[image: image44.wmf][image: image45.wmf]

Architecting an Infrastructure

for e-business

Keith Edwards

Senior Consultant Architect

IBM Application and Integration Middleware

Contents
Contents
2
Figure Summary
4
Table Summary
5
Introduction
6
What is a Business?
6
Traditional Use of IT Infrastructure
7
e-business Use of IT Infrastructure
7
e-business Activities
8
An Architecture for e-business Infrastructure
10
People Interaction with e-business Infrastructure
10
Connect any Type of Device and any Number of Devices
10
Identify the User
12
Control Available Options
13
Customize Options Based on Type of User
13
Execute the User Requested Business Function
14
Customize the Business Function Flow based on User Type
14
Business Function Access of Data
15
Access Other Applications from the Business Function
15
Build the Response for the End User
16
Customize the Response with Additional Options
16
Transform the Response Based on User and Device
17
Additional Request Options
18
Business Process Interaction with e-business Infrastructure
19
Choosing a Request Type
19
Request/Reply
19
Broadcast
19
Comparing Request/Reply and Broadcast
19
A Quick Word About Publish and Subscribe
20
Exploring Request/Reply Service Options
21
Direct Response Service
21
Brokered Response Service
22
Providing a Common Interface for the Application Developer
25
Choosing Between Direct and Brokered Requests
25
A Closer Look at Integration Brokers
27
Centralized Broker – Hub
27
Distributed Broker – Bus
28
Comparing Centralized and Distributed Brokers for Required Functions
28
Additional Broker Functions
30
Comparing Centralized and Distributed Brokers for Additional Broker Functions
31
Internal Process and External Process Interaction Management
32
The Difference between Internal and External Process Interaction
32
Protection of Business Intellectual Property
33
Choice in Technical Implementation for Process Interaction
33
Development capabilities for creating process interaction
34
Identify the external process and ensure authorization to use infrastructure
34
The Architectural Flow for Connecting Processes to an e-business Infrastructure
35
Combining People and Process Architectures
36
Development Strategy for an e-business Infrastructure
39
The e-business Development Environment
39
Combining the Build Time and Run Time Infrastructure
40
Implementing the Infrastructure with Java
42
Implementing the Infrastructure with the WebSphere Software Platform
44
Integration Aspects of the WebSphere Software Platform
45
Solutions with WebSphere Software Platform
48
Development Options with WebSphere
49

Figure Summary
Figure 1: Traditional Business Infrastructure
7
Figure 2: e-business Infrastructure
7
Figure 3: e-business activities
8
Figure 4: Support Connection of any Device
10
Figure 5: Functions Contained within Connect Any Device
11
Figure 6: Identify the User
12
Figure 7: Control Options available to the User
13
Figure 8: Customize Options based on User Type
13
Figure 9: Execute the Business Function
14
Figure 10: Customize Business Function Flow
14
Figure 11: Business Function Access of Data
15
Figure 12: Access Other Application from Business Function
15
Figure 13: Build the Response for the User
16
Figure 14: Customize the Response with Additional Options
17
Figure 15: Transform the Response Based on User and Device
17
Figure 16: Architectural Flow for Connecting People to an e-business Infrastructure
18
Figure 17: Request / Reply
19
Figure 18: Broadcast
19
Figure 19: Publish and Subscribe
20
Figure 20: Direct Request
21
Figure 21 : Brokered Request
22
Figure 22 : Common Programming interface masking request choice
25
Figure 23: Request Type Decision Tree
26
Figure 24: Centralized or Hub Style Broker
27
Figure 25: Distributed Broker - Bus
28
Figure 26: Applicability of a Broker with Increasing Integration Complexity
31
Figure 27: Hybrid Centralized and Distributed Broker
32
Figure 28: Proxy Process to Mask Internal Process Implementation
33
Figure 29: Proxy Process with Connection Management and External to Internal Process Mapping
33
Figure 30: Architectural Flow for Process Access of an e-business Infrastructure
35
Figure 31: Adding Brokered and Direct Integration Options to People Access Flow
36
Figure 32: Combined People and Process Architecture Flow
37
Figure 33: Consolidated People and Process Architecture Flow
38
Figure 34: Development Process with Role Separation
40
Figure 35: Combined Build and Runtime Infrastructure
41
Figure 36: Implementation of architecture using Java
42
Figure 37: WebSphere Software Platform Overview
44
Figure 38: Implementation of Architecture using the WebSphere Software Platform
45
Figure 39: Basic Broker with MQSeries
46
Figure 40: Simple MQSeries based Distributed Broker
46
Figure 41: Hybrid Distributed/Centralized Broker with MQSeries
47
Figure 42: Higher Level WebSphere Solutions
48
Figure 43: Mapping WebSphere Tools to Development Roles
49

Table Summary
Table 1: Tasks for Successful Direct Request
21
Table 2: Tasks for Unsuccessful Direct Request from non-Running Service
21
Table 3: Tasks for Unsuccessful Direct Request from slow Service
22
Table 4 : Tasks for Successful Brokered Request with no Service Execution
23
Table 5: Tasks for Successful Brokered Request with Completion of Service
23
Table 6: Tasks for Unsuccessful Brokered Request from non-Running Service
24
Table 7: Tasks for Unsuccessful Brokered Request from Slow Service
24
Table 8: Comparison of Broker Types for Required Functions
29

Introduction
This paper provides guidance about the architectural or design implications associated with building e-business infrastructures. The title of this paper implies that having an Infrastructure for e-business is a good idea and I firmly believe that it is – but why is this the case?

What is a Business?

[image: image46.wmf]Perhaps the answer can be found in looking at what a business and then an e-business is. The Merriam-Webster Collegiate Dictionary (2001) provides 13 entries for business, a partial quotation from which is shown below:

The rest of the entries can be found at the Merriam-Webster web site at URL:

http://www.webster.com/cgi-bin/dictionary?book=Dictionary&va=business
While the definitions certainly define business, they don’t really lead to understanding why an infrastructure is needed. So let us look at what actually happens in a business. Virtually all businesses (I could say all businesses, but just in case you can think of an exception let’s leave it at virtually) can be defined as a combination of:

· The people who work for the business.

· The processes that they perform in pursuit of the business activity.

· The products or services that are produced by the combination of people and processes.

The nature of business is to obtain a return on any investment made, and we can invest in the three areas that make up a business.

1. We can invest to obtain superior people

2. We can invest to create better processes

3. We can invest to invent better products

Information technology is primarily used in the creation and execution of processes, and the deployed IT solutions can be regarded as the IT infrastructure. The better our infrastructure the better the execution of our processes. So our investment return is made primarily in number 2.

Traditional Use of IT Infrastructure

In a traditional deployment of information technology, the processes that the employees use can be implemented as IT based solutions and the employees then communicate with those people who have an interest in the business, i.e. the suppliers, business partners and customers. The IT based solutions can be regarded as the IT infrastructure to support the business activity. This is shown in Figure 1: Traditional Business Infrastructure.

[image: image1.png]Your Business

YO
empioy,

Figure 1: Traditional Business Infrastructure

The focus here is on creating the processes for the internal users, essentially the infrastructure has to support a population size of the company.

e-business Use of IT Infrastructure

In the case of e-business the focus shifts. We now want to allow the suppliers, business partners, customers, as well as employees, access to our processes. In fact the focus can be expressed as wanting to allow access to all of those people who have an interest in the company. The infrastructure needs to be able to support this number of people, and this number will be much greater than the internal employee population. The employees still communicate with the interested parties, but as part of the business process where that communication is required, rather than as the required control point for any interaction. This is shown in Figure 2: e-business Infrastructure.

[image: image2.png]— Your e-business
ey
CustoImers
Siije)

P2
=

Figure 2: e-business Infrastructure

[image: image47.wmf]The major difference between the traditional and e-business infrastructure is the number of people or entities that we need to connect. The number is far larger for e-business and so we can state the following conclusion.

Given this greater scale it would appear prudent to ensure that we design using an infrastructure that we know can scale to meet any number of connected entities.

e-business Activities

We have seen that, from an IT perspective, e-business is about connecting entities into an infrastructure to access the business processes contained within it. We now need to look at what exactly are these entities and what do they want to do.

We can broadly categorize the entities into three groups:

1. Internal company entities

2. External customer entities

3. External partner entities

Each of these can be either a person or a process. So there are six areas of focus:

1. The company’s internal business processes

2. Access of the internal business processes by employees – B2E

3. Access of the internal business processes by customers – B2C

4. Access of the internal business processes by a customer’s process – B2C

5. Access of the internal business processes by a partner – B2B

6. Access of the internal business processes by a partner process – B2B

We can represent this pictorially as shown in Figure 3: e-business activities.

[image: image3.png]Mobil

External User

Connec

Figure 3: e-business activities

In the case of the user there are two connection options, connected and mobile (or disconnected). In this case the term mobile applies where the infrastructure extends out to the device being supported and allows disconnected operation. Note that it is possible for the user to be mobile, for example on a cell phone, and yet for the infrastructure to regard the user as connected. In this case the mobile device only performs actions involving the business processes when the device is connected and the infrastructure does not extend to the device.

The question mark after external process for the B2C space is my indication that this is not something that is generally considered in B2C today. However, the idea of an intelligent agent acting on behalf of a consumer is definitely something that will need to be considered, as consumer devices become more “intelligent”.

The infrastructure is there to support these e-business activities by providing the capability to:

· Execute the business processes.

· Connect end users to the business processes.

· Connect other business processes to the business processes.

We can conclude that:

In designing an infrastructure architecture, we must enable this interaction for internal and external people and internal and external processes.

This defines in the most general of terms what the infrastructure needs to be able to do technically.

There are some business considerations that also need to be applied to any consideration of infrastructure architecture. These considerations arise from the capability for external entities being able to connect and use the infrastructure.

Once you enable external entities to connect and use the infrastructure, you provide those entities with a view of how your business works. The way you run your business may well be a competitive advantage and you may not wish to share this intellectual property with external parties. Therefore, your infrastructure must be able to distinguish between internal and external entities and potentially restrict the external entities from using your processes in such a way that they can see the internal process flow. However, we also do not want to build multiple infrastructures, so we need to provide a way to customize the entities’ interaction with the infrastructure – ideally down to the individual entity.

Assuming that we can control the interaction so as not to reveal the intellectual property of how the business works, we will still reveal what the business does. This is required assuming that we wish to engage in some commerce activity, be it in a B2C or B2B form. As a consequence of doing this commerce, competitors can see what it is we are doing. If they have an infrastructure and supporting development methodology that allows them to build the same capability, and then add to that capability more quickly than we can, they will start to gain an advantage. Thus there is a requirement to be able to deploy new capability into our infrastructure as fast a possible. In fact, given that everybody can see our e-business capabilities, the original idea, while important, is possibly not as important as the requirement for the following.

An Architecture for e-business Infrastructure

In the introduction it was stated that the infrastructure must enable the interaction of people and processes, allowing for customization down to the individual.

This chapter will look at the people interaction with the infrastructure and the process interaction with the infrastructure.

People Interaction with e-business Infrastructure

If we are going to allow people to interact with the infrastructure, we first must allow them to connect to the infrastructure. In allowing the connection we must also realize that we will not be able to control the type of device that the end user wishes to connect with unless we are building a purely internal B2E infrastructure.

Connect any Type of Device and any Number of Devices

Ideally we should allow any type of device to be connected, illustrated in Figure 4: Support Connection of any Device.

[image: image4.png]Connect:
Any Device

Figure 4: Support Connection of any Device

This of course represents a significant challenge unless the devices in question conform to common or standard access protocols such as WAP or HTTP. The good news here is that it is in the interest of the device creator to conform to an established or standard connection protocol so that they can plug their new device into many existing infrastructures. This connection capability is one area where open standards are a definite requirement.

A possible exception to this is where the infrastructure extends to the device and provides some sort of disconnected user capability. In this case the eventual connection of the device may well use more propriety protocols in order to provide the required quality of service for the connection.

The connect any device capability should allow both connected and wireless devices to access the infrastructure using any protocol. This should include the possibility of speech recognition for spoken word as the inbound protocol. The goal is to convert any inbound protocol into a standardized protocol that our infrastructure’s business function can understand. The most likely candidate for this standardized protocol is HTTP.

The connect any device capability should also allow for the connection of any number of devices. The number of connected devices will be equal to at least the number of people interested in the business, and as this may be a very large number the connection capability should be designed to scale to infinity. While you are very unlikely to need an infinite capacity you do need a scalable capacity, so that if the number of connections goes up you can handle the load. The key is to be able to scale linearly, so that the cost of adding users can be controlled.

Linear scalability is the idea that the connected devices can be distributed across multiple connection servers. If we tried to connect to just one server there would be a limit to the number of devices that could be connected. That number varies depending on the type of end user device and type of server, but the key principal is that there is always a limit. If we want to scale to any number of end users we must allow for more than one server. Scale in this case is a question of how many users can one server support and then how many servers do I want to have. If one server can support 1000 end users then two servers should be able to support 2000 and so on in a linear progression. This is referred to as linear scalability - and the practical limit is how many servers do you want to buy!

Once we have more than one server to connect to, we also have to determine which server we should connect to. If all the devices tried to connect to the same server it would defeat the whole rationale of providing multiple servers.

This is done by load balancing the requests over all of the servers that could handle the request. This load balancing is most commonly achieved somewhere in the network between the end user device and the presentation server. The primary reason for this is that we want our end user device to be as low in function as possible and we also do not want to reveal the server topology to the end user.

The connect any device capability may also allow us to cache the result of well know requests to optimize performance of our infrastructure.

This load distribution and caching capability is commonly provided by what are called Edge of Enterprise or Edge Servers.

We can therefore see that the Connect Any Device capability is actually made up of multiple capabilities, illustrated in Figure 5: Functions Contained within Connect Any Device.

[image: image5.png]Connect Any Device

Wired Protocol!
Conversion’
» Any protocol

~Load
» Caching|

Figure 5: Functions Contained within Connect Any Device

We now have the capability to connect any number and type of device, so what is next?

Identify the User

Once our user is connected we need to determine if we want them to be connected. This is about identifying who the user is and then deciding what we are going to let them do. This step 2 is illustrated in Figure 6: Identify the User.

[image: image6.png]Connect:
Any Device

Figure 6: Identify the User

There are two approaches to identifying the user.

1. The infrastructure can either do it itself, usually in the form of USERID and PASSWORD, where the USERID and PASSWORD is provided to end users who register with the e-business. The USERID and PASSWORD are typically stored in either a database or a directory, accessed using LDAP.

2. The user can pass a token or certificate that identifies themselves. The certificate is usually issued by a third party and the third party provides verification that the certificate is valid.

The USERID and PASSWORD approach is the one most commonly adopted for connecting end users where the infrastructure does not extend to the user’s device. There are two reasons why this is the case, one is a technical reason the other is a business reason.

The technical reason is that the certificate approach requires that the certificate be issued to the end user and protected by that end user. After all it is supposed to verify that they are who they say they are. In order to provide protection the certificate should be under security controlled access – either some hardware security mechanism or a USERID and PASSWORD control local to the device. In the case of a PC running a web browser the certificate is stored under the control of the browser, and this is not generally protected to any degree. Hence the e-business can not be 100% certain that the user of the browser is actually who the certificate says it is. Therefore any requirement for non-repudiation of a transaction that the end user might do is not possible.

The business reason is that the USERID and PASSWORD approach requires the end user to register with the e-business. The Certificate approach requires the end user to register with the certificate issuing body. With USERID and PASSWORD the e-business has an opportunity to gain information about the end user during registration. This information can then be used in better serving that end user, and essentially initiates a relationship with that end user. The certificate approach does not offer this required data gathering opportunity.

Control Available Options

Now that we can connect our users and identify them, we need to provide the capability to actually do something. The first step is to determine what we are going to allow the end user to do. For this we need some control point, step 3, illustrated in Figure 7: Control Options available to the User.

[image: image7.png][dentify;
theUser;

Connect: Control

l Any Device 4 Options

Figure 7: Control Options available to the User

This control point can be thought of as the jumping off point for end user interaction with the e-business. However, by itself it can only show a static list of options. This may be suitable where all of our users are of the same type, but if we want a common infrastructure for all user types we must allows for the capability to customize the options based on the type of user.

Customize Options Based on Type of User

The customization should allow us to provide different options based on knowing what type of user we are dealing with. This means that, in addition to the Identify the User step, we should also provide some categorization of that user. In order to do this we may gather more information when the user registers as well as keep track of what the user does. We also need to way to specify the rules associated with types of user as well as provide the end user with the capability to do their own customization. Therefore, our control point will have to refer to something that provides a customization capability. This step 4, illustrated in Figure 8: Customize Options based on User Type.

[image: image8.png][dentify;
theUser;

Connect:
Any Device

Control
Options;

Gustomize for;
each person|

Figure 8: Customize Options based on User Type

We now have an infrastructure that can adapt to service any type of user as long as we can define what types of user we have and which user falls into what type. The options that a user has can be determined and the next step is to actually do what the user wants.

Execute the User Requested Business Function

If we are creating a new application it is likely that this next step will be the execution of the required business function, this is shown in step 5, Figure 9: Execute the Business Function.

[image: image9.png][dentify;
theUser;

Connect:
Any Device

Control
Options;

Execute

Business
Fanction

Gustomize for;
each person|

Figure 9: Execute the Business Function

This business function can of course do anything that we develop.

Customize the Business Function Flow based on User Type

In a customized application we may wish to control the flow of the business function based on the individual user. Certain values in calculations we might do may vary depending on what type of user we have. For example, a user who spends a great amount of money with our e-business may get a greater discount then one who does not. We should therefore allow for our business function to also apply customization. This is shown in step 6a, Figure 10: Customize Business Function Flow.

[image: image10.png][dentify;
theUser;

Connect:
Any Device

Control
Options;

Execute

Business
Fanction

Gustomize for;
each person|

Figure 10: Customize Business Function Flow

The customization is the same category of capability as we did with step 4, hence from an architecture viewpoint step 6a uses the same service. In the implementation of the customization capability this could be the same service or could be a separate service.

Business Function Access of Data

While we may choose to customize our business logic flow or not, it is certain that we will want to access some data for our business logic to manipulate. The most likely form of data is probably a relational database of some type, but other types of data could be accessed. Logically the step 6b, shown in Figure 11: Business Function Access of Data, can be any type of datastore.

[image: image11.png]centify,
theUser;

Connect:
Any Device

Control
Options;

Execute

Business
Fanction

Gustomize for;
each person|

Figure 11: Business Function Access of Data

We now have an infrastructure that can support us deploying new business function.

Access Other Applications from the Business Function

Unless we are building an e-business from the ground up it is likely that we already have some business function in other applications. Assuming that this existing application functionality is useful to our end user, we need to provide ways for our business function to gain access to it. This is illustrated in step 6c, Figure 12: Access Other Application from Business Function.

[image: image12.png]Access Ofttier;
Application|

[dentify;
theUser;

Connect:
Any Device

Control
Options;

l Execite
Business

Fanction

Gustomize for;
each person|

Figure 12: Access Other Application from Business Function

This access of other applications is usually the key to building a successful e-business infrastructure as it represents the connection of people access to process with process access to process. Even e-businesses built from the ground up may wish to purchase application packages which need to be connected to. The subject of connecting to other applications is looked at on more detail in, Business Process Interaction with e-business Infrastructure. For the moment let us leave step 6c assuming we have an effective way to do this.

Build the Response for the End User

We have now performed the option that the end-user asked for and so we need to return the result of that option. Ideally we would like to build the response in such a way as to allow for the layout of the response to be changed without affecting the business function we have performed, For example we may whish to change the font of some returned text. We therefore need a response building capability shown in step 7, Figure 13: Build the Response for the User.

[image: image13.png]Access Ofttier;
Application|

[dentify;
theUser;

Connect:
Any Device

Control
Options;

Execute

Business
Fanction

Gustomize for;
each person|

Figure 13: Build the Response for the User

This essentially provides us with a dynamic framework to insert the results of our business function. This separation allows us to split the development task into people that create the business function, and people that create the response format, which is part of the image that any e-business projects.

Customize the Response with Additional Options

In addition, we can augment the response with additional options for the end user.

These options are another form of customization, but whereas before we based the customization on what type of user we had, this can be based on what did the user just do and how does that compare with things other users have done.

Those other users may have opted to do additional things that our end user might also want to do.

For example, if this application was a B2C commerce application, the user may have just bought something. Other users who also bought the same item may have also bought other related items. So we would like to offer the user the option to buy these as well, as a cross selling opportunity for our e-business.

We may even offer the end user an additional discount if they buy them right now.

This customization step 8, is shown in Figure 14: Customize the Response with Additional Options. As in the case of steps 4 and 6a, the customization service is logically the same from an architectural viewpoint. However, implementation may use multiple customization services.

[image: image14.png]Access Ofttier;
Application|

[dentify;
theUser;

Connect:
Any Device

Control
Options;

Execute

Business
Fanction

Gustomize for;
each person|

Figure 14: Customize the Response with Additional Options

Transform the Response Based on User and Device

We now have a response, however, unless we built language and device specific support into our application’s business logic, we still have a response that is based on what customization our e-business thought was appropriate. We also need to provide the capability to further customize based on the language the end user wishes to see and the device they are using and then return that response to the user. These three steps 9,10 and 11 are shown in Figure 15: Transform the Response Based on User and Device.

[image: image15.png]Lo

&’

&
B

Any/ e

Buid] /i/

REsponse.

-

sformfors
the Berson

Figure 15: Transform the Response Based on User and Device

There is a trade off to be made with these steps. This concerns the amount of processing power required to run a request and the associated performance of that request and the speed at which new devices and language types can be supported.

This approach to the reply transformation isolates the function from the applications that are deployed. This allows us the flexibility to change the transformation capability without changing the application. This allows us to develop support for new devices and languages more quickly than if we had to open up the application, develop the new support and then test the whole application. Therefore this approach leads to faster deployment of transformation capability.

The tradeoff is that in order to run this, we need something to actually run it. This adds additional processor requirements over the option of building the support inside the application. Therefore more hardware is likely to be required to run the same workload with the transform capability separate from the application. However, the likely increase in processor power will be small and compared to the development cost savings, and the faster time to market for new support. This heavily weights the decision in favor of separation.

One other difference is in the total time taken to execute a request. Separating out the transformation takes additional time, however, this additional time in on the order of milliseconds and should not be noticeable to an end user.

Additional Request Options

We now have a complete architectural flow for supporting our e-business. However, it assumes that the end user only wishes to access business function that we have deployed in this infrastructure. In reality we must also allow for the option of allowing the end user some additional requests options.

The end user may wish to access data in order to do their own manipulation. They may wish to access other applications outside of our infrastructure. Finally they may wish to actually connect with another user. These are the addition option step 5a, 5b and 5c shown in Figure 16: Architectural Flow for Connecting People to an e-business Infrastructure.

[image: image16.png]AACCH

Applics

AACt

REsponse.

sformfors

Figure 16: Architectural Flow for Connecting People to an e-business Infrastructure

The architectural flow provides for all options to connect people with process, data and other people.

Business Process Interaction with e-business Infrastructure

The previous section looked at how people are connected into the infrastructure. This section looks at how external processes can be connected in. It also looks at how internal process can be connected together, this was the step 6c in Figure 16: Architectural Flow for Connecting People to an e-business Infrastructure.

The capability to connect processes is all about allowing the connecting process to make a request of some other process. Therefore the starting point for architecting process integration is to look at what types of requests we may want to make.

Choosing a Request Type

There are actually two major types of request that a process or application may make. These are Request/Reply and Broadcast.

Request/Reply

This is a request where the requesting application sends its request to the target of the request, which I will call a service, and then waits for the service to respond. This is illustrated in Figure 17: Request / Reply.

[image: image17.png]

Figure 17: Request / Reply

The requesting process does not continue until it gets a response. Note that the response may be a simple acknowledgement that the request has been received or it may be the result of the request.

Broadcast

A broadcast request is where the requesting application sends its request but does not wait for any response from the target service, illustrated in Figure 18: Broadcast.

[image: image18.png]

Figure 18: Broadcast

In this case the application continues directly after the sent request and there is no response.

Comparing Request/Reply and Broadcast

The major difference between Request/Reply and Broadcast is that Request/Reply gets a response and Broadcast does not. So the next question is what is a response?

A response falls into one of two categories. It is either an acknowledgement that the request has been received or it is the result of processing the request, each of these responses has a positive and a negative element to it. The acknowledgement may be that the request is received or that the request was not received. The result of processing may be from a successful completion of the request or a failed or partial completion.

The key point is the response provides information about whether the service requested actually received the request.

Therefore Request/Reply allows provides information to the application about the state of the request. Broadcast provides no such information. A broadcast is a send with no response. It will enable an application to make a request faster than in the case of Request/Reply because it does not have to wait for the response. However as no knowledge about whether the service actually received the request is given its design point is really for when the requesting application does not care whether the request was delivered or not.

This design point limits broadcasts’ applicability to where the requests or pieces of information being sent have a low temporal currency i.e. the validity of the request is very short lived. This is good for where information is being sent on a repeating basis, for example a broadcast of information to a stock ticker, where a new quote will show up seconds after the previous one.

The fact that broadcast gets no response, means that broadcast can not be sure that the request actually got there. For most process to process integration there is a requirement to know the state of the request. As such request/reply is the preferred option as it allows for data integrity of the request – broadcast does not.

A Quick Word About Publish and Subscribe

Publish and Subscribe, illustrated in Figure 19: Publish and Subscribe, can sometimes be thought of as another request type. However, in reality it is a combination of Request/Reply and/or Broadcast and so is a higher level composite request type.

[image: image19.png]Publish @
Pub Dellver

Figure 19: Publish and Subscribe

The Publish part of this higher level request enables the “publisher” process to provide a piece of information to a publish and subscribe agent which makes the information available to other processes who have subscribed to information of this type. The publish part of the process is most typically a request/reply as the publisher wants to know that the information is published. The delivery of the request may be less demanding in terms of ensuring that the information makes it to the subscriber, and so both request/reply and broadcast are used here.

Exploring Request/Reply Service Options

In the previous section we saw that it could be concluded that for general integration a request/reply approach was preferable to broadcast. We also saw that the distinguishing feature between the two was the fact the request/reply actually received a reply.

There are two styles of request/reply enabled service i.e. those services that an application can request and get a response about the request. The two styles are direct response service and brokered response service.

Direct Response Service

Direct response services are where the requesting application calls the required service directly. This is illustrated in Figure 20: Direct Request.

[image: image20.png]

Figure 20: Direct Request

Direct requests use point to point communication routes and as a consequence they have the lowest network latency for a completed request. In order for the request to be made the target service has to be available, placing a burden on the service to at least match the availability profile of the requesting application. The success of the request is the return of the information from the completion of the service. These types of request are often characterized as synchronous in nature, integrating systems in a tightly coupled manner.

From a programming viewpoint the requesting application needs to do the steps shown in Table 1: Tasks for Successful Direct Request for the case where the request is successfully processed.

Application Task
Service Task

Application calls service.

Application waits for service to complete.

Application free to continue processing.
Service runs and completes.

Service passes response back to application.

Table 1: Tasks for Successful Direct Request
This is the simplest of programming tasks, however, it does not consider the failure case, for which the tasks are shown in Table 2: Tasks for Unsuccessful Direct Request from non-Running Service.

Application Task
Service Task

Application calls service.

Application waits for service to complete.

Application will be timed out (unless it waits forever, which no real world system design will allow).

Application must decide whether to retry or continue without result of service.
Service does not run.

Table 2: Tasks for Unsuccessful Direct Request from non-Running Service

There is another version of the failure scenario in which the service does actually run, but the application does not wait long enough for the result of the service. In this case the timed out application can not be sure if the service is still running – or even has just finished milliseconds after the timeout. This is illustrated in Table 3: Tasks for Unsuccessful Direct Request from slow Service.

Application Task
Service Task

Application calls service.

Application waits for service to complete.

Application times out.

Application must decide whether to retry or continue without result of service.

If non transactional, application (or system operator intervention) must compensate for completed service.

Application free to retry request.
Service starts to run.

If non transactional, service may eventually complete.

Service returned to original state

Table 3: Tasks for Unsuccessful Direct Request from slow Service

If the initial request is transactional and both application and service have distributed transaction capability, the failure at the timeout will result in a roll-back of what ever the service was doing. If non-transactional, there is nothing to stop the service completing and so the application must find a way to compensate for the successful completion of the service. This is a challenging task! If the application is unable to do this, then external intervention, perhaps from a system operator or administrator will be required.

Brokered Response Service

Brokered response services are where the requesting application calls a broker or agent that will make the service request of behalf of the application. This is illustrated in Figure 21 : Brokered Request.

[image: image21.png]g D ———
-

Figure 21 : Brokered Request
Brokered requests use indirect communication routes and as a consequence they have a higher network latency for a completed request than a direct request. In order for the request to be made the broker has to be available, but the service can be unavailable, separating the availability profiles of the requesting application and service. The success of the request is the return of an acknowledgement that the broker has the request. The application then may continue or wait for the broker to make the request and for an additional reply with the completed service result. These types of request are often characterized as asynchronous in nature, integrating systems in a loosely coupled manner.

From a programming viewpoint requesting application needs to do the steps shown in Table 4 : Tasks for Successful Brokered Request with no Service Execution to get to a result where the request is made but the service result is not returned.

Application Task
Broker Task
Service Task

Application calls broker

Application waits for broker acknowledgement.

Application free to continue.
Broker receives request.

Broker acknowledges receipt.

Table 4 : Tasks for Successful Brokered Request with no Service Execution

In this case the application can continue if the result of the requested service is not required. For example, where a commerce application captures the order details from a customer, but does not need to fill the order before sending a response back saying that the order has been accepted. In this scenario, a brokered request will actual seem to perform better from the end user perspective compared to a direct response, as we don’t have to wait for the result of the service. We only have to wait for the acknowledgement from the broker.

However, we may need the completed service response, and the tasks required to get to this point are shown in Table 5: Tasks for Successful Brokered Request with Completion of Service.

Application Task
Broker Task
Service Task

Application calls broker

Application waits for broker acknowledgement.

Application waits for service result.

Application free to continue processing with service result.
Broker receives request.

Broker acknowledges receipt.

Broker calls service.

Broker waits for acknowledgement

Broker completes

Broker receives request and passes response back to application.
Service starts.

Service acknowledges start

Service calls broker to pass response back application.

Table 5: Tasks for Successful Brokered Request with Completion of Service

This produces the same result as in Table 1: Tasks for Successful Direct Request, but there is clearly a more work to be done in the development task.

Note that in the design shown, the broker receives an acknowledgement that the request has started.

An alternative design could allow for the broker to wait for the completion of the service, in which case the broker behaves in the same way as the direct case. Given that the brokered request is really designed to facilitate the loose coupling of systems, it is consistent to enable the service to acknowledge the start, which will simplify operation of the broker.

We must also consider the failure cases looked at for direct requests, namely service fails to run and the service fails to finish in time.

The fails to run case is shown in Table 6: Tasks for Unsuccessful Brokered Request from non-Running Service.

Application Task
Broker Task
Service Task

Application calls broker

Application waits for broker acknowledgement.

Application waits for service result.

Application will be timed out.

Application must decide whether to continue to wait or continue without result of service.

If continue without result, may have to cancel request (compensate)
Broker receives request.

Broker acknowledges receipt.

Broker calls service.

Broker waits for acknowledgement

Broker will be timed out (unless it waits forever, which no real world system design will allow).

Broker keeps retrying and timing out until…..

Broker cancels request
Service does not run.

Table 6: Tasks for Unsuccessful Brokered Request from non-Running Service

While the tasks look similar to those in Table 2: Tasks for Unsuccessful Direct Request from non-Running Service, there is less processing required by the application, it has to decide between waiting longer or continuing without the result of the service. The broker is still working on its behalf to start the request. If the application continues without the result it may have to cancel the in progress request. This is similar to the thought process behind the final compensating steps in Table 3: Tasks for Unsuccessful Direct Request from slow Service. In fact from the applications viewpoint there is no difference between a non-running service and a slow service. However, in this case the broker just has to stop trying the request as it is aware that the service has not been started.

In the case of slow running services, the burden on determining the state of the system is placed on the broker as shown in Table 7: Tasks for Unsuccessful Brokered Request from Slow Service.

Application Task
Broker Task
Service Task

Application calls broker

Application waits for broker acknowledgement.

Application waits for service result.

Application will be timed out (unless it waits forever, which no real world system design will allow).

Application must decide whether to continue to wait or continue without result of service.

If continue without result, may have to cancel request (compensate)
Broker receives request.

Broker acknowledges receipt.

Broker calls service.

Broker waits for acknowledgement.

Broker completes

Broker compensates for running or completed request.
Service runs slowly.

Service acknowledges start

Service may have completed

Service returned to original state

Table 7: Tasks for Unsuccessful Brokered Request from Slow Service

The tasks for the application are the same as in Table 6: Tasks for Unsuccessful Brokered Request from non-Running Service and as such presents a simpler design burden on the application designer. The broker now has to provide a compensation request in the same way that the direct request application did.

The key point behind this whole discussion is that:

The only real difference is whether the response needs to contain the result of the requested service. A successful direct request always has this. A brokered request may have just an acknowledgement, however it could also be implemented to return the actual result.

Providing a Common Interface for the Application Developer

If they have the same considerations, we should be able to provide a common application level interface, or callable component, that allows an application programmer to call a business system. The component should require that they specify whether a response is required; how long to wait (a wait time of zero could indicate no response required); and what to do in case of failure. The application programmer is unaware of how we actually transport their request. This is illustrated in Figure 22 : Common Programming interface masking request choice.

[image: image22.png]Call Service
Commpoment

Application

Broker:

Figure 22 : Common Programming interface masking request choice
The choice is left to the infrastructure designers and the choice can be changed without changing the application. This improves the speed at which the infrastructure can be adapted.

Choosing Between Direct and Brokered Requests

In a direct service, the call service component needs to be able to determine the location of the requested service and the route it should take to reach that service. It may also have to transform the request into something that the requested service can understand. That is in addition to providing for the failure scenarios discussed previously.

In a brokered service, the call service component needs to be able to determine the location of the broker and the route it should take. The broker needs to determine the location of the requested service and the route it should take. It may have to transform the request into something the requested service can understand, as well as provide for the failure scenarios discussed previously.

Both direct and brokered need to be able to provide the same capabilities, the difference is that in the direct case the capabilities are provided on each requesting application. In the brokered case the capabilities are provided by a common broker.

In the simplest cases a brokered approach can be thought of as a way to provide a more centralized management of the required capabilities to connect applications together.

However, the brokered approach also allows for other services to be involved in the process. A direct request, by its nature is from one point to another. In the brokered case, the broker could pass the information on to the requested service as well as to those other services that are interested. An example of this is publish and subscribe, discussed in the section A Quick Word About Publish and Subscribe. The broker can also provide a way to maintain the state of the overall business process and even control and monitor the process.

We can summarize the choices in request style as shown in Figure 23: Request Type Decision Tree.

[image: image23.png]Does application
need a response?

BROADCAST

Does application
need data from
service?.

BROKERED

Do we wart centralized
management of routing and
fransformation?

Do we wart to involve
other services?.

DIRECT

BROKERED BROKERED

Figure 23: Request Type Decision Tree

From the decision tree we can see that brokered provides great flexibility and is a good choice for most integration strategies. Direct requests have their place, but only where there is a one to one relationship between application and service and the information is required from the service for the application to complete. It should also be noted that while broadcast was dismissed as a general option for application integration, it has its place where no response of any type is required.

This decision process should be taken on a case by case basis as applications are integrated.

A Closer Look at Integration Brokers

In its simplest form an integration broker is something that can handle a brokered request from an application. In order to be able to handle the request we need the broker to be able to provide at least the following capabilities.

· Receive the request from the application with integrity of the data.

· Send acknowledgement of receipt to the application.

· Determine the destination of the request service.

· Determine the path to send the request.

· Hold onto the request until the service is ready to receive the request.

Note that it is the sending of an acknowledgement and the holding of the request that differentiates a brokered request from a direct request.

We can design our broker capability in one of two ways. We can either provide a centralized broker to which all applications make requests or we can co-locate a broker with all of the integrated applications. This leads to the conclusion that there are two design points for brokers:

1. Centralized Broker, usually called a Hub

2. Distributed Broker, sometimes called a Bus

Centralized Broker – Hub

The centralized broker approach requires that all application be able to connect to a centralized hub, as shown in Figure 24: Centralized or Hub Style Broker.

[image: image24.png]Service

Broker:

Service

Service

Figure 24: Centralized or Hub Style Broker

The application needs to be able to locate the broker and pass the request to the broker. Ideally this passing of information between application and broker should be transactional in nature. This is the request must either be delivered or not delivered to the broker, it can not be left in an indeterminate state in the event of a system failure.

The same transactional delivery may be applied to where the broker sends the request on to the required service.

The logical view of this approach implies a single point of failure at the broker. This can be remedied in deployment by providing at least two centralized brokers where the applications can distribute their workload across the brokers. This load distribution capability could be provided by the common component discussed in Figure 22 : Common Programming interface masking request choice.

In this model each request has to make at least 2 network transitions. The first from the application to the broker, the second from the broker to the service.

Once the request has reached the broker, the broker needs to be able to determine where to send the request and hence needs to have access to some directory of available services and locations. This can be accommodated with a centralized directory.

The broker should also be able to provide a choice in how the request is passed to the service. That is we should be able to choose between the broadcast, direct or brokered requests. In general the safest design, from the point of view of ensuring data integrity and isolation of service availability, is to support a brokered request to the service -– but ideally we should be able to choose.

Distributed Broker – Bus

The distributed broker approach, which is sometimes referred to as a bus, requires that each application have a co-located broker agent that provides the broker capabilities listed at the beginning of this section. This is illustrated in Figure 25: Distributed Broker - Bus.

[image: image25.png]Service

Service

Broker
agent

Application Service

Service

Figure 25: Distributed Broker - Bus

The application needs to be able to invoke the co-located broker agent and pass it the request. As in the centralized case the passing of the request should be transactional in nature to ensure data integrity. In this approach each broker agent makes the decisions about where to send the requests and as such there is no inherent logical single point of failure. From the applications view the loss of the broker agent does represent a single point of failure. However, the failure does not compromise the whole, integrated, system. The broker agent does need to be able to determine where to send the request and hence needs to have access to some directory of available services and locations. This could be accommodated with a distributed directory.

In this model each request takes only one network hop, and therefore introduces lower network latency than the centralized broker approach.

The broker agent should provide all of the request type options for invoking the service. That is broadcast, direct or brokered requests. The most probable option being brokered as was the case with the central broker.

Comparing Centralized and Distributed Brokers for Required Functions

The key function of the broker is to be able to route the requests it receives to the required destination service. It should also provide a choice in how the request to the service will be made, the choice being between broadcast, direct and brokered.

In terms of the routing of requests there are really two major dimensions to compare. These are the speed at which requests can be routed and the ease at which the configuration can be changed.

The major difference in speed will be in the network latency of the request path, given that both brokers types have to do work to route the request. The centralized broker has a greater network latency than the distributed broker as it has to make two network hops versus one network hop.

The ease of configuration is determined by the ease of changing the routing information. In the central broker this change can be made in a single place (for redundancy there would probably be two places). In the distributed broker, we have to apply the change to all the broker agents. This is a more complex task. Therefore as we increase the frequency of change the centralized broker becomes easier to manage.

As each broker should have the option of choosing a request type for the delivery of the request, we must also factor in these options. The direct and brokered request options are both point to point in nature and as such effect the dynamic of the two broker architectures equally, they are both request/reply in nature. However, broadcast can improve the capability to deliver information to multiple services, particularly useful in publish and subscribe scenarios. We therefore have another dimension to compare, the number of receivers of the request.

In addition broadcast reduces the requirement to know where all the receiving services are. Depending on the broadcast approach, we may not have to know where any of them are, this improves the ease at which we can change the system configuration. However, in sending out broadcasts we increase the load on the network more than a point to point request/reply option. Therefore as the request rate goes up the less effective the broadcast approach becomes.

This comparison is shown in Table 8: Comparison of Broker Types for Required Functions.

Broker Type
High Change in Service locations
High request rate
High number of receiving services

Centralized (point to point)
Good
Average
Average

Centralized (broadcast)
Good
Average
Good

Distributed (point to point)
Poor
Good
Average

Distributed (broadcast)
Good
Average
Good

Table 8: Comparison of Broker Types for Required Functions

From this table we can see the broadcast options appears to be the best and for either centralized or distributed. However, it should be remembered that broadcast does not provide for definite delivery of the request, so is limited in its general application integration.

The centralized and distributed broker options both have pluses and minuses, depending on the focus. Thus we can conclude that:

In fact it is likely that we may find both options attractive.

Additional Broker Functions

In the start of the discussion about the brokers, it was stated that the broker might have to transform the request into something that the target service will understand. This is an additional capability over the required routing capability and is one of a group of desirable capabilities. These are:

Capability to transform the request form one format to another

This is where the data contained in the request is changed from one format to another, but retaining the individual data element structure. This is where the layout of the data is changed, but the meaning of the data remains the same. For example, we might transform an XML document into a COBOL data structure, but each element of data remains the same.

Capability to transform the data elements within the request

This is where the data elements themselves can be changed. This is where the meaning of the data is changed in some way. For example we might change an eight digit number, that represents a customer, into a ten digit number. We might also add additional data elements to the structure.

Capability to cache the result of a request

This provides a performance optimization for requests, where the business rules allow a request result to remain valid for a period of time.

Capability to include other services in the scope of the request

In addition to the requested service, other services within the enterprise may have a requirement to know about the current request. This can range from a requirement to log the request, to requirement to provide changes in information to all services that have an interest in the information.

Capability to relate the request to the overall business process

This is where the broker keeps track of what requests have been made and provides an orchestration of a business process, which may consist of many requests.

Capability to provide monitoring of the running business process

This is where the broker provides reporting on how the business is running, potentially allowing business analysts to observe and change the business very dynamically.

The transform capabilities are something that the requesting system could do itself, as long as we are capable of providing all of the required transformation rules to all the systems. Similarly the requesting system could cache the results of a request to another systems, however, that means that a different requesting system would not have access to that cached result. The inclusion of other services and orchestrating the overall business process is something that a requesting application is very unlikely to do.

Of course with sufficient code writing and connections, any function is possible!

When combined with routing, these additional capabilities represent a spectrum of integration options that start off with a focus on application to application communication and end up with management of all business process interactions.

This general trend is illustrated in Figure 26: Applicability of a Broker with Increasing Integration Complexity.

[image: image26.png]High
Process Interaction
Management
Include Other
-‘E Services
o)
=y
£ Cached Request
o Results
c
ol
g Transformed Requests
£
Routed Requests
Point to Point Requests
Low
-

Low Broker Applicability High

Figure 26: Applicability of a Broker with Increasing Integration Complexity

This discussion has concluded that a broker becomes an increasingly good idea as the integration complexity increases. However, we are still left with a choice of centralized or distributed brokers.

Comparing Centralized and Distributed Brokers for Additional Broker Functions

The additional broker functions can be characterized as operations performed on the request using information outside the scope of the application. The routing is a very simple request, requiring little in the way of processing power. Transformation may be very simple but it may be complex, depending on what is required. The caching of results and maintaining business state can also be quite intensive.

In general the more complex the integration the more processing power the broker performing the function will require.

In the case of a centralized broker, this does not represent a problem as we can choose what sort of platform to place our broker on without relation to the applications being integrated.

In the case of a distributed broker, we have to put a broker agent on all platforms being integrated, which means that all the platforms must be able to carry out all of the integration functions. This is likely to lead situations where we can not deploy on some platforms, for example low function mobile devices, limiting our integration options.

Of course we could add a centralized function for the more complex options creating a hybrid of distributed and centralized brokers. For many e-business’ this hybrid option may well be the preferred choice. This hybrid option is shown in Figure 27: Hybrid Centralized and Distributed Broker.

[image: image27.png]Service

Service

Application

Service

Figure 27: Hybrid Centralized and Distributed Broker

This provides us with the speed of routing capabilities of the distributed broker with the more functional integration capabilities of a centralized broker.

Internal Process and External Process Interaction Management

The heart of the B2B idea is the idea that business processes can pass information between themselves without necessarily involving people. This is exactly what we have been discussing in the last few sections of this paper.

If we make one of the services in the previously examples a service that is outside the business we can cover both internal and external process interaction.

However, this assumes that Internal and External processes can be treated in the same way. From a technology viewpoint they probably could, but from a business practice and political viewpoint they can not.

The Difference between Internal and External Process Interaction

The differences between internal and external process interaction fall in to four areas:

1. Protection of business intellectual property.

2. Choice in technical implementation for process interaction.

3. Development capabilities for creating process interaction.

4. Identify the external process and ensure authorization to use infrastructure.

Protection of Business Intellectual Property

In the introduction it was stated that all businesses are made up of people and process. The highest goal of internal process management is to be able to map out all of the relationships between people and process. In doing this the way the business works is revealed. This is very good from the point of view of internal managers figuring out how better to run the business. However, where those interactions create business processes that provide a competitive advantage it is extremely unlikely that a company will wish to expose that process for others to copy.

The outcome is that while we may wish to enable external processes to interact with our internal process, we need to do so in such a way that we mask the real internal process. Essentially we need to create a proxy process which provides a partial view of the internal process, and bridges that partial view to the internal process. This is illustrated in Figure 28: Proxy Process to Mask Internal Process Implementation.

[image: image28.png]External Process Internal Process

Figure 28: Proxy Process to Mask Internal Process Implementation

In addition to the process implementation, our internal process management may be integrated with our people organization and we may not wish to expose this organizational detail.

Choice in Technical Implementation for Process Interaction

While we remain inside an enterprise we are usually free to determine what we would like to provide for the integration infrastructure. Once we go outside, we have to factor in what other enterprises might be using. We are unlikely to be able to dictate the choice to all business entities that might want to connect. We should therefore allow as much choice as is practical in how other enterprises might connect into our process. These connection options should be implemented as part of the Proxy Process. The Proxy Process therefore has two components, a connection management component and an external to internal process mapping component. This is illustrated in Figure 29: Proxy Process with Connection Management and External to Internal Process Mapping.

[image: image29.png]External Process Internal Process

Figure 29: Proxy Process with Connection Management and External to Internal Process Mapping

It is likely that we will want to support accepted standards for connection such as EDI, HTTP, and XML standards where they exist. The architecture should support the idea that any protocol could be connected. Note that this is the same viewpoint as for the people connection options discussed in the section Connect any Type of Device and any Number of Devices.

This choice in connection capability might also apply inside an enterprise where the internal business entities are decentralized in their management structure.

Development capabilities for creating process interaction

The development capabilities of our e-business and those of any business that might want to connect are going to differ widely. While we want to provide the capability for any business entity to connect to our processes, we do not want this connection to be made in such a way as it restricts the flexibility we have to change our processes. That is we do not want to have to wait for all the external entities to match changes we make to our internal processes before making changes available. Therefore we should shield the external processes from any change we make to our internal process, unless that change is material to the way the external process needs to see or use information.

This shielding or separation of process is the same idea as in Figure 28: Proxy Process to Mask Internal Process Implementation. This allows us to change our internal processes without necessarily changing the external view. Thus we separate the pace at which the internal processes and the external view or proxy of those processes can be changed.

Identify the external process and ensure authorization to use infrastructure

When the external process attempts to connect to our infrastructure we must ensure that we know what external process is actually making the request. This is the same principle as in the Identify the User section. The major difference being that we may accept certificates from the process origin as we may know that the server in question making the request is secured. If we do not know the secured nature of the requesting service, we may require a USERID and PASSWORD on the request.

This principle also applies internally to an enterprise, where we wish to ensure the identity of the requesting server. This identification process is not only useful form a security viewpoint, it can also help with the allocation of cost of service where multiple end processes are using the service.

The Architectural Flow for Connecting Processes to an e-business Infrastructure

All that has been discussed in the section Business Process Interaction with e-business Infrastructure can be represented as an architectural flow as shown for people interaction.

We have 4 basic steps:

1) Allow any process to connect to our infrastructure.

2) Identify the process.

3) Manage the mapping from external process to internal process.

4) Pass request to the required process or individual application, this final step may use either a Brokered or a Direct request option to access the application.

These steps are shown in Figure 30: Architectural Flow for Process Access of an e-business Infrastructure where the numbers in the diagram correspond to the step numbers above. Step 4a is the brokered request option and step 4b is the direct request option.

[image: image30.png]Brokered
— Accessito
Applications

Manage:
External

Connect
Any Process

Direct:
Accessito
Applications

the Frocess

Figure 30: Architectural Flow for Process Access of an e-business Infrastructure

The flow has two additional options, 3a and 3b, where the Connect Any Process capability connects directly to the infrastructure applications through either a Brokered or Direct request. These are possible choices but should only be considered where the connecting process is an internal process or where the external process is a very trusted business partner.

Combining People and Process Architectures

So far we have treated people access and process access as two separate problems. However, they have much in common. They both need to connect entities, they both need to identify the entities, they both need to control what can be executed and they both need to get the actual request executed.

In the final connecting people architecture flow diagram, Figure 16: Architectural Flow for Connecting People to an e-business Infrastructure, we ended up with an architecture the looked at connecting to other applications as a single option.

In the final connecting process architecture flow diagram, Figure 30: Architectural Flow for Process Access of an e-business Infrastructure, we ended up with the idea that there are two approaches to connecting applications, Brokered and Direct.

We can apply these approaches to our connecting people options, replacing the single connect other application function. This is illustrated in Figure 31: Adding Brokered and Direct Integration Options to People Access Flow.

[image: image31.png]

Figure 31: Adding Brokered and Direct Integration Options to People Access Flow

We now provide for the choice in access between Brokered and Direct request types.

We are now in a position to add the connection of process flow into our modified people flow. This is shown in, Figure 32: Combined People and Process Architecture Flow.

[image: image32.png]te ik

5 4

Qptions;

Bufld’

the Person| | parsn

Figure 32: Combined People and Process Architecture Flow

We can now connect both people and process to our e-business infrastructure.

However, the flow actually has some redundant elements within it. We can simplify this by considering the following.

· The Connect Any Process and Connect Any Device capabilities provide the same function and could be combined.

· The Identify the User and Identify the Process capabilities are also the same functions and could be combined.

· The Control Options and Manage External Process are also the same functions, just with a different focus. These can also be combined.

· The direct request from the Control Options, step 5d, is really the same as the Execute Business Function direct request, step 6d.

· All of these flows assume that there are other potential applications that are not shown. So if we let the Execute Business Function have the capability to make direct requests we can eliminate the Direct Access to Applications box. The 6e step is now the assumed flow from Brokered Access to Applications to other application and steps 5d and 6d are executed from the Execute Business Function to directly call the assumed other applications.

This allows us to make a consolidated flow as shown in Figure 33: Consolidated People and Process Architecture Flow.

[image: image33.png]Build|
RESporse.

Figure 33: Consolidated People and Process Architecture Flow

We now have a logical representation of the capabilities needed for an e-business Infrastructure.

Note that we have not pre-determined what programming model we might use nor have we specified any product names. This is a good general practice at the logical architecture level of design.

Once the logical architecture is determined, it is at that point that programming models and product names should be introduced.

The final section of this paper looks at the Java J2EE programming model as an implementation example and the WebSphere Software Platform as a product suite that implements the programming model.

Development Strategy for an e-business Infrastructure

So far this paper has only considered the run time aspects of an e-business infrastructure. However, there is little point in having a robust, high scalable and high performing infrastructure if no one can build applications for it.

In addition, one of the principals identified in the Introduction, was that we must be able to support the infrastructure with a development environment that allow for the fast creation and deployment of new capability.

The choice of tools does play a large role in this, however the paper’s primary goal is top set out the architectural principals for an e-business infrastructure, without referring to names of products. So this discussion will be limited to the general approach for providing a development environment.

The e-business Development Environment

The e-business development environment is complex in that many artifacts have to be produced in order to provide a complete solution. These artifacts include:

· Graphic files such as Gif, tif, bmp and jpg.

· Video files such as avi and mpg.

· Web pages constructs such as HTML, page links and dynamic page creation scripts.

· Business function written using a chosen programming model

· UML, Business model to object model to data model mappings

· Web Services, and other B2B functions

· Integration to other business systems

· Development management information such as status reports, problem reports and approval of content.

This is a lot of items to develop and to keep track of. There is also a wide variety of skills required in order to be able to produce them. In general the required skills can be grouped into the following areas:

· Application design including modeling.

· Application business function implementation in chosen programming model, requiring skill in the chosen programming model.

· Graphic design to create required visual content

· User interface implementation, including navigation of web site implementation and deployment of same business function output to different devices.

· Integration into other systems

· Systems management and monitoring implementation.

· Project management and oversight.

There needs to be an approach that allows the development organization to produce these items in parallel so that designers, programmers graphic artists, web masters, system integrators, system managers, and development, managers can all work together quickly.

This requires a development process and tool selection that allows for the separation of development roles. This separation is illustrated in Figure 34: Development Process with Role Separation.

[image: image34.png]Designer

Graphic Page | Application | System
Artist Producer | Developer § Integrator

t f t

|
Content | User Interface [Business Logic| Integration
| |

System
Manager

Management

esion outpu)
UMILetc

b, i aifi | HTML, VML HTTP
mogetce | Dynanicpages | execitables,
i Gomponents:

Configuration;
Site llsage
S{atEfits)

Figure 34: Development Process with Role Separation

Combining the Build Time and Run Time Infrastructure

The development process must be able to supports the management of the produced artifacts and the deployment of those artifacts into production. This requires a content management capability that has the role of ensuring that all the correct artifacts for a release of an application are approved and available.

The artifacts should ideally be held in a common repository for the whole build time infrastructure.

Once the artifacts are available they need to be deployed into the runtime infrastructure that has been the focus of much of this paper.

Finally we need to manage and monitor what is going on in the runtime environment and feed the details back to the development environment. The monitoring and management choices will be influenced by the product choices we make for the infrastructure.

This process is illustrated in Figure 35: Combined Build and Runtime Infrastructure.

[image: image35.png]Tools

Build time infrastructure

Figure 35: Combined Build and Runtime Infrastructure

The intention of this section is not to identify which specific tools are required for a given run time infrastructure. Rather it is to provide guidance on the types of tool that are required and where they should be used.

Implementing the Infrastructure with Java

The creation of an e-business infrastructure eventually requires that we make some choices. One of the first choices, in fact probably the first choice, is the programming model that we wish to use in the creation of the infrastructure.

This paper will focus on Java for the programming model.

We therefore need to see how the architecture flow highlighted in Figure 33: Consolidated People and Process Architecture Flow can be implemented using Java.

This is illustrated in Figure 36: Implementation of architecture using Java. Each part of the architecture flow is represented by a bubble pointing to a service.

[image: image36.png]Access

Application

Srokerediaccecs)

Connect: Gonnect:
Any [Device Any Brocess.

Application
Directs

Integration Broker

Controll
Options;
B

Tanscading Server

rormatifors
tne Levice)

Response ottput:
buiitdynamically’ forUsers

Aransformi CLStom:
EeaCH|person|

Figure 36: Implementation of architecture using Java

The heart of the implementation is a Java application server that supports the J2EE programming model. That is it allows for the creation of Java servlets, which could provide the control point; Java Server Pages which provide for the dynamic creation of output; and Enterprise Java Beans, which provide the programming model for the creation of business logic.

This paper is not intended to provide an in depth analysis of the J2EE specification. Details on J2EE can be found online at:

http://www.j2ee.com
The latest version of J2EE (1.3) provides a specification for J2EE connectors, providing a standard approach to connecting to other systems. They may connect directly or via an integration broker of some type. The integration broker is outside the scope of J2EE. Information about J2EE connectors can be found online at:

http://www.j2ee.com/j2ee/connector/
The integration broker could also be access via messaging, which in the J2EE architecture is provided a Java Message Service (JMS). This provides a standard way for a Java application to place a request on a messaging system, the implementation of the messaging system is outside the scope of J2EE.

The J2EE specification only goes so far. In order to implement all the required functions we will have to provide some higher level services. Ideally these service should run in a Java application server, but it is not required that they do. These services are:

· Personalization

· Translation

· Transcoding

· Integration broker

These functions can either be created as part of the application development process, or they can be purchased as a vendor supplied capability.

The key to success with this approach is to use standard interfaces where connection is made to one of these services.

The connection gateway, process gateway and HTTP engine are the most important place that standards should be applied. It is here that entities connect into the enterprise. The most likely connection protocol being HTTP, however, there are many more options, particularly for the connection of mobile devices. These services are likely to be purchased from a vendor. The criteria in making such a purchase should include an assessment of which standard connection mechanism they support as well as the total number of connection mechanisms.

The security service is another key element which ideally should provide a single point of authentication and then allow the applications to pass an authenticated reference as they call from service to service. This passing of the security reference allows the applications to determine if the user is allow, authorized, to perform the requested service. Passing a security reference is most easily accomplished where all of the services run within the Java application server – hence the statement made earlier about the ideal of running the services in the Java application server. If this is not done, then the application may have to bridge between multiple security contexts.

Implementing the Infrastructure with the WebSphere Software Platform

IBM provides an infrastructure which builds on a standard J2EE base, with additional services extending the J2EE base. That infrastructure is the WebSphere Software Platform.

The WebSphere Software Platform provides a foundation of a J2EE certified application server – the WebSphere Application Server; and a messaging environment – MQSeries.

This foundation provides the capability to construct all of the architectural services discussed in the earlier part of this paper. However, a large amount of work would be required to do that!

The WebSphere Software Platform extends the foundation capability by providing higher level services, built on top of the foundation, in the areas of end user presentation, monitoring and deployment, integration as well as a development environment. Using these extensions simplifies the development effort resulting in business function being deployed faster.

The WebSphere Software Platform also provides some even higher level services, or Foundation Accelerators, which utilize the foundation extensions to create a solution focused in a specific area. Those areas include:

· Mobile Device support and management.

· End user experience management.

· Integration inside and outside of the enterprise.

· Specific B2C and B2B business functions.

The major WebSphere Software Platform categories are illustrated in Figure 37: WebSphere Software Platform Overview.

[image: image37.png]Development Presentation Deployment Integration

Foundation Extensions

Figure 37: WebSphere Software Platform Overview

It is not the intent of this paper to describe each of the products contained within the WebSphere Software Platform, rather to use it to illustrate how an e-business infrastructure can be deployed.

The Figure 36: Implementation of architecture using Java diagram showed the generic description of Java based services that could be used to implement the architecture. These services can be mapped to specific products within the WebSphere Software Platform as shown in Figure 38: Implementation of Architecture using the WebSphere Software Platform.

[image: image38.png]Connect: Connect:

AnylDevice Any Broce Application)
Srokerediaccess)

Application
Lirec

MOSeries Integrator

Controll
Gptions;

rormatiors
the Device WebSphere
S Translation Server

Response output Transform| Cut
builtidynamicallys forUser:

o
Eaci|person

Figure 38: Implementation of Architecture using the WebSphere Software Platform

This is the runtime architecture, specific information about any of these products can be found online at:

http://www.ibm.com/websphere
The integration aspects of the WebSphere Software Platform require a little closer study in order to map them to the integration approaches outlined in Business Process Interaction with e-business Infrastructure.

Integration Aspects of the WebSphere Software Platform

The WebSphere Software Platform supports both direct and brokered requests types.

The direct requests can be made using the Common Connector framework provided as part of IBM’s VisualAge for Java which provides pre-built connectors for common application environments. These include SAP, Peoplesoft, JD Edwards AND Oracle. The common connector framework will be adapted to support the J2EE Connector Architecture.

The brokered requests can be made using MQSeries implementation of Java Message Service (JMS).

In fact MQSeries can be regard as a very simple distributed broker, with the capability to route requests from MQSeries queue manager to queue manager, illustrated in Figure 39: Basic Broker with MQSeries.

[image: image39.png]EDI /XML

RB
Gateway
Supplier Systems
External Vendor:

Reparting System
NCR Teradata
Warehouse

Peaplesaft
ERP/Sun

Figure 39: Basic Broker with MQSeries

This basic capability can be augmented with adapters, which can be built using MQSeries Adapter Offering, to produce a distributed broker with routing and transformation capability. This is shown in Figure 40: Simple MQSeries based Distributed Broker.

[image: image40.png]EDI /XML

Supplier Systems
External Vendor:

Reparting System
NCR Teradata
Warehouse

Peaplesaft
ERP/Sun

Figure 40: Simple MQSeries based Distributed Broker

Centralized broker capability is provided with the addition of MQSeries Integrator and/or MQSeries Workflow. MQSeries Integrator supplies a centralized EAI capability. MQSeries Workflow provides a centralized business process management capability. Note that the connectivity is still by MQSeries queue managers and therefore direct routing is still possible. Therefore the configuration shown in Figure 41: Hybrid Distributed/Centralized Broker with MQSeries is actually a hybrid distributed/centralized broker. The diagram also shows the addition of WebSphere Partner Agreement Manager for the B2B gateway. This provides the capability discussed in Figure 29: Proxy Process with Connection Management and External to Internal Process Mapping.

[image: image41.png]EDI /XML WebSphere
Pariner Agreement.
SupplieriSystems Manager.
External Vendor

NMQ@Series
Integrator:

MQ@Series
Workfiow:

Peaplesaft
ERP/Sun

Reparting System
NCR Teradata
Warehouse

Figure 41: Hybrid Distributed/Centralized Broker with MQSeries

Solutions with WebSphere Software Platform

The overview Implementing the Infrastructure with the WebSphere Software Platform, indicated that there were higher level solutions within the WebSphere Software Platform. These solutions further simplify the deployed architecture shown in Figure 38: Implementation of Architecture using the WebSphere Software Platform.

These solutions are:

· WebSphere Everyplace Suite, which provides a solution for the connection and management of pervasive devices, including mobile, into the enterprise.

· WebSphere Portal Server, which provides an end user interaction framework covering personalized end user interaction with applications, data and people

· WebSphere Business Integrator, which combines the internal and external business process management capability.

· WebSphere Commerce Suite, which provides specific business functionality in support of both B2C and B2B business activity.

They all have a foundation of the WebSphere Application Server and are illustrated in Figure 42: Higher Level WebSphere Solutions.

[image: image42.png]phere Business Integrator;

.

Figure 42: Higher Level WebSphere Solutions

Development Options with WebSphere

The final part of this paper quickly looks at the choices provided by the WebSphere Software Platform. The development environment provides for implementation of a roles based development strategy, by providing tools that are focus on specific roles. The mapping of tools to roles is shown in

[image: image43.png]coneen m

Took.
Used

Development Management
[WebSphere Content Management]

Graphic Page
o

WebSphere
Studio

User Interface.

C———— —————
WebSphere
Studio

Application
Developer

Business Logic

sualdge

for Java

System
Integrator

——
ualAge
for Java

Deployment
Management

System

Manager

WebSphere
Studio

Lotus Dol na otus Dom ; WebSphere WebSphere
Designer Designer Versata | yolt mbgration Shte Analyzer
espners) Peccrhers) VisualAge MQSeries DB2 Content
i Moes” || Generator || Integrator Manager

LD MQSeries —
covporents_| | Workflow Tivoli
WS

Ageement Mg

Figure 43: Mapping WebSphere Tools to Development Roles

The design tools shown are not provided by IBM but can be used in conjunction with the platform. Holosofx provides a business process management design and development tool that deploys to MQSeries Workflow. Rational provides a general component modeling tool, the output from which can be feed into VisualAge for Java.

Details of the rest of these tools can be found online at:

http://www.ibm.com/websphere
 busi·ness

 3 	a : a usually commercial or mercantile activity engaged in as a means

 of livelihood

b : a commercial or sometimes an industrial enterprise

c : usually economic dealings

An e-business infrastructure must be able to scale to meet a much higher number of connected entities than a traditional infrastructure.

An e-business infrastructure needs to support the interaction of people and processes .

An e-business infrastructure must have a supporting development and deployment methodology that allows for the fast creation and deployment of new capability.

Direct and brokered requests have to solve the same problems, namely how long do I wait and what do I do if there is a failure.

Ideally an infrastructure should be able to support all three options.

In the choice of broker architecture for the required routing of requests, neither centralized nor distributed provide a definitive superior option.

The general applicability of a broker becomes more apparent as you increase the complexity or the requirements placed on the integration.

As the integration complexity increases centralized brokers are a more effective option than distributed brokers.

A logical architecture should not mention programming models or product names.

Author: Keith Edwards

07/10/01
Filename: Architecting an Infrastructure for e-business 2001.doc

Page: 1 of 49

_1049734432.doc
[image: image1.png]

�

_1038722314.unknown

