
Using a message-based approach
to integrate your CICS system with
your entire IT infrastructure.

Business Integration Solutions

November 2002

By Mike Brooks, Senior IT Specialist,
WebSphere Foundation, IBM Hursley, UK

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 2

Introduction
The programming components that comprise your IT system must exchange

information when they collaborate in a complex business application. When

they run on different operating systems and must communicate across your

network, it presents a considerable integration challenge. A message-based

approach can provide the solution. Programmed components can exchange

information in the form of messages—a string of bytes meaningful to both

applications that reference it. So you can focus on business logic instead of

the complexities of different operating systems and network protocols.

Although IBM CICS® Transaction Server provides a wide variety of functional-

ity, IBM WebSphere® MQ (formerly IBM MQSeries®) software enhances the

server with realtime messaging. This white paper discusses how a message-

based architecture can provide effective solutions to CICS Transaction Server

integration issues. It offers scenarios to help you decide which solution is most

appropriate to your business integration needs. All designed to help you realize

the full potential of your transaction-processing environment.

A proven transaction-processing system
During the last 35 years, CICS has evolved into a widely used transaction-pro-

cessing system on many companies’ mainframes. Most businesses today use a

variety of client devices to schedule work, which can then be serviced by one or

more CICS regions collaborating with other products, like database managers

and file systems. The latest release, IBM CICS Transaction Server for z/OS™,

offers a broad range of interfaces that enables clients to connect to the server

and to run applications. The clients include everything from dumb terminals

that use 3270 data streams to Enterprise JavaBeans (EJB) components, which

call CICS Transaction Server using Remote Method Invocation over Internet

Inter-ORB Protocol (RMI over IIOP).

Contents

2 Introduction

2 A proven transaction-processing

system

3 Realizing the full potential of your

transaction-processing environment

5 Making the connection across

disparate applications

6 CICS adapter

8 The WebSphere MQ-CICS bridge

14 Summary

14 References

15 For more information

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 3

Realizing the full potential of your transaction-processing environment
Even with CICS connectivity functionality, combining CICS Transaction Server

with the robust message-based architecture of WebSphere MQ software allows

you to effectively address almost any CICS Transaction Server integration

issues. When the programming components run on different operating systems

and communicate across a network, you must address significant program-

ming challenges to achieve the desired level of integration. A message-based

approach enables programmed components to exchange information in the

form of messages.

Instead of exchanging information directly from one application to another,

messages are placed in queues—data structures that store them until they

are retrieved by an application. A queue manager maintains the queue and is

responsible for the integrity and persistence of the message. It can also deliver

messages across a network to other queue managers. As you create new applica-

tions—or extend existing ones—to address changing business needs, you can

only realize the full benefits that specific software solutions provide if you can

integrate them with other disparate software components.

Mergers and acquisitions
When organizations merge, you must combine the software components you’ve

used in isolation to provide a cohesive set of services across your entire enter-

prise. With CICS Transaction Server as a central component, the current set of

connectivity options don’t always allow it to integrate with software running on

other platforms. WebSphere MQ technology offers a viable approach to resolving

these issues with its ability to connect applications on disparate platforms and

exchange messages between those applications and CICS Transaction Server.

Providing assured, once-only delivery of important messages, workload balanc-

ing across its queues and failover functionality when a platform is unavailable.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 4

Updating business-critical information
Traditionally, CICS has enabled companies to process enterprise data online dur-

ing the workday—while batch updates to the data occur during off-peak hours.

As your company extends its business across different time zones or increases the

available period of service, the window for batch updates decreases. In fact, the

higher number of updates to enterprise data may be so significant that you require

a move away from batch processing altogether. A message-driven approach allows

updates to be scheduled through CICS Transaction Server by asynchronously

writing them to queues. They can then be processed when the opportunity arises,

greatly reducing the need for a batch window. This means the system workflow

does not have to be interrupted to run the batch update. Asynchronous processing

means you can use spare capacity in the system to make updates.

Maintaining transaction integrity
One of the most robust features of messaging technology allows a program to work

asynchronously. A client program can schedule a request using a message queue,

and the queue manager can acknowledge acceptance of it. The client can then

continue other work or disconnect—and the message can be processed later. The

client receives a quick response and is assured that the updates will occur when

the server which processes the message can do so. The queue manager delivers the

message, once and only once, to a program that services the request. This program

may reside on another system and may not be available at the time the client runs.

Using CICS Transaction Server—as a client or a server—with WebSphere MQ gives

you a fully integrated approach to provide this level of functionality. Operating

much like CICS Recovery Manager, WebSphere MQ uses IBM Multiple Virtual

Storage (MVS™) log streams to hold copies of messages when it accepts them from

clients. If WebSphere MQ is restarted before the message is passed, that message

persists on the log stream.

Addressing specific requirements
Some applications have a specific requirement—for auditing, logging or some other

purpose—to queue requests before they are executed. By writing WebSphere MQ

commands into your CICS applications, you can meet particular requirements

when CICS Transaction Server creates or receives a request.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 5

Event-driven transactions
Automation—where an action is started by an event instead of a person—has

become an increasingly popular component of large, and sometimes long-lived,

applications. Many of the techniques employed in this approach work well within

a message-driven architecture. CICS Transaction Server can provide applications

that form one part of the solution. However, those applications require the services

that WebSphere MQ offers to help you automate event-driven transactions. CICS

Transaction Server can put a message on a queue and continue with other tasks.

The message is read and processed by the appropriate application, which can’t

directly interfere with CICS Transaction Server. And, through WebSphere MQ,

the transaction process completes without any human intervention.

Connecting new and old applications
Over time, your organization may have developed an extensive inventory of soft-

ware components to use within CICS systems. As new business needs arise, you

want to reuse these components in new solutions—without having to restructure

them. You can save money by reducing the need to create new applications and by

shortening development time. Sometimes a CICS component provides a proven

core business function that may be difficult or risky to re-create or modify for

some new purpose. CICS Transaction Server workload components fall into two

categories: business logic and IBM 3270 technology-based devices. In those cases,

WebSphere MQ helps CICS Transaction Server integrate both pure business logic

and 3270 technology-based transactions into a message-driven solution without

the need to modify the existing function.

Making the connection across disparate applications
Business logic programs receive input and deliver output in a format independent

of the client device from which they are run. A communications area (COMMAREA)

can be used to input data to a program and to overwrite it, or a separate one can

be used for output. For the purposes of this white paper, business logic programs

refer only to those programs that can be called using a COMMAREA interface.

WebSphere MQ allows you to invoke this business logic from software that can’t

otherwise interface with CICS Transaction Server.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 6

The second set of programs has been written to run from 3270 technology-based

devices—many of which existed from when individuals initiated almost all work

from IBM VTAM® terminals. These programs frequently contain a mixture of

presentation and business logic and are not easily restructured. And when you

introduce new devices, you often have to reface these applications. WebSphere MQ

software provides sample applications that you can customize to use within CICS

Transaction Server to allow a 3270 program to interface with message queues.

Applications that can interact with WebSphere MQ, but not directly with CICS

Transaction Server can take advantage of the collaboration between WebSphere

MQ and CICS Transaction Server—enabling you to reuse 3270 components with-

out having to change them.

CICS adapter
WebSphere MQ software and CICS Transaction Server run at separate address

spaces within IBM OS/390® or IBM z/OS systems, and they communicate using

components provided by both products. CICS Transaction Server has a task-

related user exit (TRUE) interface that allows it to forward executed information

to another subsystem. WebSphere MQ software provides a CICS adapter—a set

of components that you can run within a CICS region—to allow it to create a con-

nection through a TRUE interface to a queue manager. It also allows application

programs running within CICS Transaction Server to use the connection to send

and receive messages. Figure 1 shows the main components in this architecture.

WebSphere MQ queue managerCICS region

Task-related user exit

API stub

CICS sync point manager

Connection manager

Message manager

CKQC

CKTI

CICS task manager

CICS termination

Figure 1. CICS adapter

Application program

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 7

A CICS region can use a single adapter to connect to one queue manager. And sev-

eral CICS regions can share a workload through a common queue manager. The

adapter provides CICS Transaction Server with a control transaction, or CKQC, to

start, stop and customize the interface between CICS Transaction Server and the

queue manager. You can run this transaction from a program list table (PLT) pro-

gram during the initialization of the CICS region or from a 3270 terminal once the

region has started.

Scenario 1: WebSphere MQ aware applications
A CICS application program is considered to be WebSphere MQ aware when it

contains commands provided by the WebSphere MQ application programming

interface (API). Figure 1 shows this as the application program that interacts with

the TRUE interface to access the services of the queue manager. These programs

must be link-edited with a special stub provided by the CICS adapter, so they can

use this interface. It also shows other components of CICS Transaction Server

involved in the execution of the transaction interacting with the TRUE interface

as part of this process.

This scenario offers the most appropriate solution when you are creating a new

CICS application or extending an existing one so that, using WebSphere MQ as the

transportation mechanism, it can send requests to another trading partner appli-

cation running outside of CICS. The CICS application will contain WebSphere

MQ API (MQI) commands, and, as a result, it will have limited potential for reuse

for future projects without WebSphere MQ. This application will also be tightly

coupled at the message-content level to the one it communicates with because both

must share the same command structure so that each application can deconstruct

received messages.

The CICS component can send one or more messages without requiring a reply. If it

does this, it can rely on WebSphere MQ to retain the message until it is read by the

partner application—even if this occurs after the CICS application has completed

its transaction or after the CICS subsystem has been shut down. Or the CICS com-

ponent can wait for a reply message from the partner system. However, when using

this approach, you should consider that the application must be able to deal with

instances where the reply message does not arrive immediately or is never received.

The four remaining scenarios allow WebSphere MQ clients to communicate with

CICS Transaction Server and schedule the execution of various types of transactions.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 8

Scenario 2: WebSphere MQ aware programs started through a task-initiator transaction
If your solution involves creating new components on both the client side and

within CICS, consider this scenario or scenario 3. Figure 1 also shows the use of

another component supplied as part of the CICS adapter. A task-initiator transac-

tion, or CKTI, can monitor a specific message queue across the connection to the

queue manager. Several CKTI commands can monitor a set of queues, although no

more than one instance can be used with a particular queue from within a single

CICS region. Each instance of CKTI is defined, started and stopped using the

CKQC adapter-controller transaction. When one or more messages arrive in a mes-

sage queue to meet a particular trigger condition, the CKTI transaction detects this

event. You can configure the CKTI to start a separate named CICS transaction to

process the message(s) on this queue. Having started a new instance of this named

transaction, CKTI then continues to monitor the queue for other trigger events.

The named transaction started by CKTI is, in effect, the same as the one described

in the first scenario. The transaction contains the stub, which allows it to access

the CICS adapter through the TRUE interface and typically contains commands

to retrieve one or more messages from the queue. It may also contain instructions

to put messages onto other queues or carry out any of the functions supported by

standard CICS APIs.

With both of these scenarios, the application programs must contain MQI com-

mands and, as a result, may have a limited level of reuse. You can’t invoke the

task-initiator transaction as part of an extended unit of work. It can’t modify the

security context for any named transactions it starts. So scenarios 2 and 3 offer a

specialized solution for using WebSphere MQ with CICS.

The WebSphere MQ-CICS bridge
Another approach you can use to run a CICS application from a message to

overcome these restrictions is through the WebSphere MQ-CICS bridge. The

WebSphere MQ-CICS bridge allows a WebSphere MQ application to call an

application running under CICS Transaction Server in one of two ways. The first

involves using a message queue as the input and output to a distributed program-

ming link (DPL) request running within CICS Transaction Server.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 9

The second allows the invocation of a CICS 3270 transaction and provides input

and output in the same way. In either case, the programs running within CICS

Transaction Server do not contain MQI calls and are unaware that they have been

invoked by WebSphere MQ, making them fully reusable components.

With this scenario, you can easily set up and maintain your messaging infrastruc-

ture. Ideal when you want a basic solution that doesn’t rely on more elaborate

messaging formats. By avoiding these complexities, scenario 2 cannot propagate a

user ID from the client to a CICS application or participate in an extended unit of

work. But some solutions may not require this functionality.

Scenario 3: WebSphere MQ-CICS bridge and DPL requests
A CICS business logic program is linked together by the linkage editor, a tool that

pulls together all the compiled programming components and converts them into a

load module that can then run in the deployed environment. When this occurs, the

CICS business logic program receives input in a COMMAREA and returns its output

in the same way. The WebSphere MQ-CICS bridge provides a CICS transaction and

an associated CICS program that can monitor a particular message queue across the

connection between the local CICS region and a queue manager. A WebSphere MQ

client application can write a structured message to this queue. This message must

contain information in a predefined format that the monitoring transaction can use

to decide how to handle the message. Several formats are possible, each starting

with a block of data called an MQMD header. This field contains control informa-

tion used by the monitoring transaction like the message format type, along with

optional information, such as a reply-queue identifier and a user ID.

The information that follows the MQMD field can simply be the name of the applica-

tion program to run within CICS, with the option to include data that the program

can receive as its COMMAREA. You can include other control information with an

MQCIH header, which must follow the MQMD field. The MQCIH field can include

unit-of-work information for a sequence of DPL requests or pseudo-conversational

controls needed when running a 3270 application, as outlined in scenario 4. The

bridge DPL transaction can set some of the MQCIH fields in any response message

for use by the client application when the request has been serviced.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 10

Figure 2 shows the main components of this architecture. A connection must exist

between the queue manager and CICS region, both running in the same MVS sys-

tem. You can achieve this connection using the adapter, under the control of the

CKQC transaction, as described earlier in this paper.

You must start a bridge-monitoring transaction (CKBR) to look for messages arriv-

ing on a particular queue. Several monitoring transactions can run concurrently to

manage a set of queues in this way. When the message arrives, the monitoring trans-

action detects it and starts a bridge DPL transaction to process the message. The

monitoring transaction continues to look for other messages arriving on the queue.

You can set up the bridge DPL transaction to run requests using a system user ID or

the user ID of the requester.

The DPL bridge task reads the message from the queue. From within the message,

the task finds the name of a CICS application program, any input data it requires

and, optionally, the name of a message queue to send a response to. Next, the DPL

bridge transaction sets up a COMMAREA containing the input data and links to the

named program, returning any output COMMAREA to the reply queue after the

program has ended. The WebSphere MQ client application can use this mechanism

either synchronously or asynchronously. It can wait for a response by monitoring a

particular queue, or it may send a message and continue processing other transac-

tions or even terminate without waiting for CICS Transaction Server to process the

request. If the client runs on the same system as CICS Transaction Server, it can

monitor the transmission queue for a response. If it is remote to CICS Transaction

Server, the client can use WebSphere MQ to route the response message from the

transmission queue to one defined to its local queue manager.

Each DPL request executes in isolation, and no state is preserved in CICS to tie up

a series of requests that a client might make. So, if the client calls CICS Transaction

Server more than once, each piece of work is treated separately because the server

doesn’t retain any information to tie them together. The WebSphere MQ monitoring

transaction and DPL bridge transaction run within the same CICS region. The pro-

gram targeted by the DPL request can be made eligible for routing to another CICS

region. All to help balance the workload more effectively.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 11

This scenario allows you to create or reuse business logic components and integrate

them with client applications that can build and optionally receive sent messages

through WebSphere MQ. From the CICS perspective, this is the recommended

approach to create new applications, regardless of whether they are invoked from

WebSphere MQ or from some other mechanism. The client must be aware of any

COMMAREAs used by the CICS component, but the CICS program doesn’t need

to know anything about the client side. And to understand and use WebSphere

MQ headers, you only need a minimum level of skill to write to the client side. As a

result, maintenance is considerably simplified. Scenario 3 also has other security

and transactional controls that the previous scenarios do not. Many enterprises

have numerous CICS applications written specifically to run on 3270 devices.

These applications are often difficult to rewrite. However, CICS Transaction

Server has introduced functionality that allows it to run on a range of client types.

Scenarios 4 and 5 describe this approach.

Scenario 4: WebSphere MQ-CICS bridge and 3270 transactions
Reusing 3270 technology-based applications has been a challenge with CICS

Transaction Server. It was initially addressed in IBM CICS/ESA®Transaction Server. It was initially addressed in IBM CICS/ESA®Transaction Server. It was initially addressed in IBM CICS/ESA , Version 3 with

Front-End Programming Interface (FEPI) and then through the 3270 bridge

component—introduced in CICS Transaction Server, Version 1.2. The WebSphere

MQ-CICS bridge provides components that use the underlying 3270 bridge func-

tion to address the challenge more effectively. As with DPL requests, you can use

the same WebSphere MQ-CICS bridge-monitoring transaction to detect messages

arriving on a particular queue.

z/OS

Connection
CKQC

CICS

Figure 2. WebSphere MQ-CICS bridge with DPL1

Connection
manager

Queue manager

Transmission
queue

Optional MQPUT response
Bridge DPL
transaction

Business
logic

program
LINK (optionally with input COMMAREA)MQGET request

Bridge monitor

Start transaction

MQGET browse request
Request queue

RETURN (optionally with input COMMAREA)

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 12

This monitoring transaction starts a separate transaction to process each message

request. The initiated transaction reads the message from the queue and within

that message finds the identity of a CICS 3270 transaction to invoke. Other compo-

nents in the message are used as input to the application program associated with

the 3270 transaction, which is then scheduled to be executed. Not only does this

solve the problem of reusing 3270 applications, it does so without CICS Transaction

Server being aware that the transaction is being handled separately.

When the CICS 3270 application runs, it executes in a special bridge-transaction

environment. Within this, the bridge-exit component—provided by WebSphere

MQ—intercepts most API calls from the 3270 application to either basic mapping

services (BMS) or terminal control. CICS Transaction Server processes all other

API requests to its resource managers, exactly as though the transaction had been

started from a 3270 device. If the 3270 application issues a receive command, the

bridge exit maps the input message to an application data structure for the program

to use. If the application issues a send command, the bridge exit takes the applica-

tion data structure of the program and maps it to a WebSphere MQ message. When

the 3270 application terminates, this message is written to a reply queue, where the

application that initiated the request can read it.

Connection
manager

Transmission
queue

z/OS

Queue manager

MQGET request

Request queue

Figure 3. WebSphere MQ-CICS bridge with 3270 transactions

MQPUT response

Request queue
MQGET browse request

Request queueRequest queueRequest queue

Connection

Bridge monitor

CKQC

CICS Transaction Server

Start transaction

Bridge transaction

Bridge
exit

Bridge monitor

Send

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 13

Unlike DPL requests, 3270 transactions can be pseudo-conversational. This means

CICS Transaction Server maintains internal conversation state in a control-block

structure representing a virtual 3270 terminal device, similar to those used by

VTAM terminals connected to CICS Transaction Server. You can specify timeout

values in the System Initialization Table or in the message headers, so that CICS

Transaction Server can detect inactive conversations and discard unwanted control

blocks associated with them. The primary restriction with this method is that the

3270 transaction must run within the same region as the monitoring transaction,

which means workload balancing is not supported. However, it is totally recover-

able in the event of a transaction abend, or system outage. Figure 3 shows a sample

bridge-exit program.

If you want to integrate a non-CICS platform with CICS 3270 applications using

WebSphere MQ and you’re running on CICS Transaction Server, Version 1.2 or 1.3 for

IBM OS/390, then you should use this scenario. As with scenario 3, you must use mes-

sage headers to control the pseudo-conversation between the client and the 3270

application and to propagate any security context. By running the CICS bridge, you

can’t route the 3270 application to another CICS region. Instead, it must run alongside

the monitoring transaction listening for messages arriving on a particular queue.

Despite this restriction, it still remains a robust solution. You can also use this solu-

tion if you want totally automated application recovery in the event of a system outage.

Scenario 5: WebSphere MQ-CICS and Link3270 bridge with 3270 transactions
The release of CICS Transaction Server, Version 2.2 offers new functionality, called

Link3270 bridge. This function allows a 3270 technology-based application to be

wrapped with a layer that receives input and sends output in COMMAREAs. The new

mechanism can be driven as a DPL request using the MQ monitoring transaction.

The Link3270 bridge provides support for dynamic-transaction workload balancing

by using transaction routing, making it suitable to balance workloads within an IBM

CICSPlex® system. It is completely recoverable in the event of a transaction abend,

providing superior performance to the WebSphere MQ-CICS bridge.

Using a message-based approach to integrate your CICS system with your entire IT infrastructure.

Page 14

Scenario 5 uses the Link3270 bridge, available only with CICS Transaction

Server, Version 2.2 for z/OS. This solution overcomes the restrictions associated

with scenario 4. If you want to integrate WebSphere MQ clients with CICS 3270

applications, this scenario has the potential to become the solution of choice.

Summary
As your organization continues to integrate disparate systems to build more

complex solutions—or as the result of mergers or acquisitions—WebSphere

MQ can provide a proven, reliable option to connect many clients to CICS

Transaction Server. With the reduction in operational batch windows, you

need an asynchronous messaging mechanism to move from batch to online

processing with your CICS systems. Some applications require that requests be

reliably queued prior to execution, typically for logging or auditing purposes.

WebSphere MQ has the robust functionality you need to make this happen.

Using automation in complex, long-lived business applications means that

recoverable asynchronous messaging is an essential part of these solutions,

which you can achieve by combining WebSphere MQ with CICS. Instead of

building completely new applications, you can also effectively reuse legacy

CICS application components in a message-driven architecture—either as busi-

ness logic or to be run from 3270 devices—using the components provided by

WebSphere MQ.

References
To download the IBM manuals listed below, visit:

ehone.ibm.com /public/applications/publications/cgibin/pbi.cgi

WebSphere MQ for z/OS V5.3 Concepts and Planning Guide: GC34-6051

WebSphere MQ for z/OS V5.3 System Setup Guide: GC34-6052

WebSphere MQ for z/OS V5.3 System Administration Guide: GC34-6053

WebSphere MQ Application Programming Guide: SC34-6064

CICS Transaction Server for z/OS V2.2, CICS External Interfaces Guide: SC34-6006

G325-2113-00

© Copyright IBM Corporation 2002

IBM United Kingdom Limited
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Produced in the United States of America
11-02
All Rights Reserved

CICS, CICS/ESA, CICSPlex, the e-business logo,
IBM, the IBM logo, MQSeries, MVS, OS/390, VTAM,
WebSphere and z/OS are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries
or both.

Other company, product and service names may
be trademarks or service marks of others.

 1 The CICS region where the bridge runs must be on the
same z/OS system image as the queue manager. The
request queue must be under the control of that queue
manager, but the output message can be forwarded
to a remote queue.

To download the IBM Redbooks listed below, visit:

www.redbooks.ibm.com

CICS Transaction Server for OS/390 V1.3, Web Support and 3270

Bridge: SG24-5480

Revealed! Architecting Web Access to CICS: SG24-5466

e-business Cookbook for z/OS Volume II: Infrastructure: SG24-5981

For more information
To learn more about the value of using WebSphere MQ software

with CICS Transaction Server, visit ibm.com /webspheremq/

messaging.

