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Preface

This IBM® Redbooks® publication provides information about how you can connect mobile 
devices to IBM Customer Information Control System (CICS®) Transaction Server (CICS TS), 
using existing enterprise services already hosted on CICS, or to develop new services 
supporting new lines of business. This book describes the steps to develop, configure, and 
deploy a mobile application that connects either directly to CICS TS, or to CICS via IBM 
Worklight® Server. It also describes the advantages that your organization can realize by 
using Worklight Server with CICS.

In addition, this Redbooks publication provides a broad understanding of the new CICS 
architecture that enables you to make new and existing mainframe applications available as 
web services using JavaScript Object Notation (JSON), and provides support for the 
transformation between JSON and application data. While doing so, we provide information 
about each resource definition, and its role when CICS handles or makes a request.

We also describe how to move your CICS applications, and business, into the mobile space, 
and how to prepare your CICS environment for the following scenarios:

� Taking an existing CICS application and exposing it as a JSON web service 
� Creating a new CICS application, based on a JSON schema 
� Using CICS as a JSON client

This Redbooks publication provides information about the installation and configuration steps 
for both Worklight Studio and Worklight Server. Worklight Studio is the Eclipse interface that a 
developer uses to implement a Worklight native or hybrid mobile application, and can be 
installed into an Eclipse instance. Worklight Server is where components developed for the 
server side (written in Worklight Studio), such as adapters and custom server-side 
authentication logic, run.

CICS applications and their associated data constitute some of the most valuable assets 
owned by an enterprise. Therefore, the protection of these assets is an essential part of any 
CICS mobile project. This Redbooks publication, after a review of the main mobile security 
challenges, outlines the options for securing CICS JSON web services, and reviews how 
products, such as Worklight and IBM DataPower®, can help. It then shows examples of 
security configurations in CICS and Worklight.
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Part 1 Introduction and 
architecture

This part introduces and provides information about the CICS mobile strategy, and the IBM 
Worklight Server technology.

Part 1
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Chapter 1. Introduction

Our goal with this IBM Redbooks publication is to provide all of the information necessary for 
you to connect mobile devices to IBM Customer Information Control System Transaction 
Server (CICS TS). You can do this whether you want to maximize existing enterprise services 
already hosted on CICS, or to develop new services supporting new lines of business.

This book describes the steps necessary to develop, configure, and deploy a mobile 
application that connects either directly to CICS Transaction Server, or to CICS using IBM 
Worklight Server. In addition, we will show you how you can use CICS to operate as a 
requester of JavaScript Object Notation (JSON)-based services.

With this book, you will be able to understand the key architectural decisions associated with 
making CICS services available to mobile devices, and find example code to quickly get up 
and running. Our main scenarios are based on the general insurance application (GENAPP) 
Support Pack (CB12), which you can download and try for yourself, following the examples in 
this book. Download it from the following website: 

http://www-01.ibm.com/support/docview.wss?uid=swg24031760

The following topics are covered in this chapter:

� 1.1, “Overview” on page 4
� 1.2, “Business value” on page 4
� 1.3, “Solution overview” on page 5
� 1.4, “Solution architecture” on page 7
� 1.5, “Usage scenarios” on page 8
� 1.6, “Integration of CICS and other IBM products or solutions” on page 9
� 1.7, “Supported platforms” on page 9

1
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1.1  Overview

For many years CICS Transaction Server has been capable of hosting mobile enterprise 
services. The introduction of web services capabilities in CICS Transaction Server V3 
provided the fundamental building blocks of service connectivity, enabling the adoption of 
service-oriented architecture (SOA), and underpinning today’s mobile solutions. 

CICS has continued to add new capabilities to the run time. From a mobile perspective, the 
introduction of the CICS TS Feature Pack for Mobile Extensions provides JSON and 
Representational State Transfer (REST)-conforming (RESTful) web service support, further 
enhancing the options for enterprise applications to mobile devices.

Customers around the world use CICS TS to host hundreds of millions, and in some cases 
billions, of transactions per day. As the number of mobile devices worldwide continues to 
grow, so does the variety and volume of workload that they drive. CICS has the capacity to 
scale up in support of this increasing mobile workload, providing an exceptional platform for 
hosting mobile workloads.

1.2  Business value

By extending existing enterprise applications onto a mobile platform, your business can 
capitalize on its existing investment without the need to develop an entirely new solution to 
support mobile services. In addition, a line of business can now offer service to users who 
increasingly expect to be able to interact with a company using their mobile phone.

As a platform, the primary benefits offered by CICS in support of mobile devices are noted in 
the following list:

� Provide reuse of existing enterprise services.

� Using the established web service technology within CICS, it is relatively simple to build a 
set of enterprise services that can be used by a mobile device.

� Provide simplified consumption of enterprise data using JSON-formatted data. 

A common misconception is that enterprise data in CICS can be hard to use. The CICS 
TS Feature Pack for Mobile Extensions provides support for JSON data, which is rapidly 
becoming the standard format for data interchange on mobile devices.

� CICS already operates at the heart of the enterprise. 

Hosting mobile applications within CICS brings them closer to the enterprise data that 
they are accessing, minimizing application path lengths and keeping response times 
down.

� Adopt a RESTful architectural style for service delivery.

A RESTful architectural style is one where the target resource, and the operation to be 
performed against it, are defined by a combination of a well-structured Uniform Resource 
Identifier (URI) and one of the four Hypertext Transfer Protocol (HTTP) methods (GET, 
POST, PUT, and DELETE).

� Provide capacity to manage mobile workload.

We noted earlier that customers around the world use CICS TS to host hundreds of 
millions, and in some cases billions, of transactions per day. CICS Workload Management 
provides a robust and scalable platform suitable for supporting the heaviest of mobile 
workloads.
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1.3  Solution overview

This book introduces four different approaches to building mobile services in CICS TS. In two 
of these three cases, details are provided for how to connect the mobile application, either 
directly to CICS or via IBM Worklight Server. Chapter 6, “IBM Worklight configuration” on 
page 47 describes in more detail the architectural implications of connecting the mobile 
application, either directly or indirectly, via IBM Worklight Server.

The different approaches that we describe in detail are summarized in the following list:

� The top-down approach. Figure 1-1 shows the suggested method of building new 
enterprise services for a mobile application in CICS. This approach lends itself to the 
RESTful architectural style. This approach enables you to create a set of services with a 
concise interface. For more information about the RESTful architectural style, see the 
following website:

http://www.ibm.com/developerworks/library/wa-aj-multitier/

Figure 1-1   A possible way to implement a JSON web service starting from the JSON schema

� The bottom-up approach. Figure 1-2 on page 6 shows perhaps the fastest approach for 
delivering enterprise services to mobile devices. Building on an existing SOA, the 
bottom-up approach enables you to define a JSON or SOAP interface to an existing 
Common Business Oriented Language (COBOL), C/C++, PL/I, or Java application. This 
approach maximizes the reuse of existing assets, and minimizes the creation of new 
components. 

CICS TS V5.1

Business Data

WSBIND

New JSON 
Webservice

Existing application

New RESTful
“receiver” program
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Figure 1-2 shows the bottom-up approach.

Figure 1-2   Architecture for a JSON web service to be driven by high-level language data structure

� The requester mode approach. Figure 1-3 shows how this approach enables CICS to 
participate in JSON-based interactions, and to make requests against external service 
providers that offer a JSON-based interface. Though not strictly a pure mobile scenario, 
the capabilities offered by the CICS TS Feature Pack for Mobile Extensions provide CICS 
with additional options for connecting to the wider enterprise using JSON-formatted data. 

Figure 1-3   LINKable CICS program transforms data between high-level data structures and JSON

CICS TS V5.1
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� Java API for RESTful Web Services (JAX-RS) is a programming interface that provides 
support in creating web services according to the REST architectural pattern, as shown in 
Figure 1-4. REST is an architecture style for designing networked applications without the 
need for complex mechanisms, such as Common Object Request Broker Architecture 
(CORBA) or SOAP. 

The pattern involves client/server communications where the state of an application is 
held by the client, which reduces processing required on the server. Using the IBM 
WebSphere Liberty profile provided in CICS TS V5.1, you are able to write your business 
applications using JAX-RS.

Figure 1-4   JAX-RS provides a rapid and easy development of RESTful-enabled Java applications

1.4  Solution architecture

The architecture for an enterprise mobile solution based on CICS will vary, depending on 
business requirements and the business data that the applications require. This book 
provides information about and demonstrates the following solution architectures:

� Direct to CICS
� A two-tier Worklight and CICS solution

The direct-to-CICS solution is one where the mobile devices communicate directly to CICS. In 
this architecture, other devices communicate with CICS through the existing web services 
provided by CICS. This scenario is ideal when the devices and networks involved are all 
trusted, the applications involved do not require frequent updates, and the applications do not 
run on multiple platforms. 

An alternative solution is an architecture with one or more layers between CICS and the user 
devices. Worklight is a solution that provides governance and security for your mobile 
applications, along with a powerful software development kit (SDK) for rapid development of 
your enterprise applications on most major platforms.

Business Data

CICS TS V5.1

JVM Server
Web Container

Servlet/JSP
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In this architecture, the mobile devices communicate with the Worklight Server, which 
ensures that the device has access rights to make requests to CICS. If approved, this request 
is then sent to CICS, and the CICS application is run. 

IBM Worklight also manages the versioning of applications, enabling new versions of the 
application to be created without the need for multiple versions of the back-end business 
applications, each with logic to handle the different requests. On the different platforms, 
features, such as notifications, are also handled and standardized by Worklight.

Figure 1-5 shows a typical architecture of how Worklight and CICS TS can be used in 
conjunction to extend the reach of your CICS applications to a mobile platform.

Figure 1-5   Mobile devices access services hosted on CICS TS using Worklight and CICS TS

1.5  Usage scenarios

The following scenarios show several ways in which CICS TS can be used to solve enterprise 
mobile business solutions:

� As an insurance company, you identify a requirement to enable your policy holders to view 
and make claims on their policies directly from their mobile device. To remain competitive, 
the mobile application needs to be available as soon as possible. To facilitate rapid 
development, and to make your services hosted on CICS available to the application, you 
choose the bottom-up approach.

Using your COBOL copybooks, you generate a JSON schema that enables the mobile 
application to communicate with CICS web services with a lightweight payload. CICS 
manages the transformation between JSON and the COBOL copybook structure, and 
your CICS services have been made available with ease.

� As a CICS Service provider, you have been informed of a business requirement to make 
your CICS applications available through a standardized RESTful pattern. By using the 
top-down approach, you externalize your existing and new CICS services through a 
RESTful architecture. This enables your services to be called through a unified approach 
understood throughout the business.
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� As an airline carrier, you have a requirement to access data from your partner companies 
to accurately allocate seating through your on-demand ticket purchasing system. You are 
informed that your partner company only externalizes their services through a RESTful 
pattern, with JSON as the data format of choice. 

You use the new CICS-provided LINKable program, along with the existing CICS WEB 
API, to communicate with the partner company. These tools enable you to communicate 
without the added cost of development, while maintaining a bespoke communication layer.

1.6  Integration of CICS and other IBM products or solutions

CICS enterprise mobile solutions can be deployed in a product stack with the following IBM 
products:

� Worklight is a hybrid mobile solution offering governance, and a powerful SDK to build 
applications with a server component that will drive the future mobile world.

� IBM DataPower enables you to secure, integrate, and optimize SOA capabilities that 
scale.

CICS enterprise mobile solutions also function with the following existing solutions that work 
with CICS:

� WebSphere MQ
� IBM DB2®
� IBM Integration Bus (formerly WebSphere Message Broker)

1.7  Supported platforms

CICS web service support is available from CICS TS V3 and later. For further details about 
CICS TS V3 requirements, see the following website:

http://www-01.ibm.com/software/htp/cics/tserver/sysreqs/

CICS TS Feature Pack for Mobile Extensions V1.0 is available on CICS TS V4.2 and CICS TS 
V5.1. For further details of the requirements of CICS TS Feature Pack for Mobile Extensions 
V1.0, see the following website:

http://publib.boulder.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html
/softwareReqsForProduct?deliverableId=1358442733620&osPlatform=z/OS
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Chapter 2. CICS use of mobile technologies

This chapter describes the existing and new aspects of Customer Information Control System 
Transaction Server (CICS TS) that enable you to move your CICS applications, and business, 
into the mobile space. The chapter includes the following topics:

� 2.1, “REST” on page 12
� 2.2, “JSON” on page 12
� 2.3, “Existing support in CICS for mobile” on page 12
� 2.4, “New mobile support in CICS” on page 13

2
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2.1  REST

Representational State Transfer (REST) is a defined set of architectural principles by which 
you can design web services that focus on service resources. The REST architectural pattern 
takes advantage of the technologies and protocols of the World Wide Web to describe how 
data objects can be defined and modified.

In contrast to a request-response model such as SOAP, which focuses on procedures made 
available by the system, REST is modeled around the resources in the system. Each 
resource is globally identifiable through its Uniform Resource Identifier (URI). Because REST 
does not focus on the procedures and services provided by a system, a small number of 
actions are defined based on the existing Hypertext Transfer Protocol (HTTP) methods: GET, 
POST, PUT, DELETE, HEAD. The methods are used as shown in the following list:

GET Retrieve a resource representation.
PUT Modify a resource representation.
POST Create a new resource representation.
DELETE Delete a resource representation.
HEAD Retrieve a resource’s metadata.

It is important to notice that REST does not carry any information regarding a service in the 
HTTP Body of a request.

2.2  JSON

JavaScript Object Notation (JSON) is an open standard format for data interchange. Although 
originally used in the JavaScript scripting language JSON is now language-independent, with 
many parsers available in many languages.

Compared to Extensible Markup Language (XML), JSON has many advantages. Most 
predominantly, JSON is more suited to data interchange. XML is an extremely verbose 
language: Every element in the tree has a name, and the element must be enclosed in a 
matching pair of tags. 

Alternatively, JSON expresses trees in a nested array format similar to JavaScript. This 
enables the same data to be transferred in a far smaller data package with JSON than with 
XML. This lightweight data package lends itself to better performance when parsing.

JSON supports two structures: Objects and arrays. Objects are an unordered collection of 
name-value pairs, where arrays are ordered sequences of values. JSON also supports four 
simple types: Strings, numbers, Boolean expressions, and null values. This enables JSON to 
describe any resource. JSON can be seen as both human and machine-readable. JSON is 
an easy language for humans to read, and for machines to parse. 

2.3  Existing support in CICS for mobile

CICS has been providing web services capabilities since CICS TS V3. The first capability 
introduced was SOAP web services in CICS TS V3.1. Atom support followed in CICS V4.1.
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2.3.1  Atom

The Atom Syndication Format and the Atom Publishing Protocol are two standards that 
together make the Atom standard. CICS can provide Atom feeds using data provided by 
CICS resources. Atom feeds supply web clients with a series of data items containing 
metadata for each item in the Atom Syndication Format. With CICS V4.1, your CICS 
applications can be enabled to provide live information for Web 2.0 consumption. HTTP 
requests can also be used to edit CICS resources following the Atom Publishing Protocol.

Atom enables you to access your CICS resources in a REST-conforming (RESTful) way using 
XML without a heavyweight process.

For information about Atom feeds from CICS, see the following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=%2Fcom.ibm.cics.ts.i
nternet.doc%2Ftopics%2Fdfhtl_atom_serving.html

2.3.2  SOAP web services

SOAP is a simple XML-based protocol for applications to exchange information over 
Application Layer protocols such as HTTP. SOAP can be used to create request-response 
interactions. SOAP is a lightweight protocol which is platform, operation system, and 
transport-independent. 

SOAP web services support was introduced in CICS TS V3.1

This XML-based protocol consists of the following three parts: 

� An envelope, which defines what is in the message and how to process it
� A set of encoding rules for expressing instances of application-defined data types
� A convention for representing procedure calls and responses

The most common method of exchanging SOAP messages uses HTTP. However, SOAP can 
be used with a variety of transport protocols, such as Java Message Service (JMS), Simple 
Mail Transfer Protocol (SMTP), or File Transfer Protocol (FTP).

2.4  New mobile support in CICS

CICS TS for IBM z/OS Feature Pack for Mobile Extensions V1.0 introduced new capabilities 
to CICS web services.

2.4.1  JSON with feature pack

Support has now been introduced, through the feature pack, to enable CICS to accept and 
receive HTTP web service requests using the JSON data format when calling your CICS 
applications using CICS web services. CICS can be configured so that your existing CICS 
applications can take advantage of this without any need for the application to be updated. 
This configuration can be driven from either a JSON schema, where CICS will generate your 
high-level data structure format, or from the structure to a JSON schema.
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Using this feature, CICS will process an HTTP payload in JSON data format, and convert the 
data into the high-level language structure of a target CICS application, whether that 
application is in Common Business Oriented Language (COBOL), PL/I, C, or C++. The data 
will then be passed to the CICS application in either Channels and Containers or the 
communication area (COMMAREA). 

When the application exits and control is returned, CICS will convert the output of the CICS 
application (in its high-level language structure) back to the JSON data type. This response is 
then sent back to the service requester through an HTTP payload.

The JSON to high-level language structure conversion service, and the high-level language 
structure to JSON conversion service, are also available through a LINKable program. CICS 
applications can use this LINKable program to call any external service expecting data in the 
JSON format. This enables your business applications to focus on business logic, and 
enables CICS to handle the burden of the data transformation.

When configured from a JSON schema, CICS can also be used to call your CICS 
applications in a RESTful architectural style. You are able to configure your JSON web 
services to call a number of different CICS programs based on the HTTP method used to 
make the call. The CICS programs then also receive further information, such as the query 
string that was used to make the RESTful request. This information can then be used in the 
logic of your CICS applications.

Liberty JSON/JAX-RS feature

IBM WebSphere Application Server Liberty profile (Liberty profile) is a dynamic profile that 
enables the server to provision only the features required by the applications deployed to the 
server. With CICS TS V5.1, a Liberty profile can run within a CICS Java virtual machine 
(JVM) server.

When using the Liberty profile in a CICS JVM server, you can configure the profile to enable 
the jaxrs-1.1. After enabling jaxrs-1.1, the feature provides support of the Java application 
programming interface (API) for RESTful web services (JAX-RS). JAX-RS is used for 
designing web services for the REST design pattern, using annotations to simplify the 
development and deployment of Java-based web service clients and endpoints.

Although further details of using the Liberty profile with JAX-RS enabled will not be covered in 
this book, information about the rapid implementation of an application that uses it can be 
found in the following IBM developerWorks® article:

https://www.ibm.com/developerworks/community/blogs/cicsdev/entry/writing_restful_w
eb_services_using_cics_liberty_server_part_1?lang=en
14 Implementing IBM CICS JSON Web Services for Mobile Applications

https://www.ibm.com/developerworks/community/blogs/cicsdev/entry/writing_restful_web_services_using_cics_liberty_server_part_1?lang=en


Chapter 3. CICS and IBM Worklight

In Chapter 2, “CICS use of mobile technologies” on page 11, you learned that Customer 
Information Control System (CICS) enables you to make new and existing mainframe 
applications available as web services using JavaScript Object Notation (JSON). It also 
provides support for the transformation between JSON and application data.

This chapter explains how IBM Worklight can be used in conjunction with CICS, and the 
advantages that this can have for your organization.

This chapter contains the following topics:

� 3.1, “Overview” on page 16
� 3.2, “Introduction to IBM Worklight” on page 16
� 3.3, “Using Worklight with CICS” on page 19

3
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3.1  Overview

In cases where CICS is to act as a client of a JSON service, described in 4.2, “CICS as a 
client for JSON web services” on page 25, the interaction is usually with a partner company. 
In such scenarios, secured, direct interaction between CICS and other enterprise systems is 
appropriate. The same applies when using CICS as a service provider to other enterprise 
systems (for example, using CICS to provide data for an internal reporting tool).

If you want to use CICS as a service provider to support an application running on a mobile 
device, you should consider the benefits of using an intermediary system.

The example scenarios described later in this Redbooks publication demonstrate the 
simplicity of deploying a JSON-aware web service, issuing a request, and receiving a 
response. They show that, in principle, the CICS web services infrastructure exists to support 
interaction with mobile applications.

However, beyond providing proofs of concepts (POCs), you might find the absence of a full 
mobile application platform limiting, even though the functionality introduced in this chapter 
does enable a mobile device and a CICS application to communicate in a common language.

IBM Worklight provides a comprehensive platform for mobile application development, 
deployment, and governance. In particular, Worklight Server can act as an intermediary 
between mobile devices and CICS applications. 

In the following section, an introduction to Worklight is provided, and Chapter 12, “IBM 
Worklight for CICS” on page 149, shows how this can be used as part of the example 
scenarios.

3.2  Introduction to IBM Worklight

Worklight provides an open and extensible mobile application platform. This platform enables 
organizations of all sizes to develop, run, and manage Hypertext Markup Language (HTML5), 
hybrid, and native mobile applications, as shown in Figure 3-1 on page 17.
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Figure 3-1   Flow of data transmission, and potential locations of exploitation

3.2.1  The Worklight platform

The Worklight platform consists of five main components: Worklight Studio, Worklight Server, 
Worklight device runtime components, Worklight Application Center, and Worklight Console.

Worklight Studio
Worklight Studio is an Eclipse-based integrated development environment (IDE), which can 
be used by your organization’s mobile application developers for coding rich, cross-platform 
applications with a single, shared code base. This is achieved using standards-based 
technologies, and does not require the use of code translators or proprietary interpreters.

Worklight Studio can be used to build applications for most current mobile operating 
environments, including iOS, Android, BlackBerry, Microsoft Windows Phone, and Windows 
8, as well as mobile web browsers. In addition, you can create applications for feature phones 
and embedded systems with Java Platform, Micro Edition (Java ME).

Developers can make use of third-party libraries and frameworks, such as Apache Cordova, 
Dojo Mobile, and jQuery Mobile. Furthermore, native code or JavaScript can be used to 
access mobile device application programming interfaces (APIs).

Application testing can be completed using the emulators provided with Worklight Studio. In 
addition, the ability to record, edit, and play back codeless test scripts on physical or emulated 
devices, reduces the time to value.

Worklight Studio can be installed as a new Eclipse instance, or into an existing Eclipse IDE.
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Worklight Server
The Worklight Server is mobile-optimized middleware that provides a secure gateway 
between mobile applications, enterprise systems, and cloud-based services.

Multiple security mechanisms are supported, including integration with existing authentication 
and security methods. These features support the safeguarding of the device, application, 
and network layer. 

The Worklight Server adapters add value to your mobile solution by providing server-side 
application code that connects to back-end systems and delivers data to and from mobile 
applications. Necessary server-side processing can be performed, reducing the need for 
processing on the mobile devices, or the modification of existing back-end systems and 
applications.

The Worklight Server adapters enable you to provide access to the transactional capabilities 
of CICS Transaction Server (CICS TS) for z/OS. Adapters are described further in the next 
section.

In addition, push notifications can be delivered to devices using a uniform cross-platform 
architecture, targeting users rather than devices. Services can be restricted by geolocation 
and short message service (SMS) notifications can be sent when the data network is 
unreliable.

Worklight device runtime components
Mobile applications deployed using IBM Worklight include client-side runtime APIs that 
embed server functionality in the applications. These APIs support the authentication 
between applications and Worklight Server, provide on-device encryption, and provide for the 
remote disablement of applications.

The APIs also provide a bridge between standard web technologies, such as HTML5, 
Cascading Style Sheets (CSS3), and JavaScript, with the native functions of the various 
mobile platforms.

The embedded code also assists with the push notification framework, and supports usage 
and event-based reports.

IBM Worklight Application Center
Employees within your organization might be familiar with the application stores of the various 
mobile platforms through personal use. The Worklight Application Center enables your 
company to set up an internal one-stop shop enterprise application store for the distribution of 
pre-release and production-ready applications.

Existing frameworks, such as Lightweight Directory Access Protocol (LDAP) and access 
control list (ACL), can be used to control distribution by department, job role, function, 
geographical area, or other topology. Your enterprise application store can be used to obtain 
feedback, feature requests, and enforce upgrades.

The distribution of pre-release mobile applications to development and test teams, in this way, 
accelerates the build-test-debug cycle.

Worklight Console
Worklight Server is administered through a graphical web-based interface, the Worklight 
Console. The Worklight Console supports the management of the server, adapters, and push 
services. 
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The following list notes additional features or actions possible when using the Worklight 
Console:

� Manage approved and rejected devices to control application installation.
� Control application versioning.
� Remotely disable applications by version or device type.
� Gain insight into the usage of instrumented applications.
� Produce user adoption and usage reports that can be processed by analytics platforms 

such as IBM Tealeaf®, IBM Cognos®, and IBM Coremetrics®.

3.2.2  Further reading

Use the following list of resources to obtain more information about Worklight:

� Extending Your Business to Mobile Devices with IBM Worklight, SG24-8117
� The IBM Mobile Foundation web page, 

http://www.ibm.com/software/mobile-solutions/

3.3  Using Worklight with CICS

Worklight Server can act as a gateway between many mobile devices and CICS. Taking this 
approach, you protect your CICS systems by preventing direct access from mobile devices. 
You also benefit from the many other features of the Worklight platform concerning 
application development, deployment, and management.

3.3.1  Architecture overview

Figure 3-2 shows the positioning of CICS and Worklight in a mobile scenario. 

Figure 3-2   CICS to Worklight topology
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Chapter 3. CICS and IBM Worklight 19

http://www.ibm.com/software/mobile-solutions/


Such a topology uses the Worklight Hypertext Transfer Protocol (HTTP) adapter for 
connectivity with either JSON or SOAP web services. Mobile applications communicate with 
the Worklight HTTP adapter, which sends requests to CICS on their behalf.

In addition to protecting your CICS systems from direct access, this approach has the 
following advantages:

� The adapter can call Representational State Transfer (REST)-conforming (RESTful) and 
SOAP web services provided by back-end systems. If necessary, the adapter can 
automatically convert between JSON and Extensible Markup Language (XML). 
Alternatively a developer can provide an Extensible Stylesheet Language (XSL) 
transformation, to explicitly define conversion.

� The adapter can modify the information returned from the back-end system.

� The adapter can cache frequently requested information.

� The adapter can issue requests to multiple back-end systems, then combine the retrieved 
information into one response back to the mobile application.

� Changes to the adapter are immediately available to all connected mobile devices. No 
updates to the mobile applications are required.

Chapter 6, “IBM Worklight configuration” on page 47, explains how to configure IBM 
Worklight to work with CICS. Reading that information helps in preparation for the example 
scenarios in Chapter 9, “Language structure to JSON schema scenario” on page 93 and 
Chapter 10, “JSON schema to language structure scenarios” on page 105.

Mobile applications present complicated security scenarios. Chapter 7, “Security and 
workload management” on page 69, poses questions for consideration before deploying a 
mobile application, and shows how CICS and IBM Worklight Server can be connected 
securely.
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Chapter 4. Patterns for JSON in CICS

There are a number of approaches and patterns for using JavaScript Object Notation (JSON) 
in CICS, with the capabilities of the Customer Information Control System (CICS) Transaction 
Server (CICS TS) Feature Pack for Mobile Extensions. These approaches are described in 
this chapter, and the advantages of each pattern are explained, giving examples of when they 
could be applied. This chapter covers the following topics:

� 4.1, “CICS as a JSON web service provider” on page 22
� 4.2, “CICS as a client for JSON web services” on page 25
� 4.3, “Handling JSON in other CICS applications” on page 27

4
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4.1  CICS as a JSON web service provider

When CICS acts as a provider of a JSON web service, it receives incoming requests and 
calls CICS programs to process them. There are two main approaches to developing a JSON 
web service in CICS, depending on whether you start with an existing application or with a 
JSON message. In either case, you can use the CICS JSON assistant (batch utilities called 
DFHJS2LS and DFHLS2JS) to generate the necessary artifacts. 

When you start with an existing JSON message, you can use either a Request-Response or 
Representational State Transfer (REST)-conforming (RESTful) pattern. However, if you want 
to reuse an existing application with the RESTful pattern, you must write a wrapper program. 
Figure 4-1 contrasts the two approaches, and they are explained in more detail in the 
following sections.

Figure 4-1   The two approaches for developing JSON web services

4.1.1  Starting with an existing application (bottom-up)

The bottom-up approach is used when you have an existing CICS application that you want to 
make available as a JSON web service. No changes are required to the application, and 
CICS handles the conversion between JSON and application data. The application does not 
need to have any knowledge that it is being started as a JSON web service. 

This approach normally involves a relatively small implementation cost when compared to 
other approaches, and can also be low-risk, because the application remains unchanged. 
Chapter 9, “Language structure to JSON schema scenario” on page 93 describes a scenario 
that applies the bottom-up approach.

The interface to the application is described using high-level language structures, and the 
CICS JSON assistant generates JSON schemas describing the request-and-response 
messages. Then, a client application (which might be a mobile application) can be written 
using these schemas as a basis. 

CICS transforms the incoming request to an application, and calls the application using either 
a channel and container or communication area (COMMAREA) interface. This action implies 
that the application is appropriately structured to separate business logic from presentation 
logic.
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The described approach results in a web service interface that is closely coupled to the 
underlying application. All of the fields in the language structure will be present in the JSON 
messages (unless changes are made to the language structures specifically for service 
enablement), although they might not be required for all operations supported by the 
application. 

These superfluous fields might result in larger-than-necessary payloads, and data formats 
that are not convenient for the client to provide. The bottom-up approach inherently creates a 
request-response style, activity-based interaction rather than a RESTful one. 

4.1.2  Starting with an existing JSON interface (top-down)

The top-down approach is used when you have an existing JSON web service interface that 
you want to implement in CICS. You might be developing a new application, or you might have 
an existing application you want to adapt to a new interface. The interface might have been 
mandated by a partner company, an industry standard, or an existing client application. 

This approach will always involve some development effort, and will require some part of the 
application to be aware of the JSON web service interface to a degree. Chapter 10, “JSON 
schema to language structure scenarios” on page 105 describes a scenario that applies the 
top-down approach.

The interface to the service is described using JSON schemas. As JSON web services are 
often documented in a less formal way, you might have to create a JSON schema. Then use 
the CICS JSON assistant to generate language structures. 

If you are writing a new application, you can develop it based on these language structures. If 
you want to reuse an existing application, you can write a wrapper program based on the 
language structures (which program adapts data into a format acceptable to the existing 
application). At run time, CICS converts between JSON and application data described by the 
generated language structures.

CICS implements two patterns for JSON web services developed using this approach. You 
can choose to adopt either the Request-Response or RESTful patterns for your web service, 
depending on the interface to which you need to conform, or your business requirements.

Request-Response
The Request-Response pattern enables a remote procedure call-style interaction to be 
implemented, similar to that of SOAP web services. Services are activity-oriented, and 
typically provide one or more well-defined functions. The function to be performed, and its 
parameters, are normally identified as part of the payload. 

Some application state might be maintained by the service. Every web service invocation 
involves a request message and a response message, and these might differ. Only the 
Hypertext Transfer Protocol (HTTP) POST method is supported by CICS when using the 
Request-Response pattern. 

This pattern might be the closest match to the style of interface supported by a traditional 
CICS application, and therefore might require less development effort. It works well for 
applications where the emphasis is on the functions performed, rather than the resources 
they operate on. This pattern also works well for applications where the request and response 
messages differ. 

For example, the Request-Response pattern might be a good fit for a banking application. In 
this case, the emphasis is on the actions being performed, such as deposits and withdrawals. 
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It wouldn’t make sense to treat a withdrawal as a resource that is created and updated. 
Instead, the application would consist of services such as getAccountBalance and 
transferFunds, and the parameters (such as account numbers and amounts) would be 
carried in the request body. 

RESTful
The RESTful pattern provided by CICS implements a pure form of the REST architectural 
style (described in 2.1, “REST” on page 12). A RESTful JSON web service operates on a 
single application-specific resource, which is normally identified by the Uniform Resource 
Identifier (URI). A single message format describes this resource, and is used for either the 
HTTP request or response, depending on the function. The function performed on the 
resource is determined by the HTTP method. 

A RESTful web service provider program (which might be a wrapper program) must perform 
the following tasks:

� Identify the resource from the URI.
A RESTful web service request relates to a specific resource that is normally identified by 
the URI. Typically, a URIMAP with a wildcard will be used so that CICS calls the web service 
for any instance of a given resource. The application must extract the resource identifier 
from the URI. CICS provides several containers with fragments of the URI to help with the 
identification.

� Check the HTTP method to determine what function to perform.
CICS puts the HTTP method in a container, which the application must read and perform 
the corresponding function. The function is application-dependent, and might involve 
linking to other business logic. A service does not need to support each method, and you 
can specify which methods your service accepts when using the JSON assistants. CICS 
validates that the method in the request is supported by the service before calling the 
program.

� Return an appropriate response.
If the method requires a response, the application can return data that CICS will transform 
to JSON. Otherwise, the application can set the HTTP status to indicate success or error. 
You can also choose to send a custom HTTP response body directly.

For more information about these tasks, see “Creating a RESTful web service provider 
application” in the CICS TS Feature Pack for Mobile Extensions Information Center. For CICS 
TS 5.1, see the following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensio
ns.doc/tasks/restws_create_provider.html

Figure 4-2 on page 25 shows how a wrapper program can be used to perform these tasks, 
making existing business logic available as a RESTful JSON web service.
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Figure 4-2   Using a wrapper program to make an existing application available as a RESTful JSON web service

Adopting the RESTful pattern requires at least some degree of application development to 
extract the relevant information from the request and convert it to a form usable by the 
business logic. For an application to be truly RESTful, it should be designed using the pattern 
from the ground up. 

However, some benefits could be gained from adopting a RESTful pattern for the interface, 
even if the application itself does not fully implement REST. RESTful web services are most 
suited to applications where the focus is on the resources, and the functions are a good 
match with the set of HTTP methods.

For example, the RESTful pattern would be a good fit for an application that provides an 
online recipe book. It might have resources representing recipes, ingredients, and cooking 
techniques. 

You would implement a JSON web service in CICS for each of these resources. Information 
about these resources might be retrieved individually (a recipe for sponge cake) or as 
collections (all of the ingredients for rice pudding). New recipes can be added, existing ones 
modified, and redundant ones deleted. However, the emphasis is on the resources and not 
the operations.

4.2  CICS as a client for JSON web services

In addition to making applications available as JSON web services, CICS can operate as a 
client of other JSON web services. This capability can be used to integrate the functionality 
provided by other JSON web services into the business logic of a CICS application.
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4.2.1  Integrating other JSON web services into your CICS application

When designing a CICS application, you might want to use functionality provided by another 
JSON web service. This service could be hosted in CICS, or could be hosted on another 
platform. 

For example, when processing a credit card application, you might want to obtain a credit 
score from a partner company. The partner company might make this functionality available 
as a JSON web service. The CICS TS Feature Pack for Mobile Extensions V1.0 provides the 
capability to convert between application data and JSON when starting such a service. This 
enables you to incorporate the credit scoring function into the business logic of your 
application. 

Another possible scenario involves a CICS application acting as an aggregator of information 
from multiple services. For example, an insurance broker might implement an application in 
CICS to find the most competitive quote for a customer. The application would aggregate 
quotes from many insurance providers and compare them. Some insurance providers might 
also make their quoting applications available as JSON web services.

4.2.2  How CICS supports acting as a client for JSON web services

Writing a CICS application that acts as a client of JSON web service involves using a linkable 
interface to transform between application data, JSON, and the CICS WEB API commands to 
communicate with the service. If you are already familiar with how CICS supports acting as a 
client for SOAP web services, you should be aware that this approach is somewhat different. 

When writing a client for a JSON web service, both the INVOKE SERVICE API command and 
the pipeline are not used. The approach used for transforming between JSON and application 
data, in this case, is somewhat similar to the TRANSFORM application programming interface 
(API) used for Extensible Markup Language (XML).

Developing an application that acts as a client of a JSON web service begins by defining the 
interface to the service. In most cases, the interface will already exist, defined by the party 
providing the service. CICS requires a JSON schema describing the interface to the service, 
so if one does not already exist you will need to create it. 

Alternatively, if the service does not yet exist, you can start with a language structure to define 
the interface to the application. After you have obtained either a JSON schema or a language 
structure, run the CICS JSON assistants. This creates either a language structure or a JSON 
schema, and a CICS bundle that contains the mapping that will be used at run time to 
transform between application data and JSON.

You can then write a CICS application that uses the CICS WEB API commands to connect to 
the JSON web service. Depending on the interface to the service, you might need to send a 
JSON request, or the request might be encoded in the URI of the service. If you need to send 
JSON, you can use the linkable interface to transform your application data to JSON. Then, 
read the response from the remote service and, if necessary, use the linkable interface to 
transform the response to application data.

The linkable interface used to transform between application data and JSON consists of a 
transformer program provided by CICS and a designed set of containers that must be 
populated by your application. You use an EXEC CICS LINK PROGRAM command to call the 
transformer, and data is returned in containers.

For an example of how to write a client for a JSON web service, see Chapter 11, “Developing 
a simple JSON web service client application” on page 127.
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4.3  Handling JSON in other CICS applications

Using JSON in CICS applications is not limited to web services. The linkable interface for 
transforming between JSON and application data can process JSON from any source, and 
for any purpose. This opens a wide range of possible uses of JSON in your CICS 
applications, whether you are reusing existing assets or creating new ones. The following list 
notes some examples of other uses for JSON:

� Sending and receiving JSON over transport protocols other than HTTP, such as 
WebSphere MQ or raw sockets.

� Interacting with a JSON data store.

� Interoperating with applications written in server-side Javascript, where JSON is the data 
interchange format of choice.

� Implementing complex web service interactions that cannot be implemented using CICS 
JSON web service support. These might include services that support several message 
types, or where you want to mix RESTful and Request-Response patterns.

For more information about using the linkable interface to transform JSON, see 11.1.3, “The 
linkable interface for transforming JSON” on page 129 and the “Transforming application data 
and JSON using the linkable interface” topic in the CICS TS Feature Pack for Mobile 
Extensions Information Center. For CICS TS 5.1, see the following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensio
ns.doc/tasks/transforming_json_linkable_interface.html
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Part 2 Setup and 
configuration

This part provides information about the setup and configuration of Customer Information 
Control System (CICS) for the example scenarios, IBM Worklight Server, Security, workload 
management, and problem determination.

Part 2
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Chapter 5. Configuring CICS for the 
example scenarios

This chapter describes how to prepare your Customer Information Control System (CICS) 
environment for the scenarios presented in Part 3, “Application development and scenarios” 
on page 91. The chapter further provides information about each resource definition and its 
role when CICS handles or makes a request.

The scenarios are described in the following list:

� Taking an existing CICS application and making it available as a JavaScript Object 
Notation (JSON) web service, as introduced in 4.1.1, “Starting with an existing application 
(bottom-up)” on page 22. This scenario can be found in Chapter 9, “Language structure to 
JSON schema scenario” on page 93.

� Creating a new CICS application based upon a JSON schema, introduced in 4.1.2, 
“Starting with an existing JSON interface (top-down)” on page 23. This scenario is 
described in Chapter 10, “JSON schema to language structure scenarios” on page 105, 
where CICS acts as a service provider. 

� Using CICS as a JSON client, as explained in 4.2, “CICS as a client for JSON web 
services” on page 25. This scenario is found in Chapter 11, “Developing a simple JSON 
web service client application” on page 127. 

As described in Chapter 2, “CICS use of mobile technologies” on page 11, the JSON web 
services functionality of CICS is built upon the established web services infrastructure. The 
material in this chapter will be familiar to those with experience using SOAP web services.

This chapter contains the following topics:

� 5.1, “Comparison with SOAP web services” on page 32
� 5.2, “CICS as a service provider” on page 32
� 5.3, “CICS as a JSON client” on page 46

5
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5.1  Comparison with SOAP web services

To provide support for web services requests using JSON, and the conversion between JSON 
and application data, internal changes were made to the CICS web services pipeline. The 
externals, and therefore the CICS resources created in this chapter, are the same as are 
required for SOAP web services.

At the core of the JSON support in CICS are the JSON assistants. Most relevant to 
application developers, the assistants consist of job control language (JCL)-based tools used 
for preparing applications for use as JSON web services. The DFHLS2JS JCL procedure is 
provided for converting a high-level language structure into a JSON schema. In Chapter 9, 
“Language structure to JSON schema scenario” on page 93, you see how this can be used to 
make an existing CICS application available through a web service. 

Conversely, the DFHJS2LS JCL procedure also provides for converting a JSON schema into a 
high-level language structure, suitable for use with a new CICS application or 
Representational State Transfer (REST)-conforming (RESTful) interface. This utility is 
demonstrated in Chapter 10, “JSON schema to language structure scenarios” on page 105.

The JSON assistants are equivalent to the web service assistants used for conversion 
between high-level languages and Web Services Description Language (WSDL). The 
examples in this IBM Redbooks publication convert JSON schema to and from Common 
Business Oriented Language (COBOL). In addition to COBOL, the following languages can 
be converted to and from JSON schemas using the JSON assistants:

� C
� C++
� PL/I

5.2  CICS as a service provider

This section explains the resources used by CICS to process a web services request. This is 
followed by the steps required to configure CICS, in preparation for the deployment of the 
services presented in Chapter 9, “Language structure to JSON schema scenario” on 
page 93, and Chapter 10, “JSON schema to language structure scenarios” on page 105.

5.2.1  How CICS processes a request

Figure 5-1 on page 33 depicts how CICS processes a web services request with JSON data.
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Figure 5-1   Architecture of JSON supports in CICS

The following procedure shows how the JSON data is used by CICS to process the web 
services request: 

1. A request is made by the Hypertext Transfer Protocol (HTTP) protocol on a port opened by 
an installed Transmission Control Protocol/Internet Protocol (TCP/IP) TCPIPSERVICE 
definition. The port is monitored by the CICS sockets listener (CSOL) transaction. CSOL 
attaches the transaction specified in the TRANSACTION attribute of the TCPIPSERVICE 
definition. Usually, this is the CICS web attach transaction CWXN.

2. CWXN matches the incoming request with a Uniform Resource Identifier (URI) URIMAP by 
scanning all URIMAP definitions for one that has its USAGE attribute set to PIPELINE and its 
PATH attribute set to the URI found in the request. The URIMAP definition indicates the 
PIPELINE and WEBSERVICE definitions to be used, and the TRANSACTION that should be 
attached to process the PIPELINE. The transaction is usually CPIH.

3. As with SOAP web services, the WEBSERVICE definition points to a WSBIND file. This will be 
used later for data transformation between JSON and application data. The WSBIND file will 
have been created using the JSON Assistant.

4. Pipeline processing then takes place, passing the request through any defined handlers.

5. The JSON terminal handler and CICS application handler are called. The JSON data is 
converted into application data, using the language structure description in the WSBIND file. 
The application handler links to the application program. Note, the application program 
might be run in a different CICS region.

6. Finally, the PROGRAM output is captured and sent back to the requester as an HTTP 
response with JSON data.
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5.2.2  How to configure CICS as a service provider

To prepare the CICS region for the scenarios described in Chapter 9, “Language structure to 
JSON schema scenario” on page 93, and Chapter 10, “JSON schema to language structure 
scenarios” on page 105, the following tasks must be completed:

1. Define and install a TCPIPSERVICE.
2. Install a JVMSERVER, configured for use by a PIPELINE.
3. Define and install a PIPELINE.

Later chapters show how to create the URIMAP and WEBSERVICE resources automatically using 
a CICS PIPELINE scan.

Alternatively, you can create these resources yourself. This gives more control, but requires 
additional resource management.

This book shows how to complete these tasks, which would typically be undertaken by a 
CICS system programmer, using IBM CICS Explorer 5.1.1.

Defining and installing a TCPIPSERVICE
Begin by defining a TCPIPSERVICE in the CICS region. To do this, first open the TCP/IP Service 
Definitions view from the Definitions menu:

1. Right-click an unpopulated row and click New, as shown in Figure 5-2.

Figure 5-2   Right-click an unpopulated row for the option to create a new resource definition

Note: The pipeline processing described previously runs within a Java virtual machine 
(JVM) server environment. If configured appropriately, some of the processing that 
takes place within the pipeline is eligible for offloading onto zSeries Application Assist 
Processors (zAAPs).

Important: You must specify TCPIP=YES in your CICS region’s system initialization 
parameters to activate CICS TCP/IP services.

Note: For instructions on how to connect CICS Explorer to a CICS region or IBM 
CICSPlex® SM system, see the “Configuring the CICS Explorer” topic in the CICS 
Transaction Server (CICS TS) Information Center.
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2. The New TCP/IP Service Definition window opens. Provide the following parameters:

a. In the Resource/CSD Group field, enter the group in which you want to place the new 
TCPIPSERVICE.

b. In the Name field, enter an appropriate name.

c. In the Description field, describe the TCPIPSERVICE that you are creating.

d. Finally, enter the port that you want CICS to accept incoming requests through in the 
Port Number field.

Figure 5-3 shows the New TCP/IP Service Definition window and entry fields.

Figure 5-3   Entering the attributes of a new TCPIPSERVICE
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3. Click Finish. Click Open editor and a new editor will open, as shown in Figure 5-4. This 
view shows that the newly created TCPIPSERVICE will use the HTTP protocol. 

Figure 5-4   Viewing the attributes of a TCPIPSERVICE

The Backlog attribute specifies the maximum number of inbound TCP/IP connection 
requests that can be queued in TCP/IP for CICS processing. If this number is reached, 
TCP/IP will reject additional connection requests. For the purposes of this chapter’s 
example scenarios, this attribute is set to 10.

The Maxdatalen attribute specifies the maximum data length that can be received by 
CICS via HTTP. The examples in this scenario are left unchanged, at 32,000. However, 
before deploying a web service in a production environment, consider the amount of data 
that you expect that service to receive, and set an appropriate limit. This helps to guard 
against denial of service attacks using large amounts of data.

The attributes also indicate that no security is currently configured. Although this would be 
undesirable for a production environment, for the example scenarios in a testing 
environment this is acceptable. See Chapter 7, “Security and workload management” on 
page 69 for information about how you can secure TCPIPSERVICEs.
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The new TCPIPSERVICE is also displayed in the TCP/IP Service Definitions view.

4. Right-click the new TCPIPSERVICE and click Install, as shown in Figure 5-5.

Figure 5-5   Preparing to install a TCPIPSERVICE

A Perform Operation window will open, as shown in Figure 5-6.

Figure 5-6   Performing an install of a TCPIPSERVICE

Note: For more information about TCPIPSERVICE attributes see the “TCPIPSERVICE 
resources” topic in the CICS TS Information Center.
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5. Select the CICS system where you want to install the TCPIPSERVICE, and then click OK. 
The window will close if the operation was performed successfully. If an error occurred, 
perform the necessary steps to correct the problem and repeat the operation.

6. Open the TCP/IP Services Operations view by clicking Operations  TCP/IP Services.

From this view, illustrated in Figure 5-7, you can see that the TCPIPSERVICE, created for the 
GENAPP scenarios, was installed and has a Service Status of OPEN.

Figure 5-7   View of installed TCP/IP Services

If you were to open a web browser and send an HTTP request to the address of your CICS 
system using the port number specified in your TCPIPSERVICE, you will receive an HTTP 404 
response. This indicates that CICS cannot locate a resource corresponding to the URI 
specified.

Installing a JVMSERVER, configured for use by a PIPELINE
To install a JVMSERVER, enabled for use by a PIPELINE, requires a JVM profile that has the 
JAVA_PIPELINE=YES option specified.

An example JVMSERVER resource definition, called DFH$AXIS, is supplied with CICS, in group 
DFH$AXIS. The resource DFH$AXIS uses the supplied JVM profile, DFHJVMAX, which specifies 
JAVA_PIPELINE=YES. 

DFHJVMAX can be found in the /JVMProfiles directory of your CICS installation.

Perform the following instructions to install a JVMSERVER resource:

1. Copy DFHJVMAX to a different directory, which should be set as the JVMPROFILEDIR system 
initialization parameter of your CICS system. You should also copy DFH$AXIS to a new 
group.

2. To create a copy of DFH$AXIS, click Definitions  JVM Server Definitions. The list will be 
populated by the JVMSERVER resource definitions within your CICS Explorer context. If 
necessary, click the refresh button in the upper right part of the view.

3. Right-click DFH$AXIS and click New from, as shown in Figure 5-8 on page 39.

Important: Using definitions and files supplied with CICS in their default locations is not 
suggested, as they could be updated by corrective maintenance.
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Figure 5-8   Creating a new JVMSERVER resource from an existing definition

4. When the new JVM Server Definition window opens, as shown in Figure 5-9, modify the 
following attributes:

a. Change the Resource/CSD Group to a different location.
b. Using the Name field, change the name of the JVMSERVER.
c. Alter the Description to a more appropriate value.

Figure 5-9   Defining a JVM server
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5. Click Finish. Your new JVMSERVER definition will be listed in the JVM Server Definitions 
view. Right-click the new definition and click Install, as shown in Figure 5-10.

Figure 5-10   About to install a JVM server

6. When the Perform Operation window opens, select your CICS system and click OK. When 
the operation is complete, you can view your installed JVM servers by clicking 
Operations  Java  JVM Servers. The JVM server should have an Enable Status of 
ENABLED, as shown in Figure 5-11.

Figure 5-11   The view of installed JVM servers

You can use one JVM server as the runtime environment for multiple Java pipelines. Note that 
each task is attached to a JVM thread using a T8 task control block (TCB), with the total 
number of threads limited by the JVMSERVER resource’s THREADLIMIT attribute. In addition, 
there is a limit on the number of T8 TCBs that can exist in a CICS region across all JVM 
servers. For further information, see the topic about managing the thread limit of JVM servers, 
found in the CICS TS Information Center appropriate to your release version of CICS TS.

You can read about planning for large workloads in 7.4, “Workload management overview” on 
page 80.

Defining and installing a PIPELINE
To complete preparation for the example scenarios described in Chapter 9, “Language 
structure to JSON schema scenario” on page 93, and Chapter 10, “JSON schema to 
language structure scenarios” on page 105, a PIPELINE is required.
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Before creating a PIPELINE resource definition, first prepare z/OS File System (zFS) 
directories for the following items:

� The pipeline configuration file. This is an XML file that describes handler programs that 
CICS starts when it processes the pipeline. For JSON web services, this will be the CICS 
JSON terminal handler and application handler, in addition to the JVM server to be used 
for pipeline processing.

Note that the same directory can be used for many pipeline configuration files, and a 
pipeline configuration file can be used by many pipelines.

� The WSDIR. This directory, also know as the pickup directory, can be used for installing 
WSBIND files. You will learn more about this in Chapter 9, “Language structure to JSON 
schema scenario” on page 93, and Chapter 10, “JSON schema to language structure 
scenarios” on page 105. You should have one WSDIR per pipeline.

� The shelf directory. This is a directory used by CICS to store WSBIND files. It is used for 
recovery across a warm restart of CICS.

The CICS Transaction Server for z/OS Feature Pack for Mobile Extensions V1.0 provides a 
sample pipeline configuration file for JSON pipelines in the 
/usr/lpp/cicsts/mobilefp/samples/pipelines directory, where /usr/lpp/cicsts/mobilefp 
is the feature pack installation directory. 

The scenario uses this configuration file, named jsonjavaprovider.xml, for the examples. As 
with the JVM profile, copy the configuration file to a different directory. Further, update the 
JVM server name specified in the configuration file to match that of the JVMSERVER defined 
previously.

By default, CICS will use /var/cicsts as the shelf directory.

The next step for creating your PIPELINE is to create a suitable pickup directory. You can 
create directories using the z/OS perspective of CICS Explorer, using Secure Shell (SSH), or 
the Udlist utility of IBM Interactive System Productivity Facility (ISPF).

Optionally, create a shelf directory if you do not want to use the default.

Perform the following steps to define and install a PIPELINE resource:

1. After your directories have been prepared, in CICS Explorer, click Definitions  Pipeline 
Definitions.

Note: A single PIPELINE resource can be used for multiple JSON or multiple SOAP web 
services. However, you cannot use a PIPELINE for both types of web service.

Important: Ensure that CICS has permission to at least read the pickup directory and the 
directory used to store pipeline configuration files. CICS must also have permission to 
read, write, and create sub-directories within the shelf directory.
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2. Right-click New, as shown in Figure 5-12.

Figure 5-12   How to create a new PIPELINE using CICS Explorer

3. A New Pipeline Definition window will open. Complete the fields as noted in the following 
sub-steps:

a. In the Resource/CSD Group field, enter the resource group in your CICS system 
definition data set (CSD) in which you want the new PIPELINE placed.

b. In the Name field, enter an appropriate name.

c. In the Description field, describe the PIPELINE you are creating.

d. Next, in the Configuration File field enter the path to the pipeline configuration file, 
within z/OS UNIX. 

See Figure 5-13 on page 43 for an illustration of the New Pipeline Definition window.
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Figure 5-13   Defining a PIPELINE resource

4. Click Finish.
Chapter 5. Configuring CICS for the example scenarios 43



5. Select Open editor. The Pipeline Definition view will open to the right of CICS Explorer, as 
shown in Figure 5-14. Enter the location of your pickup directory in the Name of a 
directory (shelf) for WSBind files field in the hierarchical file system (HFS) Details area. 

Figure 5-14   Editing a pipeline definition

6. Click File  Save.

7. Next, right-click the newly created PIPELINE in the Pipeline Definitions view and click 
Install, as shown in Figure 5-15 on page 45.
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Figure 5-15   Installing a pipeline

8. When the Perform Operation window opens, select your CICS system and click OK. 

If the operation failed, diagnose and correct the problem, then repeat the install operation.

9. Open the Pipelines view by clicking Operations  Pipelines. You will see your installed 
PIPELINE, as shown in Figure 5-16.

Figure 5-16   View of installed pipelines

As part of the installation of the PIPELINE, CICS will have created WEBSERVICE resources 
for each of the WSBIND files in the pickup directory. In this scenario, the directory was 
empty, so no web services were created. This is indicated by the messages issued to the 
CICS message log, as shown in Example 5-1.

Example 5-1   The messages issued when you install a PIPELINE resource

DFHRD0124 I 21/06/2013 15:34:49 IYCKZCCE  CICSUSER CWWU INSTALL 
PIPELINE(GENAMOBL) 
DFHPI0703 I 21/06/2013 15:34:50 IYCKZCCE CICSUSER PIPELINE GENAMOBL is about to 
scan the WSDIR directory. 
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DFHPI0704 I 21/06/2013 15:34:50 IYCKZCCE CICSUSER PIPELINE GENAMOBL Implicit 
scan has completed. Number of wsbind files found in the WSDIR directory: 
000000. Number of successful WEBSERVICE creates: 000000. Number of failed 
WEBSERVICE creates: 000000. 

10.After the WSBIND files are put into the pickup directory, perform a PIPELINE scan. This will 
perform an explicit scan of the directory and create WEBSERVICE and URIMAP resources for 
the WSBIND files.

Your CICS system is now ready for the scenarios described in Chapter 9, “Language 
structure to JSON schema scenario” on page 93, and Chapter 10, “JSON schema to 
language structure scenarios” on page 105.

5.3  CICS as a JSON client

In Chapter 11, “Developing a simple JSON web service client application” on page 127, we 
present a scenario where CICS acts as a client for a JSON web service. The example 
application performs a transformation between JSON and application data at run time. This 
CICS functionality is performed within a JVM server environment.

Therefore, if you want to follow this scenario, ensure you install a JVMSERVER with the 
JAVA_PIPELINE=YES option specified. The JVM server installed in the previous section is 
sufficient.

Later, more CICS resources will be installed using CICS Explorer as part of the scenario.
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Chapter 6. IBM Worklight configuration

This chapter provides information about the installation and configuration steps for both the 
IBM Worklight Studio and IBM Worklight Server. Worklight Studio is the Eclipse interface that 
a developer uses to implement a Worklight native or hybrid mobile application, and can be 
installed into an Eclipse instance. Worklight Server is where components developed for the 
server side (written in Worklight Studio), such as adapters and custom server-side 
authentication logic, run.

The following topics are covered in this chapter:

� “Worklight Studio” on page 48
� “Worklight Server” on page 52

6
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6.1  Worklight Studio

IBM offers a Worklight Developer Edition enabling a programmer to get started trying out 
Worklight quickly and without initial cost. To download it, go to the following website:

http://www.ibm.com/developerworks/mobile/worklight/index.html 

By signing in with your IBM ID (or signing up for one at no cost), you will be given an update 
site Uniform Resource Locator (URL) for an existing Eclipse installation. You must use Eclipse 
version 4.2.2 or later for Worklight Version 6.

If you do not already have an existing Eclipse installation, download Eclipse Juno 4.2.2 (or 
either Eclipse integrated development environment (IDE) for Java Platform, Enterprise Edition 
(Java EE) Developers, or Eclipse Classic) at the following website:

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/junosr2 

After installing the Eclipse option, use the installation steps for IBM Worklight available at the 
following website:

http://www.ibm.com/developerworks/mobile/worklight/download/install.html

After IBM Worklight is installed, perform the following steps to start a project: 

1. Right-click in the Project Explorer and make a new Worklight Project. Click Select a 
wizard, then click Worklight Project. See Figure 6-1.

Figure 6-1   Create a new project
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2. Give the application a name (for example, CICS Test App). Select Hybrid Application, as 
shown in Figure 6-2.

Figure 6-2   Worklight Project
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3. You might add jQuery Mobile, Dojo Toolkit, or Sencha Touch for the user interface (UI) 
component of the application. For this example, Dojo Toolkit is selected, as shown in 
Figure 6-3.

Figure 6-3   Hybrid Application
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4. You will now notice the CICS Test App with the CICS_Test application in the newly created 
Worklight Project. See Figure 6-4.

Figure 6-4   Run CICS Test App from the Project Explorer
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5. You can add mobile environments to the project. You need to add an environment to the 
application for each platform that you want the application to run under. Add a new 
environment by right-clicking the apps folder and select New  Worklight Environment. 
See Figure 6-5.

Figure 6-5   Run Worklight Environment from the Project Explorer

6. You will need to have the appropriate software development kits (SDKs) for each platform 
set up on your machine to build for the different environments.

Notice a folder within the app for each environment. These folders are used for components 
that are specific to the environment that you are programming for. For example, you might 
want to have a special Cascading Style Sheets (CSS) layout for the iPad that is different than 
the iPhone.

6.2  Worklight Server 

The Worklight Server is a dedicated server component for running Worklight adapters and 
custom authentication code written in Worklight Studio. The Worklight Console and 
application center all run from the Worklight Server, which acts as a management point for the 
Worklight installations. 
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Mobile clients are configured to connect to the Worklight Server through heartbeats. All data 
communication is managed to ensure that client updates are pushed to mobiles, services, 
and back-end applications running in environments such as Customer Information Control 
System (CICS).

The server is part of the Consumer or Enterprise edition when buying Worklight. Every 
Worklight Studio installation contains a Worklight Server for development and testing. In 
Worklight 6.0 and later, the server runs in Liberty, and in older versions of Worklight it runs in 
Jetty within Eclipse. 

When installing Worklight Server you will need to make these decisions:

� Which application server you will use:

– WebSphere Application Server Liberty Core
– WebSphere Application Server
– Apache Tomcat

This example uses the Liberty Core.

� Which database management system you will use:
– IBM DB2
– MySQL
– Oracle
– Apache Derby in embedded mode (included in the installation image)

This example uses IBM DB2.

To install the Worklight Server you will need to open IBM Installation Manager and add a new 
repository pointing to the location of the compressed file containing the Worklight Server 
installation files. If you are installing IBM DB2 for Worklight with the installation, you will also 
need to install this in a similar manner. IBM Installation Manager can be downloaded from the 
following website:

http://www-01.ibm.com/support/docview.wss?uid=swg24033586
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To install the Worklight Server, use the following steps:

1. From the IBM Installation Manager, select the installation packages as shown in 
Figure 6-6. For this example, use IBM Worklight Server.

Figure 6-6   Select package to install
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2. Accept the licensing agreements, as shown in Figure 6-7. For this example, use License 
Agreement Mobile Foundation Consumer Edition. Then, click Next.

Figure 6-7   License agreements
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3. Then choose the package group and installation location, as shown in Figure 6-8.

Figure 6-8   Create a new package group
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4. Select the features to be installed and click Next. See Figure 6-9.

Figure 6-9   Select the features to install
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5. Choose whether you want the application center to be installed. This acts as a private 
application center (such as the Android Google Play Store or iOS App Store) for your 
Worklight applications to be shared and installed on your enterprise’s mobiles. See 
Figure 6-10.

Figure 6-10   Choose configuration
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6. Choose the database type. In this case, DB2 is selected. See Figure 6-11.

Figure 6-11   Choose your database type
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7. Complete the database server properties. Choose the db2jcc4.jar file for DB2. In this 
case, the DB2 instance is running on the same host as the Worklight Server. See 
Figure 6-12.

Figure 6-12   Install Packages
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8. Enter the database connection settings, including user and password. In this case, the 
database is created manually using the DB2 command-line interface (CLI). See 
Figure 6-12 on page 60 and Figure 6-13.

Figure 6-13   Database server additional properties
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9. Installation Manager creates the database or confirms that it already exists. See 
Figure 6-14.

Figure 6-14   Create database
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10.Select the Application Server (this example uses The WebSphere Application Server 
Liberty Profile). 

Note that the Liberty profile should be installed separately, using Installation Manager, 
before proceeding with the Worklight 6 server installation. See Figure 6-15.

Figure 6-15   Select your application server type
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11.Installation Manager checks that an application server was defined to the Liberty server 
configuration. If one cannot be detected, Installation Manager will inform the user. In this 
example, the defaultServer server was detected. This was created by going to the bin 
directory of the Liberty install and running the ./server create command. See 
Figure 6-16.

Figure 6-16   Application server properties
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12.Select the configuration for the installation mode, either single or multiple users. Single 
user means only one specific user can start or stop the Worklight Server. Multiple users 
means all users of a specific group can configure the server. In this case, multiple users 
have been selected for the group adm. The installation manager highlights the users within 
the group for you to make it easier to see who will be able to control the server. See 
Figure 6-17.

Figure 6-17   Multiple users (optional)
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13.At this stage, the configuration is complete and the installation can begin. See 
Figure 6-18.

Figure 6-18   Configuration is complete and installation can begin
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14.Confirm the summary details and click Install. See Figure 6-19.

Figure 6-19   Summary window
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15.A confirmation dialog that all installation is complete will be displayed, and the Installation 
Manager can now be closed. See Figure 6-20.

Figure 6-20   The packages are installed

16.Start the Worklight Server. Navigate to the application server directory. In this example, 
using WebSphere Liberty, it is in the following directory structure:

/opt/IBM/WebSphere/Liberty/bin and run ./<server> start <defaultServer> 

In this case, defaultServer is the name of the Liberty server selected at step 12 on 
page 65.

17.The logs will highlight any problems present, so check the messages.log and console.log 
files under the following location:

/opt/IBM/Websphere/Liberty/usr/servers/defaultServer/logs 

18.Verify the login page. To do so, go to the following website:

http://<domain>:9080/appcenterconsole/login/login.html 

A login page will open if the Worklight Application Center and Worklight have started 
successfully. The user name and password are both demo by default.
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Chapter 7. Security and workload 
management

Customer Information Control System (CICS) applications and their associated data 
constitute some of the most valuable assets owned by an enterprise. Therefore, the 
protection of these assets is an essential part of any CICS mobile project.

After a review of the main mobile security challenges, this chapter outlines the options for 
securing CICS JavaScript Object Notation (JSON) web services, reviews how products, such 
as Worklight and DataPower, can help, and then shows examples of security configurations in 
CICS and Worklight.

In this chapter, we provide information about the different techniques that can be used to 
provide high system availability and workload management for JSON web service 
applications. We summarize how high availability is provided across an IBM Parallel 
Sysplex®, and a multi-region approach for processing JSON web services workload. 

This chapter contains the following topics:

� 7.1, “Security overview” on page 70
� 7.2, “Configuring security for JSON web services” on page 76
� 7.3, “Worklight security configuration” on page 78
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7.1  Security overview

Every day, countless confidential transactions with financial institutions, online merchants, 
airlines, and various other retailers are performed on mobile devices. The biggest challenge 
that mobile service providers have is how to secure these services. 

In addition to the normal web security challenges (authentication, authorization, 
confidentiality, data integrity, and nonrepudiation) mobile applications pose new challenges. 
There can be little or no control over the device, including when it is used, where it is used, 
who is using it, and for what it is used. 

The following list notes some specific mobile security challenges:

� Who has access to the devices used to run your mobile applications?

� Are all of the devices that run your organization’s mobile applications owned by your 
organization?

� What form of user authentication was implemented as part of the application? Has 
two-factor authentication been implemented?

� What sensitive information is stored or cached by mobile applications on the devices? Is 
this information encrypted? Could this data be deleted remotely?

� Can the mobile devices used to run your mobile applications be remotely disabled?

� Is communication between mobile devices and your enterprise network and systems 
secure?

� Is the distribution of your mobile applications controlled appropriately?

Addressing all of these challenges is clearly beyond the scope of CICS. However, securing 
access to resources managed by CICS is a significant part of the challenge. The chapter 
focuses on this area. It takes a brief look at the role of other products. For example, this 
chapter provides information about how Worklight server provides mobile application security, 
how DataPower can act as a mobile gateway, and how IBM Endpoint Manager for Mobile 
Devices addresses mobile device management.

7.1.1  Security principals and concepts 

Mobile security is achieved through compliance with the following security principles: 

Authentication Ensures that the identities of both the sender and receiver of the 
mobile transaction are true. 

Authorization Grants a mobile user, system, or process either complete or restricted 
access to a resource.

Confidentiality Protects sensitive data from unauthorized disclosure.

Integrity Ensures that information that arrives at a destination is untampered.

Nonrepudiation Proves that a mobile transaction occurred, or that a message was sent 
or received.

Consider the risks if inadequate authentication and authorization mechanisms are put in 
place. Thieves of stolen devices might be able to retrieve user credentials from the mobile 
device, or cyber criminals might bypass authentication controls. To address these challenges, 
multi-factor authentication is normally required (for example, verification of the device, user, 
and mobile application).
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Consider the consequences if inadequate confidentiality, integrity, and nonrepudiation 
mechanisms are put in place. Mobile users’ confidential information, such as bank account 
details, can be lost, cyber criminals might be able to modify the amounts of money being 
transferred, and mobile users might be able to deny the transactions that they performed. To 
address these challenges, it is normally required to use encryption, and also to ensure that 
new mobile security features are integrated into the existing enterprise security infrastructure.

7.1.2  CICS security options for JSON web services

In a CICS environment, the assets that you normally want to protect are the application 
programs and the resources that are accessed by the application programs. To prevent 
disclosure, destruction, or corruption of these assets, you must control access to the CICS 
region, and to different CICS components.

You can limit the activities of a CICS user to only those functions that the user is authorized to 
use by implementing one or more of the CICS security mechanisms that protect transactions, 
resources, and commands. 

When CICS security is active, requests to attach transactions, and requests by transactions 
to access resources, are associated with a user ID. When a user makes such a request, CICS 
calls the external security manager, such as IBM Resource Access Control Facility (RACF®), 
to determine if the user ID has the authority to complete the request. If the user ID does not 
have the correct authority, CICS denies the request.

In some cases, a user is a human operator, interacting with CICS through a terminal or a 
workstation. In this case, the security scenario is straightforward, in that any transactions 
started by the signed-on user will automatically be authorized against the appropriate user ID.

However, in the case of a mobile user using a web service client application, it is unlikely that 
the mobile user will have a RACF user ID. Therefore, you need to consider how the user will 
be authenticated to CICS, and what user ID will be associated with the CICS transaction. You 
also need to consider how the confidentiality and integrity of the message will be protected. 

Transport security
For Hypertext Transfer Protocol (HTTP) connections from mobile devices, there are two ways 
that the mobile user can be authenticated using transport security: 

� An HTTP client can provide HTTP basic authentication information (a user ID and 
password). The CICS transaction that services the client’s request, and further requests 
made by that transaction, are associated with that user ID.

� A client program that is communicating with CICS using TLS or SSL can supply a client 
certificate to identify itself. The security manager maps the certificate to a user ID. The 
transaction that services the client’s request, and further requests made by that 
transaction, are associated with that user ID.

Note: A likely issue with this approach is the question of what basic authentication 
credentials a mobile user would use. Basic authentication is also not considered 
especially secure unless combined with Transport Layer Security or Secure Sockets 
Layer (TLS/SSL). 

Note: A likely issue with this approach is that TLS/SSL can use many compute 
resources and might not be appropriate for a mobile device. 
Chapter 7. Security and workload management 71



CICS user IDs
Figure 7-1 shows a security scenario in which a mobile application sends a JSON web 
service request to CICS over an HTTP or HTTP over SSL (HTTPS) connection. The following 
different user IDs are shown:

Flowed user ID This is a user ID that is flowed with the request (either in the JSON 
data or in an HTTP header). CICS enables a custom handler in the 
pipeline to extract such a user ID and use it to set the DFHW-USERID 
container. The target application then runs in a new task that is 
associated with this user ID.

Transport user ID The transport-based user ID can be set using either basic 
authentication or SSL client authentication (see “Transport security” on 
page 71).

URIMAP user ID A Uniform Resource Identifier (URI) mapping (URIMAP) resource 
definition matches the URIs of web service requests. The URIMAP 
associates a URI for the request with a PIPELINE and WEBSERVICE 
resource that specifies the processing to be performed. You can use a 
URIMAP to specify the user ID under which the CICS task runs (known 
as the pipeline alias transaction). 

You can also use the URIMAP to set the name of the transaction that 
CICS uses for running the CICS task (the default is CPIH).

Default user ID When a user does not sign on, CICS assigns a default user ID to the 
user. It is specified in the SIT parameter DFLTUSER. In the absence of 
more explicit identification, it is used to identify Transmission Control 
Protocol/Internet Protocol (TCP/IP) clients that connect to CICS. You 
should not give much authority to the default user ID.

Region user ID The CICS region user ID is used for authorization checking when the 
CICS system (rather than an individual user of the system) requests 
access to system resources, such as CICS data sets and other 
servers.

Figure 7-1   CICS mobile security scenario
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It is possible that for a single JSON web service request, transported by HTTP, multiple 
methods for setting the user ID will be used at the same time. In this event, CICS uses the 
following order of precedence for determining the user ID associated with the CICS task:

1. A user ID inserted into the DFHW-USERID container by a message handler that is included in 
the service provider pipeline. This user ID might be extracted from a token in the header or 
body of the HTTP request. 

2. A user ID obtained from the mobile client using basic authentication, or a user ID 
associated with a client certificate. 

3. A user ID specified in the URIMAP definition for the request.

4. The CICS default user ID, if no other user ID can be determined.

7.1.3  CICS mobile security topologies

Previously, Figure 7-1 on page 72 showed a mobile device connecting directly to CICS. 
However, in most cases mobile devices will connect to another server before the request is 
passed on to CICS. Figure 7-2 shows two common CICS mobile topologies.

Figure 7-2   CICS mobile topologies

The following list notes several advantages of using an intermediary server: 

� The intermediary server normally supports a wider range of mobile authentication 
mechanisms.

� The intermediary server can enable mobile single sign-on (SSO). SSO is an 
authentication process in which a user can access more than one system or application by 
entering a single credential (for example, a user ID and password).

� The intermediary server can protect CICS against unauthorized access and attacks.

When an intermediary server is used to authenticate mobile users on behalf of CICS, it is 
important to establish a trust relationship between the intermediary server and CICS.

Note: Worklight and DataPower can be used together to create a secure mobile 
infrastructure.
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Transport security mechanisms, such as basic authentication and SSL client authentication, 
can be used to establish this trust relationship (see 7.3, “Worklight security configuration” on 
page 78 for examples of using transport-based security between Worklight server and CICS). 

7.1.4  Worklight security

IBM Worklight provides a set of security capabilities that address a wide range of mobile 
security objectives, including the following list:

� Protecting data on the device.

It is common for the mobile application user to have access to sensitive data that can be 
stored on the mobile device. However, this data stored on-device can potentially be stolen 
or tampered with by malware existing on the device. In the event that the device is lost or 
stolen, this sensitive data can be extracted by unauthorized third parties. 

In addition, the mobile application can be required to function in an offline context (without 
any back-end connectivity), and at the same time require that only authenticated users be 
given access to the data stored on the mobile device.

Worklight provides encrypted on-device storage and offline authentication.

� Providing mobile application security.

In addition to protecting the on-device data, it is also important to protect the mobile 
application itself on the device. This prevents hackers from unpackaging a legitimate 
mobile application and then repackaging it with malicious code:

– Worklight provides an Application Center that can be used to install, configure, and 
administer a repository of mobile applications for use by individuals and groups within 
an enterprise or organization (see 6.2, “Worklight Server” on page 52). 

– Worklight provides capabilities to encrypt the application code and web resources to 
prevent tampering with the application.

– By combining multiple authenticity tests (multi-factor authentication), Worklight can 
enforce more stringent levels of security for the application, device, and user. For 
example, by requiring application, device, and user authenticity tests, it is possible to 
only grant access to this legitimate application running on that authorized device for 
this authenticated user.

– Worklight also extends the concept of SSO to the applications on the mobile device, so 
that authenticating to one application means that the user does not have to 
authenticate to other applications on that device. 

� Ensuring security updates.

In today’s mobile world, users can choose whether to download and install the latest 
release of a mobile application from an application store. It is difficult to ensure that users 
are downloading and running the correct version of the application in a timely manner. In 
the event that a fix is needed to correct a security flaw in the application, a timely 
propagation of security updates is essential to mitigate the possibility of critical problems.

Worklight provides features to help administrators ensure that critical updates are 
delivered to the applications on the mobile devices.

� Providing robust authentication and authorization.

Worklight’s authentication integration framework simplifies the task of connecting mobile 
applications with the enterprise back-end authentication infrastructure. Server-side 
components interact with the client-side security framework in a challenge-response 
process to ensure that only authenticated identities are used to access protected 
resources. Worklight supports a number of commonly used mechanisms for 
authentication, such as forms-based, cookie-based, or header-based, and so on.
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For more information about Worklight security, see the IBM Redbooks publication Securing 
Your Mobile Business with IBM Worklight, SG24-8179.

7.1.5  DataPower security

WebSphere DataPower Appliances simplify, govern, and optimize the delivery of services and 
applications, and enhance the security of Extensible Markup Language (XML) and 
information technology (IT) services. In addition to the core business of service-oriented 
architecture (SOA) connectivity, WebSphere DataPower Appliances now serve areas of 
business-to-business (B2B) connectivity, web application proxying, and Web 2.0 integration 
with JSON and Representational State Transfer (REST). 

WebSphere DataPower SOA Appliances provide the following key features:

� Acts as a web, mobile, and XML firewall

� Enables new workloads for securing mobile, web, and application programming interface 
(API) management, consolidating and simplifying enterprise infrastructure

� Provides authentication, authorization, and auditing (AAA) support

� Provides application-level security as an integral part of the user interaction

� Helps customers meet compliance requirements, serving as a governance policy 
enforcement point

� Can implement an enterprise SSO function using Lightweight Third Party Authentication 
(LTPA) tokens

� Simplifies integration to multiple back-end applications (including CICS), supporting a 
wide array of protocols

DataPower can be used on its own as a mobile gateway to CICS. For example, it can be used 
to authenticate a mobile user, and map the user’s credentials to a security token understood 
by CICS, a RACF user ID, or an Extended Identity Context Reference (ICRX). An ICRX is a 
z/OS identity token that contains a distributed identity. When the request is processed by 
CICS, it resolves the distributed identity to a RACF user ID, and sets the user ID of the CICS 
task to this value. 

The z/OS identity propagation enables a z/OS security administrator to create a set of flexible 
rules, stored in the RACF database, and ensures that the distributed identity persists after the 
mapping stage and remains visible for operational support and auditing. For more information 
about using z/OS identity propagation with CICS see the IBM Redbooks publication CICS 
and SOA: Architecture and Integration Choices, SG24-5466.

DataPower can also be used in conjunction with Worklight. When used with Worklight, it can 
provide security capabilities beyond those provided by Worklight itself:

� Enhanced form-based authentication support for easy and quick integration with Worklight 
applications running on mobile devices

� Ready-to-use configuration patterns as a reverse proxy and security policy enforcement 
point in front of the Worklight Server

� Fine-grained authorization and authentication with a centralized policy enforcement

� Enhanced data transformation and connectivity capabilities

For more information about the WebSphere DataPower Appliances, see the IBM Redbooks 
publication, Strategic Overview of WebSphere Appliances, REDP-4790.
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7.1.6  IBM Endpoint Manager for Mobile Devices 

IBM Endpoint Manager for Mobile Devices provides a single platform with complete 
integration for managing, securing, and reporting on notebooks, desktops, servers, 
smartphones, tablets, and even point-of-sale terminals. The benefit to the enterprise is 
visibility and control over all devices, and cost reduction, productivity increases, and 
compliance improvements.

For more information about IBM Endpoint Manager for Mobile Devices, visit the following 
website:

http://www-03.ibm.com/software/products/us/en/ibmendpmanaformobidevi/

7.2  Configuring security for JSON web services

This section shows how to configure security for CICS JSON web services.

7.2.1  Configuring the URIMAP

A URIMAP resource definition matches the URIs of JSON web service requests. The URIMAP 
associates a URI for the request with a PIPELINE and WEBSERVICE resource that specifies the 
processing to be performed.

Importantly, you can use a URIMAP to specify the following attributes:

� The name of the transaction that CICS uses for running the pipeline alias transaction (the 
default is CPIH)

� The user ID under which the pipeline alias transaction runs

Table 7-1 on page 76 shows the attributes of the URIMAP resource definition that affect the 
security context within which a service provider application runs. 

Table 7-1   Security attributes in URIMAP resource for CICS service provider

Attribute Description

HOST Specifies the host component of the URI to which the URIMAP definition 
applies. An example of a host name is www.example.com. This attribute 
can be used to restrict web service requests to specific host names.

PIPELINE Specifies the name of the PIPELINE resource definition for the web 
service. The PIPELINE resource definition provides information about the 
message handlers, including security message handlers, which act on 
the service request from the client. 

SCHEME Specifies the scheme component of the URI to which the URIMAP 
definition applies, which is either HTTP (without SSL) or HTTPS (with 
SSL). It can be used to restrict web service requests to HTTPS only.

TCPIPSERVICE Specifies the name of a TCPIPSERVICE resource definition, that defines an 
inbound port to which this URIMAP definition relates. It can be used to 
restrict access to web services through a specific TCPIPSERVICE and its 
associated transport-based security mechanisms. 

TRANSACTION Specifies the name of the pipeline alias transaction that is to be used to 
start the pipeline. This is an important attribute, because it directly 
controls the transaction identifiers that are used for web service requests 
and that, therefore, need to be protected using transaction security.
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Further details about these URIMAP attributes are provided in the CICS Information Center.

When you install a PIPELINE resource, CICS scans the directory specified in the pipeline’s 
WSDIR attribute (the pickup directory) for WSBIND files, and creates URIMAP and WEBSERVICE 
resources dynamically. If you want to use the URIMAP definition to specify either the name of 
the transaction or the user ID under which the pipeline will run, you can set these parameters 
using the DFHLS2JS procedure.

7.2.2  Configuring the TCPIPSERVICE

A TCPIPSERVICE definition is required for a JSON web service that uses HTTP or HTTPS as 
transport. It contains information about the port on which inbound requests are received, and 
whether any transport-based security mechanisms will be applied by CICS. 

USAGE Must specify PIPELINE to indicate that this URIMAP definition applies to 
inbound web service requests.

USERID Specifies the user ID under which the pipeline alias transaction is 
attached. 

Important: A user ID that you specify in the URIMAP definition is 
overridden by any user ID that is obtained directly from the client. 

WEBSERVICE Specifies the name of the web service.

Attribute Description

HOST Specifies the host component of the URI to which the URIMAP definition 
applies. An example of a host name is www.example.com. This attribute 
can be used to restrict web service requests to specific host names.

PIPELINE Specifies the name of the PIPELINE resource definition for the web 
service. The PIPELINE resource definition provides information about the 
message handlers, including security message handlers, which act on 
the service request from the client. 

SCHEME Specifies the scheme component of the URI to which the URIMAP 
definition applies, which is either HTTP (without SSL) or HTTPS (with 
SSL). It can be used to restrict web service requests to HTTPS only.

TCPIPSERVICE Specifies the name of a TCPIPSERVICE resource definition, that defines an 
inbound port to which this URIMAP definition relates. It can be used to 
restrict access to web services through a specific TCPIPSERVICE and its 
associated transport-based security mechanisms. 
Chapter 7. Security and workload management 77



Table 7-2 shows the attributes of the TCPIPSERVICE resource definition that affect the security 
context within which a service provider application runs. 

Table 7-2   Security attributes in TCPIPSERVICE resource

Further details about these TCPIPSERVICE attributes are provided in the CICS Information 
Center.

7.3  Worklight security configuration

This section shows how to configure Worklight for secure connectivity to CICS.

7.3.1  Configuring HTTP basic authentication in Worklight

If the TCPIPSERVICE definition installed in CICS is configured for HTTP basic authentication, 
follow these steps to configure the Worklight adapter to send basic authentication credentials: 

1. Open the Worklight adapter's XML configuration file and select the design tab. Make sure 
that each of the procedures has the connect As option set to server. 

2. Open the source tab to see the XML of the adapter's XML configuration file.

The <connectionPolicy> element is extended to contain an <authentication> child 
element, as shown in Figure 7-3 on page 79.

Attribute Description

AUTHENTICATE Determines if an authentication and identification scheme is to be used 
at the transport layer. Specify BASIC if you want to use HTTP basic 
authentication, or CERTIFICATE if you want to use SSL client 
authentication. 

CERTIFICATE Specifies the label of an X.509 certificate that is used as a server 
certificate during an SSL handshake.

CIPHERS Specifies the list of ciphers that this CICS region supports for SSL 
encryption. 

PORTNUMBER Specifies the number of the port on which CICS is to listen for incoming 
HTTP or HTTPS requests. 

SSL Specifies whether SSL is used for encryption and authentication. If you 
specify YES, CICS will send a server certificate. If you specify CLIENTAUTH, 
CICS will request the client to send a certificate. 

Note: HTTP basic authentication scheme can only be considered a secure means of 
authentication when the connection between the web service client and the CICS region is 
secure. It is therefore suggested that basic authentication is used in parallel with an SSL 
connection to protect the user ID and password from being intercepted.
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Figure 7-3   The connectionPolicy element for HTTP basic authentication

The ${user} can be replaced with a string of your choice or a variable, as per the Worklight 
Information Center subject in the following link: 

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.doc
/devref/r_the__connectionpolicy__element.html?resultof=%22%73%73%6c%22%20
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7.3.2  Configuring SSL in Worklight

If the TCPIPSERVICE definition installed in CICS is configured for SSL, follow these steps to 
configure the Worklight adapter to use SSL:

1. Open the adapter's XML configuration file and select the design tab (Figure 7-4).

Figure 7-4   Adapter Editor

2. Add the required certificates to the server keystore, as per the procedure detailed in the 
following link:

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.
doc/admin/r_ssl_certificate_keystore_setup.html?resultof=%22%73%73%6c%22%20

3. Add the alias of the SSL Certificate that was added to the server's keystore to the 
appropriate box. If the certificate is protected with a password, make sure to enter the 
password in the sslCertificatePassword field.

4. To enable SSL for the IBM Worklight application center, follow the procedure shown in the 
following information center link: 

http://pic.dhe.ibm.com/infocenter/wrklight/v6r0m0/topic/com.ibm.worklight.help.
doc/appcenter/c_ac_ssl_config.html?resultof=%22%73%73%6c%22%20

7.4  Workload management overview

CICS has been providing web services capabilities since CICS TS V3, when support was 
introduced for SOAP web services. 
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The CICS Transaction Server for IBM z/OS Feature Pack for Mobile Extensions V1.0 
introduces new capabilities to CICS web services: CICS can now receive and process an 
HTTP payload in JSON data format.

There are some differences with regard to JSON web service processing when compared 
with traditional CICS SOAP web services: JSON data is required to be stored within an HTTP 
payload, because WebSphere MQ transport is not currently supported. Additionally, the CICS 
pipeline processing is used within the CICS Java virtual machine (JVM) server.

Many of the workload management techniques that apply to SOAP web services also apply 
to JSON web services. You can take advantage of workload management techniques that 
might already be in place, such as TCP/IP load balancing and hosting the service provider 
over multiple listener and application-owning regions. 

7.5  Workload balancing

As the service hit rate from mobile applications increases, or due to increased availability 
demands, it might become necessary to balance a JSON web services workload across 
multiple CICS regions. 

For HTTP, this can be achieved by using port sharing, or the Sysplex Distributor, to route the 
incoming requests to different CICS regions within a Sysplex. When within CICS, the existing 
business logic application that is linked from the message adapter can be on an application 
owning region (AOR) and workload managed, for example, by CICSPlex System Manager 
(CICSPlex SM).

Figure 7-5 shows an example of workload balancing across multiple regions. 

Figure 7-5   Workload balancing across multiple regions

Note: This chapter summarizes some of the key concepts covered in the chapter on 
workload management and availability in CICS Web Services Workload Management and 
Availability, SG24-7144, and you should review that information in full for a detailed 
description of workload management topics.

Sysplex
distributor CWXN

CICS JSON web 
services support

z/OS

CICS CICS

CICS Router AOR

Existing
business logic

JVM Server

Pipeline
Chapter 7. Security and workload management 81



7.6  TCP/IP load balancing techniques

In this section, various TCP/IP load balancing techniques are summarized, describing the 
attributes of port sharing, virtual IP addressing, and the Sysplex Distributor.

7.6.1  Port sharing
TCP/IP port sharing provides a simple way of spreading HTTP requests over a group of CICS 
router regions running in the same z/OS image. CICS TCPIPSERVICEs in different regions are 
configured to listen on the same port, and TCP/IP is configured with the SHAREPORT or 
SHAREPORTWLM options.

The TCP/IP stack then balances connection requests across the CICS router regions.When 
SHAREPORT is specified on the PORT statement in the TCP/IP profile, TCP/IP evenly balances 
the number of active connections across the available servers. This balancing is based on the 
number of active and backlog socket connections.

Using port sharing spreads the JSON request messages across multiple CICS regions, and 
therefore improves availability. There remains, however, a single point of failure in the event of 
an IP stack or z/OS image failure.

7.6.2  Virtual IP addressing
A virtual IP address (VIPA) is configured the same way as a normal IP address or a physical 
adapter, except that it is not associated with any particular interface. TCP/IP hosts can use 
VIPA (a virtual device and virtual IP address) to select a z/OS IP stack without choosing a 
specific network interface on that stack. The virtual device defined for the VIPA is always 
active.

Dynamic VIPA (DVIPA) was introduced to enable the dynamic activation of a VIPA in addition 
to the automatic movement of a VIPA to another surviving z/OS image after a z/OS stack 
failure. There are two forms of DVIPA, both of which can be used for takeover functionality:

� Automatic VIPA takeover enables a VIPA address to move automatically to a stack (called 
a backup stack) where an existing suitable application instance is already active, and 
enables the application to serve the client formerly going to the failed stack.

� DVIPA activation for an application server enables an application to create and activate 
VIPA so that the VIPA moves when the application moves.

7.6.3  Sysplex Distributor
Sysplex Distributor is designed to address the requirement of one single network-visible IP 
address for the sysplex cluster. Clients in the network receive the benefits of workload 
distribution and high availability across the sysplex cluster. With Sysplex Distributor, client 
connections seem to be connected to a single IP host, even if the connections are established 
with different servers in the same sysplex cluster.

As with TCP/IP port sharing, Sysplex Distributor also supports server-specific Workload 
Manager (WLM) recommendations for load balancing. The distribution of new connection 
requests can now be based on the actual workload of a target server. Sysplex Distributor also 
takes into account information, such as quality of service (QoS) and policy information, 
provided by Communications Server for z/OS IP’s Service Policy Agent.
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By combining this information with the information from WLM, the Sysplex Distributor has the 
unique ability to ensure that the best destination server instance is chosen for a particular 
client connection.

Sysplex Distributor has benefits over other load-balancing implementations:

� Cross-system coupling facility (XRF) links can be used between the distributing stack and 
target servers, as opposed to LAN connections, such as an Open Systems Adapter 
(OSA).

� It provides a total z/OS solution for TCP/IP workload distribution.

� It provides real-time workload balancing for TCP/IP applications, even if clients cache the 
IP address of the server, which is a common problem for Domain Name System 
(DNS)/WLM.

� It provides for takeover of the VIPA by a backup system if the distributing stack fails.

� It enables nondisruptive take back of the VIPA original owner to get the workload to where 
it belongs. The distributing function can be backed up and taken over.

It is possible to combine the use of Sysplex Distributor with TCP/IP port sharing for a 
high-availability CICS service provider configuration. Then the Sysplex Distributor distributes 
requests across logical partitions (LPARs), and port sharing distributes requests across 
different CICS systems within an LPAR.

When CICS is hosting a JSON web service requester application, Sysplex Distributor can 
also be used to route requests to multiple instances of the service provider, so long as the 
service provider application runs within the same parallel sysplex as the requester. 

7.7  JSON web services and business logic: A multi-region 
approach

A target business logic application might run in the same CICS region that receives a JSON 
web service request (the front-end region), or it might run in another region (for example, an 
AOR). There are several advantages to running the target business logic program in a 
different region than the one that receives the JSON web service request:

� You can provide higher availability by having several regions that perform the same 
business function. If one of the regions fails, other regions of the same group can pick up 
the workload.

� You can implement workload balancing and workload separation.

� You are able to handle increasing workload by adding more CICS AORs.

There are two possible approaches to building a multi-region, front-end/back-end 
environment.

The simplest approach is to use a distributed program link (DPL) to start the business logic 
program. All pipeline processing is done in the front-end region, and the link to the business 
logic program is routed to an AOR. Separation of requests between different AORs might be 
achieved using workload separation based on different transaction IDs.

It is also possible to route the entire pipeline and business logic processing to an AOR. This 
might be done by setting the transaction ID in the URIMAP, and then dynamically routing this 
transaction. Setting the transaction ID in the URIMAP is necessary, because you cannot 
change the definitions of the default CICS pipeline transaction (CPIH). 
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Routing using DPL requests is suggested for the following reasons:

� It establishes a clearer definition, and a separation of the roles of the front-end regions 
and AORs.

� It performs better than transaction routing, because it avoids the effect of routing part of 
the pipeline processing. 

� It is quicker for AOR regions added to the cluster to start processing work, compared to a 
new listener region that will wait for new HTTP connections. Note that most HTTP clients 
will continually reuse a pool of connections under steady load. AOR regions can be 
removed from the cluster more quickly without waiting for clients using HTTP persistent 
connections to decide to close them.
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Chapter 8. Problem determination

This chapter outlines common user faults that you might encounter, provides advice for how 
to avoid these faults, and directions to further information.

This chapter contains the following topics:

� 8.1, “Introduction” on page 86
� 8.2, “Deployment problems” on page 86
� 8.3, “Problems with the JSON assistants” on page 87
� 8.4, “Problems with requests to JSON web services” on page 88

8
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8.1  Introduction

With the Customer Information Control System (CICS) support for JavaScript Object Notation 
(JSON) web services being built on the existing web services infrastructure, the approach to 
take if you encounter problems is largely the same.

Notable however, is the relatively small set of tools available for assisting with the construction 
of JSON schemas and JSON data, compared to the rich tools available for working with Web 
Services Description Language (WSDL) and Extensible Markup Language (XML) for SOAP 
web services.

In addition, the JSON schema standard is still evolving. The CICS JSON assistants are based 
on draft 4 of the specification. For further information see the following websites:

� Get information about JSON schema:

http://json-schema.org/

� Get information about JSON schema core definitions and terminology: 

http://tools.ietf.org/html/draft-zyp-json-schema-04

� Get information about JSON schema interactive and non-interactive validation: 

http://tools.ietf.org/html/draft-fge-json-schema-validation-00

As a result of the smaller set of tools, you might find the most common cause of problems to 
be badly constructed JSON data. Section 8.4, “Problems with requests to JSON web 
services” on page 88, provides information about common pitfalls and identify tools that can 
provide assistance.

If you encounter a problem, before you contact IBM support, see “Collect troubleshooting 
data for CICS Transaction Server for z/OS Feature Pack for Mobile Extensions V1.0”, found at 
the following website:

http://www.ibm.com/support/docview.wss?uid=swg21634271

This page lists the documentation that you must collect so that the CICS support team can 
diagnose your problem.

8.2  Deployment problems

Deployment problems are errors that occur when you try to install a PIPELINE resource or a 
WEBSERVICE resource.As demonstrated in Chapter 9, “Language structure to JSON schema 
scenario” on page 93, and Chapter 10, “JSON schema to language structure scenarios” on 
page 105, using the PIPELINE scan operation automatically creates WEBSERVICE and URIMAP 
resources. 

If you are encountering problems after manually defining these resources, the automation of 
the PIPELINE scan operation might prove easier and less error-prone. For more information 
about resolving deployment problems, see the section on troubleshooting deployment 
problems in the CICS TS Information Center.

Tip: You can confirm that the CICS Transaction Server (CICS TS) Feature Pack for Mobile 
Extensions is working correctly by running the sample program DFH0MOBI. For more 
information and instructions, see the “Verifying the operations of the CICS TS Feature 
Pack for Mobile Extensions” topic in the CICS TS Information Center.
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8.3  Problems with the JSON assistants

This section covers problems that you might encounter when using the JSON assistants. For 
additional information see the “Troubleshooting the JSON assistant” topic in the CICS TS 
Information Center.

As presented earlier in this chapter, the JSON assistants are based on draft 4 of the JSON 
schema specification. This should not be confused with the MAPPING-LEVEL parameter in the 
JSON assistants. This parameter concerns how information is converted between language 
structures and JSON schema. To benefit from the most sophisticated mappings available, set 
this to level 3.0.

On multiple occasions, when running DFHJS2LS or DFHLS2JS, we encountered the following 
DFHPI9523 message:

DFHPI9523E An unexpected error occurred whilst processing file
"//USER.JS2LS.COPYLIB(CRREQ01)". The problem is: "//USER.JS2LS.COPYLIB(CRREQ01)".

The cause of such messages is usually that the partitioned data set (PDS) cannot be opened 
because a user has a member of the PDS open for editing, using IBM Rational Developer for 
IBM System z or Interactive System Productivity Facility (ISPF).

8.3.1  DFHJS2LS

When writing a JSON schema, in preparation for using DFHJS2LS, you might find it helpful to 
refer to the JSON schema specification and related tutorials. We also suggest that you read 
the following CICS TS Information Center topics, which describe the subset of the JSON 
schema specification that is supported:

� JSON schema to Common Business Oriented Language (COBOL) mapping
� JSON schema to C and C++ mapping
� JSON schema to PL/I mapping

We also suggest that you validate your schema. One such tool for validation is the online 
JSON schema validator:

http://json-schema-validator.herokuapp.com/ 

A JSON schema specifies that a property is optional if it does not appear in the required 
keyword array that is associated with the enclosing JSON schema object type. As such, 
DFHJS2LS will add a field, with a suffix _num, to generated language structures for optional 
fields. At run time, this field is set to 1 to indicate that the value was present in the JSON data 
and set to 0 if it was not.

We suggest that all properties be included in the required keyword array as standard 
practice. However, CICS does not perform a runtime check for required properties.

Note that CICS cannot transform integer values greater than the maximum value for a signed 
long (263 - 1) unless they are enclosed within quotation marks.

Tip: With a MAPPING-LEVEL of 1.2 or higher, you can use the CHAR-VARYING parameter to 
specify how variable-length character data is mapped between JSON and high-level 
language structures (and vice versa). For details of usage, see the sub-topic of the 
“High-level language and JSON schema mapping” topic in the CICS TS Information 
Center, which applies to the mapping you want to produce.
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8.3.2  DFHLS2JS

Before using DFHLS2JS, you might want to read the following CICS TS Information Center 
topics, which describe the supported mappings and any restrictions that might apply:

� COBOL to JSON schema mapping
� C and C++ to JSON schema mapping
� PL/I to JSON schema mapping

8.4  Problems with requests to JSON web services

As introduced at the start of this chapter, the most common problem we have encountered is 
badly formed JSON data being passed to CICS, which has resulted in the JSON data being 
rejected, or other unintended results.

It is common to programmatically produce JSON data within your applications. It is suggested 
that you validate the JSON data produced against the JSON schema as part of the 
application testing process. The JSON schema validator, referenced in 8.3.1, “DFHJS2LS” on 
page 87, enables JSON to be validated against a schema.

In addition, ensure that the Multipurpose Internet Mail Extensions (MIME) type of the 
Hypertext Transfer Protocol (HTTP) requests sent to CICS is application/json. This is the 
official type, as assigned by the Internet Assigned Numbers Authority (IANA).

If you encounter a runtime problem with a JSON web service, you should refer to the following 
sources of diagnostic information:

� For web service requests into CICS that fail, first check the HTTP response and status 
code. The response might contain a CICS message that describes the problem 
encountered, and perhaps a solution.

� If the HTTP response and status code does not provide sufficient diagnostic information, 
further messages might be present in MSGUSR.

In the case of JSON parse errors, which occur when CICS detects that the JSON data 
received is syntactically invalid, exception messages will be written to the Java virtual 
machine (JVM) server stderr, and to the HTTP response.

Tip: You can improve the appearance of COBOL language structures generated by 
DFHJS2LS, by using the MAPPING-OVERRIDES=UNDERSCORES-AS-HYPHENS parameter. As a 
result, DFHJS2LS will use hyphens rather than X characters in variable names in generated 
high-level language structures.

Note: DFHLS2JS does not fully implement the padding algorithms of PL/I. As a result, you 
might be required to explicitly declare padding bytes. DFHLS2JS will issue a DFHPI9029 or 
DFHPI9030 message if this is necessary. Further explanation is provided in the PL/I to 
JSON schema mapping topic, as referenced previously.

Tip: The WORK_DIR parameter specified in the JVM profile determines the location of a JVM 
server’s stderr file. If WORK_DIR is omitted, /tmp is used. For further information, see the 
“Options for JVMs in a CICS environment” topic in the CICS TS Information Center.
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If presented with a CICS message in the range DFHPI1007 - DFHPI1010, a transformation error 
has occurred. These occur when CICS detects that the JSON data received does not match 
the expected data format from the WSBIND file.

If you encounter a JSON parse error or transformation error, see any messages issued by 
CICS, and validate your JSON data against the schema to identify the cause of the problem.

Note that DFHJS2LS produces WSBIND files that describe how to map JSON data to the best fit 
data types of a particular high-level language. Therefore, CICS does not issue a 
transformation error message if transformations succeed. This is because the data is within 
the limits of the high-level language data type, but was outside the range of acceptable values 
as described in the JSON schema. Such validation should be completed by your mobile 
application or CICS application.

Because CICS does not perform a runtime check for the existence of required variables, 
missing numeric fields will be populated with a null value. If uninitialized, such null data might 
cause a transformation error when the high-level language structure is converted into JSON 
data for the HTTP response.

For more information, see the topic about troubleshooting problems with JSON requests, 
found in the CICS TS information center.
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Part 3 Application 
development and 
scenarios

This part provides information about the application development and tools used in the 
example scenarios. Highlighted in Part 3, we describe how to call a Customer Information 
Control System (CICS) JavaScript Object Notation (JSON) service hosted in CICS setup 
using the Worklight Adapter and the Worklight Client JavaScript application programming 
interface (API).

Part 3
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Chapter 9. Language structure to JSON 
schema scenario

This chapter describes a scenario that takes an existing Customer Information Control 
System (CICS) Common Business Oriented Language (COBOL) application, and enables it 
for use as a JavaScript Object Notation (JSON) web service.

This chapter contains the following topics:

� 9.1, “General insurance sample application” on page 94
� 9.2, “Use case for language structure to JSON” on page 94
� 9.3, “Language Structure to JSON schema solution” on page 94

9
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9.1  General insurance sample application

The scenarios in this IBM Redbooks publication use a general insurance application 
(GENAPP) available with IBMGENAPP CB12 SupportPac (CB12 SupportPac), which can be 
found on the following web page:

http://www.ibm.com/support/docview.wss?uid=swg24031760

The general insurance application (GENAPP) is a CICS COBOL application that simulates 
transactions made by an insurance company to create and manage customer and insurance 
policy data. It provides sample data and an IBM 3270 interface for creating and inquiring 
about customers and insurance policy information.

The SupportPac documentation describes the application architecture, how to install and set 
up the application, and how to test the application is working correctly. 

For the purposes of the scenarios in Chapter 9, “Language structure to JSON schema 
scenario” on page 93, and Chapter 10, “JSON schema to language structure scenarios” on 
page 105, you will require a single CICS region version of the GENAPP. This setup is 
described in the CB12 SupportPac documentation.

When you have a working application, you can then extend the application to use JSON web 
services.

9.2  Use case for language structure to JSON

In this scenario, the fictional general insurance company wants to quickly enable a mobile 
solution for its existing COBOL GENAPP.

The company intends to create an application for mobile devices, implemented in JavaScript 
and accessing existing CICS and DB2 assets. The initial version of the application will allow 
customer records to be added to the DB2 database, and for specific records to be queried 
and updated. It wants to get the solution into the market as soon as possible, and does not 
currently have the resources to change the existing COBOL application programs.

To resolve the issue, the insurance company is going to enable its existing COBOL 
applications to use JSON by creating a JSON web service from their existing language 
structures. In this way the COBOL programs can be left completely unchanged. The following 
sections of the chapter describe in detail how this will be done using the GENAPP.

9.3  Language Structure to JSON schema solution

Having completed the setup of the GENAPP as described in 9.1, “General insurance sample 
application” on page 94, you are now in the position to extend the existing GENAPP to make 
use of JSON web services without changing any of the existing COBOL source or 
compilations.

Note: When using a single CICS Region, you do not require the coupling facility named 
counter server, or the shared temporary storage queue.
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This tutorial will configure CICS to enable the following actions:

� Enable a JSON request to create a customer record.
� Enable a JSON request to inquire on a customer record.
� Enable a JSON request to update a customer record.

Perform the following tasks: 

1. Identify the general insurance COBOL programs and copybooks to use.

2. Tailor the job control language (JCL) for running DFHLS2JS for the COBOL customer 
programs.

3. Submit the JCL to create WSBIND files and JSON schemas for each of the listed requests.

4. Set up a PIPELINE to install the WSBIND files and enable a Uniform Resource Identifier 
(URI) for each request.

5. Test that the JSON request can be successfully performed.

9.3.1  Identifying the COBOL programs and copybooks

The three requests that this scenario covers (create, inquire, and update a customer record), 
are handled in the GENAPP by three COBOL programs.

These can be found in the GENAPP source data set:

<HLQ>.CB12.SOURCE

The following list notes the source code members:

� LGACUS01 (Customer Create program)
� LGICUS01 (Customer Inquiry program)
� LGUCUS01 (Customer Update program)

The GENAPPs are supplied already compiled and installed as programs of the same name in 
the general insurance load library. 

In this scenario, no changes are required to the programs. Instead, you need to create a 
WEBSERVICE resource that can transform a JSON request to the expected application data.

You need to identify the customer data structure that these programs use to take as input. In 
three cases the COBOL copybook that they import is LGCMAREA. This copybook is also in the 
GENAPP source data set.

Looking at the COBOL source code and copybook, you see that the data that you need to be 
sending to the program is in the CA-CUSTOMER-REQUEST structure, as show in Example 9-1.

Example 9-1   CA-CUSTOMER-REQUEST in LGCMAREA copybook

03 CA-REQUEST-ID            PIC X(6).                        
     03 CA-RETURN-CODE           PIC 9(2).                        
     03 CA-CUSTOMER-NUM          PIC 9(10).                       
     03 CA-REQUEST-SPECIFIC      PIC X(32482).                    
*    Fields used in INQ All and ADD customer                      
     03 CA-CUSTOMER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.        

Note: It is assumed that you have set up and installed an appropriate JVMServer and 
TCPIPSERVICE in your CICS region, as described in Chapter 5, “Configuring CICS for the 
example scenarios” on page 31.
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        05 CA-FIRST-NAME         PIC X(10).                       
        05 CA-LAST-NAME          PIC X(20).                       
        05 CA-DOB                PIC X(10).                       
        05 CA-HOUSE-NAME         PIC X(20).                       
        05 CA-HOUSE-NUM          PIC X(4).                        
        05 CA-POSTCODE           PIC X(8).                        
        05 CA-NUM-POLICIES       PIC 9(3).                        
        05 CA-PHONE-MOBILE       PIC X(20).                       
        05 CA-PHONE-HOME         PIC X(20).                       
        05 CA-EMAIL-ADDRESS      PIC X(100).                      
        05 CA-POLICY-DATA        PIC X(32267). 

The GENAPP already provides support for SOAP web services. You can therefore use the 
supplied data set member SOAIC01 (shown in Example 9-2), which contains the customer 
request data structure of interest.

Example 9-2   The Customer Request data structure in SOAIC01

01 CA.                                                           
     03 CA-REQUEST-ID            PIC X(6).                        
     03 CA-RETURN-CODE           PIC 9(2).                        
     03 CA-CUSTOMER-NUM          PIC 9(10).                       
*    Fields used in INQ All and ADD customer                      
     03 CA-FIRST-NAME         PIC X(10).                          
     03 CA-LAST-NAME          PIC X(20).                          
     03 CA-DOB                PIC X(10).                          
     03 CA-HOUSE-NAME         PIC X(20).                          
     03 CA-HOUSE-NUM          PIC X(4).                           
     03 CA-POSTCODE           PIC X(8).                           
     03 CA-NUM-POLICIES       PIC 9(3).                           
     03 CA-PHONE-MOBILE       PIC X(20).                          
     03 CA-PHONE-HOME         PIC X(20).                          
     03 CA-EMAIL-ADDRESS      PIC X(100).                         
     03 CA-POLICY-DATA        PIC X(30000).                       

Having identified the data that the programs require, you look at using this data to generate a 
JSON schema and a WSBIND file that can be use by a JSON request.

9.3.2  Tailoring DFHLS2JS for the COBOL customer programs

CICS Transaction Server (CICS TS) Feature Pack for Mobile Extensions V1.0 supplies the 
DFHLS2JS procedure for running the JSON assistants to create a WSBIND file for deployment by 
your PIPELINE and JSON schemas, which map to the response and requests related to the 
COBOL data structure.

The DFHLS2JS JCL procedure is found in the Mobile Extensions feature pack installed library, 
SDFHMOBI. This procedure accepts many parameters, and these are documented in the CICS 
TS Feature Pack for Mobile Extensions V1.0 Information Center.

Note: It is a requirement of the JSON assistants that the data structures are separated 
from the program code. It also does not support REDEFINEs.
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For the purpose of this book and this scenario, you will be using a minimum number of 
parameters to call the DFHLS2JS procedure. In Example 9-3, the JCL needs to be tailored to 
your environment. Examples of the Inquire Customer and Update Customer assistant JCL 
are included in Appendix A, “Sample level for a JSON schema” on page 163.

Example 9-3   Sample JCL to run the DFHLS2JS Procedure for Create Customer

//LS2JS JOB  'accounting information',name,MSGCLASS=A
//JCLLIB JCLLIB ORDER=CICS51.SDFHMOBI
//LS2JS     EXEC DFHLS2JS,                                   
//    JAVADIR='java7',                        
//    USSDIR='fp uss dir’,                               
//    PATHPREF='',                                           
//    TMPDIR='/tmp',                                         
//    TMPFILE=''                                             
//INPUT.SYSUT1 DD *                                          
 PDSLIB=GENAPP.CB12.SOURCE                                      
 LANG=COBOL                                                  
 MAPPING-LEVEL=3.0                                           
 PGMNAME=LGACUS01                                            
 REQMEM=SOAIC01                                              
 RESPMEM=SOAIC01                                             
 DATETIME=PACKED15                                           
 Log file=/u/cicsuser/genapp/json/logs/LS2JS_LSJSCUSC.LOG            
 URI=GENAPP/LSJSCUSC                                         
 PGMINT=COMMAREA                                             
 WSBIND=/u/cicsuser/genapp/json/wsbind/LSJSCUSC.wsbind 
 JSON-SCHEMA-REQUEST=/u/cicsuser/genapp/json//LGJSCUSCQ.json  
 JSON-SCHEMA-RESPONSE=/u/cicsuser/genapp/json/LGJSCUSCR.json 
/* 

The following parameters are supplied:

Log file The z/OS file system (zFS) file where a log of the DFHLS2JS processing 
is created.

PDSLIB The partitioned data set where the language structure source is 
stored.

PGMNAME The name of the program that the language structure relates to.

LANG The high-level language of the language structure source.

MAPPING-LEVEL The level of mapping applied by the JSON assistant. 3.0 or greater 
should be used, earlier mapping levels are supported only for 
compatibility with the SOAP web services assistants.

REQMEM The copybook in the partitioned data set (PDS) specified by the PDSLIB 
parameter that the request JSON schema is generated from.

RESPMEM The copybook in the PDS specified by the PDSLIB parameter that the 
response JSON schema is generated from.

DATETIME Specifies if JSON date-time properties in the language structure are 
mapped as time stamps. PACKED15 indicates that they are mapped as 
time stamps.

Note: The values in bold need changing for suitable values when running the DFHLS2JS for 
the Inquire (LGICUS01) and Update (LGUCUS01) requests. They all use the same SOAIC01 
copybook.
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URI Specifies the relative or absolute URI to be used by the client to 
access the JSON web service.

PGMINT Sets how CICS passes the data to the target program.

WSBIND The zFS file and location of the produced WSBIND file.

JSON-SCHEMA-REQUEST The zFS location of the JSON schema for the request output.

JSON-SCHEMA-RESPONSEThe zFS location of the JSON schema for the response output.

Full details of all the parameters for DFHLS2JS can be found in the “DFHLS2JS and high-level 
language to JSON schema conversion for linkable interface” topic in the CICS TS Feature 
Pack for Mobile Extensions Information Center, which for CICS TS V5.1 is located at the 
following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensio
ns.doc/reference/dfhws_js2lsapi.html

Example JCL for the Customer Inquiry (Example A-1 on page 164) is found in Appendix A, 
“Sample level for a JSON schema” on page 163.

9.3.3  Submitting the DFHLS2JS JCL

Having tailored the JCL to run the DFHLS2JS, submit the JCL for each of the three programs. 

A successful execution of the DFHLS2JS will finish with a return code 0. Verify the job output 
and log file to resolve any problems, should they occur.

The successful completion will create the following artifacts:

� A WSBIND file in the location specified to DFHLS2JS.

� A log file containing diagnostics related to the WSBIND file. You will be asked to supply this 
file if you need to contact IBM support for assistance.

� A JSON schema that describes the request to CICS.

� A JSON schema that describes the response from CICS.

In the case of a language structure to JSON, the produced response and request schemas 
will often be identical, because the communication area (COMMAREA) will normally be the 
same. This is the case in this scenario, however the JSON schema would be different, of 
course, if the copybooks differed.

The key parts of the generated JSON schema for the Customer Create request are shown in 
Example 9-4. For the full JSON schema that was produced, see “Sample JSON schema 
generated from COBOL customer create program” on page 164.

Example 9-4   JSON request schema produced from DFHLS2JS for Customer Create

{
   "$schema":"http:\/\/json-schema.org\/draft-04\/schema#",
   "description":"Request schema for the LGACUS01 JSON interface",
   "type":"object",
   "properties":{
      "LGACUS01Operation":{
         "type":"object",
         "properties":{
            "ca":{
               "type":"object",
               "properties":{
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                  "ca_request_id":{
                     "type":"string",
                     "maxLength":6
                  },

"ca_customer_num":{
                     "type":"integer",
                     "maximum":9999999999,
                     "minimum":0
                  },

.....

               },
               "required":[
                  "ca_request_id",
                  "ca_return_code",
                  "ca_customer_num",

.....
               ]
            }
         },
         "required":[
            "ca"
         ]
      }
   },
   "required":[
      "LGACUS01Operation"
   ]
}

The JSON produced by the assistant from the COBOL copybook includes all of the data fields 
that the program requires for input in the JSON schema. 

After the schema and description tags, there is the JSON structure itself. The top element in 
the language structure to JSON generated schema is always a wrapping operation field. In 
the customer create example, this is LGACUS01Operation.

After the operation field is the JSON representation of the COBOL data structure from the 
copybook. Because the original copybook has an 01 CA top-level structure, this is mapped to 
a JSON object, as is the LGACUS01Operation. In the Customer Create copybook, the data 
fields that the COBOL program expects are all at level 03. The assistant examines their 
COBOL data types, and then creates a mapping to a JSON data type. 

This results in the COBOL CA-REQUEST-ID field (PIC X(6)) being converted to a JSON string 
with a maximum length of 6 characters. Conversely, the CA-CUSTOMER-NUM (PIC 9(10)) is 
mapped to a JSON integer property ranging from 0 - 9999999999.

For more details of language data types and their mappings, see the CICS TS Feature Pack 
for Mobile Extensions V1.0 Information center.

In addition, the assistant generates a WSBIND file that is used by CICS to transform the JSON 
request to the application data.
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9.3.4  Enabling the JSON Request URI

To enable CICS to accept JSON requests, for the three customer functions of the GENAPP, 
the PIPELINE must perform a scan of the WSBIND files.

To perform a scan, you should have already created a PIPELINE resource in a CICS region 
that has permissions to read the zFS location of the WSBIND files directory specified on the 
WSBIND parameter of the assistants that were run in 9.3.3, “Submitting the DFHLS2JS JCL” on 
page 98.

Creating a PIPELINE resource is described in Chapter 5, “Configuring CICS for the example 
scenarios” on page 31.

To perform the PIPELINE scan in CICS Explorer, complete the following steps:

1. Select your PIPELINE resource. Right-click and select Scan from the menu as shown in 
Figure 9-1.

Figure 9-1   IBM CICS Explorer menu for PIPELINE resource

2. When the Perform Scan Operation dialog box appears, click OK, as shown in Figure 9-2.

Figure 9-2   IBM CICS Explorer Perform SCAN Operation
100 Implementing IBM CICS JSON Web Services for Mobile Applications



The PIPELINE will then scan the pickup directory defined for the resource. This will cause 
your newly created WSBIND file to be read, and creates the required WEBSERVICE and URIMAP 
for the JSON web service.

Use CICS Explorer web service operations views to see that these have been created and 
are in service.

The messages, shown in Example 9-5, are also viewable in the CICS MSGUSR log on a 
successful PIPELINE scan.

Example 9-5   Example CICS MSGUSR log of PIPELINE Scan success messages

DFHPI0703 I 25/06/2013 10:10:34 IYCKZCCE CICSUSER PIPELINE LSTOJSPI is about to 
scan the WSDIR directory.                           
DFHPI0715 I 25/06/2013 10:10:35 IYCKZCCE CICSUSER PIPELINE LSTOJSPI explicit scan 
has completed. Number of wsbind files found in the
           WSDIR directory: 000003. Number of WEBSERVICEs created or updated: 
000000. Number of WEBSERVICEs not requiring an update:
           000003. Number of failed WEBSERVICE creates or updates: 000000. 

Having successfully performed the PIPELINE scans, for each of the three WSBIND files, and 
created the required resources for the JSON requests, CICS can now accept JSON requests 
for the customer create, inquire, and update functions of the GENAPP.

9.3.5  Test that the JSON request can be successfully performed

To test the JSON request, use the command-line tool cURL. It is an open source tool that can 
be downloaded from the following website:

http://curl.haxx.se/

To complete this scenario, you make three JSON requests to the GENAPP using cURL. Use 
the following steps to complete this procedure:

1. Send a request to create a customer record. The syntax for cURL to send a test JSON 
request is composed of the following options:

– The curl option, to run the cURL executable file
– The -v option, for verbose (useful for debugging purposes)
– The -H option, to specify the header (use "Content-Type: application/json")
– The -d option, the JSON data to send
– The URI to send the data to

For the Create Customer request, send some JSON data to the create customer URI.

The data to be sent can be gathered from the JSON schema produced by the assistant. 
You do not need to send all of the fields in the request, because CICS will populate the 
fields with blank data where values are not supplied. Then, it is up to the application to 
handle uninitialized values. 

The GENAPP does this and initializes the numeric fields on input. Care must be taken, 
because failing to handle uninitialized values, and passing this data back, might cause a 
conversion error on the response. In this scenario, shorten the JSON to just send in the 
data required by omitting unnecessary string fields. 

Note: For more information about alternative tools to perform this check, see the following 
website:

http://www.json.org/ 
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The data this scenario sent in JSON format is shown in Example 9-6.

Example 9-6   JSON customer create data

{"LGACUS01Operation":{ "ca" : {
   "ca_request_id" : "02ACUS",
   "ca_first_name" :"anew",
   "ca_last_name": "customer",
   "ca_dob" :"1970-01-01",
   "ca_house_num" :"22",
   "ca_postcode" : "ZP1 1EX",
   "ca_email_address" : "example@example.com",
   }
 }
}

This example will need flattening out on the command line, and the quotations escaped.

The command line then looks as per Example 9-7. Change the URI to your CICS JSON 
customer create URI.

Example 9-7   cURL command line request for create customer request

curl -v -H "Content-Type: application/json" -d 
{\"LGACUS01Operation\":{\"ca\":{\"ca_request_id\":\"02ACUS\",\"ca_first_name\":
\"anew\",\"ca_last_name\":\"customer\",\"ca_dob\":\"1970-01-01\",\"ca_house_num
\":\"22\",\"ca_postcode\":\"ZP11EX\",,\"ca_email_address\":\"example@example.
com\",}}} http://your.cics.region:30661/GENAPP/LSJSCUSC

Running the cURL command sends the request, of your JSON request, to the PIPELINE 
resource. There the data will be transformed to the COBOL program. It processes and 
creates a new customer record in the DB2 database. Having completed the new customer 
record task, it will then send a response back to the cURL tool with the status of its request 
and a new customer number. In addition, it includes all of the other customer data 
described in the JSON responses schema that is produced by the assistant.

Assuming your request was successful, cURL should receive an HTTP 200 OK response, 
application headers, and data (as shown in Example 9-8).

Example 9-8   Example HTTP 200 OK Success Response with headers returned to cURL

* About to connect() to your.cics.region:3066 (#0)
*   Trying 256.256.256.256... connected
> POST /GENAPP/LSJSCUSC HTTP/1.1
> User-Agent: curl/7.23.1 (x86_64-pc-win32) libcurl/7.23.1 OpenSSL/0.9.8r 
zlib/1
.2.5
> Host: winmvs.host.ibm.com:30610
> Accept: */*
> Content-Type: application/json
> Content-Length: 253
>
* upload completely sent off: 253 out of 253 bytes
< HTTP/1.1 200 OK
< content-type: application/json
< Date: Tue, 18 Jun 2013 09:43:31 GMT
< Server: IBM_CICS_Transaction_Server/5.1.0(zOS)
< Content-Length: 000000000000360
<
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{"LGACUS01OperationResponse":{"ca":{"ca_request_id":"02ACUS","ca_return_code":0
,
"ca_customer_num":1000106,"ca_first_name":"anew","ca_last_name":"customer","ca_
dob":"1970-01-01","ca_house_name":"","ca_house_num":22,"ca_postcode":"ZP11EX","
ca_num_policies":0,"ca_phone_mobile":"","ca_phone_home":"","ca_email_address":"
example@example.com","ca_policy_data":""}}}

After the headers, the JSON data is returned. This should include a return code of 0, and 
the new customer number created by your request.

For the purposes of this scenario, the customer number returned was 1000106. You can 
then use the customer number in a follow-up request to perform an inquiry on this newly 
created customer.

2. Send a request to inquire on a customer record.

As before, you can shorten the JSON request, and in this case just supply the two integer 
fields in the request. 

In a more readable format of the JSON, the request this scenario sent is as shown in 
Example 9-9. Note that the operation field (LGICUS01Operation) has changed to the 
operation field in the generated customer inquiry JSON schema generated by the 
assistant.

Example 9-9   JSON Customer Inquire data

{"LGICUS01Operation":{ "ca" : {

   "ca_customer_num" : "1000106",
}
 }
}

The command line then looks as shown in Example 9-10. Again, change the URI to your 
CICS JSON customer inquiry URI.

Example 9-10   The cURL command-line request for inquire customer request.

curl -v -H "Content-Type: application/json" -d 
{\"LGICUS01Operation\":{\"ca\":{\"ca_customer_num\":\"1000106\"}}} 
http://your.cics.region:30661/GENAPP/LSJSCUSI

On a successful request, the data to be returned will look as shown in Example 9-11. 
Again, the request returns all of the required fields in the JSON response schema.

Example 9-11   The JSON data returned by the Inquire Request

{"LGICUS01OperationResponse":{"ca":{"ca_request_id":"","ca_return_code":0,"ca_
customer_num":1000106,"ca_first_name":"anew","ca_last_name":"customer","ca_dob"
:"1970-01-01","ca_house_name":"","ca_house_num":22,"ca_postcode":"ZP1 
1EX","ca_num_
policies":0,"ca_phone_mobile":"","ca_phone_home":"","ca_email_address":"example
@example.com","ca_policy_data":""}}}

3. Send a request to update a customer record.

Finally, you send a request to update the customer record. In this example, the customer’s 
house number will be changed from 22 to 42.
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You need to send all of the fields back that are populated in the database, because 
sending blank strings will put a blank string into the customer record on the host database.

So the JSON request looks as shown in Example 9-12.

Example 9-12   Customer Update JSON data

{"LGUCUS01Operation":{ "ca" : {
   "ca_request_id" : "01UCUS",
   "ca_customer_num" : "1000106",
   "ca_first_name" :"anew",
   "ca_last_name": "customer",
   "ca_dob" :"01-01-1970",
   "ca_house_name": "",
   "ca_house_num" :"42",
   "ca_postcode" : "ZP11EX",
   "ca_phone_mobile" : "",
   "ca_phone_home" : "",
   "ca_email_address" : "example@example.com",
   "ca_policy_data" : ""
   }
 }
}

Change the URI to match your configuration, using cURL command-line format, as shown 
in Example 9-13. 

Example 9-13   The cURL command-line request for update customer request

curl -v -H "Content-Type: application/json" -d 
{\"LGUCUS01Operation\":{\"ca\":{\"ca_request_id\":\"01UCUS\",\"ca_customer_num\
":\"0001000106\",\"ca_first_name\":\"anew\",\"ca_last_name\":\"customer\",\"ca_
dob\":\"1970-01-01\",\"ca_house_name\":\"\",\"ca_house_num\":\"42\",\"ca_
postcode\":\"ZP11EX\",\"ca_phone_mobile\":\"\",\"ca_phone_home\":\"\",\"ca_
email_address\":\"example@example.com\",\"ca_policy_data\":\"\"}}} 
http://your.cics.region:30661/GENAPP/LSJSCUSU

A successful request results in the customer’s house number being updated to 42, and the 
updated record being returned to you.

As can be seen from the JSON that is used in the examples in this chapter, the input structure 
contains some output-only fields. The reverse might also be true, in that some output data 
contains input-only data. In addition, the data names are based on the language structure’s 
original names. These names might not be meaningful to the JSON developer.

To make the JSON schema more meaningful to a JSON application developer, it could be 
modified to suit the service for which it is being used. If the JSON schema is modified, the 
WSBIND file and the COBOL structures would need regenerating using DFHJS2LS. This would 
necessitate the creation of a wrapper application to use this new COBOL interface with the 
existing COBOL applications. This is described in detail in the scenario in Chapter 10, “JSON 
schema to language structure scenarios” on page 105.
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Chapter 10. JSON schema to language 
structure scenarios

This chapter describes how language structures for Common Business Oriented Language 
(COBOL), PL/I, C, and C++ can be generated from existing JavaScript Object Notation 
(JSON) schema definitions. Two approaches for calling existing or new Customer Information 
Control System (CICS) applications incorporating the generated copybooks are explored in 
detail. 

Procedures for calling CICS applications from the JSON web service Request-Response 
pattern, and from a Representational State Transfer (REST)-conforming (RESTful) JSON 
web service interface, are provided. 

This chapter describes a process known as the top-down scenario, and is of particular 
relevance where a mobile application is required to interact with a CICS Transaction Server 
(CICS TS) system from predefined JSON schema definitions.

This chapter contains the following topics:

� 10.1, “JSON web services: Request-Response and RESTful” on page 106
� 10.2, “JSON web services: A use case” on page 106
� 10.3, “Request-Response JSON web service implementation” on page 107
� 10.4, “RESTful JSON web service implementation” on page 115
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10.1  JSON web services: Request-Response and RESTful

The first part of this chapter provides information about implementation aspects of the 
Request-Response JSON web service pattern. Two JSON schemas, one for request and a 
second for response, are used as an example case for this model. 

This chapter will then build on the RESTful JSON web service information found in earlier 
chapters to describe an implementation scenario of several RESTful methods.

10.2  JSON web services: A use case

In this use case, a company wants to integrate a new mobile application, developed with IBM 
Worklight, to an existing CICS application, the general insurance application (GENAPP). 

The business requirement is for a state of the art mobile application to retrieve customer data 
from the customer inquiry process contained within GENAPP. In this scenario, the business 
priority is for a mobile application that is highly intuitive, and that data transfer between the 
mobile application and CICS is kept to a minimum. 

As such, not all of the customer data contained within GENAPP, and stored on a DB2 
database, is required by the mobile application. Additionally, given that the GENAPP business 
logic serves a number of application functions, and that the company has time constraints to 
deliver the mobile application to the market, no changes are permitted to the base GENAPP 
application. 

A solution to this requirement is for the JSON payload emitted from the mobile application to 
be processed as a JSON web service by CICS interfacing to GENAPP. This JSON payload 
could be created from scratch and supplied by the mobile development team, an application 
design team, or a team of architects. The deliverable is a set of JSON schemas specifying 
only the data required: 

� One for the request payload
� One for the response

The JSON schemas are mapped using the DFHJS2LS utility to COBOL language structures. A 
wrapper program, in this case written in COBOL and deployed to CICS, is used to map the 
relevant data items in the wrapper program to the format expected by GENAPP. Therefore, no 
changes are required to GENAPP itself.

The technique described, known as the top-down approach, processes existing JSON 
schema to create traditional language structures. It should be noted that the scenario 
described interfaces to an existing CICS application. However, the top-down approach, given 
that it creates traditional language structures (such as copybooks and the relevant CICS 
artifacts) is equally applicable for writing functions in new CICS applications. 

Note: See the information in 2.4.1, “JSON with feature pack” on page 13, 
“Request-Response” on page 23, and “RESTful” on page 24, which describe the 
Request-Response and RESTful JSON web service patterns, and aspects of the CICS 
implementation of these patterns.
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The following sections in this chapter describe how this scenario can be implemented by 
integrating a JSON web service with GENAPP. A step-by-step approach is described, and 
shows how this business requirement is achieved by both a Request-Response and a 
RESTful approach.

Figure 10-1 shows how the DFHJS2LS utility processes the JSON schema, and generates both 
the appropriate language structures and the associated WSBIND file.

Figure 10-1   DFHJS2LS utility processing

10.3  Request-Response JSON web service implementation

This section details the step-by-step process in implementing the business scenario 
previously described. 

At the end of this section, you will have processed an incoming JSON web service request, 
potentially arriving from a mobile device, to perform a customer inquiry request to GENAPP. 
Data returned from the GENAPP customer inquiry request is returned in JSON format.

The following tasks are performed: 

1. A review of the incoming and outgoing JSON schema.

2. The definition of the necessary parameters as input to the JSON assistant that maps the 
JSON schema to the language structure.

3. The development of the CICS wrapper program that performs the transformation between 
the language structures created by the JSON assistant and the COBOL format required 
by GENAPP. 

4. The definition of the necessary CICS resources, and execution of the PIPELINE scan 
operation.

5. Testing of the JSON web service to application transformation when starting a GENAPP 
customer inquiry request.

10.3.1  Reviewing the JSON schema

The mobile development team has created a functional mobile application that is required to 
interface to the CICS GENAPP application through defined JSON schema interfaces. To 
facilitate lightweight data transfer, the request schema is required to contain only a couple of 
elements. This is a key advantage of the JSON schema to language structure mapping 
process, in that only the JSON elements that are specifically required need to be defined, and 
can be mapped to a new or existing language structure (for example, a COBOL copybook). 
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This contrasts with the language structure to JSON schema mapping process, as described 
in Chapter 9, “Language structure to JSON schema scenario” on page 93, whereby the 
JSON schema elements are generated for each and every defined data item in the language 
structure.

Similarly, the response schema contains only the elements required to satisfy the mobile 
application. Note also that, in terms of naming conventions and data length, there is no direct 
relationship between the elements defined in the schema and data definition in the existing 
GENAPP COBOL copybook.

The request JSON schema and an extract of the response JSON schema definitions follow. 
See Example 10-1 and Example 10-2.

Example 10-1   Request JSON schema definition

{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "JSON request schema for Customer Inquiry",
    "type": "object",
    "properties": {
        "cust_inquiry_request": {
            "type": "object",
            "properties": {
                "function_request_id": {
                    "type": "string",
                    "minLength": 15,
                    "maxLength": 15
                },
                "cust_number": {
                    "type": "integer",
                    "maximum": 9999999999,
                    "minimum": 0
                }
            },
            "required": [
                "function_request_id",
                "cust_number"
            ]
        }
    },
    "required": [
        "cust_inquiry_request"
    ]
}

Example 10-2   Extract of response JSON schema definition

{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "JSON response schema for Customer Inquiry",
    "type": "object",
    "properties": {

Note: The request and response JSON schema definitions are provided in full in the 
additional materials that accompany this IBM Redbooks publication.
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        "cust_inquiry_response": {
            "type": "object",
            "properties": {
                "ret_code": {
                    "type": "integer",
                    "maximum": 999,
                    "minimum": 0
                },
                "cust_number": {
                    "type": "integer",
                    "maximum": 9999999999,
                    "minimum": 0
                },
                "first_name": {
                    "type": "string",
                    "minLength": 20,
                    "maxLength": 20
                },
                "last_name": {
                    "type": "string",
                    "minLength": 20,
                    "maxLength": 20
                },
                "date_of_birth": {
                    "type": "string",
                    "minLength": 10,
                    "maxLength": 10

 ......

When provided by the mobile development team, the request and response JSON schemas 
are uploaded, using File Transfer Protocol (FTP) or another mechanism, to an appropriate 
directory in the z/OS UNIX directory structure (z/OS File System, or zFS). For example, this 
could include the following directories:
/u/cicsuser/genapp/json/CustInquiryRequest.jsanon       
/u/cicsuser/genapp/json/CustInquiryResponse.json 

The uploaded JSON schema forms the input to the JSON assistant that performs the 
mapping between the JSON schema and the language structures.

10.3.2  Mapping the JSON schema to language structures

The CICS TS Feature Pack for Mobile Extensions V1.0 contains JSON assistant utilities that 
can be used in the creation of service provider applications derived from JSON schema.

The DFHJS2LS batch program is supplied in the SDFHMOBI data set supplied with the CICS TS 
Feature Pack for Mobile Extensions V1.0. 

Note: See the “Creating a service provider application from a JSON schema” topic in the 
CICS TS Information Center. It provides a full list of prerequisite configuration information 
needed before running the JSON assistant utility. This information, for CICS TS 5.1, can be 
found at the following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileexten
sions.doc/reference/dfhws_js2lsapi.html
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This batch program is used to generate a web service bind file and the appropriate language 
data structures. DFHJS2LS contains a large set of optional parameters that are fully 
documented in the CICS TS Information Center. 

Example 10-3 shows the batch processing of the JSON schema (previously uploaded), and 
creates two COBOL copybook files.

Example 10-3   Sample JCL for the DFHJS2LS batch procedure

//JS2LSGRR JOB  ,,CLASS=A,REGION=900M,
//         MSGCLASS=H,NOTIFY=&SYSUID
//*
//********************************************************
//* JSON to language structure conversion routine
//********************************************************
//*
//JS2LS JCLLIB ORDER=(CICS51.SDFHMOBI)
//    EXEC DFHJS2LS,
//    JAVADIR='java/J7.0_64/J7.0_64',
//    PATHPREF='',
//    USSDIR='uss dir',
//    TMPDIR='/tmp',
//    TMPFILE=''
//INPUT.SYSUT1 DD *
 PDSLIB=USER.JS2LS.COPYLIB
 LANG=COBOL
 MAPPING-LEVEL=3.0
 MAPPING-OVERRIDES=UNDERSCORES-AS-HYPHENS
 PGMINT=COMMAREA
 PGMNAME=GENAJSNW
 REQMEM=JSONRQ
 RESPMEM=JSONRP
 URI=/genapp/CustInquiry
 LOGFILE=/u/cicsuser/genapp/json/logs/CustInquiry.log
 WSBIND=/u/cicsuser/genapp/json/wsbind/CustInquiry.wsbind
 JSON-SCHEMA-REQUEST=/u/cicsuser/genapp/json/CustInquiryRequest.json
 JSON-SCHEMA-RESPONSE=/u/cicsuser/genapp/json/CustInquiryResponse.json
/*

Some of the key parameters referenced in the DFHJS2LS utility, shown in Example 10-3, are 
described in the Table 10-1.

Table 10-1   Key parameters referenced in the DFHJS2LS utility

Parameter Description

PDSLIB Specifies the name of the partitioned data set that contains the 
generated high-level language structure, for example, the 
generated COBOL copybooks.

LANG Specifies the programming language of the high-level language 
structure, for example, COBOL. DFHJS2LS can generate COBOL, 
C/C++, or PL/I language data structures.

MAPPING-LEVEL The value of 3.0 should be used as the mapping level to generate 
JSON schema. MAPPING-LEVEL specifies the level of mapping that 
DFHJS2LS uses when generating the WSBIND file and language 
structure.
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10.3.3  Submitting the DFHJS2LS JCL

After configuration of the DFHJS2LS JSON assistant, the job should be submitted to the Job 
Entry Subsystem (JES) queue, and its return code checked for a successful execution, with a 
return code value of 0. If a return code value of 0 is not returned, investigate the causes of the 
failure. In the event of an error, messages are produced in the job log, and they can be a 
useful source of diagnostic information for further analysis and investigation.

On successful execution, CICS generates the WSBIND file and places it in the location 
specified by the WSBIND parameter. 

MAPPING-OVERRIDES Set as UNDERSCORES-AS-HYPHENS. This parameter value converts 
any underscores in the Web Services Description Language 
(WSDL) document to hyphens, rather than the character X, to 
improve the readability of the generated COBOL language 
structures.

PGMNAME Specifies the CICS PROGRAM resource name of the application 
program, such as the CICS wrapper program that is to be linked 
to when the service is called.

PGMINT For a service provider, specifies how CICS passes data to the 
target application program, either in a CHANNEL or 
communication area (COMMAREA).

REQMEM Specifies a 1 - 6 character prefix that DFHJS2LS uses to generate 
the names of the partitioned data set members that contain the 
high-level language structures for the web service request, which 
is the input data to the application program.

RESPMEM Specifies a 1 to 6 character prefix that DFHJS2LS uses to generate 
the names of the partitioned data set members that contain the 
high-level language structures for the web service response, 
which is the output data from the application program.

URI This parameter specifies the relative Uniform Resource Identifier 
(URI) that a client uses to access the web service. CICS uses this 
when installing the web service as part of a PIPELINE scan 
operation.

LOGFILE The fully qualified zFS name of the file into which DFHJS2LS writes 
its activity log and trace information.

WSBIND The fully qualified zFS name of the web service bind file to be 
created.

JSON-SCHEMA-REQUEST The fully qualified zFS name of the location where the request 
JSON schema is stored.

JSON-SCHEMA-RESPONSE The fully qualified zFS name of the location where the response 
JSON schema is stored.

Note: For more information regarding the JSON to language structure mapping data types, 
see the “High-level language and JSON schema mapping” topic in the CICS TS 
Information Center.

Parameter Description
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The COBOL language structures are also created and placed in the partitioned data set 
specified by the PDSLIB parameter, prefixed by the values provided in the REQMEM and RESPMEM 
parameters.

An extract of the COBOL copybook, generated as a result of processing the request JSON 
schema, is shown in Example 10-4. 

Example 10-4   Generated DFHJS2LS language structure 

             06 cust-inquiry-request.
               09 function-request-id           PIC X(15).
               09 cust-number                   PIC 9(10) DISPLAY.

The data names and the data item-level information contained in the generated copybook can 
be manually amended to adhere to site standards. However, it is important that no changes to 
the actual data definitions or order of the data items are made, because this will negate the 
mapping of the language structures contained within the WSBIND file.

10.3.4  Developing the CICS wrapper application program

The COBOL copybooks have been generated and can now be included in a CICS wrapper 
program. The function of the wrapper program is to map the COBOL data structures defined 
in the language structure copybooks to a format that is recognizable by an existing CICS 
application. 

At this point, create a new CICS wrapper program, GENAJSNW, that will map the generated 
language structure copybooks into a format that GENAPP can process.

An evaluation of how data is passed to the wrapper program is done during the design stage. 
For example, if the PGMINT parameter was set to COMMAREA in the DFHJS2LS batch procedure, 
standard COMMAREA processing will have to be included in the wrapper program logic. 
Similarly, if CHANNEL was specified as the value for PGMINT, channel and container logic should 
be included in the CICS wrapper program.

Compile the CICS wrapper program using standard compilation procedures, and ensure that 
the program is in a data set referenced in the DFHRPL concatenation or referenced by a 
LIBRARY resource.

10.3.5  Defining the CICS resources

For the compiled CICS wrapper program, if the CICS autoinstall facility is not used, create a 
new PROGRAM or LIBRARY definition for the GENAJSNW program using CICS Explorer. Define the 
Program Type as Assembler, C/C++, COBOL, or PL/I. 

The DFHJS2LS JSON assistant generated the WSBIND file and placed it in the location specified 
by the WSBIND parameter. The generated web service bind file should be copied to the pickup 
directory of the provider mode PIPELINE resource that you want to use for your web service 
application. 

Note: The content of the CICS wrapper program, GENAJSNW in this example, is provided in 
the additional materials that accompany this IBM Redbooks publication. 

Note: Details about creating a PIPELINE configuration can be found in 5.2.2, “How to 
configure CICS as a service provider” on page 34.
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A PIPELINE scan operation should now be performed: 

1. Select the appropriate PIPELINE definition in CICS Explorer.
2. Right-click to view options, and select the SCAN operation, as shown in Figure 10-2.

Figure 10-2   Pipeline SCAN operation

The PIPELINE scan operation will dynamically create the WEBSERVICE resource and URIMAP 
resource. The WEBSERVICE resource encapsulates the web service bind file in CICS, and is 
used at run time. The URIMAP resource provides CICS with the information to associate the 
WEBSERVICE resource with a specific URI to accept JSON requests for the GENAPP function.

After the PIPELINE scan operation, validate that the URIMAP and WEBSERVICE resources have 
been correctly installed into CICS. Using CICS Explorer, use the URI Maps and web service 
views, as shown in Figure 10-3 and Figure 10-4 on page 114.

Specifically, the CICS WEBSERVICE definition is shown in Figure 10-3.

Figure 10-3   CICS WEBSERVICE definition
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Specifically, the CICS URIMAP definition is shown in Figure 10-4.

Figure 10-4   CICS URIMAP definition

Note that the name of the WEBSERVICE is derived from the name of the WSBIND file. The path 
setting, in the URIMAP, is obtained from the URI parameter in the DFHJS2LS batch procedure.

Results of the PIPELINE scan operation can also be obtained by viewing the CICS MSGUSR log. 
Messages will be produced to indicate a successful generation of the WEBSERVICE, or 
diagnostic information will be produced for further analysis and investigation.

10.3.6  Testing the application

Our application is now ready for testing. To test our scenario, we will send a single function 
(getCustomer) to retrieve customer data from GENAPP. The JSON payload that is sent to 
CICS for processing is displayed in Example 10-5.

Example 10-5   JSON web service payload for GENAPP customer retrieval

{
   "cust_inquiry_request": {
      "function_request_id": "getCustomer", 
      "cust_number": 9
      }
   }

The JSON web service request in Example 10-5 sends the getCustomer request to CICS to 
retrieve customer inquiry data for a specific customer (account number 9). 

Because cURL is a command-line tool, the command line requires flattening out to the 
command line and the quotations escaped. The resulting command line is shown in 
Example 10-6.

Example 10-6   The cURL command line for GENAPP customer retrieval

curl -v -H "Content-Type: application/json" -X POST -d 
{\"cust_inquiry_request\":{\"function_request_id\":\"getCustomer\",\"cust_number\"
:\"0000000009\"}} http://your.cics.region:30661/genapp/CustInquiry

Running this command file will send the JSON web service payload to the CICS PIPELINE 
using the URI specified. The WSBIND file is processed, the JSON web service request is 
transformed to application data, and the CICS wrapper program is started. The CICS wrapper 
program maps the COBOL data into a structure that is suitable for processing by GENAPP. 

Note: See Chapter 10, section 10.3.5, for details of the cURL utility that is used to test the 
Request-Response JSON web service.
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After standard GENAPP processing, in which the appropriate customer information is 
retrieved, the CICS wrapper program will again convert the GENAPP format data structures 
into a COBOL format. The COBOL format is transformed to JSON web service data for 
returning to the cURL process. 

Successful invocation of the cURL command file results in a 200 OK status response, with the 
customer inquiry data returned from GENAPP, as per Example 10-7.

Example 10-7   Invocation of the CustInquiryRequest command file

> POST /genapp/CustInquiry HTTP/1.1
> User-Agent: curl/7.23.1 (x86_64-pc-win32) libcurl/7.23.1 OpenSSL/0.9.8r 
zlib/1.2.5
> Host: your.cics.region:30661
> Accept: */*
> Content-Type: application/json
> Content-Length: 89
>
* upload completely sent off: 89 out of 89 bytes
< HTTP/1.1 200 OK
< content-type: application/json
< Date: Mon, 17 Jun 2013 16:04:12 GMT
< Server: IBM_CICS_Transaction_Server/5.1.0(zOS)
< Content-Length: 000000000000183
<
{"cust_inquiry_response":{"ret_code":0,"cust_number":9,"first_name":"Micky","last_
name":"Murphy",
"date_of_birth":"1966-01-03","zipcode":"CA316RN","cell_number":
"","email_address":""}}* Connection #0 to host your.cics.region left intact
* Closing connection #0

10.4  RESTful JSON web service implementation

This section details the step-by-step process used in implementing the business scenario, 
described in 10.2, “JSON web services: A use case” on page 106, but this time taking 
advantage of the RESTful capabilities available with JSON web services. 

REST defines a set of architectural principles by which you can design web services that 
focus on a system's resources, including how resource states are addressed and transferred 
over Hypertext Transfer Protocol (HTTP).

The example in this book demonstrates some of the key design elements regarding the 
implementation of a RESTful web service: 

� It uses HTTP methods explicitly.
� It is stateless.
� It transfers JSON.

As such, a one-to-one mapping between create, read, and update operations to HTTP 
methods is used. 

Note: The content of the CustInquiryRequest command file is provided in the additional 
materials that accompany this IBM Redbooks publication.
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This mapping uses the following commands:

POST To create a resource on the server (a new GENAPP customer).
GET To retrieve a resource (an existing new GENAPP customer).
PUT To change the state of a resource or to update it (an existing new 

GENAPP customer).

At the end of this section, the scenario has processed an incoming JSON web service 
request, potentially arriving from a mobile device, to perform a number of customer 
operations. Those operations include customer inquiry request, customer update, and the 
addition of new customer information. Data returned from these GENAPP customer 
operations is returned in JSON format.

The following tasks will be performed:

1. Reviewing the JSON schema used for the RESTful operations

2. Defining the necessary parameters as input to the JSON assistant that maps the JSON 
schema to the language structure for RESTful processing

3. Developing the CICS wrapper program that performs the transformation between the 
language structures created by the JSON assistant and the COBOL format required by 
GENAPP

4. Defining the necessary CICS resources, and executing the PIPELINE scan operation

5. Testing the JSON web service to application transformation when starting GENAPP 
customer operations

10.4.1  Reviewing the JSON schema

The mobile development team has created a functional mobile application that is required to 
interface to the CICS GENAPP application through a defined JSON schema interface. Unlike 
the Request-Response scenario, a single JSON schema definition is processed for RESTful 
processing, and is used for both input and output operations.

An extract of the RESTful JSON schema is included in Example 10-8.

Example 10-8   Extract of the CustService JSON schema for RESTful processing

{
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "JSON restful schema for Customer Operations",
    "type": "object",
    "properties": {
        "cust_details": {
            "type": "object",
            "properties": {

"cust_number": {
                    "type": "integer",
                    "maximum": 9999999999,
                    "minimum": 0
                },
                "first_name": {
                    "type": "string",
                    "minLength": 20,
                    "maxLength": 20
                },
                "last_name": {
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                    "type": "string",
                    "minLength": 20,
                    "maxLength": 20
                },
                "date_of_birth": {
                    "type": "string",
                    "minLength": 10,
                    "maxLength": 10
                },
                "zipcode": {
                    "type": "string",
                    "minLength": 8,
                    "maxLength": 8
                },

 .....

When provided by the mobile development team, the JSON schema for RESTful processing 
is uploaded, via FTP or another mechanism, to an appropriate directory in the zFS (for 
example, in the following directory): 

/u/cicsuser/genapp/json/CustService.json 

The uploaded JSON schema forms the input to the JSON assistant that performs the 
mapping between the JSON schema and the language structures.

10.4.2  Mapping the JSON schema to language structures

The CICS TS Feature Pack for Mobile Extensions V1.0 contains JSON assistant utilities that 
can be used in the creation of service provider applications derived from JSON schema. 
Artifacts, created by the JSON assistants, apply to both the Request-Response and RESTful 
JSON web service patterns, and in the development of a JSON web service client 
application. 

The DFHJS2LS batch program is provided in the SDFHMOBI data set supplied with the CICS TS 
Feature Pack for Mobile Extensions V1.0. This batch program is used to generate a web 
service bind file and the appropriate language data structures. DFHJS2LS contains a large set 
of optional parameters that are fully documented in the CICS TS Information Center. 

The job control language (JCL) shown in Example 10-9 processes the JSON schema for 
RESTful JSON web service processing that was previously uploaded, and creates a COBOL 
copybook. 

Example 10-9   Sample JCL for the DFHJS2LS batch procedure for RESTful processing

//JS2LSGRS  JOB  ,,CLASS=A,MSGCLASS=A,NOTIFY=&SYSUID
//*
//********************************************************

Note: The JSON schema definition for RESTful processing is provided in full in the 
additional materials that accompany this IBM Redbooks publication

Note: See the “Creating a service provider application from a JSON schema” topic in the 
CICS TS Information Center for a list of prerequisite configuration information before 
running the JSON assistant. 
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//* JSON schema to wsbind conversion routine
//********************************************************
//*
//JS2LS JCLLIB ORDER=(CICS51.SDFHMOBI)
//    EXEC DFHJS2LS,
//    JAVADIR='java/J7.0_64/J7.0_64',
//    PATHPREF='',
//    USSDIR='uss dir',
//    TMPDIR='/tmp',
//    TMPFILE=''
//INPUT.SYSUT1 DD *
 PDSLIB=USER.JS2LS.COPYLIB
 PDSMEM=GENRST
 MAPPING-LEVEL=3.0
 MAPPING-OVERRIDES=UNDERSCORES-AS-HYPHENS
 CHAR-VARYING=NO
 LANG=COBOL
 PGMNAME=GENARSTW
 PGMINT=CHANNEL
 HTTP-METHODS=GET,POST,PUT
 URI=/genapp/CustService/*,
 LOGFILE=/u/cicsuser/genapp/json/logs/CustService.log
 WSBIND=/u/cicsuser/genapp/json/wsbind/CustService.wsbind
 JSON-SCHEMA-RESTFUL=/u/cicsuser/genapp/json/CustService.json
/*

Some of the key parameters referenced in the DFHJS2LS batch procedure in Example 10-9 on 
page 117 are described in Table 10-2.

Table 10-2   Referenced key parameters

Parameter Description

PDSLIB Specifies the name of the partitioned data set that contains the 
generated high-level language structure (for example, the 
generated COBOL copybooks).

LANG Specifies the programming language of the high-level language 
structure (for example, COBOL). DFHJS2LS can generate 
COBOL, C/C++, or PL/I language data structures.

MAPPING-LEVEL The value of 3.0 should be used as the mapping level to generate 
JSON schema. MAPPING-LEVEL specifies the level of mapping that 
DFHJS2LS uses when generating the WSBIND file and language 
structure.

MAPPING-OVERRIDES Set as UNDERSCORES-AS-HYPHENS. This parameter value converts 
any underscores in the WSDL document to hyphens, rather than 
the character X, to improve the readability of the generated 
COBOL language structures.

PGMNAME Specifies the CICS PROGRAM resource name of the application 
program, such as the CICS wrapper program that is to be linked 
to when the service is called.

PGMINT For a service provider, specifies how CICS passes data to the 
target application program, either in a CHANNEL or 
COMMAREA.
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10.4.3  Submitting the DFHJS2LS JCL

After configuration of the DFHJS2LS JSON assistant utility, the job should be submitted to the 
JES queue, and its return code checked for a successful execution with a return code value of 
0. If a return code value of 0 is not returned, investigate the causes of the failure. In the event 
of an error, messages are produced in the job log, and they can be a useful source of 
diagnostic information for further analysis and investigation.

On successful execution, CICS generates the WSBIND file and places it in the location 
specified by the WSBIND parameter. The COBOL language structures are also created, and 
are placed in the partitioned data set specified by the PDSLIB parameter, prefixed by the value 
provided in the PDSMEM parameter.

An extract of the COBOL copybook generated as a result of processing the RESTful JSON 
schema is included in Example 10-10.

Example 10-10   Extract of DFHJS2LS generated COBOL copybook for RESTful processing

 06 cust-details.
               09 cust-number                   PIC 9(10) DISPLAY.
               09 first-name                    PIC X(20).
               09 last-name                     PIC X(20).
               09 date-of-birth                 PIC X(10).
               09 zipcode                       PIC X(8).
               09 cell-number                   PIC X(20).
               09 email-address                 PIC X(40).

PDSMEM Specifies a 1 - 6 character prefix that DFHJS2LS uses to generate 
the name of the partitioned data set member that contains the 
high-level language structures for the web service request, which 
is the input data to the application program.

HTTP-METHODS If a value is provided, DFHJS2LS builds a WSBIND file in which only 
the explicitly specified HTTP methods are accepted. The default 
value is for GET, POST, PUT, and DELETE to be set, which tells 
DFHJS2LS that the application supports the four main RESTful 
operations.

URI This parameter specifies the relative URI that a client uses to 
access the web service. CICS uses this when installing the web 
service as part of a PIPELINE scan operation.

LOGFILE The fully qualified zFS name of the file into which DFHJS2LS writes 
its activity log and trace information.

WSBIND The fully qualified zFS name of the web service bind file to be 
created.

JSON-SCHEMA-RESTFUL The fully qualified zFS name of the location where the RESTful 
JSON schema is stored.

Note: For more information regarding the JSON to language structure mapping data types, 
see the “High-level language and JSON schema mapping” topic in the CICS TS 
Information Center.

Parameter Description
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The data names and the data item-level information contained in the generated copybook can 
be manually amended to adhere to site standards. However, it is important that no changes to 
the actual data definitions or order of the data items are made, because this negates the 
mapping of the language structures contained within the WSBIND file.

10.4.4  Developing the CICS wrapper application program

The COBOL language structure copybook for RESTful processing was created, and it can 
now be included in a CICS wrapper program. The function of the wrapper program is to map 
the COBOL data structures defined in the language structure copybooks to a format that is 
recognizable by a new or existing CICS application. 

A new CICS wrapper program, GENARSTW, is created, and it maps the generated language 
structure copybook into a format that GENAPP can process. GENARSTW then processes 
inbound JSON web service requests that are started using RESTful method formats. Note 
that in the sample GENARSTW CICS wrapper program (Example 10-11), the HEAD and DELETE 
RESTful methods are not supported.

Example 10-11   Code sample from the GENARSTW COBOL wrapper program

***************************************************************** 
      * Perform the method                                              
      ***************************************************************** 
       PROCESS-METHOD.                                                  
           EVALUATE WS-HTTP-METHOD                                      
               WHEN METHOD-GET                                          
                    PERFORM GET-DATA                                    
               WHEN METHOD-PUT                                          
                    PERFORM PUT-DATA                                    
               WHEN METHOD-POST                                         
                    PERFORM POST-DATA                                   
               WHEN OTHER                                               
                    EXEC CICS ABEND                                     
                        ABCODE(UNSUPPORTED-METHOD-ABCODE)               
                    END-EXEC                                            
           END-EVALUATE. 

Compile the CICS wrapper program using standard compilation procedures, and ensure that 
the program is in a data set referenced in the DFHRPL concatenation, or referenced by a 
LIBRARY resource.

10.4.5  Defining the CICS resources

If the CICS autoinstall facility is not used for the compiled CICS wrapper program, create a 
new PROGRAM or LIBRARY definition for the GENAJSNW program using CICS Explorer. Define the 
Program Type as Assembler, C/C++, COBOL, or PL/I. 

The DFHJS2LS JSON assistant generates the WSBIND file and places it in the location specified 
by the WSBIND parameter. The generated web service bind file should be copied to the pickup 
directory of the provider mode PIPELINE resource that you want to use for your web service 
application. 

Note: The content of the CICS wrapper program, GENARSTW in this example, is provided in 
the additional materials that accompany this IBM Redbooks publication.
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A PIPELINE scan operation should now be performed: 

1. Select the appropriate PIPELINE definition in CICS Explorer.
2. Right-click to view options.
3. Select the SCAN operation, as shown in Figure 10-5.

Figure 10-5   Pipeline scan operation

The PIPELINE scan operation will dynamically create the WEBSERVICE resource and URIMAP 
resource. The WEBSERVICE resource encapsulates the web service bind file in CICS, and is 
used at run time. The URIMAP resource provides CICS with the information to associate the 
WEBSERVICE resource with a specific URI to accept JSON requests for the GENAPP function.

After the PIPELINE scan operation, validate that the URIMAP and WEBSERVICE resources have 
been correctly installed to CICS. Using CICS Explorer, use the URI Maps and web service 
views as per Figure 10-6 and Figure 10-7 on page 122.

Specifically, CICS WEBSERVICE is shown in Figure 10-6.

Figure 10-6   CICS WEBSERVICE definition

Note: Details about creating a PIPELINE configuration can be found in the section How to 
configure CICS as a service provider in Chapter 5, “Configuring CICS for the example 
scenarios” on page 31.
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Specifically, CICS URIMAP is shown in Figure 10-7.

Figure 10-7   CICS URIMAP definition

Note that the name of the WEBSERVICE is derived from the name of the WSBIND file. The path 
setting in the URIMAP is obtained from the URI parameter in the DFHJS2LS batch procedure.

Results of the PIPELINE scan operation can also be obtained by viewing the CICS MSGUSR log. 
Messages are produced to indicate a successful generation of the WEBSERVICE, or diagnostic 
information is produced for further analysis and investigation.

10.4.6  Testing the application

The application is now ready for testing. To test the scenario, you send various RESTful 
functions to process GENAPP from various cURL command files. 

RESTful customer inquiry function
The JSON web service payload is sent to CICS for processing to start the customer inquiry 
function as a RESTful service.

Because cURL is a command-line tool, the command line requires flattening out to the 
command line and the quotations escaped. The resulting command line is displayed in 
Example 10-12.

Example 10-12   The cURL command line for the CustServiceREST_GET command file

curl -v -H "Content-Type: application/json" -X GET 
http://your.cics.region:30661/genapp/CustService/0000000009

The JSON web service request (Example 10-12 on page 122) sends a single function to 
CICS to retrieve customer inquiry data for a specific customer (account number 9). 

The CICS wrapper program obtains the customer number by accessing CICS containers 
available for processing web services, such as DFHWS-URIMAPPATH. The code sample in 
Example 10-13 demonstrates an access of one such container. 

Example 10-13   Sample DFHWS-URIMAPPATH container access

***************************************************************** 
      * Get containers                                                  
      ***************************************************************** 
       GET-RESID.                                                       
           MOVE ' ' TO WS-RESID                                         
           EXEC CICS GET CONTAINER('DFHWS-URIMAPPATH')                  
                         INTO(WS-RESID)                                 

Note: See 9.3.5, “Test that the JSON request can be successfully performed” on 
page 101, for details of the cURL utility that is used to test the RESTful JSON web service.
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                         RESP(RESP)                                     
                         RESP2(RESP2)                                   
           END-EXEC 

Note, in keeping with RESTful processing convention, the service name, CustService, is 
generic, and the operation to be performed, GET, is specified as an HTTP method. This 
supports reuse of the JSON web service.

Running this command file sends the JSON web service payload to the CICS PIPELINE using 
the URI specified. The WSBIND file is processed, the JSON web service request is transformed 
to application data, and the CICS wrapper program is started. The CICS wrapper program 
maps the COBOL data into a structure that is suitable for processing by GENAPP.

After standard GENAPP processing, in which the customer account information is retrieved, 
the CICS wrapper program converts the GENAPP format data structures into a COBOL 
format. That format can be mapped to JSON web service data for returning to the cURL 
process. 

Successful invocation of the cURL command file results in a 200 OK status response, with the 
customer inquiry data returned from GENAPP, as shown in Example 10-14.

Example 10-14   Invocation of the CustServiceREST_GET command file

> GET /genapp/CustService/0000000009 HTTP/1.1
> User-Agent: curl/7.23.1 (x86_64-pc-win32) libcurl/7.23.1 OpenSSL/0.9.8r zlib/1
.2.5
> Host: your.cics.region:30661
> Accept: */*
> Content-Type: application/json
>
< HTTP/1.1 200 OK
< content-type: application/json
< Date: Wed, 19 Jun 2013 12:38:35 GMT
< Server: IBM_CICS_Transaction_Server/5.1.0(zOS)
< Content-Length: 000000000000161
<
{"cust_details":{"cust_number":9,"first_name":"Micky","last_name":"Murphy","date
_of_birth":"1966-01-03","zipcode":"CA316RN","cell_number":"","email_address":""}
}* Connection #0 to host your.cics.region left intact
* Closing connection #0

RESTful customer update function
The JSON web service payload, which is sent to CICS for processing to start the customer 
update function as a RESTful service, is displayed in Example 10-15.

Example 10-15   JSON web service payload 

{
    "cust_details": {
        "first_name": "James",
        "last_name": "Smith",

Note: The content of the CustServiceREST_GET command file, for running in a Microsoft 
Windows environment, is provided in the additional materials that accompany this IBM 
Redbooks publication.
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        "date_of_birth": "2001-01-01",
        "zipcode": "SO212JN",
        "cell_number": "07756576667",
        "email_address": "james.smith@anycompany.com"
    }
}

Because cURL runs on a command-line basis, the JSON web service payload, in 
Example 10-15, requires flattening out to the command line and the quotations escaped. The 
resultant command line is displayed in Example 10-16.

Example 10-16   The cURL command line for the CustServiceREST_PUT command file

curl -v -H "Content-Type: application/json" -X PUT -d 
{\"cust_details\":{\"first_name\":\"James\",\"last_name\":\"Smith\",\"date_of_birt
h\":\"2001-01-01\",\"zipcode\":\"SO212JN\",\"cell_number\":\"07756576667\",\"email
_address\":\"james.smith@anycompany.com\"}} 
http://your.cics.region:30661/genapp/CustService/0000000009

The JSON web service request, shown in Example 10-16, sends a request to CICS to update 
customer inquiry data for a specific customer (account number 9). 

Note, in keeping with RESTful processing convention, that the service name, CustService, is 
generic, and the operation to be performed, PUT, is specified as an HTTP method. This 
enables reuse of the web service.

Running this command file sends the JSON web service payload to the CICS PIPELINE using 
the URI specified. The WSBIND file is processed, the JSON web service request is transformed 
to application data, and the CICS wrapper program is started. The CICS wrapper program 
maps the COBOL data into a structure that is suitable for processing by GENAPP. 

After standard GENAPP processing, in which the customer account information is updated, 
the CICS wrapper program converts the GENAPP format data structures into a COBOL 
format. This format can be mapped to JSON web service data for returning to the cURL 
process. 

Successful invocation of the cURL command file results in a 200 OK status response, as 
shown in Example 10-17.

Example 10-17   Invocation of the CustServiceREST_PUT command file

> PUT /genapp/CustService/0000000009 HTTP/1.1
> User-Agent: curl/7.23.1 (x86_64-pc-win32) libcurl/7.23.1 OpenSSL/0.9.8r zlib/1
.2.5
> Host: your.cics.region:30661
> Accept: */*
> Content-Type: application/json
> Content-Length: 182
>
* upload completely sent off: 182 out of 182 bytes
< HTTP/1.1 200 OK
< content-type: application/json
< Date: Wed, 19 Jun 2013 14:45:08 GMT
< Server: IBM_CICS_Transaction_Server/5.1.0(zOS)
< Content-Length: 000000000000100
<
/genapp/CustService/0000000009
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                    * Connection #0 to host your.cics.region left intact

* Closing connection #0

The application has returned a URI format structure in the following format:

/genapp/CustService/0000000009 

This was returned to the application after being placed in the DFHRESPONSE container. This URI 
can now be processed by the application for additional function.

RESTful customer addition function
The JSON web service payload, which is sent to CICS for processing to start the customer 
addition function as a RESTful service, is displayed in Example 10-18.

Example 10-18   JSON web service payload 

{
    "cust_details": {
        "first_name": "James",
        "last_name": "Smith",
        "date_of_birth": "2001-01-01",
        "zipcode": "SO212JN",
        "cell_number": "07756576667",
        "email_address": "james.smith@anycompany.com"
    }
}

Because cURL runs on a command-line basis, the JSON web service payload, shown in 
Example 10-18 on page 125, requires flattening out to the command line and the quotations 
escaped. The resulting command line for processing cURL is displayed in Example 10-19.

Example 10-19   The cURL command line for the CustServiceREST_POST command file

curl -v -H "Content-Type: application/json" -X POST -d 
{\"cust_details\":{\"first_name\":\"James\",\"last_name\":\"Smith\",\"date_of_birt
h\":\"2001-01-01\",\"zipcode\":\"SO212JN\",\"cell_number\":\"07756576667\",\"email
_address\":\"james.smith@anycompany.com\"}} 
http://your.cics.region:30661/genapp/CustService/

The JSON web service request, shown in Example 10-19, sends the request to CICS to add 
new customer data for a new specific customer. GENAPP returns a new account number. 

In keeping with RESTful processing convention, the service name, CustService, is generic, 
and the operation to be performed, POST, is specified as an HTTP method. 

Running this command file sends the JSON web service payload to the CICS PIPELINE using 
the URI specified. The WSBIND file is processed, the JSON web service request is transformed 
to application data, and the CICS wrapper program is started. The CICS wrapper program 
maps the COBOL data into a structure that is suitable for processing by GENAPP. 

Note: The content of the CustServiceREST_PUT command file, for running in a Microsoft 
Windows environment, is provided in the additional materials that accompany this IBM 
Redbooks publication.
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After standard GENAPP processing, in which the customer account information is added, the 
CICS wrapper program converts the GENAPP format data structures into a COBOL format. 
That format can be mapped to JSON web service data for returning to the cURL process. 

Successful invocation of the cURL command file results in a 200 OK status response, with the 
new customer data returned from GENAPP, as shown in Example 10-20. 

Example 10-20   Invocation of the CustServiceREST_POST command file

> POST /genapp/CustService/ HTTP/1.1
> User-Agent: curl/7.23.1 (x86_64-pc-win32) libcurl/7.23.1 OpenSSL/0.9.8r zlib/1
.2.5
> Host: your.cics.region:30661
> Accept: */*
> Content-Type: application/json
> Content-Length: 183
>
* upload completely sent off: 183 out of 183 bytes
< HTTP/1.1 200 OK
< content-type: application/json
< Date: Wed, 19 Jun 2013 12:56:02 GMT
< Server: IBM_CICS_Transaction_Server/5.1.0(zOS)
< Content-Length: 000000000000100
<
/genapp/CustService/0001000165
                    * Connection #0 to host your.cics.region left intact

* Closing connection #0

The new customer account number, assigned as part of GENAPP customer addition logic, is 
returned to the JSON web service client program in the DFHRESPONSE container, potentially for 
further processing.

Note: The content of the CustServiceREST_POST command file, for running in a Microsoft 
Windows environment, is provided in the additional materials that accompany this IBM 
Redbooks publication.
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Chapter 11. Developing a simple JSON web 
service client application

This chapter describes how to develop a Customer Information Control System (CICS) 
application that acts as a client for a JavaScript Object Notation (JSON) web service. To 
demonstrate this, the chapter walks you through an example application that calls another 
company’s service to retrieve a credit score for a customer.

The solution is described in the following sections:

� 11.1, “Overview of the solution” on page 128
� 11.2, “Writing the JSON schema” on page 130
� 11.3, “Generating the language structures” on page 135
� 11.4, “Defining the CICS resources” on page 137
� 11.5, “Developing the application program” on page 142
� 11.6, “Testing the sample application” on page 148
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11.1  Overview of the solution

This section gives an overview of how the solution is implemented, and presents some 
background information about the linkable interface used to transform JSON.

11.1.1  The scenario

Fictional Insurance Company (company example) wants to better understand the level of risk 
associated with new motor insurance policies. They have partnered with Nonexistent Credit 
Agency (company example) to obtain insurance-related credit scores for their prospective 
customers to do this. 

Obtaining a credit score for their prospective customers will enable them to gauge the 
potential level of risk and adjust the quoted premium accordingly. Rather than requiring their 
staff to call Nonexistent Credit Agency when processing a new policy, they want to take 
advantage of the JSON web service provided by Nonexistent Credit Agency. This service 
enables partners to send a JSON request to obtain a credit score. 

11.1.2  The solution

As described briefly in 4.2.2, “How CICS supports acting as a client for JSON web services” 
on page 26, you can develop CICS applications that act as a client for JSON web services 
using WEB application programming interface (API) commands and the linkable interface to 
transform JSON.

You must create JSONTRANSFRM bundle parts using the JSON assistants to describe the 
mappings between JSON and application data. The application sends requests to the service 
using WEB API commands, and uses the linkable interface to transform request and response 
data. Figure 11-1 gives a conceptual view of how data flows between the application and the 
target service. 

Figure 11-1   Conceptual view of a JSON web service client application
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This chapter walks you through creating your JSONTRANSFRM, starting from the interface to 
Nonexistent Credit Agency’s service credit scoring service. Unfortunately, Nonexistent Credit 
Agency does not provide a JSON schema describing the interface, so your first task is to 
create one. You can then generate the JSONTRANSFRM bundle, develop the CICS application, 
and deploy the artifacts.

To demonstrate how the client application works, there is a complete sample program that 
calls the credit score service and writes information from the response to the terminal. It 
contains static input data for a fictional customer. In a complete application, such a program 
can instead be called from the business logic that creates an insurance quote. The Common 
Business Oriented Language (COBOL) source for the client program is provided in 
Appendix B, “Sample COBOL programs” on page 167.

To test the client application, there is an implementation of the credit scoring service that runs 
in CICS. This is a Request-response style JSON web service that was developed from the 
JSON schema for the service. It simply returns a random credit score that will vary depending 
on the customer’s house number and policy type.

The complete source for the provider program is given in Appendix B, “Sample COBOL 
programs” on page 167. No further details about the implementation of the service are 
provided in this IBM Redbooks publication. For details about how to set up client and provider 
applications, see 11.6, “Testing the sample application” on page 148.

11.1.3  The linkable interface for transforming JSON

The CICS Transaction Server (CICS TS) Feature Pack for Mobile Extensions V1.0 provides a 
transformer program, DFHJSON, which can be called from an application using a LINK PROGRAM 
command. You can use it to transform application data to JSON, and JSON to application 
data. Parameters are passed to the transformer using a set of containers that the application 
must create before calling the transformer, and data is returned to the application in 
containers. 

The transformations between application data and JSON data are described by a 
JSONTRANSFRM bundle part. The transformation is performed in a Java virtual machine (JVM) 
server, which must have the JAVA_PIPELINE=YES option in the JVM profile. For more 
information about configuring the JVM server, see Chapter 5, “Configuring CICS for the 
example scenarios” on page 31.

The JSONTRANSFRM bundle part and the JSBIND file
A JSONTRANSFRM bundle part is generated by the CICS JSON assistants. It describes a single 
mapping between a language structure and a JSON schema, which can be used at run time 
to transform application data to JSON and JSON to application data. The JSON assistants 
generate a CICS bundle on z/OS file system (zFS) containing a JSONTRANSFRM bundle part 
and a JSBIND file that describes the mapping.

You create a BUNDLE resource pointing to the zFS location of the bundle, and then install it into 
CICS. You can generate a JSBIND file starting either from a language structure (using 
DFHLS2JS), or from a JSON schema (using DFHJS2LS). 

Containers used with the linkable interface
Before calling the transformer program, the application must create a set of containers that 
hold the input data, the name of JSONTRANSFRM, and optionally the name of the JVM server 
where the transformation will be performed. Before the transformer returns control to the 
application, the transformed data is placed in a container. 
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If an error occurs during transformation, the transformer creates containers giving details of 
the error. Table 11-1 gives details of the containers. 

Table 11-1   Containers used with the linkable interface

11.2  Writing the JSON schema

The first step to create a client application for a JSON web service is to describe the interface 
made available by that service. This can be done starting with either a JSON schema or a 
language structure. As the most common scenario is that the service you want to call already 
exists, this chapter demonstrates starting from a JSON schema. The CICS JSON assistants 
use information in the JSON schema to map JSON properties to high-level language data 
types. These mappings are also used at run time to transform between JSON and application 
data. 

Nonexistent Credit Agency does not provide a JSON schema describing the interface to their 
credit scoring service, but instead provides the following documentation, shown in 
Example 11-1 on page 131. If a JSON schema is already available that describes the service 
you want to call, you can skip to 11.3, “Generating the language structures” on page 135.

Note: The transformer uses the presence of the DFHJSON-DATA or DFHJSON-JSON containers 
to determine which type of transformation to perform. Therefore, only one of these 
containers can be present when the transformer is called.

Container name Type Created Contents

DFHJSON-TRANSFRM CHAR By the application The name of the JSONTRANSFRM 
bundle part.

DFHJSON-JVMSERVR CHAR Optionally by the 
application

The name of the JVM server that 
performs the transformation. If 
this container is not present, the 
CICS-supplied JVMSERVER 
DFH$AXIS is used. 

DFHJSON-ERROR BIT By CICS if an error occurs A fullword binary value 
indicating the type of error that 
occurred.

DFHJSON-ERRORMSG CHAR By CICS for some errors Further details of the error.

When transforming application data to JSON

DFHJSON-DATA BIT By the application Application data to be 
transformed.

DFHJSON-JSON CHAR By CICS JSON corresponding to the 
application data provided.

When transforming JSON to application data

DFHJSON-JSON CHAR By the application JSON to be transformed.

DFHJSON-DATA BIT By CICS Application data corresponding 
to the JSON provided.
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Example 11-1   Documentation for Nonexistent Credit Agency’s insurance scoring service

To request an insurance credit score for an individual, send an HTTP POST request 
to the following URI:

http://services.nonexistentcreditagency.com/insuranceScore

with a JSON body like this:
{
    "insuranceScoreRequest": {
        "firstName": "Joe",
        "lastName": "Bloggs",
        "houseNumber": 67,
        "postcode": "N00 BDY",
        "dob": "01/01/1970",
        "policyType": 1
    }
}

where policyType represents the type of insurance to request a risk score for, and 
can take the following values:
0 - home insurance policy
1 - motor insurance policy
2 - endowment policy
3 - commercial policy
4 - public liability insurance policy

The response body will look like this:
{
    "insuranceScoreResponse": {
        "timestamp": "2013-05-05T10:46:50.52Z",
        "customerId": 55446511,
        "score": 341
    }
}

where customerId is an 8-digit number integer and score is an integer from 100 to 
999. 

Based on this information, you create two JSON schemas:

� One for the request message
� One for the response

When writing JSON schema you might find it helpful to see the JSON schema specification 
and related tutorials, which are available on the JSON schema website:

http://json-schema.org/

The website also contains a list of validation tools and libraries that might be helpful. Consider 
validating your schema before running DFHJS2LS. One useful tool is the online JSON schema 
validator available at the following website:

http://json-schema-validator.herokuapp.com/
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11.2.1  Writing the request schema

Begin with the request message. Example 11-2 shows a first attempt at a schema that gives 
the basic structure for the message. This schema expresses the structure of the data, and 
also states that all of the properties are required, because the documentation does not state 
any of the fields are optional. If you do not mark properties as required, DFHJS2LS will 
generate existence flags in the language structure that are set at run time if the fields are 
present in the transformed JSON.

Example 11-2   Basic schema for the insuranceScoreRequest

{
    "type": "object",
    "$schema": "http://json-schema.org/draft-04/schema",
    "required": [
        "insuranceScoreRequest"
    ],
    "properties": {
        "insuranceScoreRequest": {
            "type": "object",
            "properties": {
                "dob": {
                    "type": "string"
                },
                "firstName": {
                    "type": "string"
                },
                "houseNumber": {
                    "type": "string"
                },
                "lastName": {
                    "type": "string"
                },
                "policyType": {
                    "type": "string"
                },
                "postcode": {
                    "type": "string"
                }
            },
            "required": [
                "dob",
                "firstName",
                "houseNumber",
                "lastName",
                "policyType",
                "postcode"
            ]
        }
    }
}

The next step is to add some constraints on the sizes of the fields, because otherwise 
DFHJS2LS assumes the default values, resulting in much padding in the language structure. 
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For the string fields, use the minLength and maxLength properties, and for integer fields use 
maximum and minimum. You also make some inferences about the lengths of some of these 
fields. 

The resulting schema is shown in Example 11-3. Notice that the policyType field has a 
maximum value of 999 specified, despite the documentation stating the highest acceptable 
value is 4. This is because a field with a maximum value less than 256 is mapped to a COBOL 
PIC X DISPLAY declaration (because no suitably small binary type is provided in COBOL). The 
value of 999 maps to a PIC 999 declaration which is more suitable for your application. 

Example 11-3   Improved schema for insuranceScoreRequest

{
    "type": "object",
    "$schema": "http://json-schema.org/draft-04/schema",
    "required": [
        "insuranceScoreRequest"
    ],
    "properties": {
        "insuranceScoreRequest": {
            "type": "object",
            "properties": {
                "dob": {
                    "type": "string",
                    "minLength": 10,
                    "maxLength": 10
                },
                "firstName": {
                    "type": "string",
                    "minLength": 1,
                    "maxLength": 50
                },

"houseNumber": {
                    "type": "string",
                    "minLength": 1,
                    "maxLength": 4
                }, 

"lastName": {
                    "type": "string",
                    "minLength": 1,
                    "maxLength": 50
                },
                "policyType": {
                    "type": "integer",
                    "minimum": 0,
                    "maximum": 999
                },
                "postcode": {
                    "type": "string",
                    "minLength": 6,
                    "maxLength": 8
                }
            },
            "required": [
                "dob",
                "firstName",
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                "houseNumber",
                "lastName",
                "policyType",
                "postcode"
            ]
        }
    }
}

11.2.2  Writing the response schema

Next, you create a schema for the JSON response message, in a similar way as you did for 
the request message. Example 11-4 shows the schema. Note the use of the date-time value 
of the format property. This indicates that the value is a time stamp in RFC3339 format, which 
at run time is converted to CICS ABSTIME format. 

Example 11-4   JSON schema for insuranceScoreResponse

{
    "type": "object",
    "$schema": "http://json-schema.org/draft-04/schema",
    "properties": {
        "insuranceScoreResponse": {
            "type": "object",
            "properties": {
                "customerId": {
                    "type": "integer",
                    "minimum": 0,
                    "maximum": 99999999
                },
                "score": {
                    "type": "integer",
                    "minimum": 100,
                    "maximum": 999
                },
                "timestamp": {
                    "type": "string",
                    "format": "date-time"
                }
            },
            "required": [
                "customerId",
                "score",
                "timestamp"
            ]
        }
    },
    "required": [
        "insuranceScoreResponse"
    ]
}
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11.3  Generating the language structures

Now, you have a description of the interface to the service in the form of a JSON schema. 
Next, generate a language structure to be used by the client application and the necessary 
artifacts for CICS to transform between JSON and application data.

You do this by running DFHJS2LS, which is the JSON assistant used when starting from a 
JSON schema. This process is similar to using DFHJS2LS when developing a JSON web 
service provider, as described in 10.4.2, “Mapping the JSON schema to language structures” 
on page 117, but you use some different parameters. 

Run DFHJS2LS twice, once with the JSON schema for the request, and once with the JSON 
schema for the response. Each time, a language structure and a CICS bundle containing a 
JSONTRANSFRM bundle part are generated. 

The bundle is generated on zFS, and is later installed into CICS. The CICS TS Feature Pack 
for Mobile Extensions V1.0 supplies a JCL procedure to start DFHJS2LS in the SDFHMOBI library. 
The JCL to start it with the request schema is shown in Example 11-5.

Example 11-5   JCL to run DFHJS2LS for the request language structure

//JS2LS JOB (MYSYS,AUSER),MSGCLASS=H,
//             CLASS=A,NOTIFY=&SYSUID,REGION=0M
// JCLLIB ORDER='CICS510.SDFHMOBI'
//*
//JS2LS     EXEC DFHJS2LS,USSDIR='cics680',
//          PATHPREF='',JAVADIR='java6_64/J6.0_64'
//INPUT.SYSUT1 DD *
LOGFILE=/u/cicsuser/genapp/json/logs/insuranceScoreRequest.log
PDSLIB=//USER.JS2LS.COPYLIB
PDSMEM=SCREQ
LANG=COBOL
MAPPING-LEVEL=3.0
JSONTRANSFRM=SCOREREQ
BUNDLE=/u/cicsuser/genapp/json/client/insuranceScoreRequest
CHAR-VARYING=NO
JSON-SCHEMA=/u/cicsuser/genapp/json/insuranceScoreRequest.json
*/ 

You must supply the following parameters when starting DFHJS2LS: 

LOGFILE The zFS file where a log of the DFHJS2LS processing is created.

PDSLIB The partitioned data set where the language structure is created.

PDSMEM The name of the member in the partitioned data set that is created.

LANG The high-level language in which the language structure is created.

MAPPING-LEVEL The level of mapping applied by the JSON assistant. 3.0 or greater 
can be used, but earlier mapping levels are supported only for 
compatibility with the SOAP web services assistants.

JSONTRANSFRM The name of the JSONTRANFRM bundle part that will be created by CICS 
when the bundle is installed.

BUNDLE The zFS location of the bundle that is created.
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CHAR-VARYING=NO Suppresses the generation of length fields for variable-length string 
values.

JSON-SCHEMA The zFS location of the JSON schema used as input.

Full details of all the parameters for DFHJS2LS is found in the “DFHJS2LS: JSON schema to 
high-level language conversion for linkable interface” topic of the CICS TS Feature Pack for 
Mobile Extensions Information Center. The following website is for CICS TS 5.1:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensio
ns.doc/reference/dfhws_js2lsapi.html

Example 11-6 shows the JCL for the response structure. This is similar to the JCL for the 
request schema, except for the values of the LOGFILE, PDSMEM, JSONTRANSFRM, and BUNDLE 
parameters.

Example 11-6   JCL to run DFHJS2LS for the response language structure

//JS2LS JOB (MYSYS,AUSER),MSGCLASS=H,
//             CLASS=A,NOTIFY=&SYSUID,REGION=0M
// JCLLIB ORDER='CTS.CICS510.SDFHMOBI'//*
//* The following line is changed by APAR PK04055  @BA04055
//JS2LS     EXEC DFHJS2LS,USSDIR='cics680',
//          PATHPREF='',JAVADIR='java6_64/J6.0_64'
//INPUT.SYSUT1 DD *
LOGFILE=/u/cicsuser/genapp/json/logs/insuranceScoreResponse.log
PDSLIB=//USER.JS2LS.COPYLIB
PDSMEM=SCRESP
LANG=COBOL
MAPPING-LEVEL=3.0
JSONTRANSFRM=SCORERESP
BUNDLE=/u/cicsuser/genapp/json/client/insuranceScoreResponse
CHAR-VARYING=NO
JSON-SCHEMA=/u/cicsuser/genapp/json/insuranceScoreResponse.json
*/ 

When running DFHJS2LS, the following error message can occur:

DFHPI9523E An unexpected error occurred whilst processing file 
"//USER.JS2LS.COPYLIB(CRREQ01)". The problem is: "//USER.JS2LS.COPYLIB(CRREQ01)".

This normally indicates that the partitioned data set (PDS) cannot be opened for output 
because a user had a member of the PDS open for editing in Interactive System Productivity 
Facility (ISPF) or IBM Rational Developer for IBM System z. 

Also, if you run DFHJS2LS more than one time, with the same value of BUNDLE parameter, the 
following message can occur:

DFHPI9683W Bundle directory "/u/cicsuser/genapp/client/insuranceScoreRequest" 
already exists and may contain files that are inconsistent with the new Bundle 
manifest file. 

This message can be safely ignored if you have maintained the same value of the 
JSONTRANFRM parameter and are rerunning the assistant due to a change in the input schema 
or mapping parameters. However, if a different bundle already exists at this location, you must 
choose a different one or delete the existing directory first. 
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11.4  Defining the CICS resources

The next step is to define the resources used by CICS. These resources are named in the 
application, and are required to test it, so they must be defined before the program can be 
developed. You define BUNDLE resources for each JSONTRANSFRM and a URIMAP resource using 
the CICS Explorer.

11.4.1  Defining the BUNDLE resources

When you run DFHJS2LS to create the language structures (see 11.3, “Generating the 
language structures” on page 135), it also creates a bundle directory on zFS. This contains a 
JSBIND file and a JSONTRANFRM bundle part, which CICS uses to perform the transformation 
between application data and JSON. You must create and install a CICS BUNDLE resource for 
both the request and response bundles.

Follow these steps to create and install the BUNDLE resources in CICS Explorer:

1. Click File  New  Other.

2. In the New window, expand CICS Definitions and select Bundle Definition, as shown in 
Figure 11-2. Click Next.

Figure 11-2   Creating a new bundle definition

3. On the Create Bundle Definition page, complete these steps:

a. Enter the name of a CICSplex where the definition will be created in the CICSplex field.

b. If you want to create the resource in a CICS system definition data set (CSD), for 
example if you are connected to a stand-alone CICS region, select the Region (CSD) 
check box and enter the name of the region in the adjacent field.
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c. Enter the name of the CSD or resource group where the bundle definition will be 
created in the Resource/CSD Group field.

d. Enter the name of the bundle for the request transform in the Name field.

e. Click Browse and choose the bundle directory on zFS that was created by DFHJS2LS 
when processing the request schema.

The completed page is shown in Figure 11-3. 

Figure 11-3   Specifying the attributes of a new bundle definition

4. Click Finish.

5. Repeat steps 1-4, entering details for the response transform.

6. Select Definitions  Bundles Definitions to show the Bundle Definitions view.

7. In the CICSplex Repositories view, select the group that you specified in step 3c. 
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8. Select both of the bundle definitions listed in the Bundle Definitions view, as shown in 
Figure 11-4.

Figure 11-4   Locating the bundle resources to install

9. Right-click the selected definitions and click Install.

10.In the Perform Operation window, select the region or system group into which you want to 
install the definitions, and then click OK.

You can now view the BUNDLEs and BUNDLEPARTs to verify they installed correctly. To view 
the BUNDLEs in CICS Explorer, click Operations  BundlesTo view the corresponding 
BUNDLEPARTs, right-click a BUNDLE and select Show Bundle Parts. You can see a single 
JSONTRANSFRM BUNDLEPART for each BUNDLE, as shown in Figure 11-5.

Figure 11-5   Viewing the Bundle Parts for the credreq bundle
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11.4.2  Defining the URIMAP resource

You can define a URIMAP resource that specifies the URI of the JSON service that you are 
writing a client application for. This is not required (you can specify all the parameters on the 
WEB OPEN and WEB CONVERSE commands instead). However, creating a URIMAP resource has 
the following advantages:

� You can use an SSL client certificate to authenticate with the server.

� You can avoid coding the URI in your application, so that it can be updated by simply 
modifying the URIMAP definition.

� You can enable connection pooling, so that all of the connections to the same host share a 
single HTTP connection.

To define and install a URIMAP resource in CICS Explorer, follow these steps:

1. Click File  New  Other.

2. In the New window, expand CICS Definitions, and URI Map Definition. Click Next.

3. On the Create URI Map Definition page, complete these steps:

a. Enter the name of a CICSplex where the definition will be created in the CICSplex field.

b. If you want to create the resource in a CSD (for example if you are connected to a 
stand-alone CICS region), select the Region (CSD) check box and enter the name of 
the region in the adjacent field.

c. Enter the name of the CSD or resource group where the URIMAP definition will be 
created in the Resource/CSD Group field.

d. Enter the name of the URIMAP in the Name field.

e. Enter the host where the JSON web services is located in the Host field.

f. Enter the path to the service in the Path field.

g. Click Client, and enter the TCP/IP port for the service in the Port field.

The completed page is shown in Figure 11-6 on page 141.
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Figure 11-6   Specifying the attributes of the URIMAP

4. Click Finish.

5. In the URI Map Definition editor, follow these steps:

a. If you want connections that were opened using this URIMAP resource to be pooled for 
reuse, specify the SOCKETCLOSE attribute as the length of time for which CICS keeps the 
connection in the pool after the application program has finished using it. See the 
“Connection pooling for HTTP client performance” topic in the CICS Information Center 
for information about how CICS manages pooled connections, and how connection 
pooling improves application performance.

For CICS TS 5.1, this is found at the following website:

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.internet
.doc/topics/dfht3_connpool.html

b. To configure security for the connection to the server, see Chapter 7, “Security and 
workload management” on page 69. 

c. Press Ctrl + S to save your changes.
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d. From the resource drop-down menu, select Install. 

e. In the Perform Operation window, select the region or system group that you want to 
install the definitions into, and then click OK.

Figure 11-7 illustrates the URI Map Definition editor.

Figure 11-7   Editing the attributes of the URIMAP

11.5  Developing the application program

The final task is to write the application program that will call the remote service. A complete 
sample COBOL program is provided, and this section provides information about each part of 
it.
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11.5.1  Transforming the request data

The first task that your application program might need to perform is to generate the JSON 
request message. Whether you need to do this depends on the service you are calling. Some 
JSON web services can take input from the URI, either from the path or the query string, 
rather than the request body. 

If the service is called using the HTTP GET method, a request body cannot be provided. In the 
scenario presented in this chapter, the service uses a request-response pattern using the 
POST method, so both the request and response are contained in the HTTP body. If you do not 
need to generate a JSON request, you can skip to 11.5.2, “Sending the request” on 
page 145. You can use the linkable interface to transform application data to JSON for the 
request message. You must first set up the containers as noted in the following steps:

1. Put the name of the JSONTRANSFRM bundle part for the request (as specified by the 
JSONTRANSFRM parameter on DFHJS2LS) in the DFHJSON-TRANSFRM container.

2. If you want to use a JVM server other than DFH$AXIS, put the name of the JVMSERVER 
resource in the DFHJSON-JVMSERVR container. 

3. Put the application data that you want to transform in the DFHJSON-DATA container.

4. Then perform a LINK PROGRAM to DFHJSON, passing the channel where you have put the 
containers.

Example 11-7 is an excerpt from the sample COBOL program that performs these tasks.

Example 11-7   Sample COBOL to transform the request message

 MOVE 'JOE' TO FIRSTNAME
               MOVE 'BLOGGS' TO LASTNAME
               MOVE 67 TO HOUSENUMBER
               MOVE '10/10/1984' TO DOB
               MOVE 'N00 BDY' TO POSTCODE
               MOVE 3 TO POLICYTYPE

               EXEC CICS PUT CONTAINER('DFHJSON-TRANSFRM')
                         CHANNEL('CHAN')
                         FROM('SCOREREQ')
                         CHAR
                         RESP(CICS-RESP)
                         END-EXEC
               PERFORM CHECK-RESP

               EXEC CICS PUT CONTAINER('DFHJSON-DATA')
                         CHANNEL('CHAN')
                         FROM(REQUEST-DATA)
                         RESP(CICS-RESP)
                         END-EXEC
               PERFORM CHECK-RESP

      *        Link to the transfomer
               EXEC CICS LINK PROGRAM('DFHJSON')
                         CHANNEL('CHAN')
                         RESP(CICS-RESP)
               END-EXEC
               PERFORM CHECK-RESP
Chapter 11. Developing a simple JSON web service client application 143



Handling Errors
If an error occurs during transformation, CICS puts an error code in the DFHJSON-ERROR 
container and returns to the application. Under some circumstances, CICS also puts further 
information about the error in the DFHJSON-ERRORMSG container. After linking to DFHJSON, you 
can check for the presence of the DFHJSON-ERROR container and take action accordingly. 

Some types of errors indicate a configuration error, such as the JSONTRANSFRM resource 
not being defined or enabled. Other types of errors indicate a problem with the data 
transformation, such as invalid JSON or a mismatch between the type of data provided and 
the data that was expected. In these situations, it can be helpful to capture the contents of the 
DFHJSON-ERRORMSG container.

Example 11-8 shows a COBOL procedure that can be started after linking to DFHJSON. It 
checks for the DFHJSON-ERROR container, and (if the error container is present) displays the 
error code on the terminal. If the DFHJSON-ERRORMSG container is present, the first 256 byes of 
its contents are sent to the transient data queue (TDQ) CESE using a COBOL DISPLAY 
statement.

Example 11-8   Sample COBOL routine for handling errors return by the linkable interface

HANDLE-ERROR.
             EXEC CICS GET CONTAINER('DFHJSON-ERROR') CHANNEL('CHAN')
                    INTO(TRANS-RESP)
                    RESP(CICS-RESP)
                    END-EXEC
             IF CICS-RESP EQUAL DFHRESP(NORMAL)
      *         Error container is present, output value
                MOVE TRANS-RESP TO ERROR-DISPLAY
                EXEC CICS SEND TEXT FROM(BAD-RESP-MSG)
                          ERASE END-EXEC

                MOVE 256 TO ERROR-LENGTH

                EXEC CICS GET CONTAINER('DFHJSON-ERRORMSG')
                          CHANNEL('CHAN')
                          INTO(ERROR-MSG)
                          RESP(CICS-RESP)
                          FLENGTH(ERROR-LENGTH)
                          END-EXEC

                IF CICS-RESP EQUAL DFHRESP(NORMAL)
                   DISPLAY ERROR-MSG
                END-IF
                EXEC CICS RETURN END-EXEC
             END-IF
             EXIT. 

Full details of the possible errors can be found in the “DFHJSON-ERROR container” topic in 
the CICS TS Feature Pack for Mobile Extensions Information Center. For CICS TS 5.1 this 
information can be found at the following website: 

http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensio
ns.doc/reference/dfhjson_error.html
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11.5.2  Sending the request

The next step is to send the request to the JSON web service over HTTP. This is 
accomplished using WEB commands. 

Opening the connection
First, open a connection using a WEB OPEN command. This opens an HTTP connection, or 
reuses an existing one (if connection pooling is enabled). If you use a URIMAP resource as 
described in 11.4.2, “Defining the URIMAP resource” on page 140, you can name the 
resource on the WEB OPEN command. Otherwise, you must code the HOST and PORTNUMBER 
parameters to specify the server to connect to. 

A WEB OPEN command using a URIMAP is shown in Example 11-9. The SESSTOKEN specifies a 
data area into which CICS will put a session token. This must be specified on all subsequent 
WEB commands to identify the connection.

Example 11-9   Opening the connection to the remote service using a URIMAP

EXEC CICS WEB OPEN
                         URIMAP('CREDSERV')

 RESP(CICS-RESP)
                         RESP2(CICS-RESP2)
                         SESSTOKEN(TOKEN) END-EXEC 

Sending the data and receiving the response
Now you are ready to make the request to the JSON web service. You will use a WEB 
CONVERSE command to send the request and receive the response together. You can also use 
separate WEB SEND and WEB RECEIVE commands. 

The parameters that you specify on the command depend on the interface to the service that 
you are calling. For example, if your service takes input from the query string, you must 
specify the QUERYSTRING parameter, but if your service expects a JSON body, you must 
specify the FROM or CONTAINER parameters.

Specifying the path to the service
Example 11-10 on page 146 uses the URIMAP parameter. CICS then uses the PATH attribute of 
the corresponding URIMAP to obtain the path to the JSON web service. Alternatively, you can 
use the PATH and optionally PATHLENGTH parameters to specify the path directly. If your service 
requires a query string, specify the QUERYSTRING parameter and optionally the QUERYSTRINGLEN 
parameter.

Specifying the HTTP method and media type
You must specify the HTTP method used to call the JSON web service. You can either specify 
it directly on the command (as shown in Example 11-10 on page 146), or use the METHOD 
parameter. You must also specify the MEDIATYPE parameter to indicate the type of data that 
you are sending. For JSON, the usual value is application/json, but other values can be 
supported, so you can check with the operator of the JSON web service as to what they 
expect.

Note: The data area specified on the MEDIATYPE parameter must be 56 bytes in length, 
so you must add trailing spaces to the value. 
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Specifying the request and response data
If your service expects JSON in the request body, you must code either the CONTAINER or FROM 
parameters. If you use the CONTAINER parameter, you can pass the DFHJSON-JSON container 
returned by the linkable interface, as shown in Example 11-10. 

If your service will provide JSON data in the response that you want to transform, you can 
also specify DFHJSON-JSON on the TOCONTAINER parameter so that the response data can be 
passed directly to the linkable interface. If using the CONTAINER or TOCONTAINER parameters, 
you can specify the channel using the corresponding CHANNEL or TOCHANNEL parameters, or 
CICS uses the current channel. 

Additionally, you can specify the STATUSCODE parameter. This is a data area in which CICS 
places the HTTP response code. Your application can check this value to determine if the 
operation was completed successfully, or if an error occurred. 

Example 11-10 shows the complete WEB CONVERSE command.

Example 11-10   WEB CONVERSE command to communicate with the insurance score web service

EXEC CICS WEB CONVERSE
                         URIMAP('CREDSERV') POST
                         CONTAINER('DFHJSON-JSON')
                         CHANNEL('CHAN')
                         MEDIATYPE(CONTENT-TYPE)
                         TOCONTAINER('DFHJSON-JSON')
                         TOCHANNEL('CHAN')
                         STATUSCODE(HTTP-RESP)
                         STATUSTEXT(HTTPSTATUS)

 RESP(CICS-RESP)
 RESP2(CICS-RESP2)
 SESSTOKEN(TOKEN) END-EXEC 

Tidying up 
After the WEB CONVERSE, or the final WEB SEND or WEB RECEIVE command, you can issue a WEB 
CLOSE command. This signals to CICS that the application has finished using the HTTP 
connection. If you use connection pooling, the HTTP connection might not be closed, but 
instead returned to the pool for reuse. Example 11-11 shows the WEB CLOSE command. 

Example 11-11   WEB CLOSE command to indicate the end of the session

EXEC CICS WEB CLOSE SESSTOKEN(TOKEN) END-EXEC 

11.5.3  Transforming the response body

If the JSON web service that you have called provides JSON in the response body, you can 
transform this to application data for further processing. This can be accomplished by using 
the linkable interface in a similar way to that described in 11.5.1, “Transforming the request 
data” on page 143. 

Some services indicate the success or failure of the operation simply using the HTTP 
response code, in which case this step is not required. This section explains how the example 
program transforms the response from the insurance score service into application data.
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The steps to use the linkable interface to transform JSON to application data are similar to 
those used to transform application to JSON, except that some of the containers differ. Before 
calling the transformer, set up the containers using the following points:

� Put the name of the JSONTRANSFRM for the response (as specified by the JSONTRANSFRM 
parameter on DFHJS2LS) in the DFHJSON-TRANSFRM container.

� If you want to use a JVM server other than DFH$AXIS, put the name of the JVMSERVER 
resource in the DFHJSON-JVMSERVR container. 

� Put the JSON that you want to transform in the DFHJSON-JSON container.

Then, use a LINK PROGRAM command to call DFHJSON. If the transformation occurs successfully, 
CICS puts the application data corresponding to the JSON that you provided in the 
DFHJSON-DATA container. If an error occurs, CICS puts an error code in the DFHJSON-ERROR 
container, see “Handling Errors” on page 144 for more information. Example 11-12 
demonstrates how to set up the containers and call the linkable interface to transform JSON.

Example 11-12   Calling linkable interface to transform the JSON response from insurance score service

 EXEC CICS DELETE CONTAINER('DFHJSON-DATA')
                         CHANNEL('CHAN')
                         END-EXEC

               EXEC CICS PUT CONTAINER('DFHJSON-TRANSFRM')
                         CHANNEL('CHAN')
                         FROM('SCORERESP')
                         RESP(CICS-RESP)
                         CHAR
               END-EXEC
               PERFORM CHECK-RESP

      *        Link to the transfomer
               EXEC CICS LINK PROGRAM('DFHJSON')
                         CHANNEL('CHAN')
                         RESP(CICS-RESP)
               END-EXEC
               PERFORM CHECK-RESP

               PERFORM HANDLE-ERROR

               EXEC CICS GET CONTAINER('DFHJSON-DATA') CHANNEL('CHAN')
                         INTO(RESPONSE-DATA)
                         RESP(CICS-RESP)
                         END-EXEC.
               PERFORM CHECK-RESP 

Note: If you have previously used the linkable interface to transform application data to 
JSON, you must either use a DELETE CONTAINER command to delete the DFHJSON-DATA 
container before calling DFHJSON, or use a different channel. Otherwise, both containers will 
be present on the channel and you will receive error code 14.
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11.6  Testing the sample application

If you want to test the sample application, you will need to set up the client application and the 
provider service. You can follow the steps in the preceding sections to create the client 
application, or you can use the materials supplied with this book. For information about how to 
obtain these, see Appendix C, “Additional material” on page 175. In either case, you must 
perform the following tasks sequentially:

1. Follow the steps in 5.2.2, “How to configure CICS as a service provider” on page 34 to 
configure your system for JSON web services.

2. Copy the credit.wsbind file provided with this book to the pickup directory of the PIPELINE 
you created in “Defining and installing a PIPELINE” on page 40, and perform a PIPELINE 
scan. 

3. Create the resource definitions for the requester application as described in 11.4, 
“Defining the CICS resources” on page 137 if you have not done so already. You can use 
the bundles supplied with the book if you do not want to create them yourself.

4. Compile the sample programs CREDIT and REQUEST and put them in a load library that is 
part of the DFHRPL concatenation. Alternatively, create and install a LIBRARY definition that 
references the load library. 

5. If you do not use program autoinstall, create and install PROGRAM definitions for CREDIT and 
REQUEST.

6. Create and install a TRANSACTION definition that calls REQUEST.

You can then start the transaction from a terminal. If it completes successfully, you can see a 
message on the terminal indicating the insurance score returned from the service.
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Chapter 12. IBM Worklight for CICS

This chapter describes how to call a Customer Information Control System (CICS) JavaScript 
Object Notation (JSON) service hosted in CICS setup using IBM Worklight’s adapter and IBM 
Worklight's client JavaScript application programming interface (API), where the adapter and 
API run on the mobile device itself.

This chapter includes the following topics:

� “Creating a Worklight adapter” on page 150
� “Testing the Worklight adapter” on page 154
� “Calling the Worklight adapter from the Worklight client code” on page 156

12
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12.1  Creating a Worklight adapter

This process assumes that a blank empty Worklight project was created before creating a 
Worklight adapter. 

To create a Worklight adapter, perform the following steps:

1. Right-click the adapters folder and select New  Worklight Adapter. See Figure 12-1.

Figure 12-1   Worklight adapter selection

2. Select the Hypertext Transfer Protocol (HTTP) adapter as the type, because you are 
calling an HTTP JSON Service inside CICS. Give the adapter a name and select Finish. 
See Figure 12-2 on page 151.
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Figure 12-2   Create a new adapter

3. The adapter rich page editor opens, providing for entry of the Domain and port for the 
service. Click Connectivity  Connection Policy to enter that data. See Figure 12-3.

Figure 12-3   Connection Policy

4. Use either the Basic HTTP Authentication or Secure Sockets Layer (SSL), following the 
guidelines in 7.3, “Worklight security configuration” on page 78.
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5. Click Procedure "getStories", (shown in Figure 12-3 on page 151), then alter the name 
to match the operation of your service. In this example, the procedure is named 
addNewCustomer (as shown in Figure 12-4). 

Figure 12-4   Procedure editing

6. Select Procedure "getStoriesFiltered" (shown in Figure 12-3 on page 151) and click 
Remove. This will remove the procedure seen in Figure 12-6 on page 153. You will notice 
there is a red cross on the adapter folder at this point, because the Extensible Markup 
Language (XML) configuration file for the adapter does not match the implementation .js 
file. Remove the filtered.xsl file, because it is not needed in this example. 

7. Open the CreateNewCustomer-impl.js file and delete the getStoriesFiltered function. 

8. Rename getStories to be addNewCustomer. 

The CreateNewCustomer-impl.js should now look similar to that shown in Figure 12-5.

Figure 12-5   The addNewCustomer(customer) function

9. Now, add in some parameters to the addNewCustomer JavaScript function. The service 
requires a first name, last name, date of birth, ZIP code, cell number, and email address. 
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These parameters are then added into a JSON payload object, similar to Example 12-1.

Example 12-1   JSON web service payload 

{
"cust_details": { 
"first_name": "James", "last_name": "Smith", 
Note: The content of the CustServiceREST_PUT command file is provided in the 
additional materials that accompany this IBM Redbook publication. 
Chapter 11. JSON Schema to Language Structure Scenarios - RB 113 
8161ch11.fm 
Draft Document for Review July 23, 2013 4:53 pm 
"date_of_birth": "2001-01-01",
"zipcode": "SO212JN",
"cell_number": "07756576667",
"email_address": "james.smith@anycompany.com" 
} } 

10.The request then needs to be posted to the CICS service that tells Worklight to expect a 
plain response payload. With this information, Worklight knows that a conversion of the 
Representational State Transfer (REST) response, which in this case is a line of text, 
needs to be converted back to a JSON object. See Figure 12-6.

Figure 12-6   Completed addNewCustomer function
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12.2  Testing the Worklight adapter

The next step is to test the new Worklight adapter. Before continuing, it is important to ensure 
that the CICS service is installed and enabled correctly. Ensure also that the domain and port 
combinations, in the adapter's XML configuration file going to the service's hosting location, 
are accurate.

To test the service of the Worklight adapter, use the following steps: 

1. Right-click the adapter folder CreateNewCustomer and select Run As  3 Invoke 
Worklight Procedure. See Figure 12-7.

Figure 12-7   The Invoke Worklight procedure

2. This brings up a dialog asking for the procedure name to start, and the list of parameters 
to be passed to the adapter. At this point, select addNewCustomer from the Procedure 
name drop-down list.
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3. Enter parameters (each enclosed within quotation marks because they are string 
variables). Next, click Run. See Figure 12-8.

Figure 12-8   Start Worklight procedure parameters

4. Worklight will then start the back-end service and serve the response within a browser 
window (within the Eclipse view by default). See Figure 12-9.

Figure 12-9   Back-end service response

The plain response from CICS was converted into a JSON object, with the text attribute 
being the Uniform Resource Locator (URL) for the newly created customer.
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12.3  Calling the Worklight adapter from the Worklight client 
code

For the Worklight adapters to be useful, they have to be started from the Client application. 
Go to the apps/CICS_Demo/common/js folder, and you will notice that the CICS_Demo.js file was 
created. This is a JavaScript file that is imported by the CICS_Demo.html, which is our main 
client application starting point.

To import this, perform the following steps:

1. Open CICS_Demo.js and use the example in Figure 12-10 to write the adapter invocation 
call function.

Figure 12-10   Adapter invocation call function

There are two callbacks used when starting the procedure:

– The onSuccess function is called if the procedure call succeeded.

– The onFailure function is called if the procedure call failed.

2. The next step is to create a form on the CICS_Demo.html page, which starts this new 
JavaScript function to call the REST-conforming (RESTful) service hosted in CICS, to add 
a new customer. Open the CICS_Demo.html file and alter it to contain a set of fields for the 
input, a button to start the Worklight adapter, and a field for the URL response from CICS. 
See Figure 12-11 on page 157.
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Figure 12-11   CICS_Demo.html file

3. The project was created and configured to use Dojo mobile (this example is using Dojo 
mobile widgets where applicable). The code snippet in Figure 12-11 contains Dojo 
widgets. Next, alter the CICS_Demo.js file to include the processNewCustomer() function. 
This function is called when the add New Customer button is pressed. This function 
gathers input from various fields using jQuery, and calls the addCustomerCall() function 
that was written earlier.

Select the CICS_App folder, then right-click and select Run As  Build all and deploy. 
This will compile the project. 

4. After the compilation process has completed, go to the following web page to find the 
CICS_Demo application in the catalog: 

http://<localhost>:10080/CICS_Demo/console/#catalog 
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5. To deploy the CreateNewCustomer adapter, right-click the adapters/CreateNewCustomer 
folder, and select Run As  1 Deploy Worklight Adapter. See Figure 12-12.

Figure 12-12   Deploy Worklight adapter

6. Refresh the console web page and notice that the console now shows the 
CreateNewCustomer adapter.

7. Click Preview to open a mobile simulator within the web browser, then complete the fields. 
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8. Click the button to receive the Response URL in the text box, as shown in Figure 12-13. 

Figure 12-13   CICS Worklight demonstration

This example is designed to provide quick how-to steps to set up a Worklight project to call a 
back-end service hosted in CICS.
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Part 4 Appendix

This part of the book includes Appendixes.

Part 4
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Appendix A. Sample level for a JSON schema

This appendix contains the full JavaScript Object Notation (JSON) schema produced by 
DFHLS2JS as described in Chapter 9, “Language structure to JSON schema scenario” on 
page 93.

A
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Sample JSON schema generated from COBOL customer create 
program

Example A-1 shows the full JSON schema that is output from the DFHLS2JS Assistant when 
run against the general insurance customer create Common Business Oriented Language 
(COBOL) copybook.

Example A-1   JSON Request schema produced from DFHLS2JS Assistant for Customer Create

{
   "$schema":"http:\/\/json-schema.org\/draft-04\/schema#",
   "description":"Request schema for the LGACUS01 JSON interface",
   "type":"object",
   "properties":{
      "LGACUS01Operation":{
         "type":"object",
         "properties":{
            "ca":{
               "type":"object",
               "properties":{
                  "ca_request_id":{
                     "type":"string",
                     "maxLength":6
                  },
                  "ca_return_code":{
                     "type":"integer",
                     "maximum":99,
                     "minimum":0
                  },
                  "ca_customer_num":{
                     "type":"integer",
                     "maximum":9999999999,
                     "minimum":0
                  },
                  "ca_first_name":{
                     "type":"string",
                     "maxLength":10
                  },
                  "ca_last_name":{
                     "type":"string",
                     "maxLength":20
                  },
                  "ca_dob":{
                     "type":"string",
                     "maxLength":10
                  },
"ca_house_name":{
                     "type":"string",
                     "maxLength":20
                  },
                  "ca_house_num":{
                     "type":"string",
                     "maxLength":4
                  },
                  "ca_postcode":{
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                     "type":"string",
                     "maxLength":8
                  },
                  "ca_num_policies":{
                     "type":"integer",
                     "maximum":999,
                     "minimum":0
                  },
                  "ca_phone_mobile":{
                     "type":"string",
                     "maxLength":20
                  },
                  "ca_phone_home":{
                     "type":"string",
                     "maxLength":20
                  },
                  "ca_email_address":{
                     "type":"string",
                     "maxLength":100
                  },
                  "ca_policy_data":{
                     "type":"string",
                     "maxLength":30000
                  }
               },
               "required":[
                  "ca_request_id",
                  "ca_return_code",
                  "ca_customer_num",
                  "ca_first_name",
                  "ca_last_name",
                  "ca_dob",
                  "ca_house_name",
                  "ca_house_num",
                  "ca_postcode",
                  "ca_num_policies",
                  "ca_phone_mobile",
                  "ca_phone_home",
                  "ca_email_address",
                  "ca_policy_data"
               ]
            }
         },
         "required":[
            "ca"
         ]
      }
   },
   "required":[
      "LGACUS01Operation"
   ]
}
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Appendix B. Sample COBOL programs

This appendix contains the complete source code for the sample Common Business Oriented 
Language (COBOL) programs referred to in this book. The source code is also available to 
download separately. For more information about how to obtain these additional materials, 
see Appendix C, “Additional material” on page 175.

B
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Sample programs for CICS as a client for JSON web services

The Customer Information Control System (CICS) programs in this section are referred to in 
Chapter 11, “Developing a simple JSON web service client application” on page 127. They 
consist of a sample client application that calls a JavaScript Object Notation (JSON) web 
service, and a service provider application to test the client.

Sample client application

This section contains a sample COBOL program (Example B-1) that demonstrates using the 
linkable interface to transform JSON and WEB application programming interface (API) 
commands to call a JSON web service. It calls a sample provider application, which is 
supplied in “Sample provider application” on page 173.

For more information about how the program works, see 11.5, “Developing the application 
program” on page 142. For information about how to test the program, see 11.6, “Testing the 
sample application” on page 148.

Example B-1   Sample client application

CBL CICS('COBOL3') APOST
      *****************************************************************
      *                                                               *
      *  MODULE NAME = REQUeST                                        *
      *                                                               *
      *  DESCRIPTIVE NAME = Sample program demonstrating  CICS        *
      *                     as a client for a JSON web service        *
      *  @BANNER_START@                          02                   *
      *                                                               *
      *  Licensed Materials - Property of IBM                         *
      *                                                               *
      *  "Restricted Materials of IBM"                                *
      *                                                               *
      *                                                               *
      *  (C) Copyright IBM Corp. 2013                                 *
      *                                                               *
      *                                                               *
      *                                                               *
      *                                                               *
      *  @BANNER_END@                                                 *
      *                                                               *
      *                                                               *
      *                                                               *
      *  TRANSACTION NAME = n/a                                       *
      *                                                               *
      *                                                               *
      *-------------------------------------------------------------  *
      *                                                               *
      *  ENTRY POINT = REQUEST                                        *
      *                                                               *
      *-------------------------------------------------------------  *
      *                                                               *
      *****************************************************************
       IDENTIFICATION DIVISION.
       PROGRAM-ID. REQUEST.
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       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
       DATA DIVISION.
       WORKING-STORAGE SECTION.
      *----------------------------------------------------------------*
      * Common defintions                                              *
      *----------------------------------------------------------------*
        01 COMPLETED-MSG.
          03 INITIAL-TEXT PIC X(20) VALUE 'INSURANCE SCORE WAS '.
          03 SCORE-TEXT PIC X(3).

      * Data structures to hold the input and output data
       01 REQUEST-DATA.
           COPY SCREQ01.
       01 RESPONSE-DATA.
           COPY SCRESP01.

       01 WORKING-VARIABLES.
           03 TRANS-RESP                  PIC S9(8) COMP.
           03 CICS-RESP                   PIC S9(8) COMP.
           03 CICS-RESP2                  PIC S9(8) COMP.
           03 HTTP-RESP                   PIC S9(4) COMP.
           03 TOKEN                       PIC S9(16) COMP.
           03 ERROR-LENGTH                PIC S9(8) COMP.
           03 BAD-TRANS-RESP.
                05 MSG-TEXT  PIC X(48) VALUE
                'An error occurred when transforming JSON, code: '.
                05 ERROR-DISPLAY          PIC X(8).
           03 BAD-CICS-RESP PIC X(47) VALUE
              'An unexpected error occurred in a CICS command.'.
           03 BAD-WEB-RESP PIC X(52) VALUE
              'An error occurred connected to the JSON web service.'.
           03 BAD-URIMAP PIC X(26) VALUE 'URIMAP could not be found.'.
           03 HTTP-MSG.
                05 MSG-TEXT  PIC X(19) VALUE 'BAD HTTP RESPONSE: '.
                05 HTTP-RESP-DISPLAY      PIC XXXX.
                05 GAP                    PIC X VALUE IS SPACES.
                05 HTTPSTATUS PIC X(50).
           03 CONTENT-TYPE PIC X(56) VALUE 'application/json'.
           03 ERROR-MSG PIC X(256).

      *-----------------------------------------------------------

      ******************************************************************
      *    L I N K A G E   S E C T I O N
      ******************************************************************
       LINKAGE SECTION.

      ******************************************************************
      *    P R O C E D U R E S
      ******************************************************************
       PROCEDURE DIVISION.

      *----------------------------------------------------------------*
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       MAINLINE SECTION.

      *----------------------------------------------------------------*
      * Common code                                                    *
      *----------------------------------------------------------------*
               INITIALIZE TRANS-RESP
               INITIALIZE CICS-RESP

               MOVE 'JOE' TO FIRSTNAME
               MOVE 'BLOGGS' TO LASTNAME
               MOVE 67 TO HOUSENUMBER
               MOVE '10/10/1984' TO DOB
               MOVE 'N00 BDY' TO POSTCODE
               MOVE 3 TO POLICYTYPE

               EXEC CICS PUT CONTAINER('DFHJSON-TRANSFRM')
                         CHANNEL('CHAN')
                         FROM('SCOREREQ')
                         CHAR
                         RESP(CICS-RESP)
                         END-EXEC
               PERFORM CHECK-RESP

               EXEC CICS PUT CONTAINER('DFHJSON-DATA')
                         CHANNEL('CHAN')
                         FROM(REQUEST-DATA)
                         RESP(CICS-RESP)
                         END-EXEC
               PERFORM CHECK-RESP

      *        Link to the transfomer
               EXEC CICS LINK PROGRAM('DFHJSON')
                         CHANNEL('CHAN')
                         RESP(CICS-RESP)
               END-EXEC
               PERFORM CHECK-RESP

               PERFORM HANDLE-ERROR

               EXEC CICS WEB OPEN
                         URIMAP('CREDSERV')
                         SESSTOKEN(TOKEN)
                         RESP(CICS-RESP)
                         RESP2(CICS-RESP2)
                         END-EXEC
               PERFORM CHECK-RESP-WEB

               EXEC CICS WEB CONVERSE
                         URIMAP('CREDSERV') POST
                         CONTAINER('DFHJSON-JSON')
                         CHANNEL('CHAN')
                         MEDIATYPE(CONTENT-TYPE)
                         TOCONTAINER('DFHJSON-JSON')
                         TOCHANNEL('CHAN')
                         STATUSCODE(HTTP-RESP)
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                         STATUSTEXT(HTTPSTATUS)
                         SESSTOKEN(TOKEN)
                         RESP(CICS-RESP)
                         RESP2(CICS-RESP2)
                         END-EXEC
               PERFORM CHECK-RESP-WEB

               IF HTTP-RESP NOT EQUAL 200
                  MOVE HTTP-RESP TO HTTP-RESP-DISPLAY
                  EXEC CICS SEND TEXT FROM(HTTP-MSG)
                            ERASE END-EXEC
                  EXEC CICS RETURN END-EXEC
               END-IF

               EXEC CICS WEB CLOSE SESSTOKEN(TOKEN) END-EXEC

               EXEC CICS DELETE CONTAINER('DFHJSON-DATA')
                         CHANNEL('CHAN')
                         END-EXEC

               EXEC CICS PUT CONTAINER('DFHJSON-TRANSFRM')
                         CHANNEL('CHAN')
                         FROM('SCORERESP')
                         RESP(CICS-RESP)
                         CHAR
               END-EXEC
               PERFORM CHECK-RESP

      *        Link to the transfomer
               EXEC CICS LINK PROGRAM('DFHJSON')
                         CHANNEL('CHAN')
                         RESP(CICS-RESP)
               END-EXEC
               PERFORM CHECK-RESP

               PERFORM HANDLE-ERROR

               EXEC CICS GET CONTAINER('DFHJSON-DATA') CHANNEL('CHAN')
                         INTO(RESPONSE-DATA)
                         RESP(CICS-RESP)
                         END-EXEC.
               PERFORM CHECK-RESP

               MOVE SCORE TO SCORE-TEXT

               EXEC CICS SEND TEXT FROM(COMPLETED-MSG) JUSLAST
                         END-EXEC
               EXEC CICS SEND PAGE END-EXEC

               EXEC CICS RETURN END-EXEC.

               EXIT.

       HANDLE-ERROR.
             EXEC CICS GET CONTAINER('DFHJSON-ERROR') CHANNEL('CHAN')
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                    INTO(TRANS-RESP)
                    RESP(CICS-RESP)
                    END-EXEC
             IF CICS-RESP EQUAL DFHRESP(NORMAL)
      *         Error container is present, output value
                MOVE TRANS-RESP TO ERROR-DISPLAY
                EXEC CICS SEND TEXT FROM(BAD-TRANS-RESP)
                          ERASE END-EXEC

                MOVE 256 TO ERROR-LENGTH

                EXEC CICS GET CONTAINER('DFHJSON-ERRORMSG')
                          CHANNEL('CHAN')
                          INTO(ERROR-MSG)
                          RESP(CICS-RESP)
                          FLENGTH(ERROR-LENGTH)
                          END-EXEC

                IF CICS-RESP EQUAL DFHRESP(NORMAL)
                   DISPLAY ERROR-MSG
                END-IF
                EXEC CICS RETURN END-EXEC
             END-IF
             EXIT.

       CHECK-RESP.
           IF CICS-RESP NOT EQUAL DFHRESP(NORMAL)
              EXEC CICS SEND TEXT FROM(BAD-CICS-RESP)
                        ERASE
                        END-EXEC
              EXEC CICS RETURN END-EXEC
           END-IF
           EXIT.

       CHECK-RESP-WEB.
           IF CICS-RESP NOT EQUAL DFHRESP(NORMAL)
              IF CICS-RESP EQUAL DFHRESP(NOTFND)
              AND CICS-RESP2 EQUAL 1
                EXEC CICS SEND TEXT FROM(BAD-URIMAP)
                          ERASE
                          END-EXEC
              ELSE
                EXEC CICS SEND TEXT FROM(BAD-WEB-RESP)
                         ERASE
                          END-EXEC
              END-IF
              EXEC CICS RETURN END-EXEC
           END-IF
           EXIT. 
172 Implementing IBM CICS JSON Web Services for Mobile Applications



Sample provider application

This section contains a program (Example B-2) that can be used as a JSON web service 
provider to test the sample client application. 

Example B-2   Sample provider application

CBL CICS('COBOL3') APOST
      *****************************************************************
      *                                                               *
      *  MODULE NAME = CREDIT                                         *
      *                                                               *
      *  DESCRIPTIVE NAME = Service provider application for          *
      *                     insurance credit score service            *
      *  @BANNER_START@                          02                   *
      *                         CREDIT                                *
      *  Licensed Materials - Property of IBM                         *
      *                                                               *
      *  "Restricted Materials of IBM"                                *
      *                                                               *
      *                                                               *
      *  (C) Copyright IBM Corp. 2013                                 *
      *                                                               *
      *                                                               *
      *                                                               *
      *                                                               *
      *  @BANNER_END@                                                 *
      *                                                               *
      *                                                               *
      *  TRANSACTION NAME = n/a                                       *
      *                                                               *
      *****************************************************************
       IDENTIFICATION DIVISION.
       PROGRAM-ID. CREDIT.
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
       DATA DIVISION.
       WORKING-STORAGE SECTION.
      *----------------------------------------------------------------*
      * Common defintions                                              *
      *----------------------------------------------------------------*

       01 CUSTID-SEED PIC 9(9).
       01 SCORE-SEED  PIC 9(9).

      * Data structures to hold the input and output data
      * Due to copy books containing 'SYNC' members must be held
      * individually with an 01 level structure to ensure they are
      * aligned on a double word boundry
       01 REQUEST-CONTAINER-DATA.
           COPY CRREQ01.
       01 RESPONSE-CONTAINER-DATA.
           COPY CRRESP01.

      *-----------------------------------------------------------
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      ******************************************************************
      *    L I N K A G E   S E C T I O N
      ******************************************************************
       LINKAGE SECTION.

      ******************************************************************
      *    P R O C E D U R E S
      ******************************************************************
       PROCEDURE DIVISION.

      *----------------------------------------------------------------*
       MAINLINE SECTION.

      *---------------------------------------------------------------*
      * Get the input data from the supplied container                *
      *---------------------------------------------------------------*

           EXEC CICS GET CONTAINER('DFHWS-DATA')
                     INTO(REQUEST-CONTAINER-DATA)
           END-EXEC

           COMPUTE SCORE-SEED = POLICYTYPE + CUSTID-SEED
           COMPUTE SCORE = FUNCTION RANDOM(SCORE-SEED) * 900 + 100

           COMPUTE CUSTID-SEED = FUNCTION NUMVAL(HOUSENUMBER)
           COMPUTE CUSTOMERID = FUNCTION RANDOM(CUSTID-SEED) * 90000000
           ADD 10000000 TO CUSTOMERID

           EXEC CICS ASKTIME ABSTIME(TIMESTAMP) END-EXEC

           EXEC CICS PUT CONTAINER('DFHWS-DATA')
                         FROM(RESPONSE-CONTAINER-DATA)
           END-EXEC

      * Return to caller
           EXEC CICS RETURN END-EXEC.

       MAINLINE-EXIT.
           EXIT.
      *----------------------------------------------------------------* 
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Appendix C. Additional material

This appendix refers to additional material that can be downloaded from the Internet, as 
described in the following sections. 

Locating the web material

The web material associated with this book is available in softcopy on the Internet from the 
IBM Redbooks web server. To download it, go to the following website:

ftp://www.redbooks.ibm.com/redbooks/SG248161

Alternatively, you can go to the IBM Redbooks website:

ibm.com/redbooks

Select the Additional materials, and open the directory that corresponds with the IBM 
Redbooks form number, SG24-8161.

Using the web material

The additional web material that accompanies this book includes the following file:

File name Description
SG248161.zip Compressed code samples

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web 
material .zip file into this folder.

C
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Related publications

The publications listed in this section are considered particularly suitable to provide more 
detailed information about the topics covered in this book.

IBM Redbooks publications

The following IBM Redbooks publications provide additional information about the topic in this 
document. Note that some publications referenced in this list might be available in softcopy 
only:

� Strategic Overview of WebSphere Appliances, REDP-4790

� Connecting Your Business to the Multichannel Customer with freedomone and IBM 
Worklight, REDP-4986

� Enabling Mobile Apps with IBM Worklight Application Center, REDP-5005

� Extending Your Business to Mobile Devices with IBM Worklight, SG24-8117

� CICS and SOA: Architecture and Integration Choices, SG24-5466

� CICS Web Services Workload Management and Availability, SG24-7144

� Securing CICS Web Services, SG24-7658

� Securing Your Mobile Business with IBM Worklight, SG24-8179

� Enterprise Caching in a Mobile Environment, TIPS0953

� Getting Started with IBM Worklight, TIPS1009

� Enhancing Your Mobile Enterprise Security with IBM Worklight, TIPS1054

How to get IBM Redbooks publications

You can search for, view, download, or order these documents and other Redbooks, 
Redpapers, Web Docs, drafts, and additional materials, at the following website: 

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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