

Positioning Your Enterprise for Cloud, Analytics and Mobile Computing

Building the business case for cloud, analytics and mobile computing

Sessions in this track

- 1. Positioning your enterprise for cloud, analytics and mobile computing Break (15 minutes)
- 2. The mainframe and mobile computing: A perfect match Break (15 minutes)
- 3. Scoring fast and winning big with analytics on z Systems *Lunch (60 minutes)*
- 4. Implementing hybrid clouds with z Systems Break (15 minutes)
- 5. Easy and agile development and administration for cloud, analytics and mobile computing *Break (15 minutes)*

6. Building the business case for cloud, analytics and mobile computing

© 2015 IBM Corporation

We've covered a lot of information today about digital business and IBM z Systems...

Up to 40% more capacity...

2x faster I/O bandwidth...

3x more memory...

38% improvement for zIIPs with SMT...

60% reduction in costs with Mobile Workload Pricing...

94% lower cost per throughput with BigInsights on z...

32% lower cost for z Systems private cloud than x86

...what's your next step?

The challenge when creating a business case is to relate *IT value* to *business value*

"IBM has shown us several use cases for cloud, analytics and mobile computing on z Systems..."

"Okay, but what about our specific initiatives? Show me a business case!"

When planning strategy, businesses first and foremost look at the financials

Balanced Scorecard (Kaplan and Norton*)

- Increase operating margin
- Grow shareholder value
- Reduce expenses
- Increase revenue

The best way to examine financials is to use Cost per Unit of Work metric

Kaplan, Robert S; Norton, D. P. (1992). "The Balanced Scorecard - Measures That Drive Performance". *Harvard Business Review*

To calculate Cost per Unit of Work, focus on two key areas

(Do the math)

Establish equivalence between options for comparison – then take measurements Cost per Unit of Work

Cost	\$3,652,131
Reports per Hour (RpH) 92,095
Cost per Rp	oH \$40

Competitive Project Office

on–

Establishing equivalence, step 1: Determine the type of system needed to run the test

Establishing equivalence, step 2: Make sure each system has the same *capabilities*

Is it an apples to apples comparison yet?

Establishing equivalence, step 2: Make sure each system has the same *capabilities*

Number of passengers

11

© 2015 IBM Corporation

Hauling

capacity

Establishing equivalence is critically important to making valid measurements

We are often asked to compare x86 to z Systems...

Atomic benchmarks and measures, analysts evaluations

Customer experience, real-world use cases

- Chip architecture
- I/O subsystem
- Networking
- High availability

- Compiler efficiency
- Workload consolidation
- Disaster recovery

Architecture comparison demonstrates several platform differences

	Typical utilization 70-90%	Typical utilization 10-20%
	z13	"Performance" Intel x86 processor
Core speed (operational)	5.0 GHz	4.0 GHz (4.4 GHz Turbo)
# Core	141	4 (8 threads)
Max Memory	10 TB	32 GB
Cache	L1+L2: 4.224 MB /core L3: 64 MB /chip (8 cores) L4: 960 MB total (shared)	8 MB (total) (no L4 cache)
Dedicated I/O subsystem	Yes	No
Workload management*	Tests show high priority workloads do not degrade when low priority workloads added; virtually all resource used efficiently	High priority workloads degraded significantly when low priority workloads added; too much resource remained unused

IBM internal test. x86 used most popular virtualization software.

13

M © 2015 IBM Corporation

Co-locating in the same address space is more efficient than networking between server boxes

Source: http://hurgsa.ibm.com/projects/t/tp_performance/public_html/OS390CICS/reports/CICS%20TS%20V4.2%20Performance.ppt and email with z/OS Communications Server development team

Non-production environments require fewer resources on the mainframe

Source: IBM Eagle Team

More servers are required on distributed platforms to support high availability

Mainframe High Availability

Single System Parallel Sysplex

HA contained within the production box

(1) Dedicated *failover – full re*plication of all production boxes

Distributed High Availability

© 2015 IBM Corporation

Real world customer offload cases validate the internal tests

* Fourteen cores to data, with a projected 24 additional production cores added on completion for High Availability

Establishing equivalence, step 3: Do the tests! Collect the data that's important to you!

To understand costs, it's important to know the difference between TCO and TCA

Componente		En۱	/ironme	Time	
Components	Prod				nme
Hardware	\$				
Software	\$				

Total Cost of Acquisition = Hardware + Software costs (over 3 years)

To understand costs, it's important to know the difference between TCO and TCA

Componente		En	/ironme	Time			
Components	Prod	Dev	Test	QA	DR	Time	
Hardware	\$	\$	\$	\$	\$	Planning	
Software	\$	\$	\$	\$	\$	Upgrades	
People	\$	\$	\$	\$	\$	Migration	
Network	\$	\$	\$	\$	\$	Growth	
Storage	\$	\$	\$	\$	\$	Parallel Costs	
Facilities	\$	\$	\$	\$	\$	Net Present Value	
QoS – Availability, Reliability, Security and Scalability							

Total Cost of Ownership is much more than Total Cost of Acquisition!

Our Cloud study was a good example of a TCO comparison...

© 2015 IBM Corporation

Our Cloud TCO case used many different parameters to cover the full spectrum of costs

More than 30 cost variables

- System and IFL amount and costs
- Memory amount and costs
- Storage amount and costs
- PVU counts
- Cost of hypervisors
- Cost of cloud management software
- Cost of operating system
- Cost of middleware
- Cost of hypervisor maintenance
- Cost of cloud management maintenance
- Cost of operating system maintenance
- Cost of middleware maintenance

- Power consumption
- Cost of power
- Space taken
- Cost of space
- Admin rateEfficiency factors
- for labor
- Number of FTENumber and type
- of instances – Cost of instances
- Cost of instances
 Amount of data out
- Amount of data out
 Cost of data out
- Cost of data out
- Enterprise support costs

Cost per Unit of Work is probably the single most important value on which to focus

Which is the better buy?

Cost per Unit of Work is a Unit Price

- For computing, these measurements are often based on
 - Quantity
 - Cost per report, cost per transaction (long running)
 - Capacity / Rate
 - Cost per transaction per second (short running, high volumes)

We talked about Cost per Unit of Work when we talked about Analytics

Competitive Project Office

Source: IBM Internal Studies. List prices used.

We also had a Cost per Unit of Work example in the mobile discussion

Competitive Project Office

25

A simple example can illustrate the full picture

\$18M

\$162M

-

-

A recent IT Economic Study:

Costs

- Total infrastructure costs -\$180M
- Mainframe costs
- Distributed costs

Workload

- Mainframe
 - 70% of mission critical apps
 - 80% of business transactions
 - 80% of the data •
- Distributed
 - Remaining 30% of critical apps
 - Remaining 20% of business transactions
 - Remaining 20% of the data

on distributed platform Cost per unit 36x more than on z platform of work was

Transactions Cost 9x more 4x more! z Systems Distributed

Mainframes account

for **68%** of production

workloads, but only

6.2% of IT spend

Competitive Project Office

Source: Solitaire Interglobal, 2014

26

Platform economics data shows mainframeheavy businesses are more cost efficient

Dr. Howard Rubin, Rubin Worldwide, 2015:

								% Mainframe			
		Average	T Cost of	N	lainframe	C	ommodity	Cost Less than		2010-2011	
Industry	Measure	Goods		Heavy		Server Heavy		Server		Differential	Change
Bank	Per Teller Transaction	\$	0.300	\$	0.125	\$	0.401	69%		67%	2%
Mortgage	Per Approved Loan	\$	295.30	\$	100.20	\$	358.40	72%		68%	4%
Credit Card	Per Transaction	\$	0.138	\$	0.094	\$	0.192	51%		48%	3%
Railroads	Per Ton Mile	\$	0.0011	\$	0.0012	\$	0.002	39%		36%	2%
Armed Service	Per Person	\$	9,410	\$	7,124	\$	12,544	43%		35%	9%
Automotive	PerVehicle	\$	382	\$	279	\$	413	32%		31%	1%
Retail	Per Store/Door	\$	560,266	\$	453,444	\$	675,899	33%		27%	6%
Utilities	Per MegaWatt Hour	\$	2.58	\$	2.50	\$	3.35	25%		19%	6%
Hospitals	Per Bed per Day	\$	82.88	\$	62.32	\$	91.56	32%		27%	5%
Oil & Gas	Per Barrel of Oil	\$	2.33	\$	1.80	\$	2.61	31%		28%	3%
Consulting	Per Consultant	\$	58,650	\$	48,766	\$	68,100	28%		28%	1%
Trucking	Per Road Mile	\$	0.185	\$	0.160	\$	0.225	29%		20%	9%
Airlines	Per Passenger Mile	\$	0.009	\$	0.007	\$	0.010	36%		30%	6%
Chemicals	Per Patent	\$	66,588	\$	58,922	\$	68,566	14%		10%	4%
Web Sites	Per Search	\$	0.040	\$	0.042	Ś	0.038	-11%		-8%	-2%
						Aver	rage	35%		31%	4%

© 2015 IBM Corporation

A compelling business case will also address more than just the financial aspect

A solid business case will make a compelling argument about *business value*

Mobile, analytics, and cloud top the list of CIOs' visionary plans*...

...so your challenge is to build a compelling case for z Systems as the platform of choice

IT data and metrics

- The z Systems platform:
- High availability
- Reliability
- Scalability
- Security
- Performance
- Virtualization
- Consolidation
- Co-location

What Business Value can be derived from the known IT Value?

Relevant business metrics

Put it all together for a compelling business value argument for Cloud, Analytics and Mobile computing on z

© 2015 IBM Corporation

*Source: IBM Institute for Business Value, "The Customer-activated Enterprise"

IBM Eagle Team - IT Economics Practice

Who we are

- Specialized in examining economic differences between platforms in client environments
- Focused on identifying areas for efficiencies and cost reductions
- Provide no-charge studies

Client benefits of engaging the Eagle Team

- Worldwide experience from successfully helping hundreds of clients since 2007
 - ... most likely we have evaluated a similar scenario before
- Leverage research and benchmarks from the broader CPO
- We use client figures (not our own)
 - ... through a transparent model
 - ... with agreed-to assumptions
 - ... and iterate as required
- Provide a business case from which the client can make a financially based IT decision

IT Economics studies analyze the 4 elements of TCO...

...to determine the most cost-effective solution for the client

Componente		Er	nvironmen	Timo				
Components	Prod	Dev	Test	QA	DR	Time		
Hardware	\$	\$	\$	\$	\$	Planning		
Software	\$	\$	\$	\$	\$	Upgrades		
People	\$	\$	\$	\$	\$	Migration		
Network	\$	\$	\$	\$	\$	Growth		
Storage	\$	\$	\$	\$	\$	Parallel Costs		
Facilities	\$	\$	\$	\$	\$	Net Present Value		
QoS – Availability, Reliability, Security and Scalability								

True TCO enables you to make a financially based IT decision

Client Study #1: Bank with z Systems and proprietary UNIX servers

Issues to address:

- 1. z114 BC in D/R site needs to be replaced Depreciation complete End of maintenance reached Insufficient capacity to handle workload
- 2. MLC cost needs to be controlled Workload spike resulted in extraordinary charges Mid/Long term decrease in MLC cost desired
- 3. Proprietary UNIX server inventory approaches end of life

Scenarios compared:

Case 1: z114 (budget/baseline at onset of study) Case 1b: Batch optimized (alternative baseline) Case 2: zBC12 technology refresh for z114 BC Case 3: zBC12 + Oracle rehosting to zBC12

Client Study #1: Scenario findings

- Keep System z inventory as is
- Apply batch and OLTP policies to prevent extraordinary profiles
- Use DEFINE CAPCITY to restrict MSUs
- Prohibit batch jobs from running concurrently with OLTP
- Refresh T4-4 HW in 2016 by T5-2 Server

• Reduce batch MSU peak to 130 by batch restructuring

Case 1: z114 (budget/baseline at onset of study)

Case 1b: Batch optimized (alternative baseline)

Case 2: zBC12 technology refresh for z114 BC

Case 3: zBC12 + Oracle rehosting to zBC12

- Continue restructure of batch for saving add'tl 8% of MSUs
- Replace z114 with zBC12 W02 @ reduced capacity (1380 MIPS/170 MSUs) + 2 IFLs
- Move z114 to D/R site to provide additional D/R capacity
- Refresh T4-4 HW in 2016 by T5-2 Server
 - Replace z114 with zBC12 S03 @ reduced capacity (1243 MIPS/155 MSUs) + 5 IFLs
 - Rehost Oracle Workload to zBC12 LPAR with 4 shared IFLs (3 required)
 - Continue restructure of batch and limit batch MSUs to OLTP level (110 MSU)

Client Study #1: Financial analysis and recommendation

Update z114 BC to zBC12 and rehost Oracle workload on to zBC12 for lowest TCO

- Acquire new zBC12 for production workload
- Rehost Oracle DWH server with Linux on z

Client Study #2: Government agency with z196

Issues to address:

- 1. Forecasted growth for agency will drive more mainframe usage
- 2. Would a distributed environment be more economical to address growth?
- 3. Determine cost of z/OS and major converged platform
- 4. z196 needs to be upgraded or replaced with a distributed solution

Scenarios compared:

Case 1: Existing z196 (baseline at onset of study) Case 2: z13 upgrade, two options (160GB and 544GB memory) Case 3: Converged platform with Windows Case 4: Converged platform with Linux

Client Study #2: Scenario findings mainframe vs. converged platform

Total Cost of Ownership Comparison IBM z/OS provides savings of \$22M over 5 years

z196 mainframe environment found to be less expensive than converged platform

- Software costs are higher (190) cores in x86 environment vs. 10 processors (4 CP & 6 zIIP/zAAP))
- z196 provides many HA features; NOT included were HA distributed costs in study
- Migration and parallel operating environments are a significant impact to distributed cost
- Disaster recovery will double hardware, software, electricity, space, etc.

Client Study #2: Scenario findings z196 vs. z13

z13 found to cost about the same as z196 environment with greater capacity

- 38% more performance per processor
- 72% performance improvement of zIIP
- Lower maintenance costs on z13
- Lower MLC software costs on z13
- z13 with 160GB memory costs increase by \$203k over 5 years
- z13 with 544GB memory costs increase by \$394k over 5 years

Client Study #2: Financial analysis and recommendation

Upgrade to z13 for about the same cost and greater capacity for business growth

IBM z13 EC provides 110-138% total	Mainframe	GA date	MIPs per CP	MIPs Growth
performance improvement over z196	z196	Sep-10	1,202	31%
for about the same cost	zEC12	Sep-12	1,514	26%
	z13	Mar-15	1,695	12%
z196 (160 GB): 5 Year TCO	z13 (5	44 GB): 5	Year TCC	2
z196 Cost = \$ 0	z13 Cost Upgra	ide = \$	2,249,640	_
z196 Maintenance = \$ 2,227,462	z13 Maintenanc	ce = \$	913,252	
MLC = \$ 5,417,515	MLC (-10%)	= \$	4,875,764	
IPLA (S&S) = \$ 3,015,198	IPLA (S&S)	= \$	3,015,198	
Total = \$10,660,175	Total	= \$	11,053,854	L I
All performance information was determined in a controlled environment. Actual results may	Difference	= \$	393,679	(+3.7%)
vary. Performance information is provided "AS IS" and no warranties or guarantees are	Per Year	= \$	78,736	. ,
expressed of implied by iDivi.	Per Month	= \$	6,561	

Use an IT Economics Study to support a z Systems business case

IBM Eagle Team – IT Economics Practice

Cloud Assessment

- Perform a Health Check to find the right private, public or hybrid cloud solution
- Examine workload size and activity, SLA and provisioning requirements, and instance costs

Analytics Assessment

- Determine the most cost-effective infrastructure for analytics solutions
 - Exploit platform attributes and efficient storage solutions for Analytics and Big Data

Mobile Assessment

- Mitigate high-volume, low-value mobile transaction costs
- Evaluate the effects of throughput, response time and other KPIs in mobile topologies

Available at **no-charge** to IBM clients and Business Partners

eagletco@us.ibm.com www.ibm.com/iteconomics

IT Economics studies PartnerWorld

Competitive Project Office

Exploit and compare platform attributes to optimize workload performance and costs

alternative platforms

Chargeback Analysis

Align chargeback policies to actual IT costs

Workload Placement Assessment

Consolidate, offload, and place new workloads on

Identify and overcome chargeback policies that drive adverse IT decisions

IT Best Practice Benchmarking

- - Compare actual IT environment with best practices in the IT industry
 - Improve forecast and actual spend

IBM z Systems – Redefining digital business

IBM z Systems – Redefining digital business...

- The world's premier data and transaction engine enabled for the mobile generation
- The integrated transaction and analytics system for right-time insights at the point of impact
- The world's most efficient and trusted cloud system that transforms the economics of IT

TDL

