
© 2008 IBM Corporation

Snehal S. Antani
antani@us.ibm.com

WebSphere XD Technical Lead
SOA Technology Practice, ISSW, SWG, IBM

http://snehalantani.googlepages.com

WebSphere Virtual Enterprise &
WebSphere XD Compute Grid on z/OS

2© 2008 IBM Corporation

Agenda

• The Product Formerly Known as “WebSphere XD”

• Application Resiliency with WebSphere Virtual Enterprise
– Application Editions

– Health Monitoring

– Checkpoint restart

• Batch Processing with WebSphere XD Compute Grid
– What is “Batch” ?

– Stamping out “Maverick” Batch

– Exploring Batch “Modernization”

– Technical Overview of Compute Grid

– Building Batch Applications

– The Grand Strategy

3© 2008 IBM Corporation

Appendices

• WebSphere Virtual Enterprise Details

• WebSphere XD Compute Grid Influences

• WebSphere XD Compute Grid Best Practices

• Using the Compute Grid Infrastructure

• Some example use-cases of Compute Grid

• Approaches for Batch Modernization

• SwissRe and Batch Modernization

4© 2008 IBM Corporation

The Product Formerly Known as
WebSphere Extended Deployment (XD)

Compute Grid Virtual Enterprise eXtreme Scale

- Transactional Batch

- Compute Intensive

Tasks

- Manage non-Java

workloads

- z/OS Integration

Patterns

- On-Demand Router

- Extended Manageability

- Application Editions

- Health Management

- Runtime Visualization

- Virtualization

- Distributed Caching

- Partitioning Facility

- In-memory

Databases

XD contains 3 components, available as a single, integrated
package or 3 individual components

5© 2008 IBM Corporation

Integrated health and operational
management across a distributed
application server infrastructure

Optimize your application server
investment by intelligently

managing workload

Infrastructure for dealing
with unrelenting data

volumes, with performance

Use your existing infrastructure to run
application types beyond OLTP

WebSphere
eXtreme
Scale

Compute Grid

WebSphere XD Packaging Structure
Available as a single, integrated package or as 3 individual components

WebSphere
Virtual

Enterprise

6© 2008 IBM Corporation

WebSphere Virtual Enterprise

• Improving the resiliency of your middleware
infrastructure
– A health management infrastructure

– Continuous availability – interruption-free application updates

– Checkpointing the configuration of the WebSphere runtime

– Visualization technologies

• Features for Distributed platforms
– Application virtualization services

– A goals-oriented runtime for WAS and Non-WAS middleware

– Service policies and relative application priorities

– multi-media applications over voice and video via SIP

7© 2008 IBM Corporation

Automatic, Sense & Respond Management

Challenge:
◊Provide operational control so that my IT staff can easily manage my environment
◊Gain insight into the performance and operations of applications & servers across

my entire heterogeneous (and distributed) application server infrastructure
◊Proactively address and correct issues before they cause IT and business impacts
◊Give me the information I need to do historical analysis, capacity planning, and

chargeback for resource usage
◊Decrease management and administration costs

Health
Management

Data LoggingOperational
Management

WVE contains comprehensive and integrated management capabilities

AnalysisInsight Proactive

8© 2008 IBM Corporation

Operational Management: Monitoring

The administrative console is enhanced with Operations and Reporting tabs

In a Dynamic and Heterogeneous Environment

WVE provides a set of views for understanding and managing the dynamic
goals directed environment applications are hosted in

Reporting tab allows for in depth charts to be
viewed to understand the performance of the
environment

Operations tab provides insight into

� The stability of the resource

� How work for the resource is actively being managed

� Outstanding tasks that need operators to act upon

� Where the resource is currently running

9© 2008 IBM Corporation

Server Maintenance Mode

• WVE provides the capability to isolate a running server (of any type) from production

traffic : server maintenance mode. This allows for problem determination to be

performed on the server or other maintenance without disruption to production traffic.

• Options for maintenance mode:

– Stop server

– Leave server running and keep affinity

– Leave server running and break affinity

• If the server is a member of a dynamic cluster, a new cluster member will first be

started before the server is placed into maintenance mode in order to assure the

minimum policy on the dynamic cluster is met.

10© 2008 IBM Corporation

Health Management

Challenge:
◊Recognize health issues in my environment and automatically correct them
◊Allow me to determine what I consider a health condition and the appropriate

corrective action

Solution WVE Health Management Framework

WVE offers out-of-the-box health policies and actions across all

supported application environments and allows them to be customized

Comprehensive
Health

Policies

Customizable
Health

Actions

Customizable
Health

Conditions

11© 2008 IBM Corporation

Health Management – Health Policies

• Health policies can be defined
for common server health
conditions

• Health conditions are
monitored and corrective
actions taken automatically

– Notify administrator

– Capture diagnostics

– Restart server

• Application server restarts are
done in a way that prevent
outages and service policy
violations

Helps mitigate common health problems before production outages occur

Health Conditions

• Age-based: amount of time server has been running

• Excessive requests: % of timed out requests

• Excessive response time: average response time

• Excessive memory: % of maximum JVM heap size

• Memory leak: JVM heap size after garbage collection

• Storm drain: significant drop in response time

• Workload: total number of requests

12© 2008 IBM Corporation

Health Management – Custom Health Conditions

Custom expressions can be built which use metrics from:

– The On Demand Router, URI return codes

– Base PMI metrics, MBean operations and attributes (WAS only)

Complex expressions using a mix of operands is supported

Flexibility to determine what an “unhealthy” condition is…

13© 2008 IBM Corporation

Health Management – Custom Health Actions
Take Control!

Provides flexibility by allowing the definition of custom actions allowing administrators to
define an action plan to be carried out when the unhealthy situation detected.

14© 2008 IBM Corporation

Supported Health Policies

Predefined Health Policy WebSphere
Application
Server

WebSphere
Community
Edition 2.0

Age-based policy

Workload policy

Memory leak detection

Excessive Memory usage

Excessive Response Timeout

Excessive Request Timeout

Storm Drain Detection

15© 2008 IBM Corporation

Data Logging

• Comprehensive logging of application,
resource and workload information across
WVE’s autonomic systems

• Historical trend analysis using either pre-
packaged or customized reports with
innovative visualization techniques

• Easily hookup to accounting and
chargeback systems such as Tivoli Usage
and Accounting Manager

Challenge:
◊A lot is going on in my environment. I need to be able to log information so I can do

historical trend analysis of how my infrastructure is performing.
◊My infrastructure resources are shared across multiple applications and users. I need an

easy way to meter usage and appropriately chargeback to users and/or departments.

WVE contains comprehensive data logging of applications, users and

resources; in WVE 6.1 content in logs is now configurable and aggregated for

easily hooking into accounting and chargeback products

16© 2008 IBM Corporation

Manage Multiple Application Versions

• Coordinates the activation of
application editions and the routing of
requests to the application

• Validation Mode enables final pre-
production testing of an application
edition by a select group of users

• Routing Rules allow intelligent routing
to multiple application editions in
production

Challenge:
◊ I want to support different versions of my applications for my users or customers for

continuous availability
◊ I need a more agile production deployment process, where I can quickly back-off

new application versions to prevent loss of service
◊ I’d like to better support iterative development; and potentially use my free resources

in my production environment for application testing

Solution Application Edition Manager

Dynamically introduce, run, and manage multiple versions of the same

application in your infrastructure

17© 2008 IBM Corporation

Application Versioning Support Matrix

Feature Managed Web
applications

(HTTP)

IIOP, EJB, or JMS
applications

PHP applications Unmanaged Web
applications

Multiple editions
of applications

Supported Supported Supported Supported

Application
rollout

Supported Supported Supported Not Supported

Interruption-free
application
update, driven by
the ODR and
HTTP
communication

Supported Not supported
(If the EJB, JMS, or IIOP
components are directly
exposed to an external
client. The ODR does
not support
communication with
IIOP)

Supported Not Supported

Validation mode Supported Not Supported Supported Not Supported

Concurrent
activation

Supported Not Supported Supported Supported

18© 2008 IBM Corporation

Application Editions – Group Rollout

quiesce
& stop

Edition 1.0

Edition 1.0

Edition 1.0

On-demand
routers

Dynamic cluster

Edition 2.0

restart

application

requests

19© 2008 IBM Corporation

Application Editions – Atomic Rollout

quiesce
& stop

Edition 1.0

Edition 1.0

Edition 1.0

On-demand
routers

Dynamic cluster

Edition 1.0

application

requests

Edition 2.0

Edition 2.0

quiesce
& stop

Edition 2.0

Edition 2.0

request

request

request

restart

restart

20© 2008 IBM Corporation

LPAR1 / Node 1

LPAR2 / Node 2

Server 1

Server 2

Application 1
(Version 1)

Application 1
(Version 2)

On-Demand
Router

95% of
Workload

5% of

Workload

Application Edition Management & Application Test

Incoming
Work

Server 3

Application 1
(Version 3)Internal IP

Only

LPAR3 / Node 3

21© 2008 IBM Corporation 21

Extended Repository Service

• Ability to keep automatic or manual checkpoint of the configuration repository of
WebSphere.

• Full checkpoints are manually created and named and contain a full copy of the
repository

• Delta checkpoints are kept automatically and contain a subset of the repository that was
changed in a given save operation

• Repository changes can be unrolled back to a previous state.

22© 2008 IBM Corporation 22

WebSphere XD Packaging Structure

Integrated health and operational
management across a distributed
application server infrastructure

Optimize your application server
investment by intelligently

managing workload

Infrastructure for dealing
with unrelenting data volumes,

with performance

Use your existing infrastructure to run
application types beyond OLTP

WebSphere
eXtreme Scale

Compute Grid

Available as a single, integrated package or by 3 individual components

WebSphere Virtual
Enterprise

23© 2008 IBM Corporation

What is “Batch” ?

24© 2008 IBM Corporation

What are “Batch Jobs”?

• Batch processing is the task of processing a tremendous amount of
data within a narrowing window of time.

• Batch has some high expectations….
– High Availability

– Scalability

– Reliability

– Security

– Operational Management

– Performance

• Tremendous amount of infrastructure and operational procedures
have been built around batch systems

25© 2008 IBM Corporation

Some Examples of Batch Jobs…

Examples

- Payment Processing

- Shipment Processing

- Report Generation

- Claims Processing

- Inventory Management

- End of
Day/Month/Quarter/year
processing

26© 2008 IBM Corporation

Batch and SOA

Reusing business services is a
fundamental principle of SOA

Batch workloads are an integral
part of any IT infrastructure

How do you integrate your
batch & OLTP environments

with a common services
infrastructure?

How do you eliminate
“maverick” batch and deliver an

enterprise-wide batch
infrastructure?

27© 2008 IBM Corporation

Stamping out “Maverick” Batch

28© 2008 IBM Corporation

Maverick Batch…

• “Maverick” Batch is BAD

• “Maverick” Batch is an anti-pattern

• “Maverick” Batch distracts customers from solving
business problems

• “Maverick” Batch can be expensive

• You probably have “Maverick” Batch….

29© 2008 IBM Corporation

Message
Driven
Bean

msg queuejob definition

The “Maverick” Batch Environment

• Roll Your Own (RYO)
• Seems easy – even tempting ☺
• Message-driven Beans or
• CommonJ Work Objects or …

But …

• No job definition language
• No batch programming model
• No checkpoint/restart
• No batch development tools
• No operational commands
• No OLTP/batch interleave
• No logging
• No job usage accounting
• No monitoring
• No job console
• No enterprise scheduler integration
• No visibility to WLM
• No Workload throttling/pacing/piping
• …

CommonJ
Work

job definition
Web

Service

create

30© 2008 IBM Corporation

OLTP and Batch Interleave

DB

public void doBatch() {
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
for (int i=0; i<100000; i++) {

Customer customer = new Customer(.....);
Cart cart = new Cart(...);
customer.setCart(cart) // needs to be persisted as well
session.save(customer);
if (i % 20 == 0) { //20, same as the JDBC batch size

//flush a batch of inserts and release memory:
session.flush();
session.clear();

}
}
tx.commit();
session.close();
}

Source: some Hibernate Batch website

public Customer getCustomer() {
….
}

-Batch application’s hold on DB locks can
adversely impact OLTP workloads

-OLTP Service Level Agreements can be
breached

-How do you manage this?

-WLM will make the problem worse!

BATCH

OLTP

X

31© 2008 IBM Corporation

Operational Control in “Maverick” Batch

Process 10 mil.
records

Queue

MDB
Async
Batch
“Job”

Application Server

How do you stop this batch “job” ?

Problem
Ticket

Queue

Systems
Administrator

IT Operations

Kill - 9

32© 2008 IBM Corporation

Why Maverick Batch is BAD…

• Customers are not in the business of
building/owning/maintaining infrastructure code

– Developers love writing infrastructure code

– IT Managers avoid owning and maintaining infrastructure code

– IT Executives hate paying for code that doesn’t support the core business

• Learn from history…
OLTP has evolved, now it’s time for Batch
See: Arrival of Application Servers for OLTP ~15 years ago

33© 2008 IBM Corporation

Modern Batch…Towards “Unified Batch Architecture”

• Today: Batch processing systems exist in silos

Application
Architecture

Development
Tools

Testing
Infrastructure

Deployment
Process

Operational
Procedures

Business
Logic

Archiving/
Auditing

Application
Architecture

Development
Tools

Testing
Infrastructure

Deployment
Process

Operational
Procedures

Business
Logic

Archiving/
Auditing

Department A Department B

Application
Architecture

Development
Tools

Testing
Infrastructure

Deployment
Process

Operational
Procedures

Business
Logic

Archiving/
Auditing

Department … Z

34© 2008 IBM Corporation

Modern Batch…Towards “Unified Batch Architecture”

• Tomorrow: Common Infrastructure for hosting and executing batch applications

Application
Architecture

Development
Tools

Testing
Infrastructure

Deployment
Process

Operational
Procedures

Business
Logic

Archiving/
Auditing

Department A Department B Department … Z

Business
Logic

Business
Logic

35© 2008 IBM Corporation

• “Unified Batch Architecture” is the vision…
“Batch Modernization” is a hurdle along the way

36© 2008 IBM Corporation

Exploring Batch “Modernization”

37© 2008 IBM Corporation

Why Modernize?

• Cost #1 – Infrastructure
– Pressure to reduce operational costs

$$$ - three C’s of the IT Budget: cost, cost, cost

What’s my motivation?

• Cost #2 – Skills
– Development resource drawn from shrinking pool.

• Cost #3 – Competitiveness
– Failure to seize new opportunities due to lack of agility.

Not for everybody !!

38© 2008 IBM Corporation

• Modern language
– Virtualized

– Portable

– Memory-managed

– zAAP offload (z/OS)

• Standards
– Programming model

– Component model

– J2SE/J2EE

• Skills proliferation

• Choice of Tools and Vendors

Satisfying the Requirements: Why Java?

Slide 39

Approach

JCL

JES

CobolCobolCobol

Traditional
Cobol Batch

CobolCobolJava

WebSphere XD
Compute Grid

CobolCobol

DB2 z/OS

Tivoli
Workload
Scheduler

Op. Plan

System Z with z/OS

CobolCobolCobolCobolCobol

Today: Executing traditional batch with COBOL

Phase 1: Implement all new business logic in Java with XD Compute Grid

Phase 2: Share existing COBOL modules across both Java and COBOL domains

Phase 3: Incrementally migrate COBOL modules to Java with XD Compute Grid

Completion: All COBOL batch modules are replaced with Java, running in XD

Current Status

We plan to go
productive with the
first java batch on
XD in summer
2008. But there
remains a lot to be
done to make this
possible (stability,
integration,
architecture)

40© 2008 IBM Corporation

To Summarize…

• Stamp out “Maverick” Batch
– To adopt a “Unified Batch Architecture” that encompasses all platforms and

J2EE vendors

– Eliminate “Maverick” Batch infrastructures, replace with common runtime
infrastructure and application architecture

– Governed by common operational procedures

• Enterprise Batch Modernization
– Facilitates the transformation of existing COBOL/PLX/C/C++ batch to java

– Focus should be on developing NEW batch applications in modern
languages, then assessing if existing batch should be transformed.

41© 2008 IBM Corporation

Grand Batch Strategy…

• Two Key Strategic Objectives: Ubiquity and Integration

• Ubiquity:
– Batch applications should transcend J2EE vendor and platform

– Application Placement should be dictated by the location of its data.

– Compute Grid Batch Containers should run everywhere

• Integration:
– Existing infrastructure and operational procedures should be embraced and

leveraged

– Differentiate from our competitors through value-added integration

– Integrate with:

• The operating system (z/OS specifically)

• The enterprise scheduler

• The JVM

• The WebSphere Product Family

• Etc…..

42© 2008 IBM Corporation

The Batch “Vision” Tivoli
Workload Scheduler

WXD
Compute Grid

Job Scheduler

DB2

z/OS

GEE

Batch App

WAS z/OS

GEE

Batch App

WAS z/OS

Portable GEE

Batch App

J2EE AppServer

Distributed Distributed

GEE

Batch App

WAS

DB2 UDB DB2 UDB

- Portable Batch applications across platforms and J2EE vendors

- Location of the data dictates the placement of the batch application

- Flexible programming model, will host Spring Batch, JZOS, Compute Grid apps

- Centrally managed by your enterprise scheduler

- z/OS operational procedures manage batch across all platforms

JES

43© 2008 IBM Corporation

WebSphere XD Compute Grid summary

• Leverages J2EE Application Servers
(WebSphere today… more tomorrow)

– Transactions

– Security

– high availability including dynamic servants

– Leverages the inherent WAS QoS

– Connection Pooling

– Thread Pooling

• Runtime for executing java batch applications
• Checkpoint/Restart
• Batch Data Stream Management
• Parallel Job Execution
• Operational Control
• External Scheduler Integration
• SMF Records for Batch
• zWLM Integration

44© 2008 IBM Corporation

Origins of WebSphere XD Compute Grid

IBM Experience w/ Batch
& Enterprise Application

Infrastructures

Direct Customer influence:
sharing experiences with
Batch, z/OS Operations,
Middleware Management

High Performance
Compute (HPC

Extreme Transaction
Processing (XTP) Grid Computing

Utility Computing

WebSphere XD
Development

Team

WebSphere XD Compute Grid

Dispatcher/Worker,
Divide & Conquer

Proximity of Data,
N-Tier Caching,
Affinity Routing Operational

Management

Resource
Management &
Virtualization

45© 2008 IBM Corporation

WebSphere XD Compute Grid and
Traditional Batch Assets

-Tivoli Workload Scheduler (Enterprise Schedulers Generally)

-JZOS

46© 2008 IBM Corporation

Enterprise Schedulers and Compute Grid

Enterprise
Scheduler

JES

JCL

WSGrid

In Queue

Out Queue

XD Job
Scheduler

xJCL

msg

GEE

Job

GEE

Job

Dynamic Scheduling

-Central enterprise scheduler (TWS, etc) !! Compute Grid is told what to execute.

-Jobs and commands are submitted from Enterprise Scheduler to CG via WSGRID

-Jobs can dynamically schedule to Enterprise Scheduler (TWS) via EJB interface

47© 2008 IBM Corporation

XD Compute Grid and Enterprise Schedulers

� Connector is the bridge between the enterprise schedule and Compute Grid

� On z/OS, JES is used as a proxy, pro’s and con’s for this.

� On z/OS, High-performance connector is in progress

� On Distributed (and z/OS for now), connector is a java-based JMS client

Role of Enterprise Schedulers

JCL

JES

CobolCobolJava

XD
Compute Grid

Enterprise
Scheduler

Op. Plan

48© 2008 IBM Corporation

Number of job steps

C
P

U
 tim

e
 s

p
e
n

t o
n
 J

V
M

 s
ta

rtu
p

WebSphere Batch
(Compute Grid)

JZ
O

S

Mainframe Java Batch – Relative Base-line Cost

49© 2008 IBM Corporation

Positioning XD Compute Grid- Role of JZOS

JCL

JES

Java

J2SE JVM ZFS

HFS

VSAM

JZOS
Launcher

JZOS
API’s

� JZos delivers 2 technologies:
1. JZOS Launcher- seamless way to initialize a J2SE runtime from JCL
2. JZOS API’s- set of library functions for accessing traditional z/OS

resources (MVS datasets, VSAM files, etc) from Java

� JZOS launcher not efficient for 1000’s of batch jobs to be run within a batch window

� J2SE JVM has no:
- security, transaction, or connection management
- checkpoint or restart facility for batch jobs
- inherent high availability, or other WAS z/OS qualities of service

� JVM is not persistent or reusable.

50© 2008 IBM Corporation

Positioning XD Compute Grid- Role of JZOS

JCL

JES

XD CG

WAS z/OS

Enterprise
Scheduler

Op. Plan

ZFS

HFS

VSAM

JZOS
API’s

� XD Compute Grid is built on WebSphere z/OS

� leverages QoS and services provided by the WAS z/OS runtime
(security, transaction, connection management; thread pooling; HA, etc)

� Runs within a persistent, reusable JVM and Execution Container

� JZOS Api’s can be leveraged from XD CG applications

� JZOS Api’s provide a strong integration point for Java and traditional z/OS

51© 2008 IBM Corporation

Grow into Compute Grid

JZOS/J2SE

Batch Simulator

BDS Framework

Batch
Application

BDS Framework

Batch
Application

Compute Grid

-Start with JZOS or J2SE-based Java batch infrastructure

-Grow into Compute Grid-based Java batch infrastructure

-Leverage FREE Compute Grid development tools and frameworks to
build Compute-Grid-Ready batch applications

52© 2008 IBM Corporation

Building XD Compute Grid Applications

53© 2008 IBM Corporation

Components of an XD Compute Grid Application

Input

BDS

Step 1

Output

BDS

-Where does the data come from?

- How should the business
logic process a record?

- Where should the data be written to?

- How should the Step be:
- Checkpointed?
- Results processed? Etc…

… Step N

Input

BDS
Input

BDS

Output

BDS
Output

BDS

Complete

Batch Job

Start

Batch Job

54© 2008 IBM Corporation

Lifecycle …

Batch
Container

setProperties(Properties p) {

}

…

createJobStep() {

…

}

processJobStep() {

…

}

destroyJobStep() {

…
}

1

2

3

4

XD Compute Grid makes it easy for developers to create transactional batch
applications by allowing them to use a streamlined POJO model and to focus on

business logic and not on the batch infrastructure

The anatomy of a transactional batch application – batch job step

XD V6.0.1
• CMP EJB programming
• J2EE package & deployment
• Develop using RAD

XD V6.1
• POJO programming
• J2EE package and deployment
• Develop using Eclipse

XD V6.1 supports both models

Simple Programming Model

55© 2008 IBM Corporation

Batch
Container

setProperties(Properties p) {

…
}

createJobStep()}

…

}

processJobStep() {

…

}

destroyJobStep() {

…
}

1

2

3

4

Initialize Native Structures:
Cobol Modules, DFSort, etc…

XD Batch and Traditional z/OS Interoperability

Execute Native Structures:
Cobol Modules, DFSort, etc…

Teardown Native Structures:
Cobol Modules, DFSort, etc…

WAS z/OS
Servant Region

56© 2008 IBM Corporation

XD Compute Grid makes it easy for developers to encapsulate input/output data
streams using POJOs that optionally support checkpoint/restart semantics.

The anatomy of an transactional batch application – batch data stream
Simple Programming Model …

Job Start

Batch
Container

open()

positionAtInitialCheckpoint()

externalizeCheckpoint()

close()

1

2

3

4

Job Restart

Batch
Container

open()

internalizeCheckpoint()

positionAtCurrentCheckpoint()

externalizeCheckpoint()

close()

1

2

3

5

4

57© 2008 IBM Corporation

XD Compute Grid
Pojo-based App

Unified Development, Testing, Deployment
Infrastructure

XD BDS
Framework

Eclipse-based
XD Batch Simulator

RAD-Based
XD Batch Unit Test

Environment

XD Batch Packager

Common
Deployment Process

WebSphere XD
Infrastructure

-Customer develops
business service POJO’s

-Applications are
assembled via Spring

-XD BDS Framework
acts as bridge between
SwissRe business logic
and XD Compute Grid
programming model

-XD Batch Simulator for
development

-XD Batch Unit test
environment for unit
testing

-XD batch packager for
.ear creation

Business
Services

Java IDE

Business Services
Testing Infrastructure

RAD-Based
Unit-testing
for OLTP

58© 2008 IBM Corporation

Batch Container

B
a
tc

h
D

a
ta

S
tre

a
m

 In
te

rfa
c
e

initialize(props)

open()

externalize
Checpoint()

internalize
Checkpoint()

close()

JobStepInterface

d
e

s
tro

yJ
o
b

S
te

p
()

p
ro

c
e
s
sJ

o
b
S

te
p()

c
re

a
te

Jo
b

S
te

p

s
e

tP
ro

p
e

rtie
s
()

Batch
Record

Processor

in
itia

lize
()

p
ro

ce
s
s
R

e
co

rd
()

c
o

m
p

le
te

R
e

co
rd

()

F
ile

R
e

a
d
e
rP

a
tte

rn

initialize(props)

fetchRecord()

process
Header()

B
a
tc

h
D

a
ta

S
tre

a
m

 In
te

rfa
c
e

initialize(props)

open()

externalize
Checpoint()

internalize
Checkpoint()

close()

F
ile

W
rite

rP
a
tte

rn

initialize(props)

writeRecord()

write
Header()

B
yte

R
e
a
d

e
rP

a
tte

rn
A

d
a
p
te

r

GenericXDBatchStep B
yte

W
rite

rP
a
tte

rn
A

d
a

p
te

r

The BDS Framework

59© 2008 IBM Corporation

WebSphere XD Compute Grid
BDS Framework Overview

• BDS Framework implements XD batch programming model for common use-cases:
– Accessing MVS Datasets, Databases, files, JDBC Batching

– Provides all of the restart logic specific to XD Batch programming model

• Customer’s focus on business logic by implementing light-weight pattern interfaces; doesn’t
need to learn or understand the details of the XD Batch programming model

• Enables XD Batch experts to implement best-practices patterns under the covers

• XD BDS Framework owned and maintained by IBM; will be reused across customer
implementations to provide stable integration point for business logic.

60© 2008 IBM Corporation

Development Tooling Story for
WebSphere XD Compute Grid

• 1. The Batch Datastream (BDS) Framework. This is a development toolkit that implements the Compute
Grid interfaces for accessing common input and output sources such as files, databases, and so on. The following
post goes into more details.

2. a Pojo-based application development model. As of XD 6.1, you only have to write Pojo-based
business logic. Tooling executed during the deployment process will generate the necessary Compute Grid
artifacts to run your application. The following developerworks article goes into more details: Intro to Batch
Programming with WebSphere XD Compute Grid

3. The Batch Simulator. A light-weight, non-J2EE batch runtime that exercises the Compute Grid
programming model. This runs in any standard Java development environment like Eclipse, and facilitates simpler
application development since you're only dealing with Pojo's and no middleware runtime. The Batch Simulator is
really for developing and testing your business logic. Once your business logic is sound, you would execute
function tests, system tests, and then deploy to production. You can download this from batch simulator download

4. The Batch Packager. This utility generates the necessary artifacts for deploying your Pojo-based business
logic into the Compute Grid runtime. The packager is a script that can be integrated into the deployment process
of your application. It can also be run independently of the WebSphere runtime, so you don't need any heavy-
weight installs in your development environment.

5. The Unit-test environment (UTE). The UTE package is described in the following post. The UTE runs
your batch application in a single WebSphere server that has the Compute Grid runtime installed. It's important to
function-test your applications in the UTE to ensure that it behaves as expected when transactions are applied.

61© 2008 IBM Corporation

Conclusions….

62© 2008 IBM Corporation

Summarizing Compute Grid…

• Maximize Performance
– Benefit from z/OS optimizations for data access on the mainframe
– Apply massively parallel execution with Compute Grid

• Assure Recoverability
– Batch Checkpoints are backed by JTA transactions with Compute Grid

• Ensure Availability
– Leverage WebSphere and platform (System Z, P, etc) High Availability

• Reduce Operations Costs
– Integrated with WebSphere Virtual Enterprise for Virtualized Distributed Runtimes
– Leverages zAAP processors on System Z

• Reduce Maintenance Costs
– Integrate processes for both OLTP and Batch
– Share business logic across both domains
– Leverage existing batch processing artifacts such as enterprise schedulers.

63© 2008 IBM Corporation

Grand Strategy…

• Two Key Strategic Objectives: Ubiquity and Integration

• Ubiquity:
– Batch applications should transcend J2EE vendor and platform

– Application Placement should be dictated by the location of its data.

– Compute Grid Batch Containers should run everywhere

• Integration:
– Existing infrastructure and operational procedures should be embraced and

leveraged

– Differentiate from our competitors through value-added integration

– Integrate with:

• The operating system (z/OS specifically)

• The enterprise scheduler

• The JVM

• The WebSphere Product Family

• Etc…..

64© 2008 IBM Corporation

Achieving our Vision…

• Step 1: Deliver a credible product that is consumable

– SwissRe, customer partnerships, and Our free development tools

– Starter packs en-route, always seeking ways to improve

• Step 2: Add credibility through references & production customers

– Compute Grid Architecture Board… made by customers, for customers

– Several customers in pre-production… goal of 5 Impact ‘09 customer pitches

• Step 3: Build an eco-system via business partners and ISV’s

– In Progress

• Step 4: Differentiate through Integration

– WebSphere Virtual Enterprise, z/OS, WebSphere z/OS, TWS

– Always seeking ways to further integrate

• Step 5: Take over the world

65© 2008 IBM Corporation

The Batch “Vision” Tivoli
Workload Scheduler

WXD
Compute Grid

Job Scheduler

DB2

z/OS

GEE

Batch App

WAS z/OS

GEE

Batch App

WAS z/OS

Portable GEE

Batch App

J2EE AppServer

Distributed Distributed

GEE

Batch App

WAS

DB2 UDB DB2 UDB

- Portable Batch applications across platforms and J2EE vendors

- Location of the data dictates the placement of the batch application

- Flexible programming model, will host Spring Batch, JZOS, Compute Grid apps

- Centrally managed by your enterprise scheduler

- z/OS operational procedures manage batch across all platforms

JES

66© 2008 IBM Corporation

References

• WebSphere Extended Deployment Compute Grid ideal for handling
mission-critical batch workloads

http://www.ibm.com/developerworks/websphere/techjournal/0804_antani/0804_antani.html

• Enterprise Java Batch with Compute Grid WebCast
http://www-306.ibm.com/software/os/systemz/telecon/nov15/

• WebSphere XD Technical Overview Podcast
http://www.ibm.com/developerworks/podcast/dysmf/dysmf-2007-ep5txt.html?ca=dwpodcastall

• Java Batch Programming with XD Compute Grid
http://www.ibm.com/developerworks/websphere/techjournal/0801_vignola/0801_vignola.html

• Development Tooling Summary for XD Compute Grid
http://www.ibm.com/developerworks/forums/thread.jspa?threadID=190624

• Compute Grid Discussion forum
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1240

• Compute Grid Trial Download
http://www.ibm.com/developerworks/downloads/ws/wscg/learn.html?S_TACT=105AGX10&S_CMP=ART

• Compute Grid Wiki (product documentation)
http://www.ibm.com/developerworks/wikis/display/xdcomputegrid/Home?S_TACT=105AGX10&S_CMP=ART

© 2008 IBM Corporation

Questions & Answers

68© 2008 IBM Corporation

© IBM Corporation 2008. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant.
While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without

warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this

presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of
IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in
these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,
revenue growth or other results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance

can be given that an individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of
IBM trademarks, see www.ibm.com/legal/copytrade.shtml
AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, MQSeries, OMEGAMON, OS/390, Parallel Sysplex,
pureXML, Rational, RACF, Redbooks, Sametime, Smart SOA, System i, System i5, System z , Tivoli, WebSphere, zSeries and z/OS.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

69© 2008 IBM Corporation

Back up and reference

70© 2008 IBM Corporation

WebSphere Virtual Enterprise Details…

71© 2008 IBM Corporation

Sysplex Distributor
LPAR 1

Controler

Servant

Servant

Servant

WAS Application
Server

Scaling
Vertically

LPAR 2

Scaling
Horizontally

On-Demand

Router

Controler

Servant

Servant

Servant

WAS Application
Server

WebSphere XD

What is vertical and horizontal scaling?

-Vertical implies scaling

within the same ‘box’.

- Horizontal implies scaling
across ‘boxes’

72© 2008 IBM Corporation

On Demand Router

Application
Servers

Application
Servers

Application
Servers

On Demand
Router

� Classification

� Workload Balancing

� Version-aware
Application routing

� Capacity management

� Storm drain avoidance

� Application lazy start

73© 2008 IBM Corporation

LPAR 3

ODR z/OS Integration…

┐┌
└┘

controller

servantsLPAR 1

┐┌
└┘

controller

servantsLPAR 2

ODR

WLM Stats

WLM Stats

WLM Stats

• workload balancing leverages
zWLM stats

HTTP
Requests

• XD to WLM goal mapping

TCLASS

WLM
Service
Policy

WLM
Service
Policy

controller

servants

WLM Stats

┐┌
└┘

WLM
Service
Policy

• Optional horizontal On-Demand
scaling with WXD Dynamic Operations

74© 2008 IBM Corporation

ODR z/OS Integration…

┐┌
└┘

controller

servantsLPAR 1

┐┌
└┘

controller

servantsLPAR 2

On-Demand Router

HTTP
Request

•ODR can classify HTTP requests
with zWLM Transaction Classes

� Classification rules can be created to bind zWLM Transaction Classes to the
HTTP request

� WAS z/OS Control Region will extract that TCLass and push it down to zWLM

� zWLM will route the work to the appropriate Servant Region

75© 2008 IBM Corporation

Dynamic Operations Overview

• Virtualized, policy-based, dynamic workload management

• Dynamic application placement
– Enables starting and stopping server instances based on application load

and user-defined goals

• On-Demand Router
– Enhanced version of the Proxy Server

– Controls request prioritization, flow, and routing in an Extended
Deployment (XD) environment

76© 2008 IBM Corporation

Scenario: Tying z/OS resource management with XD

• Customer has 5 applications

• Each application must be run in its own server

• Each application must be highly-available

77© 2008 IBM Corporation

Solving this problem with WebSphere Distributed

Application 1 Application 1 Application 2 Application 2

Application 3 Application 3 Application 4 Application 4

Application 5 Application 5

Network Layer

78© 2008 IBM Corporation

Solving this problem with WebSphere z/OS

Sysplex Distributor

LPAR 1 LPAR 2

Application 1 Application 1

Application 2 Application 2

Application 3 Application 3

Application 4 Application 4

Application 5 Application 5

79© 2008 IBM Corporation

Solving this problem with WebSphere XD z/OS

Sysplex Distributor
LPAR 1 LPAR 2

On-Demand Router On-Demand Router

Node
Group Application 1 DC 1

Application 2 DC 2

Application 3 DC 3

Application 4DC 4

DC 5

Application 1

Application 2

Application 3

Application 4

Application 5 Application 5

XApplication 1

Failover

Lazy Start

Application 3

Scalability

Application 3

80© 2008 IBM Corporation

Routing
Service

WAS 4.0.1

Enterprise
Apps

Enterprise
Apps

Enterprise
Apps

WAS 5.1

Enterprise
Apps

Enterprise
Apps

LPAR 1

Validate IP
Address

1

2

Client

Client

Client

Client

LPAR 1 LPAR 2

On-Demand
Router

On-Demand
Router

HA

Sysplex Distributor

WAS
App Server

WAS
App Server

Dynamic
Cluster

Client Client Client Client Client

1

2

3

Infrastructure before
WebSphere XD

Infrastructure after
WebSphere XD

Routing, High Availability & Application Deployment

� Highly Available

� Streamlined application deployment

− Home-grown routing

− Manual application upgrades

− Brittle architecture

81© 2008 IBM Corporation

Compute Grid Influences…

82© 2008 IBM Corporation

XD Compute Grid and HPC

Scalability via the Dispatcher/Worker Pattern

Dispatcher Worker

Dispatcher manages the
execution of work

Business Logic executed
in the Workers

-Workers can scale dynamically to meet the current workload demands

-Dispatcher manages workload execution across the collection of workers

ClientClientClientClientClientClientClientClient

Worker
Dispatcher

83© 2008 IBM Corporation

XD Compute Grid and HPC
Performance with Divide & Conquer

Dispatcher Worker

Dispatcher divides large
work requests into smaller

partitions

Partitions executed
concurrently across

the workers

Elapsed Time = f(Work Request Size); large requests processed sequentially will have longer elapsed times

Large
Work Request

PartitionPartitionPartitionPartition

- When sequentially processing a large work request:

Elapsed Time =f(partition size); partitions are executed concurrently across the collection of workers

- When applying Divide & Conquer to process a large work request:

- Ideally 50 smaller partitions is 50x faster than 1 large work request.

84© 2008 IBM Corporation

XD Compute Grid Components

• Job Scheduler (JS)
– The job entry point to XD Compute grid

– Job life-cycle management (Submit, Stop, Cancel, etc) and monitoring

– Dispatches workload to either the PJM or GEE

– Hosts the Job Management Console (JMC)

• Parallel Job Manager (PJM)-
– Breaks large batch jobs into smaller partitions for parallel execution

– Provides job life-cycle management (Submit, Stop, Cancel, Restart) for the
single logical job and each of its partitions

– Is *not* a required component in compute grid

• Grid Endpoints (GEE)
– Executes the actual business logic of the batch job

85© 2008 IBM Corporation

XD Compute Grid Components

User

Load Balancer

- EJB

- Web Service

- JMS

- Command Line

- Job Console

GEE

WAS

GEE

WAS

PJM

WAS

JS

WAS

86© 2008 IBM Corporation

Understanding the Model

• Parallel Job Manager (PJM) decomposes a large work request into
many smaller work requests (sub-jobs)

• PJM then provides operational control over the sub-jobs executing
across the job endpoints – note sub-jobs are clones

• Administrator only manages the top-level (logical) job; PJM, under
the covers, manages the sub-jobs.

Top Level
Job

Data
Partitions

Sub Job
Input
Data

lo
g
ic

a
l tra

n
s
a
c
tio

n

87© 2008 IBM Corporation

Parallel
Job

Manager

Job
Dispatcher

xJCL
Repository

Job
Template

GEE

Submit
Parallel Job

1.

2.
3.

Grid

1. Large, single job is submitted to the Job Dispatcher of XD Compute Grid

2. The Parallel Job Manager (PJM), with the option of using job partition templates stored in a repository,
breaks the single batch job into many smaller partitions.

3. The PJM dispatches those chunks across the cluster of Grid Execution Environments (GEE)

4. The cluster of GEE’s execute the parallel jobs, applying qualities of service like checkpointing, job
restart, transactional integrity, etc.

Parallel
Jobs

4.

Submitting a job to the Parallel Job Manager

88© 2008 IBM Corporation

Parallel
Job

Manager

PJM
Tables

Job
Status

GEE

Job
Submitter

2.
Grid

1. Execution status of parallel jobs is reported to the Parallel Job Manager (PJM) from the cluster of
GEE’s

2. PJM persists the job status in its database tables

3. Job submitter can be notified of status updates and overall progress by the Job Dispatcher.

Job
Execution

Status

1.

3.

Job
Dispatcher

Monitoring a job to the Parallel Job Manager

89© 2008 IBM Corporation

Parallel
Job

Manager

Submitter issues
“Stop Job”

Grid

1. Submitter issues a Stop/Restart/Cancel command

2. Parallel Job Manager (PJM) determines which jobs must be Stopped/Restarted/Canceled

3. Sub-jobs are issued a Stop/Restart/Cancel command by the Compute Grid infrastructure.

1.

Parallel
Job

GEE

Parallel
Job

GEE

Parallel
Job

GEE

Stop/
Restart/
Cancel

Job
2.

3.

Job
Dispatcher

Managing parallel jobs

90© 2008 IBM Corporation

Parallel
Job

Manager

Submitter views
single job log

Grid

1. Parallel Job Manager (PJM) retrieves sub-job logs for logical job

2. PJM aggregates the many logs.

3. Long-Running Scheduler stores the job log into the log repository where the submitter can view them.

1.

Parallel
Job

GEE

Parallel
Job

GEE

Parallel
Job

GEE

Job
Log

2.3.Log
Repository

Job
Dispatcher

Managing logs for parallel jobs

91© 2008 IBM Corporation

Compute Grid + XTP = eXtreme Batch
Bringing the data closer to the business logic

-Proximity of the business logic to the data significantly influences performance

-Bring data to the business logic via caching

-Bring business logic to the data via co-location

- Increase cache hits and reduce data access through affinity routing

- Data is partitioned across the cluster of workers

- Work requests are divided into partitions that correspond to the data

- Work partitions are intelligently routed to the correct work with the data preloaded.

Dispatcher

Worker w/
A-M Data

Worker w/
N – Z Data

Large
Work Request

Records
A-M

Records
N-Z

A-M

N-Z

92© 2008 IBM Corporation

Proximity to the Data- Co-location of business logic with data

GEE

Job Scheduler

GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WAS z/OS WAS z/OS

DB2 on z/OS

System Z

93© 2008 IBM Corporation

Data Grid
near-cache

GEE

LPAR

Job Scheduler

CPU

LPAR

DG Server

CPU

LPAR

DG Server

CPU

LPAR

Frame

Database

CPU CPU

Data Grid
near-cache

GEE

LPAR

CPU CPU

CPU

Data Grid
near-cache

GEE

LPAR

CPU CPU

Proximity to the Data- Bring data to the business logic with caching

94© 2008 IBM Corporation

Data Access

Near-Cache Hit

Near-Cache Miss

XD DG Server Hit

XD DG Server Miss
(Access DB)

P1 (Probability of

cache hit) S1 (Time (ms) to retrieve

data from cache)

P2 (Probability of

cache miss)

S2 (Time (ms) to retrieve

data from other storage)

P3 (Probability that data

is in cache server)

P4 (Probability that data

must be retrieved from

database)

S3 (Time (ms) to retrieve

data from cache server)

S4 (Time (ms) to retrieve

data from database)

Data Access time (ms) =
(Probability of near- cache hit) * (Time to retrieve data from near-cache) +
(Probability of near-cache miss) * (time to retrieve data from other storage);

Time to retrieve data from other storage (ms) =
(Probability that data is in cache server) * (Time to retrieve data from cache server) +
(Probability that data must be retrieved from database) * (time to retrieve data from database);

95© 2008 IBM Corporation

Data Access

Near-Cache Hit

Near-Cache Miss

XD DG Server Hit

XD DG Server Miss
(Access DB)

P1 = 30%

P2 = 70%

P3 = 70%

P4 = 30%

S1 = 1 ms

S2 = 67 ms

S3 = 10 ms

S4 = 200 ms

Data Access = (Near-Cache Hit) + (Near-Cache Miss)

Near-Cache Hit = (P1)(S1)
Near-Cache Miss = (P2) * [(P3)(S3) + (P4)(S4)]

Near-cache miss = (.7)(10) + (.3)(200)
= 7 + 60 = 67 ms

Data Access = (.3)(1) + (.7)(67)
= .3 + 46.9 = 47.2 ms

47.2 ms

Example calculation

96© 2008 IBM Corporation

Data Access

Near-Cache Hit

Near-Cache Miss

XD DG Server Hit

XD DG Server Miss
(Access DB)

60%

40%
70%

30%

1 ms

67 ms

10 ms

200 ms

Data Access = (Near-Cache Hit) + (Near-Cache Miss)

Near-Cache Hit = (P1)(S1)
Near-Cache Miss = (P2) * [(P3)(S3) + (P4)(S4)]

Near-cache miss = (.7)(10) + (.3)(200)
= 7 + 60 = 67 ms

Data Access = (.6)(1) + (.4)(67)
= .6 + 26.8 = 27.4 ms

(47.2 – 27.4) / 47.2 = 42% improvement in data access time

27.4 ms

Example calculation- effects of applying affinity routing.

97© 2008 IBM Corporation

Affinity Routing- Partitioned data with intelligent routing of work

GEE

Job Scheduler

GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WAS z/OS WAS z/OS

System Z

Records A-M Records N-Z

A-D E-I J-M N-Q R-T W-Z

DB2 Data
Sharing Partition

DB2 Data
Sharing Partition

Records A-M Records N-Z

98© 2008 IBM Corporation

Data Grid
near-cache

GEE

Job Scheduler

CPU

DG Server

CPU

DG Server

CPU

Frame

Database

CPU CPU

Data Grid
near-cache

GEE

CPU CPU

CPU

Data Grid
near-cache

GEE

CPU CPU

Affinity Routing- Partitioned data with intelligent routing of work

Records A-I Records J-R Records S-Z

Records A-M Records N-Z

A-I J-R S-Z

99© 2008 IBM Corporation

Data Grid
near-cache

GEE

PJM

CPU

DG Server

CPU

DG Server

CPU

Frame

Database

CPU CPU

Data Grid
near-cache

GEE

CPU CPU

CPU

Data Grid
near-cache

GEE

CPU CPU

Divide and Conquer- Highly Parallel Grid Jobs

Records A-I Records J-R Records S-Z

Records A-M Records N-Z

Large Grid Job

A-I
J-R

S-Z

100© 2008 IBM Corporation

XD Compute Grid and Grid/Utility Computing

-Grid Computing is the coordinated execution of 1000’s of jobs across a collection
of resources

- Operational Control and Management is essential

- Utility Computing and Goals-Oriented infrastructures provide

- Resource utilization metrics for chargeback

- Virtualization of underlying hardware and software resources

- Enforcement of service-level agreements within the virtualized
infrastructure

-Derived from lessons and technologies from the Mainframe

101© 2008 IBM Corporation

Batch as a service

Bank 1

Bank 2

Bank 3

1. Smaller banks
submit job requests
to the datacenter

Data Center

XD CG

zWLM, WVE

Usage Billing App

2. Datacenter executes
workloads for each bank,
keep tracking of exactly how
many resources each bank’s
jobs used. Achieved on
distributed platforms via the
On-Demand Router;
achieved on z/OS by
leveraging the usage
accounting facilities of
zWLM, RMF, and other
system facilities of z/OS

bill 3. At the end of the month, the
datacenter sends bills for
services rendered, based on the
exact CPU seconds consumed,
to each bank.

102© 2008 IBM Corporation

On-Demand Scalability- With WebSphere z/OS

GEE

Job Scheduler

GEE GEE

Controller

Servant Servant Servant

GEE GEE GEE

Controller

Servant Servant Servant

WAS z/OS WAS z/OS

DB2 on z/OS

Frame

zWLM zWLM

103© 2008 IBM Corporation

Data Grid
near-cache

GEE

LPAR

Job Scheduler

CPU

LPAR

DG Server

CPU

LPAR

DG Server

CPU

LPAR

Frame

Database

CPU CPU

Data Grid
near-cache

GEE

LPAR

CPU CPU

CPU

Data Grid
near-cache

GEE

LPAR

CPU CPU

On-Demand Scalability- With WebSphere Virtual Enterprise

On-Demand
Router

CPU

LPAR

CPU

104© 2008 IBM Corporation

Job
Scheduler

On-Demand
Router

Parallel Job
Manager

Grid Execution
Environment

Grid Execution
Environment

Grid Execution
Environment

Data Grid
Near-Cache

Data Grid
Near-Cache

Data Grid
Near-Cache

Data Grid
Server

Data Grid
Server

Database

Parallel Job
Manager

Data Grid
Server

Grid Execution
Environment

Data Grid
Near-Cache

Job
Scheduler

1

2

3

4

5

Bringing it all together with “WebSphere XD”

105© 2008 IBM Corporation

Key Influencers for
High Performance Compute Grids

• Proximity to the Data
– Bring the business logic to the data: co-locate on the same platform

– Bring the data to the business logic: in-memory databases, caching

• Affinity Routing
– Partitioned data with intelligent routing of work

• Divide and Conquer
– Highly parallel execution of workloads across the grid

• On-Demand Scalability

106© 2008 IBM Corporation

Backup

Appendix A- Best Practices

107© 2008 IBM Corporation

Appendix A – Best Practices

• Application Design

• Parallel Job Manager

• Infrastructure Design

• Misc…

108© 2008 IBM Corporation

Application Design

109© 2008 IBM Corporation

Application Design Considerations

• Strategy Pattern for well structured batch applications
– Use the BDS Framework!!!

– Think of batch jobs as a record-oriented Input-Process-Output task

– Strategy Pattern allows flexible Input, Process, and Output objects
(think “toolbox” of input BDS, process steps, and output BDS)

• Designing “services” shared across OLTP and Batch
– Cross-cutting Functions (Logging, Auditing, Authorization, etc)

– Record-oriented services logic

• Service doesn’t care where the input record came from (OTLP or Batch)

– POJO-based “services”, not heavy-weight services

– Be aware of transaction scope for OLTP and Batch.
TxRequiresNew in OLTP + TXRequires in Batch => Deadlock Possible

• Designing the Data Access Layer (DAL)
– DAO Factory pattern to ensure options down the road

– Context-based DAL for OLTP & Batch in same JVM

– Configuration-based DAL for OLTP & Batch in different JVM’s

110© 2008 IBM Corporation

Components of an XD Compute Grid Application

Input

BDS

Step 1

Output

BDS

-Where does the data come from?

- How should the business
logic process a record?

- Where should the data be written to?

- How should the Step be:
- Checkpointed?
- Results processed? Etc…

… Step N

Input

BDS
Input

BDS

Output

BDS
Output

BDS

Complete

Batch Job

Start

Batch Job

111© 2008 IBM Corporation

Input OutputBatch
Job Step

Fixed Block Dataset
Variable Block Dataset

JDBC
File

IBATIS
More to come…

Fixed Block Dataset
Variable Block Dataset
JDBC
JDBC w/ Batching
File
IBATIS
More to come….

How to think about batch jobs

-Customer implements pattern interfaces for input/output/step

-Pattern interfaces are very lightweight.

-They follow typical lifecycle activities:

-I/O patterns: initialize, map raw data to single record, map single record to raw data, close

-Step pattern: Initialize, process a single record, destroy.

Map Data
to Object

Transform
Object

Map Object
to Data

112© 2008 IBM Corporation

Example Application Architecture for
Shared OLTP and Batch Services

OLTP

EJB

Exposed
Services

Exposed
Services

XD Batch
Application

Batch

Private
Services

Data Access Layer (DAL)

kernel

Transaction, Security
Demarcation

DB

Hibernate JDBC SQLJ

-J2EE and XD manage
Security, transactions

- Spring-based
application
Configuration

- Custom authorization
service within kernel
for business-level
rules

- Initial data access
using Hibernate.
Investigating JDBC,
SQLJ, etc

113© 2008 IBM Corporation

Key “GOTCHA”… Curser Holdability

GEE

Thread of Execution

Checkpoint
Interval

DB

Tx begin

Tx commit

Checkpoint
Interval

Tx begin

Tx commit

Checkpoint
Interval

Tx begin

Tx commit

BDS.open()

“Select * from table1”

Cursor is Closed

Insert /
update

114© 2008 IBM Corporation

Cursor Holdability Options

• If XA Datasource
– Configure Last Participant Support

– Stateful Session Bean Façade Pattern (via BDS Framework)

– Non-transactional Data Source (via EJB 3 Feature Pack)

• If Non-XA
– Configure Cursor Holdability on the Datasource

115© 2008 IBM Corporation

Parallel Job Manager

116© 2008 IBM Corporation

Parallel Job Manager Best Practices (circa v6.1.0.1)

• Understanding the model

• Regarding data partitions

• SPI techniques

• About logical transactions

• Persisting collector/analyzer state data

117© 2008 IBM Corporation

Understanding the Model

• Parallel Job Manager (PJM) decomposes a large work request into
many smaller work requests (sub-jobs)

• PJM then provides operational control over the sub-jobs executing
across the job endpoints – note sub-jobs are clones

• Administrator only manages the top-level (logical) job; PJM, under
the covers, manages the sub-jobs.

Top Level
Job

Data
Partitions

Sub Job
Input
Data

lo
g
ic

a
l tra

n
s
a
c
tio

n

118© 2008 IBM Corporation

Understanding the Model (the SPIs)
WAS Server 1

(JVM 3)

Batch
Container

Parallel
Batch App
Partition 1

WAS Server N
(JVM N+3)

Batch
Container

Parallel
Batch App
Partition N

…

WAS Server
(JVM1)

Job
Scheduler

WAS Server
(JVM 2)

Batch
Container

Parallel
Job Manager

Parameterizer
SPI

Logical
Transaction

SPI

Analyzer
SPI

Collector
SPI

xJCL

Collector
SPI

logical
transaction

scope

LifeCycle
SPI

119© 2008 IBM Corporation

Understanding the model (the SPIs…)

• Parameterizer
– Called by PJM
– Specifies partitioning scheme (number of subjobs, unique parameters for each subjob

instance)

• LogicalTransaction
– Called by PJM
– Demarcates logical transaction (begin, commit, etc)
– Logical in nature – no actual resource registration – this is not JTA

• SubJobCollector
– Called by Batch Container in app server where a subjob executes
– Called before each checkpoint
– Allows an Externalizable to be sent to the SubJobAnalyzer

• SubJobAnalyzer
– Called by PJM
– Called each time a SubJobCollector externalizable arrives
– Called each time a sub-job ends (receives sub-job return code)

• LifeCycle
– Called by Job Scheduler
– Called each time a job (any job) changes state (i.e. submitted, executing, ended)

120© 2008 IBM Corporation

Understanding the model - OID

Parallel
Job Manager

JobScheduler Parameterizer Synchronization
SubJob

Collector
SubJob
Analyzer

submit

dispatch

parameterize

begin

beforeCompletion

collect

deliver

analyze

afterCompletion

call by batch container …

sent by batch container …

JVM-1 JVM-2 JVM-3 JVM-2

getReturnCode

submit
sub jobs

121© 2008 IBM Corporation

Regarding Data Partitions

• Input records must be partitionable on some natural key
– i.e. record number, customer number, ObjectGrid partition id, etc

• It is the job of the Parameterizer to implement partition scheme –
Compute Grid does not know customer’s data!

• Input records (or at least each partition) must be processable
independent of other records (or partitions)

• Compute Grid does not provide data transport! Data must be
shareable among app servers executing the subjobs – i.e. shared
database, shared file system, ObjectGrid server, etc

• It would be possible to implement a top-level job where first job step
uses file transfer APIs to stage data partitions on endpoints

122© 2008 IBM Corporation

Regarding Data Partitions …

• Data is shared (usually best)

Database
Shared

File System

ObjectGrid
Server

Top Level
Job Sub Job

or or

123© 2008 IBM Corporation

Regarding Data Partitions …

• Data is staged (if necessary)

Input Data

ObjectGrid
Server

Top Level
Job

- Step1 (stage)

- Step2 (scatter) Sub Job

File System

124© 2008 IBM Corporation

SPI Techniques

• Remember there is a single Parameterizer SPI for all
profiles tied to a WAS instance (sorry �)
– Best practice – use ISSW “SPI Router” from CitiDirect work (contact

Patrick Nogay for now)

– This allows each parallel job to specify its own SPI classes (nice!)

• Parameterizer
– Using “SPI Router” pattern (granularity can then be per job)

– xJCL properties specified in top level job are passed to parameterizer
(so is job name)

• This info can be used to further influence Parameterizer’s decision

• Collector/Analyzer
– Use to communicate sub-job state to top level job – e.g. error counts,

etc

125© 2008 IBM Corporation

About logical transactions

• These are not JTA transactions ! (so application code
must handle rollback – compensation model)

• Begin invoked before sub-jobs submitted

• Commit issued after all sub-jobs complete

• Rollback occurs if
– any sub-job fails

– any sub-ojb enters restartable state

– SubJobAnalyzer throws Rollback exception

• Rollback strategies (since transaction is only logical)
– Use ‘visible” flag in record – mark visible=true upon commit

– Use staging area – move data from staging to final destination upon
commit

126© 2008 IBM Corporation

Persisting collector state data

• To make collector data part of checkpoint
– Use “dummy” batch data stream

– Can be done on either sub-job nodes, top-level job node or both

– Remember that checkpoint token is 2970 bytes max !

Sub-job
SubJobCollector

SPI

Batch
DataStream

Batch
Container

LREE
Database

State data

c
h
e
c
k
p
o

in
t d

a
ta

127© 2008 IBM Corporation

Infrastructure Design

128© 2008 IBM Corporation

Infrastructure Design Considerations

• High Availability practices
– Job Scheduler can be made highly available (as of 6.1)

– Cluster GEE’s

• Disaster Recovery practices
– Today, Active/Inactive approach

– Tomorrow, Active/Active approach

• Security
– Job Submitter and Compute Grid Admin roles

– Options for using Job Submitter identity or Server’s identity
(Performance degradation today!)

• Connecting Compute Grid to the Enterprise Scheduler
– JMS Client connector bridges enterprise scheduler to Job Scheduler

– JMS best practices for securing, tuning, etc apply

129© 2008 IBM Corporation

High Availability

130© 2008 IBM Corporation

Topology Questions…

• First, is the Parallel Job Manager (PJM) needed, will you run highly-
parallel jobs?

• What are the high availability requirements for the JS, PJM, and GEE?
– Five 9’s? Continuous?

• What are the scalability requirements for the JS, PJM, GEE?
– Workloads are predictable and system resources are static?

– Workloads can fluctuate and system resources are needed on-demand?

• What are the performance requirements for the batch jobs themselves?
– They must complete within some constrained time window?

• What will the workload be on the system?
– How many concurrent jobs? How many highly-parallel jobs? Submission rate of jobs?

131© 2008 IBM Corporation

Topology Considerations…

• If the Job Scheduler (JS) does not have system resources available
when under load, managing jobs, monitoring jobs, and using the
JMC will be impacted.

• If the PJM does not have system resources available when under
load, managing highly parallel jobs and monitoring the job partitions
will be impacted.

• If the GEE does not have system resources available when under
load, the execution time of the business logic will be impacted.

• The most available and scalable production environment will have:
– Redundant JS. JS clustered across two datacenters.

– Redundant PJM. PJM clustered across two datacenters.

– n GEE’s, where n is f(workload goals). Clustered across two datacenters

132© 2008 IBM Corporation

Cost Considerations…

• GEE will most likely require the most CPU resources. The total
number of CPU’s needed is dependent on:

• the workload goals

• max number of concurrent jobs in the system.

• PJM will require fewer CPU’s than the GEE. The total number of
CPU’s needed is dependent on:

• Rate at which highly-parallel jobs are submitted

• Max number of concurrent parallel partitions running in the system.

• Job Scheduler will require fewer CPU resources than the GEE, and
perhaps the PJM too. The total number of CPU’s needed is
dependent on:

• Rate at which jobs will be submitted

• Max number of concurrent jobs in the system

133© 2008 IBM Corporation

Example Production Topology-
Highly Available/Scalable Compute Grid

GEE

JVM

LPAR

JS

JVM

CPU

LPAR

Frame 1

CPU CPU

PJM

LPAR

CPU CPU

GEE

JVM

LPAR

JS

CPU

LPAR

Frame 2

CPU CPU

PJM

LPAR

CPU CPU

DB

Load Balancer

JVM

JVMJVM

134© 2008 IBM Corporation

GEE

JVM

LPAR

Frame 1

CPU CPU

PJM

JVM

LPAR

CPU CPU

GEE

JVM

LPAR

Frame 2

CPU CPU

DB

Load Balancer

JS

PJM

JVM

LPAR

CPU CPU

JS

Pro: Faster interaction between JS and PJM due to co-location and ejb-local-home optimizations

Con: Possibility of starving JS or PJM due to workload fluctuations

Example Production Topology-
Co-locate the Job Scheduler and PJM

135© 2008 IBM Corporation

Frame 1 Frame 2

DB

Load Balancer

PJM

JVM

LPAR

JS

Con: Possibility of starving JS, PJM, and GEE due to workload fluctuations

Con: Not scalable

Example Production Topology-
Co-locate the Job Scheduler, PJM, and GEE

GEE

CPU CPU

PJM

JVM

LPAR

JS

GEE

CPU CPU

136© 2008 IBM Corporation

High Availability –
Summary & Key Considerations

• Clustered Job Scheduler
– Configure Job Schedulers on clusters

– Multiple active Job Schedulers (since XD 6.1)

– Jobs can be managed by any scheduler in your cluster

• Clustered Endpoints
– Batch applications hosted on clusters

• Network Database

• Shared File System

137© 2008 IBM Corporation

Disaster Recovery

138© 2008 IBM Corporation

Disaster Recovery

• DR Topology
– Build separate cells for geographically dispersed sites

– Limit Compute Grid scheduling domains to endpoints within a cell

– Use Active/Inactive DR domains

• Jobs cannot be processed on primary and back domains simultaneously

– Active/Active DR Topology is through a pair of Active/Inactive DR domains

• Host backup (inactive) domain on a remote site

• DR Activation Process
– Use CG provided DR scripts to prepare the inactive domain for takeover

– Complete takeover by activating the inactive domain

139© 2008 IBM Corporation

Active/Active Multi-site Disaster Recovery
Topology

LRS

PJM PJM

GEE GEE

CG Domain A1

LRS

PJM PJM

GEE GEE

CG Domain A2

LRS

PJM PJM

GEE GEE

CG Domain B2

LRS

PJM PJM

GEE GEE

CG Domain B1

Database D1

failover failover
Site1 Site2

Database D2

140© 2008 IBM Corporation

Enterprise Scheduler Integration

141© 2008 IBM Corporation

Enterprise Schedulers and XD Compute Grid
on z/OS

TWS

JES

JCL

WSGrid

In Queue

Out Queue

XD Job
Scheduler

xJCL

msg

GEE

Job

GEE

Job

Dynamic Scheduling

-TWS is the central enterprise scheduler.

-Jobs and commands are submitted from TWS to XD via WSGRID

-Jobs can dynamically schedule to TWS via its EJB interface

142© 2008 IBM Corporation

Enterprise Schedulers and XD Compute Grid
on Distributed

TWS

TWS Agent
Unix/Win

WSGrid

In Queue

Out Queue

XD Job
Scheduler

xJCL

msg

GEE

Job

GEE

Job

Dynamic Scheduling

-TWS is the central enterprise scheduler.

-Jobs and commands are submitted from TWS to XD via WSGRID

-Jobs can dynamically schedule to TWS via its EJB interface

143© 2008 IBM Corporation

Securing WSGrid

Job Scheduler
Server

JobSchedulerMDI
Application

JobSchedulerBus

Destination:
com.ibm.ws.grid.InputQueue

Destination:
com.ibm.ws.grid.OutputQueue

jms/com.ibm.ws.grid.InputQueue

jms/com.ibm.ws.grid.OutputQueue

jms/com.ibm.ws.grid.ConnectionFactory

eis/com.ibm.ws.grid.ActivationSpec

Securing Job Scheduler Message-Driven Interface

1. Enable bus security 4. Authenticate client
access to input queue

2. Define JAAS alias
for JobSchedulerMDI

application3. Assign roles

144© 2008 IBM Corporation

Misc…

145© 2008 IBM Corporation

Appendix B-

Submitting and Executing Batch Jobs w/ Compute Grid

146© 2008 IBM Corporation

Submitting and Executing
Batch Jobs to XD Compute Grid

147© 2008 IBM Corporation

Submitting XD Batch Jobs

User

Load Balancer

GEE

User Submits
xJCL to the
JS

Sample xJCL

<job name=“SampleJob”>
<jndi-name>batch.samples.sample1</jndi-name>
<checkpoint-algorithm name=“timebased”>

<classname>checkpoints.timebased</classname>
<props>

<name=“interval” value=“15”/>
</props>

</checkpoint-algorithm>
<job-step name=“Step1”>

<jndi-name>batch.samples.step1 </jndi-name>
<checkpoint-algorithm-ref name=“timebased”/>
<batch-data-streams>

<bds>
<logical-name> myInput </logical-name>
<impl-class> bds.sample1 </impl-class>
<props>

<prop name=“FILENAME”
value=“/tmp/input”/>

</props>
</bds>

</batch-data-streams>
</job-step>

</job>

JS

WAS z/OS

WAS z/OS

GEE

WAS z/OS

GEE

WAS z/OS

148© 2008 IBM Corporation

Job Management Console in XD v6.1
• Web Interface to Scheduler

– Hosted in same server (cluster) that hosts scheduler function

– Replaces job management function formerly found in admin console

• Provides essential job management functions
– job submission

– job operations

• cancel, stop

• suspend, resume

• restart, purge
– job repository management

• save, delete job definitions
– job schedule management

• create, delete job schedules

• Security
– userid/password login

– lrsubmitter, lrAdmin roles

149© 2008 IBM Corporation

Job Management Console v6.1 – View Jobs

150© 2008 IBM Corporation

Job Management Console v6.1 - Submit Job

• simple one-click job
submission

• job definition source from
file system or repository

• optionally review/modify
substitution properties

• property edit page to
review/modify substitution
property values

151© 2008 IBM Corporation

Job Logs in v6.1

• Stored in file system local to batch container

• Remote access via all scheduler APIs (console, lrcmd, APIs)

WebSphere
App Server

WebSphere
App Server

Batch
Container

WebSphere
App Server

Batch
Container

Job Logs

Job Logs

Scheduler

public getJobLog(String jobid) {

_scheduler.getJobLog(jobid);

}

152© 2008 IBM Corporation

Job Logs in v6.1 …

[10/13/06 9:01 AM EST] Begin Job GridUtility-Test:GridUtility-Test:11
[10/13/06 9:01 AM EST] <?xml version="1.0" encoding="UTF-8" ?>
[10/13/06 9:01 AM EST] <job name="GridUtility-Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
[10/13/06 9:01 AM EST] <job-step name="Step1">
[10/13/06 9:01 AM EST] <env-entries>
[10/13/06 9:01 AM EST] <!-- env-var name="PATH" value="${PATH}" -->
[10/13/06 9:01 AM EST] <env-var name="PATH" value="C:\\windows;C:\\java\\jre\\bin"/>
[10/13/06 9:01 AM EST] <!-- env-var name="CLASSPATH" value="${CLASSPATH}" -->
[10/13/06 9:01 AM EST] <env-var name="CLASSPATH" value="C:\\windows"/>
[10/13/06 9:01 AM EST] </env-entries>
[10/13/06 9:01 AM EST] <exec executable="java" >
[10/13/06 9:01 AM EST] <arg line="tryit"/>
[10/13/06 9:01 AM EST] </exec>
[10/13/06 9:01 AM EST] </job-step>
[10/13/06 9:01 AM EST] </job>
[10/13/06 9:01 AM EST] Begin Step Step1
[10/13/06 9:02 AM EST] Begin: STDOUT
[10/13/06 9:02 AM EST] Starting test program
[10/13/06 9:02 AM EST] Generating output ...
[10/13/06 9:02 AM EST] Test program complete
[10/13/06 9:02 AM EST] Goodbye
[10/13/06 9:02 AM EST] End: STDOUT
[10/13/06 9:02 AM EST] Begin: STDERR
[10/13/06 9:02 AM EST] End: STDERR
[10/13/06 9:02 AM EST] End Step Step1. RC=0
[10/13/06 9:02 AM EST] End Job GridUtility-Test:GridUtility-Test:11

[10/13/06 9:01 AM EST] Begin Job GridUtility-Test:GridUtility-Test:11
[10/13/06 9:01 AM EST] <?xml version="1.0" encoding="UTF-8" ?>
[10/13/06 9:01 AM EST] <job name="GridUtility-Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
[10/13/06 9:01 AM EST] <job-step name="Step1">
[10/13/06 9:01 AM EST] <env-entries>
[10/13/06 9:01 AM EST] <!-- env-var name="PATH" value="${PATH}" -->
[10/13/06 9:01 AM EST] <env-var name="PATH" value="C:\\windows;C:\\java\\jre\\bin"/>
[10/13/06 9:01 AM EST] <!-- env-var name="CLASSPATH" value="${CLASSPATH}" -->
[10/13/06 9:01 AM EST] <env-var name="CLASSPATH" value="C:\\windows"/>
[10/13/06 9:01 AM EST] </env-entries>
[10/13/06 9:01 AM EST] <exec executable="java" >
[10/13/06 9:01 AM EST] <arg line="tryit"/>
[10/13/06 9:01 AM EST] </exec>
[10/13/06 9:01 AM EST] </job-step>
[10/13/06 9:01 AM EST] </job>
[10/13/06 9:01 AM EST] Begin Step Step1
[10/13/06 9:02 AM EST] Begin: STDOUT
[10/13/06 9:02 AM EST] Starting test program
[10/13/06 9:02 AM EST] Generating output ...
[10/13/06 9:02 AM EST] Test program complete
[10/13/06 9:02 AM EST] Goodbye
[10/13/06 9:02 AM EST] End: STDOUT
[10/13/06 9:02 AM EST] Begin: STDERR
[10/13/06 9:02 AM EST] End: STDERR
[10/13/06 9:02 AM EST] End Step Step1. RC=0
[10/13/06 9:02 AM EST] End Job GridUtility-Test:GridUtility-Test:11

[10/13/06 9:01 AM EST] Begin Job GridUtility-Test:GridUtility-Test:11
[10/13/06 9:01 AM EST] <?xml version="1.0" encoding="UTF-8" ?>
[10/13/06 9:01 AM EST] <job name="GridUtility-Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
[10/13/06 9:01 AM EST] <job-step name="Step1">
[10/13/06 9:01 AM EST] <env-entries>
[10/13/06 9:01 AM EST] <!-- env-var name="PATH" value="${PATH}" -->
[10/13/06 9:01 AM EST] <env-var name="PATH" value="C:\\windows;C:\\java\\jre\\bin"/>
[10/13/06 9:01 AM EST] <!-- env-var name="CLASSPATH" value="${CLASSPATH}" -->
[10/13/06 9:01 AM EST] <env-var name="CLASSPATH" value="C:\\windows"/>
[10/13/06 9:01 AM EST] </env-entries>
[10/13/06 9:01 AM EST] <exec executable="java" >
[10/13/06 9:01 AM EST] <arg line="tryit"/>
[10/13/06 9:01 AM EST] </exec>
[10/13/06 9:01 AM EST] </job-step>
[10/13/06 9:01 AM EST] </job>
[10/13/06 9:01 AM EST] Begin Step Step1
[10/13/06 9:02 AM EST] Begin: STDOUT
[10/13/06 9:02 AM EST] Starting test program
[10/13/06 9:02 AM EST] Generating output ...
[10/13/06 9:02 AM EST] Test program complete
[10/13/06 9:02 AM EST] Goodbye
[10/13/06 9:02 AM EST] End: STDOUT
[10/13/06 9:02 AM EST] Begin: STDERR
[10/13/06 9:02 AM EST] End: STDERR
[10/13/06 9:02 AM EST] End Step Step1. RC=0
[10/13/06 9:02 AM EST] End Job GridUtility-Test:GridUtility-Test:11

[10/13/06 9:01 AM EST] Begin Job GridUtility-Test:GridUtility-Test:11
[10/13/06 9:01 AM EST] <?xml version="1.0" encoding="UTF-8" ?>
[10/13/06 9:01 AM EST] <job name="GridUtility-Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
[10/13/06 9:01 AM EST] <job-step name="Step1">
[10/13/06 9:01 AM EST] <env-entries>
[10/13/06 9:01 AM EST] <!-- env-var name="PATH" value="${PATH}" -->
[10/13/06 9:01 AM EST] <env-var name="PATH" value="C:\\windows;C:\\java\\jre\\bin"/>
[10/13/06 9:01 AM EST] <!-- env-var name="CLASSPATH" value="${CLASSPATH}" -->
[10/13/06 9:01 AM EST] <env-var name="CLASSPATH" value="C:\\windows"/>
[10/13/06 9:01 AM EST] </env-entries>
[10/13/06 9:01 AM EST] <exec executable="java" >
[10/13/06 9:01 AM EST] <arg line="tryit"/>
[10/13/06 9:01 AM EST] </exec>
[10/13/06 9:01 AM EST] </job-step>
[10/13/06 9:01 AM EST] </job>
[10/13/06 9:01 AM EST] Begin Step Step1
[10/13/06 9:02 AM EST] Begin: STDOUT
[10/13/06 9:02 AM EST] Starting test program
[10/13/06 9:02 AM EST] Generating output ...
[10/13/06 9:02 AM EST] Test program complete
[10/13/06 9:02 AM EST] Goodbye
[10/13/06 9:02 AM EST] End: STDOUT
[10/13/06 9:02 AM EST] Begin: STDERR
[10/13/06 9:02 AM EST] End: STDERR
[10/13/06 9:02 AM EST] End Step Step1. RC=0
[10/13/06 9:02 AM EST] End Job GridUtility-Test:GridUtility-Test:11

[10/13/06 9:01 AM EST] Begin Job GridUtility-Test:GridUtility-Test:11
[10/13/06 9:01 AM EST] <?xml version="1.0" encoding="UTF-8" ?>
[10/13/06 9:01 AM EST] <job name="GridUtility-Test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
[10/13/06 9:01 AM EST] <job-step name="Step1">
[10/13/06 9:01 AM EST] <env-entries>
[10/13/06 9:01 AM EST] <!-- env-var name="PATH" value="${PATH}" -->
[10/13/06 9:01 AM EST] <env-var name="PATH" value="C:\\windows;C:\\java\\jre\\bin"/>
[10/13/06 9:01 AM EST] <!-- env-var name="CLASSPATH" value="${CLASSPATH}" -->
[10/13/06 9:01 AM EST] <env-var name="CLASSPATH" value="C:\\windows"/>
[10/13/06 9:01 AM EST] </env-entries>
[10/13/06 9:01 AM EST] <exec executable="java" >
[10/13/06 9:01 AM EST] <arg line="tryit"/>
[10/13/06 9:01 AM EST] </exec>
[10/13/06 9:01 AM EST] </job-step>
[10/13/06 9:01 AM EST] </job>
[10/13/06 9:01 AM EST] Begin Step Step1
[10/13/06 9:02 AM EST] Begin: STDOUT
[10/13/06 9:02 AM EST] Starting test program
[10/13/06 9:02 AM EST] Generating output ...
[10/13/06 9:02 AM EST] Test program complete
[10/13/06 9:02 AM EST] Goodbye
[10/13/06 9:02 AM EST] End: STDOUT
[10/13/06 9:02 AM EST] Begin: STDERR
[10/13/06 9:02 AM EST] End: STDERR
[10/13/06 9:02 AM EST] End Step Step1. RC=0
[10/13/06 9:02 AM EST] End Job GridUtility-Test:GridUtility-Test:11

153© 2008 IBM Corporation

Dispatching Batch Job

GEE

GEE is a J2EE application that runs within a
WebSphere z/OS Application Server Servant Region.
Therefore servant-region behavior is applied to batch
jobs- if workload and service policies deem it
necessary, new servants can be dynamically started
or stopped.

In WebSphere XD 6.1, new SPI’s are introduced that
allow more control over how a batch job is dispatched:
This can be used to:

- Override the chosen GEE target
- force some authorization to take place first
- Assign a specific job class (which maps to

some zWLM service policy
- force the job to be scheduled for execution at a

later time.
- completely pluggable and customizable

JS

WAS z/OS

WAS z/OS GEE

WAS z/OS

GEE

WAS z/OS

JS, using zWLM,
evaluates with GEE
to dispatch the job to.

154© 2008 IBM Corporation

Executing Batch Jobs

The GEE executes the batch application with the
properties specified in the xJCL that was submitted.
During execution checkpoint data, such as current
location within the batch data streams, is persisted to
the GEE table for restartability.

The JS listens for execution updates- Job Failed, Job
Executed Successfully, etc and updates the JS table
accordingly.

Note that in XD 6.1 the JS will provide WS-
Notifications so non XD components can register as
listeners for status on a particular job. In addition there
are updates to the manner in which job logs are
managed.

JS

WAS z/OS

JS Table

Send Status
Notifications to JS

WAS z/OS

GEE Table

GEE

Batch App

GEE persists
checkpoint data to its
tables based on the
checkpoint algorithm
defined.

JS updates its
tables with the
execution status of
the job

155© 2008 IBM Corporation

Job Classes in v6.1
• Administrative control over resource consumption

• Defined through Grid Scheduler configuration in WAS admin console

• Named policies that control

– maximum execution time

– maximum number of concurrent jobs per endpoint (logical batch container)

– maximum job log size

– job log retention (age, space)

– execution record retention (age, number)

• Assigned via class= keyword in xJCL

• Can be overridden by JobClass SPI

156© 2008 IBM Corporation

Classification Rules in v6.1

• Administrative rules for service policy assignment

• Defined through Grid Scheduler configuration in WAS admin console

• Rules are cell-wide ordered list

• Evaluated in specified order

• First match assigns service policy

• Rules are boolean expression formed using following operands:
– job name

– job class

– submitter identity, group

– application type (j2ee, utility)

– time, date

– platform (e.g. z/OS)

157© 2008 IBM Corporation

Usage Accounting in v6.1

• Two options

– Stored in scheduler database. With MBean interface to do CSV format
export to file (importable to Tivoli ITUAM)

– New SMF Record 120 Subtype

– May choose either or both on z/OS

• Data gathered per job

– job name

– job id

– time/Date (start/end)

– submitter

– accounting number

– cell/node/server names

– CPU time

158© 2008 IBM Corporation

xJCL Substitution Properties in v6.1

• Ant-style substitution - ${<property-name>}

• Optional default settings

<substitution-props>
<prop name="wsbatch.count" value="5" />

</substitution-props>

• Substitution property values specifiable on all job submission
interfaces:

– job management console

• submission

• scheduling

– lrcmd

– scheduler APIs

159© 2008 IBM Corporation

Compute Grid z/OS Integration

• SMF accounting records for J2EE batch jobs
– SMF 120 (J2EE) records tailored to jobs

– Record includes: job id, user, CPU time

• Dynamic Servants for J2EE batch job dispatch
– XD v6.0.1 uses pre-started servants (min=max, round-robin dispatch)

– New support will exploit WLM to start new servants to execute J2EE batch
jobs on demand

• Service policy classification and delegation
– New classification critieria, including: jobname, submitter, jobclass

– leverage XD classification to select z/OS service class by propagating
transaction class from Grid Scheduler to z/OS app server for job
registration with WLM

160© 2008 IBM Corporation

LPAR 3

Compute Grid

┐┌
└┘

controller

servantsLPAR 1

┐┌
└┘

controller

servantsLPAR 2

Grid Scheduler

WLM Stats

WLM Stats

WLM Stats

• workload balancing leverages
WLM stats

submit

• XD to WLM goal mapping

TCLASS

WLM
Service
Policy

WLM
Service
Policy

controller

servants

WLM Stats

┐┌
└┘

WLM
Service
Policy

• Dynamic servants for vertical
On-Demand scaling

• Optional horizontal On-Demand
scaling with WXD Dynamic Operations

z/OS Integration …

161© 2008 IBM Corporation

Compute Grid SPIs
• ScheduleTrigger

– custom rule for submitting a scheduled
job

– allows for submission conditions
beyond time/date

• JobClassAssigner

– custom logic for validating job class
usage

– allows for override of user-specified
job class

• DispatchConfirmer

– custom logic for confirming XD
dispatch decision

– multiple actions possible:

• cancel job

• re-queue job for later dispatch

• specify target endpoint

• JobLogInterceptor

– allows for modification of job
log content

• Edit

• Delete

• System log vs job log only

– Can replace file-based logs
with alternative destination

• JobNotificationListener

– Receives notifications for key
job lifecycle events:

– job start/end

– step start/end

162© 2008 IBM Corporation

Compute Grid SPIs …
Schedule
Manager

Scheduler
Endpoint

Job
Repository

Schedule Entry
Job name= J1
Submitter= U1
Trigger=com.xyz.Trigger

ScheduleTrigger
JobClassAssigner DispatchConfirmer

job job

JobLogWriter

163© 2008 IBM Corporation

Appendix C – Some Compute Grid Use-cases

164© 2008 IBM Corporation

Overview

�XD Compute Grid Use-cases

�Batch Modernization

�Highly parallel batch jobs

�Dynamic OLTP and Batch infrastructure

�Batch as a service

�Replacing existing java batch frameworks

�Sharing business logic across OLTP and Batch

165© 2008 IBM Corporation

Batch Modernization Use-case

• Motivations for modernization
– IT departments are challenged to absorb tremendous growth rates while

executing with a constant IT budget

• Primary strategic goals for batch modernization

1. No loss of performance.
Can be achieved with: JIT compilers in Java, parallelization, caching,
etc.

2. No loss of qualities of service such as job restart, availability, security

3. Reduced operations costs. Primarily delivered through zAAP
processors

• Secondary strategic goals

1. A more agile runtime infrastructure that can better tolerate future
changes

2. Common development, testing, deployment, security, and production
management processes and tooling across OLTP and Batch

166© 2008 IBM Corporation

JCL

JES

CobolCobolCobol

Traditional
Cobol Batch

CobolCobolJava

XD
Compute Grid

CobolCobol

DB2 z/OS

Tivoli
Workload
Scheduler

Op. Plan

System Z with z/OS
Today: Executing tradition batch with Cobol

Phase 1: Implement new business logic in java with XD Compute Grid

Phase 2: Share existing Cobol modules across both batch domains

Phase 3: Incrementally migrate remaining Cobol Modules to Java with XD Compute Grid

Completion: All Cobol batch modules are replaced with java and are running in XD Compute Grid

Batch Modernization with XD Compute Grid

CobolCobolCobol

167© 2008 IBM Corporation

Overview

�XD Compute Grid Use-cases

�Batch Modernization

�Highly parallel batch jobs

�Dynamic OLTP and Batch infrastructure

�Batch as a service

�Replacing existing java batch frameworks

�Sharing business logic across OLTP and Batch

168© 2008 IBM Corporation

CR SR

LRS

CR

SR

SR

SR

LREE

CR

SR

SR

SR

LREE

CR

SR

SR

SR

LREE

WSGRID

TWS

Control-M

External
Scheduler

CRSR

ODR

Client

Client

Client

Client

Client

Dynamic OLTP and Enterprise Grid Runtime

Scaling Up with zWLM
and the Controller-
Servant Architecture
of WAS z/OS

JES

SR

SR

SR

Sliver Priority

Gold Priority

Bronze Priority

CPU’s

Batch Workloads OLTP Workloads

169© 2008 IBM Corporation

Overview

�XD Compute Grid Use-cases

�Batch Modernization

�Highly parallel batch jobs

�Dynamic OLTP and Batch infrastructure

�Batch as a service

�Replacing existing java batch frameworks

�Sharing business logic across OLTP and Batch

170© 2008 IBM Corporation

Batch as a service

Bank 1

Bank 2

Bank 3

1. Smaller banks
submit job requests
to the datacenter

Data Center

XD CG

zWLM, RMF

Usage Billing App

2. Datacenter executes
workloads for each bank,
keep tracking of exactly how
many resources each bank’s
jobs used by leveraging the
usage accounting facilities of
zWLM, RMF, and other
system facilities of z/OS

bill 3. At the end of the month, the
datacenter sends bills for
services rendered, based on the
exact CPU seconds consumed,
to each bank.

171© 2008 IBM Corporation

Overview

�XD Compute Grid Use-cases

�Batch Modernization

�Highly parallel batch jobs

�Dynamic OLTP and Batch infrastructure

�Batch as a service

�Replacing existing java batch frameworks

�Sharing business logic across OLTP and Batch

172© 2008 IBM Corporation

Aggregate
Data from

Native datasets

Dataset 1

Dataset 2

Dataset .. N

COBOL
DataWriter

App
Update datasets
With new data

COBOL
DataReader

App
Convert data

To XML

WebSphere MQ

MDB

WebSphere z/OS

DB2Core Business Logic Bean
(Calculate and update account records)

MQ-PutMQ-Get

MQ-GetMQ-Put

Global Transaction

IMS DB

An Example: Java Batch Pattern (z/OS) - Good
The home-grown solution required many components to be integrated together…

173© 2008 IBM Corporation

Output
Dataset

WAS + XD z/OS

Batch Bean

Core Business
Logic Bean(s)

Input
Dataset

TX-REQUIRED

(Transaction is committed after
processing N records)

DB2

COBOL
DataWriter

App

IMS Database
(contains client account records)

COBOL
DataReader

App

(Input Batch Data Stream

using jZoS, converts EBCDIC

data to Java Objects)

(Output Batch Data Stream

using jZoS, converts Java
Objects to EBCDIC data)

(Dataset is

populated with
all records to

be processed

before XD batch

job is started)

(Dataset is

populated with
all records that

have been

processed by XD

Batch before the

DataWriter starts
accessing)

Submit xJCL

An Example: Java Batch Pattern (z/OS) - Better
WebSphere XD streamlines the Java-centric batch processing on z/OS…

174© 2008 IBM Corporation

Overview

�XD Compute Grid Use-cases

�Batch Modernization

�Highly parallel batch jobs

�Dynamic OLTP and Batch infrastructure

�Batch as a service

�Replacing existing java batch frameworks

�Sharing business logic across OLTP and
Batch

175© 2008 IBM Corporation

Business
Logic

BatchWeb
Service

EJB

IIOP

OLTP

XD Long Running
Scheduler

WebSphere
z/OS

JDBC

JCA

…

DB2

CICS

Etc…

HTTP

Running Mixed Workloads- OLTP and Batch

Tivoli Workload
Scheduler

176© 2008 IBM Corporation

XD Compute Grid Value Proposition

– Delivers a zAAP-eligible enterprise java batch execution environment built on WebSphere
for z/OS

– Enables the incremental migration of COBOL to Java thereby reducing the risks
associated with a batch modernization project

– Integrates with existing enterprise batch schedulers such as TWS, CA7, Control-M, Zeke
to help deliver a robust, cost-effective, WebSphere-based batch execution environment

– Enables new execution patterns including: Dynamic OLTP and Batch runtime
environment built on WebSphere for z/OS; highly parallel batch jobs; and many others.

– Integrates with the overall SOA strategy of reuse by enabling one to share business logic
across both the OLTP and Batch worlds

– Delivers high-performance batch processing by leveraging the System-z, z/OS, and WAS
z/OS performance optimizations gained when executing within close proximity of the
data.

177© 2008 IBM Corporation

Appendix D-
Approaches for Batch Modernization

178© 2008 IBM Corporation

Approaches

• Enablement
– SOA wrappers over existing jobs (submit, monitor, output)

179© 2008 IBM Corporation

SOA Batch Adapter (Enablement)

• Service Interface for Batch Submission, Monitoring, Output

Service

Batch Application

Batch
Scheduler

(JES)

Batch Initiator

Status
Listener

180© 2008 IBM Corporation

Approaches

• Enablement
– SOA wrappers over existing jobs (submit, monitor, output)

• Enrichment
– Infusion of new technology into existing jobs

(e.g. JZOS, service composition)

181© 2008 IBM Corporation

JZOS – Java Batch for z/OS (Enrichment)

• Java as a batch language

• Launcher & toolkit

• z/OS only

• J2SE environment

• Free – include in z/OS JDK

• Costly execution

//AJOB CLASS=C
//STEP1 PGM=JZOS,

PARM=‘com.xyz.Main’
//INPUT DD DSN=…
//OUTPUT DD DSN=…

JVM

182© 2008 IBM Corporation

Approaches

• Enablement
– SOA wrappers over existing jobs (submit, monitor, output)

• Enrichment
– Infusion of new technology into existing jobs

(e.g. JZOS, service composition)

• Evolution
– Re-architecting/re-targeting traditional batch to execute at lower cost in

a more agile environment

183© 2008 IBM Corporation

Message
Driven
Bean

msg queuejob definition

“Maverick” Batch Environment (Evolution)

• Roll Your Own (RYO)
• Seems easy – even tempting ☺
• Message-driven Beans or
• CommonJ Work Objects or …

But …

• No job definition language
• No batch programming model
• No checkpoint/restart
• No batch development tools
• No operational commands
• No OLTP/batch interleave
• No logging
• No job usage accounting
• No monitoring
• No job console
• No enterprise scheduler integration

…
CommonJ

Work

job definition
Web

Service

create

184© 2008 IBM Corporation

Agility
(more is better)

C
o
s
t -

5
 yr T

C
O

*
(lo

w
 is

 b
e
tte

r)

Enablement

Enrichment

Evolution

less more

high

low

How do Approaches Compare?

* hypothetical

But how
can we

drive down
the cost?

185© 2008 IBM Corporation

Satisfying the Requirements: Why Compute Grid?

• Most complete Java batch solution available!

• Easy, modern batch programming model & tools
– POJO programming, light-weight Eclipse-based tooling

• Modern batch processing system (infrastructure)
– Job entry scheduler, operational controls, container managed

checkpoint/restart, workload management, scalability/availability,

– Job console, enterprise scheduler integration (e.g. TWS, Control-M, etc)

– Highly Parallel and Extreme Batch support.

• Practices and Proof
– IBM Services fully enabled to teach/assist

– Proven track record with production deployments

186© 2008 IBM Corporation

Origins of WebSphere XD Compute Grid

IBM Experience w/ Batch
& Enterprise Application

Infrastructures

Direct Customer influence:
sharing experiences with
Batch, z/OS Operations,
Middleware Management

High Performance
Compute (HPC

Extreme Transaction
Processing (XTP) Grid Computing

Utility Computing

WebSphere XD
Development

Team

WebSphere XD Compute Grid

Dispatcher/Worker,
Divide & Conquer

Proximity of Data,
N-Tier Caching,
Affinity Routing Operational

Management

Resource
Management &
Virtualization

187© 2008 IBM Corporation

Non-WAS Node

XDAgent

XD
Config

JobLogs

Non-WAS Node

XDAgent

XD
Config

JobLogs

Non-WAS Node

XDAgent

XD
Config

JobLogs

WAS AppServer

Job
Container

WAS
Config

JobLogs

WAS Node

Batch
DB

Application
DB

J2EE

WAS AppServer

Job
Container

WAS
Config

JobLogs

WAS Node

Batch
DB

Application
DB

J2EE

WSGrid
Client

External
Scheduler

WAS AppServer

Job
Scheduler

WAS
Config

JobLogs

WAS Node

Scheduler
DB

Scalable
job scheduler

Integration with external
schedulers

public submit(Job j) {

_sched.submit(j);

}

Submission, Control,
Monitoring interfaces

(web service and EJB)

JMS
Queues

Job
Flow

Metric
Flow

Native
job containers

* WebSphere Virtual Enterprise

Scalable
job endpoint

Application
Placement
Controller*

Policy-based
performance
management

OnDemand
Router

OLTP
Flow

Job container
virtualization

Add Value
by Deploying

XD Virtual
Enterprise

xJCL
(jobs)

Anatomy of Compute Grid Job Processing Environment

188© 2008 IBM Corporation

Agility
(more is better)

C
o
s
t -

5
 yr T

C
O

*
(lo

w
 is

 b
e
tte

r)

Enablement

Enrichment

Evolution (maverick)

less more

high

low

How do Approaches Compare?

* hypothetical

But how
can we

drive down
the cost?

Evolution (w/Compute Grid)

Slide 189

Customer Experience’s with

Batch Modernization

� The History

� The Business Case

� The Project Approach

� The Results

� Next Steps

Slide 190

IBM and Swiss Re:

A Mainframe Success Story

� One of the earliest buyers of the IBM 650 (1955)

� Adoption of DB2 when product was in first beta release
(1986)

� One of the earliest System z10 adopters (2/2008)

� Early adopter of WebSphere XD for z/OS

Slide 191

Swiss Re’s Batch Environment

� Based on Cobol and DB2

� Managed by Tivoli Workload Scheduler (TWS)

� ~21’000 Cobol modules

� ~40’000 batch jobs a day

� Reuse of Cobol (batch) modules for online (CICS)
processing, accessed by non-mainframe Websphere

� Minor workload has been moved to a home-grown
“Java for Batch” environment

Slide 192

Swiss Re’s Business Motivation for

Batch Modernization

� Due to several acquisitions, general growth in the
reinsurance business and globalization of the
application landscape, workload is expected to grow
dramatically

� Budget has to remain flat

� Over 80 000 MIPS expected in 2011
Required MIPS

0

5'000

10'000

15'000

20'000

25'000

30'000

35'000

40'000

45'000

2006 2007 2008 2009 2010 2011

Year

M
IP

S

Required MIPS

MIPS
requirement
per system

Slide 193

Swiss Re’s IT

Motivation/Requirements

for Batch Modernization I

� No big bang approach, co-existence of new solution with
existing Cobol based solution

� Use of powerful, reliable, scalable z/OS environment/platform
(scheduling, batch processing, DB2)

� Increase development speed and time to market

� Decrease of maintenance & development costs

� Manage risks & costs (shortage of COBOL skills)

� Modernize software development (including a “smooth
migration path”)

� Apply SOA principles to build an agile application
infrastructure

Slide 194

Swiss Re’s IT

Motivation/Requirements

for Batch Modernization II

� Common business services should be shared across OLTP
and batch applications

� Performance of compute grid better or equal to COBOL
batch

� Same look and feel for operational staff

Slide 195

Solution

� To keep the budget flat, we have to use zIIP and zAAP

� To use the new processor type efficiently, we have to
change our application language from COBOL to JAVA

� Because most of the growing workload is batch, we also
have to use the long running scheduler and execution
environment from WAS/XD

� Smooth integration into z/OS infrastructure like TWS,
Output etc…

Slide 196

Key Success Factor:

Cooperation Model Between

Swiss Re and IBM

� True partnership between Swiss Re and IBM to
implement next-generation batch processing runtime on
z/OS

� Strong collaboration with the: WebSphere XD
development team, IBM Software Services (ISSW), and
Tivoli Workload Scheduler development team

� The close relationship – architects on-site, constant
communication with the lab - was key to success as it
allowed fast response times from both sides

� Important product designs were influenced by Swiss Re
and subsequently delivered by IBM

Slide 197

Next Steps I

� Leverage WebSphere XD Compute Grid’s Parallel Job
Manager for highly parallel batch jobs

� Performance features for pre-fetching data

� Code generation and tooling for application
development

� Integrated batch monitoring infrastructure

� Begin incremental COBOL to Java migration

Slide 198

Next Steps II

� Development tooling for COBOL – Java integration

� Technical features from IBM to facilitate COBOL – Java co-
existence

- Memory management model
- Performance implications of cross-language calls
- Transactional contexts and 2-phase-commit

� Tighter integration between Tivoli Workload Scheduler and
WebSphere XD Compute Grid

� Selecting right database access technologies for different
execution paradigms (OLTP, Batch):
SQLJ, Hibernate, OpenJPA, Pure Query, etc

� Java and DB performance with EBCDIC, Unicode, ASCII

� Integrating transformation technologies

