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Topic 1 SMC-R Overview (Background) 
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SMC-R enabled platform
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RDMA technology provides the capability to allow hosts to logically share 
memory.  The SMC-R protocol defines a means to exploit the shared memory 
for communications - transparent to the applications!   
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SMC-R is an open sockets over RDMA protocol that provides transparent exploitation of RDMA (for TCP based 
applications) while preserving key functions and qualities of service from the TCP/IP ecosystem that enterprise 
level servers/network depend on!                                  Draft IETF RFC for SMC-R:

http://tools.ietf.org/html/draft-fox-tcpm-shared-memory-rdma-07
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Shared Memory Communications over RDMA Overview / Concepts

http://tools.ietf.org/html/draft-fox-tcpm-shared-memory-rdma-03
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Dynamic Transition from TCP to SMC-R
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SMC-R Overview Summary

 Shared Memory Communications over RDMA (SMC-R) is a protocol 

that allows TCP sockets applications to transparently exploit RDMA 

(RoCE)

 SMC-R is a “hybrid” solution that:

– Uses TCP connection (3-way handshake) to establish SMC-R connection

– Each TCP end point exchanges TCP options that indicate whether it 
supports the SMC-R protocol 

– SMC-R “rendezvous” (RDMA attributes) information is then exchanged 
within the TCP data stream (similar to SSL handshake)

– Socket application data is exchanged via RDMA (write operations)

– TCP connection remains active (controls SMC-R connection) 

– This model preserves many critical existing operational and network 
management features of TCP/IP  
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SMC-R Key Attributes - Summary

 Optimized Network Performance (leveraging RDMA technology)

 Transparent to (TCP socket based) application software

 Leverages existing Ethernet technology (RoCE)

 Preserves existing network security model

 Resiliency (dynamic failover to redundant hardware)

 Transparent to Load Balancers

 Preserves existing IP topology and network administrative and operational 

model
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Topic 2 Linux SMC-R Overview 
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Linux SMC-R Overview
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Linux SMC-R Overview Summary

 To support the SMC-R protocol on Linux, a new address family AF_SMC is created. It 

keeps the address format of AF_INET sockets and supports streaming socket types only 

using TCP.

 No special license requirements (GPL)

 2 usage modes are possible:

– AF_SMC native usage, defining the socket domain as AF_SMC instead of AF_INET

– Invoke an AF_INET socket application with an SMC preload library converting AF_INET 

sockets to AF_SMC sockets. The SMC preload library will be part of an SMC tools.

 For data traffic RNICs (RDMA Network Interface Cards) are used. For connection setup an 

auxiliary internal AF_INET TCP socket is maintained which uses a standard Ethernet 

network interface. This network interface is mapped to one or two available ROCE (RDMA 

over Converged Ethernet) Adapters.

 How a network interface maps to ROCE Adapters is configured within a table called "pnet

table". Any available Ethernet interface can be combined with available RNICs, if they 

belong to the same Converged Ethernet fabric.
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Installing SMC-R on Linux

 AF_SMC native usage: SMC-Code is part of the kernel. No extra install effort needed.

 Preload approach for AF_INET usage: Additional installation of the SMC preload library is 

required. 

 The SMC preload library is part of an SMC tools package to be provided by IBM.
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Configuring and Enabling SMC-R on Linux (part 1)

 Extra loading of module smc is necessary1:  modprobe smc

 Creation of a pnet table:

Synopsis: add|del <PNET ID> eth|ib <device name [<port>]

Sample:

echo "add pnet0 eth eth4" > /proc/net/smc/pnet_conf

echo "add pnet0 ib mlx4_0 2" > /proc/net/smc/pnet_conf

echo "add pnet0 ib mlx4_1 2" > /proc/net/smc/pnet_conf

Where:

"pnet0"   is an identifier for a pnet group

"eth"     defines specification of an Ethernet interface

"ib"      defines specification of an RNIC

"eth4"    specifies the Ethernet interface to be coupled

"mlx4_0"  specifies the first RNIC to be coupled

"mlx4_1"  specifies the second RNIC to be coupled

"2"       specified the port of the RNIC to be coupled

Note 1. This a preliminary requirement. 
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Configuring and Enabling SMC-R on Linux (part 2)

 Display of a pnet table:

cat /proc/net/smc/pnet_conf

 ROCEs are hybrids combining an RNIC with an Ethernet interface.

 The Ethernet interfaces of ROCE ports intended for SMC-R usage must be UP.

ip link set eth1 up

ip link set eth3 up

where:

"eth1" is the corresponding Ethernet interface for port 2 of RNIC "mlx4_0"

"eth3" is the corresponding Ethernet interface for port 2 of RNIC "mlx4_1"

 The Ethernet interface used for connection setup requires a configured IP-address.
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Application Exploitation of SMC-R

 Invocation:

To port an existing AF_INET TCP socket application to execute native SMC-R, replace 

the socket creation call:

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

by

tcp_socket = socket(AF_SMC, SOCK_STREAM, 0);

 To run an existing AF_INET TCP socket application through SMC-R, without changing the 

application, make use of an SMC preload library, that will be part of the SMC tools package. 

Both 32 and 64bit preload libraries will be provided.
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Validation and Monitoring SMC-R

 In case of SMC negotiation failures or SMC link group problems during connection setup, 

an automatic fallback to the internal auxiliary AF_INET TCP socket is performed.

 A tool providing information on SMC sockets will be part of the SMC tools package showing 

(among other information about SMC-connections) whether connected sockets run through 

RDMA (SMC-R) or TCP/IP.

 Monitoring:

The tool will show the connected and / or listening SMC sockets.

 Tracing: 

A Wireshark dissector is available (included with base Wireshark) for formatting SMC-R 

related RoCE LAN traffic. Refer to wireshark.org to download a current release.
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Tuning Considerations for SMC-R on Linux (part 1)

 mtu-size:  the highest possible RDMA mtu size is 4096. For ROCE it is derived from the mtu size of the corresponding 
ROCE port Ethernet interface. Sample:

ip link set eth1 mtu 4096

 An AF_SMC socket requires a contiguous send buffer. Its size can be defined through a SETSOCKOPT call of type 
SO_SNDBUF. Otherwise the sysctl definition in net.ipv4.tcp_wmem determines its size, if it is higher than an SMC-
defined default. sndbuf - minimum smc socket send buffer size - default 65532. Sample:

echo 131068 > /proc/net/smc/sndbuf

 An AF_SMC socket requires a contiguous receive buffer. Its size can be defined through a SETSOCKOPT call of type 
SO_RCVBUF. Otherwise the sysctl definition in net.ipv4.tcp_rmem determines its size, if it is higher than an SMC-defined 
default. rcvbuf - minimum smc socket receive buffer size - default 65532. Sample:

echo 131068 > /proc/net/smc/rcvbuf

 ctrl_buffer_count - maximum number of transfer units in flight on an IB link. Sample:

echo 128 > /proc/net/smc/ctrl_buffer_count

 max_conn_per_lgr - maximum number of connections sharing the same SMC link group. Sample:

echo 32 > /proc/net/smc/max_conn_per_lgr

Note: 
In most cases (depending on your specific environment and performance analysis) the default values will be sufficient



© 2015 IBM Corporation19

Tuning Considerations for SMC-R on Linux (part 2)

 port_add_delay – during initial adapter port activation delay usage of this port for N seconds (helpful when Ethernet 
switch port setting edgeport / fastport can not be used). Sample (delay for 30 seconds):  

echo 30 > /proc/net/smc/port_add_delay

Note: 
In most cases (depending on your specific environment and performance analysis) the default values will be sufficient.
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Topic 3 Linux SMC-R Performance Summary 

Performance benchmarks for Linux with SMC-R on x86 and IBM System zEC12
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Performance Disclaimer

The performance measurements that are discussed in this document were 

collected by using a dedicated system environment. The results obtained 

using other configurations or operating system environments could vary 

significantly depending upon environments used. Therefore, there is no 

assurance given or guarantee made that an individual user can achieve 

performance or throughput improvements equivalent to the results stated 

here. Users of this document need to verify the applicable data for their 

specific environment.
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SMC-R on Linux x86 benchmark environment

 Environment

– Software: Linux Red Hat Enterprise Linux 6.4, stock 3.16 kernel with SMC patches

– Client / server platform: IBM x3650 M4, 128GB RAM 

– Network Adapters: Mellanox ConnectX-3 FDR 40GbE (model CX354A), 2 interfaces per 

card

– Network configuration: The two hosts were connected directly, adapter to adapter with 

no intervening switch (port 1 and port 2 of system A connected to port 1 and port 2 on 

System B)

 TCP/IP vs SMC-R tests performed over the same Mellanox cards

– IP Configuration:  All offloads enabled

• rx-checksumming: on, tx-checksumming: on, tcp-segmentation-offload: on, 

generic-segmentation-offload: on, generic-receive-offload: on

– MTU Size: IP  (9000) RoCE (4K)

 Netperf used for all benchmarks

– Request/Response (RR) patterns with various number of concurrent sessions and 

payload sizes

– Streaming data patterns (single session)
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SMC-R vs TCP/IP – Linux on x86 – Request/Response (RR1)
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RR1: Request/Response workload, persistent single TCP connection, various message sizes

Significant latency and throughput benefits across all message sizes
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x86 Linux – RR1 – Throughput comparison
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SMC-R vs TCP/IP – Linux on x86 – Request/Response (RR10)
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RR10: Request/Response workload, 10 concurrent persistent TCP connections, various message sizes

Significant latency and throughput benefits across all message sizes
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x86 Linux – RR10 – Throughput comparison 
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x86 Linux Streaming – Single Session
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 Substantial latency and throughput benefits

 Significant CPU reduction benefits (Normalized CPU cost comparison – CPU per byte moved)
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IBM System z Linux to Linux SMC-R Performance 

RR10: Request/Response workload, 10 concurrent persistent TCP connections, various message sizes

 Significant latency and throughput benefits across all message sizes

 Significant CPU savings for larger message sizes
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Backup

 Additional SMC-R Reference materials:  

http://www-01.ibm.com/software/network/commserver/SMCR/
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