

Thriving in Uncertain Times

Smart Ways to Reduce Costs and Achieve a Competitive Edge

Steve Mills
IBM Senior VP and Group Executive
IBM Software

IT Organizations are Challenged by a Set of Operational Issues

Challenges

Application Modernization and Deployment: Costly and Slow

Business Resiliency and Security

Global 24x7 Demand for Information Services: *Always On, Always Secure*

Energy Consumption and Cost

Rampant Server Proliferation:

Costly to Own, Manage and Power


Smarter Business Infrastructure

Supporting Multiple Workload Approaches

Transaction/data Processing

Scale

Flexible workload management
Fast transaction, I/O speeds
High quality of service
Security

Basic Web & Collaboration

Scale

High throughput
Varying quality of service
Varying levels of security

Business Applications (including web)

Scale

High quality of service High memory requirements

Flexible infrastructure

Security

Business Analytics

Scale

Compute intensive

High I/O bandwidth

High memory requirements

Varying levels of security

Static Simulation / Modelling

Compute intensive
High memory requirements
Lower QoS

Matching best platform for workload is crucial

Workload Fundamentals

- Major workload variables include:
 - Instruction set requirements
 - CPU intensity
 - Application working set and memory requirements
 - I/O intensity

- Power or Intel
- Significant transaction load and high I/O and large amounts of accessible data optimizes around systems with large numbers of dedicated I/O processors and optimized caching
 - Z or Power

but businesses will often fragment applications and data to accommodate sub optimal system characteristics on platform preferences

- Lightweight applications / limited transaction load / modest data
 - Z or Power or Intel
 - Easiest workloads to consolidate on the fewest number of boxes
 - Optimizes around high level of system partitioning and virtualization

TCA and TCO Fundamentals

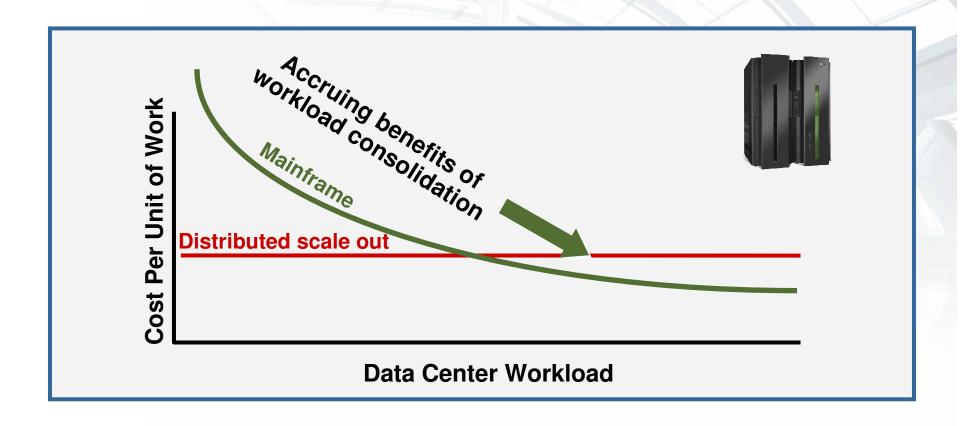
- Server cost is the smallest element for running typical commercial workloads
 - Over a 3, 4, or 5 year life, labor cost and energy cost are both higher than server cost
- The greater the number of individual boxes, the greater the cost
 - Each box must be managed set up / operation / security / upgrade, etc.
 - Each box has to be fed by data
 - Each box requires telecommunications connections routers / switches
 - Each box requires its cables and the cables of all of the connected boxes
- Scale up versus scale out is no longer a primary issue
 - All systems ... Z, P, Intel ... support scale up and scale out
 - Z and P offer massive scale out inside the box
 - Cost is optimized through reducing the number of elements that surround a server
- Few businesses do granular cost accounting of their per server, per system or per application
 - Costs are often aggregated, then allocated
 - Most companies do not know their true cost of ownership
 - Historical charge back techniques almost always over allocate to large shared systems ... the mainframe

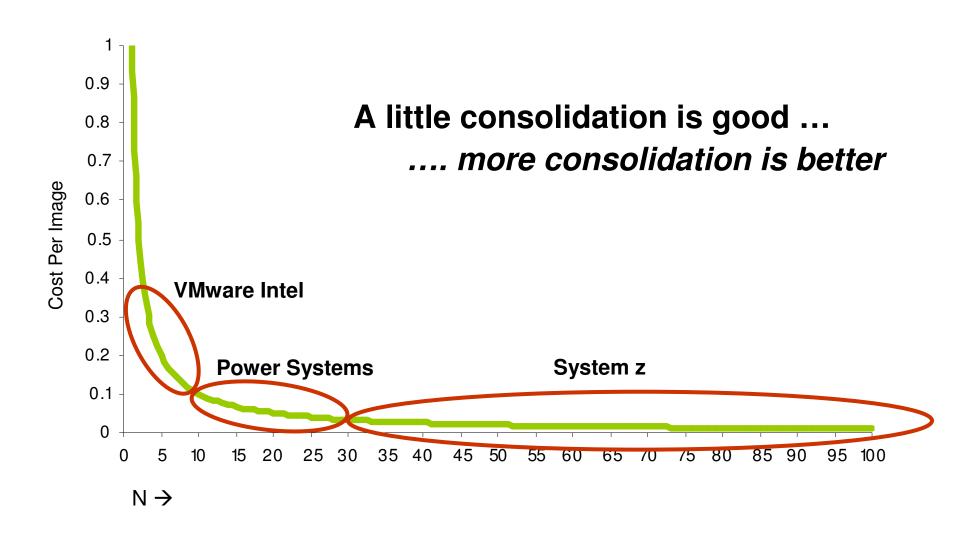
Significant Advantages to Best Fit Optimization

- Light transaction workloads with light I/O
 - 33% lower cost on Intel versus zLinux
- Heavy transaction workloads
 - 62% lower cost on POWER7 versus Intel
- Workloads with heavy I/O
 - 27% lower cost on zLinux versus Intel

 Consolidating each workload to the optimum platform achieves lowest possible total run-time costs

The Value of Mainframe Computing Mainframe Computing Delivers Value for Core Commercial Workloads

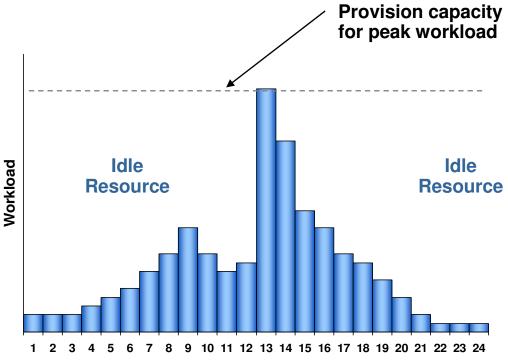

- Designed for high availability and responsiveness
- Maximum throughout per unit cost
- Tight centralized control for
 - Security
 - Stability / Change Management
 - Backup / Recovery
 - Auditability
 - Resource / Cost Management and Accounting
- Simplified and low cost operations and administration


Mainframe Cost per Unit of Work Goes Down

.... as Workload Increases

Observed Consolidation Ratios

Utilization of Distributed Servers and Storage

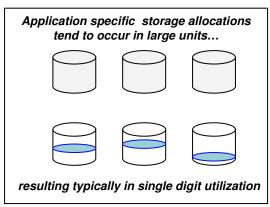

Typical utilization of:

Windows Servers 5-10% UNIX Servers 10-20% System z Servers 85-100%

Server dedicated to one application

The cost of storage is typically three times more in distributed environments

Storage Allocation

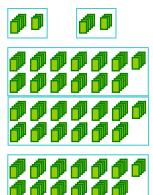

- Application-specific resulting in over-allocations
- Fine grained storage allocation mechanisms characteristic of mainframe storage are uncommon in distributed environments.

Storage Utilization

- -Single digit utilization for distributed environments is not uncommon
- -Storage utilization of 80% + is typical for mainframe

Storage Management

 Data disaster recovery, synchronization, and transfer requirements add complexity and cost


Compare the Processors Needed to Achieve 2,200 Transactions per Second

Online Injector: 1 x HP RX7620



Temenos T24 Servers:

2 x HP RX7620 3 x HP 9000 Superdome

5 processors (3,906 MIPS)

280 processors

(457,762 Performance Units)

\$26.0M TCA (3yr) 1x z10 2097-705

\$18.9M TCA (3yr)

117 Performance Units per MIP

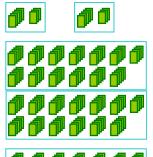
Oracle 10g: 1 x HP 9000 Superdome

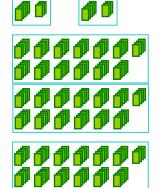
HP Integrity rx7620 - (10U) 1.5GHz 6MB (8ch/8co)

HP 9000 Superdomes - 32W 1GHz 32MB (32ch/64co)

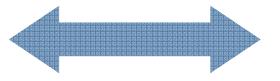
Compare the Processors Needed to Achieve 2,200 Transactions per Second (with Dev/QA)

Online Injector: 2 x HP RX7620





Temenos T24 Servers:


4 x HP RX7620

6 x HP 9000 Superdome

7 processors (4.906 MIPS)

560 processors

(915,524 Performance Units)

\$59.2M TCA (3yr) Processor
Processor
Processor

Processor

1x z10 2097-707

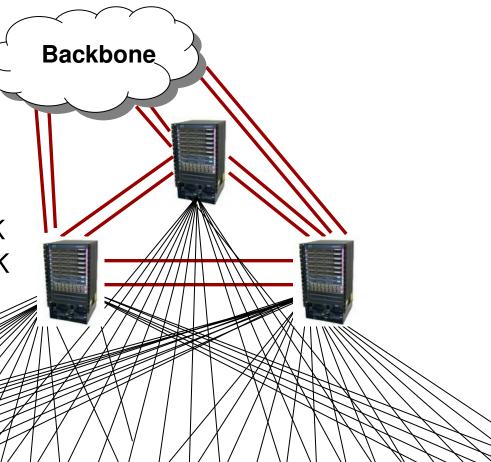
TCS BaNCS and DB2

Oracle 10g: 2 x HP 9000 Superdome

187 Performance Units per MIP

NOTE: Double Distributed Servers, add 1000 MIPS to System z for Dev/QA

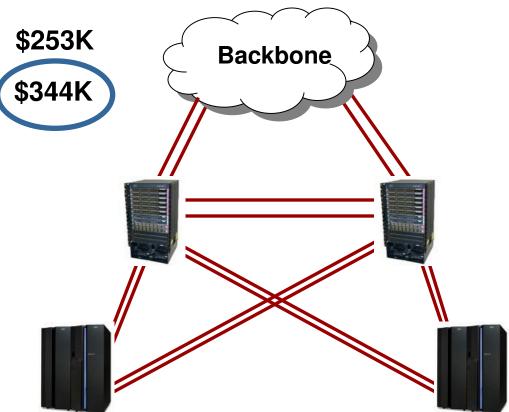
HP Integrity rx7620 - (10U) 1.5GHz 6MB (8ch/8co)


HP 9000 Superdomes - 32W 1GHz 32MB (32ch/64co)

Case Study: Network Costs – Before Consolidation (483 Servers to 2 System z's)

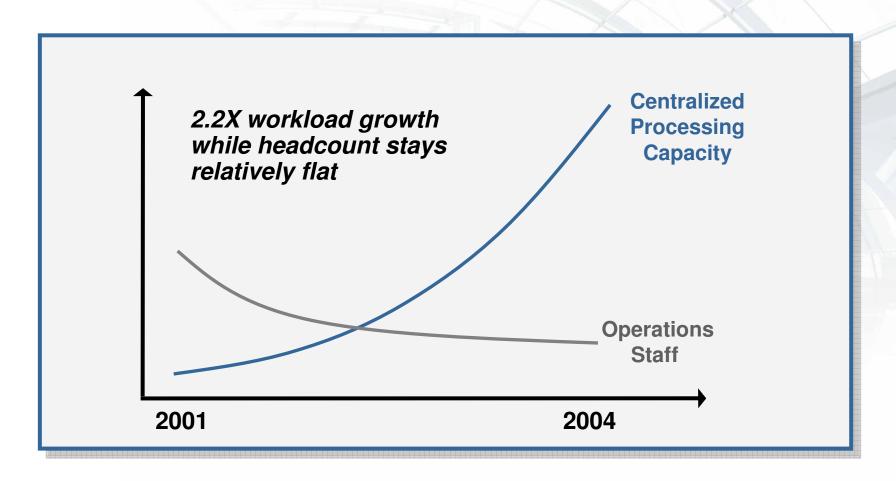
High Utilization Switch Module	14
Low Utilization Switch Module	12
Switch Interconnect Module	6
50 Ft UTP Cable	966
10GB Eth Fiber Cable	12
Switch Chassis	3

Hardware Acquisition \$748K Network Annual Costs \$597K



Case Study: Network Costs – After Consolidation (483 Servers to 2 System z's)

New Hardware Acquisition (reuse some of old network hardware)


"After" Network Annual Cost

Network Annual Cost Savings \$344K

Consolidation and Structured Practices are the Reasons for Improved Productivity

Customer Survey – How Many People to Manage Servers?

# NT Servers	# People	Ratio (s/p)
1123	68	16.5
228	20	14.4
671	51	13.1
700	65	11.5
154	18	8.5
431	61	7.1
1460	304	4.8
293	79	3.7
132	54	2.0

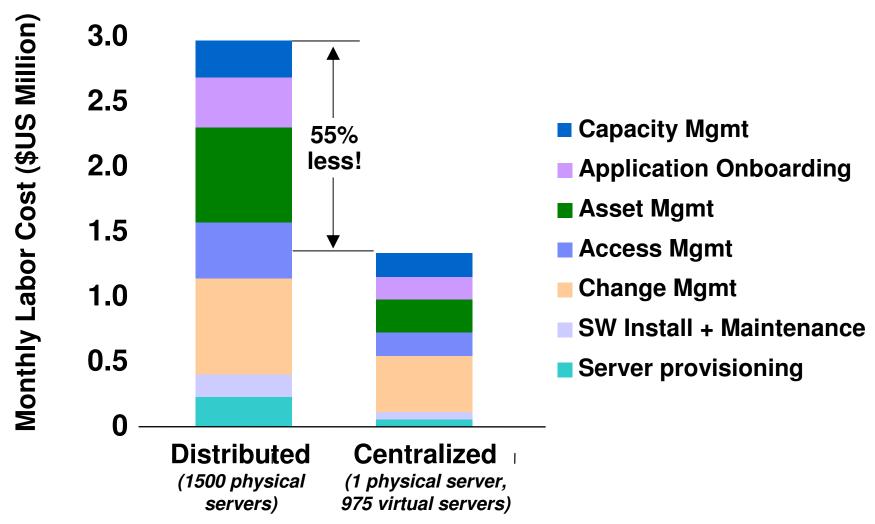
# UNIX Servers	# People	Ratio (s/p)
706	99	7.1
273	52	5.2
69	15	4.6
187	56	3.3
170	51	3.3
85	28	3.0
82	32	2.6
349	134	2.6
117	50	2.3
52	52	1.0

Mainframe administration productivity surveys range 167-625 MIPS per headcount (500 is typical), so...

Understand the Cost Components

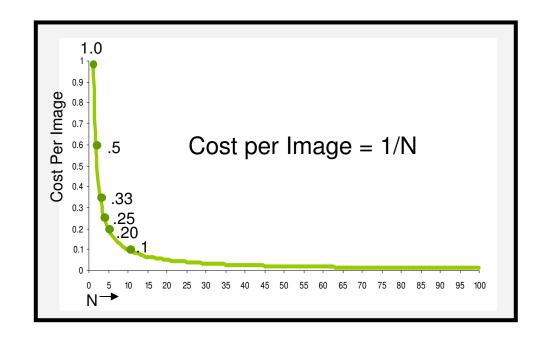
Annual Operations Cost Per Server

(Averaged over 3917 Distributed Servers)


Power	\$731
Floor Space	\$987
Annual Server Maintenance	\$777
Annual connectivity Maintenance	\$213
Annual Disk Maintenance	\$203
Annual Software support	\$10,153
Annual Enterprise Network	\$1,024
Annual Sysadmin	\$20,359
Total Annual Costs	\$34,447

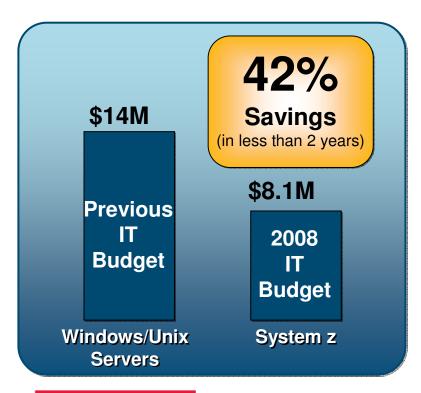
The largest cost component was labor for administration 7.8 servers per headcount @ \$159,800/yr/headcount

Source: IBM internal study


Case Study: Financial Services Firm Estimates Monthly Labor Savings of 55% with Centralized Approach

How Does Consolidation Reduce Cost

- Costs shared by all "N" consolidated images
 - Hardware
 - Software
 - Power
 - Floor Space
 - Local Network Connectivity
- Costs *not* shared by consolidated images
 - Migration cost per image
 - Off premise network cost
 - Labor cost per image


Fixed cost per image

Fixed cost per image, but typically less than unconsolidated labor cost

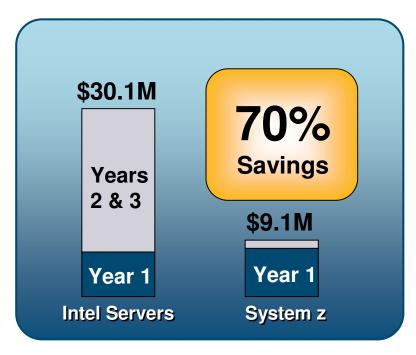
The more workloads you can consolidate, the lower the cost per image

Optimize Deployment of Applications and Data Deploying SAP Database and Application Servers

Top three reasons for savings

Software and hardware licensing costs dramatically reduced

Software and hardware maintenance costs are significantly down


Networking costs plunged, while infrastructure was drastically simplified

ALDOR \$1.8 billion Electric motors manufacturer

Consolidate Applications and Data

Drive Down Costs of Hardware, Software and Management

Top three reasons for savings

Consolidated 292 Oracle servers to one System z

System administration costs 90% less on System z

Subscription and support licenses were over 95% less on System z

A regional North American government organization

Additional benefits

Increased administrator productivity

Faster provisioning speed

Simpler Infrastructure

Optimize Deployment of Applications and Data Deploying a Portal Application

Top three reasons for savings

93% reduction in software licenses: 26,700 down to 1,800

Greatly reduce labor costs due to less administration

Hardware costs are dramatically less

A large technology organization

Additional benefits

A fraction of prior physical network connections

Far fewer ports

Dramatically less cabling

Four Smart Ways to Quickly Reduce Costs

Based on insights from working with hundreds of customers, here are four approaches to reducing costs

- Consolidate applications and data
- Optimize deployment of applications and data
- Reuse applications and data
- Properly account for your costs

Properly Account for Your Costs

"False Economics": Over-allocation of Costs to System z

Mainframes Intel/UNIX Servers **Direct** Costs Hardware. **Correct allocation Correct allocation** software, admin **Shared** Costs Power, facilities, Incorrect. **Correct allocation** network, mamt zero allocated overhead, etc. All of Intel/UNIX incurred costs are moved to mainframe

Getting to "True Economics"

Core problem

- Difficult to assign shared costs to platforms
- Shared costs lumped in with mainframe costs
- Thus, mainframe costs tend to be overstated
- Platform decisions are made that waste cash

Pragmatic quick-return remedy

- Meter basic usage
- Identify largest cost distortions
- Incorporate information in decision making

System z Strategy

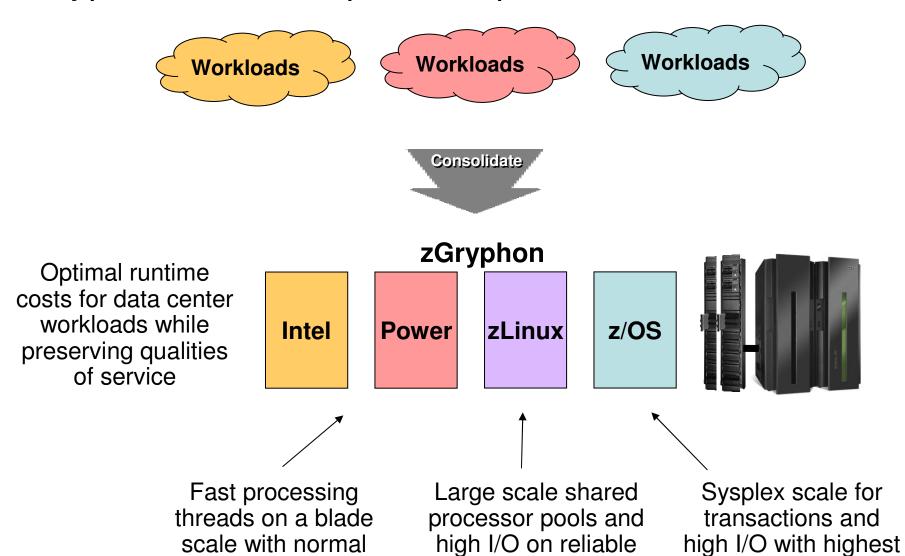
Continue capitalizing on traditional system z strengths

 Transaction processing, batch processing, messaging, quality of service, data serving

Continue extending advantages of System z for new and mixed workloads

- Systematic re-engineering of the software stack for SOA
- Deliver extensive data management services
- Leverage the wave of workload consolidation by extending its lead in virtualization capabilities
- Simplify platform further, providing even greater cost advantages
 - New faces of z
 - More end-to-end management capability from a z center point of control
 - Simplified labor intensive tasks
 - Request-driven provisioning

Continue expanding the System z ecosystem


- Attracting new System z customers and ISV application workloads
- Making System z relevant to the new IT generation

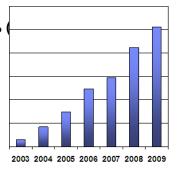
zGryphon Fit for Purpose Proposition

I/O capability

platform

© 2010 IBM Corporation

quality of service



System z – Thriving Environment for Today's and Traditional Applications

System z Linux: fastest growing server platform

Installed Linux MIPS growth of 43% CAGR (2004-2009)

- Shipped IFL MIPS increased 65%
- 70% of the top 100 System z clients are running zLinux
- Linux is 16% of the System z customer install base (MIPS)

Thousands of ISVs investing in System z platform

- Over 3,150 LINUX applications are supported on System z; 550 new in 2009
- Over 1,650 ISVs building applications for System z; 175 new in 2009
- Over 2,100 applications enabled on latest version of z/OS

Worldwide adoption of mainframe curriculum

Students educated:

 Over 50,000 worldwide, 5,000 more students in China by 2010

University adoption:

- Over 600 schools enrolled globally
- 90% growth in 2 years; 2,000% since 2003; continued flow of schools adding curricula
- 50%+ outside of US

Summary

- We are delivering a New Generation of z software and hardware
- SOA and System z together, extend and leverage decades of massive business investments
- The z ecosystem now enables leap frogging to the Next Generation of Applications
- System z is being re-architected for Enterprise Data Serving
- It's all about the economies of scale and how System z capabilities and 'Quality of Service' makes a difference

System z: Free Offer to help you to reduce costs

Cost and risk analysis: mainframe vs. alternatives

- Tailored to individual customer needs
- Project preparation done within IBM
- Minimal client time investment: 1 day of on-site information gathering
- Quick results: Analysis and findings summary complete in 2 weeks
- Final analysis presentation

