

How to Perform Problem Determination and Analysis in a Virtualized Enterprise - An Example with Discussion

Bob Neill and Ernie Gilman IBM

August 8th, 2011 Session Number 10119

Agenda

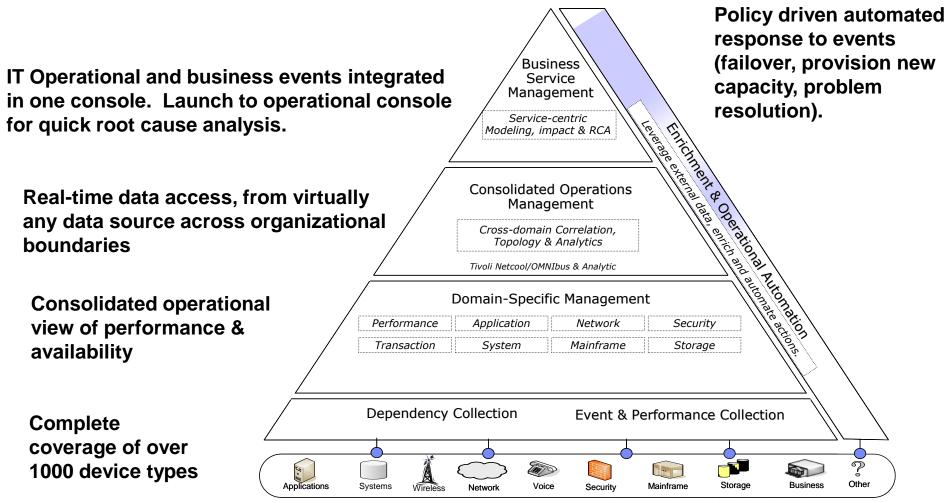
- Challenges of Virtualization Monitoring
- Discovery and Business Service Management
- End-to-end monitoring/tracking of transactions
- Drill down into applications, virtual machines, hypervisors and OSes (z/OS, z/VM and VMware)
- How to perform problem determination and analysis for virtualized environments
- Differences in problem determination and analysis across hypervisors.
- z/OS and z/VM Monitoring and Tuning:
 - Overall System Health. z/VM has a System Health workspace, analogous to what z/OS gives with with the z/OS Management Console. Points to look at (on z/VM
 - LPAR usage Allows you to look at the utilization of all your LPARS
 - Processor usage Within an LPAR, are the processors being utilized effectively
 - Sizing a Linux Guest. What is the right size?

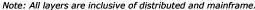
Monitoring Challenges

- Guest OS goes offline...should you alert on the offline system?
 - Tie into your change control process or self-service catalog to know when a guest OS should be offline
- How do you view Performance, Availability & Capacity Planning Reports when resources are constantly changing?
- Too many snapshots using up disk space
 - Set limits on the number of snapshots and monitor
- Machine has been offline for too long
 - Setup process to delete the image with approval from the owner
- Guest OS is extremely low utilization for a long time
 - Setup process to contact the owner and find out whether resource is still in use
- Monitor VMs to see whether they are using all of their allocated resources
- Resources and monitoring topologies are constantly changing due to new VMs, VMotion/Partition Mobility
- Capacity Planning and what-if scenarios

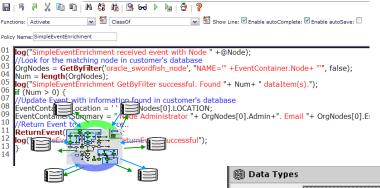
Anticipating Cloud/Virtualization Management Challenges The Virtualization Space is Growing Fast

Consolidation not only bring benefits, but new challenges.


- Virtualized environments are heterogeneous
 - IBM Power Systems
 - System z
 - Vmware
 - Microsoft Virtual Server/Hyper-V
 - Solaris
 - Citrix
 - XenServer
 - KVM
- Requires key performance management insights into virtualized environments
 - Overall resource utilization of servers?
 - Resources allocated per VM?
 - Resource utilization per VM, and how can I optimize it?
- Cloud introduces additional complexity
 - Dynamic provisioning
 - Dynamic de-provisioning
 - Capacity on-demand

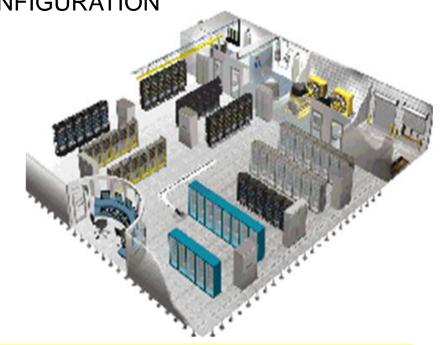


Service Availability and Performance Management



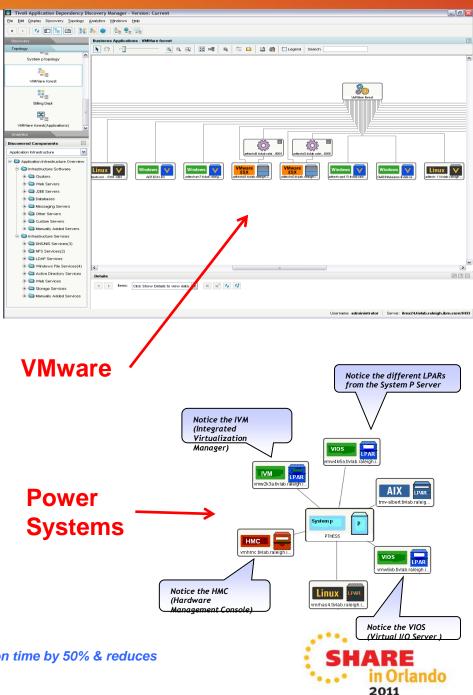
Tivoli Netcool/Impact v5.1.1 Highlights

- Use for Maintenance Windows
- Enrich data with Business App.
- Enrich with contact information
- Enrich with SLA requirements
 - Priority 1, 2, 3
 - With enriched data, easier to build reports


IBM Tivoli Application Dependency Discovery Manager (TADDM)

IBM Tivoli Application Dependency Discovery Manager initiates and assists planning for consolidation by providing best-of-breed discovery capabilities

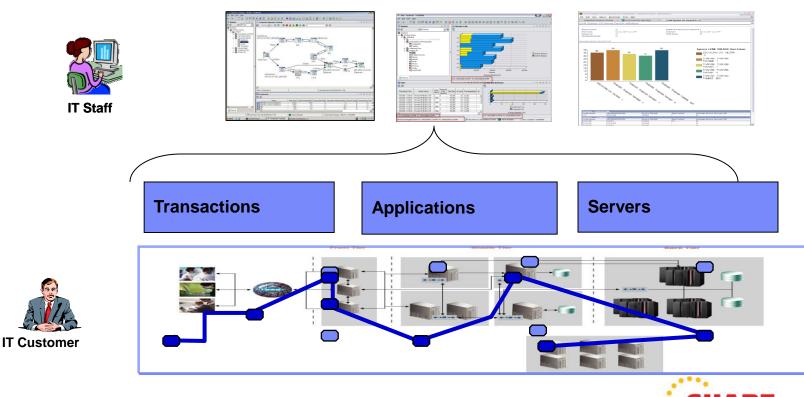
Discovers the COMPONENTS in a Data Center Environment


 CENTRALIZES and VISUALIZES the CONFIGURATION of the Components in a Data Center **Environment**

- Discovers the RELATIONSHIP of the Components in a Data Center Environment
- DISCOVERS AND TRACKS THE CHANGES in a Data Center Environment

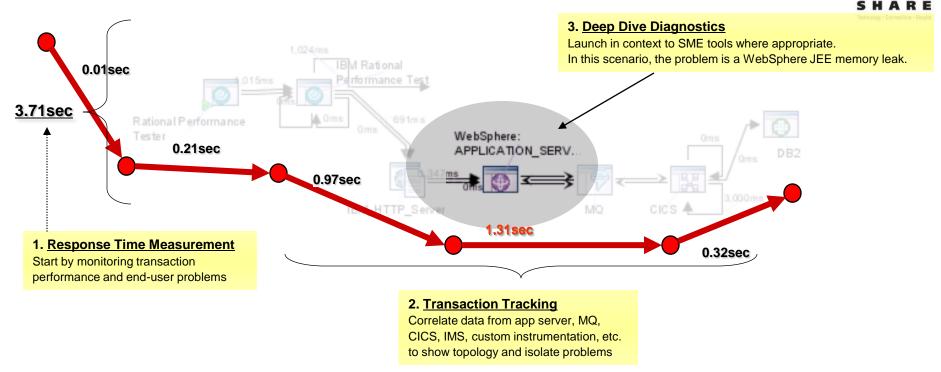
Now that I have virtualized, things seem more complex.

- Discover physical & virtual environments & their dependencies.
 Customer are using this for problem determination, change window planning, placement of new workloads.
- Track and report on configuration changes for quick problem isolation
- Compare configurations across like resources or against the "gold standard"
- Discover both the hypervisor and the virtual machines.


Tivoli Application Dependency Discovery Manager reduces incident isolation time by 50% & reduces application roll backs by 10-30%.

Composite Application Management and Resource Monitoring

2011


- Monitor <u>application response</u> to ensure business expectations are met
- Understand transaction flows over complex topologies
- Monitor infrastructure performance and availability
- <u>Diagnose</u> application performance issues
- Increase application availability and customer satisfaction
- Improve MTTR and MTBF

End-to-End Monitoring, Tracking and Diagnosis

Transaction Root Cause Analysis

- 1. Sense End User
 Experience and alert on threshold violation
- 2. Isolate by measuring performance data against baseline through entire infrastructure
- 3. Diagnose and repair through launch-in-context into deep-dive diagnostics

Challenges with Managing a Virtual Environment,

How do I plan capacity needs to incorporate future consumers?

My cloud is running out of capacity – how can I optimize the environment to free up space?

How do ensure compliance to business policies?

How do I isolate problems across my virtualized server, storage & network environment?

STANDARDIZE

Operational Efficiency

VIRTUALIZE

ncrease Utilization

CLOUD

Dynamic provisioning for workloads

SHARED RESOURCES

Common workload profiles

AUTOMATE

Flexible delivery & Self Service

How do I prevent resource bottlenecks?

CONSOLIDATE

Physical Infrastructure

Traditional IT

How do I demonstrate capacity improvements for upgrading our infrastructure?

Virtualization Monitoring

- Hypervisors such as z/VM, VMware and Hyper-V only provide visibility into what they manage
- ITM provides in ONE tool:
 - Dynamic thresholding
 - Capacity planning
 - Reporting for performance trends
 - Monitoring across servers, storage phys & virt view
 - Predictive trending
 - Integrated monitoring for Virtualization, Applications, Middleware, and more.
 - Response Time is the most important metric for a business application whether it's running on physical servers or VMs
 - End-to-End Transaction Monitoring
 - Storage
 - Network Monitoring

Key Metrics – Physical & Virtual

- Server Problems
 - VM, Host, Cluster CPU, Memory Utilization
 - VMware CPU % ready
 - Vmware Memory over commit (Active Memory/Physical Memory)
 - VMware Swapping/ballooning
 - VM Swapping
 - Absence of processes, growth of process resource consumption
 - Host server failures
 - Unallocated resources
 - Storage and Networking problems (see next 2 slides)
 - Pool utilization on Power Systems

Physical & Virtual Storage & Network Problems

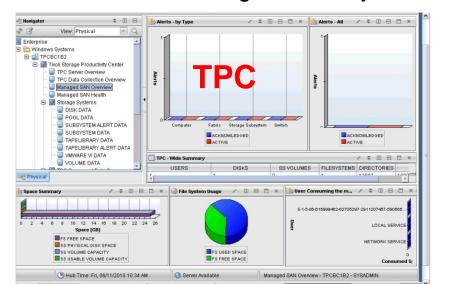
SHARE

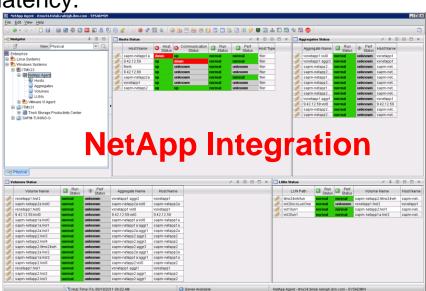
Storage Problems

- Data store issues
 - May be caused by insufficient space # of VMs, storage usage growth, utilization of datastore, changes in configuration
- Storage Latency/response time issues
 - May be caused by too many VMs associated to same LUN (Volume), HBA bottlenecks, backend storage issues (disk, etc.)

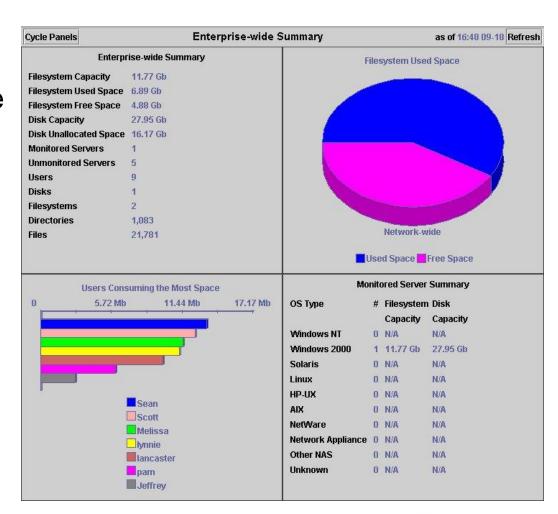
Network Problems

- Network response time problem
 - May be caused by too many VMs sharing NICs without necessary throughput capacity, changes in configuration
- Network connection problem
 - May be caused by unavailability of connection to physical network (physical switch / port)



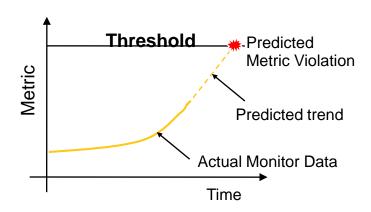

Storage Considerations

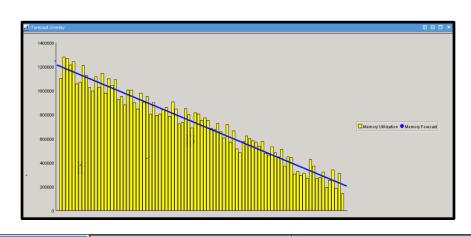
- Storage Monitoring is critical.
 - VCenter only provides a portion of the picture. It does not show you full utilization of the storage volumes and storage subsystems
 - VCenter does not provide information about whether space is available to allocation more resources.
- Adaptive Monitoring for Disk I/O and Latency which can be very difficult to define a threshold.
- Monitor Datastores for Disk Latency including queue, device, and kernel latency
- For NetApp Storage, use the NetApp Agent


 For other storage, use TPC (Tivoli Storage Product Center) or other monitoring tools to ensure the storage is healthy and has low latency.

Monitor Storage Efficiency Utilization with Tivoli Storage Productivity Center

- View capacity utilization by computer, virtual machine or storage system
- File System and database storage utilization details
- Identify wasted space on volumes based on age, file type, or any other user defined filter





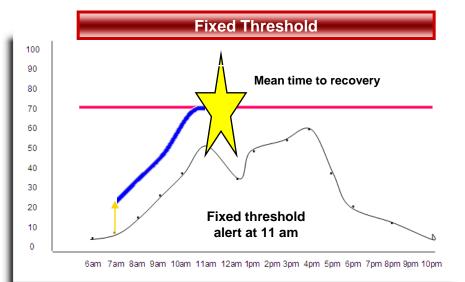
Performance Analyzer for:

- •Vmware and Power Systems (CPU Trends, Disk Utilization, Memory, Network) out of the box
- Recommend setting up Analytic Task for:
 - VMware Cluster s
 - VMware VM CPU Percent Ready
 - •Other hypervisors such as z/VM, Hyper-V, etc.

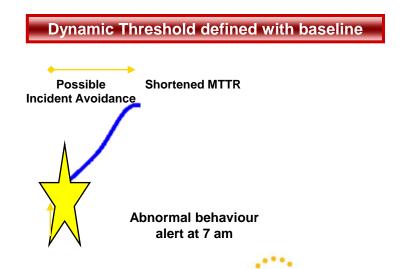
	rorecast status					
	System Name	Confidence	Strength	Number Of Samples		
©	TestWinXP-7 👚	48	1	89		
₩	TestWinXP-8 👚	83	3	89		
₩	TestWinXP-9 👚	87	3	89		
₩	TestWinXP-10 👚	90	3	89		
₩	TestWinXP-4 👚	100	3	89		
₩	TestWinXP-5 👚	89	3	89		
®	TestWinXP-6 👚	86	3	89		
®	TestWin2003-2 👚	82	3	89		
₩	Test/Vin2003-3 👚	89	3	89		
●	TestWin2003-4 👚	73	3	89		

TE / Day Forecast						
	System Name	Data				
®	TestWinXP-7	829				
●	TestWinXP-8	3400				
●	TestWinXP-9	3642				
●	TestWinXP-10	4370				
®	TestWinXP-4	2318				
®	TestWinXP-5	2206				
®	TestWinXP-6	925				
©	TestWin2003-2	5094				
©	TestWin2003-3	3430				
®	TestWin2003-4	2519				

30 Day Forecast 🔲 🖯 🗆			Ⅲ 90 Day Forecast		
Ī	System Name	Data		System Name	Data
	TestWinXP-7	987	●	TestWinXP-7	1398
	TestWinXP-8	4231	₩	TestWinXP-8	6397
	TestWinXP-9	4484	₩	TestWinXP-9	6682
	TestWinXP-10	5395	€	TestWinXP-10	8068
	TestWinXP-4	2870	●	TestWinXP-4	4310
	TestWinXP-5	2718	®	TestWinXP-5	4054
	TestWinXP-6	1151	®	TestWinXP-6	1741
	TestWin2003-2	6185	€	TestWin2003-2	9032
	TestWin2003-3	4229	€	TestWin2003-3	6311
	TestVin2003-4	3135	©	TestWin2003-4	4740


Incident Avoidance - Dynamic Thresholds

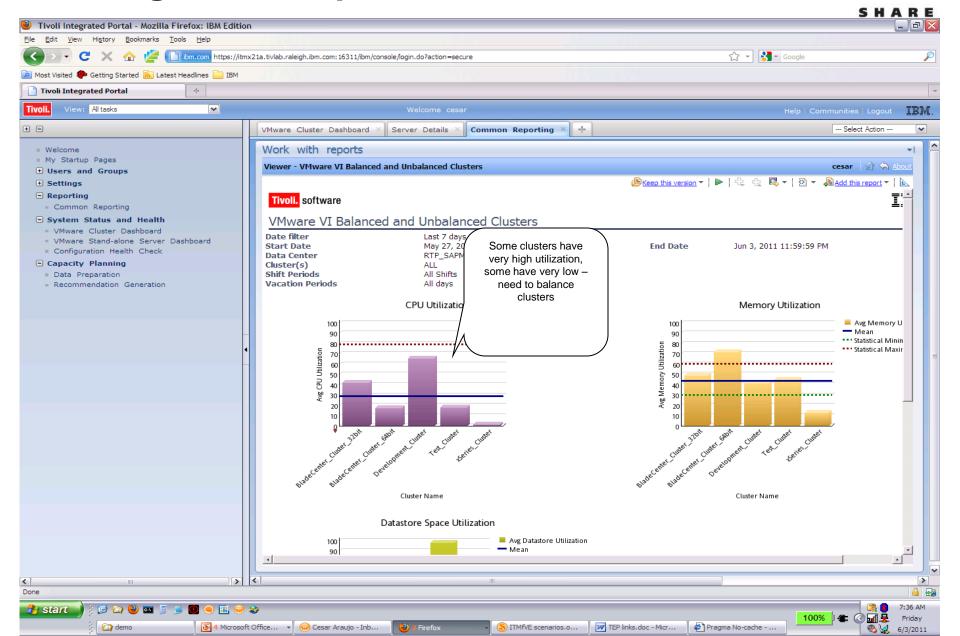
SHARE
Technology - Connections - Results


Dynamic Thresholds can calculate baseline values using one of several statistical functions based on historical data from the Tivoli Data Warehouse and/or agents.

This allows tracking deviations **from the norm** as predictors of future problems.

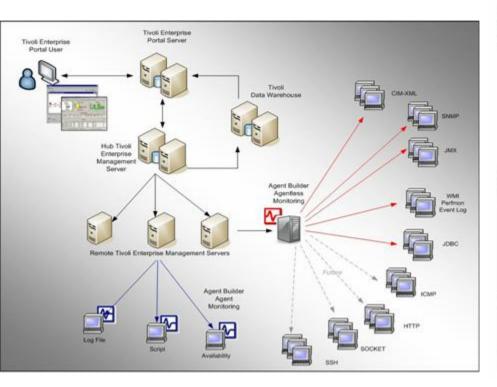
- No automated approach to define
- No warning of abnormal behaviors prior to peak periods
- No flexibility in the monitoring environment

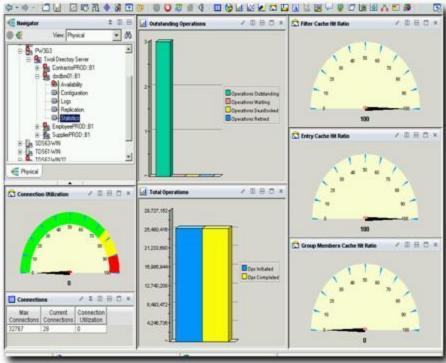
- Automated definitions with + or variations
- Proactive warning for abnormal behavior occurring before peak periods or during non-peak periods


Historical Collection Recommendations

- Historical Collection Best Practices paper:
 - https://www.ibm.com/developerworks/wikis/display/tivolimonitoring/Historical+Collections+Best+Practices+in+Tivoli+Monitoring+6.2.2
- TCR Reports for:
 - Vmware
 - Power Systems
 - Hyper-V
 - KVM
- Complete Warehouse Planning Spreadsheet:
 - http://www-01.ibm.com/software/brandcatalog/ismlibrary/details?catalog.label=1TW10TM1Y
- 6.2.2 Offers Granular Warehousing (configuration per Agent)
 - Filter out CD/DVD and Floppy Drive Data
 - For Data Stores are shared across multiple ESX servers, consider filtering
- Performance Analyzer uses Summarized Data
- Adaptive Monitoring/Dynamic Thresholding uses detailed data
- Out of the box TCR reports are written for Summarized data
- For Cloud Environments, build reports that show change in addition to performance data

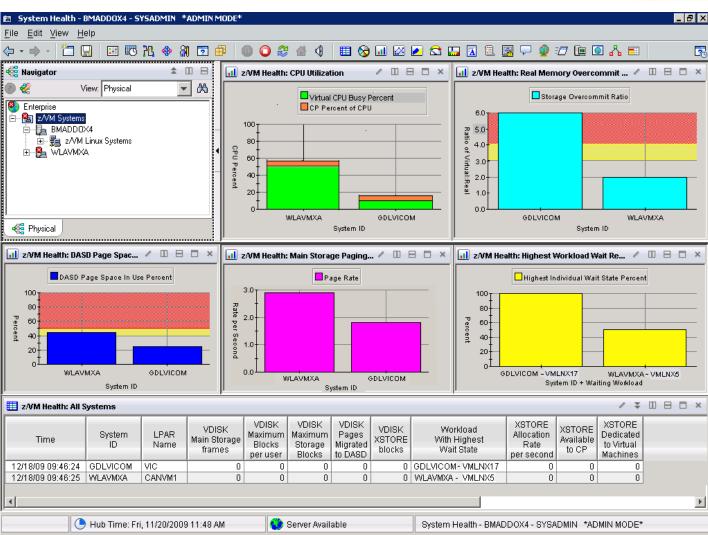
Leverage TCR Reports





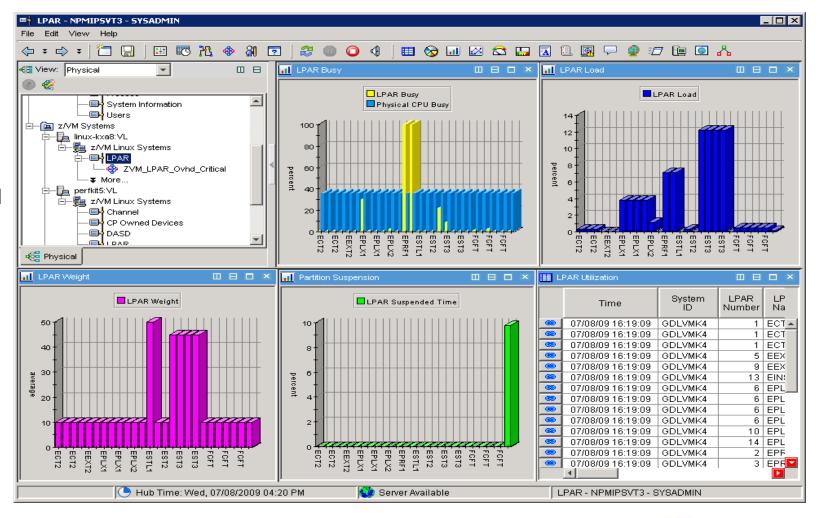
Leverage Agent Builder for Custom Monitoring solutions

Wide range of protocols supported for Custom Agents Extend monitoring of home-grown / custom applications quickly & easily

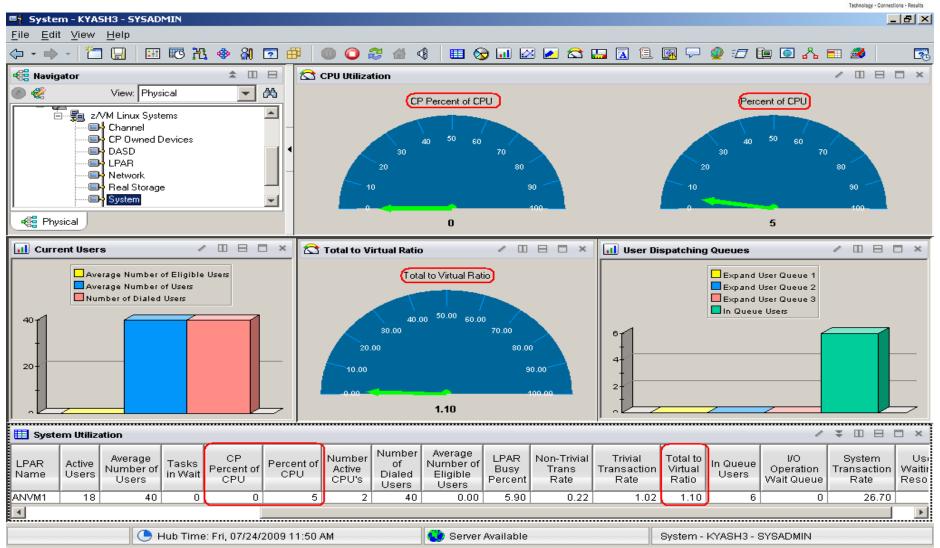


z/VM Overall System Health

At a quick glance you can see the %CPU usage, what your overcommit ratio is, the number of users in a wait state, and paging rates of all your z/VM systems

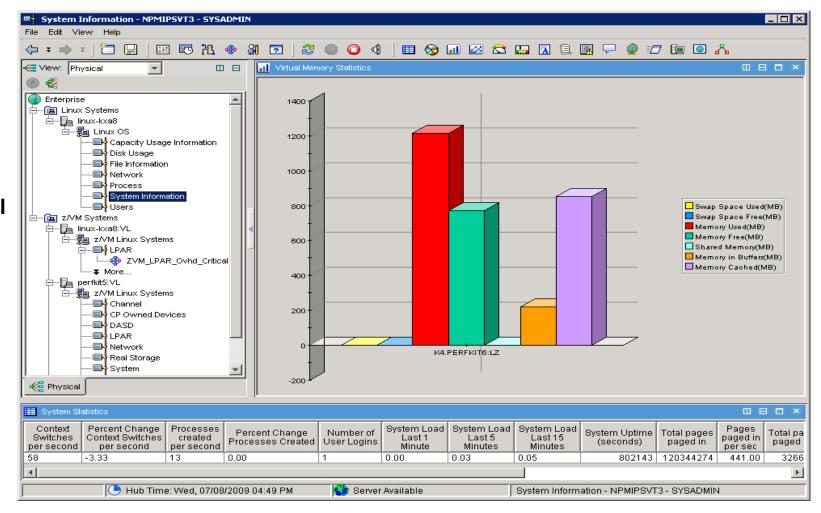


LPAR Usage


LPAR
workspace
allows you
to look at all
your LPARs
across the
CEC

-

Processor Utilization



Sizing a Linux Guest

Memory
usage of a
particular
Linux virtual
machine

Some Other Sessions of Interest

9916: Business Decisions for Cloud Computing

Tuesday, 11:00 AM-12:00 PM Europe 4

9476: Virtual Linux Server Disaster Recovery Planning

Wednesday, 1:30 PM-2:30 PM Oceanic 7

9917: Top 10 Tips for z/OS Network Performance Monitoring with OMEGAMON

Wednesday, 1:30 PM-2:30 PM Europe 11

9459: Cloud Computing with IBM System z

Thursday, 8:00 AM-9:00 AM Oceanic 7

9469: Managing z/VM & Linux Performance Best Practices

Thursday, 1:30 PM-2:30 PM Oceanic 8

9470: Mainframe Optimization: Making System z the Center of Enterprise Computing

Thursday, 4:30 PM-5:30 PM Oceanic 6

9308: TCP/IP Performance Management in a Virtualized Environment

Friday, 8:00 AM-9:00 AM Oceanic 7

QUESTIONS?

