
Some EJB Best Practices

Kyle BrownKyle Brown
Senior Java ConsultantSenior Java Consultant
IBM WebSphere ServicesIBM WebSphere Services
RTP, NCRTP, NC
brownkyl@us.ibm.combrownkyl@us.ibm.com

1

© Copyright IBM Corporation 2000

Overview

Enterprise Java Beans Definitions

When to use EJB's

EJB Architectures

Best Practices

2

© Copyright IBM Corporation 2000

Enterprise Java Beans

A component model for developing and
deploying object-oriented, multitier Java
applications

Based on three foundational technologies
OMG's CORBA
RMI (Java Remote Message Invocation)
X/Open XA Transaction architecture

3

© Copyright IBM Corporation 2000

So what's an EJB?

An EJB is a distributed, transactional,
(possibly) persistent software component

Programmer provides a specification and
implementation for its business methods

Transaction attributes and persistence can be
provided at Deployment time

4

© Copyright IBM Corporation 2000

Bean Types

Session beans
typically represent function
belong to a single client for a period of one or
more method calls
created and destroyed by a client (transient)

Entity beans
shared by multiple clients
typically represent persistent data

5

© Copyright IBM Corporation 2000

EJB Types

Enterprise
Java

Beans

Entity
Beans

Session
Beans

Container
Managed

Bean
Managed

Stateless Stateful

6

© Copyright IBM Corporation 2000

Stateless vs. Stateful Session Beans

Stateless
may not possess client-specific internal state
can be pooled to service multiple clients

Stateful
may possess client-specific internal state
one per client

7

© Copyright IBM Corporation 2000

Entity Bean persistence

Container-managed
Container is responsible for saving state
Persistence is through generated code
persistence independent of data source

Bean-managed
Bean is responsible for saving its own state
Developer is responsible for persistence
Less adaptable; persistence is hard-coded
More flexible

8

© Copyright IBM Corporation 2000

Qualification Critera

The following questions can help you decide
if you need EJB's

If you answer "yes" to any of the questions,
you may benefit from EJB's

9

© Copyright IBM Corporation 2000

Standards

Do you need a standards-based architecture?
Multiple Vendor support
Training issues

EJB's are standards-based.
It is easier to cross-train developers to a
standard than a proprietary base.
In a multi-vendor environment you can
leverage common code and experience

10

At the same time, each vendor goes beyond the EJB specification
in small ways. For instance, VisualAge for Java and WebSphere
provide some features for CMP that go beyond the specification.
WebLogic likewise allows for setting some configuration options
at runtime that go beyond the specification.
However the bulk of your code (90%+) should be
vendor-independent. It is your choice whether or not to use
vendor-specific features.
One thing to keep in mind is that EJB IS the standard for TP
systems in the future. All IBM TP systems will either migrate to
EJB compliance or merge into EJB compliant systems (including
CICS...)

© Copyright IBM Corporation 2000

Transactional Support

Do you need to access multiple datasources
with transactional support?

This is the argument for traditional TP systems
EJB's provide a standard, vendor-independent
architecture for building TP systems
Currently limited 2PC support but getting
better...

11

For instance, we Currently do not support 2PC for Oracle
because of problems with Oracle's XA JDBC Driver.
However, this will be fixed in the future. We have also
announced plans to support transactional 2-PC with MQ Series
through our MQ Series JMS classes.

© Copyright IBM Corporation 2000

Client Support

Do you need to support multiple client
types?

HTTP, Desktop Application, WAP, etc.

EJB's (through RMI/IIOP) allow multiple
client types to access the same back-end logic

This feature is a key to the J2EE application
architecture

12

© Copyright IBM Corporation 2000

J2EE Architecture

Many client types
can access EJB's

Servlets & JSP's

Clients can go
through RMI/IIOP

May use other
protocols
(SOAP/XML)

13

© Copyright IBM Corporation 2000

Security Support

Do you need method-level security on your
objects?

EJB's allow you to specify how users and
groups can be allowed or denied access to
both EJB types and individual EJB methods.

WebSphere uses standard Security API's --
LDAP, SSL, etc.

14

Conversely, one of the things that EJB's do *not* allow you to
easily is object-level security. It can be done in the WebSphere
environment since we allow programmatic access to
authentication information and other user information that is
stored in LDAP, but it will require custom coding.
If this is one of your key requirements, you may need to carefully
evaluate the amount of work necessary to achieve it.
Another thing that is not provided in EJB's is a connection
between the "logged-in" user and the database-level user. If you
require that each user have their own unique database id and
connection, then EJB's may not be the best option for you.

© Copyright IBM Corporation 2000

EJB Program Architectures

Clients should not be aware of
the complexity of your entity model
the way in which you manage data

Use session beans as Facades
Minimize distribution "cross-section"
Hide Entity beans or other persistence
mechanisms
Java Beans (Helper Objects) implement
business logic

15

Facade is a design pattern from Gamma, et. al. A Facade is an
object that hides the complex relationships between other
objects.
By "Java Bean" I really just mean any serializable Java Object.

© Copyright IBM Corporation 2000

EJB Architecture

Session
Bean

(Facade)
Helper
Objects

(Business
Rules)

Entity
Beans
(Data

Sources)

Session Bean API is the client's view of the
system

16

© Copyright IBM Corporation 2000

Helper Objects "inside the box"

Application-specific domain objects
implement business rules
perform validation and integration of disparate
data

Session
Bean

(Facade)
Helper
Objects
(Business

Rules)

Entity
Beans
(Data

Sources)

17

Helper Objects are sometimes called Dependent Objects. This
terminology is used in the EJB 1.1 specification and is extensively
used in the EJB 2.0 specification, where it takes on a slightly
different (but mostly compatible) meaning.
Validation should be performed as quickly as possible by Helper
objects rather than by the Entity beans themselves. Validating
early in the helpers reduces the number of bean references that
participate in the transaction (and are therefore locked) in the
case of a validation failure, which must be rolled back. This will
reduce contention in your application and speed things up.

© Copyright IBM Corporation 2000

Helper Objects "outside the box"

Can be a communication vehicle from facade
to client

Copied by value; must be declared Serializable

helper objects

serialized and
transmitted

EJB ServerEJB Client

helper objects

Fa
ca

de EJBs and
other data
sources

View
Code

Control
Code

Control code modifies the helpers
according to the user's actions.

18

Any object that is serializable can be returned as the value of a
Session bean's method. This object will be serialized and copied
across the network to the requesting client. Likewise modified
helper objects can be passed back to the session bean in the same
way.
Remember that accesses to an EJB are network calls. This can
adversely affect performance when you have a large number of
fine-grained objects that you access from the client. Using helper
objects can reduce this network traffic. The client can make
several changes at once to a single helper object and then send
that helper object to the facade as one network call instead of
several -- one for each change.
Of course, WebSphere can be optimized to avoid overhead like
this when the client and EJB are in the same JVM.

© Copyright IBM Corporation 2000

Pros and Cons of Session Facades

Advantages of session management
Entity beans are general-purpose data sources
Session beans can tie together multiple data
sources
Additional transaction management through
SessionSynchronization

Disadvantages of session facades
The total model is more complex

19

© Copyright IBM Corporation 2000

Minimize Entity Bean Coupling

Avoid the temptation to build create() and
finder methods in your Entity Beans that use
Helper objects

This ties the Entities to specific Helpers
Creates a class dependency nightmare
Makes deployment difficult
Makes Reuse of the Entity Beans challenging

20

© Copyright IBM Corporation 2000

Common scenarios

The following set of scenarios will help you
understand when to apply different EJB types

We will set up some problems and then
illustrate why each problem is best solved
with a particular EJB design pattern

21

© Copyright IBM Corporation 2000

Basic Assumptions

Assume a standard architecture of Session
Beans presenting facades to clients

The Session beans may wrap Entity beans,
other Session beans, or Java classes

Should never allow a client direct access to
an Entity bean

Efficiency (each call is a new transaction)
Logical consistency (one write succeeds,
another fails)

22

© Copyright IBM Corporation 2000

Complex Relationships

Often you find a set of persistent objects
with complex relationships

1-N and 1-1 relationships
Inheritance
Object-relational mismatches

When a user must navigate a tree or graph
structure then often CMP EJB's are the best
solution.

23

© Copyright IBM Corporation 2000

CMP advantages for Graphs

WebSphere & VAJ together support CMP
Efficient (ex: 1 SQL call per finder vs. N+1)
Handles many cases without custom SQL
coding

EJB's are created and mapped to a DB
schema in VAJ, tested in VAJ, exported to
WebSphere for execution

Easy to change when requirements change

24

Note that there are a few cases where graph navigation might be
better done in another way. This will be covered later.

© Copyright IBM Corporation 2000

The EJB Page

25

Things to notice on this page:
(1) At the upper left is a listing of the EJB Groups, which is a tree
view showing the EJB's contained within the EJB groups.
(2) The middle pane shows the classes and interfaces associated
with a particular EJB selected in the first pane. The right-hand
icon toggles between a field view (useful only for Entity beans)
and a type view. The left-hand icon toggles between seeing only
the major classes and interfaces (Home, Remote, Bean) and all
generated classes.
(3) The leftmost page shows the methods that correspond to a
particular type selected in the middle pane. The icon to the right
of some methods show that these methods have been
"promoted" to the Remote or Home Interface.
(4) The lower pane shows the code of the class definition or
method selected.

© Copyright IBM Corporation 2000

Primary Key Joins

VisualAge supports
joins on Primary keys

Create one
"primary" table
Select N secondary
"tables"

Can select attributes
from each

SalesAgent

Employee

SalesAgentEJB

empid quota region

empid fname mi lname

empid name quota region

26

© Copyright IBM Corporation 2000

EJB Inheritance

Remote interfaces can inherit from other
remote interfaces

Permit extension of component services
Client calls can exploit polymorphism

Bean implementation classes can inherit from
other implementation classes

Code reuse

27

There are some common-sense limitations to this:

(1) Session beans cannot inherit from Entity Beans and vice versa.
(2) A Stateless session bean cannot inherit from a stateful session bean and vice-versa

© Copyright IBM Corporation 2000

Allowable Inheritance

E m p loyeeBean

getName()
getOffice()

SalariedEmployeeBean

getYearlySalary()

As with all EJB implementations,
these "realizes" relationships are
virtual.

EJBObject
<<Interface>>

E m p loyee

getName()
getO ffice()

<<Interface>>

EntityBean
<<Interface>>

SalariedEmployee

getYearlySalary()

<<Interface>>

28

© Copyright IBM Corporation 2000

Single-table Inheritance

key discriminator name office yearlySalary

101 EmployeeBean Fred B105 null

202 SalariedEmplyee Bob C238 40000

SalariedEmployeeBean
yearlySalary

The "discriminator" column
identifies the type of the bean

EmployeeBean

name
office

key

29

All instances in inheritance hierarchy stored in a single Table
Attributes not found in all instances must be nullable
Need a column dedicated to identifying actual type (discriminator).

© Copyright IBM Corporation 2000

Root-leaf Inheritance

key discriminator name office

101 EmployeeBean Fred B105

202 SalariedEmployee Bob C238

SalariedEmployeeBean
yearlySalary

The "discriminator" column
identifies the type of the bean

EmployeeBean

name
office

key

key yearlySalary

202 40000

30

This mapping save db space by eliminating nullable attributes.
Object creation requires table joins to retreive all attributes.
Still requires a discriminator column.
Leaf tables key -- is a foreign key to root table.

© Copyright IBM Corporation 2000

VAJ Inheritance

31

© Copyright IBM Corporation 2000

Kinds of Object Relationships

orderid fname phone addressFK
1011 Bob 212-3999 2023

phone fname mi lname
212-3999 Bob R Stevens

itemid description quantity orderFK
4027 TV Dinner 8 1011

Order

LineItem

Customer

0..1-0..1 relationships
0..1-N relationships
M-N relationships

LineItem

1 *

Order

1 *

Customer

1

*

1

customer

lineItems

32

This slide shows different kinds of object relatonships. Suppose
you have a Java class called "Order". An "Order" has two instance
variables -- an "customer" that holds an instance of an Customer
class and a "lineItems" variable that holds a collection of
"LineItem" objects.
The three tables below show how you might implement these
relationships in a relational database. the N-1 relationship
between Order and Customer is implemented by a foreign key in
the Person table. The 1-N relationship between Order and
LineItem is implemented as a foreign key in the LineItem table (a
backpointer).
M-N relationships (not shown) are usually implemented through a
third, "relationship" table that includes foreign keys to both
parties in the M-N relationship.

© Copyright IBM Corporation 2000

Setting Associations

Associations are
defined as special
properties

Not defined as
CMP fields
Defined after
both EJBs in
association are
defined
Can be defined
on either EJB in
association

33

© Copyright IBM Corporation 2000

Complex SQL

CMP Entities in WebSphere Advanced
cannot handle arbitrary SQL

Joins (other than on shared primary keys)
Views

If you need to handle these, you must use
another solution

BMP
"Session wrapped" persistence framework

34

© Copyright IBM Corporation 2000

Relational Joins

CMP does not handle relational joins well
Sometimes an object structure is naturally
mapped to a join
Joins are often needed for efficiency

In this case, BMP is the best solution today
that is available

35

© Copyright IBM Corporation 2000

BMP's and Dependent Objects

You usually can't map the result of a join to a
CMP EJB

Each CMP EJB corresponds to a single row in a
table
No way of tying multiple EJB's together

Instead use BMP with "Dependent objects"
or "Helpers"

Java Beans (Serializable Java objects)
Persistence will be managed by a BMP bean or
by outside persistence solutions

36

© Copyright IBM Corporation 2000

Session-Wrapped Persistence Layer

A solution we've seen a few times is to use
persistent JavaBeans (e.g VisualAge PB)

Build a "Transaction Wrapper" Stateful Session
EJB that implements SessionSynchronization
Tie the PB and EJB transactions together
Allows you to transactionally tie together PB
and CMP Entity objects
Provides distribution to PB

37

© Copyright IBM Corporation 2000

The N-ary relationship problem

Often you
encounter N-ary
relationships

Could implement
with VA-J CMP
Poor performance
with this solution

Film

FilmPersonRole

Person

Role

3N + 1 SQL Statements!

38

The example here is "Ron Howard was an Actor in American
Graffiti. Ron Howard was the Director of Cocoon"
The first SQL statement is by the finder of the FilmPersonRole
bean, which returns back all of the appropriate FilmPersonRoles.
However, you must traverse each single-valued relationship
individually. This results in a findByPrimaryKey() on each object,
which is another SQL statement. For N FilmPersonRoles, with 3
relations, that makes a total of 3N + 1

© Copyright IBM Corporation 2000

Solving N-ary with BMP

Can write a BMP that
Represents the FilmPersonRole Association
Returns Dependent Objects (e.g. Film, Role,
Person)
A single SQL Statement in the ejbFindBy...() to
retrieve keys (FilmCrewRole)
A SQL Statement in each ejbLoad() that does a
4-way join

Total of N + 1 SQL Calls

39

© Copyright IBM Corporation 2000

More on the BMP Solution

public class FilmPersonRoleBean implements EntityBean {
...

private Film film;
private Person person;
private Role role;

...
}

These are dependent Objects --
Serializable Java Objects

40

© Copyright IBM Corporation 2000

public java.util.Enumeration ejbFindByFilm(int argFilmId) throws java.rmi.RemoteException, javax.ejb.FinderException {
java.util.Vector results = new java.util.Vector();
Connection jdbcConn = getConnection(); // get from the connection pool
try {

String sqlString = "SELECT filmId, personId, roleId FROM KBROWN.FilmPersonRole WHERE (filmId = ?)";
PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setInt(1, argFilmId);
ResultSet sqlResults = sqlStatement.executeQuery();
while (sqlResults.next()) {

FilmPersonRoleKey newKey = new FilmPersonRoleKey();
newKey.filmId = sqlResults.getInt(1);
newKey.personId = sqlResults.getInt(2);
newKey.roleId = sqlResults.getInt(3);
results.addElement(newKey);

}
} catch (Exception e) { // DB error

throw new FinderException("Database Exception " + e + "caught");
} finally { try {jdbcConn.close()} catch (Exception e1) {}; }
return results.elements();

}

BMP EJB Finder method

41

© Copyright IBM Corporation 2000

BMP EjbLoad Method

public void ejbLoad() throws java.rmi.RemoteException {
//_initLinks();
boolean wasFound = false;
boolean foundMultiples = false;
FilmPersonRoleKey key = (FilmPersonRoleKey) getEntityContext().getPrimaryKey();
Connection jdbcConn = getConnection();
try {

// SELECT from database
String sqlString = "SELECT a.filmId, a.personId, a.roleId, b.title, c.name, d.name FROM KBROWN.FilmPersonRole a,

KBROWN.Film b, KBROWN.Person c, KBROWN.Role d WHERE (a.filmId = ? AND a.personId = ? AND a.roleId = ? AND
a.filmId = b.id AND a.personId = c.id AND a.roleId = d.id)";

PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setInt(1, key.filmId);
sqlStatement.setInt(2, key.personId);
sqlStatement.setInt(3, key.roleId);

// See the next page for the execution of the statement

} catch (Exception e) { // DB error
throw new RemoteException("Database Exception " + e + "caught in ejbLoad()");

}
if (wasFound && !foundMultiples) {

return;
} else {

throw new RemoteException("Multiple rows found for unique key in ejbLoad().");
}

}

42

© Copyright IBM Corporation 2000

// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();
// Advance cursor (there should be only one item)
// wasFound will be true if there is one
wasFound = sqlResults.next();

if (wasFound) {
// If the Join ran correctly, then set the internal variables of the dependent objects
film = new Film();
film.setId(sqlResults.getInt(1));
film.setTitle(sqlResults.getString(4));
person = new Person();
person.setId(sqlResults.getInt(2));
person.setName(sqlResults.getString(5));
role = new Role();
role.setId(sqlResults.getInt(3));
role.setName(sqlResults.getString(6));

}

// foundMultiples will be true if more than one is found.
foundMultiples = sqlResults.next();

Execution of the Query

43

© Copyright IBM Corporation 2000

Connection pooling

When building BMP beans (or Sessions that
do DB queries) ALWAYS use Connection
pooling

WebSphere connection pooling is the only
way for the Txn Mgr to commit() your
updates in the right place

Uses the standard JDBC 2.0 Connection
pooling classes (javax.sql.DataSource)

44

© Copyright IBM Corporation 2000

Example getConnection()

public Connection getConnection() throws SQLException, RemoteException {
// ds can be a transient variable in this EJB or a Singleton

if (ds == null) {
try {

Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
props.put(Context.PROVIDER_URL, "iiop://localhost:900/");
// fill in the properties
InitialContext initContext = new InitialContext(props);
ds = (DataSource) initContext.lookup(DATASOURCE_NAME);
if (ds == null)

throw new RemoteException("Could not initialize DataSource");
} catch (NamingException e) {

throw new RemoteException("Could not initialize DataSource " + e);

}

}
return ds.getConnection();

}

45

© Copyright IBM Corporation 2000

The "real" join solution

The perfect solution is to handle joins is in
only one SQL call

PB solves this with a feature called "preload"

"Preloading" adds each table into the join that
initially happens

This will be added in WebSphere/VAJ 4.0
Could be "faked" in BMP today
Would need to store a "cache" of the data
read back shared by all Entities

46

One more thing that I should mention is another performance
trick for BMP beans. Often you have a BMP manage an object
"graph", such as in an Order/LineItem solution.
It is often more efficient to load only the "Order" information in
the ejbLoad() method, and to defer loading the "LineItems" until
they are actually asked for (lazy initialization)
In this solution you would load the lineItems inside the
getLineItems() method so long as they have not been previously
loaded.

© Copyright IBM Corporation 2000

Read-only objects

In many domains there is a set of objects
whose state is frequently read but VERY
rarely updated

Geographical locations (states, counties)
Codes and lookup tables

The key is that these objects are *not*
transactional

They do not have to be EJBs
Instead, make them Dependent Objects
managed by a Session bean

47

© Copyright IBM Corporation 2000

Storing Dependent Objects

Stateless Session beans make good
"gateways" to data

The data itself can be cached on a per-server
basis

Use the "Singleton" pattern from Design
Patterns

Store the Dependent Objects in a Singleton

48

© Copyright IBM Corporation 2000

Architecture of a Session Solution

Stateless
Session EJB

Singleton Dependent
Object

Broker

Dependent
ObjectDependent
Object

database

Stateless
Session EJBStateless

Session EJB

49

© Copyright IBM Corporation 2000

Write-only objects

Sometimes you often have a set of write-only
objects

A system log

In this case, you will not want to read the log
entries

Inefficient to create and then not use an EJB

A Session EJB + Dependent object solution
will work well

50

Be careful about logs. There are many patterns to building
efficient logs. You may want to be able to route to multiple
datasources for instance. Another useful option is to defer
writing the logs to another process -- use an asynchronous
mechanism like MQ to communicate with the write process.
If interested, there was a good pattern language on writing logs
that was submitted to PLoP 2000
Also be sure to check out the JLog software on alphaworks
(www.alphaworks.ibm.com)

© Copyright IBM Corporation 2000

Megascrolling

Often you need to scroll through a large
(>50 element) list

Using an EJB to retrieve only a few fields is
inefficient

Can often code a Session bean + dependent
object solution to be much faster

Use the key value held in the dependent
object to reference an Entity EJB.

51

© Copyright IBM Corporation 2000

Deploy Beans to EJB Server

Write EJB Client(s)

Test Beans and EJB Client(s)

Write
Remote
Interface

Write
Home

Interface

Write
Bean
Class

EJB Development Process

52

© Copyright IBM Corporation 2000

Testing

Look into using the JUnit framework from
Erich Gamma & Kent Beck

available at http://www.xprogramming.com

Test all aspects of your system
JavaBeans
Back-end logic
Servlets
JSP's
EJB's

53

© Copyright IBM Corporation 2000

Layered Testing Example

Customer testing example using EJB's

Swing applet
client Session EJB

Shared
Business

Beans
Entity EJBs

Tests

Session EJB

Tests Tests

Application built and tested from right to left

54

Building our application in this way had many advantages:
(1) We were able to experiment with different ways of using EJB's
without fear of bugs occurring at higher layers.
(2) The GUI worked very nearly "the first time" because of the
work we had put into testing the lower layers.

© Copyright IBM Corporation 2000

Summary

You've seen
EJB Basics
When to use EJB's
Examples of using Session & Entity beans
Architecture and Development Best Practices

55

© Copyright IBM Corporation 2000

Bibliography

Gamma, "Design Patterns", Addison-Wesley
Longman, 1995

Monson-Haefel, "Enterprise JavaBeans",
O'Reilly & Sons, 1999

See also http://members.aol.com/kgb1001001
for more links and references

56

© Copyright IBM Corporation 2000

WDD and VADD Articles

Kyle Brown, "What's it going to take to get
you to move to EJB's", DeveloperWorks,
(http://www.ibm.com/developer)

Vesselin Ivanov, "EJB's and Transaction
Management in WebSphere Advanced
Edition", VisualAge Developer's Domain,
(http://www.software.ibm.com/vadd)

57

© Copyright IBM Corporation 2000

White Papers

Nataraj Nagaratharam, "WebSphere 3.02
Standard/Advanced Security Overview"

Harvey Gunther "WebSphere Application
Server Development Best Practices for
Performance and Scalability"

Both available at
http://www-4.ibm.com/software/
webservers/appserv/whitepapers.html

58

Extra Topics

59

© Copyright IBM Corporation 2000

Transaction Demarcation

You can specify (demarcate) transactions in
three ways

Container Managed (implictly decide when to
start/commit/rollback) transactions in the
deployment descriptor
Bean Managed -- you explictly
start/commit/rollback in EJB code
Client Managed -- The EJB client explicitly
start/commit/rollback transactions

60

© Copyright IBM Corporation 2000

Transaction Attributes

Clients TXN TXN Associated
with EJB Method

TX_NOT_SUPPORTED - -
T1 -

TX_REQUIRED - T2

T1 T1

TX_SUPPORTS - -

T1 T1

TX_REQUIRES_NEW - T2

T1 T2

TX_MANDATORY - ERROR

T1 T1

61

TX_REQUIRED is default in VAJ.

© Copyright IBM Corporation 2000

Advice on Transaction Demarcation

Assume a base of TX_REQUIRED
All Session beans acting as facades
Entity beans (although TX_MANDATORY
might be good here)

In complex cases the Session bean may need
TX_BEAN_MANAGED

Allows the Session to do exception handling
and recovery logic.

62

© Copyright IBM Corporation 2000

Transactions and BMP EJBs

A BMP bean will have its ejbLoad/ejbStore
methods called at the appropropriate times

A BMP bean should never manage the
transaction calls themselves

Should use WebSphere's connection pooling
classes
These will automatically commit or rollback in
response to EJB transactions

63

© Copyright IBM Corporation 2000

EJB Caching

A way to speed up your entities is to cache
them

By default Websphere uses "Option C"
This means a bean will be reloaded for every
transaction

Can change this to "Option A"
This means a bean will keep its state across
transactions
Fewer SQL SELECT statements and better
performance

64

© Copyright IBM Corporation 2000

Caching Options in WebSphere

Shared is Option
C. Exclusive is

Option A

65

You get to this page by selecting an EJB in the tree of the
WebSphere Administrator's Console.

© Copyright IBM Corporation 2000

Advice on EJB Caching

Only use Option A caching if you are
CERTAIN that one EJB Server has exclusive
write access to the bean

Do not use if other processes (including
other clustered EJB servers) can also update
the data

66

© Copyright IBM Corporation 2000

Isolation Levels

The Websphere EJB server does not provide
transaction isolation and concurrency
management on its own.

It provides directives (called Isolation levels),
which are "hints" to the database as to what
policies should be used.

The database is responsible for providing
these services to your EJB's

67

© Copyright IBM Corporation 2000

Isolation Levels

Level Uncommitted
Data?

Nonrepeateable
Reads?

Phantom
Records?

TRANSACTION_READ_UNCOMMITTED YES YES YES

TRANSACTION_READ_COMMITTED NO YES YES

TRANSACTION_REPEATABLE_READ NO NO YES

TRANSACTION_SERIALIZABLE NO NO NO

68

Uncommited Data means that a transaction can read data written
by another transaction that has not yet been committed.
Nonrepeatable reads means that within a transaction .the first
read of a data field can get one result, while a second can get a
different result due to the data being updated by another
transaction or program
phantom records are records that can be inserted while the
transaction is in progress of which this transaction may be
unaware.
The default Isolation level in WebSphere is REPEATABLE_READ

© Copyright IBM Corporation 2000

Isolation levels and deadlocks

Choosing a high isolation level (like
SERIALIZABLE) can lead to deadlocks

Some of the options listed later can help this

Refer to [Ivanov] for details

69

© Copyright IBM Corporation 2000

Find For Update

Specifies whether the container gets an
exclusive lock on the EJB when the "find by
primary key" method is invoked

Useful for avoiding deadlock

Thread2

Thread1

has shared
needs exclusive
for update

has shared
needs exclusive
for update

find grants shared

find grants shared

70

The setting will take effect the next time the application sever
hosting the enterprise bean is started.
Deadlock can occur when two transactions execute find methods,
and then update methods, on the same enterprise bean.
The find method grants a shared lock on the enterprise bean, but
the update method attempts to get an exclusive lock on the
enterprise bean, resulting in deadlock.

© Copyright IBM Corporation 2000

Find For Update Setting

71

© Copyright IBM Corporation 2000

Read-only Methods

To improve the performance of your
applications consider which methods do not
modify data in an Entity EJB

The specification assumes that all beans used
during a transaction are "dirty" and must have
their state written back at the end of a
transaction.

WebSphere goes beyond the EJB Spec to
address this issue.

72

WebSphere defines a read-only method flag in the deployment
descriptor of entity Beans. This allows the EJB developer to tell
the container which methods are read-only, i.e., which don't
change the state of the bean.

© Copyright IBM Corporation 2000

Read-only Methods (continued)

WebSphere looks for the setting of this flag
whenever a method is invoked.

If only "read-only" methods are sent to a
bean in a transaction, WebSphere will not
assume that the bean is "dirty"

Thus it will not execute a SQL UPDATE
statement for that bean when the transaction
is committed.

73

© Copyright IBM Corporation 2000

Setting Read-only methods

Chech this box to
set a method as

read-only

74

You reach this dialog box by pressing the "Deplyment Descriptor"
button on the EJB page in the WebSphere Administrator's
console

