
1

© 2008 IBM Corporation

®

IMS Teleconference

August 2007
New York, New York

COBOL and IMS Java  
Interoperability

Kenny Blackman
kblackm@us.ibm.com

Abstract:
learn
how you can combine your COBOL business logic
with IMS solutions for Java and gain a more flexible
programming environment. Enterprise COBOL for z/OS®
enables the integration of existing COBOL applications
with IMS Java, while IMS Java provides a complete Java
development solution for both IMS transactions and
IMS databases. In this session, we’ll cover the basics
of COBOL and Java interoperability when being used
under IMS, including database access to IMS and
DB2®, calling Java from COBOL, and calling existing
Language Environment (LE) modules from Java using
the Java Native Interface. Possible runtime environments
are the IMS Java Regions persistent Java Virtual
Machine (JVM™) and existing Message Processing
Regions for LE languages
Java has quickly cemented itself as the language of choice for enterprise application 
development.  Due in part to its object-oriented methodology and rapid application 
development features, many recent and emerging technologies such as SOA, JEE, 
JCA, and JDBC are centered on Java as the implementation language.  This 
session details how IMS Java applications using the IMS Java class libraries are 



2

COBOL and IMS Java Interoperability

Agenda

OO Review

Java Review

Enterprise COBOL
– Java Object Oriented syntax
– IMS

IMS Java 
– Universal Drivers
– Java API for Dependent Region Processing
– Java API for Database Access

• DLIModel Utility
• IMS 9 , 10  and 11  DB Access

– Sample Application

Simplify the development and maintenance of IMS
applications by leveraging new Java services as
subroutines accessed by existing COBOL business logic
• Use industry standard application APIs, such as JDBC™,
J2EE™ and XML, to reduce the programming effort
required for building solutions
• Integrate with other products that support the Java API,
for example, the Java Message Service support provided
by WebSphere® MQ



3

COBOL and IMS Java Interoperability

OO Review

A CLASS is a template for creating OBJECTs.
CLASSES/OBJECTS model real business items.

Method2Method1

Data
declarations

Method4

Method3Method5

CLASS

OBJECT
Instance A

OBJECT
Instance B

Method2Method1

Instance
Data

Method4

Method3Method5

Method2Method1

Instance
Data

Method4

Method3Method5

A class is a template that defines the state and the capabilities of an object. Usually a progr
data known as instance data, and the capabilities of each instance are called instance meth



4

COBOL and IMS Java Interoperability

OO Review
Method2Method1

Data
declarations

Method4

Method3Method5

CLASS

Method2Method1

Data

Method4

Method7Method6

CLASS inheritance is a way of forming new classes 
based off of classes that have already been defined.

SUBCLASS

Inheritance

Object-oriented programming allows classes to inherit commonly used state and behavior fr



5

COBOL and IMS Java Interoperability

Java Review

.java.java.java .class.class.class
javac jar

x.jar

classpath=x.jar or
x.class,y.class

OMVS Directory

Method2Method1

Instance
Data

Method4

Method3Method5

JVM

Java Object Instance

Object instances are automatically freed by the Java runtime system’s 
garbage collection when they are no longer in use. You cannot explicitly 
free individual objects. 



6

COBOL and IMS Java Interoperability

Enterprise COBOL

What is Object-oriented COBOL

– A COBOL syntax that enables COBOL and Java interoperation within a 
z/OS runtime environment

– What that means is:
• Java can invoke COBOL class methods 
• COBOL can invoke Java methods

Implementation based on the Java Native Interface (JNI)

– COBOL INVOKE statement maps onto Java JNI calls

– COBOL class methods definitions define Java native methods

Object-oriented COBOL is
A set of syntax rules for defining COBOL that can be used to allow COBOL and 
JAVA to interact within the same address space. This means that Java can now 
invoke COBOL and COBOL can in turn invoke Java in a reciprocal relationship.

Java Native Interface is a facility of Java designed for interoperation for non-Java 
programs. Basically the core of how COBOL and Java can interact with each other. 
Will look into how the mapping will work in the later slides but it’s not terribly 
important to know the details.



7

COBOL and IMS Java Interoperability

Compile and link of Enterprise COBOL class definition

Compile of COBOL class definition generates two outputs:

– COBOL object program implementing native method(s)

– Java class source that declares the native methods and manages DLL 
loading 

COBOL object program is linked to form DLL: libclassname.so

Java class is compiled (with javac) to form classname.class

.java.java
.java
And
.o

.class.class.classjavac jar x.jar
.java.javaCOBOL Compile

.o (object file)

cob2

.class.classDLL

libclassname.so

It is recommended that you compile, link, and run object-oriented (OO) applications 
in the z/OS UNIX environment. 

When you compile a COBOL class definition, two output files are generated:
1. The object file (.o) for the class definition. 
2. 2 A Java source program (.java) that contains a class definition that corresponds 

to the COBOL class definition. 
Do not edit this generated Java class definition in any way. If you change the 

COBOL class definition, you must regenerate both the object file and the Java 
class definition by recompiling the updated COBOL class definition.

cob2-bdll-
olibclassname.soclassname.o/usr/lpp/java/IBM/J1.3/bin/classic/libjvm.x/usr/lpp/c
obol/lib/igzcjava.x

libclassname.so is a DLL 
A DLL is a load module or a program object that can be accessed from other 

separate load modules. A DLL differs from a traditional load module in that it 
exports definitions of programs, functions, or variables to DLLs, DLL 
applications, or non-DLLs. Therefore, you do not need to link the target routines 
into the same load module as the referencing routine. When an application 
references a separate DLL for the first time, the system automatically loads the 
DLL into memory. In other words, calling a program in a DLL is similar to calling 
a load module with a dynamic CALL. 



8

COBOL and IMS Java Interoperability

OO COBOL Inheritance
Method2Method1

Data
declarations

Method4

Method3Method5

Java Lang Object Class

Method2Method1

Data
declarations

Method4

Method7Method6

COBOL classes can inherit from COBOL 
or Java classes

OO COBOL Auto Class

Inheritance
Identification Division. 
Class-id. Account inherits Base. 
Environment Division. 
Configuration section. 
Repository. 
Class Base is "java.lang.Object" 
Class Account is “CobolAuto". 

Identification Division. 
Class-id. Account inherits Base. 
Environment Division. 
Configuration section. 
Repository. 
Class Base is "java.lang.Object" 
Class Account is "Account". 



9

COBOL and IMS Java Interoperability

Java Native Interface

Method2Method1

Instance
Data

Method4

Method3Method5

Java Object Instance

Method2Method1

Instance
Data

Method4

Method7Method6

OO COBOL Object Instance

Method2Method1

Instance
Data

Method4

Method3Method5

Java Object Instance

JVM

JNIinvoke
Method

z/OS zAAP

INVOKE
Method

The Java Native Interface (JNI) is a programming framework that allows Java code runnin
Java applications use java syntax to invoke the COBOL object and COBOL provides INVO



10

COBOL and IMS Java Interoperability

OO COBOL Wrapper Class 

Method2Method1

Data
declarations

Method4

Method7Method6

A wrapper is a class that provides an interface between 
object-oriented code and procedure-oriented code 

OO COBOL Factory Class
Identification Division. 
Method-id.’Method1’.
Factory. 
Data Division.
Working-Storage Section.
Procedure Division.
Call procedure-oriented …

A wrapper is a class that provides an interface between object-oriented code and procedure
Define data to be shared by all instances of the class, and methods supported independent
Use the FACTORY paragraph in a class definition to define data and methods that are to be
the class and is shared by all object instances of the class. You most commonly use factory
class that are created. COBOL factory methods are equivalent to Java public static method
VALUE clauses alone to initialize instance data 
A factory method defines an operation that is supported by a class independently of any obj



11

COBOL and IMS Java Interoperability

Accessing existing procedural COBOL code from Java
Use an OO COBOL wrapper class to access procedural COBOL pgm
– Define a Factory method containing a CALL to the COBOL program

Java code uses a static method invocation to invoke the wrapper

rc=Wrapper.callCob1(arg1,arg2);

Identification division.
Factory.
Method-id. 'CallCob1'.

Procedure division using by value arg1,arg2.
Call 'Cob1' using arg1, arg2

Identification division.
Program-id. 'Cob1'.

A.java Wrapper.cbl

Cob1.cbl
Method2Method1

Instance
Data

Method4

Method3Method5

Method2Method1

Instance
Data

Method4

Method7Method6

JVM z/OS runtime environment

A.java Wrapper.cblz/OS zAAP

We talked mainly about how object oriented cobol can be used to perform 
interoperability between java and COBOL but I mentioned earlier that we can do 
this with all of the currently existing COBOL most of which is procedural.
We don’t modify the procedural code and convert it to Object-Oriented Code. This 
would be a nightmare. Instead we write a simple wrapper around it In this example 
the wrapper only handles one procedural cobol application but the same wrapper 
could actually cover multiple procedural programs by defining different methods for 
each.



12

COBOL and IMS Java Interoperability

W
e

b
 S

e
rv

ic
e

.NET 
Client

Client 
Developer

Application 
developer

SAP 
Client

Web 
service 
clients

Java/J2EE 
ClientJava 

dev

Direct 
Database 
access  

Developers

Java /J2EE 
Developer

CICS  
Developer

DB2 
Developer

Java 
class 
Library

Direct
SOAP

IMS SOAP 
Gateway

RDz

Solutions

WID RAD

IMS TM 
Resource 
Adapter

MFS SOA

WebSphere

Solutions

DLI 
Model 
Utility

DLI 
Model 
Utility

DB2 
SP/CICS

WebSphere

IMS 
Universal
DB 
Resource 
Adapter

IMS

Database  

IMS Connect

SQL
XQuery

DL/I
DL/ISOAP

TCP/IP

Transaction 
manager

IMS 
APP

Database 
manager

DLI 
Model 
Utility

O
TM

A

O
D

B
M

IMS
Universal
JDBC
Driver

IMS
Universal
JDBC
Driver

TCP/IP
DRDA

O
D

B
A /D

R
A

IMS
JDR
Resource
Adapter

Web 2.0 
Mashup

HTTP

IMS 
Web 2.0 

WebSphere

R
E

S
T

 S
e

rv
ic

e

InfoSphere 
Mashup

To Provide a variety of new 
IMS Solutions

(includes new IMS 11 components)



13

COBOL and IMS Java Interoperability

M
P
P

B
M
P

I
F
P

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL        

IMS Java
App

DLI
Database

View

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL        

IMS Java
App

DLI
Database

View

JMP      JBP

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL        

IMS Java
App

DLI
Database

View

CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL        

IMS Java
App

DLI
Database

View

Stored 
Procedure EJB

IMS DB

DRA

ODBA

Java Virtual Machine

Java Virtual Machine

Java Virtual Machine

IMS Java Drivers
IMS 11 Open Database APIs JDBC 3.0 
– Universal DB resource adapter 
– Universal JDBC driver 

• type-4 and type-2 connections
– Universal DL/I driver 

IMS 9,10 Java Drivers  JDBC 2.1  
– Java dependent region resource adapter 
– DB resource adapter 
– Distributed DB resource adapter

IBM SDK V1.4.2 IMS 9
IBM SDK V5 z/OS IMS 10
IBM SDK V6 z/OS IMS 11

JCICS
CEETDLI Interface

JNI

Base

A
p
p

DB

JDBC / SQL        

IMS Java
App

DLI
Database

View

Java Virtual Machine
IBM SDK V1.3.1  IMS 9
IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11 IBM SDK V1.3.1  IMS 9

IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11 IBM SDK V1.3.1  IMS 9

IBM SDK V1.4.2 z/OS IMS 10
IBM SDK V5 z/OS IMS 11

The IMS JDBC Driver enables JDBC access to IMS DB from IMS TM JMP/JBP environments, CICS 
Java application, DB2 Java Stored procedure, and Enterprise Java Beans running on WebSphere
distributed and z/OS environments.
IMS V9 requires SDK V1.4.2 for JMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or 
WAS requires SDK V1.3.1 or higher.
IMS V10 requires SDK V5 for JMP and JBP regions, IMS DB Resource Adapter for CICS, DB2 or 
WAS requires SDK V1.4.2 or higher.
The IMS Universal drivers have the following runtime software requirements:
Java Development Kit (JDK) 5.0 or later for CICS Transaction Server for z/OS Version 3.1
for  DB2 for z/OS Version 9.1 or DB2 UDB for z/OS Version 8 
for WebSphere Application Server for z/OS or WebSphere Application Server for distributed 
platforms, Version 6.1 
for JMP and JBP regions require Java Development Kit JDK 6.0 or later



14

COBOL and IMS Java Interoperability

AERTDLI Interface CEETDLI Interface AIBTDLI Interface

JNI

Base

TM 
API

DB API

Java Class Libraries for IMS 

Assembler Layer Interfaces to IMS 

Java class libraries for IMS

SQL XML-DB XQuery

Application

JDBC Driver

JCA resource adapter

Application

Bottom – c i/face (depending on the environment 3 interfaces) – have to 
drop down to c (thin jni layer)
Base – 1-1 mapping of the way ims works under covers / in java build SSAs
& make db calls using dli
Db – really what is turning this in to our jdbc driver/ making sql calls
App  - running in an ims dependent region and offers reading/writing 
messages to ims message queue
Customer code – not worry about the dli / only jdbc
Dbview- ims does not have online metadata; good – now we added new stuff 
(XML 
bad –
Tooling – generates database view called dli model utility



15

COBOL and IMS Java Interoperability

Interoperability in IMS Java Regions

IMS Java can be 
used to call procedure 
COBOL via OO 
COBOL wrapper 
class

TCP/IP or
SNA

IMS Application ServerIMS Application Server

IMS
TM

IMS JMP
Region

COBOL
Java 

Applicat ionControl
Region

IMS
Connect

IMS z/OS Platform

Server-Side
Presentation
Management

Server-Side
Business Logic

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where 
Close         

COBOL
Java 

Applicat ion

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From
Where 
Close         

IMS JBP
Region

DLI
/

DB2

JDBC 
Drivers

JDBC 
Drivers

OO 
COBOL
Class …

JNI



COBOL and IMS Java Interoperability

Key 8 Shared Class Cache
read-only static class data(ROMClass) 

-Xshareclasses:name=<name>,expire=<time>
-Xscmx<size>[k|m|g]

Shared Class Cache  - SDK V5  

All bootstrap and application classes loaded by the JVM are shared 
cache persists beyond the lifetime of any JVM connected to it, 

Method2Method1

Data
declarations

Method4

Method7Method6

Method2Method1

Data
declarations

Method4

Method3Method5

Java Lang Object Class OO COBOL Account Class

The shared class cache contains read-only static class data and metadata that describes the 
classes. 
To enable class sharing use –Xshareclasses:-name= option when starting a JVM.
The -name=<name> connects a JVM to the specified name cache or creates the cache if it does 
not already exist.
expire=<time> suboption is useful for automatically clearing out old caches that have not been 
used for a period of time. The suboption is added to the -Xshareclasses option and takes a 
parameter <time> in minutes. This option causes the JVM to scan automatically for caches that 
have not been connected to for a period greater than or equal to <time> before initializing the 
shared classes support. 
-Xscmx<size>[k|m|g] Specifies cache size. This option applies only if a cache is being created 

and no cache of the same name exists.
Note shared class is not required.
The cache persists beyond the lifetime of any JVM connected to it, until it is explicitly destroyed 
or until the operating system is shut down. A cache can be destroyed only if all JVMs using it 
have shut down 
Run 
java -Xshareclasses: name=<name> destroy
java -Xshareclasses:destroyAll
an immutable object is an object whose state cannot be modified after it is created. This is in 
contrast to a mutable object, which can be modified after it is created. 
Some of the BPXPRMxx parmlib settings affect shared classes performance. Using the wrong 
settings can stop shared classes from working. These settings might also have performance 
implications. For further information about performance implications and use of these 

t f t th /OS MVS I iti li ti d T i R f (SA22 7592) d th OS



17

COBOL and IMS Java Interoperability

IMS TM MPP  - Enterprise COBOL JVM

TCP/IP or
SNA

IMS Application ServerIMS Application Server

IMS
TM

IMS MPP
Region

COBOL
Java 

Applicat ionControl
Region

IMS
Connect

IMS z/OS Platform

Server-Side
Presentation
Management

Server-Side
Business Logic

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From

Where 
Close         

COBOL
Java 

Applicat ion

ClassforName(DLIDriver)
get.connection(IMS psb)

Select
From

Where 
Close         

IMS BMP
Region

DLI
/

DB2

JDBC 
Drivers

JDBC 
Drivers

JVM is created with first Java class invocation
denis gaebler - Cobol/Java interoperability sample running in MPR
http://www.ims-society.org/board/viewtopic.php?t=79

Enterprise COBOL will launch the JVM in the MPP/BMP runtime when a Java 
method is INVOKED.



COBOL and IMS Java Interoperability

IMS 
Java
JVM

JMP

OO 
COBOL
JVM

MPP

JVMOPMAS=DFSJVMMS
-Xoptionsfile=
PathPrefix/usr/lpp/ims/imsjava10/dfsjvmpr.props
ENVIRON=DFSJVMEV
LIBPATH=/usr/lpp/java150/bin/j9vm >
/usr/lpp/java150/bin/ >
/usr/lpp/imsjava10

Key 8 Shared Class Cache ROMCLASS
-Xshareclasses:name=imsjvm

IMS 10 Shared Class Cache  - SDK V5  
IMS V9 APAR - PK37843 provides SDK V5 support 

–COBJVMINITOPTIONS=-Xoptionsfile= 
PathPrefix/usr/lpp/ims/imsjava10/dfsjvmpr.props

JVMOPMAS=DFSJVMMS
Specifies the JVM options 
ENVIRON=DFSJVMEV
Must contain the pathname to  JVM
libwrappers.so libjvm.so
Must contain the pathname to the IMS Java native code  
libJavTDLI.so



COBOL and IMS Java Interoperability

JVM

JMP

Key 8 Shared Class Cache
-Xshareclasses:name=imsjvm1

Multiple Shared Class Cache  

JVM

JMP

JVM

MPP

JVM

MPP

Key 8 Shared Class Cache
-Xshareclasses:name=imsjvm2



20

COBOL and IMS Java Interoperability

Enterprise COBOL MPP JVM setup

//SYSIN    DD *

TITLE 'CEEUOPT'

CEEUOPT  CSECT

CEEUOPT  AMODE ANY

CEEUOPT  RMODE ANY

CEEXOPT XPLINK=(ON),                                   X

POSIX=(ON),                                      X

ENVAR=('_CEE_ENVFILE=/usr/lpp/imsjava10/ENV')

END

//*



21

COBOL and IMS Java Interoperability

Enterprise COBOL MPP JVM setup

JAVA_HOME=/usr/lpp/java/J1.5
PATH=/bin:/usr/lpp/java/J1.5/bin:.
LIBPATH=/lib:/usr/lib:/usr/lpp/java/J1.5/bin/j9vm:/usr/lpp/java/J1.5/bin:/usr/lpp/java

/J1.5/bin/classic:/u/imsmpp/jcobol
CLASSPATH=/u/imsmpp/jcoboltest.jar:/u/imsmpp/jcobol

COBJVMINITOPTIONS=-Xoptionsfile=/u/imspp/jcobol/jvm.properties
/u/imsmpp/jcobol/jvm.properties e.g. contains:
-Xcodecache=32M
-Xquickstart
-Xshareclasses:name=imscobol
-Xscmx32M
-Xmx256M
-Xms128M



22

COBOL and IMS Java Interoperability

IMS 
SOAP 

GATEWAY

IMS 10 Synchronous Callout z/OS

IMS

Database  

DB
Services

O
TM

A

TM/CTL
Services

IMS

Connect

TCP/IP
user-written

Client

WebSphere
IMS
TM 

resource

adapter

Application 
Program

ICAL

MPP/JMP/IFP/BMP/JBP

OTMA
Descriptor

This diagram shows that with the IMS callout support IMS applications can be a client and server. 
IMS provides bi-directional access between IMS applications and external application and servers.
The IMS Application Program can callout to:

user-written IMS Connect client 
WebSphere EJB/MDB using IMS TM Resource Adapter
Web Service Provider using IMS SOAP Gateway



23

COBOL and IMS Java Interoperability

ICAL COBOL Interface

01 AIB.  
02 AIBRID PIC x(8)  VALUE 'DFSAIB  '. 
02 AIBRLEN PIC 9(9) USAGE BINARY. 
02 AIBRSFUNC PIC x(8) VALUE 'SENDRCV'. 
02 AIBRSNM1 PIC x(8) VALUE 'DFSISOAP'. 
02 AIBOALEN PIC 9(9) USAGE BINARY VALUE +12. 
02 AIBOAUSE PIC 9(9) USAGE BINARY.

01  CALLOUT-MSG.
02  CA-DATA        PICTURE X(12) VALUE ‘HELLO WORLD ’

01  SCA-RESPONSE.
02  SCA-DATA       PICTURE X(12).

CALL 'AIBTDLI' USING ICAL, AIB, CALLOUT-MSG , SCA-RESPONSE. 

COBOL sample



24

COBOL and IMS Java Interoperability

ICAL Java Message Service (JMS) Interface

IMS Java dependent region resource adapter 
com.ibm.ims.jms.IMSQueueConnectionFactory;
setTimeout(1000);
setMaxOutputLength(128000);
createQueue("OTMA Descriptor name");
request(“Hello World”);
replyMsg Hello IMS

The Java Message Service (JMS)  API  is a messaging standard for sending messages between 
two or more application programs. 
IMS supports the point to point model for ICAL.



25

COBOL and IMS Java Interoperability

JDBC Review

JDBC is an application programming interface (API) that Java 
applications use to access relational databases or tabular data sources.

JDBC API provides database-independent connectivity for any 
database that has implemented the JDBC interface  

Executing JDBC query statements
– Establish and open connection to database

– Execute query and obtain results

– Process results

– Close connection



26

COBOL and IMS Java Interoperability

SQL and IMS Concepts
A

Segment
(Table)

Fields
(Columns)
A11|A2|A3

B

B1

C

C1 Segment Instances
(Table Row) 

Segment Key
(Table Primary Key) 

This slide provides a mapping of IMS hierarchical  database concepts and relational database 
concepts
IMS Java views Segment as a Table, A field as column and segment instance as a row



27

COBOL and IMS Java Interoperability

IMS1

Universal
DB RA
JDBC
DL/I 

Type 4
TCP/IP

Connection

LPAR1

ODBM

SCI

SCI DRA

DRA/CEETDLI

D
R

A
IMS2

IMS

Connect

ODBM

Client

LPAR2

ODBM SCIOM

DRA D
R

A

Universal
DB RA
JDBC
DL/I 

Type 2
Local

Connection

DRDA

TCP/IP
DDM
SCI

DDM
SCI

IMS  Universal Drivers Type 2 and 4 Connections  

This slide provides an overview of the capabilities provided by Open Database API Universal Drivers.
It shows the Open Database API supporting Type 2 connections for Local( same LPAR as IMS) 
access to IMS.
When used in IMS JMP/JBP regions the CEETDLI interface is used. For WAS z/OS , DB2 SP and 
CICS the DRA interface is used.
The TCP/IP Type 4 connection for distributed access to IMS. Note distributed can be across a 
network or across an LPAR boundary.
DRDA is the protocol used to communicate to IMS Connect.
DRDA is the industry standard for DB access in a distributed transaction processing environment
The Two Phase Commit  and Security flows are imbedded in DRDA



28

COBOL and IMS Java Interoperability

Virtual Foreign Key fields
• IMS Java maintains the unique keys for segments up to the root
• SQL SELECT, INSERT, UPDATE, and DELETE queries 

– SQL syntax for IMS appears similar to standard SQL
Updatable Result Sets
– Update or delete of current row

Metadata Discovery
– Access the IMS Java Metadata classes generated by the DLIModel utility

autoCommit support
– updates are committed as they happen

setFetchSize
– An application can set the expected or desired number of rows to be returned

IMS 11 Open Database API JDBC enhancements



29

COBOL and IMS Java Interoperability

C

C2

Virtual Foreign Keys
INSERT Example

INSERT INTO PCB.C (A, B, C) 
VALUES (‘a1', ‘b1', ‘c2‘) 

A

A11|A2

C2|a1|b1a1|b1
Virtual Foreign Keys 

B

B1

C

C1
C

C2

In relational databases, hierarchies can be logically built by creating foreign key relationships 
between tables.
In IMS, the hierarchies are explicit and are part of the database definition itself.
The IMS Open Database API introduces the concept of virtual foreign keys to capture these explicit 
hierarchies in a relational sense, which makes the SQL syntax for IMS appear similar to standard 
SQL. 
When accessing IMS databases every segment that is not the root segment in a hierarchic path will 
virtually contain the unique keys of all of its parent segments up to the root of the database. These 
keys are called virtual foreign key fields.
The purpose of the virtual foreign key fields is to maintain referential integrity, similar to foreign keys 
in relational databases.
This allows SQL SELECT, INSERT, UPDATE, and DELETE queries to be written against specific 
tables and columns located in the IMS database hierarchic path.
Remember: Virtual foreign keys are maintained internally and are not physically stored in the IMS 
database.
Virtual Foreign Keys are the same concept as IMS fully concatenated keys.
Virtual foreign keys are maintained internally by the IMS Universal driver; the keys are not 
physically stored in the IMS database 



30

COBOL and IMS Java Interoperability

C

C2

Updatable Result Sets Example

rs = st.executeQuery("SELECT A2 FROM PCB.A");

while(rs.next()){
rs.updateString(“A2", “A22");
rs.updateRow();

}

A

A11|A22

B

B1

C

C1
A

A11|A22

autoCommit occurs when the result set is closed or has no more rows

Query IMS 
Database

While processing 
result set 

update IMS 
Database

A ResultSet object is a table of data representing a database result set, which is usually generated 
by executing a statement that queries the database.
In this example the A2 field in segment A is updated to A22
autocommit occurs when the result set is closed or has no more rows



31

COBOL and IMS Java Interoperability

Build an XML document out of the Employee Segment and all dependant 
Segments in this PCB for the employee with serial number 3A0140.

SELECT firstName, lastName, retrieveXML(Employees)
FROM DealerTable.Employees
WHERE serialNumber = ‘3A0140’

SELECT firstName, lastName, retrieveXML(Employees)
FROM DealerTable.Employees
WHERE serialNumber = ‘3A0140’

SQL keywords support 

XML Support
– Retrieval, Storage



COBOL and IMS Java Interoperability

Building an IMS Java Application
Define input and output messages
ƒSubclass IMSFieldMessage
ƒRepeating fields

Define database layout
ƒSubclass DLIDatabaseView

Define database segments
ƒSubclass DLISegment

Write application program
ƒSubclass IMSApplication

defines metadata required
for IMS JDBC Driver

Define metadata - helps to ensure program 
correctness - allows our product to be 
"smart" about memory layouts and data 
conversions
Information about the input and output 
messages
Information about the segments and fields in 
the database
Type, length
Used for type safety (can't put a short in a 
String field without converting it first to a 
String)
Used for data conversion
We need the hierarchy as well (to build 
SSAs and ensure program correctness



33

COBOL and IMS Java Interoperability

IMS Java
Metadata classes

IMS Java
Report

COBOL
copybook
members

Control statements

DLIModel
PSB

DBD

package samples.dealership;

import com.ibm.ims.db.*;

import com.ibm.ims.base.*;

public class AUTPSB11DatabaseView extends DLIDatabaseView {

// The following DLITypeInfo[] array describes Segment: DEALER in PCB: AUTOLPCB
static DLITypeInfo[] AUTOLPCBDEALERArray= {

new DLITypeInfo("DealerNo", DLITypeInfo.CHAR, 1, 4, "DLRNO"),
new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30, "DLRNAME"),

new DLITypeInfo("DealerCity", DLITypeInfo.CHAR, 35, 10, "CITY"),
new DLITypeInfo("DealerZip", DLITypeInfo.CHAR, 45, 10, "ZIP"),

new DLITypeInfo("DealerPhone", DLITypeInfo.CHAR, 55, 7, "PHONE")
};

static DLISegment AUTOLPCBDEALERSegment= new DLISegment

("DealerSegment","DEALER",AUTOLPCBDEALERArray,61);
...

// An array of DLISegmentInfo objects follows to describe the view for PCB: AUTOLPCB

static DLISegmentInfo[] AUTOLPCBarray = {
new DLISegmentInfo(AUTOLPCBDEALERSegment,DLIDatabaseView.ROOT),

new DLISegmentInfo(AUTOLPCBMODELSegment,0),

new DLISegmentInfo(AUTOLPCBORDERSegment,1),

new DLISegmentInfo(AUTOLPCBSALESSegment,1),

new DLISegmentInfo(AUTOLPCBSTOCKSegment,1),
new DLISegmentInfo(AUTOLPCBSTOCSALESegment,4),

new DLISegmentInfo(AUTOLPCBSALESINFSegment,5)

};

...

}

DLIModel IMS Java Report
========================
Class: AUTPSB11DatabaseView  in package: samples.dealership  generated for PSB: AUTPSB11

==================================================
PCB: Dealer
==================================================
Segment: DealerSegment
Field: DealerNo Type=CHAR Start=1 Length=4   ++ Primary Key Field ++
Field: DealerName Ty pe=CHAR Start=5 Length=30   (Search Field)
Field: DealerCity Type=CHAR Start=35 Length=10   (Search Field)
Field: DealerZip Ty pe=CHAR Start=45 Length=10   (Search Field)
Field: DealerPhone Ty pe=CHAR Start=55 Length=7   (Search Field)
==================================================

Segment: ModelSegment
Field: ModelKey Type=CHAR Start=3 Length=24   ++ Primary Key Field ++
Field: ModelType Ty pe=CHAR Start=1 Length=2   (Search Field)
Field: Make Type=CHAR Start=3 Length=10   (Search Field)
Field: Model Type=CHAR Start=13 Length=10   (Search Field)
Field: Year Ty pe=CHAR Start=23 Length=4   (Search Field)
Field: MSRP Type=CHAR Start=27 Length=5   (Search Field)
Field: Count Type=CHAR Start=32 Length=2   (Search Field)
==================================================

Segment: OrderSegment
Field: OrderNo Ty pe=CHAR Start=1 Length=6   ++ Primary Key Field ++
Field: LastName Type=CHAR Start=7 Length=25   (Search Field)
Field: FirstName Type=CHAR Start=32 Length=25   (Search Field)
Field: Date Type=CHAR Start=57 Length=10   (Search Field)
Field: Time Ty pe=CHAR Start=67 Length=8   (Search Field)
==================================================
Segment: SalesSegment
Field: SaleNo Type=CHAR Start=49 Length=4   ++ Primary Key Field ++
...

If you can read this you do 
not need glasses; however 
this is just silly writting to 

represent the control 
statements that are the input 

to the utility.

XML Schema(s)

DBD XMI 
metadata

PSB XMI 
metadata

DLIModel Utility

& PL/1

package samples.dealership;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class AUTPSB11DatabaseView extends DLIDatabaseView {

// The following DLITypeInfo[] array describes Segment: DEALER in PCB: AUTOLPCB

static DLITypeInfo[] AUTOLPCBDEALERArray= {
new DLITypeInfo("DealerNo", DLITypeInfo.CHAR, 1, 4, "DLRNO"),

new DLITypeInfo("DealerName", DLITypeInfo.CHAR, 5, 30, "DLRNAME"),

new DLITypeInfo("DealerCity", DLITypeInfo.CHAR, 35, 10, "CITY"),

new DLITypeInfo("DealerZip", DLITypeInfo.CHAR, 45, 10, "ZIP"),
new DLITypeInfo("DealerPhone", DLITypeInfo.CHAR, 55, 7, "PHONE")

};

static DLISegment AUTOLPCBDEALERSegment= new DLISegment

("DealerSegment","DEALER",AUTOLPCBDEALERArray,61);

...

// An array of DLISegmentInfo objects follows to describe the view for PCB: AUTOLPCB

static DLISegmentInfo[] AUTOLPCBarray = {

new DLISegmentInfo(AUTOLPCBDEALERSegment,DLIDatabaseView.ROOT),

new DLISegmentInfo(AUTOLPCBMODELSegment,0),

new DLISegmentInfo(AUTOLPCBORDERSegment,1),

new DLISegmentInfo(AUTOLPCBSALESSegment,1),
new DLISegmentInfo(AUTOLPCBSTOCKSegment,1),

new DLISegmentInfo(AUTOLPCBSTOCSALESegment,4),
new DLISegmentInfo(AUTOLPCBSALESINFSegment,5)

};

...

}

IMS 11 XML 
Schema

Input
Generate 

DBD
If you can read this you do 
not need glasses; however 
this is just silly writting to 

represent the control 
statements that are the input 

to the utility.

Text report will be removed since application programmers can use the graphical view of PSB/DBD to assist them.

The graphical view of PSB and DBD can now be “Save As…” graphic files (JPG or BMP)



34

COBOL and IMS Java Interoperability

Mixed Language Dealership Sample

Enterprise COBOL
– Front-End “MAIN”

– Back-End IMS DB Access

IMS Java
– Back-End IMS DB Access

– Front-End “MAIN”



35

COBOL and IMS Java Interoperability

IMS Metadata

DEALER

MODEL

ORDER

Dealer
Segment

Model
Segment

ORDER
Segment

SegmentInfo[]

DLITypeInfo[]

DLITypeInfo[]

DLRID
DLRNAME
DLRADDR

DLITypeInfo[]
DealerID

DealerName
DealerAddres

DBDLIB, PSBLIB DLIDatabaseView



36

COBOL and IMS Java Interoperability

ResultSet

ROW

01010011
01010101
10111010

1011010101110101100
0001010111101000101
1001010101101010110

SQL Parsing

SELECT DealerTable.DealerName,  OrderTable.LastName
SQL

SSA List
DEALER  *D
MODEL   (MSRP    GT50000)
ORDER   (DATE    GE20080314&

DATE    LE20080331)

IOArea
DEALER ORDER

001010111010
110101001010
001010110111

10100101001010111010101100110101001010011111010111010110010101101010111010110000101010110101000100
01001010100010101011101010101001001010101101111011010101011000000101011110101010101010000001010111
00101001011101010100100101101010010111010100011000100010110101101101010111011010010010101010010101

Dealer

Model

Order

Note:
D command code 
Sets IMS Path call

MODEL

Create io area based on size; copy the fields in to resultset and return it as 
jdbc expects
Command code D Retrieve or insert a sequence of segments in a hierarchic 
path using only one call, instead of having to use a separate (path) call for 
each segment.
This provides an implicit SQL Table JOIN for the IMS segments in the path  



COBOL and IMS Java Interoperability

Define Input Messages

public class InputMessage extends IMSFieldMessage {
final static DLITypeInfo[] messageInfo = {
new DLITypeInfo("RequestCode", DLITypeInfo.INT,    1,  4), 
new DLITypeInfo("DealerName",  DLITypeInfo.CHAR,   5, 20),
new DLITypeInfo("DealerID",    DLITypeInfo.INT,   25,  4)

};

public InputMessage() {
super(messageInfo, 28, false);

}
} // end InputMessage

Message length isSpa

NOTE: Do not define LL, ZZ, and TRANCODE fields.
Use getMessageLength and getTransactionCode
methods provided by IMSFieldMessage to get length
and transaction code.

|LL|ZZ|TRANCODE|RequestCode|DealerName|DealerID Field type

Starting
offset

Length

Layout of the message we are going to read 
from the queue
Field name, type ,starting offset, length
We have taken out LL, ZZ, and TRANCODE 
from the user space
In the call to super() - pass the array of type 
info fields, the total length, and false because it 
is not a SPA message



COBOL and IMS Java Interoperability

Define Output Messages

public class CanceledOrder extends IMSFieldMessage {

final static DLITypeInfo[] cancelInfo = {
new DLITypeInfo("Message",   DLITypeInfo.CHAR,   1,  30),
new DLITypeInfo("OrderDate", "MMddYYYY", DLITypeInfo.DATE,  31,  8)

};

public Model() {
super(cancelInfo, 38, false);

}
}

Much like input messages
Output messages are those that are going to 
be written back to the queue
Notice the DATE field - have a typeQualifier 
giving layout of date in memory
more on that later



39

COBOL and IMS Java Interoperability

package samples.dealership;

public class IMSAuto {  

public static void main(String args []) {
IMSAuto imsauto = new IMSAuto();

IMSMessageQueue messageQueue = new IMSMessageQueue();
FindCarInput inputMessage = new FindCarInput();
FindCarOutput outputMessage = new FindCarOutput();

try {
while (messageQueue.getUniqueMessage(inputMessage)) {

imsauto.proccessMessage(inputMessage, outputMessage);
messageQueue.insertMessage(outputMessage.format());

CobolAutoDealership dealer = new CobolAutoDealership();
dealer.displayModel(input,output);

}
} catch (IMSException e) {

e.printStackTrace();
}

}
}

package samples.dealership;

public class IMSAuto {  

public static void main(String args []) {
IMSAuto imsauto = new IMSAuto();

IMSMessageQueue messageQueue = new IMSMessageQueue();
FindCarInput inputMessage = new FindCarInput();
FindCarOutput outputMessage = new FindCarOutput();

try {
while (messageQueue.getUniqueMessage(inputMessage)) {

imsauto.proccessMessage(inputMessage, outputMessage);
messageQueue.insertMessage(outputMessage.format());

CobolAutoDealership dealer = new CobolAutoDealership();
dealer.displayModel(input,output);

}
} catch (IMSException e) {

e.printStackTrace();
}

}
}

IMS Dealer Application Java Front-End



40

COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Back-END

Move "AUTOLPCB" to AIBRSNM1

Move length of MODEL-SEGMENT to AIBOALEN

Call "CEETDLI" using GN, AIB, MODEL-SEGMENT, model-ssa

Set address of DBPCB to AIBRESA1

If dbstat is = spaces



COBOL and IMS Java Interoperability

Building a Mixed Language IMS Application
Build Enterprise COBOL Wrapper Class 
Compile COBOL code
Compile COBOL generated java code

you can obtain PCB addresses by making an IMS INQY call using the 
FIND subfunction and the PCB name as the resource name. The INQY 
call returns the address of the PCB, which you can then pass to a COBOL 
program. This approach still requires that the PCB name be defined as 
part of the PSBGEN, but the COBOL application does not have to use the 
AIB interface. 



42

COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Wrapper to COBOL Back-END

AIBSFUNC   = FIND

AIBRSNM1  = MYDBPCB

AIBOALEN 

AIBRETRN    

AIBREASN    

AIBRESA1       

CALL AIBTDLI INQY,MYAIB,IOAREA

Set address of MYDBPCB to AIBRESA1

CALL MY-COBOL-SUBRTN USING MYDBPCB



43

COBOL and IMS Java Interoperability

IMS Dealer Application COBOL Wrapper to COBOL Back-END

Call “CBLTDLI" using GN, MYDBPCB, MODEL-SEGMENT,      
model-ssa

If dbstat is = spaces



44

COBOL and IMS Java Interoperability

Summary

Enterprise COBOL and Java can coexist

IMS runtime environments can be used

Exploit IMS Java capabilities

Simplify the development and maintenance of IMS
applications by leveraging new Java services as
subroutines accessed by existing COBOL business logic
• Use industry standard application APIs, such as JDBC™,
J2EE™ and XML, to reduce the programming effort
required for building solutions
• Integrate with other products that support the Java API,
for example, the Java Message Service support provided
by WebSphere® MQ


