
1

What’s current in compilers for the
enterprise to improve application
performance?

Speaker Name and Title

Agenda

Enterprise COBOL for z/OS v5.1

z/OS XL C/C++ v2.1

Enterprise PL/I for z/OS v4.4

2

IBM’s history of delivering leading-edge
COBOL Compilers

3

New Lang. Standard
31-bit addressing…

LE, Debug Support,
USS…

Application Modernization
Middleware Interoperability
Internationalization

CUSTOMER VALUE

Increase
Programmer
Productivity

Bolsters overall
benefits of CICS,
IMS, DB2

Modernize Applications to work with
web, cloud and mobile infrastructures

Increase Performance of
Business Critical
Applications

Enterprise COBOL for z/OS v5.1
GA’d June 21

• Advanced technology designed to optimize
COBOL programs and fully exploit z hardware

– Delivers greater than 10% performance
improvement over Enterprise COBOL v4 for well
structured, CPU-intensive batch applications on
System z1

– Many numerically intensive programs have shown
performance increases greater than 20%1

– Maintains compatibility with previous COBOL
releases

• New programming and application modernization
capabilities.

– Enables users to deliver enhancements to business
critical applications quicker with less cost and lower
risk

• Allows users, who implement sub-capacity
tracking, to reduce administrative overhead

4

"Our testing of COBOL V5 shows a significant performance improvement for math.
As a financial services company with a continually narrowing batch window, that
improvement is very important to us. It will help us meet our Service Level
Agreements and reduce cost driven by CPU utilization.”

Michael A Todd, Software Architect
Multi-national financial services company

where Tradition Meets Innovation…

1
Results are based on an internal compute-intensive test suite. Performance results from other applications may

vary.

• Supports the ecosystem of COBOL
development tools supplied by IBM and
ISVs.

Exploiting z/Architecture

5

New ARCH option enables users to fully exploit z/Architecture
• Not available in Enterprise COBOL 4

Advanced Optimizations

6

• Provide multiple levels of optimization
• MAXPCF(nnnnn) - Automatic control of OPT levels for large or

complex programs
• Debugging of optimized code is supported with OPT + TEST

options

Longer compile time
Reduced debugging
Faster Executing Code

7

Exploiting z/Architecture – Example
Decimal Divide Where Operands Exceed Packed Decimal Hardware Limits

Performance Comparison

COBOL V5 - Packed and Zoned decimal arithmetic
that does not fit in the hardware instruction limits
are converted to DFP for z10 and above.
Arithmetic operations are done in DFP unit, then
converted back to the original packed/zoned type.

COBOL V4 – Zoned & Packed decimal arithmetic
that cannot fit within hardware instruction limits
are implemented by generating a call to a divide
or multiply routine in the runtime.

1 z14v2 pic s9(14)v9(2)
1 z13v2 pic s9(13)v9(2)
. . .
Compute z14v2 = z14v2 / z13v2

8

Advanced Optimization – Example
Instruction Scheduling for Performance

COBOL V4 – each PACK/AP/ZAP instruction group
for each receiver is generated in order.

Performance Comparison

COBOL V5 - at OPT(2) low level instruction scheduling
is performed to reduce data dependencies, avoid
hardware penalties and to best take advantage of the
micro-architecture.

Feature Highlights
• Provide source and binary compatibility
• Most correct COBOL programs will compile and execute without changes and produce the same results
• “Old” and “new” code can be mixed within an application and communicate with static or dynamic calls
• Removed some very old language extensions and options

• Millennium Language Extensions
• Label Declaratives
• Non-reentrant programs above 16MB line (NORENT + RMODE(ANY))
• OS/VS COBOL Inter-operation
• AMODE 24 (only dynamic calls supported)

• APAR PM93583 added support for static CALL to AMODE 24 programs
• Also changed mod level: 5.1.1

• XMLPARSE(COMPAT)

• Simplifying programming
• Raised the total size of all Working-storage or Local-storage section data items to 2GB (from 128MB).
• Raised the maximum size of an individual data item to 999,999,999 bytes (From 128MB).
• Added new built in functions to improve programmability of UTF-8 applications

• Support Application Modernization
• XML enhancements
• Support for UNBOUNDED tables and groups
• Support Java 7

Support Latest Middleware (CICS, DB2, IMS)
• Support EXEC SQLIMS statements in COBOL programs (IMS V13)

System Administration Considerations

Provides support for z/OS System Management Facilities (SMF) records

Provide full support for sub-capacity pricing

Reduce administration overhead

Requires SCRT V21.2.0 (GA Apr. 2013)

Compiler resides in PDSE

Generates “GOFF” (Generalized Object File Format)

Object features require executable to be a Program Object, PDSE only
- Load libraries must be PDSE datasets

Requires more utility data sets

SYSUT8-SYSUT15

SYSMDECK

• Requires more storage than version 4.2

–Recommend a minimum region size of 200M
10

Tools Ecosystem Support

Best practices

• Recompile parts that are changed and performance “hot spots”
–Leverage advanced optimizations and z/Architecture exploitation capabilities in
Enterprise COBOL V5

• Take advantage of new compiler features to modernize business
critical applications
–“Rip and Replace” is expensive and risky
–Modernization promotes reuse and delivery of new solution at lower cost, lower
risk, and shorter delivery time

• Leverage modern development tools/solutions to improve
developer productivity and speed up delivery of new enhancements
–IBM Integrated Solution for System z Development
–IBM Continuous Integration Solution for System z

12

Developer Trial

• Zero cost evaluation license for 90 days
– Does not initiate Single Version Charging (SVC)

• Assess the value that could be gained from upgrading to Enterprise
COBOL V5.1

• Offer same functionalities as Enterprise COBOL for z/OS V5.1
– Same pre-requisites (e.g. runs on z/OS V1.13 and z/OS V2.1…)
– Code compiled with Enterprise COBOL Developer Trial cannot be used for

production

• Available as standard offering through ShopzSeries on Oct 4, 2013
• Contact your IBM representative for ordering assistance

http://www-03.ibm.com/software/products/ph/en/enterprise-cobol-developer-trial-for-zos

Agenda

Enterprise COBOL for z/OS v5.1

z/OS XL C/C++ v2.1

Enterprise PL/I for z/OS v4.4

14

IBM z/OS 2.1 XL C/C++
• Optionally priced feature of z/OS

– Enables development of high performing business
applications, system programs and low level C applications

• IBM has been delivering leading edge C/C++ compilers on
z/OS for over 20 years

– Every release sets new standard for performance
– Includes advanced optimization technology originally

designed for HPC applications, and innovations to
improve programmer productivity

– Improves support for C and C++ language standards

• Provides system programming capabilities with Metal C option
– Allows developers to use C syntax to develop system programs and

low level free standing applications on z/OS without coding in HLASM
• Significantly shortens the learning curve
• Leverage advanced optimization technology to generate high

performance optimized code

15

Advanced Optimization Technology

z/OS XL C/C++ compiler offers:

5 optimization levels, and additional options that allow you to tailor how
to optimize your applications
Code generation and tuning for specific z hardware architecture(s)
Whole program optimization with IPA

Interprocedural Analysis (IPA) optimizer

Profile-directed feedback (PDF) optimization
Directives and source-level intrinsic functions that provide direct access
to System z hardware.

16

New C & C++ Language Features
• C++11 Standard

– RValue reference for core language, Const Expression, Scoped Enums, Explicit Conversion Operator,
Right Angle Brackets, Generalized Constant Expressions, Default and Deleted Functions

• C11 Standard
– Static assertions, complex type initialization, Noreturn attribute, anonymous structures, Generic Type

Generics

• GNU C/C++ language extensions & compatibility
– __builtin_expect(x,0)
– propagation of attributes to function template instantiations

• For example, __attribute__ ((always_inline)) and __attribute__ ((noinline)) now work on template
functions

– zero initialization
• Objects with an initializer of () and an implicitly defined default constructor will be zero-initialized

before the default constructor is called
– improved diagnostics for invalid template template argument

• OpenMP API v3.1 Specification (under 64 bit mode and run in USS only)
– Industry-standard API designed to create portable C/C++ applications that exploit shared-memory

parallelism.
– Consists of a collection of compiler directives and library routines
– Users can create or migrate parallel applications to take advantage of the multicore design of modern

System z processors.
– No support for Metal C

17

OpenMP runtime
library

int main()
{

int i;
#pragma omp parallel for

for (i=0; i<N; i++)
{

arrA[i] = arrB[i];
...

}
}

int main()
{

@_xlsmpEntry1 = _xlsmpParSelf();
@_xlsmpEntry0 = @_xlsmpEntry1;
_xlsmpParallelDoSetup_TPO(...,

&main@OL@1,...);
...

}

void main@OL@1(...,@LBnd29,
@UBnd30)

{
@CIV1 = 0;
do {

...
@CIV1 = @CIV1 + 1;

} while (@CIV1<@UBnd30-@LBnd29);
}

Compiler
transforms
user code

Link in the
OpenMP

library

Create Threads
for execution

OpenMP

OpenMP V3.1 supports task parallelism
•Allows independent tasks to execute in
parallel

• loop without known loop
counts (e.g. while loop)

• divide and conquer algorithm
(e.g. recursive calls)

• tree traversal

Debug Improvements

Automonitor support with Debug Tool

• Debug optimized code
– compiler creates different levels of snapshots of objects

to make the program state available to the debugging
session

– When stopped at snapshot points, the debugger should
be able to retrieve the correct value of variables

– The granularity of the snapshot points is controlled by
the DEBUG(LEVEL(n)) n=2,5,8

• Debug inlined functions
– The debugger can now show values of parameters and

locals of an inlined function

19

z/Architecture Exploitation & Advanced Optimization

Exploit zEC12 and zBC12 processors

New ARCH(10) functions ; Defaults to ARCH(7)

Built-ins to exploit Transactional Memory (HTM)

Improved application performance1

Compute-intensive integer benchmarks improved
12 % (64 bit),
 6% (31 bit)

Compute-intensive floating-point benchmarks improved
17% (64 bit),
4% (31 bit)

1Results are based on a compute-intensive integer and floating point benchmark suites compiled with z/OS C/C++ V1R13 executing on a System
zEnterprise 196 server. Performance gains from other applications may vary

20

HTM with IBM XL C/C++
Complete set of built-ins
Enable exploitation of new

Transactional Execution Facility.

Provides function to:
• Start/End/Abort transactions
• Diagnose transaction failures
• Detect transaction state (e.g. depth) THREAD_MUTEX_UNLOCK –release a lock

CASE ACTION_UPDATE_TABLES:
//..SOME CODE
TM_BEGIN(MYID);

…

TM_END();
BREAK;

tm_begin(MYID) –start a transaction

THREAD_MUTEX_LOCK –acquire a lock

tm_end(MYID) –end a transaction

21

Transaction execution instructions
– long __TM_simple_begin()
– long __TM_begin(void* const TM_buff)
– long __TM_end();
– void __TM_non_transactional_store(void* const addr , long long const value);
– long __TM_nesting_depth(void* const TM_buff);

Transaction failure diagnostic
– long __TM_is_user_abort(void* const TM_buff);
– long __TM_is_named_user_abort(void* const TM_buff, unsigned char* code);
– long __TM_is_illegal(void* const TM_buff);
– long __TM_is_footprint_exceeded(void* const TM_buff);
– long __TM_is_nested_too_deep(void* const TM_buff); z
– long __TM_is_conflict(void* const TM_buff);
– long __TM_is_failure_persistent(long const result);
– long __TM_failure_code();

Enabled in both z/OS V2.1 XL C/C++ and
z/OS XL C/C++ V1.13 Sept. 2012 PTF

C source

Object
File Executable

Compile with XL C
compiler

Invoke EDCC proc in JCL:
 METAL option
 GENASM option

Invoke xlc in USS:
 -qMETAL
 -S

Bind object(s)

Invoke binder in JCL:
 ENTRY control
statements to specify
name of entry point

Invoke ld in USS:
 -e option to specify name
of entry point

Assemble with HLASM

 Invoke ASMA90 in batch
 Invoke as in USS

HLASM
source

Metal C

• A new mode of code generation in the z/OS XL C/C++ compiler
– Leverages Advanced Optimization Technology in z/OS XL C/C++
– Provides a subset of C library functions.

• Generates optimized HLASM source code that is Language
Environment independent

– Interoperates with existing assembler programs.
– Offers users the ability to embed assembler statements.

22

USING CTXT,R9 ESTABLISH BASE FOR CTXT

CLC CTXTACRN,=CL4'CTXT' A CTXT?
BNE RETURN SOMETHING IS WRONG IF NOT
ICM R3,B'1111',CTXTTXPN A MINOR LINE?
BNZ RETURN YES. NO GO
ICM R3,B'1111',CTXTTXPJ PICK UP TEXT STRUCTURE POINTER
BZ RETURN SHOULD NEVER BE THE CASE
USING CTXTATTR,R3 ESTABLISH BASE FOR CTXTATTR
SPACE 1
CLC IEE362A,CTXTTMSG IEE362A?
BNE RETURN DO NOTHING IF NOT
CLC SMFDSN,CTXTTMSG+L'SKIP DSNAME OK?
BNE RETURN DO NOTHING IF NOT
MVC WEEK,=CL4'EVEN' ASSUME EVEN
DP QUO1,=PL1'2' DETERMINE EVEN/ODD
CP REM2,=PL1'0' EVEN?
BE NOCHANGE
MVC WEEK,=CL4'ODD' NO. THEN IS ODD
SPACE 1

NOCHANGE DS 0H
MVC MGCRTEXT(L'CMDTEXT),CMDTEXT COPY COMMAND INTO BUFFER
MVC MGCRTEXT+L'CMDTEXT-8(1),CTXTTMSG+L'IEE362A GET SUFFIX
MVC MGCRTEXT+L'CMDTEXT-4(4),WEEK SAY EVEN OR ODD
LA R0,MGCRTEXT-MGCRPL+L'CMDTEXT FIGURE OUT BUFFER LENGTH
STC R0,MGCRLGTH INSERT EXACT BUFFER LENGTH
SPACE 1
SLR R0,R0 CLEAR R0 FOR MGCR
MGCR MGCRPL ISSUE START COMMAND

void XIEE362A(struct ctxt * ctxtp) {
struct ctxtattr * ctxtattrp;
struct mgcrpl wmgcrpl;

if (!memcmp(ctxtp->ctxtacrn,"CTXT",4)) return;
if (ctxtp->ctxttxpn) return;
ctxtattrp = ctxtp->ctxttxpj;
if (ctxtattrp==NULL) return;
if (!memcmp(ctxtattrp->ctxttmsg, "IEE362A SMF

ENTER DUMP FOR ", 27)) return;
if (!memcmp(ctxtattrp->ctxttmsg+27, "SYS1.MAN",

8)) return;
memcpy(wmgcrpl.mgcrtext, "START CLRSMF,N=x",

16);
memcpy(wmgcrpl.mgcrtext+15, ctxtattrp-

>ctxttmsg+35, 1);
wmgcrpl.mgcrlgth = 16;
__asm(" XR 0,0\n MGCR %0"::"m"(wmgcrpl));

}

Platform: IBM System z (z/OS)

Problem:

System Programming -

user
exit to handle the SMF dataset
message (IEE362A) when a
particular SMF dataset is full

Programming in Assembler vs Metal C on System z

23

Metal C optimizes for newer target architecture
No code modification required

/bin/xlc

–O3 -qmetal

-S a.c

–qarch=10

@1L3 DS 0H 000010
LR 1,2 000010
AHI 2,1 000010
LLC 0,1(1,15) 000010
CIJE 0,0,@1L4 000010
ALHSIK 2,1,2 000010

24

/bin/xlc

–O3 -qmetal

-S a.c

–qarch=9

@1L3 DS 0H 000010
LR 1,2 000010
AHI 2,1 000010
LLC 0,1(1,15) 000010
LTR 0,0 000010
BRE @1L4 000010
LLC 0,2(1,15) 000010
ALHSIK 2,1,2 000010

Agenda

Enterprise COBOL for z/OS v5.1

z/OS XL C/C++ v2.1

Enterprise PL/I for z/OS v4.4

25

Enterprise PL/I

• Strategic Programming Language
– Significant use in business applications but also in

some scientific and engineering applications

• Advanced optimization technology
– Shares optimizing back-end technology with z/OS XL C/C++

• Enables timely delivery of leading edge optimization
and hardware exploitation to PL/I customers

• Time proven
– First Enterprise PL/I product released in 2001 (Enterprise PL/I for z/OS and OS/390 v3.1)
– Latest release of Enterprise PL/I for z/OS (v4.4) is based on same architecture

• Provides easy migration

• Shipped new release every year since 1999
– Improved optimization technology, z/Architecture exploitation, usability, middleware support, and

application modernization features.
– Addressed customer requirements

26

Enterprise PL/I V4.4

Exploits zEC12 and zBC12 processors

Exploits new Decimal-Floating-Point Zoned-Conversion Facility

PICTURE to FIXED BIN conversions were 40% faster

PICTURE to FLOAT DEC conversions were 4X faster

2% performance improvement over v4.3 (4.3 provides 5% performance improvements over v4.2)

Improved code for PIC to FIXED BIN conversions

Improved code for UTF-16 data

Improves Middleware support

Support latest CICS, DB2 and IMS

Improved diagnostic messages for SQL preprocessor

New built-in functions for Base64 encoding and decoding

New XML cleaning and normalization functions reduce convertor size
• Allows more to run in the same address space.

New support for sparse arrays reduces data transfer to XML convertors
• Improves throughput time

Increases programmer productivity and application modernization

UTF-16 PICTURE support

Improved compile time when LIST option is on by 4X

Compiler message to recommend code changes that will improve both compile time and run time

27
27

Exploiting Decimal-Floating-Point Zoned-
Conversion Facility With ARCH(9), the heart of the loop consists of these 17

instructions

0060 F248 D0F0 F000 PACK #pd580_1(5,r13,240),_shadow4(9,r15,0)

0066 C050 0000 0035 LARL r5,F'53'

006C D204 D0F8 D0F0 MVC #pd581_1(5,r13,248),#pd580_1(r13,240)

0072 41F0 F009 LA r15,#AMNESIA(,r15,9)

0076 D100 D0FC 500C MVN
#pd581_1(1,r13,252),+CONSTANT_AREA(r5,12)

007C D204 D0E0 D0F8 MVC _temp2(5,r13,224),#pd581_1(r13,248)

0082 F874 D100 2000 ZAP #pd586_1(8,r13,256),_shadow3(5,r2,0)

0088 D207 D0E8 D100 MVC _temp1(8,r13,232),#pd586_1(r13,256)

008E 5800 4000 L r0,_shadow2(,r4,0)

0092 5850 4004 L r5,_shadow2(,r4,4)

0096 EB00 0020 000D SLLG r0,r0,32

009C 1605 OR r0,r5

009E B3F3 0000 CDSTR f0,r0

00A2 EB00 0020 000C SRLG r0,r0,32

00A8 B914 0011 LGFR r1,r1

00AC B3F6 0001 IEDTR f0,f0,r1

00B0 6000 E000 STD f0,_shadow1(,r14,0)

28

With ARCH(10), it consists of just these 8 instructions – runs 4
times faster

0060 EB2F 0003 00DF SLLK r2,r15,3

0066 B9FA 202F ALRK r2,r15,r2

006A A7FA 0001 AHI r15,H'1’

006E B9FA 2023 ALRK r2,r3,r2

0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR f0,f0,r0

0080 6001 E000 STD f0,_shadow1(r1,r14,0)

Example: Given this code to convert
PICTURE to DFP

*process float(dfp);

pic2dfp: proc(ein, aus) options(nodescriptor);

dcl ein(0:100_000) pic'(9)9' connected;

dcl aus(0:hbound(ein)) float dec(16)
connected;

dcl jx fixed bin(31);

do jx = lbound(ein) to hbound(ein);

aus(jx) = ein(jx);

end;

end;

For more information
• Enterprise COBOL for z/OS Product information

http://www-01.ibm.com/software/awdtools/cobol/zos/

• Enterprise PL/I for z/OS Product information
http://www-03.ibm.com/software/products/us/en/plicompfami/

• z/OS XL C/C++ Product information
http://www-03.ibm.com/software/products/us/en/czos

• Rational Enterprise Modernization Products
http://www-03.ibm.com/software/products/us/en/category/SWY00

• z/OS Problem Determination Tools
http://www-01.ibm.com/software/awdtools/deployment/

• RFE Community
COBOL Compilers http://www.ibm.com/developerworks/rfe/?PROD_ID=698
PL/I Compilers http://www.ibm.com/developerworks/rfe/?PROD_ID=699
C/C++ Compilers http://www.ibm.com/developerworks/rfe/?PROD_ID=700

• Compilers and Application Tools user communities
Rational Café https://www.ibm.com/developerworks/rational/community/cafe/

• COBOL moderated screen cast with Kevin Stoodley & James Governor
http://www.youtube.com/watch?v=JLMqkuou2-s

29

http://www-01.ibm.com/software/awdtools/cobol/zos/
http://www-01.ibm.com/software/awdtools/cobol/zos/
http://www-03.ibm.com/software/products/us/en/plicompfami/
http://www-03.ibm.com/software/products/us/en/category/SWY00

30

31

Compiling at OPT(0), OPT(2), & OPT(3)

Intermediate code generated from C/C++
front-end passes directly to the back-end for
optimization and object code creation

OPT(0) – Performs basic optimizations such
as redundant code elimination, constant
folding…

OPT(2) – Performs more optimizations on
loops, removes unnecessary code constructs
and redundant computations

OPT(3) – An intensified version of OPT(2).

Performs additional low-level
transformations and optimizations
encompassing larger program
regions

32

Compiling at OPT(4), & OPT(5)
• Intermediate code generated from

compiler frontend passes to IPA for
more advanced optimization. Optimized
intermediate code is then passed to the
back-end for further optimization and
object code creation.

• OPT(4) builds on OPT(3) by invoking
inter-procedural analysis (IPA).
– Optimize the entire application as a

unit.

• OPT(5) adds deeper whole-program
analysis and more aggressive
optimizations.

• Profile-directed feedback (PDF),
iteratively refines a profile of how often
branches are taken and blocks of code
are executed in an application

33

	What’s current in compilers for the enterprise to improve application performance?
	Agenda
	IBM’s history of delivering leading-edge COBOL Compilers
	Enterprise COBOL for z/OS v5.1�GA’d June 21�
	Exploiting z/Architecture
	Advanced Optimizations
	Exploiting z/Architecture – Example�Decimal Divide Where Operands Exceed Packed Decimal Hardware Limits
	Advanced Optimization – Example�Instruction Scheduling for Performance
	Feature Highlights
	System Administration Considerations
	Tools Ecosystem Support
	Best practices
	Developer Trial
	Agenda
	IBM z/OS 2.1 XL C/C++
	Advanced Optimization Technology
	New C & C++ Language Features
	Slide Number 18
	Debug Improvements
	z/Architecture Exploitation & Advanced Optimization
	HTM with IBM XL C/C++
	Metal C
	Slide Number 23
	Slide Number 24
	Agenda
	Enterprise PL/I
	Enterprise PL/I V4.4
	Exploiting Decimal-Floating-Point Zoned-Conversion Facility
	For more information
	Slide Number 30
	Slide Number 31
	Compiling at OPT(0), OPT(2), & OPT(3)
	Compiling at OPT(4), & OPT(5)

