
Web Server Plug-ins

7-1

Jon Harry
Jon P Harry/UK/IBM

1

Web Server Plug-ins

This presentation introduces Web Server Plug-ins – a new feature in Access
Manager v3.9.

It describes the architecture and configuration.

Web Server plug-ins perform similar tasks to WebSEAL and many features
are common. This presentation does not attempt to explain the details of each
function; it shows how to configure and notes any differences.

Web Server Plug-ins

7-2

2

A Different Architecture

Web Server Plug-ins

7-3

3

Plug-in

Web Browser

A different Architecture

Web Server(s)WebSEAL

Web Browser Web Server

Vs

The diagram above show, at a high level ,how an architecture with a Web
Server Plug-in differs from one that uses WebSEAL.
In a WebSEAL environment, the user communicates directly with WebSEAL,
treating it as a Web Server. WebSEAL examines each request and, if
authorized, passes it on (acting as a client) to the back-end Web Server.
In a Plug-in environment the user communicates directly with the Web Server
but all requests are internally channelled through the plug-in code. The plug-
in gets a chance to reject the request or to modify it before passing it onto the
Web Server code.

The advantage of the Web Plug-in environment is that all communications are
handled by the Web Server. This means that there are much less compatibility
issues than when every request must be received and interpreted by
WebSEAL.

The disadvantage of using Web Plug-ins is that there is no longer the same
level of insulation from the end user that WebSEAL provides. The end users
can now access the web server directly without (initially) providing any
authentication. It is more likely that they can exploit the Web Server from this
position.

Web Server Plug-ins

7-4

4

Plug-in Architecture - Details

PDMGRD

ACL DB
Master

LDAPPlug-in Auth Server

A
M

R
T

E

Web Server Instance

Plug
In

Web Server Instance

Plug
In

Web Server Instance

Plug
In

Web Server Instance

Plug
In ACL DB

ReplicaIPC

A
M

R
T

E

The slide above shows a more detailed view of the Web Server Plug-in
architecture.
In most Web Server environments there are multiple server threads in
operation on the machine. These might be different threads of the same Web
Server instance or threads of different Web Server instances. Having a distinct
authorization engine for each thread would be inefficient but would also mean
that session information would have to be shared between them somehow.
The architecture used contains two parts:
Interceptor – This is the real “plug-in” part of the solution. Each Web Server
thread has a plug-in running in it which gets to see and handle each
request/response that the thread deals with. The interceptor does not authorize
the decisions itself.; it sends details of each request (via an Inter-Process
Communication interface) to the Plug-in Auth Server.
Plug-in Auth Server – This is where authorization decisions are made and the
action to be taken is decided. There is a single Plug-in Auth Server on each
machine and it can handle requests from all plug-in types. The Plug-in Auth
Server is a local AZNAPI application which handles authentication and
authorization for the plug-ins. The Auth Server receives intercepted requests
from the Plug-ins and responds with a set of commands that tell the plug-in
how to handle the request.

Web Server Plug-ins

7-5

5

Information sent to the Plug-in Auth Server

HTTP Message
Client IP Address
URI
Query String
Server Details

Name, IP Address, Port
SSL Session Details

SSL session ID
Server certificate information
Client certificate information

The list above shows the information about each request that is sent to the
Plug-in Auth Server by the Plug-ins. This information is enough for the Plug-
in Auth Server to identify the current session, authenticate the end user when
required (using a variety of different methods) and make authorization
decisions.

This may seem like a lot of information to be passing around for every request
but it is important to remember that the communication between the plug-in
and the plug-in Auth Server is very efficient because the processes are
communicating directly – which is very much quicker than communication
over network sockets.

Not all the information above is always available. For example, SSL
certificate information is only available when SSL communication is being
used.
In addition, some Web Severs do not provide all of this information on their
plug-in interface. Microsoft IIS, for example, does not pass the SSL Session
ID to plug-ins. This means that this is not available as a means of session
identification in this environment.

Web Server Plug-ins

7-6

6

Response from Auth Server

Send some specific response to client or

Proceed with the request and optionally
Carry out commands:

Modify Request
– Add/Replace/Remove Header
– Set the URI or Query component

Modify Response
– Add/Replace/Remove Header
– Set Response code or data type
– Set body (specified in response or from file)
– Remove cookie

Based on the information that the plug-in Auth Server receives from the plug-
in it can respond in a variety of ways. The responses are commands that tell
the plug-in how to handle the request.

In the first case the Auth Server can instruct the plug-in to simply send some
response to the client. In this case the Web Server code never sees the request
– it is dealt with directly by the plug-in. This response could be used to send
an authentication challenge or error message to the client.

An alternative response can instruct the plug-in to pass control back to the
Web Server but to modify the request and/or response. Modifications to the
request might include adding headers or cookies to the request for single sign-
on.. It might replace the request with a different one. Modifications to the
response are normally to set cookies on the browser (or to remove cookies set
by the Web Server).

Web Server Plug-ins

7-7

7

Supported Web Servers

Microsoft Internet Information Server (IIS)
Version 5
Windows 2000 Server and Advanced Server

iPlanet
Version 6
Solaris 7 and Solaris 8 (TBC)

IBM HTTP Server
Version 1.3.20
AIX v5.0

In this first release of Web Plug-ins only the dominant Web Server on each
platform is supported – as shown above.

Although the interceptor plug-ins are quite different for each Web Server, the
plug-in Auth Server code (which contains almost all the function) is very
similar and so, once installed, the majority of the configuration of the Web
Server Plug-ins is the same on each platform.

Web Server Plug-ins

7-8

8

Plug-in Auth Server Request Handling

Virtual Host
configured
for plug-in?

Existing
Session with
Credential?

Incoming Request

Return:
Pass with
No change

Authorized?

Use
UNAUTH

Call
Post-Auth
Modules

Return:
Commands

Authenticate using
Information
In Request?

Build
Credential

Store in session

Possible to build
Authentication

Challenge?

Return:
Send Forbidden

Page

yes

yes

yes

yes

yes

no

no

no

no

no

The diagram above shows how the Plug-in Auth Server handles requests that it
receives via the plug-ins.
The first decision is whether the virtual host that the request is for is
configured for protection. If not then the response to the plug-in is to pass it
without change.
If the virtual host is one configured for protection then the first thing to do is to
identify the user making the request. If possible this is done by identifying the
request as part of an existing session that already has a credential assigned. In
this case authorization can be done using that credential. If no credential can
be found then the request is authorized with the UNAUTHENTICATED
credential.
If the request is authorized then the Auth Server needs to determine whether
any modifications need to be made to the request or response. This processing
is done by post-authorization modules that build a list of commands to send
back to the plug-in.
If the request is not authorized using the current credential then the Auth
Server attempts to find authentication information (e.g. BA Headers) in the
request to build a new credential. If it succeeds then this can be used to
reattempt authorization. If there is no authentication information then the
Auth Server attempts to build an authentication challenge response for the
plug-in to send to the end-user. If this is not possible either then the forbidden
page must be returned.

Web Server Plug-ins

7-9

9

Modules – 1

Modules are local libraries called by Auth Server
Authentication Modules

– Perform User Authentication (validation + optional challenge)
Session Modules

– Maintain a session cache indexed by session information
extracted from requests

Post Authorization Processing Modules
– Handle Request/Response Processing

A library can be used for more than one function
e.g. BA Header can be used for all three functions

Use of modules configured per virtual host

The Plug-in Auth Server performs the tasks shown on the previous page by
calling modules that can provide these functions in different environments.
The three module types are:

Session Modules: These are modules that can extract session information
from a request and use it as an index to store/retrieve session information (e.g.
user credential) in a session cache. This session information might be the SSL
Session ID or the value in a session-cookie.

Authentication Modules: An Authentication module can perform two
functions. First it must be able to extract authentication information from a
request and validate it. This might be userID/password information from a
form or the DN from an X.509 certificate. Second, it may be able to produce
an authentication challenge that can be passed back to the end-user via the
plug-in. Not all authentcation modules can produce a challenge.

Post-Authorization Modules – Post Authorization modules are used to
provide additional functions. They are called after a request is authorized and
have the chance to instruct the plug-in to modify the request or response. They
might add IV Headers to the request for SSO or they might intercept a
“special” URL and kick off processing for (for example) change password.

Web Server Plug-ins

7-10

10

Modules – 2

Auth Server Dispatcher

Basic Auth

IV Headers

Virtual-Host
Config

Session Modules

Authentication Modules

Post Authorization Modules

Session
CacheSSL ID Session

Cache

The modules used by the Plug-in Auth Server are loaded at start-up by a
dispatcher and are then called as needed during request processing.

The modules used for a request are determined by the Plug-in Auth Server
configuration. This can be specified on a per virtual-host basis so that
different virtual hosts use different authentication mechanisms, use different
session maintenance techniques and support different post-authorization
features (failover, LTPA cookies etc)

In addition to specifying which modules will be used for a given virtual host
the configuration also specifies the order in which the modules will be used.
This is important in the case of authentication and session modules because the
first one that succeeds is used.

A single library can contain code to perform more than one of the above
module functions. For example, the Basic Authentication header can be used
for both Authentication and for identifying a session. A single library
implements both of these functions and can be called as both an authentication
module and a session module.

Web Server Plug-ins

7-11

11

Session Modules

Use information in request to identify session

Configured Session modules called in order
If module returns a credential then done

Session has been identified
Otherwise call next session module
If no credential returned by any session module

This is a new session
Authentication modules used to identify user

Session Modules are used as a way to insulate the Plug-in Auth Server from
the different ways that a request can be identified as being part of an existing
session.

The Plug-in Auth Server can call the session module to either create a new
session, indexed by information in the request, or to use information in the
request to identify an existing session and return the associated user credential
from the session cache.

In both cases the session module may succeed or fail. If the module fails
(because the information it needs is not present in the request or if there is no
existing session) then the Plug-in Auth Server will simply call the next session
module.

Each session module maintains its own session cache. This is because the
information used to index the sessions differs for each session module type.

Web Server Plug-ins

7-12

12

Acquiring Session Credential

Flagged as
MPA ?

Call First Session
Module in list

Request &
Session Module
List

Credential
Returned ?

Call Next
Session Module

in list

Other Session
Modules to try?

No Session
Credential
Available

Return
Credential

no

no

no

yes

yes

yes

The flowchart above shows how the session module is used to simplify the
process (from the Plug-in Auth Server point of view) of getting acquiring a
user credential from a request for use during authorization.

The Plug-in Auth Server calls each of the configured session modules in turn.
It doesn’t care how the session module works – it just needs to know if a
credential is returned or not. If not then it simply calls the next session
module.

If a credential is returned then it is checked to see if it references an
Multiplexing Proxy Agent. If it is a Proxy Agent then another session must
exist for the real end user. To find this other session the Plug-in Auth Server
continues to call the rest of the session modules.

If a user credential is returned then this means that an existing session was
found for which user authentication has already taken place. This credential is
used to authorize the request.
If all the session modules are called but none returns a user credential then this
means that this is either a new session or a session for which there is not yet a
credential.

Web Server Plug-ins

7-13

13

Authentication Modules – Identify User

Request received with no credential information
No session entry
Session entry with no credential defined

If Unauthenticated access not permitted need to
determine if authentication information in the
request
Call available Authentication Modules in order

If module returns a username then this is used to build
credential for session
If module cannot perform authentication then call next
module
If no modules succeed then user not yet authenticated

When a request is received for which no session can be identified the request
is initially authorized using the unauthenticated credential. If this fails then
the Authentication modules are called, in order, to see if they can identify the
user who sent the request from information contained in the request (e.g. Basic
Authentication headers, DN from client certificate).

If an authentication module is able find authentication information and
validate it then it will pass back a Access Manager UserID that can be used to
build a credential for the session.

If none of the authentication modules are able to provide a validated Access
Manager User then an authentication challenge will have to be sent back to the
user so they can provide the information required.

Web Server Plug-ins

7-14

14

Authenticating User using request

Call First Auth
Module in list

Request &
Available Auth
Module List

UserID
Returned?

Call Next
Auth Module in

list

Other Auth
Modules to try?

No
Authentication

Information
Available

Authenticated
UserID

no

noyes

yes

The diagram above shows how the use of authentication modules insulates the
Plug-in Auth Server from the different ways in which a user can be
authenticated.

The plug-in simply calls each authentication module in turn. As soon as one
of the modules returns a AM UserID then this is used to build a credential.

If none of the modules are able to provide a validated AM User ID then this is
reported back and will mean that an authentication challenge will have to be
sent to the user.

Web Server Plug-ins

7-15

15

Authentication Modules – Sending Challenge

Request received for protected resource with:
No credential available
No appropriate authentication information

Need to decide which authentication method to
use for an authentication challenge
Use first module in configured list where:

Method authentication level is high enough to access
requested object
Method is available in current session

– Method capable of generating a challenge
– Method not already used to authenticate MPA

In addition to validating authentication information received in a request, an
authentication module may also be able to generate an authentication
challenge that can be returned to the user in order to prompt them to provide
the authentication information required. Not all authentication modules can
generate a challenge. For example, there is no challenge to request HTTP
Headers – these are either in the request or not.

If an authentication challenge is required then the first suitable authentication
module from the configured list is called to generate the commands needed (to
be sent to the plug-in) to produce the challenge. As previously stated, not all
authentication modules can generate a challenge. In addition, an
authentication module may be unavailable because it is already being used to
identify a proxy agent who is forwarding the requests.

The most common authentication mechanisms that can generate a challenge
for the user are Basic Authentication (a BA challenge is sent to the user) and
form-based authentication (a login form is returned to the user).

If no authentication method is available then the user cannot be authenticated.
The plug-in will be instructed to return a forbidden page.

Web Server Plug-ins

7-16

16

Building Authentication Challenge

Authentication Level Required &
List of Authentication Modules

Examine First
Auth Module in

list

High Enough
Level?

Examine Next
Auth Module in

list

Other Auth
Modules to try?

No
Authentication

PossibleCall Module
to build

challenge

no

noyes

yes

Supports
Challenge? no

yes
Authentication
Method already

Used?
no

yes

The flowchart above shows how the plug-in selects an authentication module
for sending a challenge to the user.

It examines each configured authentication module, in order, until it finds one
that provides the required level of authentication, is able to support sending a
challenge and has not already been used to identify a proxy agent.

As soon as a module is found that meets these criteria it is called to build the
challenge that will be sent back to the user.

If none of the configured authentication methods are suitable then no
authentication is possible. The Plug-in Auth Server will have to return a
“Forbidden” page to the user since they do not have the permissions required
to access the requested resource and there is no possibility to send them a
challenge to authenticate at the required level.

Web Server Plug-ins

7-17

17

Post Authorization Modules Processing

Actions taken once request is authorized
All configured modules are called in order

Determined by the module configuration
Can return a specific response to the user
Can specify the request/reponse be modifed

This is passed back to the plug-in

The final set of modules defined in the Plug-in Auth Server are Post
Authorization Modules. These are called after a request has been authorized to
determine if any other action needs to be taken before the request is passed
back to the plug-in for processing by the Web Server. All of the configured
Post Authorization Modules are called to see if they need to take any action.

Post Authorization modules are mainly of three types:
Modifying Request for SSO – These Post Authorization modules add
information (cookies or headers) that will be used by the web application to
identify the user without needing a second authentication.
Modifying Response – These Post-Authzn modules don’t modify the request
but specify that the response be altered – normally by adding headers or
cookies to it. For example, the failover module adds a failover cookie to
responses.
Special Function – These Post-Authorization modules recognise the URI
being requested as the trigger for some special function. This usually means
that the request will be handled by the Plug-in Auth Server. E.g, eCSSO
“vouchfor” request.

Web Server Plug-ins

7-18

18

Commands
For Processing

Request/Response

Post Authorization Processing
Request &
List of Post-Authzn Modules

Call Each Module
Call Post-Authzn

Module CommandsCall Post-Authzn
Module CommandsCall Post-Authzn

Module Commands

Add

Return Processing
Commands

After a request has been authorized it is passed to all of the configured post-
authzn modules so that they can decide if they need to take any action.

All of the commands that are returned from these modules are put together and
will be sent back to the plug-in for action.

Web Server Plug-ins

7-19

19

Request path for request handled by plug-in

Plug-in Auth Server

Web Server

Plug in

ACL DB
Replica

1 2

4

3

5

67

8

IP
C

The diagram above shows the path taken by a request that is eventually
handled directly by the Plug-in Auth Server (login challenge required for
example)

*1 User makes request
*2 Request is received by the Web Server and passed to the plug-in code
*3 Plug-in forwards the request details over the IPC link to the Plug-in Auth
Server
*4 The Plug-in Auth Server processes the request. It determines that a
response needs to be sent to the user without going to the Web Server.
*5 The Plug-in Auth Server returns a set of commands to the plug-in
instructing it to forward a fixed response to the user
*6 The plug-in receives the commands. It does not need to consult the Web
Server so it forwards the request for outbound processing
*7 Any cookies and headers specified by the Plug-in Auth Server are added to
the response. This is forwarded to the Web-Server for return to the user
*8 The Web Server returns the response to the User.

Web Server Plug-ins

7-20

20

Request path for permitted request

Plug-in Auth Server

Web Server

Plug in

ACL DB
Replica

1 2

4

3

5

6

7

8

9

10

IP
C

The diagram above shows the path taken by a request that is eventually passed
to the Web Server for processing. This is likely to be a standard request for a
WEB resource that resides on the Web Server.

*1 User makes request
*2 Request is received by the Web Server and passed to the plug-in code
*3 Plug-in forwards the request details over the IPC link to the Plug-in Auth
Server
*4 The Plug-in Auth Server processes the request. It determines that the
request is authorized and is for a resource on the Web Server.
*5 The Plug-in Auth Server returns a set of commands to the plug-in
instructing it to forward the request to the Web Server.
*6 The plug-in receives the commands. It makes any changes to the request
that are specified and hands the request to the Web Server
*7 The Web Server processes the request
*8 The Web Server passes its response to the plug-in.
*9 Any cookies and headers specified by the Plug-in Auth Server are added to
(or removed from) the response. This is forwarded to the Web-Server for
return to the user
*10 The Web Server returns the response to the User.

Web Server Plug-ins

7-21

21

Configuration

Web Server Plug-ins

7-22

22

Configuration File

A single configuration file is used per machine
Called <AMWebPI>/etc/pdwebpi.conf

Configuration file for all Web Server Plug-ins on
the machine

All virtual hosts protected by AMWebPI

Configuration affects the Plug-in Auth Server
In most cases only need to restart Auth Server for
changes to take effect

Only one AMWebPI configuration file is used per machine. This
configuration file is used for all AMWebPI components on the machine.

Most of the configuration options only affect the Plug-in Auth Server – since it
is doing almost all of the processing. In most cases only the Auth Server will
have to be restarted for configuration changes to take effect – the WEB servers
can continue running.

Web Server Plug-ins

7-23

23

Which Virtual Hosts should be protected?

[pdweb-plugin] stanza
Each entry specifies a virtual-host label
A stanza with the label name contains detailed config
By default virtual host label = virtual host Identifier

– virtual host Identifier comes from Web Server
Default is not to protect a Virtual Host

In Plug-in Config:
[pdweb-plugin]

virtual-host = Default Web Site

virtual-host = MyLabel

[Default Web Site]

…

The AMWeb Plug-ins will only protect virtual hosts that are specifically
configured. The default, if no configuration is found, is not to protect a virtual
host – in this case requests are passed unchanged and AMWebPI offers no
protection.

To protect a virtual host it must be identified in the AMWebPI configuration
file. There are two parts to this operation. The first, shown above, is to create
a virtual-host parameter in the [pdweb-plugin] stanza that gives a label that is
used to identify the virtual host everywhere else in the configuration file.

One location it points to is another stanza (with the name specified by the
virtual host label) that contains information on how to determine if requests
are being made to this virtual host.

By default the virtual host label will be set to be the same as the virtual host
Identifier sent by the Web Server. However this is not required; the identifier
can also be specifically configured (see next page).

Web Server Plug-ins

7-24

24

Virtual Host Identification

Virtual Host identified by ID
This is defined by the Web Server

– e.g. Default Web Site or Administration Web Site
If not specified then label name used

HTTP/HTTPS specifies which to protect
If not specified then default is to protect
If set to no then will not be protected

– It will be passed unchanged to the Web Server

[<VH-Label>]

id = <Virtual Host ID> optional - default=Label Name
http = {yes|no} optional - default=yes
https = {yes|no} optional - default=yes

In the stanza named with the virtual host label three parameters determine
which requests will be processed with the configuration for this virtual host.

The id parameter specifies the virtual host identifier that is set by the Web
Server for requests to this virtual host. Normally this parameter is not present
and the VH-Label is used instead. In this case the label must match the
identifier that is sent by the Web Server. If the id parameter is set then the
VH-Label can be set to any value.

The http parameter is used to specify if traffic received over HTTP should be
protected. If set to no then HTTP traffic will not match this virtual host
configuration and will not be protected unless another virtual-host
configuration matches it. If the http parameter is not set or is set to yes then
HTTP traffic will match this virtual host configuration.

The https parameter is used to specify if traffic received over HTTPS should
be protected. If set to no then HTTPS traffic will not match this virtual host
configuration and will not be protected unless another virtual-host
configuration matches it.. If the https parameter is not set or is set to yes then
HTTPS traffic will match this virtual host configuration.

Web Server Plug-ins

7-25

25

Branch parameter

Specifies location under /PDWebPI object
Plug-in Auth Server registers ownership of this space

– It will be called when user lists objects in this space
Used as root for authorization decisions for Virtual Host

If no branch specified then virtual host ID is used
Example:

[<VH-Label>]

branch=VHost1

/
PDWebPI

VHost1

When Web Plug-ins are configured on the first machine in the AM domain an
objectspace is created called /PDWebPI. In this objectspace, entries are
created for each of the virtual hosts that are being protected. Notice that there
are no objects to represent servers – only virtual-hosts are listed.

The objectspace under a virtual-host object is owned by the Plug-in Auth
Server that performs authorization for that virtual-host. It is registered as a
dynamic objectspace by the Auth Server at start-up which means that the Auth
Server will be called (through the server admin API) whenever a list of the
objects in that space is required. This part of the objectspace is used by the
Auth Server when authorization decisions are made for resources on the virtual
host.

By default the branch of the objectspace used for a virtual-host takes its name
from the Virtual Host ID. If a different branch of the /PDWebPI objectspace is
to be used then the branch parameter is used to specify this.

Note: If the branch is changed then an object will have to be created in the
with the new name. Any ACLs attached under the old branch will stay
attached to the now non-existent objects under the original branch.

Web Server Plug-ins

7-26

26

Specifying Web Server Type

Web server type can be iis or ihs or iplanet
Specify default in [pdweb-plugin] Stanza
Override in [<VH-Label>] Stanza

Detailed config for sever type in another stanza

[pdweb-plugin]

web-server = <server-type>

[<VH-Label>]

web-server = <server-type>

The web-server parameter is used to specify which type of Web Server a
virtual host resides on. This is required in order for the output from directory
queries to the server to be interpreted correctly for “query_contents” type
operations.

By default the web-server parameter is set in the [pdweb-plugin] stanza which
specifies this sever type for all virtual hosts on the machine. This is OK for
the current version (where only one server type is supported on each machine)
but when multiple server types are permitted this can be over-ridden by
specifying the server type in the virtual-host stanza (stanza named with the
VH-label).

Web Server Plug-ins

7-27

27

URL Properties - 1

Windows Filesystem
Disallow DOS shortnames (e.g. progra~1)
Prevent access via W2K Short Paths

Case Sensitive Filenames ?
Always convert URL to lowercase before checking

Set globally and overridden by Virtual Host

[pdweb-plugin] or [<vh-label>]

windows-file-system = true

case-sensitive = false

Web Server Plug-ins

7-28

28

URL Properties - 2

How Are URLs encoded?
UTF-8 - Must be converted to local codepage
Non UTF-8 - Assumed to be in local codepage

Can configure for either or set to “auto”
Assumed UTF-8 unless invalid characters present

Set globally and overridden by Virtual Host
Default is TRUE

[pdweb-plugin] or [<vh-label>]

utf8-url-support-enabled = auto

Web Server Plug-ins

7-29

29

Specify Document Root

This is the document root for the Virtual Host

Can be defined in either:
[<Server Type>] Stanza

– Affect all virtual hosts on server of that type
[<Server Type>:<Branch>] stanza

– Overrides configuration for specific branch of objectspace

[<server-type>] or [<server-type>:<Branch>]

doc-root = <doc-root-path>

For each virtual host you need to configure the document root. This is used
by the Plug-in Auth Server to respond to requests from the management server
to list the objects that it is protecting (for display in the objectspace).

The doc-root parameter can be defined for all virtual hosts on a given server
by specifying in the <server-type> stanza (e.g. [ihs]) or can be specified for a
particular objectspace branch by specifying in a stanza qualified with the
virtual-host label (e.g. [ihs:MyBranch])

Note: The document-root parameter is only required for IHS and iPlanet Web
Servers.

Web Server Plug-ins

7-30

30

Specify Query_Contents Program Location

This is used to build index of files
This is done when using PDADMIN or WPM

Can be defined in either:
[<Server Type>] Stanza

– Affect all virtual hosts on servers of that type
[<Server Type>:<Branch>] stanza

– Overrides configuration for specific branch of objectspace

[<server-type>] or [<server-type>:<Branch>]
query-contents = <query-contents program>

For each virtual host you can configure an application that will be called by
the Plug-in Auth Server to retrieve a list of the web-server objectpace. This is
rather like the “query_contents” application that WebSEAL uses except that it
is run locally rather than being invoked via HTTP. This application is called
by the Plug-in Auth Server to respond to requests from the management server
to list the objects that it is protecting (for display in the objectspace).

A custom application can be provided by the Customer if required.

The query-contents parameter can be defined for all virtual hosts on a given
server by specifying in the <server-type> stanza (e.g. [ihs]) or can be
specified for a particular objectspace branch by specifying in a stanza qualified
with the virtual-host label (e.g. [ihs:MyBranch])

Web Server Plug-ins

7-31

31

IIS: Passing POST data to Plug-in Auth Server

Plug-in does not pass POST data to Auth Server
It is usually application data and not interesting

But Auth Server sometimes needs POST data
Pages which it is going to process
Form-based login pages for example

Specify these in pdwebpi.conf
Only needed for IIS Plug-in
Cannot be specified per virtual-host

[iis]

post-data-required = /pkmslogin.form

post-data-required = /pkmspasswd.form

The configuration item shown above is specific to IIS servers. By default the
IIS plug-in does not forward POST data to the Plug-in Auth Server. This
information is needed in some cases (e.g. when it is a login form POST) and so
it is possible to define a list of URLs that indicate a page where the body of
the request should be forwarded to the Plug-in Auth Server.

Note: In IHS and iPlanet this configuration must be done in the Web Server
configuration files. The configuration changes required for out-of-the-box
forms based login (including token login) are performed during configuration
of the AMWeb Plug-in on the machine.

Web Server Plug-ins

7-32

32

IIS: Special handling for large POST data

Plug-in Auth Server may use large forms
A lot of data is returned in the POST
Plug-in Auth Server needs to receive it all to process it

Specify these forms in pdwebpi.conf
Along with the amount of data that is needed
Only needed for IIS
Cannot be specified per virtual host

[iis:minimum-post-data]

#Form URI = Data size in bytes

/token.form = 20000

The configuration item shown above is also specific to IIS servers. In the case
where a large amount of POST data is required by the Plug-in Auth Server in
order to authenticate a user (for example) it is possible to specify this in the
configuration. This configuration tells the plug-in that when it sees a POST to
the URL configured it needs to send at least the amount of POST data
configured to the Plug-in Auth Server.

This configuration option is configured in a stanza called [iis:minimum-post-
data]. It is not configurable on a per virtual-host basis.

Note: In IHS and iPlanet this configuration must be done in the Web Server
configuration files. The configuration changes required for out-of-the-box
forms based login (including token login) are performed during configuration
of the AMWeb Plug-in on the machine.

Web Server Plug-ins

7-33

33

IIS: User Mapping with BA Header

IIS authorization still active with Plug-in loaded
IIS still checks access to pages even if plug-in permits

By Default Plug-in accesses IIS as anonymous
IIS must be configured to allow anonymous access

If BA Authentication used IIS can map to real user
Especially useful if using Active Directory

– Otherwise user information would have to be synchronised

Set to false to allow mapping to real user:

[iis]

map-ba-users-to-anonymous = false

Even with the AM Plug-in loaded, IIS still has to authorize requests.

By default, the plug-in passes all requests to the IIS code as anonymous. This
means that IIS must be configured to allow anonymous access which, in turn,
means that all authorization is handled by Access Manager.
Unauthenticated access can be configured in IIS either during configuration of
a new virtual host or in the Directory Services tab of a virtual host or the
Master WWW properties.

If IIS authorization is still required then it is possible (for BA authentication)
to have the plug-in pass the BA header to the IIS code so that it can
authenticate (and authorize) the actual user making the request. This might be
particularly desirable in an Active Directory environment where IIS and
Access Manager are sharing the same user registry.

To enable the plug-in to send the BA information on to the IIS code turn off
the default behaviour of mapping all users to unauthenticated in the [iis] stanza
of pdwebpi.conf as shown above.
This is a global configuration parameter - it cannot be set per virtual host.

Web Server Plug-ins

7-34

34

Module Definition

First Define the Modules
Link name to library on the filesystem
Does not include lib prefix or .xxx suffix

[modules]

#Label = Library Name

acctmgmt = pdwpi-acct-mgmt-module

BA = pdwpi-ba-module

ssl-id = pdwpi-sslsessid-module

All Modules are configured here
Authentication, Session and PostAuth

A module can be defined more than once

There are three steps to configuring modules. The first is to define the
modules (of all types) that are available. This is a global configuration that
provides a label to represent each module library.
Modules are defined in the [modules] stanza and each definition consists of a
label and a library name. The libraries must exist in the <pdwebpi>/lib
directory and the filename given is with any OS specific prefix (e.g. lib) and
any OS specific suffix (e.g. .dll) removed.
In the example above the BA module library is given as pdwepi-ba-module.
On Windows the Plug-in Auth Server will look for a file called pdwebpi-ba-
module.dll. On Solaris it will look for a file called libpdwebpi-ba-module.so
and on AIX it will look for a file called libpdwebpi-ba-module.a.
The label names defined here are used in the following configuration to
identify the modules.
A library can be defined more than once with different labels. This allows it to
have different configurations for use in the same virtual host.
Note: It is possible to configure the path that is used when searching for
module libraries. This is the path parameter in the [module-mgr] stanza.

Web Server Plug-ins

7-35

35

Module Configuration

Module specific configuration
Global config uses stanza matching module label
Can then use [<Mod-label>:<VH-Label>] to override

[modules]

forms = pdwpi-forms-module

…

[forms]

login-page = login.html

[forms:Special Virtual Host]

Login-page = speciallogin.html

The default configuration options specific to a module are configured in a
stanza that is named using the module label described on the previous page.
This configuration affects that module no matter which virtual-host it is called
from.

If special configuration is required on a per virtual-host basis then the default
configuration can be overridden by using a stanza that qualifies the module
label with a virtual-host label. This seen in the example above.

If any virtual-host except the one with label “Special Virtual Host” uses
forms-based login then the user will receive login.html.
If the virtual-host with label “Special Virtual Host” uses forms-based login
then the user will receive speciallogin.html

Web Server Plug-ins

7-36

36

Virtual Host to Module mapping - 1

Finally, specify modules for use by virtual-host
Prioritised list for each type

[MyHost1]

…

session = ba

session = ssl-id

session = session-cookie

authentication = cert

authentication = ba

post-authzn = ltpa

The last step for module configuration is to specify which modules will be
used (in preference order) for each virtual host. This can be done in a variety
of ways.

The first way, shown above, is to specify the modules directly in each virtual-
host stanza.

Modules are specified in preference order by type as shown above. The syntax
of each entry is:
<module-type> = <module label>
Where <module-type is {session|authentication|post-authzn}

Some modules require that other modules are present. For example if forms is
specified as an authentication module it must also be specified as a post-authzn
module. If mismatches occur then errors will be logged when the Plug-in Auth
Server attempts to start.

Web Server Plug-ins

7-37

37

Virtual Host to Module mapping - 2

Can create a template stanza
And then link to it from multiple virtual-host stanzas.

[MyHost1]

modules = MyTemplate

[MyHost2]

modules = MyTemplate

[MyTemplate]

authentication = ba

session = ba

post-authzn = ltpa

An alternative way to specify virtual-host to module mapping is to specify a
stanza for module configuration in the virtual-host configuration. This allows
multiple virtual-hosts to share a module configuration.

The module configuration stanza is specified by the modules parameter in the
virtual-host stanza as shown above.

Web Server Plug-ins

7-38

38

Virtual Host to Module mapping - 3

If no modules configured for virtual host
Either directly or using module template stanza

Modules in [common-modules] stanza used

[MyHost1]

<No module config>

[common-modules]

authentication = forms

session = session-cookie

post-authzn = forms

The default out-of-the-box configuration is that there is no virtual host
configuration in any of the virtual-host stanzas.

In this case virtual-host to module mapping for all virtual-hosts is taken from
the [common-modules] stanza. In this case changes to the [common-modules]
stanza will affect all virtual-hosts.

Even some virtual-hosts are modified to have modules directly configured or
others specify a module template stanza, any virtual-host that has no module
configuration will continue to take its mapping from the [common-modules]
stanza.

Web Server Plug-ins

7-39

39

Step-Up Authentication Levels

By default uses reverse of authentication module
priority per virtual-host

User always authenticated at highest level possible if
multiple levels available

Can override using [authentication-levels] stanza
Or [authentication-levels:<VH-Label>]
Higher number = Higher level

[authentication-levels] or [authentication-levels:<VH>]

1 = ba

2 = iv-headers

3 = cert

The Web Plug-ins support Authentication Levels and authentication step-up in
the same way as WebSEAL.
By default, if no authentication-level configuration is given, the authentication
levels for a virtual-host will be set to the reverse of the authentication module
priority. The means that the user will always initially authenticate at the
highest possible level. The only reason a user will not authenticate at a high
level is if that method is not available (e.g. Certificates not exchanged at SSL
negotiation).
If this order is not what is required then the authentication levels can be
specified globally and on a per virtual-host basis as shown above. The syntax
for an entry is:
<level> = <authentication module label>
The higher the value of <level> the higher the authentication level.

Step-up can only be supported to authentication modules that are capable of
generating a challenge. This means that step-up is supported to password and
token authentication.

Web Server Plug-ins

7-40

40

General Session Configuration

The [session] stanza contains general session
configuration parameters

Can override in [<session-module-name>] stanza
And [<session-module-name>:<VH-Label>] stanza

[session]

max-entries = <max-sessions> default: 4096
timeout = <seconds> default: 7200
inactive-timeout = <seconds> default: 3600
resend-pdwebpi-cookies = {yes|no} default: no

Note: <max-sessions> is per session-module per virtual-host

As mentioned previously, each session module maintains its own session
cache. This means that each session type can have its own configuration in
terms of timeouts.

By default all session modules share a common configuration defined in the
[session]module as shown above. This can be overidden per session module
type (in a stanza such as [forms]) and from there by virtual-host (in a stanza
such as [forms:MySite]).

max-entries - defines the number of entries in the session cache per virtual-
host. This means it defines the maximum number of concurrent sessions.
Note that this is per session module and per virtual-host.
timeout - This is the maximum length of a session. When this time expires
the user must authenticate again and a new credential is built.
inactive-timeout – This is the amount of time a session can be idle before it is
deleted from the session cache. The user must authenticate again.
resend-pdwebpi-cookies – This indicates whether session cookies (when
used) should be sent with every response to ensure they do not age out of the
browser.

Web Server Plug-ins

7-41

41

Defined Actions

A new action group, PDWebPI, is defined
All actions are defined in that group

HTTP requests:
Read (r)

Modify (m)

Delete (d)

Proxy Identification
Proxy Group (p)

WebDAV:
Create (N)

Read (R)

Modify (M)

AM Web Plug-ins define a new action group called [PDWebPI] that contains 7
new actions.

The [PDWebPI] action group and these actions are created the first time that
Web Plug-ins are configured on a machine.

The permissions are described in detail on the following pages

Web Server Plug-ins

7-42

42

Permissions Required - HTTP

[PDWebPI]mHTTP PUT

[PDWebPI]dHTTP DELETE

[PDWebPI]rHTTP GET or POST

Permission
Required

Task

Any HTTP GET or POST request requires the [PDWebPI]r permission.
There is no specific “list” permission for requesting a directory listing (A GET
of a URL ending in /) – this is also checked with the [PDWebPI]r permission.

An HTTP PUT request requires the [PDWebPI]m permission.

In order to execute an HTTP DELETE command the [PDWebPI]d permission
is required.

Web Server Plug-ins

7-43

43

Permissions Required - WebDAV

[PDWebPI]MPROPPATCH

[PDWebPI]NMKCOL

[PDWebPI]RPROPFIND

Permission
Required

Task

Note: Only partial support in v3.9

AMWebPI also supports WebDAV operations as shown above. WebDAV
operations are authorized based on the request URI – not on individual
members of a collection.

In addition, some other WebDAV operations are partially supported:

COPY: Requires [PDWebPI]R on the collection to copy from in order to read
it. Permissions for the destination are not checked.
MOVE: This is considered a copy then a delete. Requires [PDWebPI]Rd on
the collection to move from. Permissions for the destination are not checked.

Web Server Plug-ins

7-44

44

Permissions: Proxy Identification – 1

Need to identify if an authenticated user is a proxy
Need to authenticate real end user
Need an independent session for real end user

– In case it is a multiplexing proxy agent (MPA)

Solution: A new permission bit [PDWebPI]p
Permission checked on configured object

– Default is /PDWebPI
If user has permission they are a proxy

The Plug-in Auth Server needs to be able to identify when an authenticated
entity is actually a multiplexing proxy agent (MPA). This is important
because they may be many real end-users behind that single proxy with all
requests coming over the same session. The Auth Server needs to be able to
authorize access based on the end-user – not on the proxy.

When a new user authenticates their permission to perform [PDWebPI]p
action on configured object (default is /PDWebPI) is checked. If they are
authorized then this user is identified as a proxy and the appropriate action can
be taken.

If a user turns out to be an MPA then first of all it has to be decided if access
via MPA is allowed (see next page). If MPA access is permitted then all
access is authorized using the unauthenticated credential. If a protected page
is requested then a secondary authentication is performed that is directed to the
real end-user. This might mean sending the end user a form-based login
request or it could mean that the end user is identified using some header
information set by the proxy (this requires that the proxy be trusted to perform
authentication on our behalf).

Web Server Plug-ins

7-45

45

Permissions: Proxy Identification – 2

Multiplexing Proxy Agent support configurable
By default support is disabled

– If [PDWebPI]p permission given then ACCESS DENIED

Can turn on (and set object to check)
globally (in [pdweb-plugins] stanza)
per Virtual Host

[pdweb-plugin] or [<vh-label>]

mpa-enabled = true

mpa-protected-object = /PDWebPI

By default support for Multiplexing Proxy Agents (MPAs) is disabled. This
means that if a proxy connects (identified by the [PDWebPI]p permission)
then it will be denied access.

The configuration allows proxy access to be granted globally or per virtual
host and allows the object to use for proxy checks to be specified (also
globally or per virtual host).

Web Server Plug-ins

7-46

46

Permissions: Proxy Identification – 3

/
PDWebPI

VHost1

myproxy
anotherproxy

webseal-mpa-servers

default-pdwebpi
…
webseal-mpa-servers [PDWebPI]p
webseal-servers [PDWebPI]p
pdwebpi-mpa-servers [PDWebPI]p

webseald/myhost
webseald/host2

webseald-servers pdwebpi-mpa-servers

The diagram above shows how the [PDWebPI]p permission is used to identify
a proxy. It shows the default configuration which means that members of the
webseald-mpa-servers, webseal-servers and pdwebpi-mpa-servers groups are
considered proxies.

Web Server Plug-ins

7-47

47

Account Management Configuration – 1

Specify the files for Auth Server management
pages

Relative to <pdwebpi>/nls/html/<lang>/

Specify URIs that trigger the functions

Pages can be customised per virtual host
To give standard look-and-feel to Auth Server pages
Macro substitution used to add variables to pages

– See later for a list of variables

Account Management can be customised by changing the URIs that trigger the
account management functions and changing the files that are returned to the
user for some of these functions.

This customisation can be done per virtual-host so each virtual-host can have
management pages that have the appropriate look and feel.

Macro substitution is used to include appropriate information into the pages
before they are returned to the user. See later for a list of variables that can be
used in the pages.

Web Server Plug-ins

7-48

48

Account Management Configuration – 2

Account Management in pdwebpi.conf:
Default config can be overridden per virtual host

[acct-mgmt] or [acct-mgmt:<VH-Label>]

password-change-form = password_change.html

password-change-form-uri = /pkmspasswd.form

password-change-uri = /pkmspasswd

password-change-success = password_change_success.html

password-change-failure = password_change_failure.html

logout-uri = /pkmslogout

logout-success = logout_success.html

help-uri = /pkmshelp

help-page = help.html

The configuration options shown above are those that control account
management. These can be configured globally and overridden on a per
virtual-host basis.

All of the filenames given specify files that are found relative to the path:
<pdwebpi>/nls/html/<lang>/

The <lang> variable is taken from the NLS configuration. In an US English
installation this will be set to ‘C’.

Web Server Plug-ins

7-49

49

Auth Server Error Page

May need to send an error page back to the user
If an unknown error occurs in the Auth Server
So that they have information to report the problem

This page can be customised
It exists as a document in the filesystem
Found in <pdwebpi>/nls/html/<lang>/

Configuration in pdwebpi.conf:

[proxy]

error-page = azn_srv_error.html

If the Auth Server encounters an error that it cannot handle which prevents it
from processing a request then it needs to return an error page to the user.
This error page can be customised and it’s location is specified in the [proxy]
stanza as shown above.

This file must be located in the <pdwebpi>/nls/html/<lang>/ directory.

The <lang> variable is taken from the NLS configuration. In an US English
installation this will be set to ‘C’.

Variable substitution can be used in this page to provide more information on
the error to the user so that the y can report it more effectively. Variables
available are shown on the next page.

There is also acct-locked-page and retry-limit-reached-page pointers in this
stanza that determine the message sent to the user if the user account has been
locked out or suspended due to excessive login failures.

Web Server Plug-ins

7-50

50

Macro Substitution
Macro Description

%USERNAME% The name of the logged in user

%ERROR_CODE% A numeric error code associated with an error

%ERROR_TEXT%
%ERROR%

Error text associated with an error

%URL% The URL requested by the client

%HOSTNAME% Fully qualified hostname

%HTTP_BASE% Base HTTP URL of the server: http://<host>:<tcpport>/

%HTTPS_BASE% Base HTTPS URL of the server: https://<host>:<sslport>/

%REFERER% The value of the referrer header from the request, or “Unknown” if none

%BACK_URL% The value of the referrer header from the request, or “/” if none

%BACK_NAME% The value “BACK” if a referrer header is present in the request, or “HOME”
if none.

The table above shows the variables that can be used in WEB pages to be
served up by the web plug-ins. Variable substitution is done by the plug-in
before the page is passed back to the user (via the Web Server).

Note: Not all variables are available for substitution in all pages. Each page
has a list of the available variables in the sample page.

Web Server Plug-ins

7-51

51

Authentication Modules and CDAS libraries

CDAS libraries still used for authentication
Called by authentication modules to validate login
Same CDAS interface as WebSEAL

BA

Forms

Token

IP Address

HTTP Headers

Password CDAS
Password URAF
Password LDAP

Token CDAS

HTTP Request CDAS

Certificate Cert CDAS
Cert SSL

Authentication
Modules CDAS Libraries

Although the authentication modules handle the process of extracting the
authentication information from request standard CDAS libraries are called to
validate the authentication information. This allows custom CDAS libraries
written for WebSEAL to be used with the AM Web Plug-ins.

The chart above shows which libraries are used by which authentication
modules.

Although in some cases multiple libraries are shown only one is ever used.
The preference order is as shown above.

For example if a password-cdas and password-ldap library are both defined
then user authentication (from form and BA login modules) will be done using
the password-cdas library.

Web Server Plug-ins

7-52

52

Other Common Libraries

Two other customisable libraries are called:
passwd-strength

– Carry out custom checks on new passwords
cred-ext-attrs

– Add additional information to user credential during
authentication.

Neither of these are implemented out-of-the-box
Available as exit points for Customer code

See WebSEAL ADK Reference Guide for details

In addition to the authentication libraries there are two other standard AM
libraries that can be used in the AMWeb Plug-ins:

passwd-strength – If defined then this library is called to check new
passwords entered on the password change form of the AMWeb Plug-ins.

cred-ext-attrs – If defined then this library is called before a credential is built
to allow custom attributes (name/value pairs) to be specified for inclusion in
the credential.

See WebSEAL ADK Reference Guide for details on these libraries.

Web Server Plug-ins

7-53

53

Configuration of CDAS and common Libraries

Configured in pdwebpi.conf:

[authentication-mechanisms]
passwd-ldap = C:\Program Files\Tivoli\Access Manager\bin\ldapauthn.dll
cert-ldap = C:\Program Files\Tivoli\Access Manager\bin\certauthn.dll

Just the same as WebSEAL configuration

The configuration of authentication-mechanisms (and other common libraries)
is exactly that same as for WebSEAL.

The [authentication-mechanisms] stanza defines the libraries using a keyword
and a library as shown above. Valid keywords are shown in the configuration
file. They are:
passwd-cdas, passwd-ldap, passwd-uraf, token-cdas, cert-ssl, cert-cdas, http-
request, passwd-strength, cred-ext-attrs

Note: Just as in WebSEAL an authentication library is needed for some kinds
of authentication to be used which is not defined by default. For example
HTTP-Header and IP Address authentication both require that an http-request
library be defined to perform the header->AM User mapping.

Web Server Plug-ins

7-54

54

Installation

Web Server Plug-ins

7-55

55

Installation: Pre-requisites

Somewhere on network:
Access Manager Policy Server

On local machine:
Access Manager Runtime (configured)

– This requires GSKIT v5 (5.0.4.56)
– This includes appropriate directory client

Supported Web Server

Since Web Server Plug-ins are an Access Manager component they require
that an Access Manager Policy Server (new name for PD Management Server)
be installed and configured somewhere on the network.

On the local machine Access Manager Runtime must be installed and
configured so to enable communication with the Policy Server. To check this
is ready to receive the Plug-ins, make sure that the PDADMIN utility works.

You’ll also need to have installed and configured a supported Web Server.

Web Server Plug-ins

7-56

56

Installation: Packages

Plug-in Authorization Server
This is available for Windows,AIX and Solaris
It must be installed if any plug-in is to be installed

Plug-in Modules
One available for each supported platform
Windows: Plug-in for IIS
AIX: Plug-in for IHS
Solaris: Plug-in for iPlanet

There are two installation packages for each platform.

The Plug-in Authorization Server is required on all platforms. It is always
required.

In addition to the Authorization Server the appropriate plug-in package is
required as shown above.

Installing the packages does not do any configuration. This is done by running
the pdwpicfg utility after installation (see next page).

Web Server Plug-ins

7-57

57

Installation/Config on UNIX

Install packages using native method
SMIT or pkgadd

Run configuration script to configure
Run <pdwebpi>/bin/pdwpicfg

Configuration script will:
Register Plug-in Auth Sever with AM
Set-up action group, actions and objectspace
Configure Web Server for plug-in
Import virtual-hosts specified by user

/opt/pdwebpi/pdwpicfg
Access Manager Web Plug-In Configuration
Please enter 'u' for unconfiguration or 'c' for configuration : c
Gathering the necessary configuration information...
Enter the full path name to the directory containing the IHS Web Server configuration
file [/usr/HTTPServer/conf] :
Which virtual hosts are to be protected:

1. yourhost
2. anothervirtualhost

Menu choice [?,??,all]> 1,2
Enter the Access Manager Administrator ID : sec_master
Enter the Access Manager Administrator password :
Enter the port number to listen on for AZN updates [7237] : 7937
Do you want to enable SSL communication between the
Access Manager server and the LDAP server (y/n) [y] :n
Configuring the Web Plug-In (this may take a few minutes)...
Starting the server.
Note: The Web server must be restarted before the changes will take affect.
The plug-in configuration was successful.

Web Server Plug-ins

7-58

58

Installation/Configuration on Windows – 1

Install with Installshield

Use Start Menu to launch configuration GUI
Start->Programs->Access Manager Plug-in for Web
Servers->Configuration

On Windows, The Web Plug-ins provide a Graphical User Interface for
configuration/unconfiguration.

Once the Plug-in Auth Server and Plug-in for IIS are installed with
installshield, launch the GUI from the Start menu as shown above.

On the first screen select “Configure” and click Next.

Web Server Plug-ins

7-59

59

Configuration on Windows - 2

On the next screen, select the virtual hosts that you wish to protect and click
next.

Enter the sec_master password and click next

Enter a port for the Plug-in Auth Server to listen on for requests from PDMgrd.
If you have WebSEAL intsalled on the same machine then make sure you’re
using a different port.

Web Server Plug-ins

7-60

60

Configuration on Windows - 3

If you are using SSL to communicate with the LDAP then fill in the details. In
the screenshot above SSL to LDAP is disabled.

After the configuration has completed you will see the following message if
configuration was successful. You will need to re-start IIS in order for
protection by the plug-in to be active.

Web Server Plug-ins

7-61

61

Troubleshooting

Check logs
AMWebPI creates logs as per the AM ROUTING file

Start the Auth Server in the foreground
First stop the service/kill the process
Run pdwebpi –foreground

Audit AZNAPI
Enable audit in pdwebwpi.conf
Attach a POP with audit on to /PDWebPI
Audit entries are output to audit.log

If you are having trouble with the Web Plug-ins then the three methods shown
above can give some clues as to where the problem lies.

Initially, check fatal.log, error.log and warning.log for error messages. This
could point you to the problem.
If you need a realtime view of the error messages then try starting the Auth
Sever in the foreground. Use the –foreground option to achieve this.

If you need to check what objects the Auth Server is checking permissions
against then turn on auditing globally for the Auth Server in the pdwebpi.conf
file and then use a POP to specify which parts of the tree you require audit
records for.

Web Server Plug-ins

7-62

62

Appendix: More Module Configuration

The appendix includes a brief description of each of the module
configurations. This is for completeness because configuration is, in almost all
cases, the same as the configuration for the equivalent feature in WebSEAL.

The keyword used in virtual-host to module mapping is shown at the bottom of
each slide. In some case a module can be specified as more than on type. In
this case both are shown.

Web Server Plug-ins

7-63

63

Session Module – SSL Session ID

Recognise session using SSL Session ID
Session ID set during SSL session initialization
Included with every packet until session ends

Only valid for HTTPS connections
HTTP sessions do not use SSL

Cannot be used with IIS Server or IE Browser
IIS Server does not pass SSL ID to plug-in
IE resets SSL Session ID every 60 seconds

session = ssl-id

Web Server Plug-ins

7-64

64

Session Module – Session Cookie

Recognise session using a cookie
Cookie set in browser by first response
Cookie contains a large random number
Browser sends cookie with all subsequent requests

Browser must have cookies enabled to use
This is the default in most cases
Hard to use the internet today without cookies

Normally used as a “Last Resort”
Since we like to avoid using cookies

session = session-cookie

Web Server Plug-ins

7-65

65

Session/Auth/Post-Authn Module – Basic Auth

Basic Authentication
HTTP Challenge sent to browser
Pop-Up Login Window shown to User
UserID/Password sent in BA Header of HTTP packets
UserID/Password checked against AM Registry

Can also (optionally) be a Session module
BA Header sent with every request

User must close all browser windows to logout
Otherwise browser caches UserID/Password

authentication = BA session = BA post-authn=BA

As an authentication module BA module uses BA header for authentication.
As an session module BA module uses BA header for indexing session.
As a post-authzn module, BA strips BA headers provided by the user so that
they cannot be spoofed.

On Windows, IIS is configured, by default, to attempt integrated windows
login if it gets a connection from an IE browser. This causes problems for the
Plug-in because it means that the user never gets prompted for BA
authentication. In order to allow BA authentication from IE to IIS you must
disable Integrated Windows Login. This can be done per virtual host in the
“Directory Security” tab of the virtual host properties or for all virtual hosts in
the Master WWW properties (right click on the host name in Internet Services
Manager and click properties).

If you have trouble with BA using IE and you suspect this problem, try
Netscape to confirm this is the problem you are seeing.

Web Server Plug-ins

7-66

66

Basic Authentication Configuration

Configuration allows Realm name to be changed
This is what is displayed in BA Pop-up in browser

Basic Authentication in pdwebpi.conf:
Default config can be overridden per virtual host

[BA] or [BA:<VH-Label>]

Realm name must be surrounded by double-quotes

basic-auth-realm = “Access Manager”

Web Server Plug-ins

7-67

67

Session/Auth Module – IP Address

IP Address used to Authenticate User
Only useful if some other device guarantees the IP
address cannot be spoofed
Some SSL Proxies can do this
Require a mapping from IP Address to AM User

Can also (optionally) be a Session module
IP Address is sent with every request
Already assuming that it can’t be spoofed

authentication = ipaddr session = ipaddr

As an authentication module ipaddr module uses Client IP address for
authentication.
As an session module ipaddr module uses Client IP address for indexing
session.

Web Server Plug-ins

7-68

68

Session/Auth Module – HTTP Header

HTTP Header used to authenticate user
Only useful if the HTTP Header cannot be spoofed
Useful if a proxy has already authenticated the user
and is passing their identity in the header
Need to configure which header should be used
Requires a mapping from Header contents to AM User

Can also (optionally) be a Session module
HTTP Header must be sent with every request
Already assumed that the header cannot be spoofed

authentication = http-hdr session = http-hdr

As an authentication module http-hdr module uses specified HTTP Header for
authentication.
As an session module http-hdr module uses specified HTTP Header for
indexing session.

Web Server Plug-ins

7-69

69

HTTP Header Authentication Configuration

Allows header name to be specified
Data from this header is passed to authentication library
It is then mapped to a Access Manager UserID

HTTP Header pdwebpi.conf:
Specify multiple module labels for multiple confiugrations

[http-hdr] or [http-hdr:<VH-Label>]

header = <HTTP header name>

It is possible to configure multiple http header authentication modules for the
same virtual-host as follows:

[modules]
http-hdr-1 = pdwebpi-http-hdr-module
http-hdr-2 = pdwebpi-http-hdr-module

[http-hdr-1]
header = xxx

[http-hdr-2]
header = yyy

[VirtualHost1]
authentication = http-hdr-1
authentication = http-hdr-2

Web Server Plug-ins

7-70

70

Auth/Post-Authzn Module – Form Based Login

Authentication using a login form
Brower sent HTML form requesting user information
User fills in form with UserID and Password
Form information sent back as a POST
UserID and Password checked against AM Registry

Most Common form of Authentication
Form can be customised
No “Logout” problems like with Basic Auth

MUST also specify as Post-Authzn Module
This handles sending/processing of form

authentication = forms post-authzn = forms

If forms authentication is used then it must also be specified as a post-authzn
module which will process login form when it is POSTed.

Web Server Plug-ins

7-71

71

Form-based Login Configuration

Configuration allows Login Form to be specified
This is what is sent to the user when login required
File path relative to <AMWebPI>/nls/html/<LANG>/

Form login in pdwebpi.conf:
Default config can be overridden per virtual host

[forms] or [forms:<VH-Label>]

login-form = login.html

Web Server Plug-ins

7-72

72

Authentication Module – Token

RSA SecurID Token Authentication
Works the same as form based authentication
User submits UserID, Password and Token in form
Information checked against SecurID Server

Login Form can be Customised
Requires a SecurID Server and hardware tokens

MUST also specify as Post-Authzn Module
This handles sending/processing of form

authentication = token post-authzn = token

If token authentication is used then it must also be specified as a post-authzn
module which will process login form when it is POSTed.

Web Server Plug-ins

7-73

73

Token Login Configuration

Configuration allows Login Forms to be specified
Page for initial token login
Page for requesting next token if this is needed
File path relative to <AMWebPI>/nls/html/<LANG>/

Token login in pdwebpi.conf:
Default config can be overridden per virtual host

[token-card] or [token-card:<VH-Label>]

token-login-form = tokenlogin.html

next-token-form = nexttoken.html

Web Server Plug-ins

7-74

74

Auth/Post-Authzn Module – Failover Cookie

Authenticate user based on Failover cookie
If cookie is set then user is automatically authenticated

As Post-authzn Module can also set cookie
Cookie can be a “host cookie”

– Only sent to hosts with the same DNS name (load balanced)
Or Cookie can be a “domain cookie”

– Sent to any host in the same DNS domain (domain SSO)

authentication = failover post-authzn = failover

As an authentication module failover module uses failover cookie for
authentication.
As a post-authzn module failover module sets failover cookie for use by other
WebSEAL servers and AMWeb Plug-ins.

Web Server Plug-ins

7-75

75

Failover Configuration

Configuration Requires
Path and Filename for shared failover key file

– Generated using cdsso_key_gen and distributed
Cookie lifetime
Whether cookies can be used for Domain SSO

Failover in pdwebpi.conf:
Default config can be overridden per virtual host

[failover] or [failover:<VH-Label>]
failover-cookies-keyfile = <filename for shared key>

failover-cookies-lifetime = 30

enable-failover-cookie-for-domain = false

Web Server Plug-ins

7-76

76

Authentication Module - Certificate

Client Side x.509 Certificate
Web Server requests client certificate during SSL
Session negotiation
Certificate signature/Expiry Dates checked
DN of Certificate used as AM User

Only available over SSL Sessions
No DN Mapping provided

authentication = cert

Web Server Plug-ins

7-77

77

Auth/Post-Authzn Module - eCSSO

AMWebPI supports eCommunity Single Sign-On
Can be a Master Authentication Server (MAS)
Can use a remote MAS for authentation

Must be configured as both:
Authentication Module

– Process Incoming Tokens
Post-Authzn Module

– Process eCSSO requests
– Set eCSSO domain cookies

authentication = ecsso post-authzn = ecsso

As an authentication module ecsso module uses incoming eCSSO tokens on
requests to authenticate user.
As a post-authzn module ecsso module responds to incoming /vouchfor
requests and sets eCSSO domain cookie.

The configuration of the ecsso module cannot be made Virtual Host specific
by qualifying the stanza name with the virtual host. If different configurations
are needed then multiple module labels must be used – each with its own
configuration stanzas.

Web Server Plug-ins

7-78

78

eCSSO Configuration – 1

Need to configure:
eCommunity name
Whether local machine is Master Authentication Server

– If not then need to give hostname/ports for MAS
“Vouchfor” URI to trigger eCSSO

There is a change to eCSSO in AMWebPI
There is no “local-domain-key” parameter

Local Key is configured with remote keys
It simply specifies the local DNS domain

Web Server Plug-ins

7-79

79

eCSSO Configuration – 2

eCSSO in pdwebpi.conf:

[ecsso] or [ecsso:<VH-Label>]
e-community-name = <name>

is-master-authn-server = <yes/no>

master-authn-server = <server name>

master-http-port = 80

master-https-port = 443

vf-token-lifetime = 180

vf-url = /pkmsvouchfor

Note: If the e-community name is not specified then it defaults to the module
label name (in the example above this is ecsso).

Web Server Plug-ins

7-80

80

eCSSO Configuration – 3

eCSSO Domain Keys in pdwebpi.conf:

[ecsso-domain-keys]

or [ecsso-domain-keys:<VH-Label>]

<domain name> = <key file>

pic.uk.ibm.com = pic.key

raleigh.ibm.com = raleigh.key

If the module label (default ecsso) is changed then the name of the domain
keys module also changes:

e.g.

[modules]
ecsso = pdwebpi-ecsso-module
My-ecsso = pdwebpi-ecsso-module
…
[ecsso]
…
[ecsso-domain-keys]
…
[my-ecsso]
…
[my-ecsso-domain-keys]
…

Web Server Plug-ins

7-81

81

Auth/Post-Authn Module – IV Headers

Authentication
Accepts IV Headers as proof of identity
Can Accept:

– iv-user, iv-user-l, iv-creds, iv-remote-address
Only accepted from trusted proxies

– Permission check done to determine this

Post Authorization
Inserts IV Headers into request
Can Generate:

– iv-user, iv-user-l, iv-groups, iv-creds, iv-remote-address

authentication = iv-headers post-authzn = iv-headers

As an authentication module iv-headers module uses IV-HEADERS in
requests to authenticate user
As a post-authzn module iv-headers module inserts IV HTTP Headers into
requests before they are passed to the Web Server for processing.

Web Server Plug-ins

7-82

82

IV Headers Configuration

Specify which headers are accepted/generated
List of headers

– iv-creds, iv-user, iv-user-l, iv-groups, iv-remote-address
Or all to accept/generate all

IV Headers in pdwebpi.conf:
Default config can be overridden per virtual host

[iv-headers] or [iv-headers:<VH-Label>]

accept = iv-creds, iv-user-l

generate = all

Web Server Plug-ins

7-83

83

Post-Authzn Module – Account Management

Performs account management tasks
User Log Out
Change Password
User Help

Recognises “special” URIs
Like pkmslogout
Performs action and sends configured page

– Logout Page
– Help Page
– Change Password/Change Success/Change Failure

post-authzn = acctmgmt

One important Post-Authzn module which should always be specified is the
Account Management module (label acctmgmt). This module performs
account management tasks by recognising the URLs that trigger the
management actions (such as /pkmslogout) and performing the appropriate
action.

Web Server Plug-ins

7-84

84

Post-Authzn Module – LTPA Cookie

Allows LTPA Cookie to be inserted into request
Before it is handled by the Web Server

Allows Single Sign-On to WebSphere
Usually WebSphere sharing User Registry

LTPA Cookie is not sent back to client
It is cached inside the Plug-in

post-authzn = ltpa

Web Server Plug-ins

7-85

85

LTPA Configuration

LTPA Configuration Requires
Path and filename for LTPA keyfile (from WebSphere)
Stash file or Password to decode keyfile
Lifetime of LTPA cookie

LTPA in pdwebpi.conf:
Default config can be overridden per virtual host

[ltpa] or [ltpa:<VH-Label>]

ltpa-keyfile = <full path of keyfile>

ltpa-stash-file = <password stash file location>

ltpa-password = <password in lieu of stash file>

ltpa-lifetime = <lifetime of LTPA cookie in seconds>

Web Server Plug-ins

7-86

86

Post-Authzn Module – Tag/Value Support

Allows HTTP Headers to be added to request
Before it is processed by the Web Server

Information is taken from users credential
Authentication Modules add data to credential at login
time

Useful for passing information to Web Apps
Easy for them to extract data from HTTP Headers

post-authzn = tag-value

Web Server Plug-ins

7-87

87

Tag-Value Configuration

Tag-Value
Specify whether configuration should be cached

– Rather than checking objectspace each time
If cache on then refresh time also set (in seconds)

Tag-Value in pdwebpi.conf:
Default config can be overridden per virtual host

[tag-value] or [tag-value:<VH-Label>]

cache-definitions = yes

cache-refresh-interval = 60

