
The starting point for Bluemix are
“born-in-the-cloud” applications,
and developers can use it to expand

them further. The Platform as a Service
(PaaS) provides the necessary infrastruc-
ture, various runtime environments and a
number of supporting services. The many
examples it includes provide easy orien-
tation for those wanting to press on with
the expansion of applications in the envi-
ronment with the help of any develop-
ment tool they wish to use. The system
mechanizes the resulting code and trans-
fers it to the Bluemix cloud. There the de-
veloper can automatically transform it in-
to an executable application using the
preconfigured services.

IBM advertises with the fact that
Bluemix allows developers to create
cloud applications in an extremely short
time. In a practical test, it really did only
take a few minutes to prepare a simple
web application (see box text “Instant
apps”) for the cloud. The complete cycle,
from changing the application code and
assembling the execution components to
installing the finished application, was al-
most equally fast, and it only took a few
minutes longer to create a first self-writ-
ten application. Further development is
just as simple as the conventional cre-
ation of web applications. The greatest
difficulty is finding the suitable combina-
tion of services and options among the
wealth of examples provided, and the
amount of offers can be quite confusing
at times.

The use of the Bluemix cloud does not
require a special tool for developing an
application and can be set up using just a
few command line commands. All of the
work can be carried out completely in the
web, for example using the purely brows-
er-based “JazzHub” platform from IBM,
which is easy to combine with the
Bluemix cloud environment. Alternative-
ly, developers can use integrated frame-
works such as Eclipse by installing a suit-
able plug-in.

Do-it-yourself cloud
applications
The direct route to a Bluemix application
always follows the same pattern. At the
beginning you have to select an execution
environment in which the program logic
keeps the various strands of the compo-
nents together. Services expand the range
of functions and provide aids for admin-
istration.

All components are available and ex-
ecutable within the cloud in a coordinated

REVIEW | CLOUD APPLICATION

IBM’s Platform as a Service: Bluemix

Blueprint
Michael P. Wagner

Under the name Bluemix, IBM offers a platform based on the
open-source Cloud Foundry and designed for the further
development of web, cloud and mobile applications. It is said
to allow preconfigured services to be combined to form
modular application environments with just a few clicks of
the mouse.

⬛-TRACT
⚫ With Bluemix, IBM has created an environment in which developers can get their

software ready for the cloud.

⚫ The Bluemix includes the freely available browser-assisted development platform
JazzHub.

⚫ Programmers can freely choose which tools to use.

⚫ Other development environments such as Eclipse can be integrated via plug-ins.

Reprint
issue 04/15

© by Heise Medien GmbH & Co KG, Hannover

x MAGAZIN FÜR PROFESSIONELLE
INFORMATIONSTECHNIK

configuration at a click of the mouse.
What is missing is the application code,
which you can prepare and upload using
any desired editor. Tools from the Cloud
Foundry carry out build commands, con-
nect the application components and start
the resulting application.

The status of the Bluemix applications
installed is displayed in a straightforward
way on the so-called dashboard using
tiles or lists (see Fig. 2). At the very top,
the dashboard displays the current mem-
ory consumption as well as status and
number of installed services. If an appli-
cation or a service cannot be executed,
the status is red. A click on the relevant
icon in each case provides further status
information, for example in the relevant
logs.

Beginners can use up to 20 instances
and 2 GByte of main memory free of
charge in the first month. After that, the
company charges for the use of resources
in GByte-hours (GBh), i.e. the quantity
of memory used multiplied with the num-
ber of operating hours. After the one-off
test phase, 1125 GBh are free per month,
and each further unit costs slightly more
than € 0.05. If you use 1 GByte for one
month, you have to pay approx. € 38.
The services are charged for according to
free contingents and payment models
which you can select during setup.

Everything under control

The user interface also manages the
structure of the Bluemix cloud. Organi-
zations, spaces und accounts serve as
structural elements here. When you cre-
ate a test account under bluemix.net, the
system automatically generates an organ-
ization and a space for saving the appli-
cations and services.

Users can create further spaces, for
example when they want to separate test
environments from production environ-
ments. The distribution of the software
over the environments takes place during
uploading via the specification of the tar-
get space.

REVIEW | CLOUD APPLICATION

Instant apps
Surprisingly, the fastest route to an au-
tonomous Bluemix application managed in-
dependently of the IBM universe goes via
the Command Line Tool (CLI) of the Cloud
Foundry organization. It is to be found under
https://github.com/cloudfoundry/cli. All you
have to do there is select the platform of the
development environment under “Down-
loads”. It is sufficient to transfer the source
code to the Bluemix cloud.

If you set up Bluemix as a deployment tar-
get:
cf api https://api.ng.bluemix.net

and log in via cf login, all that is missing is
the appropriate source code.

The simplest example is to be found in git.
When you install its Command Line Client
(http://git-scm.com/download), you can – af-
ter defining a local directory for the source
code – download the simple example via:
git clone https://hub.jazz.net/git/ —

communitysample/env-javaweb

This application uses Java Server Pages and
outputs all variables of its runtime environ-
ment as an HTML table. The code can be de-
ployed using a command:

cf push Bluemix4711 -m 64m

The process requires some time for compil-
ing, installing and starting. Then you can
view the output of the first cloud application
of your own in a browser under
http://Bluemix4711.mybluemix.net (see Fig. 1).

If you change the source code of the applica-
tion, for example by inserting HTML format-
ting into index.jsp, a cf push is sufficient.
Bluemix automatically regenerates the cloud
application and performs a restart.

For tracing purposes, it is sufficient to change
the application name of Bluemix4711 to one
of your own in the scripts mentioned. If the
desired name is taken, an error message is
output.

The open-source framework node RED provides a graphical development
environment for script-based applications within Bluemix (Abb. 1).

From the top: the “dashboard”
of the Bluemix user interface

provides an overview of the status
of your own applications and the

services they use (Fig. 2).

Several accounts with the administra-
tion roles Manager, Billing Manager and
Auditor are assigned to an organization.
The user can link them with different do-
mains if he wishes, so he is not forced to
use the automatically generated domain
<user defined>.bluemix.net. You have to
sort out the certifying of the necessary

SSL certificates yourself. An organization
determines the quotas for the number of
services and the quantity of GBh used.
The user can change the name of the or-
ganization if necessary.

The “Create a Space” button allows
you to create any desired number of
spaces in the Manager role. These serve

to delimit the application environments
from each other, for example in testing
(staging) and in production. It seems nat-
ural to use several of them when the con-
figuration of the services changes be-
tween releases. In addition, you can
distribute the software separately accord-
ing to target environments. The usual cy-
cle of development, testing, staging and
production is covered by automated de-
ployment in the Bluemix cloud. You have
to create a suitable automatic execution
of the tests yourself; identically config-
ured spaces are necessary for tests gener-
ated manually.

One of the strengths of Bluemix is
doubtlessly the wide range of software
components it provides for application
development. To make it easier to get
started, so-called “boilerplates” provide
preconfigured combinations of compo-
nents with which programmers can start
work immediately. The boilerplates con-
sist of an execution environment and one
or several services. If you wish, you can
combine the components to form individ-
ual environments without using a boiler-
plate. This is easier than you might think.

Command lines and text
editor suffice
An execution environment is instanced
and started by for example clicking the
Java runtime environment and defining
an unambiguous name for the applica-

Space on offer: the Bluemix cloud is divided up into organizations and spaces in
which the users can assume different roles (Fig. 3).

Comparison offers to IBM’s Bluemix
Besides the cloud environments listed below,
the most important offers comparable with
IBM’s Bluemix include those of a number of
smaller companies, some of them extremely
innovative. The majority of other cloud
platforms with a broader approach such as
SaaS and IaaS are not directly comparable as
they do not achieve the same degree of
 automation for the development of cloud
 applications.

AWS’ Elastic Beanstalk supports Java,
Node.js, PHP, Python, Ruby and .NET environ-
ments. It can be used via git or the Java web
application archive service. It supports Docker
Container for the rapid and flexible configura-
tion of the cloud applications.

Google’s App Engine (GAE) knows Java, Go,
PHP, Python and JVM languages such as
Groovy, JRuby, Scala and Clojure, but it is
 basically dependent on the programming

 language. Application development takes place
within the limits set by the GAE-API. Adminis-
tration of the cloud applications is automated.
A special memory service is available.

Salesforce’s Heroku cloud environment came
into being in Ruby, but it currently also sup-
ports Java, Node.js, Scala, Clojure, Python
and PHP. It cooperates with memory services
such as Cloudant, Couchbase, MongoDB, Re-
dis and PostgreSQL. Heroku includes a git
service of its own.

Language mix
Microsoft’s Azure Web Sites (MWAS) consists
of mixed applications in the languages Java,
Node.js, PHP and Python. .NET environments
can be used too. Developers can create cloud
applications on the basis of a website catalog
with over fifty offers. The applications can be
expanded step by step, and the code can be

maintained using a number of different web
services.

Red Hat’s OpenShift Cloud supports the lan-
guages Haskell, Java, JavaScript, Perl, PHP,
Python and Ruby, and also .NET. The frame-
works it knows include Ruby on Rails and Sina-
tra as well as the databases Microsoft SQL
Server, MongoDB, MySQL and PostgreSQL.
OpenShift can use native applications for the
underlying Red Hat Enterprise Linux, so devel-
oping and compiling don’t have to take place
in the cloud.

VMware’s open-source framework Cloud
Foundry on which Bluemix is based is being
further developed by Pivotal, with the funding
coming from VMware and EMC. It provides a
special Cloud environment which supports Ja-
va, Node.js, PHP, Python, Ruby and Scala, the
database services MongoDB, MySQL, Postgres,
Redis and the message broker RabbitMQ.

tion. The organization and the space are
pre-assigned automatically, but the devel-
oper can change them. A text editor and
a command line tool belonging to Cloud
Foundry are sufficient for adding the
source code. When you create a Bluemix
environment, you can manage the sources
in the freely available development envi-
ronment JazzHub and operate projects in
a completely web-based way.

Jazz Hub provides convenient
environment
If you activate the “Add GIT” button in
a freshly created environment, the system
copies the code of the Bluemix applica-
tion to a git repository and links it with
your own account in JazzHub. With “ED-
IT CODE”, JazzHub opens and the code
can be changed. Using the “BUILD &
DEPLOY” button in JazzHub, you can
copy changes to Bluemix and trigger
compilation, deployment and restart of
the application (see Fig. 3). As the frame-
work supports the coordinating of several
teams of developers, a distributed envi-
ronment for developing applications for
the cloud on the web level alone is quick-
ly created using a combination of Jaz-
zHub and Bluemix.

Although the documentation says that
Bluemix supports all browsers, it func-
tions most smoothly under Google
Chrome. It expressly only works with the
Internet Explorer as of version 8, and in
the popular Firefox, many an interaction
terminates for unknown reasons. It is ap-
parent that not all interface elements are
working without errors yet. Some of the
services cannot be installed with all
browsers because the set-up dialogs do
not work.

Back to earth as friends

There is also trouble with single sign-on
between Bluemix and the DevOps serv-
ices in JazzHub. Occasionally, interac-
tions that change between the services
cannot be completed because the author-
ized user is not recognized. The integrat-
ed match of the IBM and the Jazz ID
doesn’t help, and neither does creating
identical user IDs and passwords. It is an-
noying when a rejection of this kind oc-
curs after a long period of interaction.

IBM’s offer of using the Bluemix
cloud free of charge for one month
sounds generous at first. However, with
2 GByte of memory and a maximum of
10 services, it soon reaches its limits. For

this review, the authors had to discard ap-
plications they had just created to make
space for testing other services. You can’t
really test more complex setups – the
memory is exhausted sooner than the 10
services are.

Also, it can get really costly once the
test month is over. The free 1125 GBh
mentioned above correspond with a con-
sumption of around 1.5 GByte per month.
As each service is charged separately,
you can soon lose track (see table). Not
for nothing does IBM provide a special
service helping you to predict the prices
of the applications in the form of the “Es-
timate the cost of this app” button. You
should precisely calculate what you put
together so easily. Unfortunately, there is
no tool for registering the current use of
resources. With the exception of the in-
struments of application development,

you don’t have much chance of optimiz-
ing the use of resources and thus reduc-
ing costs.

Conclusion

Bluemix is a convincing solution due to
the far-reaching integration of the cloud
environment it offers, the easy-to-operate
user interface and the smooth interaction
of development tools. In development,
the high automation capability during the
creating and installing of applications and
the wide range of services offered shorten
the route to an executable cloud applica-
tion.

IBM is rapidly improving Bluemix at
present. During the tests, other services
were added and some were combined,
modified or renamed or left the beta
stage. The user interface is also affected.
It will remain interesting to see in which
direction the Bluemix cloud will develop
against the backdrop of growing compe-
tition. (rh)

Dr. Michael P. Wagner

works in Munich as a company consultant
and communication scientist.

REVIEW | CLOUD APPLICATION

Integrated: Bluemix smoothly integrates IBM’s framework JazzHub and allows the pure-
ly browser-based development of cloud applications (Fig. 4).

⊕ Purely browser-based development

⊕ Rapid configuration

⊕ Complete integration

⊖ Low memory volume in the test phase

⊖ High costs for complex applications

⬛ assessment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GWG_GenericCMYK)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004700680065006e0074002000500044004600200057006f0072006b00670072006f007500700020002d00200032003000300035002000530070006500630069006600690063006100740069006f006e0073002000760065007200730069006f006e003300200028007800310061003a0020003200300030003100200063006f006d0070006c00690061006e00740029>
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [14173.229 14173.229]
>> setpagedevice

