
Form-based Single Sign-On

6-1

Jon Harry
Jon P Harry/UK/IBM

1

Single Sign-on to Forms-based Login Pages

This presentation describes the new functionality implemented in AM v3.9
that allows WebSEAL to automatically sign users into a junctioned back end
server that is using form-based authentication.

Form-based Single Sign-On

6-2

2

Introduction

Form-based Single Sign-On

6-3

3

Application Integration Goal

Final Goal must be to have TRUST
LTPA Cookies with WebSphere and Domino
Trust Association
No need to pass user password to the back-end

– Which is inherently insecure

This kind of integration can take time
But existing applications need to be integrated NOW

A quick temporary solution is often required
This is where Forms-based SSO is used

Form-based single sign-on should not be viewed as a way to remove the
necessity to fully integrate WebSEAL and back-end applications using some
form of trust basis. It should be viewed as a way to allow a quick integration
solution that can be used while something better is being developed and tested.

Form-based single sign-on (and other ways for WebSEAL to fool a backend
server that a user has logged on) are inefficient because they require both
WebSEAL and the back-end server to perform authentication for every user.
In many cases WebSEAL and the backend server have different user registries
which means that two sets of authentication information need to be maintained
and synchronised.

Auto login techniques also require that users password information for the
backend server is stored in such a way that it can be retrieved in clear text in
order to submit it to the backend server on behalf of the user. This is not an
ideal situation.

Form-based Single Sign-On

6-4

4

Single Sign-On with an existing application

Often existing application cannot be changed
At least not in the timescale required

Need a way to “spoof” the user login
User unaware that second login is taking place
Back-end unaware that it is not the real user

This is relatively easy with Basic Authentication
userId/password included with request

Need a solution for forms-based login pages

Forms-based single sign-on is intended for use with existing applications that
use form based authentication and cannot be modified to directly trust the
authentication done by WebSEAL.

These applications expect users to authenticate via a login form that is
presented on the users browser, filled in by the user and submitted. We need
some way to interrupt this process so that the login form can be submitted by
WebSEAL on the users behalf without them ever seeing it.

In order to achieve this WebSEAL must recognise when a login form is being
presented and be able to interpret it and respond accordingly.

Form-based Single Sign-On

6-5

5

How is second login hidden from user?

WebSEAL handles login on behalf of user
After performing authorization check

WebSEAL

Request“Click”

Challenge

Authenticate

Response

The diagram above shows the general principle behind how single sign-on is
achieved.

A user, who has already successfully authenticated to WebSEAL attempts to
access some resource on a backend server.
The back end server configuration specifies that the resource being requested
requires it to authenticate the user and authorize the transaction and so sends
an authentication challenge to the user.
WebSEAL recognises the authentication challenge and responds on behalf of
the user. This requires that WebSEAL knows the appropriate response to the
challenge and has the necessary information.
The back end server is unaware that the authentication information has come
from WebSEAL rather than the end user and performs an authentication as it
would for any other user.
Assuming that the authentication is successful the back end server then
authorizes the transaction and sends a response which WebSEAL forwards to
the user.
Note that the user only sees a single exchange – they make a request and the
response is returned.

Form-based Single Sign-On

6-6

6

Basic Authentication SSO is simple because….

Basic Authentication process is well defined
Standard Authentication Challenge
Standard Authentication Response

BA Header is sent with every request
Can usually pre-empt challenge
No need for server to maintain state

– Each request can be authenticated/authorized independently

BUT… Basic Authentication is not that common
Forms-based login is far more widespread
It is much more flexible and looks better

WebSEAL has been able to automatically log users into servers that use Basic
Authentication for a long time. It’s worth noting why this is an easier to
accomplish than logging a user onto a form-based authentication system.
The Basic Authentication exchange is defined in the HTTP standard and so
there is little ambiguity in how the server should initiate an authentication
challenge or how the client should respond. Also, the Basic Authentication
exchange does not allow state information (such as cookies) during
authentication . This means WebSEAL does not have to be concerned about
maintaining state with the backend server while it is performing the login.

Although performing single sign-on with Basic Authentication is relatively
easy, most servers choose not to use it as a means of authentication – primarily
because the User Interface is un-sophisticated and set by the browser, and also
because it is limited to a single host-name.

Forms-based authentication is much more widely used because it is more
flexible. Unfortunately it is this very flexibility that makes single sign-on to
forms-based systems so much more difficult to handle – as we will see.

Form-based Single Sign-On

6-7

7

Challenges of Form-based Single Sign-on

Identifying an authentication challenge
No standard defined for login page URI or content

Responding to authentication challenge
No standard defined for response
May require client-side processing of user input

– e.g., JavaScript, java applet

Maintaining state with the back-end server
Cookies, HTTP headers, Hidden form inputs

Making login transparent to end user
User does not see login request
Interpreting errors from back-end server

There are two main parts to form-based single sign-on.
The first is the ability to identify when the back end server sends a login page.
This is harder than it sounds because a login page is not a special page – it is
just like any other HTML page that has a form on it. WebSEAL could
examine every page returned by the back-end to determine if it contains a
login form – the trouble is that this would be very inefficient because it would
require a text search of every page. A more efficient way is to watch for a
request for the login page (/login.html for example) from the browser and then
intercept the response knowing that it will contain a login form.

Once a page known to contain a login form is received (and the login form
identified within the page) the second part of form-based single sign-on is
determining how to correctly respond to the server. The fields on the form
(usually username and password) must be completed and then the form action
executed. In addition, hidden form fields must be returned and so must the
appropriate cookies and HTTP headers that the server will expect.

Once the automatic login has been completed the session must be returned to
the end user browser – hopefully with no sign that the automatic login has
taken place.

Form-based Single Sign-On

6-8

8

Identifying the Login Page

Form-based Single Sign-On

6-9

9

Login Page Restrictions

Login only handled for URI Match on request
login page returned in response to a “normal” request is
not supported

If URI match then login form must be present in
response

Error returned if login form not found in page
Problem for embedded login form

– Only present until user logged in

Action URI of form must be on the same junction

In order to maintain acceptable performance of WebSEAL in a form-based
SSO environment the restrictions shown above have been imposed:

It is impractical for WebSEAL to search every received page to check whether
it contains a login form that needs to be filled in. As a result, WebSEAL will
only initiate its SSO functionality if it can determine from the HTTP request
from the browser that the response will contain a login form. If the user
request does not provide a match then any login page send will not be dealt
with – it will be forwarded to the user as a normal page.

Once the SSO function has been triggered then WebSEAL will expect to find a
login form in the response. If it does not then this is considered an error and
an error page will be returned to the user.

Finally, because form-based SSO is handled on a per junction basis, the login
page and action URI must be on the same junctioned server.

Form-based Single Sign-On

6-10

10

Form Based Login Techniques - 1

User clicks on link to specific login page
Login page can be identified from URI in request

HTTP://myhost.com/login.html

Login Page

Supported

The diagram above shows the simplest way that a form-based login can be
initiated. In order to sign in the user clicks on a link to a specific login page
and the server responds with the page containing the login form.

It is simple for WebSEAL to support this environment. When the user clicks
on the “Login” link WebSEAL recognises the request for the login page and
starts its SSO functionality. It requests the login page from the back end
server and when the login page is returned is intercepted and dealt with on the
users behalf.

Note that in this environment the user may still have to click on a “Login” link
to initiate the single sign-on. Of course a link on another page could connect
the user to the login page without the user being aware that they are being sent
to a login page (which they won’t see anyway).

Form-based Single Sign-On

6-11

11

Form Based Login Techniques - 2

HTTP re-direct used to send user to login page
Login page can be identified from URI in request

HTTP://myhost.com/resource.html

Re-direct to Login Page
Restricted

Access

HTTP://myhost.com/login.html

Login Page

Supported

Another way that a backend server might implement its form-based single
sign-on is to re-direct the user to a specific login page whenever they attempt
to access a resource that is not available to an unauthenticated user.

WebSEAL can also support this environment with no problem because it is
really the same as the previous example except that the request for the login
page is initiated by a re-direct instead of by the user clicking on a link.
WebSEAL will recognise the request for the login page and initiate the form-
based SSO function. This will request the login page from the back and the
deal with it on the users behalf.
Once the login process has been completed the back-end server will normally
re-direct the user back to the original resource they requested. This re-direct is
forwarded back to the browser and causes a new request for the resource to be
made and the user is unaware that the login took place.
This implementation of form-based login is really the best for use with single
sign-on because the user is unaware of the login process – they don’t even
have to click on a special link.

Form-based Single Sign-On

6-12

12

Form Based Login Techniques - 3

Login page returned instead of requested page
The same URL may or may not include login form
No way to ensure URI Match=Form Returned

HTTP://myhost.com/resource.html

Login Page

resource.html Permitted

May not be

supported

Login
Required

UnAuth

UserX HTTP://myhost.com/resource.html

The diagram above shows an example of a form-based login implementation
that WebSEAL may not always be able to handle.
In this case the Web server does not return a re-direct to the login page in
response to an unauthenticated request it simply returns the login form instead
of the requested resource. This is known as “in-line” authentication and is the
way that WebSEAL itself functions.

The important thing to notice in the diagram is that two requests are being
made for the same URI but one results in a login page being returned and the
other does not.
If WebSEAL were configured to match on this URI then the login would be
handled successfully but then an error would be returned when the same URI
is matched but the response does not include a login page.
If WebSEAL were configured to NOT match on this URI then the login would
not be handled because the forms-based SSO code would not be triggered.

The only way around this problem is to find a way to ensure that the SSO code
is triggered once the first time the user needs to access the site but is not
triggered by subsequent requests to the same site. This is discussed later.

Form-based Single Sign-On

6-13

13

Form Based Login Techniques - 4

Login form embedded in every page
The same URL may or may not include a login form
No way to ensure URI Match=Form Returned

HTTP://myhost.com/home.html

Public page (with login form embedded)
Public
Access

User Specific page (no login form)
User

Identified

UnAuth

UserX

May not be

supported

HTTP://myhost.com/home.html

The diagram above shows a second example of a form-based login
implementation that WebSEAL may not always be able to handle.
In this case the web server includes a login form with every page that is sent
to the user until they authenticate. Once the user has authenticated the login
page is no longer sent.
Again, the important thing to notice in the diagram is that two requests are
being made for the same URI but one results in a login form being returned
and the other does not.
If WebSEAL were configured to match on this URI then the user would be
logged in but then an error would be returned when the same URI is matched a
second time but the response does not include a login page.
If WebSEAL were configured to NOT match on this URI then the login would
not be handled because the forms-based SSO code would not be triggered.

The only way around this problem is to find a way to ensure that the SSO code
is triggered once the first time the user needs to access the site but is not
triggered by subsequent requests to the same site. This is discussed later.

Form-based Single Sign-On

6-14

14

Supporting In-Line and Embedded Login Forms

If server ignores query data…
e.g. HTTP://myhost.com/index.html?dummy

…use this to trigger WebSEAL SSO code
WebSEAL URI match includes dummy query data
This request must be made only once – following requests will not
return form (webseal errror). Possible approaches:

– include link in WebSEAL login.html
– require user to visit welcome page that includes javascript that

requests link only if user not logged in
Normal pages won’t include dummy so WebSEAL won’t expect
form data

Bookmarks won’t work in this environment
These won’t include dummy query data trigger
login form returned to user!

It may be possible to support environments where the same URI sometimes
results in a login form and sometimes does not by changing the match that
triggers the SSO code so that its initiation can be more precisely controlled.

An example of this workaround is to add some dummy text to the SSO trigger.
This dummy text will not be included in “normal” requests to the back end and
so the SSO code will not be initiated.
For this to work, the “dummy text” link must only be requested once (because
subsequent requests will not return the login form which is webseal error
case).
This may be accomplished by including this dummy-link text on the webseal
login form (login.html). ch limiting the dummy-text linke to trigger the SSO
code the user must click on a link (on some other page) that DOES contain the
dummy text. This will trigger the SSO code and, assuming that back-end
ignores the dummy text, the login will be successful.

The downside of using this technique is that the user MUST click on the link
to access the back-end server for the first time in each session. If they access
in some other way (going direct to other pages from a bookmark for example)
then they will not be logged in and will see a login form. This might be a
problem if they don’t know the password for manually logging into the
backend server.

Form-based Single Sign-On

6-15

15

Supporting In-Line and Embedded Login Forms

Page contains link that has dummy query data
This provides a URI match for WebSEAL
Match not present in any other requests

http://myhost.com/index.html?dummy

Login Page

http://myhost.com/index.html

Response Permitted

Login
Required

The diagram above shows how the triggering of the SSO function can be
controlled by modifying the match required.

In the example above WebSEAL could be configured so that the SSO code is
only invoked if /index.html?dummy is requested.

As long as the first page requested from the back-end server (which will result
in a login page) includes the ?dummy extension then the login page returned
will be handled.
This could be achieved by including this ?dummy link on the WebSEAL login
page. All other Subsequent requests for the same resource (which will not
result in a login page) should not include the ?dummy extension.

As mentioned previously, this technique will fail if the user requests a page on
the back-end server that they have book-marked. This will result in a login
page but the SSO code will not be triggered and so the user will receive the
login page. This may be acceptable if they can log in manually but this may
not be possible if they don’t have the UserID and password required.

Form-based Single Sign-On

6-16

16

Processing the Login Form

Form-based Single Sign-On

6-17

17

Locate the Login Form on the Page

The action is used to identify the login form
This is specified in the configuration file
If multiple matches then first is used

<html>

<form action=“handleLogin.jsp" method="post">

<input type="hidden" name="dologin" value="yes">

Username: <input type="text" name="userid">

Password: <input type="password" name="password">

<input type="submit" value="Login">

</form>

</html>

Once the Form-based SSO code has been triggered, and a page returned by the
back-end server, WebSEAL must next locate the login form on the page. This
step is required because the page returned may contain several forms.

The text extract above shows how a single form is described in HTML – there
may be a number of these on a page. The form tag includes a number of
attributes – one of which is the action attribute. This attribute specifies where
the form data should be sent when the form is submitted. WebSEALs
configuration matches this attribute to identify which form it should process.

If several forms on the page have an action that matches what is configured in
WebSEAL then the first will be used.

Note that the action shown above is a relative URL. This does not have to be
the case – it may be an absolute URL or a server relative URL. WebSEAL can
handle all of these, but in the case of an absolute URL the server must be the
same server that served the login page (and therefore on the same junction)
because form based-SSO works on a per junction basis.

Form-based Single Sign-On

6-18

18

Extract inputs from the form

All hidden inputs are extracted from the form
These may contain session information

<html>

<form action=“handleLogin.jsp" method="post">

<input type="hidden" name=“snid" value=“2938472">

Username: <input type="text" name="userid">

Password: <input type="password" name="passwd">

<input type="submit" value="Login">

</form>

</html>

Once the login form has been identified, WebSEAL must extract any
information contained in hidden inputs. This information is likely to be
required by the back-end server in order to process the login.

Hidden inputs often contain session information, that allow the server to link
the initial login request with the users response, or something that will trigger
the login processing then user submits the form.

WebSEAL examines all of the input tags and stores the name and value any
that have a type attribute of hidden. All of these inputs will be sent to the
back-end server by WebSEAL along with the inputs specified in the Form-
based SSO configuration.

Form-based Single Sign-On

6-19

19

Fill in form on users behalf

Configuration file determines how this is done
Can specify to:

Add inputs with values to the form (e.g. userid)
Override values for hidden inputs from the form

Values can be:
Any field from the user’s credential

– Which may in turn have come from LDAP
A GSO Username and Password for the user

– For GSO target specified in configuration file
Any fixed string

The final part of the forms-based single sign-on process is to fill in the form on
the users behalf and submit it to the back-end server.
The SSO configuration for the login page specifies which inputs need to be
added to the form for the authentication to succeed at the server – for example
inputs that contain username and password. It is also possible to override the
value of hidden fields – although this is not usually necessary.
In addition to setting the input values to a fixed string, WebSEAL can also get
information to put into the inputs from:

Users Credential: Any parameter from the users credential, AM generated
(e.g. azn_cred_principal_name) or added by a CDAS, can be extracted and put
into the form. If the tag-value support has been used to store information from
LDAP in a user credential then this could be used to complete the form.
These attributes are prefixed with ‘tagvalue_’ in the credential.

GSO Information: Part of the forms-based SSO configuration may specify a
GSO target. If this is done then the current users resource UserID and
password for that target can be used.

Form-based Single Sign-On

6-20

20

Information used to complete login form

snid=“2938472”
auth=“local”

Form Hidden Inputs:

WebSEAL
Form-based SSO

Engine

userid = gso:username
passwd = gso:password
auth = string:poldir
appinfo = cred:LIMIT

Config File:

User Credential GSO Data

Snid=“2938472”
userid=“jharry”

passwd=“passw0rd”
auth=“poldir”

appinfo=“1000”

user: jharry
p/w: passw0rdLIMIT: 1000

Inputs sent with
login action:

The diagram above summarises how the hidden inputs from the form and the
SSO configuration are combined to build the inputs that will be sent when the
form is submitted.

The order that the inputs are sent when the form is submitted is the same order
in which they were received on the form. If additional inputs are specified in
the SSO configuration that are not in the form then these will be at the end of
the list in the order in which they appear in the configuration.

In the example above the hidden snid input is not mentioned in the
configuration file and so is submitted to the server unchanged. The userid and
passwd inputs specified in the configuration file are filled in with the current
users GSO username and password. The hidden input auth from the form is
overridden with the fixed value “poldir”. The input, appinfo, will be filled in
with the value of the LIMIT attribute from the users credential.

Inputs do not have to be present on the received form in order to be specified
in the configuration – all inputs specified in the configuration will be
submitted.

Form-based Single Sign-On

6-21

21

Client-side processing of submitted data

Forms can run embedded scripts on user data
Before it is submitted to the server

This may or may not be a problem:
Verification of user data

– E.g. Check fields completed, check all lower case
– OK because data is not changed

Fixed transform of data
– E.g. Hash of user password
– Maybe OK if data can be stored already transformed

Dynamic transform of data
– E.g. Hash of password+random challenge from server
– Cannot be supported

Some login pages execute script code (Javascript, ActiveX etc) before the
form is submitted. WebSEAL does not execute this code and this may cause a
problem if the code is required for the login process.

It is not a problem if this code is simply intended to check the input prior to
submission but it may present a problem if it modifies the user input.

If the user input is modified in a fixed way then it may be possible for this to
be handled by providing the input data to WebSEAL in the way that it would
be finally presented to the back-end server after the modification. This pre-
modified information could be stored in the GSO database or added to the
users credential at login time by a custom CDAS.

If the user input is modified in some dynamic way (combined with some
random data from the back-end for example) then WebSEAL will not be able
to handle this.

Form-based Single Sign-On

6-22

22

Maintaining Cookies and HTTP Headers

Form-based Single Sign-On

6-23

23

Cookies and Headers During Login

Headers are sent with every browser request
Cookies are set by the server

They may overwrite a previous value

Request for Login Page

Login Page

Cookies HTTP Headers

Cookies

Login Action

HTTP HeadersCookies
Cookies

User
Login

Response
Cookies

Cookies and HTTP Headers are important in a form-based login enviroment
because they are often used by the server to identify the users session. This is
not so important in a Basic Authentication environment because the Basic
Authentication header (which is sent with every request) can be used instead.

The diagram above shows what cookies and headers might be involved in a
login exchange.
When the browser makes its request for the login page this will probably
include both HTTP headers and cookies.
When the server sends the login page to the browser it may set some additional
cookies. Some of these might be new and some might update the value of
existing cookies.
When the login form is submitted the HTTP headers are sent again along with
an extended set of cookies. The set of cookies sent will include all of the
cookies from the previous request and all those set by the server in the
previous step. A cookie can only have a single value so any cookies set with
the login page will have overwritten any cookie with the same name from the
original request.
When the server has completed the login process it will send a response. This
may include yet another set of cookies.

Form-based Single Sign-On

6-24

24

Maintaining Cookies and HTTP Headers

WebSEAL is pretending to be the user’s browser
It must send the right headers and cookies
Server may be using these to track user session

Cookies set during login must be passed back
Browser needs them so that it can continue session

WebSEAL must store cookies and headers during
login process

Must be able to handle the same cookie being set twice
during the login process

Since WebSEAL is going to fill in the login form on the users behalf, it must
be able to send the correct set of cookies and headers to the server along with
the login form. These may be used by the server to track the user session
during the login process.
WebSEAL stores the cookies and HTTP headers that are sent with the request
for the login page and adds to these the cookies that are set by the backend
server when it sends the login page.
Once WebSEAL has processed the login form it submits the form along with
the full set of cookies and HTTP headers it has saved. If any cookie with the
same name was received from the browser and from the server the server value
will be used because it was set last.
When the server responds to the login action it may set more cookies. These
are passed back the the browser along with any cookies set with the login
page. If any cookie with the same name was received from the server twice
the value from after the login is used because it was set last.
By using the process above WebSEAL ensures that the server receives all the
cookies that would have been sent by the browser and also ensures that the
browser is updated with all the cookies that were set by the server.

Form-based Single Sign-On

6-25

25

Form-based SSO flow diagram - 1

WebSEAL

Request for login page
URI Match! Request for login page

Login Page

Cookies
HTTP Headers Cookies

HTTP HeadersCookies
HTTP Headers

Cookies

Request for resource

Redirect to login page
Cookies

HTTP Headers

Cookies

Not
Public

Cookies

The diagram above shows the first half of a typical form-based SSO login
process. It assumes that the user has already authenticated to WebSEAL.
The user requests, from WebSEAL, a resource from a junctioned back-end
server. This request is authorized by WebSEAL and then passed onto the back
end server. The back-end server also wants to authenticate the user so a re-
direct to a login page is sent back. WebSEAL passes this back to the browser.
The re-direct causes a request for the login page to be sent to WebSEAL.
After authorizing the new request, WebSEAL recognises its URI and this
triggers the Forms-based SSO function.
WebSEAL requests the login page from the backend server. This request
includes the cookies and headers from the browser. It also stores these for
later use.
The backend server is unaware that this request is from WebSEAL and not
from the browser and so returns the login form to WebSEAL. If any cookies
are included in the response WebSEAL also stores these for later use. Any
cookies of the same name that it already has stored are overwritten.

Continued on next page…

Form-based Single Sign-On

6-26

26

Cookies

Form-based SSO flow diagram - 2

WebSEAL

Build
Response Login Action

Cookies
Cookies

HTTP Headers Login
OK

Redirect to Resource
Cookies

Redirect to Resource
Cookies

Cookies

Request for resource

Resource Sent
Cookies

Cookies

HTTP Headers

Cookies
Cookies

HTTP Headers

Cookies
Cookies

Continued from previous page…
WebSEAL uses the SSO configuration associated with the junction to locate
the correct form in the login page. It then extracts the hidden inputs from the
form and uses them along with the junction SSO configuration to build the
response for submission. This response is then sent to the backend server
along with the stored cookies and HTTP headers.
The backend server authenticates the user using the information in the
submited form and, assuming that the login is successful, it returns a re-direct
back to the originally requested resource.
WebSEAL passes this re-direct back to the browser along with the cookies that
were set by the server when it sent the login page and the cookies sent with the
re-direct. If any cookies were set in both cases then the value set with the re-
direct is used. This is the end of the Form-based SSO involvement.

As a result of the re-direct the browser sends a new request for the resource to
WebSEAL. This request includes the cookies just set by WebSEAL that came
from the back-end.
WebSEAL authorizes the request and passes it to the backend. Since the user
is now logged in the backend server sends the requested response which
WebSEAL passes back to the user.

Form-based Single Sign-On

6-27

27

Authorization During Form-based SSO process

WebSEAL authorizes all requests including:
User request for login page
POST of completed login form

Do not forget to allow access to these resources
Otherwise no users will be able to log in

Since the primary role of WebSEAL is to protect Web resources from
unauthorized access it must authorize all requests for resources even if they are
part of a Form-based single sign-on process.

WebSEAL checks the ACL database before allowing access to the back-end
server login page and also checks before allowing access to the URI specified
in the form action (where the completed login form is sent).

If the security policy does not give permission for the current user to access
these pages then the Form-based single sign-on will fail.

Form-based Single Sign-On

6-28

28

Configuration

Form-based Single Sign-On

6-29

29

Configuration steps

Configuration of Form Based SSO is in two
steps

1. Configure URI match and login information in
configuration file

2. Point to configuration file in junction create command

Form-based SSO is configured on a per junction basis.

First a configuration file is created on the filesystem and then this is specified
on the junction create command using the new –S parameter.

Form-based Single Sign-On

6-30

30

Configuration File - Overview

Configuration File has the following format:

[forms-sso-login-pages]
login-page-stanza = <xxxxx>

[<xxxxx>]
login-page = <login page match>
login-form-action = <login form match>
gso-resource = <gso target>
argument-stanza = <yyyyy>

[yyyyy]
<input name> = {gso|cred|string}:<value>

Multiple entries allowed

Regular Expression

Needed if GSO used

Multiple entries allowed

The diagram above shows the format of an Form-based SSO configuration file.

This is a text file that contains a stanza called [forms-sso-login-pages] and
then a number of other stanzas (that can have any names) which are pointed to
from that stanza.

Details of the configuration file parameters are given on the following pages.

Form-based Single Sign-On

6-31

31

The [form-sso-login-page] stanza

[forms-sso-login-pages]
login-page-stanza = loginpage1
login-page-stanza = loginpage2

Points to the stanzas that describe the login pages on
the junctioned server
Multiple entries are allowed to accommodate multiple
login pages on the same junctioned server

– Most likely if multiple applications on the back-end server
The value of each login-page-stanza points to anther
stanza that must exist in the file.

In an Form-based SSO configuration file there must be a stanza called [forms-
sso-login-pages].

This stanza must contain one or more login-page-stanza entries which point to
other stanzas (by name) that contain the configuration for the different login
pages found on the back-end server.

The ability to support multiple login pages on a single junction is important
because a single back-end server might host several applications that each use
form-based SSO with different login pages.

Form-based Single Sign-On

6-32

32

Login Page Stanzas

Name of stanza is user defined
Must contain:

login-page
– Regular Expression that uniquely identifies login page URI

login-form-action
– Regular Expression that identifies login form on login page
– Must match what back-end server sends in action= attribute

gso-resource
– GSO Target for login
– Can be left blank if GSO not used

argument-stanza
– Pointer to stanza where form processing is described

Each login page stanza contains a login-page parameter that specifies a pattern
match to identify the login page. This is what will be matched against the URI
of incoming user requests.

Once a request URI is matched to the login-page parameter and a login page
returned, the login-form-action parameter is used to locate the correct form on
the login page. If multiple forms match then the first will be used.

A GSO target can be specified in the login page stanza using the gso-resource
parameter. This paramter must be present in the stanza but only needs to be
completed if the GSO database is needed to complete the form.

The stanza pointed to by the argument-stanza parameter is examined to
determine how the login form should be completed.

Form-based Single Sign-On

6-33

33

login-page parameter

Only one ‘login-page’ parameter allowed in stanza
Must match a request for the login page

And not match a request for any other page

It is a URI given relative to the junction
A Server relative URI
It does NOT include the junction name

It must be a regular expression
Format described later

The login-page parameter is a regular expression that WebSEAL uses to
determine if an incoming request is a request for a login page. Only one login-
page parameter is allowed in each login page stanza but multiple login page
stanzas can be used if necessary. The ways in which a regular expression can
be built are shown later.

The regular expression is compared against the request URI relative to the
junction.

For example the URI of a request to a WebSEAL server called webseal1 for a
resource on a junction called junction1 might look as follows:

https://webseal1.mycompany.com/junction1/auth/login.html

The part of this that will be compared to the login-page regular expressions is:

/auth/login.html

Form-based Single Sign-On

6-34

34

login-form-action parameter

Only one ‘login-form-action’ allowed in stanza
Identifies the login form on the login page

Matches the action parameter of the form
It matches the unfiltered version of the action URI

– WebSEAL modifies absolute and server relative URIs
Whatever appears in the login page source

If multiple matches on page then the first is used

It must be a regular expression
Format described later

The login-form-action parameter is used to identify the login form on the page
returned by the back-end server following a request matching the login-page
parameter.
Only one login-form-action parameter is allowed in each stanza.

The login-form-action parameter value is a regular expression that is matched
against the contents of the action= attribute of the form tag. The action
attribute will be a URI and might be in the form of a relative, server relative or
absolute URI. The login-form-action must match this as it comes from the
server – even if it would normally be modified by WebSEAL before being
forwarded to the client.

If multiple action parameters on the page match the regular expression then
the first will be taken as the login form.
If the login-form-action parameter does not match any form on the page then
an error will be returned to the browser reporting that the form could not be
found.

Hint: Setting login-form-action to * is an easy way to match the login form
when there is only one form on the login page (which is often the case).

Form-based Single Sign-On

6-35

35

Regular Expression Format

Used for both login-page and login-form-action

Regular expressions can use the following:
* Zero or more characters
? One character
\ Escape Character (e.g. \? Matches ?)
[acd] Character a, c or d (case-sensitive)
[^acd] Any character except a, c or d (case-sensitive)
[a-z] Character between a and z (lower case letter)
[^0-9] Character not between 0 and 9 (not a number)
[a-zA-Z] Character is in either range

The slide above shows the special characters that can be used in the regular
expressions found in the SSO configuration files.

In most cases special characters will not be required because the login page
request will be a single identifiable URI. In some cases it might be desirable
to use a * at the end of the expression so that any query data at the end of the
URI will not prevent the login page from being matched.

It is worth noting that if the login URI contains a ? then this should be matched
with \? since ? alone will match any character.

Form-based Single Sign-On

6-36

36

Argument Stanzas

Stanza name is user defined
Same argument stanza can be reused

Point to it from multiple login-page stanzas
Instructs AM how to fill in login form

Contains one of more <input> = <value> entries

Valid values:
gso:username – Username of current user in GSO
gso:password – Password of current user in GSO
cred:<name> - Value of credential attribute <name>
string:<text> - Fixed text

The argument stanzas contain one or more <name> = <value> entries that
describe how the inputs on the login form should be processed in order to
complete a login on the users behalf.
The name is the input name and the value specifies how it should be filled in.
The are four possibilities:

gso:username – This keyword indicates that the current users GSO username
(from the target specified in the login page stanza) should be placed into the
input.
gso:password – This keyword indicates that the current users GSO password
(from the target specified in the login page stanza) should be placed into the
input.
cred:<name> – The cred keyword followed by an identifier indicates that the
input should be filled in using the value associated with the named attribute
from the current users credential. By default the credential contains
information such as the users principalName and DN but custom credential
attributes (such as those added as part of the tag-value support) can also be
used.
string:<text> - The string keyword followed by text means that the input
should be filled in with the text indicated.

Form-based Single Sign-On

6-37

37

Configuration File Example - 1

[forms-sso-login-pages]
login-page-stanza = wpm
login-page-stanza = selfreg

[wpm]
login-page = /*/auth/handleLogin.jsp
login-form-action = handleLogin.jsp
gso-resource = wpmgso
argument-stanza = wpm-login

[wpm-login]
userid = gso:username
password = gso:password

The slide above (and the next slide) show an example of a forms-based SSO
configuration file. This example allows automatic login to the Access
Manager Web Portal Manager (WPM) applications and self registration
example.

There are two different login-page-stanza entries – one for each the different
login forms. One points to a stanza called wpm and the other to selfreg.

In the [wpm] stanza the login-page attribute matches the login URI of both the
pdadmin application and the delegate application by using a *. The login-
form-action matches the action contained in the form tag (this could have been
set to * since there is only one form on the page). The gso-resource parameter
is used because the user and password information needed to sign the user into
the WPM will come from the GSO database. The argument-stanza parameter
points to the wpm-login stanza.

The [wpm-login] stanza specifies that input named userid and password
should be submitted and that they should be filled in with information from the
GSO database ((using the wpmgso target as specified above)). Any hidden
inputs on the form (there is a hidden input called dologin) will be submitted
unchanged as they are not mentioned in the configuration.

Form-based Single Sign-On

6-38

38

Configuration File Example - 2

[selfreg]
login-page = /register/regster/regControl.jsp\?method=check
login-form-action = regControl.jsp
gso-resource = selfreg
argument-stanza = reg-login

[reg-login]
admin = gso:username
password = gso:password
suffix = string:o=ibm,c=gb

The slide above shows the second half of our example configuration file.

In the [selfreg] stanza the login-page attribute matches the login URI of the
self registration demo application. There are no wildcards included; notice
that the ? has been escaped.. The login-form-action is set to match the action
in the form tag. The gso-resource parameter is used because the user and
password information needed to sign the user into the application will come
from the GSO database. The argument-stanza parameter points to the reg-
login stanza.

The [reg-login] stanza specifies that inputs named admin and password should
be submitted and that they should be filled in with information from the GSO
database (using the selfreg target as specified above). An input named suffix
should be completed with a fixed string o=ibm,c=gb. If there are any hidden
inputs in the form then these will be submitted unchanged because they are not
mentioned in the configuration.

Form-based Single Sign-On

6-39

39

Configuration: New Junction Option

Use –S <Config File> in junction create to
specify form-based SSO

Include path and filename of config file

Example:

pdadmin> s t webseald-myhost create –t tcp –h websvr1
–S c:\fsso\websvr1.conf /webapp1

Created junction at /webapp1
pdadmin>

If config file changed use reload to load update

Once the form-based single sign-on configuration file for a junction has been
completed it is specified during the junction create command to bring it into
effect. A new parameter (-S) has been added to the junction create syntax to
allow the configuration file to be specified. The presence of this attribute also
enables the form-based SSO function on the junction.

The configuration file is read when the junction is created and each time
WeSEAL is started. If changes are made to the file and need to be activated
then reloading the junctions will cause this to take place.

If there are errors in the form-based SSO configuration file specified on any
junction then WebSEAL will fail to start. If the default routing file is in use
then an error will be logged to file (and also printed to STDERR if WebSEAL
is running in the foreground).

Form-based Single Sign-On

6-40

40

Form-based SSO, Basic Auth and GSO

Form-based SSO can co-exist with both:
Basic Authentication Headers
GSO on junction

If GSO Target specified on junction
Can be the same or different to what is used in Form-
based SSO configuration on the same junction
It is not required for Form-based SSO operation

Although forms-based SSO can make use of information in the GSO database
it does not interfere with the GSO capability of the junction that is specified
using the –b gso and –T <target> flags in the junction create command.

It is possible, if required, to have one GSO target in use to fill in the Basic
Authentication headers sent to the backend server and another specified in the
forms-based SSO configuration for use when filling in login forms.

