
03- IMS13 Integration: 151

03- IMS13 Integration: 152

If the password phrase is used, an internal PING message will be first sent to IMS Connect

(ICON) to make sure that the level of

03- IMS13 Integration: 153

(ICON) to make sure that the level of

IMS Connect does support the password phrase. Otherwise, the regular 8

bytes password value will be used for verification.

Note: IMS Connect V13 PM91312 and IMS V13 PM85849 are required for this function to work

properly. Both APARs can be applied independently to TMRA and IMS Connect, however, both

APARs must be applied to use the password phrase feature

Support for multiple data stores per IMS activation specification for callout messages enables a

single message-driven bean (MDB) to pull callout messages from more than one IMS data store.

A shared-queues environment removes need to duplicate the MDB application to connect to each

IMS member in the shared queue.

Customers using DLIModel Utility support for Database Web Services should transition to using

the IBM Data Studio Database Web Services support, which leverages the IMS Universal Drivers.

03- IMS13 Integration: 154

the IBM Data Studio Database Web Services support, which leverages the IMS Universal Drivers.

03- IMS13 Integration: 155

03- IMS13 Integration: 156

This slide is a reminder as IMS integration solutions grow the need for more application threads

(PSTs) will increase.. Details are covered in IMS 13 systems section

03- IMS13 Integration: 157

(PSTs) will increase.. Details are covered in IMS 13 systems section

Improved performance by changing the MINTHRD default from 1 to 62% of the MAXTHRD value

to minimize the attach/detach processing.

03- IMS13 Integration: 158

to minimize the attach/detach processing.

03- IMS13 Integration: 159

03- IMS13 Integration: 160

For the sake of simplicity to demonstrate the use case, some intermediate components like

ODBM and IMS Connect are not shown in this chart. For a full view look at the underlying

03- IMS13 Integration: 161

ODBM and IMS Connect are not shown in this chart. For a full view look at the underlying

architecture chart.

In the scenario above a very simple summation call could result in having a large amount of data

being transferred over the network. In this case all of the claims data from the year 2011 is being

streamed to the client side

In this picture that Native SQL engine now handles the data aggregation on z/OS and only the

final summation is streamed over to the JDBC driver.

03- IMS13 Integration: 162

final summation is streamed over to the JDBC driver.

IMS Data Provider for Microsoft .NET simplifies development of Microsoft .NET applications that

are written in C#, Visual Basic, and other ADO.NET-compliant languages to access IMS data

03- IMS13 Integration: 163

are written in C#, Visual Basic, and other ADO.NET-compliant languages to access IMS data

The .NET Framework from Microsoft is the building blocks to build applications by using the class

library in the framework, supporting several programming languages that allows language

03- IMS13 Integration: 164

library in the framework, supporting several programming languages that allows language

interoperability. Programs written for the .NET Framework run in the Common Language Runtime

(CLR) runtime environment, an application virtual machine that provides crucial services such as

security, memory management, and exception handling. The class library and the CLR together

constitute the .NET Framework.

ActiveX Data Object for .NET, or ADO.NET, is a set of software components for accessing data

and data services. ADO.NET is part of the base class library that is included with the Microsoft

.NET Framework.

.NET data providers are software components that enable an ADO.NET consumer to interact with

a data source. The .NET Framework includes the System.Data.Common namespace, which

provides a set of base classes that can be shared by any .NET data provider. This namespace

facilitates a generic ADO.NET database application development approach with a consistent

programming interface.

MS SQL is accessed directly via ADO.NET API. For 3rd party DMBS and other Data Access

standards Data Providers are needed.

.NET comes with Data Providers for ODBC and OLE out of the box. IMS is added to the list of

supported DBs by implementing .NET Data Provider.

Red box – contains all required ADO.NET interfaces (DataReader, DataAdapter, Command,

Connection). Data retrieved from IMS will be stored in a standard DataSet class (in-memory

03- IMS13 Integration: 165

Connection). Data retrieved from IMS will be stored in a standard DataSet class (in-memory

datastore) or IMSDataReader which is similar to ResultSet in Java.

The .NET DP will be a DLL that .NET apps will be using directly. The DLL connects to z/OS via

TCP/IP and DRDA protocol (just like IMS Type 4 Universal Drivers).

IMS Connect and ODBM address spaces are required and together they form DRDA Target Server.

In IMS, Native SQL takes care of processing SQL queries and sending results back. Catalog feature

is used for metadata, so no offline metadata is necessary (in fact, it will not be supported).

Both online and offline (disconnected) modes of operation will be supported.

IMSConnection class includes the properties and methods that is required to establish a connection

with the IMS DRDA Server

IMSCommand class represents an SQL statement to execute against a data source by specifing

what type of SQL interaction you want to perform with a IMS database. This object together with the

IMSConnection object provides the IMS .NET Data Provider customers with a connected data

approach.

Data retrieved from IMS will be stored in a standard DataSet class for disconnect mode

processing and DataReader for connect mode processing.

03- IMS13 Integration: 166

processing and DataReader for connect mode processing.

IMSDataReader serves similar purpose as a DataReader in the ADO.NET technology. This

object is used for fast-forward reading streams of IMS data. This object cannot be used for writing

data. Due to the stream behavior, once some data is read, you must save it for your purpose

since you will not be able to go back and read it again.

IMSDataAdapter similar to the DataAdaptor object in ADO.NET manages connection and

interaction with IMS and gives the users of the IMS .NET Data Provider a disconnected behavior.

This object opens a connection only when required and closes it as soon as it has performed the

intended task.

Dataset is an in-memory data store and the user keeps manipulating the dataset till they are

ready to push the change back to IMS using the IMSDataAdaptor. Note that the IMSConnection

object needs to be instantiated before calling the IMSdataAdaptor object, but not opened. The

IMSDataAdapter will open and close the connection during Fill and Update method calls

transparently to the users.

03- IMS13 Integration: 167

In connected architecture for each data add, retrieve, update, and delete operation requires

access to the database. such as for every select, insert, delete ,update your application will

03- IMS13 Integration: 168

access to the database. such as for every select, insert, delete ,update your application will

access the database.

In disconnected architecture once you fetch the data you can perform operations to the data

without accessing the database. and when you have completed all the data operations then you

commit all your changes to database.

Use DataReader when:

03- IMS13 Integration: 169

Dealing with large volumes of data—too much to maintain in a single cache.

Reduce the memory footprint of your application.

Want to avoid the object creation overhead associated with the DataSet

Want to perform data binding with a control that supports a data source that implements

IEnumerable

Wish to streamline and optimize your data access

Reading rows containing binary large object (BLOB) columns

Note each Open, SQL call and Close Connection causes an allocate/deallocate of the PSB

Point of example is to show how IMSDataReader is used for read only processing while in a

connection

03- IMS13 Integration: 170

connection

An IMSDataReader implements a DataReader in the ADO.NET technology. This object is used for fast-forward

reading streams of data.

03- IMS13 Integration: 171

reading streams of data.

This object cannot be used for writing data. Due to the stream behavior, once some data is read, you must save it

for your purpose since you will not be able to go back and read it again.

SELECT LastName,FirstName FROM TELEPCB1.PHONEBOOK

FETCH FIRST 1 ROW ONLY

Point of example is to show how IMSCommand is used for SQL commands that can change the

IMS data while in a connection

03- IMS13 Integration: 172

IMS data while in a connection

Use DataSet when:

03- IMS13 Integration: 173

You require a disconnected memory-resident cache of data, so that you can pass it to

another component or tier within your application.

You are working with data retrieved from multiple data sources, such as multiple

databases, tables, or files.

You want to perform data binding against a control that requires a data source that

supports List.

Similar to the DataAdaptor object in ADO.NET, the IMSDataAdapter manages connections and interactions

with IMS and gives the users of the IMS .NET Data Provider a disconnected behavior. This object opens a

03- IMS13 Integration: 174

with IMS and gives the users of the IMS .NET Data Provider a disconnected behavior. This object opens a

connection only when required and closes it as soon as it has performed the intended task. Here the SQL

statement is held in its properties and when it is executed the result set is filled into the corresponding

DataSet specified by the application.

The Dataset is an in-memory data store and the user keeps manipulating the dataset till they are ready to

push the change back to IMS using the IMSDataAdaptor. Note that the IMSConnection object needs to be

instantiated before calling the IMSdataAdaptor object, but not opened. The IMSDataAdapter will open and

close the connection during Fill and Update method calls transparently to the users.

This slide provides a mapping of IMS hierarchical database concepts and relational database concepts. It also

shows how IMS Foreign key is used to provide referential integrity. This is used to enforce ADO.NET fill/update

03- IMS13 Integration: 175

shows how IMS Foreign key is used to provide referential integrity. This is used to enforce ADO.NET fill/update

processing.

Fill your DataSet with current data by using the primary key values of the rows returned by the SelectCommand

Make changes to DataSet while still disconnected from IMS

03- IMS13 Integration: 176

Any row in the returned result set whose primary key corresponds to an existing row in the DataSet will be used to

update that row, and that row's state will always become DataRowState.Modified, even if the returned row is

03- IMS13 Integration: 177

update that row, and that row's state will always become DataRowState.Modified, even if the returned row is

identical to the current row

Any row in the returned result set whose primary key doesn't correspond to any existing row will be used to create a

new row, and that row's state will become DataRowState.Added

Any row in the DataSet that doesn't correspond to a row in the returned result set will stay at

DataRowState.Unchanged

For this example, the Update method executes a two UPDATE statements, followed by an INSERT statement due

to the ordering of the rows in the DataSet.

UPDATE PCB.A SET FIELD3 = ‘A4' WHERE A = ‘A11'

UPDATE PCB.B SET FIELD2 = ‘B12' WHERE A = ‘A11' AND B = ‘B1'

INSERT INTO PCB.C (A,B,C) VALUES (‘A11, ‘B1', 'C2', ‘data')

03- IMS13 Integration: 178

To write generic code that either is not tied to a particular database or supports several different

databases, the .NET Framework provides a factory-based interface that is supported by the

03- IMS13 Integration: 179

databases, the .NET Framework provides a factory-based interface that is supported by the

IMS™ Data Provider for Microsoft .NET.

The .NET Framework features a namespace that is called System.Data.Common, which includes

a set of base classes that can be shared by any .NET data provider. This namespace facilitates a

generic ADO.NET database application development approach, offers a constant programming

interface across different databases, and enables the factory design model for client database

applications. These features increase design flexibility and reduce module maintenance cost.

When you use this technique, proprietary class names such as IMSConnection are replaced with

common names, such as DbConnection.

By default, every SQL command is autocommitted.

03- IMS13 Integration: 180

If multiple SQL statements need to be executed as a single transaction, the Transaction property

of the IMSCommand object must be initialized to an IMSTransaction object. An IMSTransaction

object is responsible for rolling back and committing database transactions. When the application

creates an IMSTransaction object by calling the BeginTransaction() method on the

IMSConnection object. All subsequent operations associated with the transaction (for example,

committing or aborting the

transaction), are performed on the IMSTransaction object.

Note when using IMSTransaction CLOSE will rollback any pending transactions:

// Close the connection

connection.Close();

Error messages and logging are available to facilitate troubleshooting.

03- IMS13 Integration: 181

An instance of the IMSError class is created whenever an error occurs on a database operation in

your application. Each instance of IMSError created by the IMSDataAdapter is managed by the

IMSErrorCollection class, which in turn is created by the IMSException class.

Error handling

IMS Data Provider for Microsoft .NET provides an IMSException class that collects instances of

the IMSError class. Catching exceptions in your code can prevent the application from failing and

provide a relevant error message to your user.

Logging and tracing

You can enable logging and tracing by providing a configuration file and specifying the trace level.

Error messages for IMS Data Provider for Microsoft .NET

Error messages for the IMS Data Provider for Microsoft .NET starts with IXN. Some error

messages that are related to connections are followed by errors from the DRDA server. Errors

that are related to SQL queries often include an error code from the SQL support in IMS.

03- IMS13 Integration: 182

In the 1st release, .NET data provider only supports local transactions (single participant).

03- IMS13 Integration: 183

03- IMS13 Integration: 184

03- IMS13 Integration: 185

03- IMS13 Integration: 186

The IMS™ Enterprise Suite Explorer for Development (IMS Explorer) is an Eclipse-based

graphical tool that simplifies IMS application development tasks such as updating IMS database

03- IMS13 Integration: 187

graphical tool that simplifies IMS application development tasks such as updating IMS database

and program definitions, and using standard SQL to manipulate IMS data. Its graphically-driven

editors allow the user to display the segment hierarchy for any IMS database, including logical

relationships and secondary indexes. It also provides user assistance in the form of rich GUI

controls and contextual help to reduce IMS development effort.

The Explorer's graphical editors can be useful for the importing, visualization, and editing of IMS

database and program definitions. You can also use the IMS Explorer to easily access and

manipulate data stored in IMS by using standard SQL.

03- IMS13 Integration: 188

You can create unit test cases and provide input message data in human readable format for

debugging. After you create a unit test case, you can create variations of it with different input

03- IMS13 Integration: 189

debugging. After you create a unit test case, you can create variations of it with different input

message data, to easily exercise different code paths in the IMS transaction.

03- IMS13 Integration: 190

03- IMS13 Integration: 191

03- IMS13 Integration: 192

03- IMS13 Integration: 193

64-bit support for z/OS

03- IMS13 Integration: 194

SOAP Gateway now runs on the z/OS platform in 64-bit mode, allowing organizations to take

advantage of their 64-bit operating environment for extended memory usage.

Send-only with ACK support for synchronous callout

Send-only with acknowledgement protocol support for synchronous callout allows SOAP

Gateway to receive a final confirmation that the response message was delivered to the original

IMS application that issued the callout request. This confirmation provides SOAP Gateway users

additional information about whether a callout response message was sent to IMS and whether

IMS received the message.

SOAP Gateway management utility batch mode support

Administrators can now use the batch mode of the management utility to facilitate web service

deployment and server management for better performance and manageability. Instead of issuing

one command at a time, each with its own JVM instance, you can pass a file with a list of

commands to the SOAP Gateway management utility iogmgmt -batch command for execution

as a batch in one JVM instance.

Enhanced security cipher suite support

SOAP Gateway is enhanced to use the FIPS 140-2 approved cryptographic provider(s);

IBMJCEFIPS (certificate 376) and/or IBMJSSEFIPS (certificate 409) for cryptography. The

certificates are listed on the NIST web site at http://csrc.nist.gov/cryptval/140-

1/1401val2004.htm. SOAP Gateway also adds the support for Transport Layer Security (TLS)

V1.2 and for cipher suites with key length of 2048 and key strength of 112 bit, as required by NIST

SP800-131a.

SOAP Gateway can now attach a 40-byte message ID to incoming request messages for web

services. This ID is sent with the inbound request through IMS Connect to the target IMS

03- IMS13 Integration: 195

services. This ID is sent with the inbound request through IMS Connect to the target IMS

application, and is returned with the response message to SOAP Gateway.

Three different types of message ID are supported:

•SOAP Gateway can get the value of the messageID element in the incoming SOAP message

header, and use that value as the message ID.

•SOAP Gateway can get the value of a user-specified element in the incoming SOAP message

header, and use that value as the message ID.

•SOAP Gateway can generate a unique ID for every incoming SOAP message.

Requirement: IMS 12 with service for APAR PM69983 applied to the target IMS Connect host is required to

use horizontal IDs.

IBM Tivoli Composite Application Manager for Transactions (ITCAM) Transaction Tracking API

(TTAPI).

03- IMS13 Integration: 196

(TTAPI).

IBM Tivoli Composite Application Manager for Transactions (ITCAM) data collector

An installation of IMS Enterprise Suite Version 2.2 SOAP Gateway consists of three parts that can be

installed in different directories (or mount points on z/OS). This three-part architecture separates the

03- IMS13 Integration: 197

installed in different directories (or mount points on z/OS). This three-part architecture separates the

binary files that run the SOAP Gateway server and the management utility from server configuration files

and user files such as

web services-related artifact files. This separation makes it easier to apply maintenance and allocate

additional disk space when more web services are added.

For z/OS the SOAP Gateway installation requires IBM Installation Manager V1.5.3. Installation

manager simplifies maintenance by allowing the installing and upgrading of the server by pulling from a

centralized repository that is delivered through the SMP/E process.

The iogmgmt -migrate now supports the migration of server properties. To migrate from version 2.1, specify

the absolute path to the installation of IMS Enterprise Suite Version 2.1.

03- IMS13 Integration: 198

the absolute path to the installation of IMS Enterprise Suite Version 2.1.

Clone creates a copy of the web services and server properties from a master Version 2.2 server.

The correlator schema has changed in IMS Enterprise Suite Version 2.2 SOAP Gateway. When you upgrade

to IMS Enterprise Suite Version 2.2, the process of migrating existing web services iogmgmt -migrate handles

the correlator migration.

If the installation directory for the imsserver component is read-only, you must change it to read/write mode

before you run the migration tool.

For the synchronous callout scenarios, in addition to transport-level security through basic authentication,

server authentication, or mutual authentication, SOAP Gateway now supports message-level security with

03- IMS13 Integration: 199

server authentication, or mutual authentication, SOAP Gateway now supports message-level security with

SAML 1.1 and SAML 2.0 sender-vouches unsigned tokens.

SAML is an XML-based standard developed by Security Services Technical Committee (SSTC) of

Organization for the Advancement of Structured Information Standards (OASIS). This standard facilitates:

•The exchange of user identity and security attributes information between communicating parties at the

SOAP message level.

•The exchange of authentication and authorization assertions across web service transactions.

WS-Security SAML confirmation method is supported for synchronous callout applications by extracting the

user ID (the user that initiates the synchronous callout application)

from the correlation token and passing it to the external web service.

SOAP Gateway also supports custom authentication modules for accessing the security header for

validation before the SOAP request messages are sent out to the external web service server.

SOAP Gateway message-level security with Security Assertion Markup Language (SAML) 1.1

and SAML 2.0 sender-vouches unsigned tokens.

03- IMS13 Integration: 200

and SAML 2.0 sender-vouches unsigned tokens.

The ID of the user who initially invokes the IMS synchronous callout application is obtained from
PSTUSID and moved into the synchronous callout correlator token field (COR_USERID) as the

web service client which is passed in the SOAP header to the external web service for further

authentication and authorization.

SOAP Gateway also supports custom authentication modules for accessing the security header

for validation before the SOAP request messages are sent to the external web service server.

The IMS application issues the ICAL call to send the callout request data ,the OTMA descriptor

name and optional timeout value. A correlation token including the initiating client userid will be

sent together with the callout request which is managed by IMS SOAP Gateway. IMS SOAP

Gateway looks up the callout correlator and the WSDL file based on the Web service

correlation information in the callout request message. The outbound SOAP request will be

built based on the correlation and WSDL file information to invoke the external web service

provider. This includes obtaining the initiating client User ID from the correlation token and

setting it in the SOAP Envelope security header for the XML document

03- IMS13 Integration: 201

JMX MBean interface for web service provider monitoring

03- IMS13 Integration: 202

In addition to the standard JMX instrumentation for the SOAP Gateway JVM, a customized

MBean interface for SOAP Gateway SOAPGatewayProviderMonitorMBean provides statistics

about SOAP Gateway web services activity, connection bundles, and connections to IMS

Connect.

JMX-compatible monitoring application

Apache Tomcat 7.0 MBeans - The Apache Tomcat servlet container, Catalina, is instrumented

with JMX MBeans.

org.apache.catalina.startup.Bootstrap - basic JVM information including heap memory usage,

thread count, loaded classes, and CPU utilization.

MBeans tab.- expand the folder com.ibm.ims.soap.server, then the node

SOAPGatewayProviderMonitorMBean, and then click Operations.

03- IMS13 Integration: 203

03- IMS13 Integration: 204

Function requires that both the following APAR/PTFs are applied:

• IMS Connect 12: PM39569/UK74666

03- IMS13 Integration: 205

• IMS Connect 12: PM39569/UK74666

• IMS OTMA 12: PM39562/UK74653

New AIB field - AIBUTKN

Provides optional specification of a 1-8 byte map name included in the OTMA state data

prefix to be sent to the callout destination.

IMS 12: PM73135

Sample code

03- IMS13 Integration: 206

03- IMS13 Integration: 207

The send-only protocol for synchronous callout responses can include an acknowledgement to the

callout response so the client does not need to switch to receive state after sending the response

to IMS Connect

The IMS Enterprise Suite 2.2 Connect API for Java™ includes support for send-only synchronous

callout response messages with acknowledgement.

The new interaction type description is set with the following method call for a TmInteraction

object:myTmInteraction.setInteractionTypeDescription

(INTERACTION_TYPE_DESC_SENDONLYACK_CALLOUT_RESPONSE)

This feature allows a client application to get an explicit acknowledgement when the response

message is received by IMS, compared to a normal send-only response message that does not

get any receipt confirmation.

The client receives the acknowledgement after calling the execute() method of the

TmInteraction object. After the acknowledgement is received, the return code and reason code

from the request status message (RSM) can be retrieved with the existing getImsConnectReturnCode()

and getImsConnectReasonCode() methods. If the acknowledgement indicates a successful message

in complete status message (CSM) format, both values are 0.

This interaction type is comparable to the existing INTERACTION_TYPE_DESC_SENDONLYACK

interaction type, but it is applicable to synchronous callout response messages instead of requests

that are initiated from the Connect API for Java client application.

A base line was established for Inbound and Callout with IMS Enterprise Suite V2R2's

Connect API for Java. We were able to reach 16,000 transactions per second for

03- IMS13 Integration: 208

Connect API for Java. We were able to reach 16,000 transactions per second for

inbound using V2R2 IMS Connect API for Java code. The average CPU % used for

LPAR1 with 5 CP's running IMS and IMS connect was 58% and for LPAR2 with 6 CP's

running the IMS Connect API for Java client code was 13.52%. 100 clients

Using the same environment for outbound, we saw 11,000 ICAL requests/sec with

CPU% used for LPAR1 at 78.57% and LPAR 2 at 12.12%. 10 TPIPE’s and 10 response

threads were used for Callout. 150 TPNS clients drove the COBOL IMS echo application

sending messages on the TPIPEs.

Based on our performance measurements, ES 2.2 IMS Connect API for Java impacts the

total cost of ownership by reducing the CPU usage.

The improvement of going from V2R1 to V2R2 was 3% for inbound and 56% for

outbound.

03- IMS13 Integration: 209

The Explorer for Administration provides accessibility from any supported web browser to manage

IMS resources

03- IMS13 Integration: 210

IMS resources

Select from custom groups the IMSPlex view and notice on the right you will have two system nodes;

here we have configured two LPARs to the two therefore see two system nodes.

03- IMS13 Integration: 211

here we have configured two LPARs to the two therefore see two system nodes.

Clicking on the system nodes shows you the hostname and the IMSPlex for the systems. If you have

more than one IMSPlex they will appear under the system node.

03- IMS13 Integration: 212

more than one IMSPlex they will appear under the system node.

In the navigation tree on the left you can see the IMSPlex “PLEX1”, when you click on it the resources

part of the IMSPlex appear on the right. Notice the status indicated as green and the various

03- IMS13 Integration: 213

part of the IMSPlex appear on the right. Notice the status indicated as green and the various

members of the IMSPlex (SCI, OM, ICON, IMS, RM) and their attributes such as resource versions.

In the navigation tree if you expand it till you see your IMS, you can drill down further into the IMS's

transactions, programs and databases. Here we are highlight in the tree the transactions.

03- IMS13 Integration: 214

transactions, programs and databases. Here we are highlight in the tree the transactions.

Notice in the transactions main page you also see the related programs on the right. Hovering over

the red, yellow or green icon will show you the status's of the transaction.

The default columns are predefined attributes but can be altered by clicking on the attributes button

above the transaction rows and submitting your change. You can select any IMS Attributes that return

from the QUERY Tran TYPE2 command.

Also notice you can multi select a group of transactions and start or stop them.

If you double click on any transaction row, you will be taken to the transaction details and relationship

page where you will see more details about this transaction and its relationships.

Start/Stop multiple transactions.

03- IMS13 Integration: 215

Transaction details view. Here you can trill into the transaction from the main page by double clicking

the transaction row EMHTX2 and you see the transactions details and its related programs, routing

03- IMS13 Integration: 216

the transaction row EMHTX2 and you see the transactions details and its related programs, routing

codes and databases.

Notice that there is context sensitive help on this page with regard to each of the panels, see later

slides for examples.

Hover help is available to help assist you with unfamiliar attributes. Clicking the “i” in the top right

transaction panel would also display a help panel with more details for transaction attribute

03- IMS13 Integration: 217

transaction panel would also display a help panel with more details for transaction attribute

explanations. Notice that the hover help and the “i” help will only be related to the panel you are in to

reduce the need to search numerous pages from the IMS book.

Notice next to the red icon the status codes shown indicating why its a red color. If you want to know

more about these particular status's or why its marked red click on the icon and on the right side of

03- IMS13 Integration: 218

more about these particular status's or why its marked red click on the icon and on the right side of

the browser a help panel appears with related help to this transactions status. Click on one of the

transaction status links in the help panel and drill further to see corrective actions.

Similar to transactions there is the ability to display information and status's about programs with the

double click function that will take you into a details and relationship view.

03- IMS13 Integration: 219

double click function that will take you into a details and relationship view.

Similar to transactions there is the ability to display information and status's about databases with the

double click function that will take you into a details and relationship view.

03- IMS13 Integration: 220

double click function that will take you into a details and relationship view.

If you know the name of the transaction, program or database you can search for it in the top left

corner of the browser where there is a text field. Even if you don't know exactly the name, you can

03- IMS13 Integration: 221

corner of the browser where there is a text field. Even if you don't know exactly the name, you can

search character by character and the search will narrow down eventually to the name of the

resource you are searching for. Clicking on it will take you to the respective details view for that

resource. IE if it's a transaction you searched on, you will see the transaction details for that

transaction and related programs and databases.

03- IMS13 Integration: 222

