
WebSphere Application Server:

Enabling incremental Java batch
modernization

Speaker Name and Title

22 © 2014 IBM Corporation

• Batch modernization defined

• WebSphere Java Batch Overview

• Unique value of WebSphere Java Batch on z/OS

• Enabling incremental adoption

• Summary and Wrap-Up

Agenda

33 © 2014 IBM Corporation

What is batch modernization?

44 © 2014 IBM Corporation

Many definitions exist ... They have in common that there is minimal human
interaction and expectation of results at a future time rather than immediately.

Request

Response

Request

Response

In general:

Interaction is one-for-one ... that is,
request with matching response

Expectation is for response to follow
request in a near-immediate time frame

Examples: Inventory query, Website
shopping transaction, eBanking account
withdrawal

Online Processing

Submit

Complete

Start

End
Process

In general:

Interaction is one-for-many... that is, initial
request results in many results from
processing

Expectation is for results to finish within some
determined non-immediate time frame

Examples: Month end tax calculation, Period
end statements and reports, Data
transformation, Data analysis

Bulk Processing

What is Batch (or Bulk) Processing?

Interaction and ResponsivenessHigh Low

55 © 2014 IBM Corporation

What is driving batch modernization?

Improve Process Execution

There is a continuous need to streamline the delivery and execution of services that
support real time, or Online, customer interactions as well as business critical bulk
data processing, or Batch, workloads.

Maximize Resource Utilization

Companies must leverage common skills and technologies to move away from
organizational silos that drive up development and maintenance expenses.

Reduce Costs

Emphasis continues to be on reducing costs attributed to business supporting
services, while at the same time delivering maximum performance.

Companies are facing significant business pressures to deliver services
with utmost efficiency and resource usage, while also reducing costs

66 © 2014 IBM Corporation

24 x 7 x 365 Access
Users of your online systems
expect availability at all hours.
Users from other parts of the
world means availability is
expected around the clock.

Mobile Users
Users are no longer tied to a
desk and a computer. Today
users have access to mobile
computing devices that are with
the user wherever they may be.
Day or night, home or office.

Online

Batch

Online

Batch

In the past ... Today ...

Windows of time which used to be dedicated to batch processing are shrinking,
while batch workloads continue to grow as online transactions increase

The need to process batch work has not gone away.

The need to perform batch concurrent with online has emerged.

The need to process batch work has not gone away.

The need to perform batch concurrent with online has emerged.

Batch processing is evolving

77 © 2014 IBM Corporation

It's not just a shrinking batch window... it's also the pressures to reduce
duplication in staff and infrastructures supporting batch and online environments

Batch Support Staff Online Support Staff

Maintaining homegrown infrastructures for separate online and batch
processing results in increased costs and decreased business focus

Maintaining homegrown infrastructures for separate online and batch
processing results in increased costs and decreased business focus

Redundant staff and IT are under review

88 © 2014 IBM Corporation

Integration with existing processes and
technologies allow for preserving investments

and incremental modernization of batch

Integration with existing processes and
technologies allow for preserving investments

and incremental modernization of batch

Evolving batch processing to leverage Java
enables alignment with online application skills,

and more efficient skills utilization

Evolving batch processing to leverage Java
enables alignment with online application skills,

and more efficient skills utilization

Consolidation around common tools and
technologies enable shared services, code re-

use and support optimizations

Consolidation around common tools and
technologies enable shared services, code re-

use and support optimizations

Online and Batch execution within a common
runtime, managing workloads by priority to

respond to capacity fluctuations and meet SLAs

Online and Batch execution within a common
runtime, managing workloads by priority to

respond to capacity fluctuations and meet SLAs

11:00pm Midnight 1:00a 2:00am 3:00am

Common Support Staff

JavaJava

Existing
Batch

Existing
Batch

Existing
Batch

Existing
Batch

Integrated Batch and Online Shared Services and IT Infrastructure

Enablinging Incremental AdoptionBetter Resource and Skills Utilization

WebSphere Batch addresses these issues

99 © 2014 IBM Corporation

WebSphere Batch Overview

1010 © 2014 IBM Corporation

Think of IBM WebSphere Java Batch function as a "batch container" operating
alongside the other containers of WAS itself:

Container-managed Services

Web Container

Application
Web Modules

Container-managed Services

EJB Container

Application
EJB Modules

Container-managed Services

Batch Container

Batch Applications

WebSphere Application Server Runtime Environment

Batch job dispatching and
management system

Job resiliency services
(skip record, step retry)

Data record read and write
support services

Parallel job management
and execution services

Checkpoint and job
restart services

COBOL module call
services

Batch is fundamental to the WAS Runtime

Note: WebSphere batch capabilities are fully integrated in WebSphere
Application Server (WAS) as of v8.5. For installations prior to WAS

v8.5, the WebSphere Compute Grid product is required.

Note: WebSphere batch capabilities are fully integrated in WebSphere
Application Server (WAS) as of v8.5. For installations prior to WAS

v8.5, the WebSphere Compute Grid product is required.

Batch
Services

1111 © 2014 IBM Corporation

This picture illustrates some of the key components of the WebSphere Java
Batch model

Job
Dispatching

FunctionJob Properties
Declaration File

Job Execution
Endpoint

Batch
Applications

Job Execution
Endpoint

Batch
Applications

Development
Libraries and

Tooling Support
Job

Management
Console1

2

3

4

5

1. Job Management Console (JMC) provides a view into the batch
environment and allows you to submit and manage jobs

2. Job declaration file (xJCL) provides information about the job to be
run, such as the steps, the data input and output streams and the
batch class files to invoke

3. The Job Dispatching function interprets the xJCL, dispatches the
job to the endpoint where the batch application resides, and
provides ability to stop and restart jobs

4. The Execution Endpoint is a WAS server in which the deployed
batch applications run

5. The development libraries and tooling assist in the creation of the
batch applications

A comprehensive Java
batch execution platform

Built on the proven Java runtime environment
of WebSphere Application Server

Batch Management and Execution Model

1212 © 2014 IBM Corporation

A batch job consists of one or more steps executed in order specified in xJCL:

xJCL
Properties of the overall job

Job Step 1
• Java class
• Input and output declarations
• Other properties of the step

Job Step 2
• Java class
• Input and output declarations
• Other properties of the step

Job Step n
• Java class
• Input and output declarations
• Other properties of the step

Job • The xJCL is submitted through the Job
Management Console

• Interfaces provided: HTTP browser, command Line, Web Services, RMI

• The Job Dispatching function interprets xJCL
and determines which endpoint has batch
application class files deployed

• The Dispatching Function invokes the job and
passes to the endpoint an object containing all
the properties in xJCL

• Steps are executed in order, with conditional
step processing if declared

• The Dispatching Function maintains awareness
of the job state

• When the job ends, the job output file is
accessible through Job Management Console

Batch Job and Batch Job Steps

1313 © 2014 IBM Corporation

Job Declaration File - xJCL
Conceptually, xJCL is just like normal // JCL -- it describes the job to be run and the context in
which the job is to operate. The difference is xJCL is written in XML:

<?xml version="1.0" encoding="UTF-8" ?>
<job name="MyJob" ... ">

<substitution-props>
<prop name="inputDataStream" value="/tmp/input-text.txt" />
<prop name="outputDataStream" value="/tmp/output-text.txt" />
<prop name="checkPoint" value="10" />

</substitution-props>

<job-step name="MyStep1">
<classname>com.ibm.ws.batch.MyStep1</classname>
<batch-data-streams>

<bds>
<logical-name>inputStream</logical-name>

<props>
<prop name="PATTERN_IMPL_CLASS" value="com.ibm.websphere.batch.EchoReader" />
<prop name="FILENAME" value="${inputDataStream}" />

</props>
</bds>

</batch-data-streams>
</job-step>

:
<job-step ...>
</job-step>

</job>

Note: this is a trimmed version of actual xJCL

Comparable to the JCL "JOB" card. It
sets job-level information along with
some substitution properties
Substitution properties may be
overridden at submission time.

Comparable to the JCL step. It names
the Java class that implements the
step function.
The "Batch Data Stream"
implementation is specified. In this
example it defines the class that
implements the input stream.

If job consists of more steps they
are specified in sequence.

This tells WebSphere Java Batch what
to run and how to run it

The Job Definition

1414 © 2014 IBM Corporation

A key service provided by the batch container – it abstracts data read and write
operations so your code may focus on the business logic:

Batch Data Stream Framework

Supplied "patterns" for data access:
• JDBC read or write operations
• JPA read or write operations
• File read or write operations
• z/OS Data Set read or write operations

Your Java class that implements the
supplied framework and provides the

specific data access logic
Example: SQL query for JDBC

Your job step Java class, which
implements the business logic

required for the batch processing
Data object

passed based on
your mapping in

BDSF class

• Batch Data Stream retrieves result set from
data persistence store (DB, file, etc.)

• Batch Data Stream maps data fields to data
object

• For each record in result set, BDSF invokes
your job step, passing a data object
mapped to your specifications

• Your job step code stays focused on
business logic, not Java stream handling
and data object formatting

Batch Data Stream Framework (BDSF)

1515 © 2014 IBM Corporation

The batch container provides the ability to checkpoint at intervals based on
either record count or time. The container keeps track of last checkpoint.

Batch Container

Java Batch
Application

xJCL says:
Checkpoint = 5

Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record

Commit
Processing

Last good
checkpoint
persisted

• Checkpoint interval (record or
time) specified in the xJCL

• This is a function of the batch
container, not your application
code

• As checkpoint intervals are
reached, container commits and
records the checkpoint attained

• In the event of a failure, job may
be restarted at the last good
checkpoint

• Set the checkpoint interval based
on your knowledge of balance
between recoverability and
efficiency

Transactional Checkpoint Processing

1616 © 2014 IBM Corporation

Provides a container-managed way of tolerating data read or write errors so the
job itself may continue, while information about data errors can be logged.

Batch Data Stream
Framework

Java Batch
Application

Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record
Data Record

xJCL tells BDSF:
• How many data read

or write exceptions to
consume

• What exceptions to
consider for skip-
record processing

• Alternatively, what
exceptions to exclude
from skip-record
processing

• Objective: allow job to continue if a data read or
write exception occurs in BDSF

• Why fail a million-record job just because of one or two read or write
exceptions? Better to complete the job and allow auditors to go back
and investigate the few exceptions.

• Skip-Record processing allows BDSF to keep
exception and not surface it to your application

• This takes burden off your application code to explicitly handle data
read or write exceptions that may occur

• A "skip-record listener" may be called so your code
may log information about skipped records

• xJCL properties allow you to specify how many
records may be skipped and what exceptions to
include or exclude from consideration

• When skip limit is reached, further exceptions are
surfaced to application. That may result in job
failing and going into a restartable state

• Normal restart-at-checkpoint would occur

Skip-Record Processing

17

Provides a means of retrying a job step in the event of an exception thrown. If
successful on retry then the job continues and your processing completes.

xJCL tells Container:
• How many step retries may be

attempted
• What exceptions to consider for

retry-step processing
• Alternatively, what exceptions to

exclude from retry-step processing
• Whether to process a delay before

attempting a retry of the step

• Objective: retry step in attempt to allow overall job to
continue and complete when an unanticipated
exception is thrown

• This is at a level higher than skip-record ... this is if an
unhandled exception is thrown when the job step
function is called

• Batch container falls back to last good checkpoint and
restarts from there

• A "retry-step listener" may be called so you can
perform custom action upon retry-step processing

• xJCL properties allow you to specify how many retry
attempts will be performed and what exceptions to
include or exclude from consideration

• When retry limit is reached, job will go into restartable
state

On exception, retry
up to n times

Retry-Step Processing

1818 © 2014 IBM Corporation

The Parallel Job Manager (PJM) provides a way to "parameterize" logic so
parallel sub-jobs may act on a slice of the overall batch job data:

One job processing 1M customer records

1 - 100K

100K - 200K

900K - 1M

Ten sub-jobs
acting on a
1/10th slice of
data each

Sub-job

Sub-job

Sub-job

or

Time = 0 Time = 1 Time = 10

Objective is reduction in
overall job completion time
Which shortens overall batch window if other
jobs are dependent on this job for completion

• xJCL specifies whether job is to be
run in parallel, and if so how:

• One JVM, multiple threads
• Multiple JVMs

• Your "parameterizer" code is called at
start so data range may be
segmented into sub-job slices

• Job is submitted, then PJM
dispatches "sub-jobs" to act on each
data range

• "Parameterizer" code constructs data range query
strings to be used by each sub-job

• PJM manages "top-job" and all
subordinate "sub-jobs" to completion

Parallel Job Manager

1919 © 2014 IBM Corporation

The Job Dispatching Function has a Message Driven Bean (MDB) interface. IBM
supplies a program that integrates schedulers with WebSphere Java Batch:

Enterprise
Scheduler
Example: IBM Tivoli

Workload Scheduler, CA
Workload Automation CA 7,

or BMC Control-M

WSGRID Program
Shell script, BAT file or JCL job

Input Queue

Output Queue

Message Driven
Bean Interface

• WSGRID is seen by Scheduler as any other batch job it starts and monitors

• WSGRID interacts with Job Dispatching, submitting the job and processing Java
batch job output back to STDOUT or JES Spool if z/OS

• WSGRID program stays up for life of job in WebSphere Java Batch

• To the Scheduler, WGRID is the Java Batch job ... but behind WSGRID is all the
WebSphere Java Batch function we'll discuss

WebSphere MQ or the integrated
Default Messaging of WAS

Integration with Enterprise Schedulers

2020 © 2014 IBM Corporation

WebSphere Batch on z/OS

2121 © 2014 IBM Corporation

WebSphere Batch
Java Batch running in WAS z/OS

WebSphere Batch
Java Batch running in WAS z/OS

All the WAS z/OS value statements apply to
WebSphere batch on z/OS as well, such as:

Reliability and availability

Shared data in Parallel Sysplex

Mapping parallel jobs onto clustered WAS
servers in Sysplex with shared data
infrastructure

Batch job classification with WLM

SMF recording of batch activity

Integration with enterprise scheduler functions
with MQ BINDINGS

Local communications when co-located with
applications and deata

Unique Value of WebSphere Batch on z/OS

2222 © 2014 IBM Corporation

Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Java 5) on z9 to WAS 8.5
(Java 7) on zEC12

~6x aggregate hardware and software improvement comparing WAS 6.1 Java5 on z9 to WAS 8.5 Java7 on zEC12

Performance of Java and WAS on z/OS

2323 © 2014 IBM Corporation

zAAP engines are Java offload engines. They enhance the financial picture of
the z/OS platform, and they free up GP for other key subsystem processing

This is really a function of the Java SDK and the dispatcher of z/OS.
The zAAP-enabled Java SDK is packaged with WAS z/OS, so WAS
automatically takes advantage of zAAPs if they’re present and configured

Keys to understanding value of zAAPs:
• zAAP processors have a considerably lower

acquisition cost compared to GPs
• Offloading Java to zAAP frequently allows growing

non-Java work to live within existing GPs, thus
avoiding capital acquisition

• Monthly license charges based on capacity of the
system can be influenced by the presence of
zAAPs, which do not count towards charges

Java Offload to zAAP Specialty Engines

2424 © 2014 IBM Corporation

The submitted job can be tagged with a WLM "transaction class," which may
then be used to map the job to a WLM Service Class or Reporting Class:

Job
Dispatching

Function

Job Execution
Endpoint

Batch
Applications

Configurable rules map job
submission to a "Transaction

Class" (TC) name

xJCL

TC name sent to endpoint
where batch job will run

WLM "CB" subsystem rules
map TC name to Service

Class and Reporting Class

z/OS WLM

Batch job runs under that
Service Class and data is

gathered under the
Reporting Class

Classifying to a Service Class
allows WAS z/OS to place work
into separate servant regions
based on Service Class

Classifying to a Reporting Class
allows WLM to gather system
information for all work running
under that Class

Workload Manager (WLM) Classification

2525 © 2014 IBM Corporation

WAS z/OS supports the use of activity recording using the SMF 120.9 record.
WebSphere Java Batch extends the record with batch activity information:

WebSphere Java Batch
Compute Grid z/OS V8

WAS z/OS V8.5

SMF Buffers and
Data Sets

• Job activity records allow you to understand
how your system is being used and to provide
chargeback data

• Activity recording available on all platforms,
but only z/OS uses SMF, which is an
extremely efficient logging mechanism

• Provides historical records for usage analysis
and batch capacity planning

• Information captured:
• Job submitter
• Date and time of submission
• Final job state
• Total CPU used for job
• General processor used for job
• zAAP usage derived: Total - GP = zAAP

SMF 120.9 Activity Recording

2626 © 2014 IBM Corporation

JZOS is a set of functions that make using Java on z/OS much easier and
useful. The JZOS class libraries may be used in batch application development:

Job Execution
Endpoint

Batch
Applications

JZOS Libraries

z/OS

Examples of some z/OS services available:
DfSort - interface for invoking DFSORT
MvsConsole - class with static methods to interface with the MVS console.
MvsJobSubmitter - class for submitting batch jobs to JES2 or JES3 from a Java program
PdsDirectory - class for opening a PDS directory and iterating over its members.
WtoMessage - simple data object/bean for holding a WTO message and its parameters.
ZUtil - static interface to various z/OS native library calls other than I/O.

WebSphere Java Batch and JZOS are not
mutually exclusive ... the JZOS class

libraries may provide exactly what you need
for your batch application to access z/OS

functions and services

Use of JZOS Services

2727 © 2014 IBM Corporation

WOLA provides an efficient low-latency mechanism to exchange data bi-
directionally between WAS z/OS and other address spaces:

WAS z/OS

Applications

CICSWOLA

IMSWOLA

BatchWOLA

USSWOLA

ALCSWOLA

Leverage WOLA to call out from batch
programs to co-located applications

Very efficient byte-array transfer

Bi-directional

Outbound -- Java in WAS invokes program in external

Inbound -- Program in external invokes Java in WAS

Two phase commit, identity assertion

Supplied JCA resource adapter for applications
going outbound

Supplied native APIs for cases where their
usage is indicated

COBOL, C/C++, PL/I, High Level Assembler

31-bit and 64-bit modules

C
ro

ss
-m

em
or

y
...

 n
o

TC
P

/IP
 s

ta
ck

 o
ve

rh
ea

d

WebSphere Optimized Local Adapters

2828 © 2014 IBM Corporation

The COBOL Container provides a way to call and execute COBOL modules in
the WAS z/OS server address space ... a very efficient way to call COBOL

1. Batch application runs in the WAS
z/OS servant region address space

2. The COBOL container is created as a
separate LE enclave in the address
space

3. COBOL DLLs are accessed using
STEPLIB or LIBPATH

4. COBOL Container code provides the
"glue" between the Java environment
and the native COBOL

5. Java batch code uses supplied class
methods to create the container and
use it

6. Call stubs provide an easy way to call
the COBOL DLL and marshal data
back and forth

7. The call stubs are generated by a
supplied utility that uses COBOL
source to understand data bindings

8. JDBC Type 2 connections created in
the Java batch program may be
shared into the COBOL module in the
COBOL Container

COBOL
Container
Call Code

WebSphere Java
Batch Container

COBOL Container LE Enclave

COBOL Module

Call
Stubs

WAS z/OS Servant Region Address Space
Separate LE Enclave from COBOL Container

Call Stub
Generator

IBM Rational
Application Developer

Compiled COBOL Library
PDSE or USS Directory

1

2

3

4
5

6

7

Lines of code needed to invoke COBOL many times
less than other means of calling COBOL from Java

8

COBOL Container

2929 © 2014 IBM Corporation

There are several ways in which a WebSphere Java batch solution can be
scaled up to provider greater batch throughput and shorter execution windows:

Controller
Region

Servant Region

Servant Region

Controller
Region

Servant Region

Servant Region

Sysplex-Enabled Data Subsystems
DB2, CICS, IMS, MQ

Sysplex-Enabled Data Subsystems
DB2, CICS, IMS, MQ

Parallel Sysplex Data Sharing

WebSphere eXtreme Scale
Caching Grid

PJM

1

3

4

5

1. Vertical
WAS z/OS servant regions provide a
type of "vertical cluster," giving you
additional batch compute resources

2. Capacity on Demand
CPU processors may be dynamically
added to a z/OS LPAR, increasing the
capacity for processing work

3. Horizontal
WAS z/OS clustering on top Parallel
Sysplex provides near-linear
scalability up to 32 nodes with a
central data sharing model

4. Parallel Processing
The Parallel Job Manager may be used
to partition data into sub-jobs, which
may then be run on multiple threads,
different servants, or different servers
on other LPARs.

5. Data Caching
WebSphere eXtreme Scale provides a
data caching grid from which Java
batch may fetch and store data

2

Scaling the Java Batch Solution on z/OS

3030 © 2014 IBM Corporation

There's also a Java batch container for CICS … and z/OS

Job Scheduler, or
Dispatcher

function
JCL
file

Endpoint
environments

Batch jobs can access DB2 or
VSAM files in use by online CICS
apps ..

JCICS call non-Java business logic

Automatic Checkpoints, Restarts.

Batch
Application

Java
Appl's

z/OS JZOS
Batch Launcher

Batch
Application

WebSphere
Application Server

Job declaration,
or xJCL file

Batch
Application

CICS services available
through JCICS

CICS TS 4.2 or 5.1
Batch Feature Pack

JCL
file

Batch
Application

COBOL, PL/! and
Java applications

z/OS 1.13 or 2.1
Batch Container

"Batch Containers" are not Limited to WAS

3131 © 2014 IBM Corporation

Enabling Incremental Adoption

3232 © 2014 IBM Corporation

Customers have thousands of existing legacy batch
applications

In many cases it would not be feasible to replace significant
portions of the existing batch processing at a single time

WebSphere Batch is designed with key features to facilitate
a step-wise approach to Java batch modernization

Integration with existing processes, applications, operating
system services and technologies allows WebSphere batch
to be introduced incrementally, while still providing
immediate value

A primary benefit of WebSphere batch is the ability to introduce Java batch
to existing batch processing over time in an incremental fashion

An evolution not a revolution

3333 © 2014 IBM Corporation

The close proximity and shared database
connections enable an extremely efficient and

effective means of calling COBOL from Java

The close proximity and shared database
connections enable an extremely efficient and

effective means of calling COBOL from Java

Tight integration with z/OS Workload Manager
enables policy based prioritization of batch and

online workloads to achieve business goals

Tight integration with z/OS Workload Manager
enables policy based prioritization of batch and

online workloads to achieve business goals

Integration with enterprise schedulers enables
WebSphere batch to be introduced without

disruption into existing processes

Integration with enterprise schedulers enables
WebSphere batch to be introduced without

disruption into existing processes

Integration with Existing Processing Prioritized Workload Management

Job Dispatching
Function

Job Execution
Endpoint

Batch
Applications

z/OS WLM transaction
class name

z/OS WLM

Enterprise
Scheduler

Example: IBM Tivoli
Workload Scheduler,

CA Workload
Automation CA 7, or

BMC Control-M

WSGRID Program
Shell script, BAT file or
JCL job

Input Queue

Output Queue

Java and COBOL Integration

COBOL
Container
Call Code

WebSphere Java
Batch Container

COBOL Container LE Enclave

COBOL Module

Call
Stubs

WAS z/OS Servant Region Address Space
Separate LE Enclave from COBOL Container

The ability to share services and infrastructure
between batch and online processes allows for

step-wise convergence of batch and online

The ability to share services and infrastructure
between batch and online processes allows for

step-wise convergence of batch and online

Leveraging Shared Infrastructure

Common Support Staff

Key capabilities for incremental adoption

3434 © 2014 IBM Corporation

Wrap-Up and Summary

3535 © 2014 IBM Corporation

 Improve batch execution efficiency

Parallel Batch Jobs – Execute a single large batch job that is broken into chunks and executed
concurrently across a grid of resources.

Dynamic Online & Batch Runtime – Dynamically provision resources as capacity changes to
meet operational goals.

 Leverage common skills and IT resources

Replace Homegrown Batch Frameworks – Migrate from a native batch runtime (e.g. C / C++,
PL/I, and COBOL) to Java and reduce costly proprietary batch infrastructures and focus
development resources on creating business value.

Share business logic across Online and Batch – Leverage the proven WebSphere platform
to share logic across both batch and online, reducing maintenance and development costs.

Optimize the cost of batch and online

Leverage System z Specialty Processors – Offload Java workload from GP to less expensive
zAAP processors, to gain processing capacity and

Batch as a Service – Expose business capabilities as a service and leverage usage
accounting features for tracking and chargeback, to

Evolve to a single infrastructure for both online and batch that enables you
to leverage existing applications and focus resources on business logic

WebSphere Batch Summary

3636 © 2014 IBM Corporation

Business Drivers:
• Incremental adoption of Java batch job architecture and dependencies

• Reduce costs of batch execution by exploiting System z specialty engines

• Take advantage of more readily available Java skills

Overview of Usage:
• Existing batch with a very large base of COBOL batch (~21,000 COBOL modules and 40,000

batch jobs per day) with considerable interdependencies

• Leverage COBOL Container to allow Java jobs to more efficiently call existing COBOL assets

• Share JDBC T2 connections between Java and COBOL for one transactional unit of work

• Leverage WSGRID to integrate with existing enterprise scheduler

Business Value:
• Incremental modernization through integration of COBOL / Java and enterprise scheduler

• Reduced maintenance and dev costs by migrating to newer WebSphere technology

• Streamlined coding efforts, encouraging technology innovation and faster development

• Increased overall server performance, helping reduce associated software licensing fees

A leading wholesale provider of reinsurance, insurance
and other insurance-based forms of risk transfer.

Real Customer value from WebSphere Batch

3737 © 2014 IBM Corporation

Business Drivers:
• Take advantage of newer development tools and developer skills

• Increase agility ... faster time-to-market for changes

Overview of Usage:
• Month-end, quarter-end and year-end batch jobs

• WebSphere Java batch spread across 6 LPARs, with heavy interaction with DB2

• WSGRID for integration with existing enterprise scheduler function

• Parallel Job Manager for shortened overall completion time

• Workload balancing via z/OS WLM integration for SLA goal mapping

Business Value:
• Increased application agility, and time-to-market for requirements changes

• Reduction in JCL jobs from 22,000 to less than 100, with most changes now parameter driven

• More flexible and dynamic document generation enabling adherence to regulations

• Approx 70% Java processing offload to zAAP specialty engines improving G-CPU capacity

• Scalable both up and out utilizing WebSphere Java batch as an underlying execution platform

A major global financial institution.

Real Customer value from WebSphere Batch

3838 © 2014 IBM Corporation

Topic Link

Guide to WebSphere on z/OS Collateral
–Updated master list of links to collateral

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102205

WebSphere Java Batch
–Overview, z/OS Specifics, Quick Start
–Presentation, whitepaper, videos

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101783

Why WebSphere Application Server for z/OS
–Executive Brochure
–History of release enhancements
–Technical Presentation, videos

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532

WAS for z/OS Liberty Profile
–Executive Brochure
–Quick Start Guide and Samples

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

WebSphere Optimized Local Adapters (WOLA)
–Overview, whitepapers, videos
–History of WOLA updates

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

Training – z/OS Wildfire Workshops
–WAS for z/OS v8.5
–WebSphere Compute Grid (WebSphere

Batch)

http://www‐03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1778

WebSphere on z Virtual User Group
–Join the User Group
–Download previous webcasts

http://www.websphereusergroup.org/zos

WAS on z/OS and Java Batch Collateral

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102205
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101783
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101532
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1778
http://www.websphereusergroup.org/zos

3939 © 2014 IBM Corporation

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is driving batch modernization?
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

