IMS Teleconference

COBOL and IMS Java
Interoperability

Kenny Blackman
kblackm@us.ibm.com

(L ELOLIELEL R L software

© 2008 IBM Corporation

Abstract:

learn

how you can combine your COBOL business logic

with IMS solutions for Java and gain a more flexible
programming environment. Enterprise COBOL for z/OS®
enables the integration of existing COBOL applications
with IMS Java, while IMS Java provides a complete Java
development solution for both IMS transactions and

IMS databases. In this session, we’ll cover the basics

of COBOL and Java interoperability when being used
under IMS, including database access to IMS and

DB2®, calling Java from COBOL, and calling existing
Language Environment (LE) modules from Java using
the Java Native Interface. Possible runtime environments
are the IMS Java Regions persistent Java Virtual
Machine (JVM™) and existing Message Processing
Regions for LE languages

Java has quickly cemented itself as the language of choice for enterprise application
development. Due in part to its object-oriented methodology and rapid application
development features, many recent and emerging technologies such as SOA, JEE,
JCA, and JDBC are centered on Java as the implementation language. This
session details how IMS Java applications using the IMS Java class libraries are

| COBOL and IMS Java Interoperability

Agenda

= OO Review
= Java Review
= Enterprise COBOL
— Java Object Oriented syntax
- IMS
= [MS Java
— Universal Drivers
— Java API for Dependent Region Processing
— Java API for Database Access

* DLIModel Utility
* IMS 9,10 and 11 DB Access
— Sample Application

Simplify the development and maintenance of IMS
applications by leveraging new Java services as
subroutines accessed by existing COBOL business logic

» Use industry standard application APIs, such as JDBC™,
J2EE™ and XML, to reduce the programming effort
required for building solutions

* Integrate with other products that support the Java API,
for example, the Java Message Service support provided
by WebSphere® MQ

| COBOL and IMS Java Interoperability
0O Review CLASS

Data
declarations

OBJECT
, Instance B

OBJECT
Instance A l

Instance Instance
Data Data

Method4 Method4

CLASSES/OBJECTS model real business items.

A CLASS is atemplate for creating OBJECTSs. I

A class is a template that defines the state and the capabilities of an object. Usually a progr
data known as instance data, and the capabilities of each instance are called instance mett

| COBOL and IMS Java Interoperability
0O Review CLASS

Data
declarations

&

Inheritance

SUBCLASS

Method4

CLASS inheritance is a way of forming new classes
based off of classes that have already been defined.

Object-oriented programming allows classes to inherit commonly used state and behavior fi

| COBOL and IMS Java Interoperability

Java Review

Java > .class > X.jar

M \

classpath=x\.jar or
X.classy.class

Instance
Data

Method4

Java Object Instance

OMVS Directory

Object instances are automatically freed by the Java runtime system’s
garbage collection when they are no longer in use. You cannot explicitly
free individual objects.

| COBOL and IMS Java Interoperability

Enterprise COBOL

= What is Object-oriented COBOL

— A COBOL syntax that enables COBOL and Java interoperation within a
z/OS runtime environment

— What that means is:

» Java can invoke COBOL class methods
» COBOL can invoke Java methods

= Implementation based on the Java Native Interface (JNI)
— COBOL INVOKE statement maps onto Java JNI calls
— COBOL class methods definitions define Java native methods

Object-oriented COBOL is

A set of syntax rules for defining COBOL that can be used to allow COBOL and
JAVA to interact within the same address space. This means that Java can now
invoke COBOL and COBOL can in turn invoke Java in a reciprocal relationship.

Java Native Interface is a facility of Java designed for interoperation for non-Java
programs. Basically the core of how COBOL and Java can interact with each other.
Will look into how the mapping will work in the later slides but it's not terribly
important to know the details.

| COBOL and IMS Java Interoperability
Compile and link of Enterprise COBOL class definition

= Compile of COBOL class definition generates two outputs:
— COBOL object program implementing native method(s)

— Java class source that declares the native methods and manages DLL
loading

= COBOL object program is linked to form DLL: libclassname.so

= Java class is compiled (with javac) to form classname.class

L
_ javac cdass jar Wi
: . — Jar
COBO Compile ,Jo\ar\]/da Ly
o]
.0 (object file)
> DLL
cob2 rd

libclassname.so

It is recommended that you compile, link, and run object-oriented (OO) applications
in the z/OS UNIX environment.

When you compile a COBOL class definition, two output files are generated:
1. The object file (.0) for the class definition.

2. 2 A Java source program (.java) that contains a class definition that corresponds
to the COBOL class definition.

Do not edit this generated Java class definition in any way. If you change the
COBOL class definition, you must regenerate both the object file and the Java
class definition by recompiling the updated COBOL class definition.

cob2-bdll-
olibclassname.soclassname.o/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x/usr/lpp/c
obol/lib/igzcjava.x

libclassname.so is a DLL

A DLL is a load module or a program object that can be accessed from other
separate load modules. A DLL differs from a traditional load module in that it
exports definitions of programs, functions, or variables to DLLs, DLL
applications, or non-DLLs. Therefore, you do not need to link the target routines
into the same load module as the referencing routine. When an application
references a separate DLL for the first time, the system automatically loads the
DLL into memory. In other words, calling a program in a DLL is similar to calling
a load module with a dynamic CALL.

| COBOL and IMS Java Interoperability

OO COBOL Inheritance

Data
declarations

Identification Division.

Class-id. Account inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class Account is “CobolAuto”.

Inheritance

COBOL classes can inherit from COBOL
or Java classes

Java Lang Object Class

, OO COBOL Auto Class

Data
declarations

Method4

Identification Division.

Class-id. Account inherits Base.
Environment Division.
Configuration section.
Repository.

Class Base is "java.lang.Object"
Class Account is "Account”.

| COBOL and IMS Java Interoperability

Java Native Interface

Java Object Instance OO COBOL Object Instance Java Object Instance

Instance

Instance
Data

Instance
Data

Data

invoke ‘
Method
Method4 INVOKE
Method4 Method4
Method
JVM
z/OS zAAP

The Java Native Interface (JNI) is a programming framework that allows Java code runnin

Java applications use java syntax to invoke the COBOL object and COBOL provides INVO

| COBOL and IMS Java Interoperability

OO COBOL Wrapper Class

Identification Division.
Method-id.’"Method?'. OO COBOL Factory Class
Factory.

Data Division.
Working-Storage Section.
Procedure Division.

Call procedure-oriented ...

Data
declarations

Method4

IA wrapper is a class that provides an interface between
object-oriented code and procedure-oriented code

A wrapper is a class that provides an interface between object-oriented code and procedure
Define data to be shared by all instances of the class, and methods supported independent

Use the FACTORY paragraph in a class definition to define data and methods that are to b
the class and is shared by all object instances of the class. You most commonly use factory
class that are created. COBOL factory methods are equivalent to Java public static method
VALUE clauses alone to initialize instance data

A factory method defines an operation that is supported by a class independently of any ob

10

| COBOL and IMS Java Interoperability

Accessing existing procedural COBOL code from Java

= Use an OO COBOL wrapper class to access procedural COBOL pgm
— Define a Factory method containing a CALL to the COBOL program

= Java code uses a static method invocation to invoke the wrapper
A.java Wrapper.cbl

Identification division.
Factory.
Method-id. ‘CallCob1".

rc=Wrapper.callCobl(argl,arg2);

Procedure division using by value argl,arg2.

Call 'Cob1" using arg1, argz\
\ Cobl.chl

Identification division
Program-id. ‘Cob1".

Instance Instance

Data Data

Method4 Method4] ;
IVM z/OS|runtime environment

A.java z/0OS zAAP Wrapper.chbl

We talked mainly about how object oriented cobol can be used to perform
interoperability between java and COBOL but | mentioned earlier that we can do
this with all of the currently existing COBOL most of which is procedural.

We don’t modify the procedural code and convert it to Object-Oriented Code. This
would be a nightmare. Instead we write a simple wrapper around it In this example
the wrapper only handles one procedural cobol application but the same wrapper
could actually cover multiple procedural programs by defining different methods for
each.

| COBOL and IMS Java Interoper

AR
Web
service
clients
JavalJ2EE
lignt

dev

.NET
&
Client
Developer

SAP
= Ingmgauon

developer

—

e 20| HAE)

Mashup

[REST Service | [Web Service

" animiore

Solutions

To Provide a variety of new

IMS Solutions

iransaction
manager

IMS
APP

Database
-

(Solutions

Universal
DB
Resource
Adapter

DB2
SP/CICS

(includes new IMS 11 components) ~—“/

T\
Direct
Database
access

Developers

Java /J2EE
Developer

&

CICS
Developer

DB2
Developer
[i]

12

| COBOL and IMS Java Interoperability

IMS Java Drivers

= IMS 9,10 Java Drivers JDBC 2.1
— Java dependent region resource adapter
— DB resource adapter
— Distributed DB resource adapter

= IMS 11 Open Database APIs JDBC 3.0
— Universal DB resource adapter
— Universal JDBC driver
type-4 and type-2 connections

— Universal DL/I driver

WelbSphere

IBM SDK V1.3.1 IMS 9
IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11

IBM SDK V1.3.1 IMS 9
IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11

IBM SDK V1.3.1 IMS 9
IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11

IBM SDK V1.4.2 IMS 9
IBM SDK V5 z/OS IMS 10
IBM SDK V6 z/OS IMS 11

The IMS JDBC Driver enables JDBC access to IMS DB from IMS TM JMP/JBP environments, CICS
Java application, DB2 Java Stored procedure, and Enterprise Java Beans running on WebSphere
distributed and z/OS environments.

IMS V9 requires SDK V1.4.2 for JIMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.3.1 or higher.

IMS V10 requires SDK V5 for JIMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or
WAS requires SDK V1.4.2 or higher.

The IMS Universal drivers have the following runtime software requirements:
Java Development Kit (JDK) 5.0 or later for CICS Transaction Server for z/OS Version 3.1
for DB2 for z/OS Version 9.1 or DB2 UDB for z/OS Version 8

for WebSphere Application Server for z/OS or WebSphere Application Server for distributed
platforms, Version 6.1

for IMP and JBP regions require Java Development Kit JDK 6.0 or later

13

| COBOL and IMS Java Interoperability

Java class libraries for IMS

y 4
Application

[Java Class Libraries for IMS|

JCA resource adapter

JDBC Driver

Vs A
™ SQL XML-DB XQuery Application
P J) /

) DB API | o

Base
4

- JINI _

AERTDLI Interface CEETDLI Interface AIBTDLI Interface

[Assembler Layer Interfacesto IM S|

Bottom — c i/face (depending on the environment 3 interfaces) — have to
drop down to c (thin jni layer)

Base — 1-1 mapping of the way ims works under covers / in java build SSAs
& make db calls using dli

Db — really what is turning this in to our jdbc driver/ making sql calls

App - running in an ims dependent region and offers reading/writing
messages to ims message queue

Customer code — not worry about the dli / only jdbc

Dbview- ims does not have online metadata; good — now we added new stuff
(XML

bad —
Tooling — generates database view called dli model utility

14

| COBOL and IMS Java Interoperability

Interoperability in IMS Java Regions

= |IMS Java can be

Server-Side Server-Side

used to Ca" procedure Presentation Business Logic

Management

COBOL via OO

COBOL wrapper IMS JMP IMS JBP
bp Region Region
CIaSS COBOL
Java cg’;g'—
Control Applicat ion i
Hetion ClassforName(DLIDriver) Applicetion :
gt] c DLIDriver) |
Selen get.connection(IMS psb) ¢
- Erom Select g
et From
Close Where
TCP/I P o A— BHEE

JDBC
Drivers

IMS Application Server

15

| COBOL and IMS Java Interoperability
Shared Class Cache - SDK V5

Key 8 Shared Class Cache
read-only static class data(ROMCIass)
-Xshareclasses:name=<name>,expire=<time>
-Xscmx<size>[k|m|g]

Data Data

declarations declarations

Method4 Method4

Java Lang Object Class OO COBOL Account Class

All bootstrap and application classes loaded by the JVM are shared
cache persists beyond the lifetime of any JVM connected to it,

The shared class cache contains read-only static class data and metadata that describes the
classes.

To enable class sharing use —Xshareclasses:-name= option when starting a JVM.

The -name=<name> connects a JVM to the specified name cache or creates the cache if it does
not already exist.

expire=<time> suboption is useful for automatically clearing out old caches that have not been
used for a period of time. The suboption is added to the -Xshareclasses option and takes a
parameter <time> in minutes. This option causes the JVM to scan automatically for caches that
have not been connected to for a period greater than or equal to <time> before initializing the
shared classes support.

-Xscmx<size>[k|m|g] Specifies cache size. This option applies only if a cache is being created
and no cache of the same name exists.

Note shared class is not required.

The cache persists beyond the lifetime of any JVM connected to it, until it is explicitly destroyed
or until the operating system is shut down. A cache can be destroyed only if all JVMs using it
have shut down

Run
java -Xshareclasses: name=<name> destroy
java -Xshareclasses:destroyAll

an immutable object is an object whose state cannot be modified after it is created. This is in
contrast to a mutable object, which can be modified after it is created.

Some of the BPXPRMxx parmlib settings affect shared classes performance. Using the wrong
settings can stop shared classes from working. These settings might also have performance
implications. For further information about performance implications and use of these

| COBOL and IMS Java Interoperability

IMS TM MPP - Enterprise COBOL JVM

JVM is created with first Java class invocation
denis gaebler - Cobol/Java interoperability sample running in MPR

Server-Side Server-Side
Presentation Business Logic
Management

IMS MPP
" IMS BMP
Region .
9 Region
el coBoL
Control Applicat ion Applicat ion

Bedton ClassforName(DLIDriver)
get i sb)

%

SEF'E:" ge(.cunnec!:on(lMS psb) |

Where i
From

(Gl Where

Close

TCP/IPor
SNA

IMS z/0OS Platform

Enterprise COBOL will launch the JVM in the MPP/BMP runtime when a Java
method is INVOKED.

17

| COBOL and IMS Java Interoperability

IMS 10 Shared Class Cache - SDK V5
IMS V9 APAR - PK37843 provides SDK V5 support

JMP

IMS
Java
JVM

Key 8 Shared Class Cache ROMCLASS
-Xshareclasses:name=imsjvm

MPP

-Xoptionsfile=
ENVIRON=DFSJVMEV

usr/lpp/javal50/bin/ >
usr/lpp/imsjavalO

JVMOPMAS=DFSJVMMS

(0]
COBOL

JVM

—COBJVMINITOPTIONS=-Xoptionsfile=

PathPrefix/usr/ipp/ims/imsjaval0/dfsjvmpr.props
PathPrefix/usr/lpp/ims/imsjaval0/dfsjvmpr.props

LIBPATH=/usr/lpp/javal50/bin/j9vm >

JVMOPMAS=DFSJVMMS
Specifies the JVM options
ENVIRON=DFSJVMEV

Must contain the pathname to JVM

libwrappers.so libjvm.so

Must contain the pathname to the IMS Java native code

libJavTDLI.so

| COBOL and IMS Java Interoperability

Key 8 Shared Class Cache

-Xshareclasses:name=imsjvm1

JMP

JMP

-Xshareclasses:name=imsjvm2

Key 8 Shared Class Cache

JVM

MPP

MPP

JVM

JVM

JVM

| COBOL and IMS Java Interoperability

Enterprise COBOL MPP JVM setup

/ISYSIN DD *

TITLE 'CEEUOPT
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT XPLINK=(ON), X
POSIX=(ON), X
ENVAR=('_CEE_ENVFILE=/usr/lpp/imsjaval0/ENV")

END

I*

20

| COBOL and IMS Java Interoperability

Enterprise COBOL MPP JVM setup

JAVA_HOME=/ust/Ipp/java/J1.5
PATH=/bin:/usr/lpp/java/J1.5/bin:.

LIBPATH:/Iib:/usr/lib:/usr/lpp/}'ava/J1.5/bin/j9vm:/usr/lpp/java/J1.5/bin:/usr/|pp/java
/J1.5/bin/classic:/u/imsmpp/jcobol

CLASSPATH=/u/imsmpp/jcoboltest.jar:/u/imsmpp/jcobol

COBJVMINITOPTIONS=-Xoptionsfile=/u/imspp/jcobol/jvm.properties
/u/imsmpp/jcobol/jvm.properties e.g. contains:

-Xcodecache=32M

-Xquickstart

-Xshareclasses:name=imscobol

-Xscmx32M

-Xmx256M

-Xms128M

21

| COBOL and IMS Java Interoperability

WebSphere IMS 10 Synchronous Callout 2/0S
IMS

™ IMS
resource

adapter

MPP/IMP/IFP/BMP/JBP
IMS

SOAP IMS Application
GATEWAY Connect S TM/CTL Program DB .
$ | Services ICAL Services

OTMA
TCP/IP Descriptor|
user-written

Client K

This diagram shows that with the IMS callout support IMS applications can be a client and server.
IMS provides bi-directional access between IMS applications and external application and servers.
The IMS Application Program can callout to:

user-written IMS Connect client

WebSphere EJB/MDB using IMS TM Resource Adapter

Web Service Provider using IMS SOAP Gateway

01

01

01

| COBOL and IMS Java Interoperability

ICAL COBOL Interface

Al B.

02 AIBRID PIC x(8) VALUE ' DFSAI B

02 AIBRLEN PI C 9(9) USAGE BI NARY.

02 Al BRSFUNC PI C x(8) VALUE ' SENDRCV .

02 AIBRSNML PI C x(8) VALUE ' DFSI SOAP' .

02 Al BOALEN PIC 9(9) USAGE BI NARY VALUE +12.
02 Al BOAUSE PI C 9(9) USAGE Bl NARY.

CALLOUT- MSG.

02 CA- DATA Pl CTURE X(12) VALUE ‘ HELLO WORLD ’
SCA- RESPONSE.

02 SCA- DATA Pl CTURE X(12).

CALL ' AIBTDLI'" USING I CAL, Al B, CALLQUT-MSG , SCA- RESPONSE.

COBOL sample

23

| COBOL and IMS Java Interoperability

ICAL Java Message Service (JMS) Interface

= |MS Java dependent region resource adapter
com.ibm.ims.jms.IMSQueueConnectionFactory;
setTimeout(1000);
setMaxOutputLength(128000);
createQueue("OTMA Descriptor name");
request(“Hello World");
replyMsg Hello IMS

The Java Message Service (JMS) API is a messaging standard for sending messages between
two or more application programs.

IMS supports the point to point model for ICAL.

24

| COBOL and IMS Java Interoperability

JDBC Review

= JDBC is an application programming interface (API) that Java
applications use to access relational databases or tabular data sources.

= JDBC API provides database-independent connectivity for any
database that has implemented the JDBC interface

= Executing JDBC query statements

Establish and open connection to database
— Execute query and obtain results
— Process results

— Close connection

25

| COBOL and IMS Java Interoperability

SQL and IMS Concepts A

Segnent
(Tabl e)

Fi el ds
(Col umms)
All| A2| A3

B \
Segment Key

(Table Primary Key)

Bl

1\

Segment Instances
Cl (Table Row)

This slide provides a mapping of IMS hierarchical database concepts and relational database
concepts

IMS Java views Segment as a Table, A field as column and segment instance as a row

| COBOL and IMS Java Interoperability

IMS Universal Drivers Type 2 and 4 Connections

DRA/CEETDLI
Universal \
DB RA scl
JDBC S z IMS1
DL/I >
Type 2 scl DI
s LPAR1
Connection
DD,
\= | /
Universal / / \
DB RA S
JDBC Connect ODBM oM SCI
S PROA CRER obM DIRR) IMS2
Typed | TCP/IP cient | SCI 3
TCP/IP
Connection \ LPAR2 /

This slide provides an overview of the capabilities provided by Open Database API Universal Drivers.

It shows the Open Database API supporting Type 2 connections for Local(same LPAR as IMS)
access to IMS.

When used in IMS JMP/JBP regions the CEETDLI interface is used. For WAS z/OS , DB2 SP and
CICS the DRA interface is used.

The TCP/IP Type 4 connection for distributed access to IMS. Note distributed can be across a
network or across an LPAR boundary.

DRDA is the protocol used to communicate to IMS Connect.
DRDA is the industry standard for DB access in a distributed transaction processing environment
The Two Phase Commit and Security flows are imbedded in DRDA

| COBOL and IMS Java Interoperability

IMS 11 Open Database API JDBC enhancements

= Virtual Foreign Key fields

* IMS Java maintains the unique keys for segments up to the root
* SQL SELECT, INSERT, UPDATE, and DELETE queries
— SQL syntax for IMS appears similar to standard SQL

= Updatable Result Sets
— Update or delete of current row
= Metadata Discovery
— Access the IMS Java Metadata classes generated by the DLIModel utility
= autoCommit support
— updates are committed as they happen
= setFetchSize
— An application can set the expected or desired number of rows to be returned

28

| COBOL and IMS Java Interoperability

Virtual Foreign Keys A
INSERT Example
All| A2
B
Bl
INSERT INTO PCB.C (A, B, C)
VALUES (‘al', ‘bl', ‘c2") C
C { €
Cl
2 all bl HSZ—

Virtual Foreign Keys

In relational databases, hierarchies can be logically built by creating foreign key relationships
between tables.

In IMS, the hierarchies are explicit and are part of the database definition itself.

The IMS Open Database API introduces the concept of virtual foreign keys to capture these explicit
hierarchies in a relational sense, which makes the SQL syntax for IMS appear similar to standard
SQL.

When accessing IMS databases every segment that is not the root segment in a hierarchic path will
virtually contain the unique keys of all of its parent segments up to the root of the database. These
keys are called virtual foreign key fields.

The purpose of the virtual foreign key fields is to maintain referential integrity, similar to foreign keys
in relational databases.

This allows SQL SELECT, INSERT, UPDATE, and DELETE queries to be written against specific
tables and columns located in the IMS database hierarchic path.

Remember: Virtual foreign keys are maintained internally and are not physically stored in the IMS
database.

Virtual Foreign Keys are the same concept as IMS fully concatenated keys.

Virtual foreign keys are maintained internally by the IMS Universal driver; the keys are not
physically stored in the IMS database

29

while(rs.next()){

A

All| A22

| COBOL and IMS Java Interoperability
Updatable Result Sets Example

rs = st.executeQuery("SELECT A2 FROM PCB.A");

rs.updateString(“A2", “A22");
rs.updateRow():

While processing
result set
update IMS
Database

Query IMS
Database

A

All| A22

B

Bl

C1

autoCommit occurs when the result set is closed or has no more rows

A ResultSet object is a table of data representing a database result set, which is usually generated
by executing a statement that queries the database.

In this example the A2 field in segment A is updated to A22

autocommit occurs when the result set is closed or has no more rows

30

| COBOL and IMS Java Interoperability

SQL keywords support

= XML Support
— Retrieval, Storage

SELECT firstName, lastName, retrieveXML(Employees)

FROM DealerTable.Employees
WHERE serialNumber = ‘3A0140’

Build an XML document out of the Employee Segment and all dependant
Segments in this PCB for the employee with serial number 3A0140.

31

| COBOL and IMS Java Interoperability

Building an IMS Java Application

=Define input and output messages
» Subclass IMSFieldMessage
» Repeating fields

=Define database layout .
> Subclass DLIDatabaseView

“Define database segments defines metadata required
> Subclass DLISegment ; forIMS JDBC Driver

=Write application program :'
> Subclass IMSApplication

Define metadata - helps to ensure program
correctness - allows our product to be
"smart" about memory layouts and data
conversions

Information about the input and output
messages

Information about the segments and fields in
the database

Type, length

Used for type safety (can't put a short in a
String field without converting it first to a
String)

Used for data conversion
We need the hlerarchy as weII (to build

| COBOL and IMS Java Interoperability

DLIModel Utility

IMS 11 XML
Schema Control statements
Input COBOL & PL/1
Generate i copybook

members

DBD

3
PSB XM ' +——_, DLIModel C

metadata / DBD
DBD XMl IMS Java
metadata
IMS Java Report

XML Schema(s) Metadata classes

Text report will be removed since application programmers can use the graphical view of PSB/DBD to assist them.

The graphical view of PSB and DBD can now be “Save As..."” graphic files (JPG or BMP)

| COBOL and IMS Java Interoperability

Mixed Language Dealership Sample

= Enterprise COBOL
— Front-End “MAIN”
— Back-End IMS DB Access

= |IMS Java
— Back-End IMS DB Access
— Front-End “MAIN”"

34

| COBOL and IMS Java Interoperability

IMS Metadata

DEALER

DLRID
DLRNAME
DLRADDR

MODEL

ORDER

DBDLIB, PSBLIB

Segmentinfo[]

Dealer
Segment

Model
Segment

ORDER
Segment

J

DLITypelnfo[]

DealerlD
DealerName
DealerAddres

DLITypelnfo[]

DLITypelnfo[]

DLIDatabaseView

35

| COBOL and IMS Java Interoperability

SQL Parsing
SELECT DedeTable.DealerName, OrderTable.LastName
Not e:
- D command code
SSAList 4— — Sets IM5 Path call
DEALER *D
MODEL (MBRP GT50000)
ORDER (DATE GE20080314& Dealer
DATE LE20080331)
I0Area
DEALER MODEL ORDER
Model
10100101001010111010101100110101001010011111010111010110010101101010111010110000101010110101000100
01001010100010101011101010101001001010101101111011010101011000000101011110101010101010000001010111
00101001011101010100100101101010010111010100011000100010110101101101010111011010010010101010010101
ResultSet Order

001010111010 | 01010011 1011010101110101100
110101001010 | 01010101 0001010111101000101
001010110111 | 1011101€ 1001010101101010110

Create io area based on size; copy the fields in to resultset and return it as
jdbc expects

Command code D Retrieve or insert a sequence of segments in a hierarchic
path using only one call, instead of having to use a separate (path) call for
each segment.

This provides an implicit SQL Table JOIN for the IMS segments in the path

36

| COBOL and IMS Java Interoperability

Define I nput Messages

|LL|ZZ|TRANCODE|RequestCode|DealerName|Dealerlp~ Field type

public class |nput Message extends | M5SFi el desagV
final static DLI Typelnfo[] messa

gelnfo — [
P 3

new DLI Typel nf o(" Request Code", | DLI Typel nf o. | NT, 1, , | _Starting
new DLI Typel nf o(" Deal er Nanme", | DLI Typel nf 0. CHAR, 5, . offset
new DLI Typel nf o("Deal erl D', DCT Typernt o. T NT, 5, 4)
IE NG
Length
public InputMessage() { 9

super (messagel nf o, @ fal'se));
}

} /1 end | nput Message

\
Message | ength i sSpa

NOTE: Do not define LL, ZZ, and TRANCODE fi el ds.
Use get MessagelLength and get Transacti onCode
met hods provi ded by | MSFi el dMessage to get length
and transaction code.

Layout of the message we are going to read
from the queue

Field name, type ,starting offset, length

We have taken out LL, ZZ, and TRANCODE
from the user space

In the call to super() - pass the array of type
info fields, the total length, and false because it
IS not a SPA message

| COBOL and IMS Java Interoperability
Define Output Messages

public class Cancel edOrder extends |MsSFiel dvessage {

final static DLITypelnfo[] cancellnfo = {

new DLI Typel nf o(" Message", DLI Typel nf 0. CHAR, 1, 30),

new DLI Typel nf o(" Order Date", "MWdYYYY", DLI Typel nfo.DATE, 31, 8)
}i

public Mdel () {
super (cancel I nfo, 38, false);
}
}

Much like input messages

Output messages are those that are going to
be written back to the queue

Notice the DATE field - have a typeQualifier
giving layout of date in memory
more on that later

| COBOL and IMS Java Interoperability

IMS Dealer Application Java Front-End

package sanpl es. deal er shi p;
public class | MSAuto {

public static void main(String args []) {
| MSAut 0 i msauto = new | MSAuto();

| MSMessageQueue nessageQueue = new | MSMessageQueue();
Fi ndCar | nput i nput Message = new Fi ndCarlnput ();
Fi ndCar Qut put out put Message = new Fi ndCar Qut put () ;

try {
whi |l e (nmessageQueue. get Uni queMessage(i nput Message)) {
i meaut 0. proccessMessage(i nput Message, out put Message);
messageQueue. i nsert Message(out put Message. fornat ());
CobolAutoDealership dealer = new CobolAutoDealership();

dealer.displayModel(input,output);

} catch (I MSException e) {
e.printStackTrace();
}

39

| COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Back-END

Move "AUTOLPCB" to AIBRSNM1
Move length of MODEL-SEGMENT to AIBOALEN

Call "CEETDLI" using GN, AIB, MODEL-SEGMENT, model-ssa
Set address of DBPCB to AIBRESA1

If dbstat is = spaces

40

| COBOL and IMS Java Interoperability

Building a Mixed Language IMS Application

=Build Enterprise COBOL Wrapper Class
=Compile COBOL code
=Compile COBOL generated java code

you can obtain PCB addresses by making an IMS INQY call using the
FIND subfunction and the PCB name as the resource name. The INQY
call returns the address of the PCB, which you can then pass to a COBOL
program. This approach still requires that the PCB name be defined as
part of the PSBGEN, but the COBOL application does not have to use the
AIB interface.

| COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Wrapper to COBOL Back-END

AIBSFUNC = FIND
AIBRSNM1 = MYDBPCB
AIBOALEN

AIBRETRN

AIBREASN

AIBRESA1

CALL AIBTDLI INQY,MYAIB,IOAREA
Set address of MYDBPCB to AIBRESA1
CALL MY-COBOL-SUBRTN USING MYDBPCB

42

| COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Wrapper to COBOL Back-END

Call “CBLTDLI" using GN, MYDBPCB, MODEL-SEGMENT,
model-ssa

If dbstat is = spaces

43

| COBOL and IMS Java Interoperability

Summary

= Enterprise COBOL and Java can coexist
= IMS runtime environments can be used

= Exploit IMS Java capabilities

Simplify the development and maintenance of IMS
applications by leveraging new Java services as
subroutines accessed by existing COBOL business logic

* Use industry standard application APIs, such as JDBC™,
J2EE™ and XML, to reduce the programming effort
required for building solutions

* Integrate with other products that support the Java API,
for example, the Java Message Service support provided
by WebSphere® MQ

44

