

The Gold Standard for Enterprise Computing

Unique Innovations That Make zEnterprise Superior

Today's agenda

9:15am	Unique innovations that make zEnterprise superior
10:15am	Business analytics on the ultimate data platform
11:15am	Advantages of a private cloud on zEnterprise
12:00pm	Lunch
1:00pm	Is your enterprise ready for the mobile revolution?
2:00pm	Mainframe skills - the myths and the reality
3:00pm	The enterprise server for the 21 st century

Fifty years ago, IBM introduced the first mainframe computer...

System 360 – April 7, 1964

It helped put men on the moon...

LEW

us from the day we were born...

It was revolutionary...

It was innovative...

It changed the world!

It changed the way we live and work...

Source: IBM

IBM

System 360 – April 7, 1964

It is still revolutionary...

It is still innovative...

It is still changing the world!

NO!! – IBM continues to invest \$BILLIONS in mainframe technology

5150 – c.1981

LEM

Customer demand and technical leadership have lead to *continuous* re-invention of the mainframe

	Hardware carr	y-forward + continuou	us application comp	atibility
 24-bit addressing (32-bit architecture) 1 or 2 cores 16MB storage 24K core memory With operating system	 24-bit or 31-bit virtual addressing Fully integrated monolithic memory 256 channel architecture Virtual storage Virtual storage MVS, IMS, CICS, and DB2 	 CMOS processors More than 1,000 MIPS Parallel sysplex Enterprise Systems Architecture (ESA) 	 Specialty engines Hardware-assisted compression and encryption Decimal floating point 64-bit superscalar architecture The state of the state o	<list-item><list-item></list-item></list-item>
S/360	S/370	S/390	zSeries	zEnterprise
1964	1970	1990	2000	2010

01. Unique innovations that make zEnterprise superior

The IBM zEnterprise server – ready for the business challenges of today and the future

IBM zEnterprise EC12

IBM zEnterprise BC12

- The most available and secure platform commercially available
- Supports today's newest workloads
 - Data and analytics
 - Cloud
 - Mobile
- A multi-architecture platform for hybrid workloads
- Lowest total cost of ownership for most enterprise workloads

Let's look at some of the key mainframe innovations...

The IBM mainframe was the world's first virtualized server

DEMO: How many virtual machines can zEnterprise create?

Compared to leading distributed hypervisors, z/VM demonstrates better scalability

A unique zEnterprise feature not found on other servers is the I/O subsystem

- Reduces CPU usage by offloading I/O overhead
- Reduces number and cost of software licenses
- Improves I/O performance for batch and high performance OLTP
- Allows introduction of new facilities into existing I/O subsystem

In comparison tests of I/O load capacity, Intel times were significantly slower

Performance comparison test of an I/O intensive workload with identical enterprise class storage. zEC12 had 8 core. Westmere EX server had 40 core @2.4GHz. Each system connected via 4 x 8Gb links to DS8800. zEC12 running against 8 SSD DASD CKD volumes. Intel server running against 8 SSD LUNs FB volumes. Note: Storage limitations came into effect at workload counts greater than 96.

Source: IBM CPO

Batch workloads take advantage of zEnterprise capability to support high I/O capacity

Source: IBM Internal Study. Results may vary based on customer workload profiles/characteristics.

IBM continues to innovate with new PCIe features – Shared Memory Communications (SMC-R) introduced in 2013

Network latency reduced up to 80%*

- 10GbE RDMA over Converged Ethernet (RoCE) Express card
- Helps reduce latency and CPU resource consumption
- Runs over TCP/IP across z/OS systems
- Can be used seamlessly by any z/OS TCP sockets-based without any changes

^{*} Based on internal IBM benchmarks of modeled z/OS TCP sockets-based workloads with request/response traffic patterns using SMC-R vs. TCP/IP. The actual throughput that any user will experience will vary.

Parallel sysplex gives zEnterprise continuous availability with near linear scalability

zEnterprise parallel sysplex clusters provide unmatched processing power and availability

- Clustering driven by specialty engines
 (Coupling Facility)
- Presents a single system image of a z/OS workload
- Potentially 2.5M MIPS per 32-way cluster*

Single System Sysplex

*Equivalent to about 240 of the largest Oracle servers

Cross Connected Servers with internal Coupling Facilities

External Coupling Facility (Can be different class server)

- Enables rolling updates
- Supports continuous access to business services and data – from anywhere, at anytime
- Designed for 99.999% availability

IBM. Ö

zEnterprise's centralized Coupling Facility permits efficient lock and cache management in DB2

A and C have data in local buffer pool without locks

- 1. B registers page to CF and obtains write lock
- 2. B updates data
- 3. B commits update

B caches update in group buffer pool

CF invalidates all cached copies without interrupting processors

Cache and locks are maintained with no inter-node disturbance!

Oracle RAC's distributed lock management design causes overhead

In a cluster with 4 nodes, an update operation may need 6 network connections and two in-memory calls (not shown).

Example based on Oracle's US Patent 7,107,319 B2.

DB2 for z/OS in a parallel sysplex scales efficiently and transparently

- DB2 leverages unique Parallel Sysplex clustering design to achieve near linear scaling
 - No data partitioning required
 - No transaction routing required
 - No cluster awareness required in applications
- Elastic processing capacity
 - Applications are not tied to database partitioning schemes
 - Automatically balances workload across cluster

DB2 for z/OS OLTP result (ITG '03)

IBM. Ö

The only option for Intel-based servers is Oracle RAC

- Oracle RAC's lock and cache system is inefficient by design
 - Scaling RAC requires complex tuning and partitioning
 - Application partition awareness makes it difficult to add or remove nodes
- Published studies demonstrate difficult or poor scalability
 - Dell (shown in chart): Poor scalability despite using InfiniBand for RAC interconnect
 - CERN: Four month team effort to tune RAC, change database, change application
 - Insight Technology: Even a simple application on two node RAC requires complex tuning and partitioning to scale

Oracle RAC characteristics as shown in Dell RAC InfiniBand Study <u>http://www.dell.com/downloads/global/power/ps2q07-20070279-Mahmood.pdf</u> CERN (European Organization for Nuclear Research) <u>http://www.oracleracsig.org/pls/apex/RAC_SIG.download_my_file?p_file=1001900</u> Insight Technology <u>http://www.insight-tec.com/en/mailmagazine/vol136.html</u>

The zEnterprise demonstrates "perfect" workload management

System z demonstrated perfect workload management and very high utilization

Demand curve for 10 high priority workloads running in LPAR 1

- Workloads consume 72% of available CPU resources (28% unused)
- Total throughput: 9.13M
- Average response time: 140ms

Demand curve when 14 low priority workloads are added in LPAR 2

- All but 2% of available CPU resources is used (high=74%, low=24%)
- High priority workload throughput is maintained (9.13M)
- No response time degradation (140ms)

IBM. Ö

Common x86 hypervisor could not manage high priority workloads correctly, and ran at much lower utilization rate

Demand curve for 10 high priority workloads running on a common Intel hypervisor (high share)

- Workloads consume 58% of available CPU resources (42% unused)
- Total throughput: 6.47M
- Average response time: 153ms

Demand curve when 14 low priority workloads are added (low share)

- 22% of available CPU resources is unused (high=42%, low=36%)
- High priority workload throughput drops 31% (4.48M)
- Response time degrades 45% (220ms)

IBM. 🕅

System z virtualization enables mixing of high and low priority workloads without penalty

System z

- Perfect workload management
- Consolidate workloads of different priorities on the same platform
- Full use of available processing resource (high utilization)

Common Intel hypervisor

- Imperfect workload management
- Forces workloads to be segregated on different servers
- More servers are required (low utilization)

zEnterprise easily manages mixed priority workloads and lowers costs

26

01. Unique innovations that make zEnterprise superior

Only zEnterprise offers numerous options for optimizing workloads to reduce costs

- Specific workloads can be moved to custom hardware
- Hybrid workloads supported by multi-architecture platform
- Reduces costs and improves price/performance ratio

IBM. Ö

Workload optimizations are achieved via special I/O cards

zEnterprise Data Compression (zEDC) introduced in 2013

- Compatible with current coprocessor-based compression
- Specifically designed for large amounts of bulk data
- Cost effective reduces CPU overhead, and storage overhead
- Optimizes cross-platform exchanges
 - Compatible with zlib compression an industry standard widely used across all platforms

Up to 4x data compression Up to 118x reduction in CPU

Up to 24x throughput improvement with zlib

IBM DB2 Analytics Accelerator speeds up deep analytics queries

- A workload-optimized, blade-based appliance that runs queries in seconds versus hours
- Integrated with DB2 for z/OS, and transparent to applications
- Drives down the costs of data warehousing and business analytics

zEnterprise extends to support hybrid computing

zEnterprise BladeCenter Extension (zBX) and Unified Resource Manager (URM)

- Industry's first multi-architecture platform
 - zBX includes Power, x86, and accelerator blades
- URM extends System z governance extended to zBX blades
 - Provides resource and workload management across mainframe and blades
- Supports application integration with Microsoft Windows, Linux and AIX
- Greater opportunities for consolidation and simplification
- Consistent business controls across applications and platforms

30

zEnterprise – the most secure commercially available platform

- Highest commercially available EAL ratings
- Multiple encryption options
- Provides full function Public Key certificate authority
- APIs extend encryption services across the enterprise
- State of the art security monitoring

Resource Access Control Facility (RACF) provides security throughout the entire zEnterprise stack

- Tools, reporting, auditing
- Access control to all classes of resources
- Integrated into the operating system
- Provides Enterprise Identity Management
- Supports cryptographic services
- Supports digital certificates

Virtualized System z security is superior to other platforms and augmentation costs less

Security Level Description	IBM System z	x86	Competitive UNIX
Normal corporate	100.00%	18.16%	30.26%
Credit card processing involved	99.00%	11.04%	18.28%
Banking	94.00%	5.26%	10.22%
Healthcare	100.00%	3.24%	8.51%
Research	92.50%	2.86%	4.16%
Defense	85.54%	0.26%	1.86%

Security Natively Covered by Platform

- On System z, most security requirements are standard
- Major security deficiencies exist on distributed platforms

Incremental Cost to Achieve Required Security

 Distributed platforms require considerable additional expense to achieve required security levels

Security Level Description	IBM System z	x86	Competitive UNIX
Normal corporate	0.00%	32.54%	12.37%
Credit card processing involved	2.32%	46.27%	29.53%
Banking	2.07%	51.31%	26.58%
Healthcare	0.00%	67.26%	35.89%
Research	4.28%	91.26%	64.28%
Defense	11.36%	125.41%	102.26%

Source: "Tracked, Hacked and Attacked?"

© 2013, Solitaire Interglobal Ltd. https://www.ibm.com/services/forms/signup.do?source=stg-web&S_PKG=ov14292

zEnterprise's reliability, availability and serviceability are legendary

Reliability

- Comprehensive, multi-layered strategy for reliability and serviceability
- Supports large number of concurrent operations during maintenance
- "Five 9s" availability
- Lowest costs

Downtime seriously effects sales, revenue, customer satisfaction

Business Impact of 10 Minutes Of Downtime

Source: IBM Customer Survey

Revenue Impact of Downtime Per Hour

Figure 1 Cost of downtime by industry segment Average = \$2.7M

Industry/Sector	Revenue/Hour
Energy	\$1,468,798
Telecommunications	\$4,611,604
Financial	\$8,213,470
Information Technology	\$3,316,058
Insurance	\$2,582,382
Pharmaceuticals	\$2,058,710
Banking	\$1,145,129
Consumer Products	\$989,795
Chemicals	\$1,071,404
Transportation	\$1,463,128
Transportation	\$1,463,128

Source: Robert Frances Group 2006

	A Telco	%	Profit 2009	Profit/Hr	Profit/Min
	Wireless	68%	\$3,000,000,000	\$342,466	\$5,708
	Cable	29%	\$1,300,000,000	\$148,402	\$2,473
Profit Impact	Media	3%	\$120,000,000	\$13,699	\$228
of Downtime	Total	100%	\$4,420,000,000	\$504,566	\$8,409

© 2014 IBM Corporation

zEnterprise supports concurrent operations during maintenance

Capability	zEC12	x86
ECC on Memory Control Circuitry	Transparent While Running	Can recognize/repair soft errors while running; limited ability with hard errors
Oscillator Failure	Transparent While Running	Must bring server down to replace
Core Sparing	Transparent While Running	Must bring server down to replace
Microcode Driver Updates	While Running	Some OS-level drivers can update while running, not firmware drivers; reboot often required
Book Additions, Replacement	While Running	Must bring server down
Memory Replacement	While Running	Must bring server down
Memory Bus Adaptor Replacement	While Running	Must bring server down
I/O Upgrades	While Running	Must bring server down to replace (limited ability to replace I/O in some servers)
Concurrent Driver Maintenance	While Running	Limited – some drivers replaceable while running
Redundant Service Element	2 per System	"Support processors" can act as poor man's SE, but no redundancy

Single book systems may not support concurrent memory upgrades

DEMO: Dynamically add processing capacity to z/VM LPAR to handle increased workload... without disruption

Tivoli Enterprise Portal

- Guest VMs run without disruption
- Dynamically add logical processors to z/VM LPAR
- Dynamically add processors shared among LPARs

Today's mainframe – 50 years of *continuous* innovation...

IBM zEnterprise EC12

Now let's look at several new opportunities for zEnterprise workloads...