
WebSEAL Enhancements in v3.9

4-1

Jon Harry
Jon P Harry/UK/IBM

1

WebSEAL Enhancements in AM v3.9

This Presentation covers the new features of WebSEAL in Access Manager
v3.9.

It also covers a few subjects that have either been introduced since the
introduction of PD v3.8 or were in PD v3.8 but not documented until now.

WebSEAL Enhancements in v3.9

4-2

2

Multiple WebSEAL servers
on the same machine

This feature was initially introduced in WebSEAL v3.8 fixpack 1.

Most Web servers allow several WEB sites to be hosted on a single machine.
A different WEB site is characterised by different configuration and different
URL space. Clients request different servers by typing different DNS names
at the browser. In HTTP v1.1 the requested host is also included in the
required Host HTTP Header. Note that the server never sees the DNS name
that the user connects to – this is a mapping done at the client side.

WebSEAL Enhancements in v3.9

4-3

3

Multiple WebSEALs

The ability to have multiple WebSEAL servers
running on the same machine

Each has completely separate configuration
– Server Certificate, Authentication, WEB space, junctions etc

Each listens on different ports
– Or the same ports of a different IP address

This is not “host” field based virtual hosting
Multiple server processes
Does not use HTTP host header to distinguish server

There are two main ways to support different WEB sites on the same machine:
1. Single Server instance
In this case only a single TCP/IP port is used by the server for each protocol
(HTTP / HTTPS) but it will give the appearance of different WEB sites based
on the contents of the HTTP Host header. This is usually considered “true”
virtual hosting. The DNS names of each of the hosted sites each map to the
same IP address. When a request is received at the server the Host header is
examined to see which site the user is actually requesting.

2. Multiple Server instances
In this case a different server instance is used for each hosted site. Each
protocol of each server instance requires a different IP Adress/port
combination. Since WEB Services are usually expected to be on port 80 and
443 this usually requires that either multiple IP addresses are allocated or that
there is a front-end device (load balancer for example) that can map incoming
requests to different ports of the same IP address. In this case the Host HTTP
header is not used.

WebSEAL supports Multiple Server Instances only.

WebSEAL Enhancements in v3.9

4-4

4

etc

db

WebSEAL configuration items: Default instance

webseald.conf

webseald.db

KDB Stash

webseald.log

log

keytabs

www

certs
docs

jct
lib

log

webseald.pid

webseald.exe

The diagram above shows where files are stored for the initial WebSEAL
instance as configured using PDCONFIG.

If WebSEAL executable is not given any command-line options, as is the case
for the default instance, it will load the webseald.conf configuration file from
the <PDWeb>/etc directory.

The location of all other files to be used by the WebSEAL instance are
specified in that configuration file.

If the webseald executable could be made to read an alternative webseald.conf
configuration file then alternative versions of all of the other files could be
used too.

WebSEAL Enhancements in v3.9

4-5

5

etc

db

WebSEAL configuration items: New instance

webseald-name.conf

webseald-name.db

KDB Stash

webseald-name.log

log

keytabs-name

www-name

certs
docs

jct
lib

log

webseald-name.pid

webseald.exe –config …/webseald-name.conf

The diagram above shows where files are stored for additional WebSEAL
instances created using the techniques described in this presentation.

The name of the instance – which is used throughout the multiple instance
functionality to distinguish the instances from each other – is added to
directories and files to make them unique.

The WebSEAL executable is given a command-line option that tells it to load
an alternative configuration file (webseald-name.conf) from the <pdweb>/etc
directory. This file then points to alternative versions of all of the other
configuration files.

Since the webseald-name.conf file contains all configuration information for
the WebSEAL server, each instance has a completely separate configuration
and so can use different authentication, different certificates, different local
pages, different junctions etc.

The only shared configuration is the registry configuration. All WebSEAL
servers must still be in the same AM domain because they all use the same
AMRTE (which can only be in a single AM domain).

WebSEAL Enhancements in v3.9

4-6

6

AM Communication for Multiple WebSEALs

Single Machine

PDMGRD

7
1
3
5

Initial
WebSEAL

7
2
3
7

Additional
WebSEAL

PDMGRD treats
each WebSEAL

instance as a
different server

Each WebSEAL
must listen on a

different port for AM
SSL communication

from PDMGRD

7
3
3
7

Since each WebSEAL instance is a complete WebSEAL server they are
treated as different servers by Access Manager. This means that each
WebSEAL instance must listen on a different port for requests from the
management server. The default port for the default WebSEAL instance is
7237. A different port must be used by each instance – this is specified at
configuration time (shown later).

All WebSEAL instances (and all other AM servers) initiate connections with
the management server on (by default) port 7135.

The default WebSEAL instance on a machine is known using the server name
webseald-hostname. Additional instances are named instancename-webseald-
hostname. This name is seen using a server list command and is used to
specify the instance in other server commands.

WebSEAL Enhancements in v3.9

4-7

7

HTTP/HTTPS Ports for Multiple WebSEALs

Single Machine

Initial
WebSEAL

Additional
WebSEAL

80

443

81

444

All IP Addresses

Single Machine

Initial
WebSEAL

Additional
WebSEAL

80

443

80

443

9.9.9.1
10.10.10.1

By default WebSEAL binds to
specified ports on all IP

addresses (interfaces). All
ports must be unique.

Can specify which IP address
(interface) WebSEAL binds to.
Same ports can be re-used.

Since WebSEAL does not support virtual hosting using the “Host” HTTP
Header this means that a different IP Address/Port combination must be used
for each protocol (HTTP/HTTPS) of each instance.

By default a WebSEAL server will bind to the specified ports on all IP
addresses specified on the local machine. In this case each instance must use a
different port number. Clients can access the WebSEAL instances via any of
the local IP addresses but must specify the correct port number to connect to
the desired instance.

If the same ports are to be used by multiple instances (port 80 and 443 for
example) then each of these instances must be configured to bind to a different
IP address. When a WebSEAL instance is bound to a single IP address clients
must connect to that IP address in order to reach the server.

WebSEAL Enhancements in v3.9

4-8

8

Specifying Network Interface

There are two choices:
1. WebSEAL binds to specified ports on all interfaces
2. WebSEAL bind to specified ports on one interface

All interfaces is the default
Can specify at configuration time

For additional WebSEAL instances
For default instance modify webseald.conf:

[server]
network-interface = 10.1.1.1

A WebSEAL instance can be configured either to listen on the specified ports
of a single IP address or to listen to the specified ports on all IP addresses. It
cannot be configured to listen (for example) on two out of four interfaces.

The default for a WebSEAL server (and the way in which the default instance
is configured) is to listen on all IP addresses of the local machine.

A command-line parameter can be used to modify this behaviour when
configuring additional instances (see later) but the configuration of the default
instance can only be changed by modifying the webseald.conf file once it has
been configured.

The network-interface parameter does not exist in the configuration file by
default. It must be added to the [server] stanza. The WebSEAL server must
be re-started once this change has been made.

WebSEAL Enhancements in v3.9

4-9

9

Configuration of Multiple WebSEALs

First WebSEAL can be configured as normal
Use PDCONFIG to configure/unconfigure

Other WebSEALs configured using command line
Windows

– <pdweb>/bin/ivweb_setup
– <pdweb>/bin/ivweb_uninst –deconfig

Unix
– <pdweb>/sbin/PDWeb_config
– <pdweb>/sbin/PDWeb_unconfig

Configuring the first WebSEAL on a machine is no different to configuring it
when it is to be the only instance. Use the PDCONFIG utility to configure.
If you are going to use the same ports on different IP addresses you will need
to edit webseald.conf and add a network-interface attribute to configure the
WebSEAL instance to bind to a single IP address.

Additional WebSEAL instances are configured manually using the command-
line. The command is different on Windows and UNIX systems – the names
and path are shown above. The use of these commands differs between
operating systems too – see the next pages for details. These commands are
the same ones that are usually called from within PDCONFIG but the addition
of an instance parameter indicates that this is an additional instance

To un-configure the default WebSEAL instance use the PDCONFIG utility as
normal.
Un-configuring additional WebSEAL instances is done using the command-
line as shown above.
The configuration/unconfiguration of the default instance and the
configuration/unconfiguration of additional instances is independent. The
order is not important.

WebSEAL Enhancements in v3.9

4-10

10

Windows: Instance configuration

<pdweb>\bin\ivweb_setup
-u {yes|no} Enable HTTP?
-r <port> HTTP Port
-U {yes|no} Enable HTTPS?
-R <port> HTTPS Port
-m <password> sec_master password
-M <AM SSL Port> Port for AM Communication
-i <instance name> Instance Name
[-n <interface>] IP Address Binding

Bind to all if not specified

The slide above shows the syntax for the ivweb_setup command which is used
on Windows systems to configure additional WebSEAL instances.

The –u and –U parameters specify whether HTTP and HTTP respectively
should be enabled or not and the –r and –R parameters specify the HTTP and
HTTPS port that should be used.
The –m parameter specifies the password for sec_master. This is required in
order to register the new WebSEAL server with the AM Policy Server
(PDMgrd). There is no option to use a different admin user.
The –M parameter specifies the port that the server will listen on for
communication from the AM Policy Server. The port for the default
WebSEAL instance is 7237 so you need to chose something different.
The –i parameter specifies the name for the instance. If this parameter is
missed out then the default instance will be configured. It is recommended to
use the PDCONFIG utility to configure the default instance.
The –n parameter (if present) specifies the IP address to which the instance
should bind. If the parameter is not present the the instance will bind to all IP
addresses on the local machine.

WebSEAL Enhancements in v3.9

4-11

11

Windows: Instance un-configuration

<pdweb>\bin\ivweb_uninst -deconfig
-m <password> sec_master password
-i <instance name> Instance Name

Un-registers server with PDMGRD
Deletes server’s KDB file and stash file

Removes server service
Leaves configuration files behind

These are overwritten if instance re-configured

In order to un-configure an additional WebSEAL instance the ivweb_uninst
command is used. This command must be run with the –deconfig option
otherwise it will cause WebSEAL to be uninstalled (if all instances are
unconfigured).

The unconfigure command takes two parameters (in addition to –deconfig).:

The –m parameter specifies the sec_master password. This is required to
unregister the server from the AM Policy Server.

The –i parameter is used to specify the instance name. This is the same name
that was used for configuration. If a server list shows a WebSEAL server
called webseald-myhost-instance1 then instance1 is the instance name required
for unconfigure.

When an additional instance is unconfigured using the ivweb_uninst command
some configuration files are left behind. Note that these are not re-used if the
instance is re-configured – they are overwritten from the template file.

WebSEAL Enhancements in v3.9

4-12

12

Windows: Instance Status & Management

Instance listed in Services
Shows up as the instance name

Stop and Start using Services
Or “net” commands

Service NOT started by AM Auto-start service
Set to Automatic so starts at Windows startup

On Windows systems all Access Manager services, including all WebSEAL
instances, are run as services. However, additional WebSEAL instances
behave differently from the other Access Manager services.

The Default WebSEAL instance is listed in Services as “Access Manager
WebSEAL” and has a start-up mode of “Manual”. It is started by the “Access
Manager Auto-Start” service that is started when Windows starts.

Additional WebSEAL instances are listed with the instance name. They have
their start-up mode set to “Automatic” and so they start when Windows starts.

If you want to run a WebSEAL instance in the foreground then this is done
using the –foreground flag (as with the default instance) but the configuration
file must be specifically given to load the correct instance configuration:

…/pdweb/bin>webseald –foreground –config ../etc/webseald-name.conf

Where name is the instance name.

WebSEAL Enhancements in v3.9

4-13

13

UNIX: Instance configuration

/opt/pdweb/sbin/PDWeb_config
-i <instance name> Instance name
[-M <AM SSL Port>] Port for AM Communication

Will find free port if not specified
[-n <interface>] IP Address binding

Will bind to all if not specified

This launches menu driven config application
Same as normally used to configure WebSEAL
It will use the instance name specified

On UNIX systems the PDWeb_config utility is used to configure additional
WebSEAL instances. This utility is not in the PATH by default but its
location is shown above.

The user will be prompted for most of the configuration options
(HTTP/HTTPS ports etc) during configuration rather than having to specify
them on the command-line as in Windows. The only required parameter when
configuring additional instances is the –i parameter which indicates the
instance name.

If you wish to specify a particular port for the instance to listen on for
communication from the Management Server then this can be given with the
–M parameter. If this is not present then a free port will be found.

The –n parameter (if present) specifies the IP address to which the instance
should bind. If the parameter is not present the the instance will bind to all IP
addresses on the local machine.

WebSEAL Enhancements in v3.9

4-14

14

UNIX: Instance un-configuration

/opt/pdweb/sbin/PDWeb_unconfig
-i <instance name> Instance name

Un-registers server with PDMGRD
Deletes server’s KDB file and stash file

Deletes
webseald-<name>.conf configuration file
Log files, Web Docs, Junctions

www-<name> directory is left behind

On UNIX systems the PDWeb_unconfig utility is used to un-configure
additional WebSEAL instances. This utility is not in the PATH by default but
its location is shown above.

The only parameter that is required for this command is the –i parameter
which specifies the instance name. This is the same name that was used for
configuration. If a server list shows a WebSEAL server called webseald-
myhost-instance1 then instance1 is the instance name required for
unconfigure.

The un-configuration utility will prompt for the password of sec_maser.

The un-configuration unregisters the server instance from the AM Policy
Server and also deletes most of the configuration files.
The www-name directory is left behind but most of the files it contained are
removed. It can be deleted once un-configuration is complete. If it is not
removed and the instance is re-configured then any remaining files will be
overwritten.

WebSEAL Enhancements in v3.9

4-15

15

UNIX: Instance status & management

pdweb_start command updated for multi-instance
pdweb_start status now lists all instances
pdweb_start {start|stop|restart} [<instance>]

– If instance specified then command only affects that instance
– If not specified then command affects all instances
– To specify default WebSEAL use instance webseald

pd_start command affects all WebSEAL instances
In addition to all other AM servers

WebSEAL on UNIX has the pdweb_start command which is used to start,
stop, re-start and check the status of WebSEAL.
When pdweb_start is used to check status, all WebSEAL instances will be
shown. When using pdweb_start to start, stop or re-start WebSEAL instances
a number of choices exist:
If no instance is specified then the command will affect all instances on the
machine.
If a named instance is specified then the command will only affect that
instance.
If the instance name given is webseald then this will affect the default
instance.

The pd_start command, which is used to start, stop, re-start and check the
status of all Access Manager servers on a machine will show and affect all
configured WebSEAL instances.

WebSEAL Enhancements in v3.9

4-16

16

Support for HTTP v1.1 Cache Directives

This next section details how WebSEAL has been enhanced so that it is able to
make HTTP v1.1 requests to junctioned back-end servers so that they are able
to include HTTP v1.1 directives in their response. There is no detailed
discussion of the HTTP v1.1 standard itself – if this information is needed then
the reader is directed to the IETF RFC 2616.

WebSEAL Enhancements in v3.9

4-17

17

Cache Control in HTTP v1.0 versus v1.1

HTTP v1.0 Cache related headers
pragma: no-cache

– Do not provide a cached response
– Do not cache this response

HTTP v1.1 Cache related headers
cache-control: public

– Public document – can be cached in shared cache
cache-control: private

– Private document – do not cache in shared cache
cache-control: no-cache

– Do not cache this response
Expires: <date-time>

– Document only valid until time specified

The slide above illustrates that the cache control function available in HTTP
v1.1 is far superior to what is available in HTTP v1.0.

Cache control is important for two main reasons:

Better Caching = Better Performance
If a cache can be used more effectively then it increases the performance of the
entire solution because retrieving information from a cache is far quicker than
making a request all the way to a back-end server. The more fine-grained the
control of the cache can be (expiration time etc) then the more information can
be cached.

Security Issues
In an environment where HTTP is used for part of the path to the client (a
separate VPN solution is used for encryption for example) it is important to be
able to indicate which information should be considered private (and not
cached for everyone) and which should be considered public (and can be
cached for all users). This kind of cache control is not possible with HTTP
v1.0.

WebSEAL Enhancements in v3.9

4-18

18

Cache Control: Problem

Before AM v3.9 WebSEAL only supports HTTP
v1.0 to the back-end

This means that all requests are sent as HTTP v1.0

Back-end servers will respond with same version
So HTTP v1.0 request means HTTP v1.0 response

This limits the cache control options available
Back-end server has very little control

The problem that exists in WebSEAL before AM v3.9 is that it only supports
HTTP v1.0 to junctioned back-end servers. This means that all requests sent
to back-end servers indicate that the client (WebSEAL) is HTTP v1.0.

When a WEB server receives an HTTP v1.0 request it has to assume that the
client can only understand an HTTP v1.0 response. This means that the WEB
server is unable to use any advanced features of HTTP v1.1. In particular,
none of the advanced cache control features of HTTP v1.1 are available.

WebSEAL Enhancements in v3.9

4-19

19

Cache Control: Solution

HTTP v1.1 requests to back-end servers
In AM v3.9 WebSEAL will send HTTP v1.1 requests
If client and back-end server are HTTP v1.1

Back-end server will respond with HTTP v1.1
Which allows for much greater cache control

This is not a full implementation of HTTP v1.1
WebSEAL provides functionality to be a valid HTTP
v1.1 client

The solution to this problem is for WebSEAL to send HTTP v1.1 requests to
the back-end server. In AM v3.9 WebSEAL has been enhanced so that it is
now capable of making HTTP v1.1 requests to junctioned back-end servers.

Since the back-end servers are now receiving HTTP v1.1 requests they are
now free to respond using HTTP v1.1. They can use any of the cache control
features that are part of the HTTP v1.1 standard.

It is important to note that although the HTTP v1.1 standard specifies a large
number of features above those supported in HTTP v1.0 most of these are
optional and are not required in order for a client to be capable of handling
HTTP v1.1 responses. WebSEAL supports only those parts of HTTP v1.1 that
are required so that it can communicate with servers using HTTP v1.1. These
are discussed on the next page.

WebSEAL Enhancements in v3.9

4-20

20

WebSEAL HTTP v1.1 Support

WebSEAL has implemented the following:
Pass client HTTP version to junction

– WebSEAL will use the same version as the client
Enhanced Cache Control

– WebSEAL cache adheres to HTTP v1.1 standard
Support for Chunked Transport-Encoding

– WebSEAL can decode chunked data
– It will be sent decoded to the client

Send Host header to junction
– This is the server DNS name (used for virtual hosting)

“Expect 100-continue” support
– WebSEAL will simply wait
– Client will send body of request anyway after timeout

HTTP 1.1

Requirement

HTTP 1.1

Requirement

HTTP 1.1

Requirement

The slide above shows the features of HTTP v1.1 that WebSEAL has
implemented in order to allow it to communicate with an HTTP v1.1 server.

The first thing that WebSEAL must do is to tell the server in its requests that it
is expecting an HTTP v1.1 response. WebSEAL will always do this if the
end-user browser is capable of handling HTTP v1.1 (which is certainly the
case for recent IE and Netscape browsers).
WebSEAL has a cache that it uses to store data from the back-end servers.
This cache can interpret HTTP v1.1 cache control directives.
An HTTP v1.1 client MUST be able to decode “chunked” data. There are
many other possible encodings but this is the only one that is required. When
WebSEAL receives chunked data it will decode it as it is received so that it
can be processed. It is sent onto the client without being re-encoded.
An HTTP v1.1 request must include the Host header that indicates the DNS
name that the client is making the request to. This header is used in virtual
hosting. WebSEAL has always sent this request to back-end servers.
In HTTP v1.1 a client may send just the request headers to the server and
specify that it will wait for a 100-continue message before sending the body of
the request. WebSEAL does not send the 100-continue message – it just waits
for the client to send the body anyway (which it will do eventually after a
timeout).

WebSEAL Enhancements in v3.9

4-21

21

Determine Server HTTP Version

WebSEAL periodically checks servers are alive
Sends simple HTTP message to server
If response is HTTP v1.0 then server is HTTP v1.0

– No HTTP v1.1 requests will be sent

Try it out for yourself:
>telnet myserver 80
Connected to myserver…
HEAD / HTTP/1.1
host: myserver
connection: close
HTTP/1.1 200 OK
…

This is what WebSEAL sends

This response show HTTP v1.1 Server

Since it is now possible for WebSEAL to send either HTTP v1.0 or HTTP v1.1
requests to junctioned back-end servers it must have a way to determine which
the server can handle.

WebSEAL already polls the junctioned back-end servers to determine their
availability (every 300 seconds as per the ping-time option in webseald.conf)
and the response to this ping is used to check the HTTP version that the server
supports.

The screenshot above shows the HTTP message that is sent to server by
WebSEAL and the response that it will get back if the server suppots HTTP
v1.1. In this case WebSEAL will send requests to the back-end using the same
HTTP version that is used by the end user (which will normally be HTTP
v1.1).

If the server responds with HTTP v1.0 to this HTTP v1.1 message then
WebSEAL will forward all requests using HTTP v1.0 regardless of the version
used by the end user.

WebSEAL Enhancements in v3.9

4-22

22

Request Cache Enhancement

WebSEAL Enhancements in v3.9

4-23

23

Request Cache: Forms-based login review

Form-based Login Process – How it used to work
Request URL is stored in session cache during login

GET /resource.html

Login Page

302 redirect to /resource.html
Login
OK

Login
Required

POST /pkmslogin.form

GET /resource.html

Response Permitted

/resource.html

Session
Cache Entry

WebSEAL

The slide above shows how WebSEAL (before v3.9) is able to re-direct a user
back to the original resource they requested after performing a form-based
login. This functionality is required for form-based login (as opposed to BA
login) because form-based authentication is not a standard part of HTTP
communication. The browser is unaware that the pages are part of a login
mechanism - as opposed to just being normal pages – and so it will not
automatically re-try the request for the requested resource once the login is
complete (as it does after BA authentication).

When WebSEAL realises that it needs to authenticate the user the URL they
requested is stored in the session cache. Once the login is successfully
completed this URL is sent as a re-direct and so the browser makes a new
request for the resource which is now permitted – assuming the user has
appropriate permissions.

WebSEAL Enhancements in v3.9

4-24

24

Request Cache: Problem with caching URL

If Initial request is a POST
Browser can’t be re-directed to POST again

POST /myinfo.form

Login Page

302 Redirect to /myinfo.form
Login
OK

Login
Required

POST /pkmslogin.form

GET /myinfo.form

/myinfo.form

Session
Cache Entry

WebSEAL

POST DATA

GET (not POST)
and DATA Lost

The problem with the process described on the previous page is that only the
URL that the user requested is stored in the credential cache. Any data that
was included in the body of the request is not stored. Data may be sent with
either a POST or a GET but the most common time data is sent to a server is
when the user has filled out a form and is performing a POST to send that
information to the server.
A user will be authenticated when making a POST if the POST target is the
first protected page they have accessed or if their session has timed out while
they were completing the form.
Following successful authentication WebSEAL sends the user a re-direct back
to the URL that prompted the authentication. There are two problems here:

1. WebSEAL sends a 302-Redirect to the original resource. In most cases this
will cause the client to sent a GET request for that resource. This may not be
correct if the original request was a POST. This problem is not easy to solve
because the HTTP specification has often been misinterpreted in this area.
2. The browser as no way of knowing that it needs to resend the request body
that was sent in the original request. The browser does not know that this re-
direct is in any way linked to the original request it made before. The result is
that the data is lost – which will not please the end user ! They will most
likely receive an error from the back-end server.

WebSEAL Enhancements in v3.9

4-25

25

Request Cache: Solution – 1

In AM v3.9 WebSEAL caches entire request
Including method and data

WebSEAL still sends re-direct at the end of login
So that the URL line on browser is correct

WebSEAL intercepts resulting request
This will be a GET for the original resource

WebSEAL sends cached request to back-end
Uses original method and any data

A solution to the problem is for WebSEAL to cache the entire user request
rather than just the URL. This includes the HTTP Method (POST/GET etc)
that was used and also includes and message body – where any data is found.

Now that the user request is cached at WebSEAL, the next question is when to
use this to re-issue the users request.
This could be done after successful login and the response from the back-end
returned to the user as the response to the login POST. This avoids the need
for a re-direct but it means that the URL in the browser will be incorrect (it
will show the post action).

What actually happens is that WebSEAL still sends the browser a re-direct to
original URL but it then intercepts the potentially bad (wrong method/no data)
request that is returned and forwards the cached request to the back-end
instead. The response to this new request is then returned to the browser.
A diagram demonstrating this process is shown on the next page.

WebSEAL Enhancements in v3.9

4-26

26

Request Cache: Solution – 2

WebSEAL Form-based Login Process
Request URL is stored in session cache during login

Login Page

302 redirect to /resource.html
Login
OK

Login
Required

POST /pkmslogin.form

GET /resource.html
Permitted
Intercept!

REQUEST

Session
Cache Entry

WebSEAL

REQUEST

URL

REQUEST

REQUEST

The diagram above shows how WebSEAL in AM v3.9 handles request
caching during form-based authentication.

The process is similar to what was done before v3.9 except that now the entire
user request is stored in the session cache instead of just the URL.

When the browser makes the request for the original resource following
successful authentication and re-direct WebSEAL intercepts this and sends the
cached request from before the authentication instead. This cached request
contains all of the original request data that the browser sent in the original
request which may be missing in the second request.

WebSEAL Enhancements in v3.9

4-27

27

Request Cache: Considerations

HTTP Requests can be large
Especially if they contain POST data

Need to tune WebSEAL request buffers
Enough room for request data
There are two parameters to consider

Headers and cookies Request Body (POST Data)

request-body-max-read

request-max-cache

HTTP requests can be large – especially if they contain a large amount of
POST data (perhaps from a long form).

If WebSEAL is to store all of the information in the request during
authentication then sufficient room must be allocated in the cache entries to
allow this.

The diagram above shows the two parameters that affect the amount of data
that can be stored in a session cache entry. Request-body-max-read specifies
the maximum size of the request body and request-max-cache specifies the
maximum size of the whole request. The difference in these two values is the
size of the request headers (and any cookies).

Note: WebSEAL does not have to cache all requests. Only requests that
result in an authentication need to be cached.

WebSEAL Enhancements in v3.9

4-28

28

Request Cache: Configuration

This method is used for all caching of requests
Both GET and POST methods
Used during initial authentication and re-authentication

Configuration parameters in webseald.conf:
Values are in bytes

[server]
request-body-max-read = 4096
request-max-cache = 8192

In WebSEAL v3.9 the method of caching the entire request (as opposed to just
the URL) during authentication is used in all cases. This is not configurable.

The request-body-max-read and request-max-cache parameters are set in the
[server] stanza of webseald.conf. The values shown above are the default
values.

The defaults allow for a total request size of 8192 byes. A maximum of 4096
bytes is available for the request body.

WebSEAL Enhancements in v3.9

4-29

29

Forced Re-authentication

WebSEAL Enhancements in v3.9

4-30

30

Forced Re-authentication: Description

Additional security for sensitive resources
User must authenticate immediately before access
This means re-authentication if already logged in

– User must re-authenticate with the same identity
– User must re-authenticate at the same level

Supported out-of-the-box authentication types:
Form-based UserID/password
Token authentication

Custom password CDAS may also support re-
authentication

In order to ensure that the user accessing a sensitive resource is the same
person that initially authenticated at the start of a session it is often desirable to
ask them to re-authenticate before allowing access. This can also be used for
confirmation that they REALLY want to perform some invasive action (rather
than quickly clicking “YES” to “Are you sure?”).

In WebSEAL v3.7.1 the concept of Step-Up authentication was introduced
(which allows access decisions to be made based on the authentication method
used) but this did not provide the ability to force a re-authentication at the
same level.

Not all authentication types are supported for re-authentication. Basic
Authentication, for example, cannot support re-authentication because the
UserID and password for the user are submitted with every request – so the
end user is not re-authenticated.

Of the out-of-the-box authentication mechanisms only form-based
authentication methods (UserID/Password and Token Authentication) are
supported for re-authentication. Custom UserID/Password CDAS modules can
also work.

WebSEAL Enhancements in v3.9

4-31

31

Forced Re-authentication: Configuration

Specified as Extended Attribute of POP
reauth yes

Affects object where POP attached
And all children by inheritance

– Unless another POP is attached below

In PDADMIN:

pdadmin> pop create secure
pdadmin> pop modify secure set attribute reauth yes
pdadmin> pop attach /WebSEAL/myhost/junction/sensitive.html
pdadmin>

Forced re-authentication is configured by attaching a POP to the object in
question that contains an extended attribute with the name reauth. The value
of the attribute is not important (yes is used in the example above). This can
be done either using the WPM or (as shown above) using PDADMIN.

It is worth noting that all children are affected by the POP (by inheritance) but
this does not mean that a single re-authentication will allow access to all the
children. The user must re-authenticate to access each one.

If non-html objects (such as pictures) are protected by forced re-authentication
then they will not be displayed. This is because there is no way for a request
for a picture that is part of a page to return a login form. The administrator
must ensure that re-authentication is not required for these objects.

WebSEAL Enhancements in v3.9

4-32

32

Force Re-authentication: Behaviour

Authenticate

Re-Auth
Required?

Authorized?

Logged In?

Authorized?

Service
Request

Request

Send
Forbidden

Page

YesNo

Yes

Yes

Yes

No

No

No

OK
Fail

The flowchart above shows the behaviour of WebSEAL with Forced Re-
authentication enabled.

When a request is received it is authorized. Before AM v3.9, if this were
successful, the request would be serviced. However, in AM v3.9, an
additional check is done to see if the object being requested requires re-
authentication. If it is required (reauth extended attribute in the POP) then a
login form is returned to the user instead of the requested resource. Unless the
user can re-authenticate the request will not be serviced.

During the re-authentication step the users original request is stored in the
request cache and is re-submitted after authentication (as described elsewhere
in this presentation).

If an unauthenticated user tries to access a protected resource they will have to
authenticate. Once this is done there is no need to re-authenticate them
because they have only just authenticated anyway.

If the user is not authorized to access the resource they will receive a forbidden
page.

WebSEAL Enhancements in v3.9

4-33

33

Force Re-authentication: Session Management

Logged in user has entry in session cache
Session Identifier (SSL ID, Cookie etc)
User Credential

Credential is not replaced during re-auth
Important for Session Management
Some fields may be modified during Re-auth

On re-authentication failure
Authentication page shown again (with error)
User remains logged in

– Can abort re-authentication and continue browsing pages that
don’t require re-authentication

Re-authentication differs from initial authentication because the user is already
logged in to WebSEAL and so already has a session cache entry containing a
credential.

It is important to know that this credential is not replaced during re-
authentication. This means that any session information stored in the
credential (discussed later) will not be affected by the re-authentication.

The existing credential is available to the authentication mechanism during re-
authentication and so it may be used during the re-authentication and may
have certain fields (custom attributes) modified by the authentication
mechanism during the re-authentication.

If forced re-authentication fails then the user will be denied access to the
resource they were trying to reach but they will not be logged off. Their
credential is still valid and they can abort the re-authentication process (by
requesting some other URL) and still access other pages that do not require
forced re-authentication.

WebSEAL Enhancements in v3.9

4-34

34

Re-authentication after
Inactivity Timeout

If a user session is inactive for a configured period of time it has always been
the case that WebSEAL would require the user to re-authenticate before
allowing access to protected resources.

The changes to this functionality in AM v3.9 do not change the behaviour that
a user sees but they do alter the way that WebSEAL handles a user session if it
is inactive for more than a configured period of time.

WebSEAL Enhancements in v3.9

4-35

35

By default Inactivity Timeout ends session - 1

Before AM v3.9:
User session cache entry deleted if user inactive
User session credential lost
User must authenticate on next request

– But it is considered a completely new session

This is still the default behaviour in AM v3.9
In webseald.conf:

[session]
inactive-timeout = 600

Time in seconds

Before AM v3.9 a user session would simply be removed from the session
cache if the inactivity timeout was exceeded. This means that the user is
effectively logged out from WebSEAL and so must authenticate again in order
to access any protected resources. When they perform this second login
WebSEAL considers this a completely new user session. A new session cache
entry is generated and a new credential is built for the user.

This is still the default configuration for WebSEAL in AM v3.9

The inactivity timer for all WebSEAL sessions is set in webseald.conf as
shown above. The default is 10 minutes (600 seconds).

WebSEAL Enhancements in v3.9

4-36

36

By default Inactivity Timeout ends session - 2

WebSEAL
User

Session
Inactivity
Timeout

Request

Request

Authentication
Time

Session deleted

Request

The diagram above shows user communication with WebSEAL, how this
affects the inactivity timeout and how the inactivity timeout causes the user’s
session to be deleted if it expires. This is the default behaviour in AM v3.9.

When a user initially authenticates the inactivity timeout is reset to the value
configured in webseald.conf. Each time the user makes a request the inactivity
timeout is reset again.

If the timeout expires then the users session is deleted from the session cache.
Their session is over. If they later authenticate again to access more protected
resources WebSEAL will consider this a new session.

WebSEAL Enhancements in v3.9

4-37

37

Time in seconds

Session ends at credential lifetime – 1

Before AM v3.9:
Credential Lifetime specifies maximum session time
User session cache entry deleted after this time

– Regardless of activity
User must authenticate on next request

– But it is considered a completely new session

This is still the default behaviour in AM v3.9
In webseald.conf:

[session]
timeout = 3600

In addition to the inactivity timeout WebSEAL also specifies a credential
lifetime. This effectively specifies the maximum session time – regardless of
activity. When the credential lifetime expires the user session is deleted from
the session cache. This means that the user is effectively logged out from
WebSEAL and so must authenticate again in order to access any protected
resources. When they perform this login WebSEAL considers this a
completely new user session. A new session cache entry is generated and a
new credential is built for the user.

This is still the default configuration for WebSEAL in AM v3.9

The credential lifetime is configured using the lifetime parameter in
webseald.conf. The default lifetime is 1 hour (3600 seconds).

WebSEAL Enhancements in v3.9

4-38

38

Session ends at credential lifetime – 2

WebSEAL
User

Session
Credential
Lifetime

Inactivity
Timeout

Request

Request

Authentication
Time

Request

Request

Session deleted

Request

Request

The diagram above shows how the credential lifetime affects a users session
when using default WebSEAL configuration.

When the user initially authenticates the credential lifetime is reset.

Even though the inactivity timer never expires the session is deleted anyway
when the credential lifetime is reached. At this time the user’s session is over.
In order to access any protected resources they must authenticate again but
WebSEAL will consider this a completely new session.

WebSEAL Enhancements in v3.9

4-39

39

Re-authentication without Lifetime refresh – 1

In AM v3.9 re-authentication is possible:
Session flagged as inactive if inactivity timer expires

– Rather than being immediately deleteted
User must re-authenticate to access protected pages

– Access public pages continues – as unathenticated

On successful re-authentication:
– Inactive flag removed and inactivity timer reset
– User session continues with the same credential

Session only deleted by explicit logout or credential
lifetime timer expiry

– Credential lifetime still determines maximum session length

In AM v3.9 there is now the option for WebSEAL to flag a session where the
inactive timeout has expired as inactive rather than deleting from the session
cache. A session marked as inactive cannot be used for accessing protected
resources – and authorizations are done as unauthenticated.

The effect for the user is the same as before – they must authenticate again
before they can access any protected resources.

The difference internally to WebSEAL is that the credential has not been
removed from the cache and so when the user re-authenticates the inactive flag
can simply be removed and the user can continue accessing WebSEAL using
the same session entry and credential. This is important because it means
that any User session data (see later) is maintained.

The only way that a user session will expire with WebSEAL configured in this
way is if the user explicitly logs out, if they are forced out (see later) or if the
credential lifetime of the session expires. The credential lifetime still
determines the maximum session length – when it is reached the session will
end regardless of activity.

WebSEAL Enhancements in v3.9

4-40

40

Re-authentication without Lifetime refresh – 2

Configured in new WebSEAL configuration stanza
[re-authentication] in webseald.conf

In webseald.conf:

[reauthentication]
reauth-for-inactive = yes

Default for this is no

To configure WebSEAL to mark inactive sessions rather than deleting them
from the credential cache change the reauth-for-inactive parameter to yes in
the [reauthentication] stanza.

WebSEAL Enhancements in v3.9

4-41

41

Re-authentication without Lifetime refresh – 3

WebSEAL
User

Session
Credential
Lifetime

Inactivity
Timeout

Request

Request

Request

Request

Initial Authentication

Re-authentication

Session deleted

Time

Flagged inactive

The diagram above shows how WebSEAL handles a session when re-
authentication of inactive sessions is enabled as shown on the previous page.

When the user initially authenticates the inactivity timeout and credential
lifetime are both reset. As long as the session remains active (inactivity
timeout does not expire) nothing is different from before.

When the inactivity timer expires the session is marked inactive. If the user
tries to access a protected resource before the credential lifetime expires they
will have to re-authenticate but rather than having to build a new credential
WebSEAL simply removes the inactive flag from the existing session which
re-activates it.

Although the user can re-authenticate after inactivity their session still has a
fixed maximum length determined by the credential lifetime. When this
expires the session will be deleted from the session cache.

The user can authenticate again after this but this will be a new session with a
new credential.

WebSEAL Enhancements in v3.9

4-42

42

Re-authentication with Lifetime refresh – 1

Can configure WebSEAL to refresh credential
lifetime at re-authentication

Prevents session lifetime being limited by credential
lifetime timeout

In webseald.conf:

[reauthentication]
reauth-reset-lifetime = yes

Default for this option is no

In order to prevent the session being limited by the credential lifetime it is also
possible to configure WebSEAL to reset the credential lifetime each time the
user re-authenticates.

This is configured in webseald.conf by setting the reauth-reset-lifetime
parameter to yes in the [reauthentication] stanza.

Note: The credential lifetime is only reset during a re-authentication. This
means that if the user is constantly active and the inactivity timer does not
expire (and therefore no re-authentication is required) the lifetime will not be
refreshed, the credential lifetime will be reached and the session will end.

WebSEAL Enhancements in v3.9

4-43

43

Re-authentication with Lifetime refresh – 2

WebSEAL
User

Session
Credential
Lifetime

Inactivity
Timeout

Request

Request

Request

Request

Initial Authentication

Re-authentication

Session deleted

Time

Flagged inactive

Flagged inactive

The diagram above shows how the credential lifetime is refreshed at each re-
authentication when the reauth-reset-lifetime parameter is set. This means that
the session no longer has a maximum lifetime. The session will only end if the
credential lifetime is reached without the user re-authenticating or if the user
specifically logs off or is logged off (see later).

WebSEAL Enhancements in v3.9

4-44

44

Extend Lifetime During Re-auth – 1

It is possible that credential lifetime expires during
re-authentication

Between re-authentication request and user login

This can cause problems:
User session is lost
Any cached request data is lost

It is potentially possible for the credential lifetime to expire while the user is
performing a re-authentication. This is most likely to happen if the inactivity
timer expires when the credential lifetime has almost been reached. The user
is sent a login page but the credential lifetime expires while it is being
completed.

This could cause a problem because the users session cache entry is deleted
when the lifetime expires and so when the login form is returned to WebSEAL
there is no longer a session.

Not only is the user session lost but any user request data (which was stored in
the session cache during authentication) is lost too.

WebSEAL Enhancements in v3.9

4-45

45

Extend Lifetime During Re-auth – 2

WebSEAL
User

Session
Credential
Lifetime

Inactivity
Timeout

Request

Request

Request

Initial Authentication

?

Time

Flagged inactive

Session deleted

Re-authentication

Login
No Session
Information

The diagram above demonstrates the problem described on the previous page.

The users session is deleted between the re-authentication being requested and
the user responding.

WebSEAL Enhancements in v3.9

4-46

46

Extend Lifetime During Re-auth – 3

Can configure WebSEAL to give “grace period”
If required, add time to the credential lifetime

– Ensure that some minimum time is left remaining
Gives the user time to login

In webseald.conf:

[reauthentication]
reauth-extend-lifetime = 20

Default value is 0
Indicates that no extension should be given

The problem of the credential lifetime being reached during re-authentication
can be countered by configuring a minimum remaining time that is acceptable
when a re-authentication request is sent by WebSEAL. If the credential
lifetime will be reached within this time then the credential lifetime is
extended to give the minimum time specified.

By default this grace period is set to 0 which means that no extension will be
given during re-authentication. If a grace period is wanted then the reauth-
extend-lifetime parameter in the [reauthentication] stanza should be modified
with the time required.

WebSEAL Enhancements in v3.9

4-47

47

Extend Lifetime During Re-auth – 4

WebSEAL
User

Session
Credential
Lifetime

Inactivity
Timeout

Request

Request

Request

Initial Authentication
Time

Flagged inactive

Re-authentication

Login

Request

Lifetime extended

The diagram above shows how an extension to the credential lifetime can
prevent the user session being deleted during re-authentication.

The extension should be configured to give a user that receives a re-
authentication request adequate time to complete and submit it.

The reauth-extend-lifetime option is intended for use in conjunction with the
reauth-reset-lifetime=yes option. This means that when a successful re-
authentication is completed the credential lifetime will be extended again to
give another full amount of session time.

WebSEAL Enhancements in v3.9

4-48

48

User Session Management

WebSEAL Enhancements in v3.9

4-49

49

User Session Management

Applications need session management
Required for stateful applications
Link new requests to an existing session

WebSEAL already performs this role
So why not use this to off-load application developers
No need for additional cookies etc from back-end

In AM v3.9 Session Management Enhanced
Unique User Session ID for back end to use
More direct control over WebSEAL sessions

Any stateful WEB application needs to maintain a table of some kind that
links HTTP requests from the same user to information about their session
state.
WebSEAL is stateful and it can use a variety different information to link each
new request with previous ones from the same user (e.g. SSL Session ID, BA
Header, Session Cookies).
When WebSEAL is used to protect existing WEB applications there is usually
a duplication of effort. WebSEAL and the WEB application both have to
maintain the user session. Since WebSEAL is already doing this work it
would be useful if the backend server could take advantage of this.

In AM v3.9 WebSEAL can be configured to create a “User Session ID” when
a user session is created and then pass this to the back-end server with each
request that the user makes. Rather than send a cookie to the user (or use BA
Headers or URL re-writing) the back-end application can use the User Session
ID to identify a user session.

In addition to providing this User Session ID for the application WebSEAL
now also has the ability to drop a user session on the request of the back-end
application (through the Admin API)

WebSEAL Enhancements in v3.9

4-50

50

User Session ID From WebSEAL

A User Session ID is sent to back-end server
Sent with every request in HTTP Header
Contains:

– WebSEAL server name for reference (base-64 encoded)
– Unique ID (ASCII characters)

Constant as long as user session lasts
Re-authentication does not change affect it

– Because user session is maintained

Guaranteed not to repeat for 180 days
Once user session has ended

Cannot be spoofed by end user
It is inserted by WebSEAL

The User Session ID contains two parts:

Server Name: The name of the WebSEAL server (base-64 encoded to avoid
problems with invalid characters). This is used by the backend server when
communicating via the Admin API to identify the WebSEAL server that owns
the session.
Unique ID: A unique ID of ASCII characters that identifies the session. This
ID is designed so that it will not be re-used for another session for at least 180
days.
The User Session ID is generated when WebSEAL creates a user credential
and it is stored in the credential until the user session ends (and the credential
is deleted). Using the new re-authentication features of WebSEAL in AM v3.9
the users session (and their User Session ID) can be maintained across re-
authentications due to inactivity and forced re-authentications.
The Session ID is inserted into HTTP requests (as an HTTP Header) at
WebSEAL – it is never sent to the end-user. This means that the Session ID
cannot be spoofed by an end user as long as they are accessing the backend
through WebSEAL.
If the user attempts to insert an HTTP Header with the same name used for the
User Session ID then WebSEAL will overwrite this as it processes the request.

WebSEAL Enhancements in v3.9

4-51

51

Generating the User Session ID

bGlubmV5bDEA_KHlhPAEAAAAsAAAAeA/NAXhCQUFBQW0wdEFOWVdGaFlXRmhZV0ZoWVdGaFlXRmhZRzNsaFBBa0FBQUE9

WebSEAL
Server Name

User Session ID
Unique for at least 180 days

Base-64
Encoder

Base-64
Encoder

Credential
WebSEAL Session Cache

userDN: user1,c=gb
…
tagvalue_user_session_id: User Session ID

The diagram above shows how a User Session ID looks. The first part is the
base-64 encoded WebSEAL server name and the second part is a base-64
encoded unique session identifier. The two parts are separated by an _
(underscore) character.

This value is stored in the users credential using the attribute name
tagvalue_user_session_id. This name is used so that the existing Tag-Value
support can be used to insert the Session ID into HTTP requests to the back-
end (see next page).

Note: If the backend application is a user of the AZN API the WebSEAL can
send the entire user credential to the application and it can extract the User
Session ID from there without the need to use an additional HTTP Header.

WebSEAL Enhancements in v3.9

4-52

52

Generating the Session ID

PD_SESSION_ID

WebSEAL

WebSEALA

Junction1
Junction2

\
Objectspace

Extended Attribute:

Credential

userDN: user1,c=gb

tagvalue_user_session_id: User Session ID

Junction1

Back-End
WEB
Server

HTTP Request

WebSEAL Session Cache

Name: HTTP-Tag-Value
Value: user_session_id=PD_SESSION_ID

The existing WebSEAL Tag-Value support is used to extract the User Session
ID from the credential and place it into the HTTP Headers that are sent to the
back-end server.

The Tag-Value support is triggered by an extended attribute of the junction
object in the AM objectspace. This attribute has a name of HTTP-Tag-Value
and a value of <credential attribute>=<HTTP Header name>.

When a request is made to a junctioned back-end server the junction object is
checked for the extended attribute. If it is found then the user credential is
searched for a custom attribute call tagvalue_<credential attribute>. In the
case of User Session ID the value of in the Credential attribute is
tagvalue_user_session_id. The value of this Credential attribute (this is the
User Session ID) is inserted into the HTTP Request using the <HTTP Header
Name> given above. In the example above the HTTP header will be called
PD_SESSION_ID.

The back-end server can then acquire the User Session ID by requesting the
value of the PD_SESSION_ID Header.

WebSEAL Enhancements in v3.9

4-53

53

User Session ID: Configuration

Add HTTP-Tag-Value attribute to junction object
Value of user_session_id=<HTTP Header Name>
Can use command-line or GUI to set this

User Session ID added to credential by default
In webseald.conf:

[session]
user-session-ids = yes

To disable change value to no

The default configuration of WebSEAL in AM v3.9 is to create a User Session
ID for each session and put it into the credential. This means that the only
configuration that is required is that described on the previous page to trigger
the Tag-Value support. This can be done with PDADMIN or the WPM. In
PDADMIN the command would be like:

pdadmin> object mod /WebSEAL/myhost/junction1 set attr HTTP-Tag-
Value user_session_id=PD_SESSION_ID

If you want to prevent WebSEAL from generating the User Session ID then
this can be done in webseald.conf. Changing the user-session-ids parameter to
no in the [session] stanza will turn off the feature.

WebSEAL Enhancements in v3.9

4-54

54

Terminating User Sessions – 1

New WebSEAL Admin functions in AM v3.9:
Terminate a user session by User Session ID

– This removes a single entry from WebSEAL session cache
Terminate sessions for a given UserID

– This removes all sessions for a given user from session cache
– Only affects user sessions on one WebSEAL server

Commands accessed through server task …
Both are available through API or PDADMIN

– Terminate by UserID could be used by administrator
– Terminate by Session ID probably used through PDADMIN API

So far we have seen how the back-end server can acquire a User Session ID
from WebSEAL which it can use for its own session maintenance. What is
required now is for the back-end server to have some control over the session
that is being managed by WebSEAL.

Two new commands have been implemented in the WebSEAL administration
service that allow a user session to be terminated by giving the Unique ID
portion of the User Session ID or the AM Username. These can be run from
the PDADMIN command line (using server task) but they are intended for use
by the back-end server through the PDADMIN API.

Terminating a session using the User Session ID causes WebSEAL to discard
the single session that the User Session ID identifies. Other sessions from the
same user can continue.

Terminating using the AM Username causes WebSEAL to discard ALL
sessions that are owned by the Username given. This command may end
many sessions if the user is logged in multiple times from different locations
or different browsers.

WebSEAL Enhancements in v3.9

4-55

55

Terminating User Sessions – 2

WebSEAL Backend Server

PDADMIN API

AM Policy Server

Admin
Service

User
Session ID

ivadmin_server_performtask
(“<Server>” ,
“terminate session <SessID>”

)
Task

Task

1

2

3

4

5

The diagram above shows how the User Session ID is used to allow the
Backend server to terminate sessions at WebSEAL.

*1 – WebSEAL sends the session ID with every request (once Tag-Value is
configured). Backend server could also extract from credential if using
AZNAPI.

*2 – Backend server makes a call via the PDADMIN API specifying the
WeBSEAL server name (either fixed or could be decoded from base-64 in
Session ID) and the second, unique part, or the Session ID (left base-64
encoded).

*3 This request is passed to the AM Policy Server

*4 Management Server passes the request to the administrative service running
on the WebSEAL server

*5 The WebSEAL Admin Service kills the session on WebSEAL.

WebSEAL Enhancements in v3.9

4-56

56

Terminating User Sessions – 3

PDADMIN Examples:

pdadmin> s t webseald-myhost terminate session KHIhPAEAAAAs…
pdadmin> s t webseald-myhost terminate session KHIhPAEAAAAs…
No matching User Session found
pdadmin> s t webseald-myhost terminate all_sessions baduser
pdadmin> s t webseald-myhost terminate all_sessions baduser
User not logged in
pdadmin>

This does not include the
<encoded servername>_

prefix

The examples above show how the server tasks can be used from the
PDADMIN command line. This is not the intended way for the terminate
session command to be used (since there is normally no way for the
administrator to get the Session ID of an individual session) but it might be
useful to be able to terminate all of the sessions for a given user if there is a
situation where they need to be immediately logged off from WebSEAL.

The commands only affect the single WebSEAL server specified in the
command. There is currently no single command that will log a user off from
all WebSEAL servers. If this functionality is required then a simple script that
reads the servers from a “server list” command and then calls “terminate
all_sessions” on each one would do this.

There is nothing to stop a user who is logged off in this way from starting a
new session. If this is to be prevented then their account-valid flag should be
disabled before terminating their sessions. With this done they will not be able
to log in again.

WebSEAL Enhancements in v3.9

4-57

57

Switch User Function

WebSEAL Enhancements in v3.9

4-58

58

Switch User: Description

Administrators can “become” another user
Check users access for testing / problem determination

User password is not required for switch
No need for user to give password for testing

Only authorized users can perform switch
Controlled through group membership

Users can be protected from switch
No one can “become” these users

The “Switch User” function is rather like the SU command that is
implemented in UNIX. It allows an administrative user to take on the identity
of another user (“Become” another user) without needing their
authentication information.

In a WebSEAL environment this could be used to see what pages a user will
see when using a particular application. This could be used for application
integration testing, permission testing or problem recreation and debugging.

This is a very powerful function which could easily be misused so users must
be specifically authorized to use this feature. In addition it is possible to
protect users from this feature by specifying that they cannot be the subject of
switch user – i.e. no other user can “become” that user even if they are
authorized to use the switch user function.

Note: It is not permitted to “become” another user that is authorized to use the
switch user function. This removes the problem of chained switches – where a
user switched from one UserID to another multiple times.

WebSEAL Enhancements in v3.9

4-59

59

Switch User: Functional Diagram

Logged into
WebSEAL as

User 1

GET <switchuser page>
Default /switchuser.html Member of

su-admins group?

Not FoundSU Form

submit

User to switch to
in su-admins

group?
Error

Logged in
as User 2

Go to
/pkmslogout

yes

yesno

no

User to switch to
in su-excluded

group?

no

yes

The flowchart above shows the logic of the switch user function. Initially we
start with an authenticated user, User 1. User 1 attempts to initiate the switch
user function by connecting to the configured switch user page.
WebSEAL recognises this request and checks if the user is a member of the
special group su-admins. Only members of this group are allowed to use the
switch user function. If the user is not a member of the group they will get a
standard “Not Found” page returned.
If User 1 is a member of the su-admins group then the Switch User page is
returned. This page contains a form where the user can fill in the username
they wish to switch to and some other information (see later). User 1 enters
User 2 into the form and submits it.
Two checks are done before the switch is authorized. First, WebSEAL checks
if User 2 is a member of the su-admins group. A user cannot “become”
another user that is allowed to use switch user. Second, WebSEAL checks if
User 2 is a member of the su-excluded group. No users are allowed to
“become” a member of the su-excluded group. A error is returned if either of
these checks fails.
If the checks are OK then User1 becomes User2. All subsequent requests are
made as though they were made by User2.
This continues until /pkmslogout is called. At this time User 2 is logged out
and the user becomes User 1 again.

WebSEAL Enhancements in v3.9

4-60

60

Switch User: Session Cache Entry

Same Handle used (e.g. SSL Session ID)
New Credential generated
Original Credential and Session info stored

– Includes User Session ID
– Restored when SU completes

HANDLE USER1 CRED INFO

HANDLE USER2 CRED INFO

HANDLE USER1 CRED INFO

USER1 CRED INFO

Normal User Session Cache Entry:

During Switch User:

After PKMSLOGOUT:

The diagrams above show how the users session entry changes during switch
user operation.

When a user session starts an entry for the session is created in the session
cache. A session cache entry in indexed by a handle. This is information that
identifies the session, e.g. SSL ID, BA Header or Session Cookie. Contained
in the session entry is the users credential and information about their session.

When the switch user function is invoked the original user credential and
information is moved into another cache. It is replaced in the session entry
with the credential and new information for the user that is being switched to.
Notice that the session handle does not change. WebSEAL still uses the same
information to locate the session. Any requests made on that session will use
the new credential for authorization.

When the user goes to the /pkmslogout page (to indicate they wish to end the
switch user session) the credential and information in the session entry is
discarded and replaced with what was saved away earlier. Notice that the
session handle is still unchanged. Any requests made on the session will use
the original credential again for authorization.

WebSEAL Enhancements in v3.9

4-61

61

Switch User: Form

Username
This is the AM User that you wish to become
Cannot be a member of su-excluded group

Destination URL
The URL you will be re-directed to as the new user
This could be a hidden field in the form

Authentication Method
Which SU Authentication library should be called?
This could be a hidden form

The switch user form that an authorized user requests the switchuser page
contains 3 fields. All three fields are required in order to process the
switchuser request however the switch user form could be customised to use
hidden inputs (or have a pull down menu of choices etc) for some of the fields.

Username: This input is where the username you want to switch to is given.
This can be any user that is NOT a member of su-admins or su-exclueded.

Destination URL: This is the URL that you will be re-directed to once
authenticated as the new user. In most cases the switchuser form would be
customised so that this is a hidden input containing an appropriate home page
– or a page that confirms that switch user was successful.

Authentication Method: When switching to another user no authentication is
required but WebSEAL still needs to call an authentication mechanism that
will provide the appropriate information for building the users credential. The
mechanism to be called is specified here (by keyword). This could also be a
hidden form or a set of radio buttons (etc) if required. See next page for
details on Authentication Methods.

WebSEAL Enhancements in v3.9

4-62

62

Switch User: SU Authentication Methods

The following are valid authentication methods:
su-ba
su-forms
su-certificate
su-token-card
su-http-request
su-cdsso

An SU authentication library must be specified for
each keyword to be used

In simple environments the same library can be used
for all methods.

WebSEAL defines a new set of Authentication Method keywords for use with
the Switch User function. This allows a different library to be called for each
different authentication type. These “SU” libraries are different from standard
CDAS libraries because they do not require any authentication information to
be passed in.

It is important to have the ability to call different su libraries in an
environment where custom CDASs are normally used to specify information
to be added to the credential. This information needs to be added to the
credential generated for the user being switched to.

Access Manager v3.9 ships a single SU library that can be used for all
authentication methods in an out-of-the-box environment. It does not add any
information to the credential – it simply returns the User ID passed in and sets
the authentication level based on a parameter specified when it is called (see
next page).

These authentication method keywords are also the keywords that are
recognised in the switchuser form to specify which authentication method
should be used.

WebSEAL Enhancements in v3.9

4-63

63

Switch User: Configuration – 1

Specify SU Authentication Mechanisms
Same library used but Authentication Level different

In webseald.conf:

[authentication-mechanisms]
SWITCH USER
#su-password = <su-password-library>
#su-token-card = <su-token-card-library>
#su-certificate = <su-certificate-library>
#su-http-request = <su-http-request-library>
#su-cdsso = <su-cdsso-library>
su-password = <PDWeb>\bin\suauthn.dll& -l 1
su-certificate = <PDWeb>\bin\suauthn.dll& -l 2

The slide above shows how, in an out-of-the-box environment, the single SU
library shipped with WebSEAL in AM v3.9 can be used to handle all
authentication methods. For each method that needs to be used specify the su-
xxx keyword and then specify the shipped SU library. The -l parameter will
be passed to the library and is used to return the authentication level that
should be reported while working in the SU session.

The reason why the same library can be used for all the different
authentication mechanisms is because no authentication information is passed
in. This is the only thing that makes the out-of-the-box CDAS libraries
different – they all return similar information.

In an environment where custom CDAS libraries are used to return extra
information to WebSEAL it may be necessary to write matching SU libraries
if the switch user function is to be used with those custom methods.

WebSEAL Enhancements in v3.9

4-64

64

Switch User: Configuration – 2

Enable Users to use Switch User function
Add users to su-admins group

Prevent sensitive users from being SU’d to
Add users to su-excluded group
Any user in su-admins group also excluded
Don’t forget to exclude AM Daemons

– e.g. webseald/myhost.ibm.com

In order to enable a user to use the switch user function simply add them to the
su-admins group. This group is created in Access Manager when WebSEAL is
installed.

In order to protect user accounts from being switched to add them to the su-
excluded group. This group is also created in Access Manager when
WebSEAL is installed.

By default no users are made a member of either of these groups. It is
recommended that sec_master and all AM Daemons are added to this group so
that they cannot be used to get access to Web resources via the switch user
function.

WebSEAL Enhancements in v3.9

4-65

65

Switch User: SU Form Page Customization

Edit switchuser.html

Specify URL of switch user form
Relative to <PDWeb>/www/lib/html/<LANG>/

– Default is switchuser.html

In webseald.conf:

[acnt-mgt]
switch-user = switchuser.html

Although the switchuser form is requested as /<su-form-URL> it does not
actually exist in the WebSEAL webspace. WebSEAL recognises requests for
the page and loads the page relative to the <PDWeb>/www/lib/html/<lang>
directory – which is where WebSEAL stores all “special” pages. <PDWeb> is
the PDWeb installation directory and <lang> is the language. On US English
systems this directory is called ‘C’.

It is possible (and probably desirable) to customise the page that contains the
switch user form. The most likely customisations would be to change the
Destination URL to a hidden field – to direct the user to an appropriate home
page – and change the Authentication Mechanism to a pull down menu or a set
of radio buttons.

By default the switch user page is named switchuser.html and a template
already exists in the directory shown above. If you wish to change the name of
this file (which will change the URL that users use to activate the function and
the name of the file that WebSEAL will look for) then this is done in
webseald.conf as shown above.

WebSEAL Enhancements in v3.9

4-66

66

Session Termination and Switch User

User Session terminated using User Session ID:
Either original session or SU session
SU session is ended
Original user session continues

All sessions for SU User terminated:
No effect on SU session

– It is owned by the SU session originating user

All sessions of Original User terminated:
SU Session and original session terminated
User is completely logged out

The slide above describes the behaviour of WebSEAL when it is instructed to
terminate sessions (or users) that are involved in a Switch User operation –
either as the originator as the user being switched to.

WebSEAL Enhancements in v3.9

4-67

67

Other Enhancements

WebSEAL Enhancements in v3.9

4-68

68

Support for TLS v1.0 Protocol – 1

TLS is Transport Layer Security
IETF Standard (RFC2246)
Specifies two protocols

– A handshake protocol (TLS Handshake Protocol)
– A connection security protocol (TLS Record Protocol)

TLS v1.0 is effectively a standard version of SSL v3.0
– There are differences of course – they won’t work together !

WebSEAL now supports TLS to browsers
Another choice during session negotiation
Enabled by default in WebSEAL

– Disabled by default in IE5

WebSEAL in AM v3.9 can support the Transport Layer Security (TLS)
protocol for secure communication to browsers. TLS v1.0 is an alternative to
SSL v2 or SSL v3 and is fairly similar to SSL v3. It is an IETF standard (RFC
2246) whereas SSL is not an official standard.

Since the browser initiates SSL sessions to WebSEAL it is up to the browser
which protocol will be used if more than one is available. The default in
WebSEAL is to have SSL v2, SSL v3 and TLS v1 all enabled. This means
that, out-of-the-box, the only difference that will be seen in AM v3.9 is that if
a browser connects to WebSEAL that only supports TLS v1.0 it will now be
able to start an HTTPS session where it would have failed before.

Having WebSEAL capable of using TLS v1.0 makes no difference if the
browser prefers to use SSL. In this case an SSL session will be established
unless WebSEAL specifically disables SSL.

Note: Internet Explorer 5.x has TLS v1.0 disabled by default. This means it
will fail to connect to WebSEAL if WebSEAL only has TLS enabled.

WebSEAL Enhancements in v3.9

4-69

69

Support for TLS v1.0 Protocol – 2

Enable/Disable TLS in webseald.conf:

[ssl]
disable-ssl-v2 = no
disable-ssl-v3 = no
disable-tls-v1 = no

To force use of TLS disable SSL v2 and v3
This will leave TLS as the only choice
Browsers without TLS enabled will fail to connect

WebSEAL can be configured to disable it’s HTTPS security protocols on a
protocol by protocol basis. This is configured in the [ssl] stanza of
webseald.conf.

By default all the disable options are set to no which means all protocols are
available. So force browsers to use a particular protocol simply disable all of
the other choices. Browsers that do not support that protocol will fail to
connect.

WebSEAL Enhancements in v3.9

4-70

70

Stateful Junction Cookie: Review

Junction cookie is set for stateful junctions
Used when multiple back-end servers for a junction.
Ensures all requests go to same back-end server

– Contains an identifier for the back-end server connection
Option enabled by -s flag in junction create

By default this cookie has a path that corresponds
to the junction it is relevant to.

This causes a problem if junction name is missing
– Which can happen with script generated requests

Browser does not send the cookie so WebSEAL
doesn’t know to send to a specific back-end server

WebSEAL has long had an option of specifying that a junction connects to a
stateful application. This is used when there is more than one back-end server
on the same junction and these back-end servers maintain local state
information about a users connection. This means that once a user has been
directed to a particular back-end server all subsequent requests need to go to
that same server. This is the same as a “sticky” connection in a load balancer.

This function is enabled by specifying the –s flag on the junction create
command and it means that WebSEAL will set a cookie on the browser when
the user first accesses the junction that indicates which back-end server is
being used. This stateful-junction-cookie is set with a path that includes the
junction name so that the cookie is only sent when requests are made to that
particular junction.

This all works fine as long as the junction name is always included in each
request. Unfortunately there are times, when dealing with scripts that include
server relative links, when the browser may make a request that does not
include the junction name. WebSEAL is able to handle this (as long as the –j
flag has been used so that a script-support-cookie is set) but the browser does
not send the stateful-junction-cookie with the request because the request did
not include the junction name. In this case WebSEAL may send the request to
the wrong back-end server. (See next page).

WebSEAL Enhancements in v3.9

4-71

71

jct1

Stateful Junction Cookie: Problem

WebSEAL
Path: /jct1

Value: UUID A

/jct1/index.html A

B

WebSEAL
/page.html A

B

WebSEAL
/jct1/script.html A

B

jct1

jct1

Path: /
Value: jct1

Path: /
Value: jct1Path: /jct1

Value: UUID A

Path: /
Value: jct1

Server
A

No
Cookie

The diagram above shows how the failure situation can occur.

In the first request the user accesses server A on junction, jct1. When
WebSEAL sends the response to the user, two cookies are set. The first is a
script-support-cookie that contains the junction name and the second is the
stateful- junction-cookie that contains a pointer to server A (It is a UUID
associated with server A).
When the browser sends a normal request that includes the junction name both
cookies are sent along because the path matches them both. WebSEAL sees
the stateful-junction-cookie and knows that the request must be directed to
server A.
If the browser is directed (via script) to a link that does not include the junction
name, only the script-support-cookie is sent to WebSEAL. The request does
not start with /jct so the stateful-junction-cookie is not sent. The script-
support-cookie tells WebSEAL that the request needs to be sent to jct1 (so the
request can still be directed correctly) but since the stateful-junction-cookie is
not present the request may be sent to the wrong server on jct1. If this happens
then the stateful application will fail because only server A has the application
state for the user.

WebSEAL Enhancements in v3.9

4-72

72

Stateful Junction Cookie: Solution - 1

Now have the option to remove path from cookie
It will be sent to WebSEAL with every request

This means it will be sent when not needed
WebSEAL will simply ignore it in these cases

It will be sent even if junction not in request URL
WebSEAL will still be able to route to the correct server
(Uses script-support cookie to determine junction)

The solution to the problem of the stateful-junction-cookie not being sent is to
remove the path from the cookie so that it is sent with all request to the
WebSEAL server just like the script-support-cookie. This is now an option in
AM v3.9.

Turning on this option means that the stateful-junction-cookie will be sent with
all requests to the WebSEAL server – even when it is not required. This does
not cause any real problems since WebSEAL will simply ignore it.

WebSEAL Enhancements in v3.9

4-73

73

Stateful Junction Cookie: Solution - 2

WebSEAL
Path: /

Value: UUID A

/jct1/index.html A

B

WebSEAL
/page.html

WebSEAL
/jct1/script.html A

B

jct1

jct1

Path: /
Value: jct1

Path: /
Value: jct1Path: /

Value: UUID A

Server
A

Server
A

Path: /
Value: jct1Path: /

Value: UUID A
A

B
jct1

The diagram above shows how the failure situation is now avoided.

Everything is the same as before except that now the path of the stateful-
junction-cookie is / rather than /jct.

When the browser is directed (via script) to a link that does not include the
junction name, both the script-support-cookie and stateful-junction-cookie are
sent to WebSEAL. The script-support-cookie tells WebSEAL that the request
needs to be sent to jct1 and the stateful-junction-cookie tells WebSEAL that it
should be directed to server A. The problem is avoided.

WebSEAL Enhancements in v3.9

4-74

74

Stateful Junction Cookie: Configuration

By Default this support is disabled
So no difference from previous version behaviour

Enabled in webseald.conf:

[server]
disable-stateful-cookie-path = yes

Only useful in conjunction with stateful junctions
with script-support cookie enabled

-s and -j options in junction create command

By default this new support is disabled – this means that the behaviour of
WebSEAL remains unchanged from previous versions unless the configuration
is specifically changed.

To stop WebSEAL from setting the path in stateful-junction-cookies set the
disable-stateful-cookie-path to yes in the [server] stanza.

WebSEAL Enhancements in v3.9

4-75

75

Worker Thread Limits: Description

A slow back-end server can cause WebSEAL to
become unresponsive on ALL junctions

All worker threads are waiting on that one junction
No threads available for any other junctions

Can now limit the worker threads per junction
As a percentage of total worker threads
Available in AM v3.8 (WebSEAL fixpack 1)

Two levels can be defined on a junction:
Soft Limit – When reached warnings posted to log
Hard Limit – When reached no more requests queued

In an WebSEAL environment that contains a number of junctions with
backend applications of different speeds it is possible for an application that
takes a long time to respond to requests to use all of the WebSEAL worker
threads and stop all other junctions from functioning. This is because all of the
worker threads end up waiting on the slow junction and there are none free to
handle requests from the faster junctions.

In WebSEAL v3.8 fixpack 1 and now in WebSEAL v3.9 it is possible to limit
the percentage of the worker threads that can be assigned to a single junction.
This can be used to ensure that worker threads are fairly distributed. Limits
can be set globally and over-ridden on a per junction basis.

Two levels can be set on each junction:

Soft limit – when this limit is reached a WARNING message is logged by
WebSEAL.

Hard Limit – When this limit is reached subsequent requests for resources on
that junction will be refused. An ERROR message is logged by WebSEAL
and an error is returned to the client.

WebSEAL Enhancements in v3.9

4-76

76

Worker Threads: No Limits in place

W
E
B
S
E
A
L Fast

Slow

Junction 1
Junction 2

Rejected
Connection

Server
Overloaded

All worker
threads
waiting

No worker
Threads
available

The diagram above shows the failure situation. The WebSEAL server has two
junctions. One of these connects to a back-end server that takes much longer
to service requests than the other.

Each time a request comes in for a resource on the slow junction a worker
thread is assigned which sends the request and then has to wait for the
response. Requests to the fast junction are dealt with quickly and the worker
thread is free again. If there are a large number of requests to WebSEAL
eventually all of the threads may be waiting on the slow junction. This means
that further requests to WebSEAL – even those for resources on the fast
junction – are refused.

WebSEAL Enhancements in v3.9

4-77

77

Worker Threads: Hard Limit at 60%

W
E
B
S
E
A
L Fast

Slow

Junction 1
Junction 2

Server
Overloaded

60%
Threads
Waiting

Threads still
available for

other junctions

503
Service Unavailable

This diagram shows how a hard-limit set at 60% can prevent the failure
situation occurring.

Under the same conditions as in the previous example, the number of threads
waiting on the slow junction rises as more and more requests are outstanding.
The difference is that when the number of threads waiting reaches 60% of the
total threads available further requests for resources on that junction are
refused. The client receives a 503 – Service Unavailable response. This is a
valid response because that junction already has more requests than it can
handle. Even if there are free worker threads they will not be assigned to that
junction.

Since, at most, 60% of the worker threads can be assigned to the slow junction
there will always be at least 40% of the threads available for the other
junction. Requests for resources on that junction can continue to be serviced
normally.

WebSEAL Enhancements in v3.9

4-78

78

Worker Threads: Configuration – 1

Limit for all junctions set in webseald.conf:

[junction]
worker-thread-soft-limit = 100
worker-thread-hard-limit = 100

Default limits set at 100% which means no limit
Feature is effectively disabled

Values here affect all junctions where specific
limit not set in junction create command

A global configuration for all junctions can be set in the [junction] stanza of
webseald.conf. This affects all junctions that do not have a specific
configuration in their definition (see next page).

By default both the hard and soft limit in webseald.conf is set to 100. This
effectively means that there is no limit for any junction and so the function is
disabled.

To change the limits simply change the appropriate parameter to a value less
than 100.

WebSEAL Enhancements in v3.9

4-79

79

Worker Threads: Configuration – 2

Limit for specific junction set in junction create
-l <soft limit percentage>
-L <hard limit percentage>

In PDADMIN:

pdadmin> server task webseald-myhost create … -l 60 –L 80 /jct1
Created junction at /jct1
pdadmin>

To set a soft and hard limit on an individual junction specify the values when
the junction is created. Values specified on the junction override the value
specified in webseald.conf.

The lower-case l is used to specify the soft limit and the upper-case L is used
to specify the hard limit.

WebSEAL Enhancements in v3.9

4-80

80

Worker Threads: Soft Limit Warning

Soft limit has no effect on end user
Request is still queued to junction

WARNING message logged by WebSEAL:

2002-02-07-13:31:02.569+00:00I----- 0x38CFC5D6 webseald WARNING
wwm wand t:\pdweb390\src\wand\wand\junction.cpp 794 0x00001014
Junction '/jct1' has reached it's worker thread soft limit

The slide above shows the warning message that is logged by WebSEAL when
a soft limit is reached. The warning specifies the junction name.

The request is still queued to the junction – the end user is not aware that this
limit has been reached.

WebSEAL Enhancements in v3.9

4-81

81

Worker Threads: Hard Limit Error

Hard limit means end user gets an error
If they attempt to use overloaded junction
WebSEAL returns 503 – Service Unavailable

ERROR message logged by WebSEAL:

2002-02-07-13:38:02.529+00:00I----- 0x38CFC5D5 webseald ERROR
wwm wand t:\pdweb390\src\wand\wand\junction.cpp 781 0x00001040
Junction '/jct1' has reached it's worker thread hard limit

The slide above shows the error message that is logged by WebSEAL when a
shard limit is reached. The error specifies the junction name.

In the case of a hard-limit being exceeded the request is not queued to the
junction. Instead an error is returned to the browser.

WebSEAL Enhancements in v3.9

4-82

82

Filter domain cookies from back-end - 1

Some back-end servers may set domain cookies
To allow single sign-on to other servers in domain

This is usually undesirable for security
Domain cookies sent to all WEB servers in the domain
Any rogue server in domain can steal domain cookies

Usually WebSEAL filters domain cookies
Cookies are converted into host cookies
Back-end server will still receive them

– They might be required for session identification

Some Web applications use cookies as a method of single sign-on to other
applications in the same domain. IBM WebSphere , for example, does this
using its LTPA cookie to allow a user to access multiple different WebSphere
servers that share the same user registry with only a single authentication.
When the user authenticates a domain cookie is set at the browser. If the user
accesses a different server in the same DNS domain the cookie is sent with this
request and can be used to identify the user without their interaction.
Normally a cookie used for authentication is encrypted using a secret key only
known to valid servers. This ensures that a rogue user cannot create new
cookies to gain access. However, this does not stop someone who can obtain
a valid cookie from replaying it to get access – they don’t need to read it to use
it.
Domain cookies are more at risk from theft than host cookies because any
Web Server in the DNS domain will receive the domain cookies of a user that
accesses it. A rogue user who can set up a Web server in the same domain as
the legitimate servers – and persuade users to visit it – can collect cookies and
use them for access.
By default WebSEAL converts domain cookies set by junctioned servers into
host cookies because of these considerations. The back-end server that set the
cookie will still receive it with each request by the cookie will not be sent to
other hosts in the DNS domain.

WebSEAL Enhancements in v3.9

4-83

83

Filter domain cookies from back-end - 2

Filtering of domain cookies in enabled by default
In webseald.conf:

[server]
allow-backend-domain-cookies = no

Change to yes if domain cookies required
For non-WebSEAL single sign-on for example
Be aware of the security implications of this !

In some cases it might be required that back-end servers be allowed to set
domain cookies on the browser. This might be because single sign-on is
required with other servers that are not protected by WebSEAL or for some
other reason such as user tracking.

WebSEAL now provides the option to allow domain cookies to be set by back-
end servers. This configuration option, allow-backend-domain-cookies is in
the [server] stanza of webseald.conf. By default it is set to no.

If the option is changed to yes then WebSEAL will not modify any cookies set
by the back-end server. This affects all junctions.

Before modifying this parameter be sure that you understand the security
implications of using domain cookies in your environment.

WebSEAL Enhancements in v3.9

4-84

84

Domain Failover Cookies: Description

WebSEAL failover cookies allow:
Silent Sign-on to another WebSEAL on server failure
WebSEAL must have the same DNS name

– Failover cookie is, by default, a host cookie
– Usually means both WebSEALs are behind a load balancer

Failover cookie could be used for single sign-on
Any WebSEAL that receives failover cookie will allow
user access without manual authentication

So, set failover cookie to be a domain cookie
Now any WebSEAL in domain can authenticate user

In AM v3.7 the concept of failover cookies was introduced. These were
intended to allow a user that was re-routed to another WebSEAL server as a
result of a failure to access that server without having to re-authenticate. Both
WebSEALs had to appear to have the same DNS name because, in the
interests of maximum security, the failover cookie was a host cookie so it
would not be sent to a server with a different name.

Since the introduction of the failover cookie, many Customers have requested
that it be possible to use it for single sign-on in the same way that WebSphere
uses the LTPA cookie. The change to make this possible is fairly small –
simply change the fail over cookie to be a domain cookie rather than a host
cookie. The cookie is set by the WebSEAL that authenticates the user and any
WebSEAL that receives it will allow access without performing an
authentication.

In AM v3.9 a configuration option has been added to allow the failover cookie
to be a domain cookie – this allows it to be used for single sign-on.

WebSEAL Enhancements in v3.9

4-85

85

Domain Failover Cookies: WARNING !

Failover cookie is effectively a key to WebSEAL
Possession of cookie grants access

Cookie is encrypted
Only valid WebSEAL servers can build a failover cookie

BUT…
This doesn’t stop a rogue user who can steal the
cookie from using it - They don’t need to read it to use it

All Web Servers in the DNS domain receive a
domain cookie set for that domain

Need to ensure they are all trusted
How easy is it to set up a Web Server ???

Careful consideration should be taken before deciding to use WebSEALs
failover cookie (or any vendors cookie-based SSO solution) for single sign-on.

Although the failover cookie is encrypted so that it can only be generated by a
legitimate server a failover cookie is effectively a key to WebSEAL. Anyone
who presents the failover cookie (before it expires) will be given access to
WebSEAL without further authentication.

Browser vulnerabilities may make it possible to steal a cookie from a browser
but even without this consideration a domain cookie is still vulnerable to a
rogue in the same DNS domain as the legitimate servers. If users connect to
this server the failover cookie will be sent, quite legitimately to that server.
The owner of this server could then collect these cookies and use them to get
unauthorized access to WebSEAL.

Ask yourself how easy it would be for someone to set up an unauthorized
WEB server in the same DNS domain as your WebSEAL servers. You need to
consider this before using domain failover cookies if you are protecting
sensitive information.

WebSEAL Enhancements in v3.9

4-86

86

Domain Failover Cookie: Example

AB
serverb.ibm.com servera.ibm.com

Request

Authentication

Response
ibm.comibm.com

ibm.comCookie
OK

Request

Reponse

The diagram above shows how a domain failover cookie allows single sign-on
to multiple WebSEAL servers.

The cookie is set by the WebSEAL that authenticates the user. When the user
connects to another WebSEAL in the same DNS domain the failover cookie is
included and this is used to authenticate the user rather than a second manual
authentication.

WebSEAL Enhancements in v3.9

4-87

87

Domain Failover Cookie: Configuration

Failover configuration:
Create failover encryption keyfile with cdsso_key_gen
Distribute keyfile to all servers that will participate

Enable failover in webseald.conf:

[failover]
failover-auth = https
failover-cookies-keyfile = c:\failover.key
failover-cookie-lifetime = 60
enable-failover-cookie-for-domain = yes

{none|https|http|both}

In Minutes

Enable for DNS Domain

To enable domain failover cookies configure failover as in previous releases.
This means creating a failover keyfile on one machine (using the
cdsso_key_gen utility) and then copy the file onto all WebSEAL servers that
will take part in the SSO environment. In webseald.conf enable failover for
http, https or both and give the filename of the failover keyfile.

In order to enable failover cookies to be domain cookies change the enable-
failover-cookie-for-domains to yes.

WebSEAL Enhancements in v3.9

4-88

88

Suppress Server Identity

WEB Servers usually give information away
HTTP Response from WebSEAL:

Can now disable this in webseald.conf
[server]
suppress-server-identity = yes

Server information now witheld:

Date: Thu, 18 Apr 2002 14:21:04 GM
Message-ID: 8405ceaa-52d7-11d6-a399-00203556521b
Server: WebSEAL/3.9.0 (Build 020410)

Date: Thu, 18 Apr 2002 14:21:04 GM
Message-ID: 9836dfca-52d7-11d6-a399-00203556521b

Most Web Servers include identity information in the responses they send
back to WEB clients. This information is not usually visible to the end-user (it
doesn’t show up in the page source) but it’s easy to get (for example simply
TELNET to port 80 and type HEAD / HTTP/1.1 [Enter]).
This information about the server allows attacks to be targeted to known
vulnerabilities that are specific to that WEB server software. This potentially
decreases the time taken to compromise the server.

In WebSEAL v3.9 it is possible to specify that WebSEAL should not send the
Server field in it’s responses. This is done by changing the suppress-server-
identity parameter to “yes”.

By default the parameter is set to “no” and so the server information is sent
with every response.

WebSEAL Enhancements in v3.9

4-89

89

WebSEAL Statistics and Tracing

Statistics available from WebSEAL
Authentication, Cache performance etc
Real time or snap-shots to file

Debug tracing available from WebSEAL
Most useful is HTTP trace
Shows flows User<->WebSEAL<->backend

Introduced in PD v3.8
Documented in AM v3.9

Chapter 3 in WebSEAL Administration Guide
Information on interpretting statistics

WebSEAL Enhancements in v3.9

4-90

90

TRACE – Administrative “Server Task”

pdadmin> server task <server> trace …..
trace list <component>

trace set <component> <level>

trace show <component>

•PDADMIN>

•PD Console

•User App/GUI

PD Admin API

aznAPI Application

aznAPI Admin
Service: TRACE

aznAPI runtime

pdmgrd

SSLSSL

The TRACE command is implemented as an aznAPI Administration Service
Plug-In. That is, a plug-in extension to the aznAPI runtime for the purposes
of administering the server.

The dynamic trace command is available for all AM Servers except Policy
Server. For Policy Server, use a ‘trace’ command in pdmgrd.conf - syntax
given a few foils up from here.

An aznAPI application passes its Administration Service definitions to
PDMGRD during the azn_initialize() call.

Use server show <server name> to see what Administration Services are
registered for any AM Server.
Use server listtasks <server name> to see the tasks supported by those
Administration Services.
PDMGRD routes the server task command to the named <server> for
execution, and the aznAPI invokes the appropriate plug-in to execute the
command.

WebSEAL Enhancements in v3.9

4-91

91

TRACE syntax

trace list <component>
displays the component hierarchy starting at the given component

trace set <component> <level> > [file <file>]
Trace enabled or disabled by setting the <level> for a given
component. <level> is value of 0-9. For example

server task <server name> trace set pd.acl 9

sets the Event Category of trace.pd.acl to level 9.
trace level 0 disables trace for that component
file <file> is an optional destination parameter. The default
destination is stdout

‘trace show’ <component>
displays components with active trace levels for hierarchy starting
at the given component

For example, the WebSEAL HTTP trace is generated by component
trace.pdweb.http

at level ‘2’.

WebSEAL Enhancements in v3.9

4-92

92

STATS – Administrative “Server Task”

pdadmin> server task <server> stats …..
stats list
stats on <component> <parameter> [<interval>

[<count>] [file <file>]]
stats show <component>
stats get <component>
stats reset <component>
stats off <component>

•PDADMIN>

•PD Console

•User App/GUI

PD Admin API

aznAPI Application

aznAPI Admin Service:
STATS

aznAPI runtime

pdmgrd

SSLSSL

Like the TRACE command, STATS is implemented as an aznAPI
Administration Service Plug-In. In fact, it’s the same service plug-in.

WebSEAL Enhancements in v3.9

4-93

93

STATS syntax

stats list
Displays components with statistics available

stats on <component> [<interval> [<count>] [file <file>]]
enables statistics gathering for <component>
<interval> - optional frequency (seconds) to generate report. Default is
that reports are not generated
<count> - the number of intervals to execute before disabling. Default
is that reporting continues indefinitely.
file <file> - an optional destination parameter. Default is stdout

stats get <component>
returns statistics for <component>

stats reset <component>
resets statistical counters for <component> or all components

stats off <component>
disables statistics for <component> or all components

1.1.2. stats show task
This task shows a list of all components with stats enabled or the stats status
for a single component.
Syntax: pdadmin> server <server> stats show [<component>]
Where:
<server> identifies the server for which stats are to be enabled
<component> is a component string as described above - only trace categories
at or beneath this point are shown.

1.1.4. stats off task
This task disables statistics for a component.
Syntax: pdadmin> server <server> stats off [<component>]
Where:
<server> identifies the server for which stats are to be enabled
<component> is the component for which stats are to be disabled – if not
specified all stats are turned off

WebSEAL Enhancements in v3.9

4-94

94

trace & stats - Configuration File

trace & stats may also be specified in the server
configuration file:

[aznapi-configuration]

trace = <component> <level>
stats = <component> [<interval> [<count>] [file <file>]]

Multiple occurrences are allowed

Enabling Trace events in the configuration file only supports STDOUT as a
logging destination.
This is different to the pdadmin command line,

‘ pdadmin> server task <server_name> trace’
command which does allow a logging destination to be specified as part of
enabling the creation of trace data.
In the configuration file the default logging agent for a 'trace' line item is
stdout, if and only if there are no 'logcfg' statements that create a destination
for those trace events. If a ‘logcfg’ statement does exist its destination is
associated with the ‘trace = <component> <level> events.
For example, this statement in the .conf file

trace = pdweb.http 2
is equivalent to

trace = pdweb.http 2
logcfg = trace.pdweb.http+2:stdout

To define additional logging destinations, turn on trace generation and specify
all the event recording agents explicitly.

trace = pdweb.http 2
logcfg = trace.pdweb.http+2:stdout
logcfg = trace.pdweb.http+2:file path=./trace.log

WebSEAL Enhancements in v3.9

4-95

95

WebSEAL HTTP Trace

[aznapi-configuration]
trace = pdweb.http 2
logcfg = trace.pdweb.http+2:file path=./debug.log

webseald.conf

debug.log

- All http traffic
- not just between browser &
WebSEAL

This is the trace that creates an entry for every http request/response sent by
WebSEAL. It is formatted to show entries as

1) Browser WebSEAL
2) WebSEAL Backend
3) WebSEAL Backend
4) Browser WebSEAL

It is a very useful trace for problem analysis.

WebSEAL Enhancements in v3.9

4-96

96

User Authorisation of Trace & Stats commands

Use of Trace command requires the “t” (Trace) bit
on object:

/Management/Server.

The same “t” bit is also required for use of the
“stats” command

