
Access Manager for Web Application Servers

5-1

Jon Harry & Avery Salmon
EMEA PIC

1

Tivoli Access Manager for :
IBM WebSphere Application Server 4.0.2
BEA WebLogic Server 6.1 SP1

This presentation describes how Tivoli Access Manager can be integrated with
IBM WebSphere v4.0.2 and BEA WebLogic Server 6.1 with SP1 to
implement centralized authorization of J2EE applications.

This function was released for Policy Director v3.8 but has been enhanced and
modified for Access Manager v3.9.

This presentation is primarily a description of the functionality of AMWAS
and AMWLS, which is the same between v3.8 and v3.9. However, there are
additional slides and comments included for the differences in v3.8 and v3.9
function where appropriate.

Access Manager for Web Application Servers

5-2

2

Agenda

J2EE Application & Security Overview

WebSphere Security Overview

AM for WebSphere 4.02

WebLogic Server & Security Overview

AM WebLogic Server Realm

Summary

The contents of the presentation are shown above.

This document contains an overview of the J2EE security model and then
details of how Tivoli Access Manager integrates with two implementations of
the model.

Access Manager for Web Application Servers

5-3

3

J2EE Application & Security Overview

Access Manager for Web Application Servers

5-4

4

J2EE Application : Multi-tiered Components

Servlet/JSP

Browser/
application client

Enterprise
Java

Beans

Database

Client Tier

Web Tier

Business Tier

Information Tier

J2EE Server

Java 2 Enterprise Edition (J2EE) provides the standard for developing multi-
tier, server-side java applications. J2EE builds upon features of Java 2
Standard Edition (J2SE) to add

•Enterprise JavaBeansTM

•Java Servlets API

•JavaServer PagesTM

•XML technology.

The entire J2EE application is made up of components in the various tiers. All
J2EE applications will contain one or both of the two server tiers.

Information on Web Applications from Java™ Servlet Specification.

Information on Enterprise Applications from Enterprise JavaBeans TM
Specification.

The definitive source for Java specifications is http://java.sun.com/products/.
A J2EE tutorial is available at http://java.sun.com/j2ee/tutorial/1_3-
fcs/index.html.

Access Manager for Web Application Servers

5-5

5

J2EE Server : Containers & Components

Client Database

J2EE Server

Web Container

EJB Container

Servlet JSP

EJB EJB

The J2EE Server provides
the run-time environment for Web and EJB
containers that provide common, configurable
services to their application components.

The J2EE Server provides container services for the application components
that reside on the server. Container services include:

•security
•transaction management
•Java Naming and Directory Interface (JNDI) lookups
•remote connectivity to EJBs.

The J2EE server is the runtime portion of a J2EE product. A J2EE server
provides EJB and Web containers:

•EJB container --manages the execution of enterprise beans for J2EE
applications.
•Web container -- manages the execution of JSP pages and servlets
components for J2EE applications.

The EJB and Web containers are implemented by the J2EE server as wrappers
around each EJB, JSP and Servlet.

To download the Java Servlet and JavaServer Pages specifications go to
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

Access Manager for Web Application Servers

5-6

6

J2EE Application : Packaging

servlet.jar file .w
a

r
fi

le

.e
a

r
fi

le
ejb2.jar file

meta-inf\ejb-jar.xml1

ejb1.jar file

mata-inf\application.xml1

web-inf\web.xml1

/index.html
/feedback.jsp
/howto.jsp
/images/banner.gif

Application components
distributed in archive files

java, web, EJB
Java (.jar), web (.war) and
Enterprise application (.ear)
archives contain ‘deployment
descriptor’ files

like a configuration file, but
used by component container

When component is deployed
to J2EE server, deployment
descriptor file declares run-
time parameters

1deployment descriptor file

The three types of packaging files shown here are:
1.jar file = java archive file : contains executable ‘.class’ files,

configuration ‘.properties’ files, and META-INF/ejb-jar.xml deployment
descriptor file.

2..war file = web archive file : contains servlets,JSPs, static html & image
files, java archive files, applets, and a deployment descriptor file with
name web-inf\web.xml

3..ear file = enterprise application archive file : contains .jar files with
EJBs, .war files, and a deployment descriptor file with name META-
INF/application.xml

Both .war and .ear files are standard .jar files with a different file extension.
That all have the same format. WINZIP will open all of them.

The deployment descriptor file is an XML document that describes a
component's deployment settings.

For example, an ejb-jar.xml file may describe transaction attributes and security
authorizations for the EJB. At run time, the J2EE server reads the deployment
descriptor and acts upon the component accordingly.

Application Servers also have their own proprietary XML files (still called
deployment descriptors) containing vendor specific info.

Access Manager for Web Application Servers

5-7

7

J2EE Application : Who is Involved?
Component Provider

developer that creates reusable java beans/servlets for some category of
application (finance, banking, entertainment, etc).

Application Assembler
combines components (EJB’s, servlets, jsp’s, etc) to create a deployable
unit that is distributed as an archive file (.jar, .war, .ear). Often same
company as Component Provider.

Application Deployer
deploys (installs) archive file from Application Assembler into J2EE
server using tools provided by Server Vendor

System Administrator
runtime monitoring and management using tools provided by Server
Vendor

Server & Container Vendor
WebSphere, WebLogic Server, Tomcat, etc. Provides system-level
container services

The J2EE model describes a number of different entities involved in the
development, use and maintenance of a Web Application.

In terms of the integration of Access Manager into the J2EE environment, the
Application Deployer and System Administrator are those who have to be
most aware of the part that Access Manager will play.

The Application Deployer must ensure that Access Manager is populated with
the information required for it to protect existing and new Web Applications
deployed on the Application Server.

The System Administrator needs to use Access Manager’s Administrative
Console to permit/revoke access to the J2EE application resources.

Access Manager for Web Application Servers

5-8

8

Permission

Group

J2EE Security : Roles

RolePrinciple
RolePrinciple

RolePrinciple

Mapping defined by
Application Deployer

Group

Group/Principle to
Role Mapping

Role to Permission
Mapping

Roles and their mapping to activities
are defined by Application Assembler

Permission

Access URL

Permission

Invoke EJB

A security role is a semantic grouping of permissions that users must have to
successfully use the application in a particular way. The Application
Assembler defines security roles. e.g “employee”

An EJB Application Assembler declares (in the deployment descriptor)
method permissions for each security role. A method-permission specifies the
role required to invoke a group of methods on the EJB.

A servlet Application Assembler declares (in the deployment descriptor) a
security-constraint that specifies the roles required to access a given URL
pattern. (May also specify the HTTP method to be constrained).

The creation of security roles make the Deployer’s task easier. The roles
present a simplified security view of the J2EE application for the benefit of the
Application Deployer.

The Application Deployer is responsible for deciding which Principles (users)
and Groups map to each Role.

Note: Principle/Group to Role mappings may be defined in server specific
deployment descriptor extensions. These describe how the mapping is initially
set up when the application is deployed.

Access Manager for Web Application Servers

5-9

9

J2EE Security: Defining Roles

<application>
…

<security-role id=“SecurityRole_1”>
<description>All Users</description>

<role-name>Public</role-name>
</security-role>

<security-role id=“SecurityRole_2”>
<description>All Authenticated Users</description>

<role-name>All Auth</role-name>
</security-role>

<security-role id=“SecurityRole_3”>
<description>Administrators</description>

<role-name>Admins</role-name>
</security-role>

…
</application>

\META-INF\application.xml
Roles:

In EAR:

Public

All Auth

Admins

The slide above shows part of the application.xml deployment descriptor file
that is found in an Enterprise Application Resource (EAR) file.

This information declares the roles that will be defined in the application. The
description is used by the Application Deployer to determine which users
should be assigned to which roles for the deployed environment.

Note: The basic J2EE standard does not include any automated way to map
from roles to “real” users in the domain. The only hint the Application
Deployer gets (except for product documentation) is the description of the role
as shown above.

That said, both WebSphere and WLS have defined extensions in the EAR file
that allow them to specify users (and special groups of users) to be assigned to
the roles. These are discussed in the product sections.

Access Manager for Web Application Servers

5-10

10

J2EE Security: EJB Method->Role Mapping

EJB
Module

MethodMethod

…
<method-permission id="MethodPermission_1">

<description>My Permission</description>
<role-name>All Auth</role-name>
<method id="MethodElement_1">

<ejb-name>Inc</ejb-name>
<method-intf>Home</method-intf>
<method-name>*</method-name>

</method>
<method id="MethodElement_4">

<ejb-name>Inc</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
</method-permission>

\META-INF\ejb-jar.xml

In JAR:

Role

J2EE Security

Once the roles have been declared globally for an application they can be
assigned permissions in the application components.

In EJB components, which are packaged as Java Application Resource
(JAR) files, there is a deployment descriptor file, ejb-jar.xml, that defines
which Roles can invoke which EJB methods. This information (which is
imported into the Application Server from the deployment descriptor at
deployment time) is used at run-time to determine which Roles are permitted
access to the method being requested.

Once the permitted roles are known it just remains to determine if the
requesting user is granted any of the permitted roles.

Access Manager for Web Application Servers

5-11

11

J2EE Security: HTTP Access->Role Mapping

WEB Resource

URLURL

…
<security-constraint id="SecurityConstraint_3">

<web-resource-collection id="WebResourceCollection_3">
<web-resource-name>Snoop</web-resource-name>
<url-pattern>/servlet/snoop/*</url-pattern>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_3">

<description>All Role - snoop:+:</description>
<role-name>Public</role-name>

</auth-constraint>
</security-constraint>

\WEB-INF\web.xml

In WAR:

Role

J2EE Security

In Web components of an enterprise application, which are packaged in Web
Application Resource (WAR) files, there is a web.xml deployment descriptor
file that determines which Roles are permitted to access which web resources.
This information (which is imported into the Application Server from the
deployment descriptor at deployment time) is used at run-time to determine
which Roles are permitted to access the Web resource being requested.

Once the permitted roles are known it just remains to determine if the
requesting user is granted any of the permitted roles.

Access Manager for Web Application Servers

5-12

12

J2EE Security : Authorization Model

What Roles are permitted?

•EJB - required roles from
declared method-permissions
•Servlet/JSP – required roles
from security-constraints

(from component’s deployment
descriptor file)

Access
Denied

Access
Allowed

yes

no

Request Any
Match?

(list of roles)

(lis
t o

f r
ole

s)What Roles are granted?

1. Get Principle & Group names
from credential

2. Get Roles assigned to
Principle & Groups – primarily
specified by Application Deployer
when component deployed to server

The foil above describes Declarative Security as implemented by the EJB or
Web container. This security is done without the need for any coding by the
application developer – the application assembler defines which roles can
access which methods/web resources and this is enforced at runtime by the
Application Server.

Note: Not all security policies can be expressed declaratively and the EJB and
Servlet specifications also provide a simple programmatic interface that the
Application Provider may use to check that the user has the necessary role for
access:

•EJBs use: isCallerInRole(role-reference);
•Servlets/JSP: isUserInRole(role-reference);

A role-reference (which is just a level of abstraction to insulate the role names
used by the application developer from those used by the assembler assember)
is mapped to a role-name by the Application Assembler. The check for role
membership is done using the same process as that which is used by the
container.

Access Manager for Web Application Servers

5-13

13

WebSphere Security Overview

Access Manager for Web Application Servers

5-14

14

WebSphere: Role-based Authorization

Is “Everyone”
granted any Role
allowing access?

Authenticate
User

Look up Roles
that have access

Is User
granted any Role
allowing access?

Access
Denied

Access
Allowedyes

yes

no

noR
e
q

u
e
st

When a request is received by an EJB or WEB container in IBM WebSphere
Application Server (WAS) the process shown above is used to determine if
access should be allowed or denied.

If no user is currently logged into WAS then a check is done to determine if
the resource being requested is a public resource. This is done by checking if
any of the Roles allowed access are mapped to “Everyone”. If it is a public
resource then access can be allowed with no further processing.

If the resource is not public then the user is authenticated by WebSphere
(using any valid method) and then a check is done to determine if that user is a
member of any of the Roles that are permitted access to the resource. If the
user is a member of one or more permitted roles then access is allowed. If the
user is not a member of any of the permitted roles then access is denied.

Access Manager for Web Application Servers

5-15

15

WebSphere: Access Decision Functions

are the functions that control access to J2EE Resources

Whoever implements either of these functions can
control access to J2EE Resources

and
Is User/Everyone
granted any Role
allowing access?

Look up Roles
that have access

From the previous diagram it is clear that the access decisions are being made
in two stages:

1) Determine if the user (or “everyone”) is granted any of these roles
2) Determine which roles have access to the resource being requested

In a native WebSphere environment, WebSphere is responsible for both of
these functions an thus has complete control over access to J2EE resources.

In an environment where Access Manager is integrated with WebSphere,
WebSphere still maintains control over determining which roles have access to
a given resource. Access Manager takes control of the “Is User/Everyone
granted any Role allowing access” function and so has the final say in who
gets access.

Access Manager for Web Application Servers

5-16

16

WebSphere: Native J2EE Security Decisions

Security Decision

Permitted
Roles

User /
Everyone

Role
Role
Role

Yes/No

WebSphere
Role->User Mapping

Other
Information

Is User
granted any Role
allowing access?

The diagram above shows the decision function used to determine if a user is
granted any of the roles needed to access an object.

The inputs to the function are a list of roles (those permitted access to the
resource in question), A user identifier (which could also be “everyone”) and
other context information (such as the application name, server name etc.)

In the native WebSphere environment the internal WebSphere Role->User
mapping table is used to determine if the user is a member of any of the
permitted roles. This mapping is configured locally by the node administrator
using the WebSphere Security Center.

Access Manager for Web Application Servers

5-17

17

WebSphere: Native J2EE Security Components

WAS

RegistryAuthentication

Authorization WebSphere
Native Security

Local Security Config

Role 1
User 1
User 2
Group 1
…

WebSphere ConsoleNative Registry tools

The diagram above shows the components involved with
authentication/authorization in a WebSphere native environment.

Authentication is performed by WebSphere against the configured user
registry. Note that WebSphere relies on the native registry tools for user
management – it is only a consumer of user information.

Authorization (checking whether a user is granted any of the permitted roles)
is done against the local security configuration – the local mapping of roles to
users. The management of the roles is done using WebSphere tools.

Access Manager for Web Application Servers

5-18

18

AM for WebSphere 4.0.2

Access Manager for Web Application Servers

5-19

19

User /
Everyone

AMWAS: J2EE Security Decisions With AM

Security Decision

Permitted
Roles

Role
Role
Role

Yes/No

Other
Information

Is User
granted any Role
allowing access?

Information from
Access Manager

ACL Database
(via PDACLD)

When Access Manager is integrated with WebSphere Application Server, the
function that determines if a user is granted any permitted roles is handled by
Access Manager.

The inputs to the function are the same as in the native WebSphere
environment but the role membership is now determined by information in the
Access Manager ACL database (which is managed centrally by AM).

In addition to the role/user information passed in, Access Manager also allows
some of the context information to be taken into account when making the
access decision. More details later.

Access Manager for Web Application Servers

5-20

20

AMWAS: Security Components with AM

WAS

RegistryAuthentication

Authorization AM version of
“Is User Granted
Role?” Function

Access Manager
Management

Server

Access Manager
Authorization

Server

DB
Replica

Policy
DB

AM Web Manager / AMADMIN
Admin API

The diagram above shows how Access Manager integrates with WebSphere to
perform J2EE security.

In the case above, WebSphere authenticates users against a registry (probably
LDAP) that is shared with AM. This not only means that there are no
problems with user synchronisation but also means that Access Manager tools
can be used to centrally manage the users (rather than using native registry
tools).

For authorization, WebSphere determines which roles are permitted to access
the requested resource and then Access Manager is called to determine if the
user is granted any of these roles.
The role->user mapping information is stored in the Access Manager ACL
database. This information can be centrally managed using Access Manager
tools, that interact with the AM Management server (PDMgrd). The
information is replicated to the Access Manager Authorization Server
(PDACLD) where it is accessed by the WebSphere AM integration code
(AMWAS).

Note: It is possible for AMWAS to work without a shared a user registry. In
this case WAS users must exist in both registries.

Access Manager for Web Application Servers

5-21

21

AMWAS: Permission Check performed in AM

AMWAS Checks if User is granted Role
Checks [WebAppServer]i permission as below

WebAppServer ACL from migration tool
sec_master TcmdbvaNWA
<User/Group> T[WebAppServer]i
…

/

deployedResources
<Role Name>

<App Name>

Access Manager

<Cell Name>
<Host>

<Server> Permission Check

The diagram above shows the permission check that is performed in Access
Manager to determine if a User is granted a Role. The user is deemed to be
granted the role if they (or a group they are a member of) have the (i)nvoke
permission - in the WebAppServer action group – on the object being checked.
By default the only objects created in the objectspace by the AMWAS
migration tool (discussed later) represent the Role and the Application using
the role. As shown above, the ACL created by the migration tool is attached to
the Application object.

The permission check performed by AMWAS is done on an object that
includes other information (Cell Name, Host, Server - discussed on the next
page) in its name. This gives the check the potential to be very granular if the
AM administrator wants to manually create the additional objects and attach
ACLs to them. By default these objects do NOT exist and the check depends
(by ACL inheritance) only on the Role Name and the App Name.

Note: The administrator can move the ACLs created by the migration tool (see
later) but this may cause problems if the migration tool is re-run for the same
application. Where possible it is better to create new ACLs.

Access Manager for Web Application Servers

5-22

22

AMWAS: Objectspace Detail

Role
Role being checked

Application
Application Name (from WebSphere configuration)

Cell
Administrative Domain (LDAP Host, NT Domain)

Host
Hostname of Websphere server

Server
Application Server name (e.g. Default_server)

The information considered when determining if a user should be granted a
role is as follows:

Role – The role being checked
Application – The name of the Enterprise Application being accessed.
Cell – The administrative domain – the registry the user was authenticated
against. If using LDAP user registry then Cell will be LDAP host in format
<DNS Name>:<port>. E.g. myhost.ibm.com:389. If using NT User Registry
then Cell will be NT Domain name. E.g. MYDOMAIN.
Host – The hostname of the WebSphere Node. E.g. myhost.
Server – The Application Server that is providing the resource.

It is clear from the above that Access Manager could, with a little
customization of the objectspace, allow very fine-grained control over access
to J2EE resources. It would be possible, for example, to only allow a user to
access a resource if they are connecting to a specific application on a particular
application server (on a specific host). In contrast the access control can also
be made very course for simple administration.

Access Manager for Web Application Servers

5-23

23

Migration Tool: Process Chart

AMWAS Role Migration Utility

Role->User MappingApplication Name
Role Definitions

ibm-application-bnd.xmiapplication.xml

WebAppServer ACL
sec_master TcmdbvaNWA
<User/Group> T[WebAppServer]i

/

deployedResources
<Role Name>

<App Name>

Access Manager

E
A
R

In order for a check to be done in Access Manager, the appropriate objects
(and actions) must be created in the ACL database. AMWAS provides a
migration tool that automates this process.

The migration tool reads information about an application from the EAR file
and creates the appropriate objects in the objectspace. It uses the
application.xml file to determine the application name and the roles that are
used by the application– these are created as shown above.

In addition to information about the roles, the migration tool can also interpret
a WebSphere extension to the the J2EE descriptors that describes how to map
users, groups and certain special user types to the application roles (see next
page). If this information is present in the EAR file’s deployment descriptors
then entries will be added to the ACL associated with the role to reflect this.

The first time the migration tool is used it creates the WebAppServer
objectspace, the deployedResources object, the WebAppServer action group
and the (i)nvoke action. It also creates a group called pdwas-admin that
represents WAS administrators and adds the WAS admin user to that group.

Access Manager for Web Application Servers

5-24

24

WebSphere: Binding Roles to Users/Groups

\META-INF\ibm-application-bnd.xmi

In EAR:

IBM Extension to descriptors

Defines Role -> User/Group map:

For example:

Role Binding .
Public -> Everyone
All Auth -> AllAuthenticatedUsers
Admins -> MyUser1, MyGroup1

Note: Format of this file is not as shown here.

Special Keyword

All Authenticated
Users and

Unauthenticated users

Special Keyword

All Authenticated
Users

List of Users/Groups

Must Exist in Registry

WebSphere provides an extension to the EAR file descriptors that describes how roles should be mapped
to users. This information is used by the AMWAS migration tool to add appropriate entries to the ACLs
that grant roles.

There are three types of entries in this extended information that the migration tool recognises:

1) Special Keyword “Everyone”. This means that everyone (authenticated and unauthenticated
users) should be granted this role. In response, the migration tool gives the (i)nvoke permission
to the Access Manager “Unauthenticated” and “Any Other” pseudo-groups.

2) Special Keyword “AllAuthenticatedUsers”. This means that all authenticated users should be
granted this role. In response, the migration tool gives the (i)nvoke permission to the Access
Manager “Any Other” group.

3) A list of Groups and/or Users. This means that if these groups/users exist in the registry they
should be granted the role. In response, the migration tool gives the (i)nvoke permission to the
specified users and/or groups.

This is how the ibm-application-bnd.xmi file is formatted:
…
<authorizations xmi:id="RoleAssignment_1">

<role href="META-INF/application.xml#SecurityRole_1"/>
<specialSubjects xsi:type="applicationbnd:AllAuthenticatedUsers" xmi:id="AllAuthUser_1"

name="AllAuthenticatedUsers"/>
</authorizations>
<authorizations xmi:id="RoleAssignment_2">

<role href="META-INF/application.xml#SecurityRole_2"/>
<specialSubjects xsi:type="applicationbnd:Everyone" xmi:id="Everyone_1" name="Everyone"/>

</authorizations>
<authorizations xmi:id="RoleAssignment_3">

<role href="META-INF/application.xml#SecurityRole_3"/>
<users xmi:id="User_1" name="cn=MyUser1, o=ibm,c=gb"

accessId="user:myhost.pic.uk.ibm.com:389/cn=MyUser1, o=ibm,c=gb"/>
<groups xmi:id="Group_1" name="cn=MyGroup1, o=ibm,c=gb"

accessId="group:myhost.pic.uk.ibm.com:389/cn=MyGroup1, o=ibm,c=gb"/>
</authorizations>

Access Manager for Web Application Servers

5-25

25

AMWAS: Information synchronization

Migration
Tool

AM Objectspace WebSphere
Configuration

Application
Deployer

EAR

Role names and application name must match
Remember that EAR file is not updated when

WebSphere Config changed

One important concept to understand is that (for WebSphere at least) the EAR
file that the application is imported from is not updated to reflect changes
made to the application via the WebSphere console after it is deployed into
WAS. This means that it is possible that the information being loaded into
AM by the migration tool (the application name and the role->user mapping)
will not match what is configured in the WebSphere server.

In order to ensure that a previously deployed application is migrated correctly
into Access Manager it is good practice to “export” the application to an EAR
file using the WebSphere console and then immediately run the migration tool
against that file – this will ensure AM and WebSphere are synchronised.

Note: Once an application has been migrated to Access Manager it is
important not to change the application name in the WebSphere console.

Access Manager for Web Application Servers

5-26

26

Migration Tool: Application Name

This may not match WebSphere configuration
Which is what is passed to AM at runtime

Sample Application is an example of this
In WebSphere it is named <host>_SampleApp
In EAR File it is named “Sample Application”
Either change EAR or change WebSphere config

<application>
<display-name>Sample Application</display-name>

…
</application>

\META-INF\application.xml

In EAR:

As mentioned on the previous page, the application name must match in
WebSphere and in the Access Manager objectspace. If there is a mismatch
then no access to the application will be possible because the permission
checks in Access Manager will be done against the wrong object.

In WebSphere the application name can be seen in the Administration Console
under the “Enterprise Applications” tab. In Access Manager the application
name can be seen in the objectspace under each of the appropriate Role
objects.

The sample application that is optionally installed with WebSphere is given a
different name in the WebSphere configuration than what appears in the
SampleApp.ear file. In order to make the Sample Application work
successfully with AMWAS you must either edit the application.xml file, re-
export the application to a new EAR file or change the name of the application
in WebSphere to match what is in the EAR file (Sample Application).

Access Manager for Web Application Servers

5-27

27

AMWAS: Runtime Components – PD v3.8

WebSphere JVM

PDPerm.jar jaas.jar

PDWASAuthzManager.jar

PDACLD

PDPerm.properties

Utility Classes

cacerts

pdperm.ks

ACL Replica

LDAP

SSL

The diagram above shows the components of PDWAS v3.8 that run as part of
WebSphere.

When PDWAS v3.8 is installed the PDWAS jar file and the PDPerm and
JAAS jar files are installed into the WAS JVM lib directory. When the
PDWAS configuration script is run PDPerm is registered with Policy Director
which creates the PDPerm.properties file and the pdperm.ks file.

For those who are familiar with the PDPermission class the configuration
script simply executes the com.tivoli.mts.SvrSslCfg class to perform this
registration.

During runtime, the PDWAS class is called by WebSphere to determine role
membership. Credential acquisition and permission checks are performed by a
call to the PDACLD server.

Note: PDWAS does NOT require the PD Runtime component (or its pre-
requisites) to be installed on the local machine.

Access Manager for Web Application Servers

5-28

28

AMWAS: Runtime Components – AM v3.9

WebSphere JVM

AM Java Runtime

PDWASAuthzManager.jar

PDACLD

PDPerm.properties

cacerts

pdperm.ks

ACL Replica

LDAP

SSL

In Access Manager v3.9 the product packaging has been changed so that the
functions required for a JVM to communicate with Access Manager are
shipped together as the AM Java Runtime (AMJRTE) component. This
component must be chosen at install time if AMWAS v3.9 is to be used.

AMJRTE includes a command-line utility for configuring a JRE environment
for use with Access Manager. It copies the required AM security jar files into
the <jre_home>/lib/ext and creates properties files for these.

Note: AMWAS v3.9 does NOT require the AM Runtime component (or its
pre-requisites) to be installed on the local machine – it only needs the
AMJRTE component to be installed and configured.

Access Manager for Web Application Servers

5-29

29

Migration Tool: Components – PD v3.8

Java Runtime Environment

PDMgrd

LDAP
(Users)

ACLs

Migration Tool

Java Wrappers

PD Admin C API

SSL

PD
R

TEG
SK

IT
LD

A
P C

lient

The PDWAS v3.8 migration tool is a standalone java application (it does not
run inside WebSphere Application Server). It uses a set of java wrappers to
the Policy Director C Administration API. This API communicates directly
with LDAP and the PD Management Server to perform updates to the user
registry and the ACL database.

The migration tool requires that the PD Runtime component (and its pre-
requisites) be installed and configured on the local machine. This is how
communication with PDMgrd and the user registry is achieved.

Note: Although the migration tool does not require WebSphere to run,
WebSphere v4.0.2 does provide all of the required modules for its operation.

Access Manager for Web Application Servers

5-30

30

Migration Tool: Components – AM v3.9

Java Runtime Environment

PDMgrd

LDAP
(Users)

ACLs

Migration Tool

AM Java Runtime

SSL

A
M

R
TEG

SK
IT

LD
A

P C
lient

AM Admin JAVA API

The AMWAS v3.9 migration tool is quite different.

It uses the new pure java admin API for Access Manager to communicate with
PDMgrd without the need for AMRTE or any of its pre-requisites.

The AM Java Admin APIs are part of the AM Java Runtime so this must be
installed and configured before the migration tool can be used.

The Migration tool does not have to be run with WebSphere – it is a
standalone java application and can run in any supported JVM that has
AMJRTE configured against it. However, it is easy to run it in the WebSphere
JVM because this provides all of the components required and must be
configured with AMJRTE anyway in order to run AMWAS.

Note: Although the migration tool does not require WebSphere to run,
WebSphere v4.0.2 does provide all of the required modules for its operation.

Access Manager for Web Application Servers

5-31

31

PDWAS: Software Requirements – v3.8

PD for WAS
WebSphere Application Server

– Advanced Edition or Advanced Edition Single Server
– Version 4.0 PTF 2 (v4.0.2)

Migration Tool
Policy Director Runtime (v3.8 fixpack 3)

– Requires LDAP Client and GSKIT libraries
IBM Java Runtime Environment

– v1.3.0 on Windows – Part of WAS installation
– v1.2.2 on Solaris – Not part of WAS installation

Xerces XML parser jar file – Part of WAS installation

The chart above shows the pre-requisite software for the PDWAS runtime and
the PDWAS migration tool.

Note that most of the JAVA pre-requisites for the migration tool are provided
by WAS v4.0.2 so this may provide the easiest way to meet them. The only
exception is JDK 1.2.2 that is required for Solaris. This must be obtained from
some other source.

Access Manager for Web Application Servers

5-32

32

AMWAS: Software Requirements – v3.9

AM for WAS v3.9
WebSphere Application Server

– Advanced Edition or Advanced Edition Single Server
– Version 4.0 PTF 2 (v4.0.2)

Installed AM v3.9 Java Runtime

Migration Tool v3.9
IBM Java Runtime Environment

– v1.3.0 on Windows and AIX – Part of WAS installation
– v1.2.2 on Solaris – Not part of WAS installation

Installed AM v3.9 Java Runtime
Xerces XML parser jar file – Part of WAS installation

The chart above shows the pre-requisite software for the AMWAS runtime
and the AMWAS migration tool.

Note that most of the JAVA pre-requisites for the migration tool are provided
by WAS v4.0.2 so this may provide the easiest way to meet them. The only
exception is JDK 1.2.2 that is required for Solaris. This must be obtained from
some other source.

Access Manager for Web Application Servers

5-33

33

Installation/Configuration v3.8

Access Manager for Web Application Servers

5-34

34

PDWAS v3.8: JAVA Classes Installation

Run Install_PDPerm script:

Copies Files to WebSphere LIB directory
jaas.jar, PDPerm.jar, PDWASAuthzManager.jar
application_1_2.dtd

Copies config script to WebSphere BIN directory
configure_PDPerm

The following slides provide a brief summary of the installation and
configuration of PDWAS and the migration tool. For details please reference
the product documentation.

The Install_PDPerm script is found in the directory where the PDWAS
installation package is extracted. It uses the WAS_HOME environment
variable to copy the PDWAS files into the correct location. It also copies its
own configuration script into the WebSphere bin directory where it is part of
the PATH.

Access Manager for Web Application Servers

5-35

35

PDWAS v3.8: Configure JRE for PD

Create a user in PD to represent the JVM
Remember to enable the user account

Add user to remote-acl-users group

Run configure_PDPerm script
Runs the svrsslcfg JAVA application

Syntax:

configure_PDPerm <User DN> <Admin Password> <PDMgrd Host>
<PDAcld Host>

The process for configuring the WAS JRE for communication with Access
Manager is no different from configuring any other JRE.

First, a user must be created in Access Manager to represent the JVM.
Remember to enable the account! Since the JVM will be a remote user or
PDACLD, the user must be a member of the remote-acl-users group.

Once the user is created run the configure_PDPerm script with the syntax
shown above (the usage shown on the command line is misleading). This sets
up the classpath and calls the com.tivoli.mts.SvrSslCfg class to register the
JVM with Access Manager. If you are familiar with this process you may
prefer to call this class yourself.

<UserDN> is the DN of the user you have created to represent the JVM
<Admin Password> is the password of sec_master

Note: The configure_PDPerm command gives no message on successful
completion – only errors are reported.

Access Manager for Web Application Servers

5-36

36

Migration Tool v3.8: Installation

Run install.bat in “migrate” directory:

Creates PDWAS/migrate Directory
In same place as Access Manager

Copies files to the directory:
migrate.jar
PDPopulate.dll (JNI file)
Scripts for running Migration Tool
dtd files

To set up the migration tool, run the install script found in the migrate
directory under where the installation package was extracted.

The script copies the migration utility files into a directory called
PDWAS/migrate in the same place as Access Manager (/opt on UNIX,
c:\program files\tivoli) on Windows.

Access Manager for Web Application Servers

5-37

37

Migration Tool v3.8: Configuration

Create a PD User for WebSphere Administrator
Can Import the user if already in LDAP

Edit migration script (run_WIN32.bat on Win32):
Modify variables to point to required classes

– xerces.jar is shipped with WebSphere
– src.jar is shipped with WebSphere JRE

Change sec_master password (-p)
Specify WebSphere Admin User (-w)

– Will be created/imported if it does not exist in LDAP/PD
Change LDAP suffix (-d)

Before running the migration tool for the first time a few things must be done.
First, create a user in PD that will represent the WebSphere admin user. If you
have already defined an LDAP user then use the import facility of PDADMIN.
Don’t forget to enable the account!

Note: If you specify an admin user that does not exist when using the
Migration Utility then it will cretae/import the user for you. If it is a new user
you will need to set the users password using PDADMIN or WPM.

Next, the script that calls the migration JAVA class must be modified to
identify the classes it needs and to provide the PD information required. (see
product documentation for details).

If you have WebSphere v4.0.2 installed on the same machine then you can use
the following:

XML_PARSER_PATH= WAS_HOME/lib/xerces.jar
JDK_PATH=WAS_HOME/java/jre/lib/src.jar
JDK_DIR=WAS_HOME/java/jre

Access Manager for Web Application Servers

5-38

38

PDWAS v3.8: Migrate the Admin Application

Modify the Migration Script again
Change EAR_NAME to point to the admin EAR

– E.g. \websphere\appserver\config\admin.ear

Run Migration Script:
Creates WebAppServer Objectspace
Creates WebAppServer Action Group
Creates (i)nvoke Action in that Action Group
Creates pdwas-admin group
Adds WebSphere Admin user to pdwas-admin group
Migrates Admin Roles to PD
Assigns pdwas-admin group to Admin Role

The first application that must be migrated to Access Manager before it is
integrated to WAS is the administrative console.

Edit the migration script and change the EAR_NAME variable to point to the
admin.ear file/directory. This is found in WAS_HOME/config

Now run the migration script. Assuming that it completes with no errors you
are now ready to activate PD authorization in WebSphere. If you want to be
sure all is ready you can check the PD objectspace and ACLs.

Note: To migrate other applications simply change the EAR_NAME variable
and run the migration script again. The variable can either point to an EAR
file or to a directory containing the contents of an expanded EAR file.

Known Problem: At the time of writing there can be a problem with the ACL
attached to the \WebAppServer\deployedResouces\AdminRole\admin
object. You may need to manually attach the
_WebAppServer_deployedResources_AdminRole_admin ACL to replace
the _WebAppServer_deployedResources_AdminRole_admin_ACL ACL.
Migrating another application will also fix the problem.

Access Manager for Web Application Servers

5-39

39

PDWAS v3.8: Activate PD Authorization in WAS

Modify the SAS server properties files
/<WAS_HOME>/properties/sas.server.props
/<WAS_HOME>/properties/sas.server.props.future

– Only if it exists and is not empty

Add the following line to each file:

com.ibm.websphere.security.authorizationTable
=com.tivoli.pdwas.websphere.PDWASAuthzManager

Restart WebSphere

In order to instruct WAS to call PD for role-based authorization decisions edit
the sas.server.props file and the sas.server.props.future file (if it exists) adding
the line shown above. It is good practice to make a backup copy of the files
before making changes.

Restart the WebSphere node to activate the new configuration.

Note: With this line in place WebSphere authorizes itself using Access
Manager. If your configuration is not correct then the WAS adminserver will
probably fail to start. If this happens use the log files to determine the problem
(discussed later). To bring WAS up again without PD integration back out the
changes made to the properties files.

Access Manager for Web Application Servers

5-40

40

Installation/Configuration v3.9

Access Manager for Web Application Servers

5-41

41

Configure AM Java Runtime

Run <AM>/sbin/pdjrtecfg
This may be included in PDCONFIG eventually

Syntax:
pdjrtecfg -action {config|unconfig}

-java_home <jre_home>
[-rspfile <response file>]
[-remove_common_jars {yes|no}]

This performs the following:
Copies AM jar files to JVM /lib/ext directory
Creates <java_home>/PolicyDirector directory

The new Java Runtime component in AM v3.9 includes a command-line
configuration utility that should be used to configure a JVM to use Access
Manager.

This copies JAR files over for PDPermission classes, AM ADMIN Java API,
AM JLog extensions and files required for using Access Manager with JAAS.

The remove_common_jars option allows the caller to specify if Access
Manager should overwrite JAR files that it finds in the /lib/ext directory during
configuration or delete these files during unconfigure.

Access Manager for Web Application Servers

5-42

42

Installation of AMWAS v3.9

Native install method is used for v3.9
InstallShield
SMITTY
pkgadd

Shipped on the “Web Security” CD

Installation packages are provided for all platforms for AMWAS v3.9.

Access Manager for Web Application Servers

5-43

43

Configure WAS to use AMWAS v3.9

A utility is provided on UNIX
On Windows the class must be executed directly

This utility will perform the following actions:
Register WAS JVM with Access Manager

– Equivalent to running JAVA SvrSslCfg
Modify sas.server.props and sas.server.props.future

– Add line to enable AMWAS
– This is the same as the manual step in PDWAS v3.8
– Comment this line out to disable AMWAS if needed

The class can be called manually using the following syntax:

java -Dpdwas.home=<PDWAS Home> -Dwas.home=<WAS HOME>
PDWAScfg -action {unconfig | config} -remote_acl_user <Remote ACL
user> -secMaster_pwd <password> -pdmgrd_host <PDMGRD
Hostname> -pdacld_host <PDACLD Hostname> [-pdmgrd_port
<PDMGRD Port>] [-pdacld_port <PDACLD Port>]

This requires that AMJRTE component be installed and configured and that
the classpath contain:

<PDWAS>/sbin
<PDWAS>/PDWASAuthzManager.jar
<PDWAS>/lib

It is important that the java.exe used is the one that has been configured for
AM Java Runtime.

Access Manager for Web Application Servers

5-44

44

Manual Steps required for AMWAS v3.9

Java Admin API does not include commands for:
Action Group create
Action Create

Must manually create action group for AMWAS
pdadmin> action group create WebAppServer

Must manually create action for AMWAS
pdadmin> action create i invoke was WebAppServer

The Pure Java version of the AM ADMIN API does not include functions that
allow the creation of action groups and actions. As a result two manual steps
are required before AMWAS v3.9 can be used.

Access Manager for Web Application Servers

5-45

45

Using Migration Tool in AM v3.9

A Utility is provided for UNIX
On Windows the class must be executed directly

The WebSphere Admin Application must be
migrated first

Just like in PDWAS v3.8
Migration Tool performs the following:

Creates /WebAppServer/deployedResources object
Creates pdwas-admin group
Adds specified WAS Admin user to pdwas-admin group
Migrates application roles into AM objectspace

Must grant PDWAS-ADMIN group AdminRole

The class can be called manually using the following syntax:

java -Dpdwas.lang.home=%WAS_HOME%\lib;%PDWAS_HOME%\nl
s\java com.tivoli.pdwas.migrate.Migrate -j <EAR to
Migrate> -a <Sec Master User> -p <Sec Master
password> -w <WAS admin user> -d <userdomain/suffix>
-c <URL to PDPerm.properties file>

For LDAP and AD, -d should be the directory location where users should be
created (e.g. o=ibm,c=gb). For Domino give the domain (e.g. pic)
This requires that AMJRTE component be installed and configured and that
the classpath contain:
<PSWAS>/lib/migrate.jar
xerces.jar (XERCES parser – can be found in <WAS>/lib)
It is important that the java.exe used is the one that has been configured for
AM Java Runtime.

The migration tool does NOT add the pdwas-admin group to the ACL attached
to that AdminRole role. This MUST be done before AMWAS can be used.

Access Manager for Web Application Servers

5-46

46

Grant WAS admin group AdminRole role

WAS authorizes itself using WAS admin user
Member of the pdwas-admin group in AM
Must be granted AdminRole role
Also grants access to launch admin application

Use PDADMIN or WPM to modify ACL as above

WebAppServer
_WebAppServer_deployedResources_AdminRole_admin_ACL

sec_master TcmdbvaNWA
Group pdwas-admin T[WebAppServer]i
…

/

deployedResources
AdminRole

admin

Access Manager

When WebSphere is running it authorizes itself based on the access granted to
the “Security Server ID” specified in the WAS security configuration. This
user (that is specified during AMWAS configuration and therefore added to
the pdwas-admin group) requires the AdminRole role to be granted otherwise
WAS cannot start.

In order to grant this required role, use PDADMIN or WPM to modify the
ACL attached to the AdminRole role for the admin application. This ACL is
called _WebAppServer_deployedResources_AdminRole_admin. Grant the
pdwas-admin group T (Traverse) and [WebAppServer]i (invoke) permissions.

This ACL setup means that any user that is made a member of the pdwas-
admin group can use the WAS admin console - the example of using AM to
manage WAS security.

Access Manager for Web Application Servers

5-47

47

Other Information

Access Manager for Web Application Servers

5-48

48

WAS Logs: tracefile

Contains output from Admin Server
Check loading of AM Authorization Table class

[1/2/02 9:48:21:852 GMT+00:00] 3222ead9 WSAccessManag A
SECJ0157A: Loaded Vendor AuthorizationTable:
com.tivoli.pdwas.websphere.PDWASAuthzManager

Note: This error message appears on a single line in the log file

Once the sas.server.props files have been modified the following should be
seen in the tracefile log file (found in WAS_HOME/logs). This file contains
the output from the adminserver.

If the line is NOT seen then it means that the AM integration code is not being
loaded.

The main causes of this are:
1) Typo in the sas.server.props or sas.server.props.future configuration file

– they are case-sensitive !
2) PDWASAuthzManager.jar file is not in the classpath
3) There is a sas.server.props.future file but it was not modified. This can

be seen because the line added to sas.server.props file vanishes at WAS
startup.

Access Manager for Web Application Servers

5-49

49

WAS Logs: Default_Server_stdout.log

Contains output from Default Server Instance
Check loading of AM Authorization Table class

[1/2/02 9:49:04:333 GMT+00:00] 51396afe WSAccessManag A
SECJ0157A: Loaded Vendor AuthorizationTable:
com.tivoli.pdwas.websphere.PDWASAuthzManager

Note: This error message appears on a single line in the log file

Once the sas.server.props files have been modified the following should be
seen in the Default_Server_stdout.log log file (found in WAS_HOME/logs).
This file contains the output from the default application server instance.

If the line is NOT seen then it means that the AM integration code is not being
loaded.

The main causes of this are:
1. Typo in the sas.server.props or sas.server.props.future configuration file

– they are case-sensitive !
2. PDWASAuthzManager.jar file is not in the classpath
3. There is a sas.server.props.future file but it was not modified. This can

be seen because the line added to sas.server.props file vanishes at WAS
startup.

Access Manager for Web Application Servers

5-50

50

AMWAS: Principal / Role Caching

AM Java Runtime works in Remote mode
Communicates with PDACLD over TCP/IP

To give maximal performance caching is needed

AMWAS uses two caches:
Static Role Cache

– Roles where membership does not often change
– Administrative Roles for example

Dynamic Role Cache
– Normal Roles where membership may change frequently

As with all Access Manager JAVA authorization the AMWAS java classes
operate as a “remote mode” application to Access Manager. This means that
authorization decisions are made by a TCP/IP call to PDACLD.

In order to get maximum performance in this environment caching is required.
AMWAS implements two levels of caching which are discussed in the
following pages.

Access Manager for Web Application Servers

5-51

51

AMWAS: Static Role Caching

Static Roles are:
All Roles defined in admin.ear file

– AdminRole, cosNaming*
Roles specified in the PDWAS.properties file

– com.tivoli.pdwas.StaticRolesCache.Roles=<Role Name>

Static Cache is never purged
Once a user is found in a static role the result is cached
permanently
Only restarting WebSphere empties the cache

The static cache contains information on the members of the WAS
administrative roles. The speed at which administrative roles can be processed
is very important because WebSphere itself is authorized (in order to load
classes for example) against these roles.

The Admin roles are determined by their inclusion in the application.xml file
in admin.ear. This file is read on AMWAS initialisation. It is also possible to
add other roles to the static cache (if their membership does not change) by
adding lines to the PDWAS.properties file (as shown above).

To make the static cache as fast as possible it is not purged during runtime.
This has the effect that it is not possible to remove a user from the
administration role without restarting the WAS server. Experience indicates
that removing users from the admin role is a rare occurrence.

Note: If a user is added to the administration role then this will be immediately
effective.

Access Manager for Web Application Servers

5-52

52

AMWAS: Static Role Cache

Static Role Cache

AdminRole

User1

User2

User3

MyRole

User1

User4

User5

Role defined in admin.ear

Role specified in PDWAS.properties

The diagram above shows the structure of the static cache.

The cache is indexed by role name and returns a list of the users in the role.
Each time a user is identified (through PDPermission calls) as being a member
of a static role their name is added to the membership list for the role.

The static cache is checked first for any static role in the list of permitted roles.

The static cache can be disabled by adding the following line to the
PDWAS.properties file:
com.tivoli.pdwas.EnableStaticRoleCaching=[true|false]

Please note that this may have a significant performance impact.

Access Manager for Web Application Servers

5-53

53

AMWAS: Dynamic Role Caching

Dynamic Role Cache
Stores Roles for a Principal

Queried for non-static Roles
Static cache is queried first if appropriate

Reduces number of remote authorization call
Stores roles that a user has been found to be granted
Not pre-loaded with all roles for a user

The dynamic role cache is used to store the roles that have been identified as
granted to a particular user (principal). This cache is used to store information
about all non-static roles and is simply intended to reduce the number of
requests that have to be made “over the wire” to PDACLD.

Whenever a PDPermission check is done to determine if a user is granted a
non-static role the result is stored under the users entry in the dynamic cache.

Each time the user requests an object the list of permitted roles for the object
can be compared to the list of roles currently in the users dynamic cache entry.
If there is any match then the user can be granted access and no further
processing is required. If there is no match then only the permitted roles that
are not in the cache need to be checked.

Note: The fact that a user is not granted a role is not cached – this would
make for a big cache! (Actually this “not granted” information *is* stored for
the “unauthenticated” user – for speed – but it is the only exception).

Access Manager for Web Application Servers

5-54

54

AMWAS: Dynamic Role Cache

Dynamic Role Cache

User1

Role1

Role2

Role3

User2

Role1

Role8

Role9

Role Entry
Default LifeTime

20 seconds

Principal Entry
Default Timeout

10 minutes
Max Entries (Users)

Default 10,000

The diagram above shows the structure of the dynamic role cache. This cache
is indexed by username and returns a list of roles the user has been previously
found to be granted.
The dynamic cache is kept fresh by always removing role entries after a short
time and also by removing entire user entries if they are not used. As such the
dynamic cache is different from the static cache – a users membership of a role
will be re-checked (by default) every 20 seconds.

Properties of the dynamic cache can be changed by modifying the
PDWAS.properties file (see product documentation for details):
com.tivoli.pdwas.EnableDynamicRoleCaching=[true|false]
com.tivoli.pdwas.DynamicRoleCache.MaxUsers=<Number of Entries>
com.tivoli.pdwas.DynamicRoleCache.PrincipalLifeTime=<Number of
minutes>
com.tivoli.pdwas.DynamicRoleCache.RoleLifeTime=<Number of seconds>
com.tivoli.pdwas.DynamicRoleCache.NumBuckets=<Concurrent threads>

Access Manager for Web Application Servers

5-55

55

AMWAS: Logging

Edit PDWAS.properties file
Specify Logging method

Com.tivoli.pdwas.LoggingType
– STDOUT – Messages appear in tracefile and xxx_stdout
– WAS – Messages are handled by WAS logging functions

If using STDOUT then specify logging level(s)
com.tivoli.pdwas.PDWASAuthzManager.LogLevel
com.tivoli.pdwas.cache.LogLevel

– FATAL, ERROR, WARNING, NOTICE
– DEBUG, ENTRY, EXIT

AMWAS can be instructed to output debug messages for troubleshooting.
This is specified in the PDWAS.properties file.

Access Manager for Web Application Servers

5-56

56

PDWAS.properties file:
com.tivoli.pdwas.LoggingType=STDOUT
com.tivoli.pdwas.PDWASAuthzManager.LogLevel=NOTICE,DEBUG
com.tivoli.pdwas.cache.LogLevel=NOTICE

Check the credentials
Extracting User name
userName [wasadmin]
User Name [wasadmin]
Check the cache for the principal
Got cacheRoleList [0]
Comparing securityRoleList to CacheRoleList
Found UserName [wasadmin] = Role [AdminRole]

AMWAS: Logging Example

In tracefile:

The example above shows a logging configuration in the PDWAS.properties
file and the resulting output in the WAS adminserver “tracefile”.

This log does not show the individual permissions that are being checked in
the Access Manager ACL database. If you need to see this then turn on
auditing for the PDACLD server. This must be done in pdacld.conf and in an
appropriately placed Protected Object Policy (POP).

Access Manager for Web Application Servers

5-57

57

WebLogic Server & Security Overview

Access Manager for Web Application Servers

5-58

58

BEA WebLogic Server 6.1 : J2EE Server

Servlet/JSP

Browser/
application client

Enterprise
Java

Beans

Database

Client Tier

Web Tier

Business
Tier

Presentation
Logic

J
2
E

E
 S

e
rv

e
r

Messaging
JavaMail
JMS

Services
JDBC
JNDI
JTA

Communication
TCP/IP, HTTP,
SSL, RMI,
RMI-IIOP

Web Container

Servlet JSP

EJB Container

Entity
Bean

Session
Bean Business

Logic

Application
Services

Information
Tier

BEA WebLogic Server 6.1

WebLogic Server 6.1 contains Java 2 Platform, Enterprise Edition (J2EE)
technologies. J2EE is the standard platform for developing multitier enterprise
applications based on the Java programming language. The technologies that
make up J2EE were developed collaboratively by Sun Microsystems and other
software vendors.

J2EE applications are based on standardized, modular components. WebLogic
Server provides a complete set of services for those components and handles
many details of application behaviour automatically, without requiring
programming.

WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features
provides EJB 2.0, JSP 1.2, Servlet 2.3, and J2EE Connector Architecture 1.0.

Access Manager for Web Application Servers

5-59

59

BEA WebLogic Server : Security Realm

Client request

WebLogic Server

User
Authentication

S
e

c
u
rity

R
e
a
lm

J2EE Container

ServletEJB

Access
Manager

Authenticate
User

Obtain Group
Membership

A Security Realm
can provide services
for:

User authentication

User & Group data

Access Control

User/Group
Management

Admin
Console

A WLS Security Realm represents a logical grouping of Users, Groups, ACLs,
(not implemented by PD Realm) and permissions for the purpose of protecting
WebLogic Server resources.

WLS 6.1 provides a default File Realm and these Alternative Realms:
•LDAP Security Realm (supports Open LDAP, Netscape iPlanet, Microsoft
Site Server, and Novell NDS.)
•Windows NT Security Realm
•UNIX Security Realm
•RDBMS Security Realm (sample)
•Custom Realm – this is what is provided by Access Manager 3.8 for
WebLogic Server 6.1.

Note: The WLS Realm interface allows a Custom Realm to implement all or a
sub-set of the Realm function; the interface includes complete access control
capability that could be used as a replacement for J2EE role-based
authorization. The functions shown inside the ‘WebLogic Server’ above are
those provided by the PD 3.8 Realm for WLS.

Access Manager for Web Application Servers

5-60

60

PD WebLogic Server Realm 3.8

Access Manager for Web Application Servers

5-61

61

PD WLS Realm : Overview

External
User

BEA WebLogic
Server 6.1

HTTP/
SSL

Common
LDAP

WebSEAL
Constructed
BA Header

PD Custom
Realm

Single Signon with WebSEAL
Provides use of SecureWay LDAP or other Access
Manager User Registry for WLS
User/Group Administration from WLS Console or PD
WPM
User-to-group assignments control J2EE authorization
decisions of WLS

WebSEAL Internal
User

More detail on WebSEAL SSO is given in another slide.

In regard to the LDAP registry, it is worth noting that WLS does not provide a
Directory Server – the customer must purchase from another vendor. In many
cases, especially for Solaris customers, this means iPlanet which has a per-entry
charge. By purchasing Access Manager 3.8 you acquire SecureWay directory that
can be used with BEA WLS ‘for free’.

The WLS Console does not provide as much control of user/group definition as
Access Manager. Many customers may prefer using PD WPM, pdadmin>
command line or PD Admin API for management of Users/Groups in the registry.

When using PD WLS configured for WebSEAL SSO, it is important to not allow
internal users to have direct access to WLS. The diagram shows ‘internal users’
connected to WLS, but this access should not be allowed if configured for
WebSEAL SSO.

Access Manager for Web Application Servers

5-62

62

PD for WebLogic Server 3.8: System Requirements

Supported Platforms
AIX 4.3.3
Windows Advanced Server with SP2

Machine with BEA WebLogic Server 6.1
BEA WebLogic Server 6.1 with Service Pack 1
Access Manager 3.8 Runtime

– Requires LDAP Client and GSKIT libraries
Access Manager 3.8 Fixpack-3
Access Manager 3.8 Authorization ADK
Access Manager 3.8 for WebLogic Server

– Cannot co-exist with another WLS Custom Realm
Java Runtime distributed with WLS

Access Manager 3.8 Domain
Access Manager 3.8 Management Server w/ Fixpack-3
WebSEAL 3.8 with Fixpack-1 (if using WebSEAL SSO)

The PD 3.8 WLS Custom Realm installation package is available as a software
download from:
http://www.tivoli.com/secure/support/downloads/secureway/policy_dir/downl
oads.html

A valid login and password is required to access this site. IBM Internal users
can access:
http://www-
internal.tivoli.com/secure/support/downloads/secureway/policy_dir/downloads
.html

Access Manager for Web Application Servers

5-63

63

Supported Platforms
IBM AIX 4.3.3 and 5.1.0
Sun Solaris 7 and 8
HP-UX 11.0
WinNT 4.0 with SP 6a
Win2K Advanced Servers with SP 2
Red Hat Linux 7.1 (Intel only)

Machine with BEA WebLogic Server
BEA WebLogic Server 6.1 with Service Pack 1
Java Runtime distributed with WLS
Access Manager Runtime & Java Runtime
AM 3.9 for WebLogic Server

– Cannot co-exist with another WLS Custom Realm
Access Manager 3.9 Domain

Policy Server
WebSEAL (if using WebSEAL SSO)

AM for WebLogic Server 3.9: System Requirements

Access Manager for Web Application Servers

5-64

64

PD WLS Realm 3.8 : Internals

WebLogic Server

PD 3.8 Realm

User
Authentication

J2EE Container

ServletEJB

Access
Manager

Authenticate
User

Obtain Group
Membership

User/Group
Management

Admin
Console

‘C
’

a
u
th

e
n
tic

a
tio

n
lib

ra
rie

s

J
a
va

W
ra

p
p
e

rs

J
a
va

 (P
D

R
e
a
lm

.ja
r)

PD
 U

ser R
egistry (LD

AP)

P
D

 R
u
n
tim

e

PD
 M

anagem
ent Server

‘C
’

P
D

 A
d
m

in
 A

P
I

J
a
va

W
ra

p
p
e

rs

This foil shows the implementation details of PD WLS Realm 3.8.

PD 3.8 WLS Realm implements a Java interface provided by BEA WLS 6.1.
(For more detail see, “Writing a Custom Security Realm” with the BEA WLS
6.1 documentation at
http://edocs.bea.com/wls/docs61/security/prog.html#1041025)

These are JNI classes that utilize the ‘C’ APIs and libraries provided by
Access Manager for Authentication and Administration.

Use of PD 3.8 for WLS requires the configuration of a PD 3.8 application
using the svrsslcfg utility provided by PD Base. PD 3.8 WLS does not use
the authorization policy database. The svrsslcfg command, therefore, should
specify ‘remote’ as the server_type (ie, an application that does not need a
local copy of the authorization policy database.). Further, PD 3.8 Realm does
not require a PD Authorization Server (PDAcld) as part of its configuration.
The “authorization API” is only used for user authentication.

An important point is that PD WLS requires access to the PD Management
Server. Unlike WebSEAL, PD for WebSphere, and PD Authorization Server,
PD 3.8 WLS Realm cannot operate without access to PD Manager. This
should be carefully considered in the deployment fail-over strategy.

Access Manager for Web Application Servers

5-65

65

AM WLS Realm 3.9 : Internals

WebLogic Server

PD 3.8 Realm

User
Authentication

J2EE Container

ServletEJB

Access
Manager

Authenticate
User

Obtain Group
Membership

User/Group
Management

Admin
Console

J
a
va

 (P
D

R
e
a
lm

.ja
r)

AM
 U

ser R
egistry

A
M

 R
u

n
tim

e
?

Policy Server

J
a
va

R
u
n
tim

e
A

d
m

in
 C

la
sse

s

‘C
’

a
u
th

o
riza

tio
n

lib
ra

rie
s

J
a
va

W
ra

p
p
e

rs

This foil shows the implementation details of AM 3.9 for WLS.

Like 3.,8, the integration with WLS is provided by implementing the java
Realm interface. (For more detail see, “Writing a Custom Security Realm”
with the BEA WLS 6.1 documentation at
http://edocs.bea.com/wls/docs61/security/prog.html#1041025)

The WLS Realm uses Java JNI classes that utilize the ‘C’ APIs and libraries
provided by Access Manager Authorization API. These are used for
authentication and to determine a user’s group membership.

Because AM 3.9 for WLS uses the authorization API (aznAPI) an server
identity must be created using the svrsslcfg utility provided by AM Base.
AM 3.9 WLS does not, however, use the authorization policy database so the
svrsslcfg command should specify ‘remote’ as the server_type (ie, an
application that does not need a local copy of the authorization policy
database.). Further, AM 3.9 does *not* require a PD Authorization Server
(PDAcld) as part of its configuration. The “authorization API” is only used for
user authentication and to determine a user’s group membership.

Failover to multiple LDAP servers (as configured in ldap.conf of AM Base) is
supported.

Access Manager for Web Application Servers

5-66

66

WLS Realm : WebSEAL Single Signon
WebLogic Server

W
LS

 U
se

r
Au

th
en

tic
at

io
n

PD WLS
Realm

sso=‘websealuser’

WebSEAL

Browser

LDAP

User: Password:
user-1 user-PW
websealuser ws-passwd

user-1/ws-passwd

us
er

-1

1

2

3

4
us

er
-1

/ w
s-

pa
ss

w
d

any
authentication
mechanism
supported by
WebSEAL

websealuser/
ws-passwd

The process flow for SSO via WebSEAL is the same for both 3.8 and 3.9:
1.user authenticates to WebSEAL using any authentication mechanism

supported for WebSEAL and submits a request for some WLS resource
2.WebSEAL has been configured with a junction to the WebLogic Server

using the ‘-b supply’ option. WebSEAL passes the request to WLS with
a Basic Authentication header that contains:

- the authenticated user-ID (user-1 in the diagram)
- the value of ‘basicauth-dummy-passwd’ in webseald.conf

3.WLS passes the user-Id & password to the PD Realm for authentication
4.PD Realm verifies (with the registry) that the given password is for the

configured WebSEAL Single SSO User. This verification provides the
Trust Relationship between WLS Realm and WebSEAL.

If (4) is successful, PD WLS authenticates the given user-id to WLS and WLS
builds a credential for that user.
Note, the authentication of the webseal SSO password (‘ws-passwd’ in
diagram) is only done once. After authentication the webseal-SSO password
is cached in the realm (masked). Subsequent authentication requests compare
the input password with the authenticated, cached value. When not equal the
authentication is repeated. (this allows the webseal-SSO password to be
changed without restarting WLS.)
Note: The WebSEAL Single SSO User. must be configured with ‘account-
valid=yes’, but should have no access rights.

Access Manager for Web Application Servers

5-67

67

WLS Realm : J2EE Authorization

WebLogic Server

AM WLS
Custom Realm

Authenticated
User

request

J2EE Appl Security Declarations:

Role: Groups:
ManagerRole PIC-Mgrs

ATS-Mgrs

WLS
Access

Manager

AM User
Registry

LDAP

Group: Users:
PIC-Mgrs Brendan

Gordon
ATS-Mgrs Gerry

Which Groups
Permitted?

User in Group?

User in Group?

The logic for WLS J2EE authorization decisions is (not surprisingly) like that
described in the introductory J2EE section.

The WLS Access Manager performs these actions:
1. Access the J2EE Security declarations to determine the Roles that are

permitted access.
2. Access the J2EE Security declarations to determine which Principals

(Users and Groups) have been mapped to those roles.
3. Access the Security Realm to determine if the current user is a member

of any group that is mapped to the role.

- If the current user is mapped to a permitted Role, access is allowed.
- If the current user is a member of any group mapped to a permitted Role,
access is allowed.
- Otherwise access is denied.

For example, using the diagram above, if access is allowed only for the
ManagerRole, then only users Brendan, Gordon and Gerry will be given
access.

Access Manager for Web Application Servers

5-68

68

Configuration

Configure AM Java Runtime to JVM of WLS (AM 3.9 only)
required for use of AM Java Admin classes

PD WLS Realm requires registration as a PD application
server

allows use of Authentication Services (PD 3.8 & AM 3.9)
allows use of group memebership queries (AM 3.9)

Use svrsslcfg utility provided with PD Auth ADK
full details in User Guide
recommend creating a remote-mode application server

PD Authorization Server (pdacld) not required
PD WLS Realm does not use PD authorization database

Full configuration details can be found in the User Guide provided as part of
the web download.

Access Manager for Web Application Servers

5-69

69

Configuration – WLS Custom Realm

An example of Custom Realm Configuration Data:
aznapi.conf.file=c:\bea\PDWLSRealm\pdwlsrealm.conf
pdadmin.user.name=wlsadmin

– user used with PD Admin API
pdadmin.password=secure99
group.dn=c=gb
user.dn=c=gb

– these two used only for user/group create via WLS Console
pdrealm.tracing=true

– files found in <wls-home>/config/<domain>/logs
webseal.sso.configured=true
connection.pool=20
pdrealm.registry.listing=true (not recommended for production)
wls.admin.user=websealuser

– used with WebSEAL ‘dummy’ password to confirm WS as origin of
request (I.e., basis of trust)

Full configuration details can be found in the User Guide.

Access Manager for Web Application Servers

5-70

70

Custom Realm for WLS : Miscellaneous Tips

The “LDAP naming context”s (user.dn and
group.dn) are only used for creating new
users/groups. Authentication of users will work
for users in any LDAP suffix
When using WebSEAL SSO, an authorization
failure by WLS Realm will result in ‘Could not Sign
User On’ message at the browser (caused by 401
challenge sent from WLS to WebSEAL).
AM WLS uses Java Native Interface (JNI) code.
Ensure that the AIX environment is configured as
described in: /<BEA_installation_directory>
/jdk130/README.HTML

These comments apply to both PD 3.8 and AM 3.9 for WLS.

Access Manager for Web Application Servers

5-71

71

AM 3.9 WLS Availability

AM 3.9 WLS is not included on CD package.

Will be available for web download by GA data of
17th May.

Access Manager for Web Application Servers

5-72

72

Summary

Access Manager for Web Application Servers

5-73

73

PD for WAS and WLS : Capabilities

Centralized User & Group Management in
Access Manager User Registry

Centralized Authorization Management for
J2EE Applications

Single Sign-on to Application Servers

Migration Utility for WebSphere Applications

