI Function

FUNCTION FID=1017,PCHID=7E1,VF=1,PART=((SAMPLE1),(SAMPLE1,SAMPLE2)),PNETID=(PNET1),TYPE=ISM FUNCTION FID=1018,PCHID=7E1,VF=2,PART=((SAMPLE2),(SAMPLE1,SAMPLE2)),PNETID=(PNET1),TYPE=ISM

Internal Shared Memory (ISM) Overview

- ISM enables the ability for Operating Systems (LPARs) to share virtual memory (similar to RDMA)
- New "Internal Shared Memory" (ISM) VCHID Type (ISM VCHID concepts are similar to IQD (HiperSockets) VCHID)
- ISM is based on existing z System's PCI architecture (i.e. virtual PCI Function / adapter)
- Introduces a new PCI Function type (ISM virtual PCI function)
- System admin / configuration / operations follows the same process (HCD/IOCDS) as existing PCI functions (e.g. RoCE Express, zEDC Express, etc.)
- ISM supports Dynamic I/O
- Supported by z/VM when z/OS is a guest on z/VM (PCI device support)
- Enables highly optimized next generation intra-CPC communications (SMC-D) continued...

Internal Shared Memory (ISM) Overview (part 2)

- Provides adapter virtualization (Virtual Functions) with high scalability:
 - 32 ISM VCHIDs per CPC (each VCHID represents a unique internal shared memory network each with a unique Physical Network ID)
 - 255 VFs per VCHID (8k VFs per CPC) (i.e. the maximum no. of virtual servers that can communicate over the same ISM VCHID is 255)
- Each ISM VCHID represents a unique (isolated) internal network, each having a unique Physical Network ID (PNet IDs are configured in HCD/IOCDS)
- ISM VCHIDs support VLANs (i.e. can be sub-divided into VLANs)
- ISM provides a GID ("Global ID" internally generated by firmware) that corresponds with each ISM FID. The GID is used to locate / address a host on an ISM network (VCHID)
- MACs (VMACs), MTU, physical ports¹ and Frame size are all N/A
- ISM is supported by z/VM (for passthru guest access to support the new PCI function)

Note 1. ISM VCHIDs provide support for a single logical port (also see PNet ID topic)

Topic 4. Getting Started: Install / Configure / Enable: ISM and SMC-D Enablement Overview

Four steps:

- 1. Upgrade System z (firmware)
- 2. Install required software
- 3. Define ISM FIDs with PNet ID (HCD definitions)
- 4. Enable SMCD (TCP/IP profile)

Steps 1 and 2: ISM System z13 and z/OS SMC-D Requirements

- 1. IBM z Systems: z13 (driver level 27 (GA2)) or z13s
- 2. z/OS software (PTF) requirements:
 - 1. CommServer VTAM: OA48411 UA80711
 - 2. CommServer TCP/IP: PI45028 UI35411
 - **3**. z/OS (IOS): OA47913 UA80812
 - 4. HCD: OA46010
 - 5. IOCP: OA47938 UA90986
 - 6. HCM: IO23612
 - 7. RMF: OA49113 UA80445

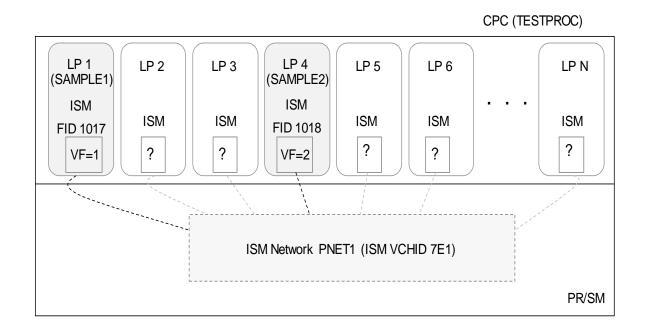
Note. For a complete / current list of PTFs refer to the PSP bucket.

Step 3. HCD - Defining ISM in HCD

- ISM is defined as a PCI device. VCHIDs and FIDs / VFs must be defined in HCD (or IOCDS)
 - A VCHID represents a virtual PCI Adapter, which also represents a unique (isolated) internal network
 - FIDs/VFs are assigned to LPARs as reconfigurable PCI functions
 - FIDs that are defined to the same VCHID are eligible to communicate with each other
- Some examples of Service Element (SE) panels are included in the backup (page 67)
- HCD Change processor steps are shown in backup (required before you can define ISM)
- HCD (and IOCDS) samples of ISM definition and a corresponding HCD IQD sample definition (with PNet ID) follow.

Associating ISM with your IP Network devices (OSA or HS)

- ISM Functions must also be associated with another Channel (CHID), either:
 - 1. IQD (a single IQD / HiperSockets) channel or...
 - 2. OSD channels A single **ISM VCHID can not be associated with both** (IQD and OSD)
- The association of an ISM VCHID (Function IDs) to the channel(s) is created by defining (HCD) matching Physical Network IDs (PNet IDs)
- The channel devices (OSD or IQD) provide IP connectivity and are associated with ISM based on having matching PNet IDs
- ISM (like IQD) supports a single PNet ID per ISM VCHID (a single "logical port")
- PNet IDs are dynamically discovered by z/OS (from HCD config)



Associating ISM with your IP Network devices (part 2)

- ISM PNet IDs must:
 - be unique among other ISM VCHIDs for this System
 - match a corresponding IQD VCHID or OSD Channel(s)
- Additional PNet ID information is illustrated in the following charts:
 - "IP Connectivity" (topology) examples (concepts) of matching PNet IDs
 - New PNet ID Netstat displays

ISM Configuration Example (see the following HCD charts)

FUNCTION FID=1017,PCHID=7E1,VF=1,PART=((SAMPLE1),(SAMPLE1,SAMPLE2)),PNETID=(PNET1),TYPE=ISM FUNCTION FID=1018,PCHID=7E1,VF=2,PART=((SAMPLE2),(SAMPLE1,SAMPLE2)),PNETID=(PNET1),TYPE=ISM

Add PCIe Function

Define the ISM function:

- 1. action f on processor to see the PCIe function list
- 2. action add on function list (PF11 or line command add like) Note the ISM VCHID 7E1

```
Add PCIe Function
Specify or revise the following values.
Processor ID . . . : TESTPROC testprocessor
Function ID . . . . . . 1017
Type . . . . . . . . . ISM
                                     +
CHID . . . . . . . . . . . . 7E1 +
Virtual Function ID . . 1 +
Description . . . . . test scenario
```

Press Enter

Add/Modify ISM PNet ID

Add/Modify Physical Network IDs						
If the CHID is associated to one or more physical networks, specify each physical network ID corresponding to each applicable physical port.						
Physical network ID 1 PNET1						
Physical network ID 2						
Physical network ID 3						
Physical network ID 4						

Press Enter

PNet ID Notes.

- 1. ISM supports a single PNet ID per ISM VCHID
- 2. ISM PNet IDs must be unique among other ISM VCHIDs for this System
- 3. ISM PNet IDs must match a corresponding IQD VCHID or OSD Channel(s)

Define Access List

Allows access to this ISM Function (FID) from specific partitions.

/								
	Define Access List							
	Command ==	==>			Row Scroll ===>	1 Of HALF		
	Select one	e or more p	artitions fo	or inclusion	in the access	list.		
	Function I	D	: 1017					
	/ CSS ID E	Partition N	ame Numbe:	r Usage Desc	ription			
	,	SAMPLE1 SAMPLE2	6 8	OS OS				

Press Enter

Note. The selected partition (SAMPLE1 in this example) must also be in the Access List for the corresponding IQD or OSD Channel

Define HiperSockets (IQD) Channel (to be associated with ISM VCHID)

```
Add Channel Path
Specify or revise the following values.
Processor ID . . . : TESTPROC testprocessor
Configuration mode . : LPAR
Channel Subsystem ID : 0
Channel path ID . . . . 11 +
                                        Channel ID
7E0 +
Number of CHPIDs . . . 1
Channel path type . . . IQD
                             +
Operation mode . . . . SHR +
Managed . . . . . . No (Yes or No) I/O Cluster
Description . . . . . sample IQD
Specify the following values only if connected to a
switch:
Dynamic entry switch ID + (00 - FF)
Entry switch ID . . . . +
Entry port . . . . . . +
```

Press Enter

Define IQD Parameters

Specify IQD Channel Parameters Specify or revise the values below. Maximum frame size in KB 16 + IQD function 1 1. Basic HiperSockets (IQDX) 2. IEDN Access (IQDX) 3. External Bridge Physical network ID PNET1_____

Press Enter

Define IQD Access List

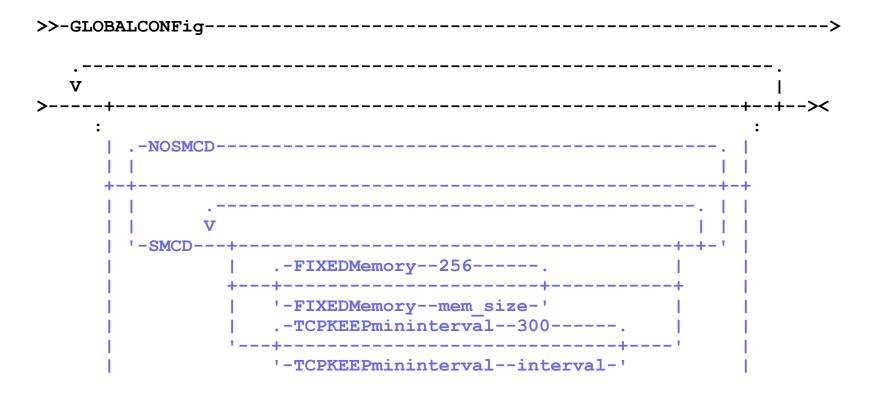
```
Define Access List
Row 1 of
Command ===>
Scroll ===> HAL
 Select one or more partitions for inclusion in the access
list.
 Channel subsystem ID : 0
Channel path ID . . : 11 Channel path type . : IQD
 Operation mode . . . : DED
                              Number of CHPIDs . . : 1
 / CSS ID Partition Name
                          Number Usage Description
 / 0
         SAMPLE1
                           6
                                  OS
                           8
 / 0
         SAMPLE2
                                  OS
```

Press Enter

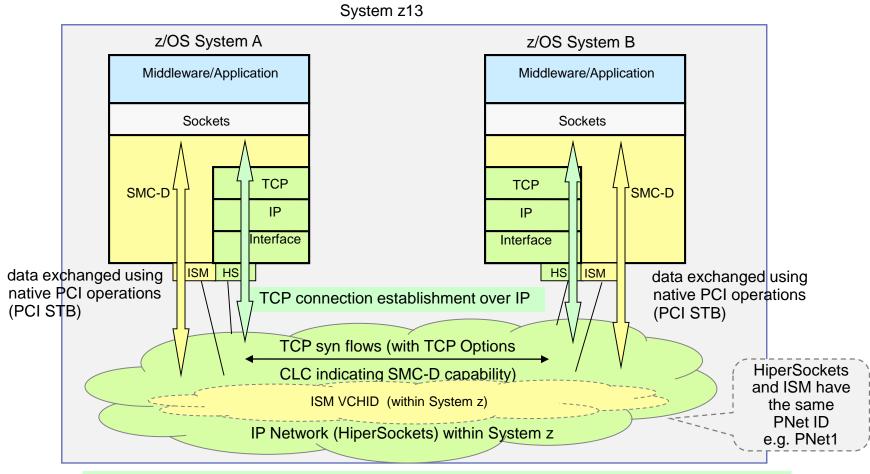
Enter on the candidate list as well, and you are back on the chpid list.

Press F3 twice to go back to the processor list

Result: Chpid 11 on PCHID 7E0 is now defined and has partition SAMPLE1 and SAMPLE2 of CSS 0 in its access list. PNETID is PNET1

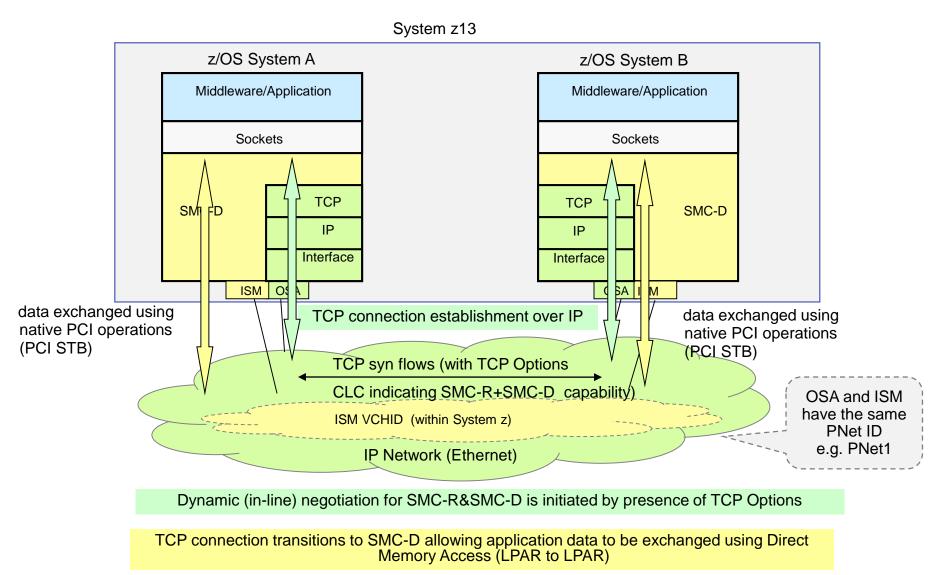

z/OS CommServer Exploitation of Internal Shared Memory (ISM)

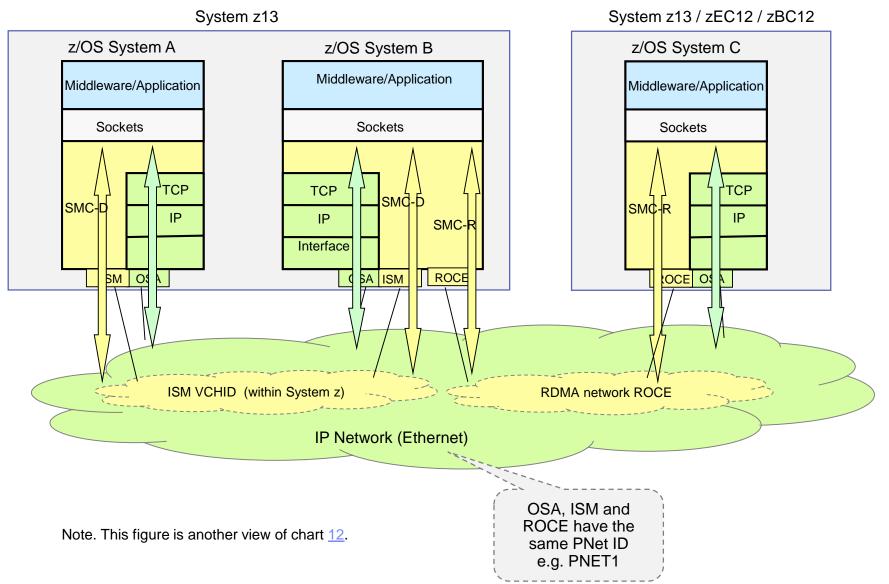
- ISM enables Shared Memory Communications-Direct Memory Access (SMC-D)
- Once the ISM HCD configuration is complete, SMC-D can be enabled in z/OS with a single TCP/IP parameter (GLOBALCONFIG SMCD).
- Notes:
 - ISM FIDs are not defined in the TCP/IP profile. ISM FIDs must be Configured On to z/OS and then the FIDs are dynamically discovered by TCP/IP.
 - An OS can be enabled for both SMC-R and SMC-D. SMC-D is used when both peers are within the same CPC (and using the ISM VCHID and VLAN).
 - ISM FIDs (VCHIDs) must be associated with an IP network. The association is accomplished by defining matching PNet IDs (e.g. HS and ISM). Notes:
 - Your OSA (or IQD channel) must have a PNet ID defined (and must match your ISM FID)
 - The OSA or IQD INTERFACE statement must have IPSubnet defined
 - Host virtual memory is managed by each OS (similar to SMC-R, logically shared memory) following existing z System's PCI I/O translation architecture (i.e. only minor changes required for z/VM guests). There are no required configuration changes.



Step 4. TCPIP Profile GlobalConfig SMCD

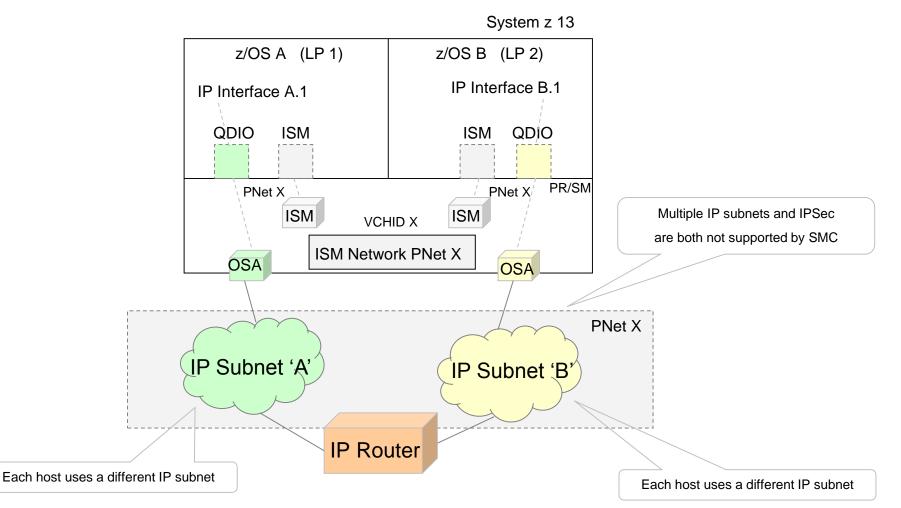
- SMCD parameter on GLOBALCONFIG (similar to SMCR)
- Single Keyword! SMCD is the only required setting to enable SMC-D
- Key difference from SMCR parameter: ISM PFIDs are not defined in TCPIP (ISM FIDs are auto discovered based on matching PNETID associated with the OSD or HiperSockets)


Dynamic Transition from TCP to SMC-D – (HiperSockets IP Network)


Dynamic (in-line) negotiation for SMC-D is initiated by presence of TCP Options

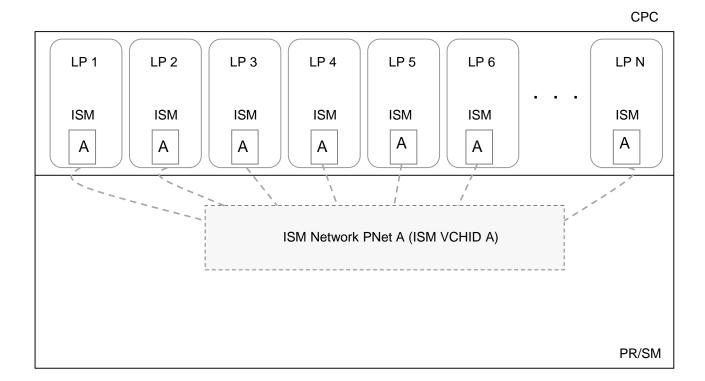
TCP connection transitions to SMC-D allowing application data to be exchanged using Direct Memory Access (LPAR to LPAR)

Dynamic Transition from TCP to SMC-D (OSA/LAN IP network)

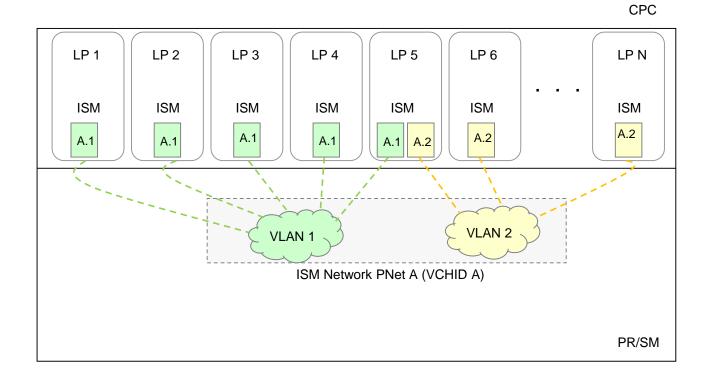

OSA/LAN IP network with SMC-D and SMC-R

Multiple IP Subnets are not Supported by SMC (SMC-R or SMC-D)!

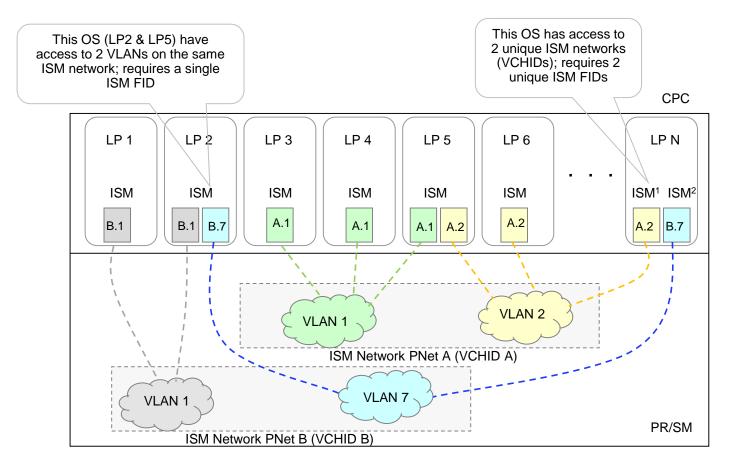
Peers must have direct connectivity over the same IP subnet to exploit SMC-R or SMC-D


© 2016 IBM Corporation

ISM VLAN Overview



ISM VCHID = Internal (ISM) Network (based on PNet ID)


Subdividing ISM VCHIDs with VLANs (Isolating Workloads)

In z/OS ISM VLAN definitions are inherited from the associated IP interface

Isolating workloads with multiple VCHIDs and VLANs

Topic 5. Verification of ISM Usage

D PCIE (PFIDs that are in use)

Display PCIE shows the ISM PFIDs that are now allocated to VTAM (ALLC):

D PCIE

IQP022I 12.14.22 DISPLAY PCIE 691				
PCIE 0010 ACTIVE				
PFID DEVICE TYPE NAME	STATUS AS	ID JOBNAME	PCHID	VFN
00000005 10GbE RoCE Express	ALLC 00	38 VTAMCS	0100	0005
0000001 10GbE RoCE Express	ALLC 00	38 VTAMCS	0184	0001
00000500 ISM	ALLC 00	38 VTAMCS	07E0	0001
00000501 ISM	ALLC 00	38 VTAMCS	07E0	0002
00000502 ISM	CNFG		07E0	0003
00000503 ISM	CNFG		07E0	0004
00000504 ISM	CNFG		07E0	0005
00000600 ISM	ALLC 00	38 VTAMCS	07E1	0001
00000601 ISM	ALLC 00	38 VTAMCS	07E1	0002
00000602 ISM	CNFG		07E1	0003
00000603 ISM	CNFG		07E1	0004
00000604 ISM	CNFG		07E1	0005

Note. If you display a specific FID additional detail is provided including the configured PNET ID value.

Displaying the Configured PNet IDs for Channel Devices

OSD CHPID:

d m=chp(16)IEE174I 11.20.44 DISPLAY M 612 CHPID 16: TYPE=11, DESC=OSA DIRECT EXPRESS, ONLINE DEVICE STATUS FOR CHANNEL PATH 16 0 1 2 3 4 5 6 8 7 АВСD 9 E F 0096 + + + + + + + + ++ + + SWITCH DEVICE NUMBER = NONE PHYSICAL CHANNEL TD = 01C0**PNETID** 1 = P1+ ONLINE @ PATH NOT VALIDATED - OFFLINE . DOES NOT EXIST * PHYSICALLY ONLINE \$ PATH NOT OPERATIONAL

IQD CHPID:

d m=chp(21)TEE174T 11.21.19 DISPLAY M 615 CHPID 21: TYPE=24, DESC=INTERNAL QUEUED DIRECT COMM, ONLINE DEVICE STATUS FOR CHANNEL PATH 21 0 1 2 3 4 6 5 78 9 A B C D E F +SWITCH DEVICE NUMBER = NONE ATTRIBUTES = MFS (24 KB)PNETID = P2@ PATH NOT VALIDATED - OFFLINE . DOES NOT EXIST + ONLINE * PHYSICALLY ONLINE \$ PATH NOT OPERATIONAL

Displaying the Configured PNet IDs for PCI Devices

RoCE PFID:

d pcie,pfid=5 IQP024I 11.22.20 DISPLAY PCIE 618 0010 ACTIVE PCIE PFID DEVICE TYPE NAME STATUS ASID JOBNAME VFN CHID 00000005 10GbE RoCE Express 0100 0005 CNFG CLIENT ASIDS: NONE PNetID 1: P1 PNetID 2: P1

ISM PFID:

d pcie,pfid=500 IQP024I 11.22.30 DISPLAY PCIE 621 PCIE 0010 ACTIVE DEVICE TYPE NAME PFID STATUS ASID JOBNAME CHID VFN 00000500 ISM 07E0 0001 CNFG CLIENT ASIDS: NONE PNetID 1: P1

Netstat DEvlinks/-d for a SMCD-enabled IQD interface

Shows the PNETID and the associated ISM interface:

D TCPIP, TCPIP2, NETSTAT, DEVL	
EZDO101I NETSTAT CS V2R3 TC	
~	INTFTYPE: IPAQIDIO INTFSTATUS: READY
	H: FD12 DATAPATHSTATUS: READY
CHPID: 21	
PNETID: P2	SMCD: YES
IPBROADCASTCAPABILITY:	NO
ARPOFFLOAD: YES	ARPOFFLOADINFO: YES
CFGMTU: NONE	ACTMTU: 16384
IPADDR: 10.15.2.21/24	
VLANID: 200	
READSTORAGE: GLOBAL (30	08K)
SECCLASS: 255	MONSYSPLEX: NO
IQDMULTIWRITE: DISABLED	
MULTICAST SPECIFIC:	
MULTICAST CAPABILITY: Y	ES
MULTICAST CAPABILITY: Y GROUP REFCN	
GROUP REFCN	T SRCFLTMD
GROUP REFCN	T SRCFLTMD
GROUP REFCN	T SRCFLTMD
GROUP REFCN 224.0.0.1 00000	T SRCFLTMD
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE	T SRCFLTMD
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS:	T SRCFLTMD 00001 EXCLUDE
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN	T SRCFLTMD 00001 EXCLUDE = 0 = 0
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS	T SRCFLTMD 00001 EXCLUDE = 0 = 0 R = 0
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO	$T \qquad SRCFLTMD$ $- \qquad$ $00001 \qquad EXCLUDE$ $= 0$ $= 0$ $R \qquad = 0$ $ED \qquad = 0$
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO INBOUND PACKETS DISCARD	$T \qquad SRCFLTMD$ $- \qquad$ $00001 \qquad EXCLUDE$ $= 0$ $= 0$ $R \qquad = 0$ $ED \qquad = 0$
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO INBOUND PACKETS DISCARD INBOUND PACKETS WITH NO	T SRCFLTMD 00001 EXCLUDE = 0 = 0 R = 0 ED = 0 PROTOCOL = 0
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO INBOUND PACKETS DISCARD INBOUND PACKETS WITH NO BYTESOUT	$T \qquad SRCFLTMD$ $- \qquad$ $00001 \qquad EXCLUDE$ $= 0$ $= 0$ $R \qquad = 0$ $ED \qquad = 0$ $PROTOCOL = 0$ $= 0$ $= 0$ $= 0$
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO INBOUND PACKETS DISCARD INBOUND PACKETS WITH NO BYTESOUT OUTBOUND PACKETS	T SRCFLTMD 00001 EXCLUDE = 0 = 0 R = 0 ED = 0 PROTOCOL = 0 = 0 = 0 OR = 0 OR = 0
GROUP REFCN 224.0.0.1 00000 SRCADDR: NONE INTERFACE STATISTICS: BYTESIN INBOUND PACKETS INBOUND PACKETS IN ERRO INBOUND PACKETS DISCARD INBOUND PACKETS WITH NO BYTESOUT OUTBOUND PACKETS IN ERR	$T \qquad SRCFLTMD$ $- \qquad$ $00001 \qquad EXCLUDE$ $= 0$ $= 0$ $ED \qquad = 0$ $PROTOCOL = 0$ $= 0$ $= 0$ $OR \qquad = 0$ $DED \qquad = 0$

1 OF 1 RECORDS DISPLAYED

END OF THE REPORT

Netstat DEvlinks/-d for a SMCD-enabled OSD interface

Shows the PNETID and the associated RNIC and ISM interfaces:

D TCPIP, TCPIP2, NETSTAT, DEVLINKS, INTFNAME=OSD1 EZD0101I NETSTAT CS V2R3 TCPIP2 700 INTFNAME: OSD1 INTFTYPE: IPAOENET INTFSTATUS: READY PORTNAME: HYDRA960 DATAPATH: 0962 DATAPATHSTATUS: READY CHPIDTYPE: OSD SMCR: YES PNETID: P1 SMCD: YES SPEED: 0000001000 IPBROADCASTCAPABILITY: NO VMACADDR: 0200014860B0 VMACORIGIN: OSA VMACROUTER: ALL ARPOFFLOAD: YES ARPOFFLOADINFO: YES CFGMTU: NONE ACTMTU: 8992 IPADDR: 10.15.1.21/24 VLANID: 100 VLANPRIORITY: DISABLED

ASSOCIATED RNIC ASSOCIATED ISM			
IPV4 LAN GROUP SUN	IMARY		
LANGROUP: 00002			
NAME	STATUS	ARPOWNER	VIPAOWNER
OSD1	ACTIVE	OSD1	YES
1 OF 1 RECORDS DIS	SPLAYED		
END OF THE REPORT			

Netstat Devlinks all PNetIDs (new)

Netstat DEvlinks/-d PNETID * shows a summary of all the active interfaces that have a PNetID configured organized by PNetID value:

D TCPIP, TCPIP2, NETSTAT, DEVLINKS, PNETID=*

EZD0101I NETSTAT CS V2R3 TCPIP2 881

PNETID: P2

INTFNAME:	IQDIOINTF6	INTFTYPE:	IPAQIDI06		
INTFNAME:	IQDIOLNK0A0F0217	INTFTYPE:	IPAQIDIO		
INTFNAME:	EZAISM01	INTFTYPE:	ISM	ASSOCIATED:	YES
PNETID: P1					
INTFNAME:	V6OSD1	INTFTYPE:	IPAQENET6		
INTFNAME:	OSD1	INTFTYPE:	IPAQENET		
INTFNAME:	EZAISM02	INTFTYPE:	ISM	ASSOCIATED:	YES
INTFNAME:	EZARIUT10003	INTFTYPE:	RNIC	ASSOCIATED:	YES
7 OF 7 RECO	RDS DISPLAYED				

END OF THE REPORT

Netstat ALL/-A for a connection using SMCD

Shows the SMCD status and a SMCD reason code if SMCD could not be used

D TCPIP, TCPIP2, NETSTAT , A EZD01011 NETSTAT CS V2R3	-	5.2.31+21	
CLIENT NAME: OSASUP13	(CLIENT ID: 0000032	
LOCAL SOCKET: 10.15.2	.211024		
FOREIGN SOCKET: 10.15	.2.3121		
BYTESIN:	000000000000000000000000000000000000000	000174	
BYTESOUT:	000000000000000000000000000000000000000	000029	
SEGMENTSIN:	000000000000000000000000000000000000000	00007	
SEGMENTSOUT:	000000000000000000000000000000000000000	00007	
STARTDATE:	08/19/2015	STARTTIME:	16:16:38
LAST TOUCHED:	16:16:38	STATE:	ESTABLSH
• • •			
RECEIVEBUFFERSIZE: 00		SENDBUFFERSIZE:	0000184320
RECEIVEDATAQUEUED:			
SENDDATAQUEUED:			
SENDSTALLED:	NO		
SMC INFORMATION:			
SMCDSTATUS:	ACTIVE		
LOCALSMCDLINKID	:4B020000	REMOTESMCDLINKID:	4B030000
LOCALSMCRCVBUF:	64K	REMOTESMCRCVBUF :	64K
ANCILLARY INPUT QUE	JE: N/A		
APPLICATION DATA:	EZAFTPOC C OSAS	SUP1 C D	

Netstat DEvlinks/-d SMC

D TCPIP,TCPIP2,NETSTAT,DEVLINKS,SMC EZD01011 NETSTAT CS V2R3 TCPIP2 833				
INTFNAME: EZAISM01 INTF	TYPE: ISM	INTFSTATUS: READY		
PFID: 0600 TRLE: IUT00600 PFI	IDSTATUS: READY			
PNETID: P2				
GIDADDR: 02008581C9172964				
INTERFACE STATISTICS:				
BYTESIN	= 6567			
INBOUND OPERATIONS	= 17			
BYTESOUT	= 41			
OUTBOUND OPERATIONS	= 4			
SMC LINKS	= 1			
TCP CONNECTIONS	= 1			
INTF RECEIVE BUFFER INUSE	= 64K			
SMCD LINK INFORMATION:				
LOCALSMCDLINKID: 4B020000 RE	EMOTESMCDLINKID:	4B030000		
VLANID: 200				
LOCALGID: 02008581C9172964	1			
REMOTEGID: 01008582C9172964	1			
SMCDLINKBYTESIN:	6567			
SMCDLINKINOPERATIONS:	17			
SMCDLINKBYTESOUT:	41			
SMCDLINKOUTOPERATIONS:	4			
TCP CONNECTIONS:	1			
LINK RECEIVE BUFFER INUSE:	64K			
INTFNAME: EZAISM02 INTF	TYPE: ISM	INTFSTATUS: READY		

Shows all ISM and RNIC interfaces and associated SMC link information

3 OF 3 RECORDS DISPLAYED END OF THE REPORT

Summary: Verification of SMC-D

- Requires (at least) two z/OS instances (LPARs or z/VM guests) executing on the same z13 CPC (GA2 or z13s)
- Both z/OS instances must:
 - -be defined to use the same ISM VCHID
 - -have their ISM FIDs Configured On to each z/OS (LPAR)
 - have direct access to the same IP network (IP subnet) via OSA or HiperSockets (i.e. hosts can communicate directly over the same IP subnet without traversing an IP Router).
 - -define an IP interface with the same VLAN ID (if VLANs are used)
- Enable both ISM and SMC-D (see backup for Netstat examples)
 - Verify both ISM and SMC-D are enabled
 - start your test application (TCP sockets) workloads
 - Verify TCP connections dynamically exploit SMC-D
- Optional: Measure / compare your performance:
 - Working with your performance analyst consider comparing your TCP/IP (OSA or HS) performance benchmarks with SMC-D (ISM) benchmarks for the sample workloads you are most interested in evaluating

Topic 6. SMC Applicability Tool (SMC-AT)

Evaluating SMC Applicability and Benefits

As customers express interest in SMC-R and RoCE Express one of the initial questions asked is:

- "What benefit will SMC-R provide in my environment?"
 - Some users are well aware of significant traffic patterns that can benefit from SMC-R
 - But others are unsure of how much of their TCP traffic (in their environment) is:
 - z/OS to z/OS and
 - how much of that traffic is well suited to SMC-R
- This same set of customer questions will also apply to SMC-D
- RYO evaluation processes can be a time consuming activity that requires significant expertise.

SMC Applicability Tool Introduction

A new tool called SMC Applicability Tool (SMCAT) has been created that will help customers determine the value of SMC-R and SMC-D in their environment with minimal effort and minimal impact

- SMCAT is integrated within the TCP/IP stack: Gathers new statistics that are used to project SMC-R and SMC-D applicability and benefits for the current system
 - Minimal system overhead, no changes in TCP/IP network flows
 - Produces reports on potential benefits of enabling SMC-R / SMC-D
 - Does not require RoCE or ISM hardware or the SMC-R/D function. No IP configuration changes are required (measures your existing TCP/IP traffic).
- Available via the service stream on existing z/OS releases:
 - z/OS V1R13 APAR PI48309 PTF UI31050
 - z/OS V2R1, V2R2 APAR PI48155, PTFs UI31054 (2.1) and UI31055 (2.2)
- For additional SMC-AT information refer to:

http://www.ibm.com/software/network/commserver/SMCR

SMC References

• SMC One Stop Shopping Web Page (Includes latest links to ALL other SMC References):

http://www.ibm.com/software/network/commserver/SMCR

IBM

This page provides a comprehensive list of reference material related to SMC-R:

- ↔ SMC-R Overview
- SMC-R Overview (with audio) (01:09:07)
- ↔ SMC-R Implementation
- SMC-R Implementation (with audio) (00:58:04)
- → Shared Memory Communications over RDMA: Performance Considerations (white paper)
- GHT SMC-R performance information
- → SMC-R FAQ
- → Diagnosing Problems with SMC-R
- → SMC-R and Security Considerations (white paper)
- Generational RFC Generational RFC
- SMC-R performance over distance (894KB)
- SMC-R VLAN configuration considerations (1.1MB)
- Linux SMC-R Overview (Note: The IBM SMC-R Linux source code is pending evaluation by the Linux open source community) (397KB)
- SMC-R Applicability Tool (SMCAT) Overview (429KB)
- SMC-R and IBM System z13 10GbE RoCE Express Virtualization (SR-IOV) Overview (682KB)

THANK YOU

© 2016 IBM Corporation

Backup

Feedback, comments and questions are welcome.

Backup Topics (additional details):

- 1. HCD Change Processor
- 2. Service Element Screenshot Examples
- 3. Sample TRLE (display) Information

Backup Topic 1.1 Configuring ISM in HCD

- HCD prereqs:
 - -HCD APAR / PTF (OA46010)
 - Before you can define FID Type ISM you must first update your processor definition (see example in next charts)
- Notes:
 - 1. The maximum value that can be configured for a PCI FID (any FID type) is x0FFF
 - The maximum number of VFs (FIDs) that can be configured for the same ISM PCHID = 255.

Change Processor (HCD Processor List)

Goto Filter Bac	kup Query	Help		
Command ===>		Processor List	Row 1	of 3 More: > Scroll ===> CSR
Select one or more	processors,	then press Ente	er. To add, use	≥ F11.
/ Proc. ID Type +		lode+ Serial-# +		
_ SCZP401 2827 _ SCZP402 2827 c SCZP501 2964	H89 L	.PAR 00B8D72827 .PAR 0194D72827 .PAR 08DA872964	Helix	

HCD option 1.3. C (Change) then press Enter

Change Processor Definition

Goto Filter Backup Query Help Change Processor Definition ————————————————————————————————————		
Specify or revise the following values.		
Processor ID SCZP501 Support level: XMP, 2964 support		
Processor type		
Serial number		
Specify SNA address only if part of an System z cluster:		
Network name USIBMSC + CPC name SCZP501 +		
Local system name SCZP501		

Press enter

Change Processor Definition

Goto Filter Backup Query Help Change Processor Definition ————————————————————————————————————	
Available Support Levels	>
Select the processor support level which provides the processor capabilities you want to use.	
Support Level XMP, 2964 support / 2964 support, ISM, RCE ************************************	(жж
A support level selection is required. Read message help to get instructions on how to access support level detail information.	

Select the new support level (slash) then Enter)

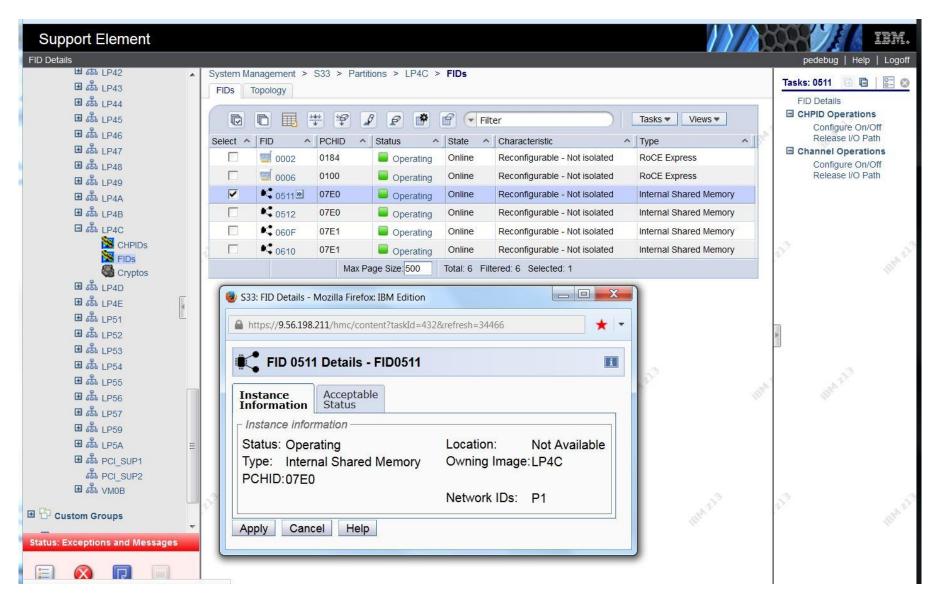
Backup Topic 2. Service Element (SE) Screenshot Examples

Note: This is not the same configuration as in the previous HCD example

Channel View

Support Element			BM
	Channels Topology	pedebug Help	Logo
Welcome System Management	C 🖪 👯 🧐 🖉 🕐 😭 🖓 Filter	Tasks ▼ Views ▼	
🖬 📕 S33	Se ^ PCHID ^ IDs	∧ Status ∧ State ∧ S ∧ L ∧ Type	*
Processors	0.FB 1.FB 2.FB 3.FB 4.FB 5.FB	Operating Online Internal Coupling Link	
Channels	0.FC 1.FC 2.FC 3.FC 4.FC 5.FC	Operating Online Internal Coupling Link	
Partitions	0.FD 1.FD 2.FD 3.FD 4.FD 5.FD	Operating Online Internal Coupling Link	
L	0.FE 1.FE 2.FE 3.FE 4.FE 5.FE	Operating Online Internal Coupling Link	
Custom Groups	0.FF 1.FF 2.FF 3.FF 4.FF 5.FF	Generating Online Internal Coupling Link	
📕 SE Management	0500 0501 0502 0503 0504 0505 0506 0507 0508 0509	050A 050 Gerating Online Shared Memory Communications-Direct	t
Service Management	0600 0601 0602 0603 0604 0605 0606 0607 0608 0609	060A 060 Operating Online Shared Memory Communications-Direct	t
	07E2 4.20	Grating Online HiperSockets	
Tasks Index	0.21 4.21	Gerating Online HiperSockets	
tatus: Exceptions and Messages	0700 0701 0702 0703 0704	Operating Online Shared Memory Communications-Direct	t
🖹 🚳 🗊 🗐 🖊	Max Page Size: 500 Total: 111	Filtered: 111 Selected: 0	
VCHID	FIDs	Channel Type	

- VCHID range 07C0 -07FF is shared with HiperSockets VCHIDs
- Up to 255 FIDs per VCHID
- FIDs are unique per System



Channel Details

Support Element		▲ https://9.56.198.211/hmc/content?taskId=434&refresh=34476
PCHID Details PCHID Details		
	> S33 > Channels	PCHID 07E1 Details - PCHID07E1
S33: PCHID Details - Mozilla Firefox: IBM Edition		Instance Acceptable
https://9.56.198.211/hmc/content?taskId=436&refresh=34	1483 🗶	Information Status
PCHID 07E3 Details - PCHID07E3		Instance information Status: Operating Location: Not Available
PCHID 07E3 Details - PCHID07E3		Type: Shared Memory
Instance Acceptable Information Status		FID: 0600 All Owning Images: LP4B
Instance information		FID: 0600 All Owning Images: LP4B 0601 VM0B
Status: Operating	Location: Not Available	0602 LP4C
Type: HiperSockets		0603
CSS.CHPID: 0.21	All Owning Images: VM0B	0604
4.21	LP4B	0605
	LP4C	0606
CHPID characteristic:Shared	Swapped with: None	0607
	Network IDs: P2	0609
Apply Advanced Facilities Channel Prob	lem Determination Cancel Help	060A
		060B
	2/10/10/2010/10/2010/2010	060C
표 값 LPOE 🔽 🚺 050E	0.FE 1.FE 2.FE 3.FE 4.FE 5.FE	060D
	0.FF 1.FF 2.FF 3.FF 4.FF 5.FF	060E 060F
	0500 0501 0502 0503 0504 0505 0506 0507 0508	060
🗷 🖧 LP13	0600 0601 0602 0603 0604 0605 0606 0607 0608	
표 kb LP14 🔲 🚺 07E2	4.20	Network IDs: P2
Status: Exceptions and Messages	0.21 4.21	Apply Advanced Facilities Cancel Help
Status: Exceptions and Messages	0700 0701 0702 0703 0704	
	Max Page Size: 500 Total	a

Network ID per VCHID, associates an ISM VCHID with an HiperSockets VCHID (or OSA CHID)

FID View

Display TRL with CONTROL=ISM will show all ISM TRLEs

D NET, TRL, CONTROL=ISM IST097I DISPLAY ACCEPTED IST350I DISPLAY TYPE = TRL 725IST924I ------IST1954I TRL MAJOR NODE = ISTTRL IST1314I TRLE = IUT00501 STATUS = ACTIV CONTROL = ISM IST1314I TRLE = IUT00500 STATUS = ACTIV CONTROL = ISM IST1314I TRLE = IUT00601 STATUS = ACTIV CONTROL = ISM IST1314I TRLE = IUT00600 STATUS = ACTIV CONTROL = ISMIST1454I 4 TRLE(S) DISPLAYED IST924I ------IST1954I TRL MAJOR NODE = HUBTRLES IST1454I 0 TRLE(S) DISPLAYED IST924I ------IST1954I TRL MAJOR NODE = VTMTRLES IST172I NO TRLES EXIST IST1454I 0 TRLE(S) DISPLAYED IST1954I TRL MAJOR NODE = LOCTRLES IST1454I 0 TRLE(S) DISPLAYED IST924I ------IST1954I TRL MAJOR NODE = NETMTRLS IST1454I 0 TRLE(S) DISPLAYED IST314I END

Display TRL for an ISM TRLE

Shows the detailed TRLE information

End of Material