
© 2015 IBM Corporation

IBM Shared Memory Communications over RDMA
(SMC-R)

Linux SMC-R Overview and Performance

(July 2015)

© 2015 IBM Corporation2

Trademarks and copyrights

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

 © Copyright International Business Machines Corporation 2015. All rights reserved.

 Other company, product, or service names may be trademarks or service marks of others.

The following are trademarks or registered trademarks of other companies.

 Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States, and/or other countries.

 IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of
Government Commerce.

 Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

 Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

 Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

 ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent
and Trademark Office.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license
therefrom.

 Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

http://www.ibm.com/legal/copytrade.shtml

© 2015 IBM Corporation3

Authors / Contributions

SMC-R was produced by multiple IBM teams and labs.

The following individuals contributed to this solution and to the contents of this document:

 Architecture and design:

– Mike Fox (mjfox@us.ibm.com)

– Gus Kassimis (kassimis@us.ibm.com)

– Jerry Stevens (sjerry@us.ibm.com)

 Linux implementation

– Ursula Braun (ursula.braun@de.ibm.com)

– Joe Fowler (fowlerja@us.ibm.com)

 Performance testing

– System z: Dan Patel (danpatel@us.ibm.com)

– x86: Joe Fowler (fowlerja@us.ibm.com)

© 2015 IBM Corporation4

Agenda Topics

1. SMC-R Overview (Background)

2. Linux SMC-R Introduction:
1. Linux Overview

2. Installation

3. Configuring / Enabling

4. Application Exploitation

5. Validation / Monitoring

6. Tuning

3. Performance Summary

4. Backup Information

© 2015 IBM Corporation5

Topic 1 SMC-R Overview (Background)

© 2015 IBM Corporation6

SMC-R enabled platform

OS image OS image

Virtual server instance

server client

RNIC

RDMA technology provides the capability to allow hosts to logically share
memory. The SMC-R protocol defines a means to exploit the shared memory
for communications - transparent to the applications!

Shared Memory Communications

via RDMA

SMCSMC

RDMA enabled (RoCE)

RNIC

Clustered Systems

SMC-R is an open sockets over RDMA protocol that provides transparent exploitation of RDMA (for TCP based
applications) while preserving key functions and qualities of service from the TCP/IP ecosystem that enterprise
level servers/network depend on! Draft IETF RFC for SMC-R:

http://tools.ietf.org/html/draft-fox-tcpm-shared-memory-rdma-07

SMC-R enabled platform

Virtual server instance

shared memory shared memory

Sockets Sockets

Shared Memory Communications over RDMA Overview / Concepts

http://tools.ietf.org/html/draft-fox-tcpm-shared-memory-rdma-03

© 2015 IBM Corporation7

Dynamic Transition from TCP to SMC-R

OSA ROCE

TCP

IP

Interface

Sockets

Middleware/Application

z/OS System B

SMC-R

OSAROCE

TCP

IP

Interface

Sockets

Middleware/Application

z/OS System A

SMC-R

TCP connection establishment over IP

IP Network (Ethernet)

RDMA Network RoCE

TCP connection transitions to SMC-R allowing application data to be exchanged using RDMA

Dynamic (in-line) negotiation for SMC-R is initiated by presence of TCP Options

TCP syn flows (with TCP Options
indicating SMC-R capability)

data exchanged

using RDMA

data exchanged

using RDMA

© 2015 IBM Corporation8

SMC-R Overview Summary

 Shared Memory Communications over RDMA (SMC-R) is a protocol

that allows TCP sockets applications to transparently exploit RDMA

(RoCE)

 SMC-R is a “hybrid” solution that:

– Uses TCP connection (3-way handshake) to establish SMC-R connection

– Each TCP end point exchanges TCP options that indicate whether it
supports the SMC-R protocol

– SMC-R “rendezvous” (RDMA attributes) information is then exchanged
within the TCP data stream (similar to SSL handshake)

– Socket application data is exchanged via RDMA (write operations)

– TCP connection remains active (controls SMC-R connection)

– This model preserves many critical existing operational and network
management features of TCP/IP

© 2015 IBM Corporation9

SMC-R Key Attributes - Summary

 Optimized Network Performance (leveraging RDMA technology)

 Transparent to (TCP socket based) application software

 Leverages existing Ethernet technology (RoCE)

 Preserves existing network security model

 Resiliency (dynamic failover to redundant hardware)

 Transparent to Load Balancers

 Preserves existing IP topology and network administrative and operational

model

© 2015 IBM Corporation10

Topic 2 Linux SMC-R Overview

© 2015 IBM Corporation11

Linux SMC-R Overview

User Process

TCP sockets

User Space

Kernel space

User Process

SMC sockets

LD Preload Lib

SMC sockets

AF_SMC AF_INET

TCP UDP ICMPSMC-R

IP

EthernetIB Verbs

mlx4.IB-DD mlx4.Eth-DD

PCIe

RoCE HCA Firmware / hardware

© 2015 IBM Corporation12

Linux SMC-R Overview Summary

 To support the SMC-R protocol on Linux, a new address family AF_SMC is created. It

keeps the address format of AF_INET sockets and supports streaming socket types only

using TCP.

 No special license requirements (GPL)

 2 usage modes are possible:

– AF_SMC native usage, defining the socket domain as AF_SMC instead of AF_INET

– Invoke an AF_INET socket application with an SMC preload library converting AF_INET

sockets to AF_SMC sockets. The SMC preload library will be part of an SMC tools.

 For data traffic RNICs (RDMA Network Interface Cards) are used. For connection setup an

auxiliary internal AF_INET TCP socket is maintained which uses a standard Ethernet

network interface. This network interface is mapped to one or two available ROCE (RDMA

over Converged Ethernet) Adapters.

 How a network interface maps to ROCE Adapters is configured within a table called "pnet

table". Any available Ethernet interface can be combined with available RNICs, if they

belong to the same Converged Ethernet fabric.

© 2015 IBM Corporation13

Installing SMC-R on Linux

 AF_SMC native usage: SMC-Code is part of the kernel. No extra install effort needed.

 Preload approach for AF_INET usage: Additional installation of the SMC preload library is

required.

 The SMC preload library is part of an SMC tools package to be provided by IBM.

© 2015 IBM Corporation14

Configuring and Enabling SMC-R on Linux (part 1)

 Extra loading of module smc is necessary1: modprobe smc

 Creation of a pnet table:

Synopsis: add|del <PNET ID> eth|ib <device name [<port>]

Sample:

echo "add pnet0 eth eth4" > /proc/net/smc/pnet_conf

echo "add pnet0 ib mlx4_0 2" > /proc/net/smc/pnet_conf

echo "add pnet0 ib mlx4_1 2" > /proc/net/smc/pnet_conf

Where:

"pnet0" is an identifier for a pnet group

"eth" defines specification of an Ethernet interface

"ib" defines specification of an RNIC

"eth4" specifies the Ethernet interface to be coupled

"mlx4_0" specifies the first RNIC to be coupled

"mlx4_1" specifies the second RNIC to be coupled

"2" specified the port of the RNIC to be coupled

Note 1. This a preliminary requirement.

© 2015 IBM Corporation15

Configuring and Enabling SMC-R on Linux (part 2)

 Display of a pnet table:

cat /proc/net/smc/pnet_conf

 ROCEs are hybrids combining an RNIC with an Ethernet interface.

 The Ethernet interfaces of ROCE ports intended for SMC-R usage must be UP.

ip link set eth1 up

ip link set eth3 up

where:

"eth1" is the corresponding Ethernet interface for port 2 of RNIC "mlx4_0"

"eth3" is the corresponding Ethernet interface for port 2 of RNIC "mlx4_1"

 The Ethernet interface used for connection setup requires a configured IP-address.

© 2015 IBM Corporation16

Application Exploitation of SMC-R

 Invocation:

To port an existing AF_INET TCP socket application to execute native SMC-R, replace

the socket creation call:

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

by

tcp_socket = socket(AF_SMC, SOCK_STREAM, 0);

 To run an existing AF_INET TCP socket application through SMC-R, without changing the

application, make use of an SMC preload library, that will be part of the SMC tools package.

Both 32 and 64bit preload libraries will be provided.

© 2015 IBM Corporation17

Validation and Monitoring SMC-R

 In case of SMC negotiation failures or SMC link group problems during connection setup,

an automatic fallback to the internal auxiliary AF_INET TCP socket is performed.

 A tool providing information on SMC sockets will be part of the SMC tools package showing

(among other information about SMC-connections) whether connected sockets run through

RDMA (SMC-R) or TCP/IP.

 Monitoring:

The tool will show the connected and / or listening SMC sockets.

 Tracing:

A Wireshark dissector is available (included with base Wireshark) for formatting SMC-R

related RoCE LAN traffic. Refer to wireshark.org to download a current release.

© 2015 IBM Corporation18

Tuning Considerations for SMC-R on Linux (part 1)

 mtu-size: the highest possible RDMA mtu size is 4096. For ROCE it is derived from the mtu size of the corresponding
ROCE port Ethernet interface. Sample:

ip link set eth1 mtu 4096

 An AF_SMC socket requires a contiguous send buffer. Its size can be defined through a SETSOCKOPT call of type
SO_SNDBUF. Otherwise the sysctl definition in net.ipv4.tcp_wmem determines its size, if it is higher than an SMC-
defined default. sndbuf - minimum smc socket send buffer size - default 65532. Sample:

echo 131068 > /proc/net/smc/sndbuf

 An AF_SMC socket requires a contiguous receive buffer. Its size can be defined through a SETSOCKOPT call of type
SO_RCVBUF. Otherwise the sysctl definition in net.ipv4.tcp_rmem determines its size, if it is higher than an SMC-defined
default. rcvbuf - minimum smc socket receive buffer size - default 65532. Sample:

echo 131068 > /proc/net/smc/rcvbuf

 ctrl_buffer_count - maximum number of transfer units in flight on an IB link. Sample:

echo 128 > /proc/net/smc/ctrl_buffer_count

 max_conn_per_lgr - maximum number of connections sharing the same SMC link group. Sample:

echo 32 > /proc/net/smc/max_conn_per_lgr

Note:
In most cases (depending on your specific environment and performance analysis) the default values will be sufficient

© 2015 IBM Corporation19

Tuning Considerations for SMC-R on Linux (part 2)

 port_add_delay – during initial adapter port activation delay usage of this port for N seconds (helpful when Ethernet
switch port setting edgeport / fastport can not be used). Sample (delay for 30 seconds):

echo 30 > /proc/net/smc/port_add_delay

Note:
In most cases (depending on your specific environment and performance analysis) the default values will be sufficient.

© 2015 IBM Corporation20

Topic 3 Linux SMC-R Performance Summary

Performance benchmarks for Linux with SMC-R on x86 and IBM System zEC12

© 2015 IBM Corporation21

Performance Disclaimer

The performance measurements that are discussed in this document were

collected by using a dedicated system environment. The results obtained

using other configurations or operating system environments could vary

significantly depending upon environments used. Therefore, there is no

assurance given or guarantee made that an individual user can achieve

performance or throughput improvements equivalent to the results stated

here. Users of this document need to verify the applicable data for their

specific environment.

© 2015 IBM Corporation22

SMC-R on Linux x86 benchmark environment

 Environment

– Software: Linux Red Hat Enterprise Linux 6.4, stock 3.16 kernel with SMC patches

– Client / server platform: IBM x3650 M4, 128GB RAM

– Network Adapters: Mellanox ConnectX-3 FDR 40GbE (model CX354A), 2 interfaces per

card

– Network configuration: The two hosts were connected directly, adapter to adapter with

no intervening switch (port 1 and port 2 of system A connected to port 1 and port 2 on

System B)

 TCP/IP vs SMC-R tests performed over the same Mellanox cards

– IP Configuration: All offloads enabled

• rx-checksumming: on, tx-checksumming: on, tcp-segmentation-offload: on,

generic-segmentation-offload: on, generic-receive-offload: on

– MTU Size: IP (9000) RoCE (4K)

 Netperf used for all benchmarks

– Request/Response (RR) patterns with various number of concurrent sessions and

payload sizes

– Streaming data patterns (single session)

© 2015 IBM Corporation23

SMC-R vs TCP/IP – Linux on x86 – Request/Response (RR1)

84.62%

101.85%
96.27%

89.33%

103.39%

71.50%

-45.83%
-50.46% -49.05% -47.18%

-50.83%

-41.69%

RR1 (1b,1b) RR1 (1K,1K) RR1 (4K,4K) RR1 (8K,8K) RR1 (16K,16K) RR1 (32K,32K)

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
e

rc
e

n
t
(S

M
C

-R
 v

s
T

C
P

/I
P

)

SMC-R vs TCP/IP

Throughput

Latency

RR1: Request/Response workload, persistent single TCP connection, various message sizes

Significant latency and throughput benefits across all message sizes

© 2015 IBM Corporation24

x86 Linux – RR1 – Throughput comparison

RR1 (1b,1b)
RR1 (1K,1K)

RR1 (4K,4K)
RR1 (8K,8K)

RR1 (16K,16K)
RR1 (32K,32K)

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

SMC-R vs TCP/IP

Single Session - Throughput (Gbit/sec)

TCP/IP Gbit/sec

SMC-R Gbit/sec

G
bi

t/s
ec

G
bi

t/s
ec

© 2015 IBM Corporation25

SMC-R vs TCP/IP – Linux on x86 – Request/Response (RR10)

68.19%
63.44%

73.46% 72.28%

111.11%

59.93%

-41.10%
-37.62%

-41.45% -40.92%

-52.32%

-39.41%

RR10 (1b,1b) RR10 (1K,1K) RR10 (4K,4K) RR10 (8K,8K) RR10 (16K,16K) RR10 (32K,32K)

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

P
e

rc
e

n
t
(S

M
C

-R
 v

s
 T

C
P

/I
P

)

SMC-R vs TCP/IP

Throughput

Latency

RR10: Request/Response workload, 10 concurrent persistent TCP connections, various message sizes

Significant latency and throughput benefits across all message sizes

© 2015 IBM Corporation26

x86 Linux – RR10 – Throughput comparison

RR10 (1b,1b)
RR10 (1K,1K)

RR10 (4K,4K)
RR10 (8K,8K)

RR10 (16K,16K)
RR10 (32K,32K)

0

10

20

30

40

50

60

0

10

20

30

40

50

60

SMC-R vs TCP/IP

10 Sessions, Various Data Sizes, Gbit/sec

TCP/IP Gbit/sec

SMC-R Gbit/sec

G
b
it/

s
e
c

G
b
it/

s
e
c

© 2015 IBM Corporation27

x86 Linux Streaming – Single Session

24.01%

-19.37%

-68.90% -69.38%

Streaming Data pattern
-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

P
e

rc
e

n
t
(S

M
C

-R
 v

s
 T

C
P

/I
P

)

SMC-R vs TCP/IP
Single TCP connection, Streaming Data Pattern (20MB, 1b)

Throughput (Higher is Better)

Latency (Lower is better)

Local CPU Normalized (Lower is better)

Remote CPU Normalized (Lower is better)

RR1: Streaming Data Pattern, Single TCP connections, 20MB in one direction, 1 byte response

 Substantial latency and throughput benefits

 Significant CPU reduction benefits (Normalized CPU cost comparison – CPU per byte moved)

© 2015 IBM Corporation28

IBM System z Linux to Linux SMC-R Performance

RR10: Request/Response workload, 10 concurrent persistent TCP connections, various message sizes

 Significant latency and throughput benefits across all message sizes

 Significant CPU savings for larger message sizes

© 2015 IBM Corporation29

Backup

 Additional SMC-R Reference materials:

http://www-01.ibm.com/software/network/commserver/SMCR/

© 2015 IBM Corporation30

