
1

What's New from the Optimizer in DB2
10 & 11 for z/OS?

Speaker Name and Title

2

Acknowledgements and Disclaimers:

© Copyright IBM Corporation 2014. All rights reserved.

• U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

IBM, the IBM logo, ibm.com, DB2 and z/OS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are
marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks
may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml
Other company, product, or service names may be trademarks or service marks of others.

Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are
provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice
to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is
provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the
effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the
applicable license agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may
have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific
sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml

3

Agenda

• DB2 10
– Predicate application
– Safe Optimization
– Parallelism Enhancement
– Other Enhancements

• DB2 10 & 11
– Plan Management

• DB2 11
– Predicate indexability
– Sparse index and in-memory workfile
– Duplicate removal
– DPSI performance
– Misc. Enhancements

Predicate Application

5

• Major enhancements to OR and IN predicates
• Improved performance for AND/OR combinations and long IN-lists

• General performance improvement to stage 1 predicate processing
• IN-list matching

• Matching on multiple IN-lists
• Transitive closure support for IN-list predicates
• List prefetch support
• Trim IN-lists from matching when preceding equals are highly filtering

• Range-list Access for SQL pagination
• Single index matching for complex OR conditions

• Many stage 2 expressions to be executed at stage 1
• Stage 2 expressions eligible for index screening

Improvements to predicate application

6

IN-list Table - Table Type 'I' and Access Type 'IN'
• The IN-list predicate will be represented as an in-memory table if:

– List prefetch is chosen, OR
– More than one IN-list is chosen as matching.

– The EXPLAIN output associated with the in-memory table will have:
• New Table Type: TBTYPE – ‘I’
• New Access Type: ACTYPE – ‘IN’

SELECT *
FROM T1
WHERE T1.C1 IN (?, ?, ?);

QBNO PLANNO METHOD TNAME ACTYPE MC ACNAME QBTYPE TBTYPE PREFETCH

1 1 0 DSNIN001(01) IN 0 SELECT I
1 2 1 T1 I 1 T1_IX_C1 SELECT T L

7

IN-list Predicate Transitive Closure (PTC)

• Without IN-list PTC (DB2 9)
– Optimizer will be unlikely to consider T2 is the first table accessed

• With IN-list PTC (DB2 10)
– Optimizer can choose to access T2 or T1 first.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.C1 IN (?, ?, ?)

AND T2.C1 IN (?, ?, ?) 

Optimizer can generate
this predicate via PTC

8

• Scroll forward to obtain the next 20 rows
• Assumes index is available on (LASTNAME, FIRSTNAME)
• WHERE clause may appear as:

• DB2 10 supports
• Single matching index access with sort avoided

• DB2 9 requires
• Multi-index access, list prefetch and sort
• OR, extra predicate (AND LASTNAME >= ‘JONES’) for matching single index

access and sort avoidance

• NOTE: APAR PM56355 to encourage range-list access with OFnR and extra predicate

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')

OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Range-list Access for SQL Pagination

9

Stage 2 predicates “pushed down” to IM/DM

• Most Stage 2 (residual) predicates can execute as index screening
(indexable) or as stage 1 (sargable)
– CPU time improvement

– Reduced data getpages if stage 2 predicate becomes index screening

– Applies to
• Arithmetic/datetime expressions, scalar built-in functions, CASE, CAST, (essentially

all expressions without subqueries)

• OR’d predicates cannot span different predicate stages

• Externalized in DSN_FILTER_TABLE column PUSHDOWN

• Not enabled for List Prefetch access type

10

Stage 2 predicates “pushed down” to IM/DM

• Examples
– Suppose there exists index on (C1,C3)

– … WHERE SUBSTR(C1,1,1) = ? ==> index screening

– … WHERE SUBSTR(C1,1,1) = ? OR C3 = ? ==> index screening

– … WHERE SUBSTR(C1,1,1) = ? OR C4 = ? ==> stage 1

– … WHERE SUBSTR(C1,1,1) = ? AND C4 = ? ==> index screening
and stage 1

– … WHERE SUBSTR(C1,1,1) = ? OR C3 = (SELECT...) ==> stage 2

– … WHERE SUBSTR(C1,1,1) = ? AND C3 = (SELECT...) ==> index scr.
and stage 2

Safe Optimization

12

Minimizing Optimizer Challenges

• Potential causes of sub-optimal plans
– Insufficient statistics

– Unknown literal values used for host variables or parameter markers

• Optimizer will evaluate the risk for each predicate
– For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

• As part of access path selection
– Compare access paths with close cost and choose lowest risk plan

13

Minimizing impact of RID failure

• RID overflow can occur for
– Concurrent queries each consuming shared RID pool

– Single query requesting > 25% of table or hitting RID pool limit

• DB2 9 will fallback to tablespace scan*

• DB2 10 will continue by writing new RIDs to workfile
– Work-file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).

• MAXTEMPS_RID zparm for maximum WF usage for each RID listd

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.

Parallelism
Enhancement

15

Parallelism Enhancements - Effectiveness
• Previous Releases of DB2 use Key Range Partitioning

– Key Ranges Decided at Bind Time

– Based on Statistics (low2key, high2key, column cardinality)
• Complaint is often that data is not evenly distributed across child tasks.

• DB2 10 solutions available to the optimizer
– Dynamic Record Range partitioning

• Introduce a sort to redistribute the data evenly at execution time

– Straw Model Parallelism
• Create more work elements than there are concurrent tasks

– As one child task completes, it takes the next off the queue

16

Key range partition - Today
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,
 Large_T L
WHERE M.C2 = L.C2
 AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

M.C1 is date column, assume currentdate is 8-31-2007, after the
between predicate is applied, only rows with date between
06-03-2007 and 8-31-2007 survived, but optimizer chops up the key
ranges within the whole year after the records are sorted :-(

SORT
ON C2

2,500 rows

3-degree parallelism

Partition the
records according
to the key ranges

25%

12-31-2007

09-30-2007
08-31-2007

01-01-2007

05-01-2007
04-30-2007

Medium_T
10,000 rows
C1 C2

5,000,000 rows

17

Dynamic record range partition
Large_T

10,000,000 rows
C2 C3

Workfile

SELECT *
FROM Medium_T M,

Large_T L
WHERE M.C2 = L.C2

AND M.C1 BETWEEN (CURRENTDATE-90) AND CURRENTDATE

SORT
ON C2

2,500 rows

3-degrees parallelism

Partition the records -
each range has same
number of records

Medium_T
10,000 rows
C1 C2

18

STRAW Model
SELECT *
FROM Medium_T M
WHERE M.C1 BETWEEN 20 AND 50

100

Medium_T
10,000 rows
C1 C2

index on C1

50
47
44
41
38
35
32
29
26
23
20

0

degree=3
#ranges=10

100

Medium_T
10,000 rows
C1 C2

index on C1

50

0

20

30

40

degree = 3

Divided in key ranges with Straw ModelDivided in key ranges before DB2 10

T a s k 1

T a s k 3

T a s k 2

Other DB2 10
Enhancements

20

• VOLATILE TABLE support added in DB2 V8
• Targeted to SAP Cluster Tables

• Use Index access whenever possible
• Avoids list prefetch

• Can be a problem for OR predicates or UPDATEs at risk of loop

• DB2 10 provides VOLATILE to general cases
• Tables matching SAP cluster tables will maintain original limitations

• Table with 1 unique index
• Tables with > 1 index will follow NPGTHRSH rules

• Use Index access whenever possible
• No limitation on list prefetch
• Less chance of getting r-scan when list-prefetch plan is only alternative

Extending VOLATILE TABLE usage

21

Misc Performance enhancements

• Index INCLUDE columns
– Create an Index as UNIQUE, and add additional columns

– Ability to consolidate redundant indexes

INDEX1 UNIQUE (C1) Consolidate to
INDEX2 (C1,C2) INDEX1 UNIQUE (C1) INCLUDE (C2)

Plan Management
Enhancements
V10 & V11

23

Plan Management (aka Access Path Stability)
• Plan management provides protection from access path

(performance) regression across REBIND/BIND

– Access path fallback to prior (good) access path after REBIND
• DB2 9 PLANMGMT(EXTENDED/BASIC) with SWITCH capability

– DB2 10 (APAR PM25679 – July 2011)
• Freeze access path across BIND/REBIND

– BIND/REBIND PACKAGE … APREUSE(ERROR)

• Access path comparison with BIND/REBIND

– BIND/REBIND PACKAGE… APCOMPARE(WARN | ERROR)

– DB2 11

– BIND/REBIND PACKAGE … APREUSE(WARN)

24

Static Plan Management
• DB2 10 delivered APREUSE(ERROR)

– Allowed potential for reuse of prior plan to generate new runtime structure

– Failure of reuse failed the entire package

– APREUSE(ERROR) EXPLAIN(ONLY) failure may not represent a valid plan in DB2 10
• Failed access path is written to PLAN_TABLE

• DB2 11 delivers APREUSE(WARN)
– Upon failure of reuse, Optimizer will generate a new access path choice

• Thus failure of 1 SQL will not fail the entire package

– PLAN_TABLE output will represent a valid plan
• For both ERROR or WARN

25

Access Path Stability with statement level hints in V10

• Current limitations in hint matching
– QUERYNO is used to link queries to their hints – a bit fragile

• For dynamic SQL, require a change to apps – can be impractical

• New mechanisms:
– Associate query text with its corresponding hint … more robust

– Hints can be enforced for the entire DB2 subsystem
• irrespective of static vs. dynamic, etc.

– Hints integrated into the access path repository

• PLAN_TABLE isn’t going away
– Only the “hint lookup” mechanism is being improved.

26

Statement level hints (cont.)

• Steps to use new hints mechanism
– Enable OPTHINTS zparm

– Populate a user table DSN_USERQUERY_TABLE with query text
• Insert from SYSPACKSTMT (static) or DSN_STATEMENT_CACHE_TABLE

(dynamic)

– Populate PLAN_TABLE with the corresponding hints
• QUERYNO must match between PLAN_TABLE & DSN_USERQUERY_TABLE

– Run new command BIND QUERY
• To integrate the hint into the repository.

• Next package bind or dynamic prepare can pickup hint.

– FREE QUERY can be used to remove the query.

27

Statement-level BIND options
• Statement-level granularity may be required rather than:

– Subsystem level ZPARMs (STARJOIN, SJTABLES, MAX_PAR_DEGREE)

– Package level BIND options (REOPT, DEF_CURR_DEGREE)

• For example
– Only one statement in the package needs REOPT(ALWAYS)

• New mechanism for statement-level bind options:
– Similar to mechanism used for hints

• Enable OPTHINTS zparm

• Populate DSN_USERQUERY_TABLE with query text and desired option

– Use a QUERYNO that is NOT in PLAN_TABLE

• Issue BIND QUERY

• Next package bind/rebind or dynamic prepare can pickup statement option

• FREE QUERY can be used to remove the query

28

DB2 11 optimizer enhancements
• Predicate indexability improvements

• Sparse index with in-memory workfile

• Duplicate removal

• DPSI performance

• Misc. enhancements

Predicate Indexability
Improvements

30

Rewrite Common Stage 2 predicates to indexable

• Targeted Stage 2 predicates

– YEAR(DATE_COL)

– DATE(TIMESTAMP_COL)

– value BETWEEN C1 AND C2

– SUBSTR(C1,1,10)  SUBSTR from position 1 only

• Stage 2 predicates are ONLY rewritten if there is no candidate Index On
Expression to support the predicate

– Regardless of whether the optimizer chooses that IOE

• Applies to literals or host variables/parameter markers

– Requires REBIND for static

31

Indexability for OR/IN and OR COL IS NULL combinations

• Improved single matching index access for OR C1 IS NULL
– Examples

WHERE C1 = ? OR C1 IS NULL

WHERE C1 IN (1, 2) OR C1 IS NULL

WHERE C1 > ? OR C1 IS NULL

• IN/OR combination to allow multi-index access……
WHERE C1 = ? OR C2 IN (1,2)
Becomes
WHERE C1 = ? OR C2 = 1 OR C2 = 2

32

Prune always true predicates
• Example WHERE 1=1

– So what’s the problem with this harmless predicate?
• DB2 will execute the WHERE 1=1 predicate for every qualified row

• SELECT *
FROM TABLE
WHERE 1=1
AND CUSTNO = ?

– Prune always true predicate to become
• SELECT *

FROM TABLE
WHERE CUSTNO = ?

33

Prune always false predicates

• DB2 10 already prunes “always false” equal/IN under OR
– WHERE C1 = ? OR ‘A’ = ‘B’

• DB2 11 extends to “always false” underneath parent “AND”
• SELECT *

FROM TABLE1 T1, TABLE2 T2
WHERE (1=1 AND T1.C1 = T2.C1)

OR (1=2 AND T1.C2 = T2.C2)

– Prune always true/false predicates to become
• SELECT *

FROM TABLE1 T1, TABLE2 T2
WHERE T1.C1 = T2.C1

• NOTE: “OR 0=1” is NOT pruned

34

Indexability for CASE predicates
• Case can now be indexable (formerly stage 2)

– For local predicate
– SELECT * FROM T1
WHERE COL = CASE (CAST(? AS INT))

WHEN 1 THEN 'CA'
WHEN 2 THEN 'NY'
ELSE 'AL' END;

– For JOIN predicate
• CASE expression must be evaluated before the join.

• In example below, join predicate is indexable if T1 accessed before T2.

– SELECT * FROM T1, T2
WHERE T2.COL = CASE WHEN T1.COL = ‘Y’

THEN T1.COL2
ELSE T1.COL3
END;

35

Predicate Pushdown
• DB2 11 supports pushdown into materialized views/TEs of

– Non-boolean term (OR) predicate

– Stage 2 predicates (expressions)

SELECT EMPNO, SALARY, DEPTCOUNT
FROM EMP A ,
(SELECT WORKDEPT, COUNT(*)
FROM EMP
GROUP BY WORKDEPT) AS B(WORKDEPT, DEPTCOUNT)
WHERE A.WORKDEPT = B.WORKDEPT
AND (B.WORKDEPT LIKE 'C%' OR B.WORKDEPT LIKE 'A%‘);

SELECT EMPNO, SALARY, DEPTCOUNT
FROM EMP A ,
(SELECT WORKDEPT, COUNT(*)
FROM EMP
GROUP BY WORKDEPT)

AS B(WORKDEPT, DEPTCOUNT)
WHERE A.WORKDEPT = B.WORKDEPT
AND UPPER(B.WORKDEPT) = 'C01'

36

Predicate Pushdowns (cont.)
• DB2 11 supports pushdown into materialized views/TEs of

– Predicate in the ON clause of an outer join

– Also – when the view/TE contains a scalar function in the SELECT list
– Some restrictions still remain, such as:

• If all 3 examples had predicates against table A – predicate not pushed in
• Expression pushdown may not qualify for index on expression

SELECT EMPNO, SALARY, DEPTCOUNT
FROM EMP A
LEFT OUTER JOIN
(SELECT WORKDEPT, COUNT(*)
FROM EMP
GROUP BY WORKDEPT)
AS B(WORKDEPT, DEPTCOUNT)
ON A.WORKDEPT = B.WORKDEPT
AND B.WORKDEPT = 'C01';

In-memory data
cache/Sparse Indexing
(or hash join)

38

In Memory Data Cache (Workfile) vs. Sparse Index
•

IMDC •

Sparse Index
• When insufficient memory for IMDC

T1 T2 (WF)NLJ

t1.c = t2.c

Binary Search of WF to look up exact
location of qualified key (Hash used if
sufficient memory)

IMDC sorted in t2.c
order

T2
(WF)

RID

T1 T2 (WF)NLJ

... ...

t1.c = t2.c
Key

Binary Search of sparse index to look up
“approximate “ location of qualified key

Sparse Index sorted
in t2.c order

Workfile sorted
in t2.c order

T2
(WF)

39

IMDC/Sparse Index DB2 11 Enhancements
• Improved memory management by optimizer and runtime
•

Controlled by zparm

MXDTCACH (default 20MB)

•

Each sparse index/IMDC is given a % of MXDTCACH
• From optimizer cost perspective
• At runtime (based upon cost estimation)

•

Runtime will choose appropriate implementation based upon available storage
•

Hash, binary search, or spill over to workfile

• Non‐correlated subqueries

will also share MXDTCACH

• Improved optimizer cost model
•

Allowing this to be opened up in more join scenarios

•

Improvements to IFCID 27 for detail, 2 & 3 for summary

40

IMDC/Sparse index – Tuning basics

• DB2 11 provides simple accounting/statistics data for sparse index
– Sparse IX disabled

• indicates main memory was insufficient for the MXDTCACH memory request

• Suggest reducing MXDTCACH or allocating more memory to the system

– Sparse IX built WF
• MXDTCACH was insufficient to contain sparse index

– Increase MXDTCACH
• Look at sort BP sync I/O

– If high, also reduce VPSEQT in sort BP (do not use VPSEQT=100)

MISCELLANEOUS AVERAGE TOTAL
-------------------- -------- --------
SPARSE IX DISABLED 0.00 0
SPARSE IX BUILT WF 0.36 8

Duplicate Removal

42

Index skipping and Early‐out – DB2 11 Enhancements

• Improvements to queries involving GROUP BY, DISTINCT or non‐correlated subq
•

Where an index can be used for sort avoidance
• By skipping over duplicates (see next few slides)

• Improvement to join queries using GROUP BY, DISTINCT
• By NOT accessing duplicates from inner table of a join if DISTINCT/GROUP BY will remove those

duplicates

• Improvement to correlated subqueries
•

Early‐out for ordered access to MAX/MIN correlated subqueries
• When I1‐fetch is not available

•

Optimize usage of the “result cache”

for access to subquery

with duplicate keys from

the outer query
• 100 element result cache dates back to DB2 V2 as a runtime optimization
• DB2 11 adds optimizer recognition of benefit

43

Pre‐DB2 11 Duplicate Removal using an index (no sort)

100.RID.RID.RID.RID 100.RID.RID.101.RID 101.RID.RID.RID.RID 101.RID.102.RID.RID

100.101.101.102Non-leaf

Leaf

SELECT C1
FROM T

GROUP BY C1

Scan qualified leaf pages (and all rids) with runtime discarding duplicates

44

DB2 11 ‐

Duplicate Removal with Index Skipping

100.RID.RID.RID.RID 100.RID.RID.101.RID 101.RID.RID.RID.RID 101.RID.102.RID.RID

100.101.101.102Non-leaf

Leaf

SELECT C1
FROM T

GROUP BY C1

Index Skipping (over-simplified)
Use index lookaside (current leaf high key and non-leaf) to get

the next key greater than current key

45

Early-out join
• DB2 11 supports early-out for join tables where duplicates are not

necessary
– Previously only available for correlated EXISTS subquery transformed to join.
– For below example: Duplicates from T2 are removed by DISTINCT

• In DB2 11, each inner table probe will stop after 1st match is found

– NOTE: For LEFT OUTER JOIN V10 will prune T2

• Also applies to Non-Boolean Term join conditions with “early-out” table

SELECT DISTINCT T1.*
FROM T1, T2
WHERE T1.C1 = T2.C1

SELECT DISTINCT T1.*
FROM T1, T2
WHERE T1.C1 = 1

OR T1.C1 = T2.C1

46

Optimize usage of subquery result cache
• DB2 V2 introduced a result cache for saving the 100 most recent

correlated subquery execution results
– Each subquery execution would 1st scan the cache to find the result

• If found, cache value is used
• If not found, subquery is executed, and result saved in cache

• DB2 11 adds optimizer recognition of the cache
– And the benefit to accessing the subquery in order

• Ordered access will reduce the cache size from 100

– For example below, the optimizer recognizes that accessing the
outer in CUSTNO order (via CUSTNO index or tablespace scan if
CUSTNO is clustering) would result in cache hits for repeat
CUSTNO values

SELECT *
FROM POLICY P1
WHERE P1.POLICY_DATE =
(SELECT MAX(P2.POLICY_DATE)
FROM POLICY P2
WHERE P2.CUSTNO = P1.CUSTNO)

Page Range Screening
& DPSI Performance

48

Page Range Screening – DB2 11 Enhancements

• Page range performance Improvements
– Page Range Screening on Join Predicates

• Access only qualified partitions

– Pre-DB2 11, page range screening only applied to local predicates
• With literals, host variables or parameter markers

– Applies to index access or tablespace scan
• Benefits NPIs by reducing data access only to qualified parts
• Biggest benefit to DPSIs by reducing access only to qualified DPSI parts

• Only for equal predicates, same datatype/length only

49

• Current challenge
– 1st composite row probes all parts

– 2nd composite row probes all parts

– Etc

Pre-V11 DPSI Join Probing (Join on partitioning Col)

2009 2010 2011 2012 2013

T2
DPSI on C1

Partition by YEAR

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.YEAR = T2.YEAR

YEAR C1

2009 1

2010 2

2011 3

All parts are accessed for each composite row

50

• Join recognizes page range screening
– 1st composite row probes 1 part.

– 2nd composite row probes 1 part.

– And so on.

V11 DPSI Join Probing (Join on Partitioning Col)

2009 2010 2011 2012 2013

T2
DPSI on C1

Partition by YEAR

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1
AND T1.YEAR = T2.YEAR

YEAR C1

2009 1

2010 2

2011 3

Only qualified parts are probed on the inner table.

51

DPSI – DB2 11 Enhancements
• DPSI can benefit from page range screening from join

– Assuming you partition by columns used in joins (see previous slides)

• For DPSIs on join columns and partition by other columns
– DB2 11 Improves DPSI Join Performance (using parallelism)

• Controlled by ZPARM PARAMDEG_DPSI

• Sort avoidance for DPSIs (also known as DPSI merge)
– Use of Index On Expression (IOE)

• Ability to avoid sorting with DPSI IOE (already available for DPSI non-IOE)

– Index lookaside when DPSI used for sort avoidance

• Straw-model parallelism support for DPSI
– Straw-model (delivered in V10) implies that DB2 creates more work elements than there are

degrees on parallelism.

52

• NOTE: No page range join predicate

• Current challenge for join to a DPSI
– 1st composite row probes all parts

– 2nd composite row probes all parts

– Etc

Pre-V11 DPSI Probing Challenge for Joins

2009 2010 2011 2012 2013

T2
DPSI on C1

Partition by YEAR
SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

C1

1

2

3

All parts are accessed for each composite row

5353

• DPSI part-level Nested Loop Join
– Repeat composite table for each child task

• Each child task is a 2 table join

• Allows each join to T2 to access index sequentially (and data if high CR)

DPSI Probing – DB2 11 Join Solution

2009

T2
DPSI on C1

SELECT *
FROM T1, T2

WHERE T1.C1 = T2.C1

C1

1

2

3
2010

C1

1

2

3
2011

C1

1

2

3
2012

C1

1

2

3
2013

C1

1

2

3

Misc Performance Items

55

Sort / Workfile Performance Improvement
• In memory workfile support in DB2 9 and 10

– DB2 9 RDS simple sort up to 32K

– DB2 10 RDS simple sort up to 1MB (no user control)

– DB2 10 intermediate workfile usage up to 32K for selective path

• More in memory operation in DB2 11
– RDS simple sort up to 128MB

• Controlled by a new zparm MAXSORT_IN_MEMORY (default 1MB)

– Wider range of usage for in memory
• Materialized view, table expression, outer Join, EXISTS, etc.

• In memory up to 32K then continue with physical workfiles

• Avoid workfile usages for final merge on top level sort
– Reduces physical workfile usage for large top level sort

56

RID processing enhancments
•

Pre‐DB2 11
• DB2 10 added RID failover to WF
•

Did not apply to queries involving column function

• A single Hybrid Join query could consume 100% of the RID pool
•

Causing other concurrent queries to hit RID limit if > 1 RID block needed

•

DB2 11
• RID failover to WF extended to all scenarios when RID limit is hit

• Hybrid join limited to 80% of the RID pool

57

Other interesting performance items

• DGTT NOT LOGGED support

• EXCLUDE NULL indexes

• Pseudo-deleted index entry cleanup

• Reduction of indirect references

• Decompression performance improvements

• DECFLOAT performance improvements (used extensively in XML)

Optimizer externalization
of missing stats
and Overriding FF estimates

59

DB2 Optimizer and Statistics - Challenge

• DB2 cost-based optimizer relies on statistics about tables and
indexes

• Customers often gather only standard or default statistics
– E.g. RUNSTATS TABLE(ALL) INDEX(ALL) KEYCARD

• Queries would often perform better if DB2 optimizer could exploit
more complete statistics

• Customers have difficulty knowing which statistics are needed

60

DB2 11 – Optimizer externalization of missing statistics

Optimizer

Statistics
in Catalog

Tables

STATSINT
DSNZPARM - minutes

in memory
recommendations

PREPARE

BIND

REBIND

SYSSTAT-
FEEDBACK

Missing stats?
Conflicting stats?

Tooling

RUNSTATS

61

DB2 11 Solution: Optimizer Externalization
• During access path calculation, optimizer will identify missing or

conflicting statistics
– On every BIND, REBIND or PREPARE

• Asynchronously writes recommendations to SYSIBM.SYSSTATFEEDBACK
– DB2 also provides statistics recommendations on EXPLAIN

• Populates DSN_STAT_FEEDBACK synchronously

• Contents of SYSSTATFEEDBACK or DSN_STAT_FEEDBACK
can be used to generate input to RUNSTATS

– Contents not directly consumable by RUNSTATS
– Requires DBA or tooling to convert to RUNSTATS input

62

Optimizer selectivity - The Filter Factor Problem

• Query optimization challenges
– Cost based query optimization

• Estimate cost of available choices to identify choice with cheapest cost

– The optimizer needs to know how many rows are filtered at every step
• How much does it cost to scan index ? Matching, screen filtering
• Which table should be outer?

• Sometimes, the optimizer is unable to accurately estimate selectivity
– Lack of statistics
– Join skew, join correlation
– Complex predicates
– Predicate combinations
– Unknowns (host variables, parameter markers, special registers)

63

DB2 11 Selectivity Overrides (FF hints)

• Process of supplying more robust selectivity (Filter Factor) input
– Rather than a whole OPTHINT – just FF hints

• Selectivity profile allows User to
– Provide optimizer with a more accurate view of selectivities used in query

execution
• For one, some or all predicates in a query
• For one or more representative “executions” of a query

- Weighted by frequency of occurrence

• Similar to the SELECTIVITY clause on SQL statement, but ...
• Doesn’t require changing applications
• Handle variations in execution

• Also has OQWT tooling support

Virtual Index Improvements

65

Virtual Index Enhancements – Table Changes

• DSN_VIRTUAL_INDEXES enhanced
– Columns added to complete index modelling capabilities

• UNIQUE_COUNT
To support INCLUDE index columns

• SPARSE
To support NULL Supressed indexes

• DATAREPEATFACTORF
To support enhanced statistics gathering

• KEY_TARGET_COUNT & IX_EXTENSION
To support Index on Expression and XML Index

• DSN_VIRTUAL_KEYTARGETS
– New EXPLAIN table used for Index Advisor support for IOE and XML

indexes

Thank You
Your feedback is important!

	What's New from the Optimizer in DB2 10 & 11 for z/OS?
	 Acknowledgements and Disclaimers:
	Agenda
	Slide Number 4
	Improvements to predicate application
	IN-list Table - Table Type 'I' and Access Type 'IN'
	IN-list Predicate Transitive Closure (PTC)
	Slide Number 8
	Stage 2 predicates “pushed down” to IM/DM
	Stage 2 predicates “pushed down” to IM/DM
	Slide Number 11
	Minimizing Optimizer Challenges
	Minimizing impact of RID failure
	Slide Number 14
	Parallelism Enhancements - Effectiveness
	Key range partition - Today
	Dynamic record range partition
	STRAW Model
	Slide Number 19
	Extending VOLATILE TABLE usage
	Misc Performance enhancements
	Slide Number 22
	Plan Management (aka Access Path Stability)
	Static Plan Management
	Access Path Stability with statement level hints in V10
	Statement level hints (cont.)
	Statement-level BIND options
	DB2 11 optimizer enhancements
	Slide Number 29
	Rewrite Common Stage 2 predicates to indexable
	Indexability for OR/IN and OR COL IS NULL combinations
	Prune always true predicates
	Prune always false predicates
	Indexability for CASE predicates
	Predicate Pushdown
	Predicate Pushdowns (cont.)
	Slide Number 37
	Slide Number 38
	Slide Number 39
	IMDC/Sparse index – Tuning basics
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Early-out join
	Optimize usage of subquery result cache
	Slide Number 47
	Page Range Screening – DB2 11 Enhancements
	Pre-V11 DPSI Join Probing (Join on partitioning Col)
	V11 DPSI Join Probing (Join on Partitioning Col)
	DPSI – DB2 11 Enhancements
	Pre-V11 DPSI Probing Challenge for Joins
	DPSI Probing – DB2 11 Join Solution
	Slide Number 54
	Sort / Workfile Performance Improvement
	Slide Number 56
	Other interesting performance items
	Slide Number 58
	DB2 Optimizer and Statistics - Challenge
	DB2 11 – Optimizer externalization of missing statistics
	DB2 11 Solution: Optimizer Externalization
	Optimizer selectivity - The Filter Factor Problem
	DB2 11 Selectivity Overrides (FF hints)
	Slide Number 64
	Virtual Index Enhancements – Table Changes
	Slide Number 66

