

ibm.com/redbooks

Architecting Access
to CICS within an SOA

Martin Keen
Chris Backhouse

Jim Hollingsworth
Stephen Hurst
Mark Pocock

All the information you need to design
your CICS SOA architecture

Fully updated for CICS TS V3.1
and CICS TG V6

Covers CICS Web services,
CICS TG, CICS Web support,
and CICS Service Flow
Feature

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Architecting Access to CICS within an SOA

October 2006

International Technical Support Organization

SG24-5466-05

© Copyright International Business Machines Corporation 1999, 2001, 2002, 2005, 2006. All rights
reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Sixth Edition (October 2006)

This edition applies to Version 3, Release 1, of CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xiv

Summary of changes . xv
Second Edition, March 2001 . xv
Third Edition, July 2001 . xv
Fourth Edition, October 2002 . xvi
Fifth Edition, February 2005 . xvi
Sixth Edition, October 2006 . xvii

Part 1. Introduction . 1

Chapter 1. Introduction to SOA and CICS . 3
1.1 Service-oriented architecture on System z . 4

1.1.1 What is SOA and why adopt it? . 4
1.1.2 The business and IT benefits of SOA . 8
1.1.3 Web services. 9
1.1.4 System z and why is it appropriate for SOA 11

1.2 Transforming CICS assets into SOA solutions . 14
1.2.1 Transformation strategies . 14
1.2.2 Which CICS assets can be transformed? . 16
1.2.3 Access to COMMAREA programs . 17
1.2.4 Access to terminal-oriented programs . 19

1.3 Interaction between CICS and other core WebSphere SOA products . . . 20

Chapter 2. Architectural choices . 23
2.1 Which architecture should be used to access CICS? 24
2.2 Standard architectures . 27

2.2.1 Web services. 27
2.2.2 J2EE Connector Architecture (JCA) . 29

2.3 Standard transports. 33
2.3.1 WebSphere MQ . 33
2.3.2 HTTP. 35
2.3.3 TCP/IP Sockets. 36
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. iii

2.4 Conclusion. 37

Chapter 3. CICS access technologies . 39
3.1 CICS access technologies . 40

3.1.1 CICS Web services support in CICS TS V3.1. 40
3.1.2 CICS Transaction Gateway. 48
3.1.3 CICS TG for z/OS V6.1 . 50
3.1.4 CICS Web support . 60

3.2 Other solutions . 64
3.2.1 WebSphere MQ . 64
3.2.2 CICS Enterprise JavaBeans support . 67
3.2.3 SOAP for CICS feature . 69
3.2.4 WebSphere Host Access Transformation Services 70
3.2.5 CICS sockets . 73

3.3 CICS solution set table . 74

Chapter 4. CICS application access technologies 77
4.1 CICS Service Flow Feature. 78

4.1.1 Wrapping process integration in CICS Web service requests 78
4.1.2 CICS Service Flow Runtime . 78
4.1.3 Service Flow Runtime and Link3270 bridge 79
4.1.4 Service Flow Modeler . 81

4.2 Link3270 bridge. 84
4.2.1 Link3270 bridge security . 86
4.2.2 Link3270 bridge transactional scope. 87
4.2.3 Link3270 bridge performance . 88
4.2.4 Link3270 bridge application development. 88
4.2.5 Summary. 98

Part 2. CICS Web technology decisions . 99

Chapter 5. Security . 101
5.1 Security concepts . 102
5.2 Introduction to digital security . 103

5.2.1 Cryptography and digital signatures . 103
Digital signatures. 104
5.2.2 Security technologies . 105
5.2.3 z990, z890 and z9 hardware support for cryptography. 110

5.3 CICS security . 112
5.3.1 Overview of CICS security . 112
5.3.2 Support for cipher suites in CICS . 113
5.3.3 Building a key ring. 114
5.3.4 Activating SSL support . 115
5.3.5 Transport-level security using HTTP with CICS 116
iv Architecting Access to CICS within an SOA

5.4 CICS Web services . 120
5.4.1 Web services security exposures . 120
5.4.2 Transport level security . 123
5.4.3 WebSphere MQ Security . 124
5.4.4 WS-Security . 127
5.4.5 CICS support for WS-Security . 135
5.4.6 Comparison of transport versus SOAP message security 141

5.5 CICS Transaction Gateway. 142
5.5.1 CICS security options . 142
5.5.2 JCA and security . 143
5.5.3 Topology decisions . 145
5.5.4 Security coordination between WebSphere and CICS 154

5.6 CICS Web support . 154
5.6.1 Authenticating and authorizing the user . 155
5.6.2 SSL support . 157
5.6.3 Design issues . 159

Chapter 6. Transactional scope . 163
6.1 Transactions: What are they? . 164

6.1.1 CICS transactions, tasks and syncpoints . 164
6.2 Transactional building blocks . 166
6.3 CICS Web services . 171

6.3.1 Specifications . 171
6.3.2 CICS support for WS-Atomic Transaction. 182

6.4 CICS Transaction Gateway. 187
6.4.1 WebSphere Application Server transactional support. 190
6.4.2 Transactional coordination from WebSphere to CICS 197

6.5 CICS Web support . 198

Chapter 7. Performance and scalability . 201
7.1 The theory of performance . 202
7.2 CICS Web services . 204

7.2.1 Throughput . 205
7.2.2 Transport considerations. 208
7.2.3 Design and architecture considerations . 209
7.2.4 SSL considerations . 211
7.2.5 Workload balancing. 212
7.2.6 Scalability and availability considerations . 212
7.2.7 Other performance considerations . 215

7.3 CICS Transaction Gateway. 215
7.3.1 Comparison of JCA versus CICS TG base classes 216
7.3.2 Application architectures . 216
7.3.3 Topology decisions . 219
 Contents v

7.4 CICS Web support . 236
7.4.1 Transactions and TCBs. 236
7.4.2 COMMAREA interface or 3270 interface? 237
7.4.3 Designing an efficient Web application . 237
7.4.4 Improving HTTP performance. 237
7.4.5 Workload balancing. 242

Chapter 8. Application development . 245
8.1 Development products overview . 246

8.1.1 WebSphere Developer for System z. 246
8.1.2 Rational Application Developer . 246
8.1.3 WebSphere Integration Developer . 247

8.2 CICS Web services . 247
8.2.1 CICS Web services assistant . 247
8.2.2 WebSphere Developer for System z. 252
8.2.3 Development tool comparison. 256

8.3 CICS Transaction Gateway. 257
8.3.1 CCI application development with the CICS ECI resource adapter 258
8.3.2 Rational Application Developer J2C Java Bean wizard 260
8.3.3 WebSphere Integration Developer Enterprise Service Discovery. . 266

8.4 CICS Web support . 267
8.4.1 Web-aware/converter presentation logic. 268
8.4.2 Making the application work . 269
8.4.3 Static content . 271
8.4.4 Chunking and pipelining . 271
8.4.5 Summary. 272

Chapter 9. Data conversion . 273
9.1 Data conversion basics . 274
9.2 CICS Web services . 280

9.2.1 Service provider: Inbound pipeline . 280
9.2.2 Service requester: Outbound pipeline. 281

9.3 CICS Transaction Gateway. 282
9.3.1 DFHCNV and the mirror program . 282
9.3.2 Code page aware Java programs . 283
9.3.3 Code page aware Java programs without DFHCNV. 285
9.3.4 Using Rational Application Developer. 285

9.4 CICS Web support . 286
9.4.1 HTTP header conversion . 286
9.4.2 HTTP user data conversion . 287

Part 3. Customer scenarios . 289

Chapter 10. Customer scenario: CICS Web services. 291
vi Architecting Access to CICS within an SOA

10.1 Infrastructure . 292
10.2 Implementation . 293
10.3 Issues raised . 294
10.4 Conclusions. 295

Chapter 11. Customer scenario: CICS Web support 297
11.1 Business description . 298
11.2 Technology description . 299
11.3 Technical implementations . 301
11.4 Issues raised . 302
11.5 Conclusions. 303

Part 4. Appendixes . 305

Appendix A. CICS EJB support . 307
Enterprise JavaBeans . 308

Introduction . 308
Security . 315

SSL support . 315
Authentication . 316
Authorization . 320
Design issues . 327

Transactional scope . 327
Bean-managed transactions . 329
Container-managed transactions . 330

Performance and scalability . 333
Improvements to support for Java in CICS TS V2.3 334
Recommendations for configuring to support a Java workload 348
System limits . 358
Workload balancing. 360
Network considerations. 364
SSL considerations . 365

Application development . 366
Design . 366
Development . 367
Deployment . 375

Data conversion . 379
Data types . 379
Accessing CICS resources . 380

Appendix B. SOAP for CICS feature . 383
Introduction. 384
Security . 391

Service provider . 392
 Contents vii

Service requester . 395
Web Services Security (WS-Security). 395

Transactional scope . 397
SOAP for CICS transactional support . 397
Web services transaction standard (WS-Transaction) 397

Performance and scalability . 398
Throughput . 399
Workload balancing. 400
Transport considerations. 401
BTS considerations . 401
SSL considerations . 401
Design and architecture considerations . 402
Other performance considerations . 404

Application development . 405
Design . 406
Development . 406

Data conversion . 412
Service provider: Inbound pipeline . 413
Service requester: Outbound pipeline. 413

Abbreviations and acronyms . 415

Related publications . 419
IBM Redbooks . 419
Other publications . 420
Online resources . 421
How to get IBM Redbooks . 422
Help from IBM . 422

Index . 423
viii Architecting Access to CICS within an SOA

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

eServer™
ibm.com®
z/Architecture™
z/OS®
z/VM®
z/VSE™
zSeries®
z9™
AIX®
CICS/ESA®
CICS®
CICSPlex®

DB2®
DRDA®
HiperSockets™
IBM®
IMS™
Language Environment®
MQSeries®
MVS™
OS/390®
OS/400®
Parallel Sysplex®
POWER™

Rational®
Redbooks™
Redbooks (logo) ™
RACF®
S/390®
SupportPac™
System z™
System z9™
VisualAge®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript,
JavaServer, JDBC, JSP, JVM, J2EE, Solaris, Sun, Sun Microsystems, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

ActiveX, Expression, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Architecting Access to CICS within an SOA

Preface

With the emergence of service-oriented architecture (SOA), the options for
accessing existing CICS® assets have become more varied than ever. This
IBM® Redbook is intended for IT architects who select, plan, and design SOA
solutions that make use of CICS assets.

First, we provide an introduction to SOA and the options for transforming CICS
assets into SOA solutions. Then we introduce the different architectures and
technologies on which a CICS SOA solution can be based.

Next we offer a broad overview of the different technologies available for SOA
enablement of CICS applications. We also offer a comparison of some of the
current strategic technologies that include the CICS Web services support in
CICS TS 3.1, CICS Transaction Gateway, CICS Web support, Link3270 bridge,
and the CICS Service Flow Feature.

We continue with an in-depth analysis of the issues pertaining to security,
transaction management, performance, application development, and data
conversion when designing and developing your SOA solutions.

Finally, we document different customer scenarios, where these technologies
have been successfully used to integrate existing enterprise information systems
into new SOA solutions.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. xi

The IBM Redbook team (left to right): Chris, Jim, Mark, Steve, and Martin

Martin Keen is a Senior IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere® products, SOA, and Patterns for e-business. He
also teaches IBM classes worldwide about WebSphere, SOA, and business
process management. Before joining the ITSO, Martin worked on the EMEA
WebSphere Lab Services team in Hursley, UK, supporting CICS Transaction
Server. Martin holds a bachelor’s degree in Computer Studies from Southampton
Institute of Higher Education.

Chris Backhouse is a software engineer in the CICS Transaction Server
development organization. He has a degree in Computer Engineering from the
University of Southampton. Chris’ areas of expertise include CICS TS, enterprise
connectivity with a focus on Web services, J2EE™, and enterprise application
transformation and integration. Before his development role, he worked for four
years as a designer on enterprise integration scenario projects.

Jim Hollingsworth is a Senior Software Engineer and the Team Lead for
WebSphere Developer for zSeries®-based CICS application deployment
management. He is a certified Consulting IT Specialist and a certified CICS
e-business Solution Designer. His development accomplishments include the
first TCP/IP gateway to CICS, the CA8E SupportPac™ for dynamic attribute
support with the 3270 Web Bridge, the CICS Web Interface Generic Converter,
the Generic Bridge, and the Link3270 vector processing support for the CICS
Service Flow Feature. He has developed patents and pending patents in XML
parsing technology and high performance state data token design. Jim has
presented CICS topics at both SHARE and CICS Transaction and Messaging
conferences.
xii Architecting Access to CICS within an SOA

Stephen Hurst is an IT Consultant in IBM Software Services for the WebSphere
pan-IOT organization. He has worked for IBM for 6 years, mostly within the
Transaction Processing Development organization based in Hursley, UK. He
holds a degree in Artificial Intelligence from the University of Durham. His areas
of expertise include enterprise modernization and application transformation,
predominantly based around access to CICS.

Mark Pocock is a Software Engineer in the CICS Transaction Server level 3
support team and has nine years of experience supporting CICS. He holds a
degree in Mathematics and Computer Science from the University of Kent. His
areas of expertise within CICS include Web Support, Web Services, 3270
Bridge, data conversion and Java™ and EJB™ support. This is the second
version of this redbook that Mark has been involved in updating.

Thanks to the following people for their contributions to this project:

Phil Wakelin
IBM Hursley, CICS Strategy and Planning

Fraser Bohm
IBM Hursley, CICS Development Software Engineer

Paul Cooper
IBM Hursley, CICS Development Software Engineer

Trevor Clarke
IBM Hursley, CICS Development Software Engineer

John Burgess
IBM Hursley, CICS Development Software Engineer

Anne Murden
IBM Availability Manager

Peter Havercan
IBM Hursley, CICS Development

Earl Rogers

Thanks to the team that wrote the previous release of this redbook: Chris Rayns,
Pingze Gao, Robert Herman, Jim Hollingsworth, Mark Pocock, Phil Wakelin, and
Nigel Williams.

Thanks to the team that wrote the redbook Implementing CICS Web Services,
SG24-7206: Nigel Williams, Grant Ward Able, Paolo Chieregatti, Robert
Herman, Tommy Joergensen, Luis Aused Lopez and Steve Wall.
 Preface xiii

Thanks to the team that wrote the redbook Developing for CICS Web Services,
SG24-7126: Chris Rayns, David Evans, Leigh Compton and Isabel Arnold.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv Architecting Access to CICS within an SOA

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-5466-05, Architecting Access to CICS within an SOA
as created or updated on October 31, 2006.

Second Edition, March 2001
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� Matters of State chapter

Changed information
� Introduction to CICS and Web-enabling chapter merged with CICS/Web

selection Guide chapter
� CICS Web Application development, Changes to Existing applications and

Portability chapters consolidated into Application Development chapter
� Administration chapter removed
� NetCICS removed as a CICS Web solution
� Customer scenarios updated

Third Edition, July 2001
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� CICS TS V2.1 EJB support
� CICS to TCP/IP Sockets Interface
� Patterns for e-business
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. xv

Changed information
� Application Development for CWS 3270 Web bridge
� Security considerations for CICS Web support (APAR PQ45098)
� Part 3 chapters updated and consolidated into the CICS Web decision points

chapter in Part I

Fourth Edition, October 2002
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� CICS TS V2.2, Link3270 bridge
� CICS TS V2.2 ECI over TCP/IP support
� CICS TS V2.3, Link3270 bridge extended support
� Miami-Dade County customer scenario

Changed information
� CICS TS V2.2 EJB tooling and security (Chapter 4, Security and Chapter 7,

Application development)
� CICS TG V5 COMMAREA null stripping (Chapter 6, Performance and

scalability)

Fifth Edition, February 2005
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� SOAP for CICS feature customer scenario
� CICS TS V2.3, Link3270 bridge extended support
� Chapter 6, “Transactional scope” on page 163

Changed information
� SOAP for CICS feature added to all chapters
� J2EE Connector Architecture added to all chapters
� Matters of State chapter removed
xvi Architecting Access to CICS within an SOA

Sixth Edition, October 2006
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� CICS TS V3.1, CICS Web services support
� CICS Web services support customer scenario
� CICS Service Flow Feature

Changed information
� Chapter 1, “Introduction to SOA and CICS” on page 3
� CICS TG V6 updates
� SOAP for CICS and CICS EJB support moved to an appendix
 Summary of changes xvii

xviii Architecting Access to CICS within an SOA

Part 1 Introduction

In Part 1, we introduce service-oriented architecture (SOA) and its relationship to
CICS TS. We provide an introduction to the different styles that can be used
when integrating existing CICS assets into an SOA solution. We then introduce
and compare the standard architectures and transport mechanisms on which
these solutions can be based. Finally, we provide an overview of the
technologies and products which can be used to implement CICS SOA solutions.

Part 1
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 1

2 Architecting Access to CICS within an SOA

Chapter 1. Introduction to SOA and
CICS

This chapter introduces the concept of service-oriented architecture (SOA) and
discusses how it applies to System z™. This includes a discussion about the
business of SOA and its IT benefits and gives an overview of Web services
technologies.

This chapter then describes how you can transform existing CICS assets to play
a role in SOA solutions.

The sections in this chapter are:

� Service-oriented architecture on System z

� Transforming CICS assets into SOA solutions

� Interaction between CICS and other core WebSphere SOA products

1

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 3

1.1 Service-oriented architecture on System z

Service-oriented architecture (SOA) is an architecture that organizations and
their IT departments are adopting, but what is it? This section gives an overview
of SOA, the benefits it introduces, and its positioning on System z.

1.1.1 What is SOA and why adopt it?

This section covers the growing use of SOA and attempts to explain what it is
and how organizations can benefit from adopting it.

An introduction to SOA
Rather than being a revolution, SOA is an evolution of best practices and
technologies that have gone before. It takes advantage of developments in
Internet-based technology and interoperability standards to offer unrivalled
business and IT benefits. There have been many definitions for SOA, some
clearer than others, but all lead themselves to the concept of loosely coupled
business services that are provided in an interoperable and technology agnostic
manner.

SOA is an integration architecture approach that is based on the concept of
services. The business and infrastructure functions that are required to build
distributed systems are provided as services that individually or collectively
deliver application functions to either user applications or to other services.

Taking the definition of SOA a little deeper, you can view it from the following
perspectives:

� A set of business aligned IT services that support an organization’s business
goals and objectives

� A set of architectural principles that address characteristics such as
modularity, loose-coupling, and separation of functions

� An architectural style that requires a service provider, a service consumer,
and a service description

� A set of services that can be combined and choreographed to produce
composite enterprise scale services

Note: SOA is, as its name implies, an architecture that allows you to
encapsulate business logic and separate it from application logic. It is not a
formal specification. To create an SOA implementation, you need to use a
technology such as Web services or Service Component Architecture (SCA)
to make this architecture a reality.
4 Architecting Access to CICS within an SOA

� A programming model that comes complete with standards, tools, methods,
and technologies, such as Web services

By adopting an SOA approach and implementing it using supporting
technologies, companies can build flexible systems that implement changing
business processes quickly and can make extensive use of reusable
components.

Figure 1-1 shows how services are invoked to support a particular business task
or process.

Figure 1-1 Mapping services with business tasks or functions

Basic components of an SOA
At the most basic level, an SOA consists of the following three components
(Figure 1-2 on page 6):

� Service provider
� Service requester
� Service registry

Process Choreography Layer

Z

Input OutputProcedure
Business

View

Specific Business
Task of Function

Computer
Science

View

Published Service

Service is able
to attend one
Business Task

Service

Specific Application

Object Classes

E
ncapsulation

Business Process

Business
Task 1

Business
Task 2

Business
Task 3

The Process Choreography Layer is
responsible for connecting the Services
providing support to the Business Process

Result
 Chapter 1. Introduction to SOA and CICS 5

Figure 1-2 SOA components and operations

The service provider creates a service and in some cases publishes its interface
and access information to a service registry.

Each provider must decide which services to expose, evaluate trade-offs
between security and easy availability, determine how to price the services or
figure out how to exploit the value of the services if they are free. The provider
also has to decide what category the service should be listed, and what sort of
trading partner agreements are required to use the service.

The service registry is responsible for making the service interface and
implementation access information available to service providers.

The implementers of a service registry need to consider the scope in which the
registry will be implemented. There are public service registries available over
the Internet to an unrestricted audience, as well as private service registries that
are only accessible to users within a company-wide intranet.

The service provider locates (discovery) entries in the service registry and then
binds to the service provider in order to invoke the defined service.

Each component can also act as one of the two other components. For instance,
if a service provider needs additional information that it can only acquire from
another service, it acts as a service requester.

Service
Requester

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

Request/Response
6 Architecting Access to CICS within an SOA

Defining a service
SOA is an architectural approach to defining integration architectures that are
based on the concept of services. A service can be described as a function that
can be offered or provided to a requester. This function can be an atomic
business function or part of a collection of business functions that are wired
together to form a process.

There are many additional aspects to a service that must also be considered in
the definition of a service within an SOA. The most commonly agreed-on aspects
of a service are that:

� Services encapsulate a reusable business function

� Services are defined by explicit, implementation-independent interfaces

� Services are invoked through communication protocols that stress location
transparency and interoperability

Ideally, a service should be reusable and should be accessible by more than one
requesting application in the architecture. It is, therefore, important to get the
service description and reusability correct. For example, a service that offers a
calculation such as a home insurance quote could be requested by multiple
requesters inside the enterprise and by third parties — as long as the interfaces
of the component that offers the service are defined clearly.

Services can be invoked independently by either external or internal service
requesters to process simple functions or can be chained together to form more
complex functionality to devise new functionality quickly.

Clearly defined interfaces
The interface for SOA should encapsulate only those aspects of process and
behavior that are used in the interaction between the service requester and
provider. An explicit interface definition, or contract, binds a service requester
with the provider. The interface should specify only the mutual behavior that is
required for the interaction and nothing about the actual implementation of the
requester or provider.

This arrangement means that those system aspects where the requester and
provider are hosted (their platforms) are independent of the interaction and are
free to change. This abstraction allows for flexible improvements to the
underlying IT infrastructure.

Communication protocols that stress location transparency
SOA does not specify that the consumer need any specific protocol to have
access to a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses but instead, should be defined in a
 Chapter 1. Introduction to SOA and CICS 7

protocol-independent way that allows different protocols to be used to access the
same service. Ideally, a service should only be defined once, through a service
interface, and should have many implementations with different access
protocols. This type of definition helps to increase the reusability of any service
definition.

1.1.2 The business and IT benefits of SOA

This section gives a concise view on the business and IT benefits that an
organization can gain from adopting an SOA.

Business benefits
Organizations will always seek out innovative means in business and IT to gain
competitive advantages. SOA allows the typically heterogeneous IT environment
of an enterprise to be agile and responsive to fast changing business conditions.

The following are some of the business advantages to be gained from SOA:

� The concept of components and reuse allows organizations to increase the
speed at which they can implement new products and services. By
introducing new processes and data, changing existing reusable elements, or
recombining them quickly enables technical support and provisioning of new
products and services in the marketplace.

� The increased abstraction of business processes from implementation and
runtime concerns and constraints mean that there are fewer technical
inhibitors that can slow down progress and change.

� The modularity and reuse of components means that services are highly
optimized to business needs.

� The ability to extract more from what is already there means that
organizations are able to introduce new capabilities that bring business
advantages. For example, applications that were once siloed can now work
together behind the scenes and can help shorten human-based processes
and tasks.

� The ability to make available repeatable and reusable services across the
enterprise means less duplication of functions and, therefore, reduced
instances of duplicated data such as customer details — the ability to improve
service quality and retain customers increases with more accurate
information.

IT benefits
Because SOA is an approach that specifically aligns IT capabilities to business
drivers and needs, the distinction between what is an IT benefit as opposed to a
8 Architecting Access to CICS within an SOA

business benefit becomes somewhat blurred. Nevertheless, the IT benefits that
an organization can realize by implementing SOA are as follows:

� The adoption of open standards and component-based development brings
about long-term reductions in development costs and on-going maintenance.

� The sharing of services and improved consistency reduces duplication of
once siloed IT functions and consequently consolidation of hardware and
software is made possible, thus reducing costs.

� The revival of core applications through SOA capabilities reduces the need to
replace such systems, thereby minimizing risk, disruption, and replacement
costs.

Gartner quotes the following benefits of SOA for IT:

SOA will shift the focus from tools and packaged suites to modular offerings
from multiple vendors that can be assembled and combined by a systems
integrator. By 2008, SOA will provide the basis for 80 percent of development
projects. By 2008, simple object database access plus service-oriented
business applications (SOBAs) will enable Type A organizations to increase
code reuse by more than 100 percent. The distinction between software
integrators and vendors will blur because packaged applications will be
broken up and delivered as SOBAs. In 2006, more than 60 percent of the
$527 billion IT professional services market will be based on the exploitation
of Web services standards and technology.

Gartner also says “SOA shifts developer focus from software to business
functions, thereby transforming installed software from an inhibitor to a facilitator
of rapid business change.”

For more information, see Positions on the Five Hottest IT Topics and Trends in
2005, which is available at:

http://www.gartner.com

1.1.3 Web services

Web services are fast becoming the standard for basic SOA implementation.
Web services take advantage of existing open-standard Web technologies, such
as XML, Uniform Resource Locator (URL), and Hypertext Transfer Protocol
(HTTP), and are themselves a set of standards that facilitates open
system-to-system communication.

By adhering to Web services standards applications, which are based invariably
upon differentiating platforms and technologies, can cooperate through well
defined interfaces. Web services follow the SOA philosophy of loose coupling
 Chapter 1. Introduction to SOA and CICS 9

http://www.gartner.com

between service requesters and providers. Figure 1-3 illustrates how
loose-coupling is maintained within the Web services interaction model.

Figure 1-3 Web services invocation model

The interaction shown in Figure 1-3 works as follows:

1. The service provider publishes Web Services Description Language (WSDL)
data that defines its interface and location to a service registry, such as a
UDDI service registry.

2. The service requester contacts the service registry to obtain a reference to a
service provider.

3. The service requester, having obtained the location of the service provider,
makes calls on the service provider by sending a SOAP-formatted message.

Basic Web services support provides three simple usage models:

� One-way usage scenario

A Web services message is sent from a requester to a provider, and no
response message is expected.

� Synchronous request/response usage scenario

A Web services message is sent from a requester to a provider, and a
response message is expected.

� Basic callback usage scenario

A Web service message is sent from a requester to a provider using the
2-way invocation model, but the response is treated only as an

Service
Requester

Service
Provider

Service
Registry

Publish WSDL from
the service provider
to the service registry,
using UDDI

1
Discover a service in the
service registry and retrieve
its WSDL

2

Invoke the Web service
by sending a SOAP message

3

Request/Response
10 Architecting Access to CICS within an SOA

acknowledgement that the request has been received. The provider then
responds by using a Web service callback to the requester.

Other Web service standards are built upon these basic standards and
invocation models to provide higher level functions and qualities of service.

1.1.4 System z and why is it appropriate for SOA

This section gives an overview of System z and the benefits to be gained from
implementing SOA capabilities within a z/OS® environment.

System z
IBM eServer™ System z9™ (formerly IBM eServer zSeries) is built on more than
40 years of industry leadership in mainframes. It uses a modular multi-book
design that supports one to four books per server. Multiple features such as
redundant I/O interconnect (RII) help avoid unplanned interruptions and outages.
By increasing secure transaction throughput (SSL), System z9 can improve
responsiveness while strengthening security through enhanced encryption and
hashing algorithms.

System z contains specialized engines such as z9 Application Assist Processor
(zAAP), z9 Integrated Information Processor (zIIP), Integrated Facility for Linux®
(IFL), and Internal Coupling Facility (ICF), which can all be used for your
advantage. The virtualization and intelligent management features of System z9
109 help reduce management complexity and can facilitate a more efficient use
of system resources.

z/OS
IBM System z mainframes are supported by a multitude of operating systems,
such as z/OS, z/OS.e, z/VSE™, z/VM®, TPF, and Linux on System z. The
flagship operating system of this group is z/OS. z/OS, with its roots in MVS™ and
OS/390®, is the flagship mainframe operating system based on the 64-bit
z/Architecture™. It is designed to deliver the high qualities of service for
enterprise transactions and data, making it appropriate for the larger enterprise.

Some highlights of z/OS V1.7 include the z/OS Workload Manager, which helps
balance resources, and Intelligent Resource Director (IRD), which extends
Workload Manager and makes it possible to manage resources dynamically
across multiple logical partitions. z/OS Parallel Sysplex® technology allows you
to balance workloads across multiple servers (up to 32) and is designed to
provide near continuous availability.
 Chapter 1. Introduction to SOA and CICS 11

Why have an SOA framework on z/OS
In a sense, the mainframe environment has always led itself to the concept of
SOA because it regards all the resources within as providing services.
Resources specifically for SOA would be those that provide SOA capabilities
such as the Enterprise Service Bus (ESB), Process Management engines, and
supporting components such as a base J2EE application server and databases.

To offer the power of System z for SOA, IBM has developed specific z/OS
versions of its SOA product suite that is built upon WebSphere Application
Server V6 for z/OS. WebSphere Process Server and WebSphere Enterprise
Service Bus are z/OS enabled, as are supporting components such as DB2® for
z/OS V8. This offers a clean and contained architecture within an z/OS
environment, one based upon open and interoperability standards. Additionally
products such as CICS Transaction Server have added features to support SOA
technologies such as Web services, and can integrate with WebSphere
Application Server for z/OS based products.

The advantages of using System z and z/OS for SOA can be seen in three broad
categories:

� Quality of service
� Core system transaction capabilities for SOA
� Cost of ownership

Quality of service
A framework that incorporates SOA capabilities exploits well proven System z
features such as high scalability, availability, reliability, and security. System z
clustering is provided through Parallel Sysplex technology and workload
management by zWLM to offer:

� Less than five minutes downtime per year
� 99.999% availability at the application level

System z has built upon four decades of development and collaboration to offer
unparalleled security in both its hardware and z/OS operating system. In
addition, the introduction of virtualization for z/OS helps to decouple actual
physical resources from users and services, bringing an additional layer of
protection. For more details about security on System z, refer to:

http://www.ibm.com/servers/eserver/zseries/security/features.html

Core system transaction capabilities for SOA
The source of most services that service requesters call upon is most likely core
systems such as CICS and IMS™ transactions. These core systems themselves
can actually be requesters as well as providers of services. The positioning of
these systems within a System z environment means that performance is
12 Architecting Access to CICS within an SOA

http://www.ibm.com/servers/eserver/zseries/security/features.html

enhanced because of less network traffic and, in the case of z/OS, the
HiperSocket technology is leveraged. To facilitate connections to CICS and IMS
for a SOA architecture, the CICS Transaction Gateway and IMS SOAP Gateway
Version 9.1 are offered.

Web services can be developed with IBM WebSphere Developer for zSeries
tooling to generate Web services artifacts easily.

Cost of ownership
As demand for computer usage increases year-on-year, organizations have
tended to introduce new boxes, systems, and applications to their widely
heterogeneous and distributed IT environments. Thus, managing these
distributed environments can introduce the following hidden costs:

� Increased complexity
� Spiraling resource costs
� Increased downtime costs
� Suboptimized use of resources
� Licensing costs

The Wall Street journal gives an interesting view:

Distributed server farms today generate as much as 3,800 watts per square
foot, compared to 250 watts per square foot in 1992, with thousands of dollars
of cooling capacity needed for each server. Assuming 1,000 distributed
servers producing 400 watts each, the electricity bill could hit more than USD
35,000 per month alone. By comparison, a single mainframe z9 generates
312 watts per square foot – one tenth the amount.

The centralized architecture of the mainframe has always helped avoid such
issues, but initial purchase costs and operating costs were high. Recent
developments in new technology for System z help to reduce total operating cost
(TOC), as follows:

� Virtualization

Virtualization, which allows a single server or platform to support hundreds of
concurrent applications and share data and hardware resources across
heterogeneous environments, was invented by mainframes more than 35
years ago. Today, it is highly advantageous for enterprises that are looking for
ways to simplify their IT infrastructures and to reduce complexity and costs.

� System z Application Assist Processor (zAAP)

To help lower costs, IBM has introduced separate processing engines to
tackle a collection of mainframe workload types. These engines can free your
mainframe CPU for other tasks while lowering related capacity charges. The
System z Application Assist Processor (zAAP) engine, released in 2005,
reduces costs by processing Java-based application workloads.
 Chapter 1. Introduction to SOA and CICS 13

� System z Integrated Information Processor (zIIP) engine

DB2 works in concert with z/OS to tackle workloads that originate on
distributed platforms (through DRDA® via TCP/IP) and access DB2 data
running on the mainframe. Together, DB2 and zIIP help improve resource
optimization for eligible workloads, including those from SAP or other ERP
applications, along with CRM and business intelligence initiatives. A zIIP
engine can be added for a one-time cost, then it can process up to 40% of
such tasks with no additional software or capacity charges.

1.2 Transforming CICS assets into SOA solutions

Existing application assets running in CICS Transaction Server can be utilized in
SOA solutions in a number of ways. This section discusses the transformation
strategies, and describes how different types of CICS assets can be transformed.

1.2.1 Transformation strategies

The IBM SOA Reference Architecture (shown in Figure 1-4 on page 15) is a
technical framework for enterprise transformation that enables software to be
delivered as reusable, shareable services. This architecture provides the ability
to bridge disparate systems spread across your entire enterprise. Its components
are modular, so you can start small and grow your implementation to cover your
evolving integration needs, both internally and externally.
14 Architecting Access to CICS within an SOA

Figure 1-4 IBM SOA Reference Architecture

We examine three components in Figure 1-4 in closer detail:

� User interface modernization

This style (denoted by 1 in Figure 1-4) transforms the user experience. It aims
to reach new customers while helping to improve productivity and reduce
costs. Using this style of transformation can also help reduce training costs
and increase overall user satisfaction. This method is the most accessible
because it requires the lowest level of investment. You can achieve a rapid
return on investment (ROI) through improved user interfaces with a modern
interface design, and enhanced productivity with optimized interaction
patterns.

� Application integration

This style (denoted by 2) transforms application connectivity. It aims to extend
existing applications beyond their original designs to support integrated
business processes, helping to reduce errors and development costs. You
can turn existing applications into reusable services that can be accessed by
a new set of users or reused to create new front-end business functions. The
underlying principle — that you can reuse existing applications with little or no
change — offers a lower-risk approach than a replacement strategy, which
involves rewriting applications.

Development services

Business performance management services

Interaction services Process services Information services

Connectivity services

Application and
information assets

Business application
services Partner services

Infrastructure management services

1

2 3
 Chapter 1. Introduction to SOA and CICS 15

� Service orientation

This style (denoted by 3) transforms the application architecture to provide
greater responsiveness to business partners and customers. It involves some
re-engineering of the original application. Undoubtedly, this method requires
higher investment of resources and time, but gives you the capability to
create components from existing applications, which are more flexible and
configurable for use in new applications. This reuse of business logic is called
componentization and might result in significant cost savings when compared
with developing new application code.

1.2.2 Which CICS assets can be transformed?

Over the past 35 years, developers have created two major types of CICS
applications, or assets:

� CICS COMMAREA programs
� CICS terminal-oriented programs

CICS COMMAREA programs receive requests and send responses through an
area of memory called the COMMunications AREA (COMMAREA). CICS
programs can be written in COBOL, PL/I, C, C++, Assembler or Java. In general,
CICS COMMAREA programs are similar to subroutines in that they are unaware
of how they were invoked. They are often stateless, with CICS - on behalf of the
program - automatically managing the transactional scope and security context,
which are typically inherited from the caller and a transaction definition.

CICS terminal-oriented programs are sometimes known as 3270 programs
because they are designed to be invoked directly from an IBM 3270 Display
Station or similar buffered terminal device. Invocation usually corresponds to a
single interaction in an end-user dialog, starting with receipt of a message from
the terminal and ending with transmission of a reply message to the same
device. Input data from the terminal device is carried in a datastream, which the
application acquires through a RECEIVE command. After processing, an output
datastream is transmitted back to the terminal device through a SEND command.
Terminal-oriented programs must be capable of analyzing device-specific input
data streams and building output data streams to be transmitted to the terminal.

CICS also provides a service known as Basic Mapping Support (BMS), which
simplifies application programming for terminals such as the IBM 3270 Display
Station. This enables the programmer to define a static layout for each screen to
be displayed, with identified fields for dynamic content acquired through a
RECEIVE MAP command. This in turn causes BMS to analyze the datastream and
to return record-formatted data to the application. Similarly, the application
16 Architecting Access to CICS within an SOA

presents output data in record format using a SEND MAP command, which causes
BMS to build an output datastream for the terminal. BMS is widely used because
it frees the application programmer from needing knowledge of device specifics
and enables applications to be device-independent to some degree.

A pseudo-conversational model is normally associated with terminal-oriented
transactions. A pseudo-conversational sequence of transactions contains a
series of transactions that look to the user like a single conversational transaction
involving several screens of input. However, each transaction in the sequence is
in fact a single transaction which handles one input, sends back the response,
and terminates.

1.2.3 Access to COMMAREA programs

Best practice in CICS application design for a number of years has been to
separate the key elements of the application, in particular:

� Client adapt or presentation logic
� Integration logic
� Business logic
� Data access logic

Figure 1-5 shows a transaction made up of these four separate components. A
COMMAREA interface (this includes channels with CICS TS 3.1) is used to pass
data between the components.

Figure 1-5 Separating key application elements

This separation provides a framework that enables reuse of business logic and
data access logic programs as subroutines within a larger application, as well as
reuse with alternative implementations of presentation logic (for example a Web
service, Web browser, or 3270 device).

Transaction

CICS Transaction Server

Client 3270
Presentation

Integration
logic

Data
access

DIP

Business
logic

B

 Chapter 1. Introduction to SOA and CICS 17

CICS COMMAREA programs can be relatively easily enabled for access from a
variety of different client applications running on a wide range of platforms.
Typical clients include:

� Web service requester

� Java servlet or Enterprise JavaBean (EJB) running in a Java 2 Platform
Enterprise Edition (J2EE) application server

� An application running in a Microsoft® .NET environment

� Web browser

� Messaging middleware

In most cases, connections from a client will use a combination of:

� Internal adapters
� External connectors
� Standard Internet Protocol (IP) based protocols

An adapter is simply a program that accepts a request and converts the data
from an external format to the internal format used by the CICS business logic
program. Figure 1-6 shows how a terminal-oriented program and Web service
requester can access the same CICS applications. For example, an adapter may
convert a SOAP message to a COMMAREA format. The transport mechanism
used to invoke the adapter may by synchronous or asynchronous.

An internal adapter is run-time code, possibly generated by a tool that converts
from one request format to another, such as converting SOAP over HTTP to a
COMMAREA. You can implement the adapter in any language supported by
CICS and make it independent of the specific protocol used.

Figure 1-6 Access options provided by CICS facilitate effective reuse of existing business
logic

Transaction

CICS Transaction Server

A

P3270 terminal

A

I B D
18 Architecting Access to CICS within an SOA

An external connector provides a remote call interface and implements a private
protocol to invoke an application running under CICS Transaction Server. You
must also use an external adapter to convert data from its external format to the
COMMAREA format used by your programs in CICS Transaction Server. The
most well-known example of an external connector is IBM CICS Transaction
Gateway, which implements the Common Connector Interface (CCI) specified by
the J2EE Connector Architecture (JCA), and is used with adapters implemented
as Java beans.

Along with these techniques, you can choose to create a standard IP-based
adapter that uses a specific transport, such as IBM WebSphere MQ, HTTP and
TCP/IP sockets. This approach might be the only available option that supports
some types of clients, and it permits greater flexibility in the functionality that can
be implemented. However, this flexibility must be balanced against additional
development effort, and a loss of generality and reuse, because you can use the
adapter only with a specific transport protocol.

Your preferred architectural approach is a key decision because of its effect on
the costs of developing the solution and its long-term ROI. However, business
factors such as existing development processes and the availability of skills
might be as significant as technical factors influencing this decision. It is
important to recognize that there is no single right answer suitable for all
solutions.

1.2.4 Access to terminal-oriented programs

Many programs remain that do not have such a clear separation of concerns as
COMMAREA programs, combining presentation logic (denoted as P in
Figure 1-7 on page 20) and business logic (B) into a single program for which
there is only a 3270 interface.

IBM CICS TS V3.1 provides a Link3270 bridge function that neatly addresses
this problem. The client uses the Link3270 bridge to run 3270 transactions by
linking to the program DFHL3270 and passing a COMMAREA that includes the
transaction identifier and the data to be passed to the application. The response
contains the 3270 screen data reply. If the target application used BMS, this
information is presented in the form of an application data structure (ADS), which
is another name for the symbolic map that is generated by the BMS macros used
to define the mapping of the 3270 screen. No changes are required for the
existing application code, and knowledge of 3270 data streams is usually not
needed. As a result, the Link3270 bridge provides a programmatic interface for

Note: For more information about transforming COMMAREA-oriented CICS
programs, see Chapter 3, “CICS access technologies” on page 39.
 Chapter 1. Introduction to SOA and CICS 19

an important class of terminal-oriented programs, enabling them to be reused
without resorting to less-efficient and more-fragile screen scraping.

Figure 1-7 Access options provided by CICS facilitate effective reuse of existing
terminal-oriented programs

Historically, many 3270 transactions were written as pseudo-conversations,
consisting of a number of terminal-oriented programs that run in a defined
sequence. Each program in a pseudo-conversation displays data to a user and
then terminates, leaving only a small amount of state data to be picked up by the
next program in the sequence, which is initiated by the next input data received
from the user’s terminal. The Link3270 bridge is able to fully reuse these
pseudo-conversational transactions.

CICS programs are typically grouped into application suites, or components, for
performing a common set of business actions. Identifying the CICS programs
that provide flexible public interfaces and understanding these interfaces is the
first key step in reuse. The next is to decide the best access options to support
your solution.

1.3 Interaction between CICS and other core
WebSphere SOA products

CICS Transaction Server provides features to build complete SOA solutions.
Service requesters can use these features to gain access to CICS assets.
However, CICS TS does not have to be used in isolation to build SOA solutions.

Note: For more information about transforming terminal-oriented CICS
transactions, see Chapter 4, “CICS application access technologies” on
page 77.

Transaction

Link3270 Bridge

CICS Transaction Server

Client

DI/BP3270 terminal
20 Architecting Access to CICS within an SOA

The following products are also key to building SOA implementations, and can
be used to interact with CICS TS assets:

� WebSphere Application Server

Hosts J2EE (Java 2 Enterprise Edition) enterprise applications such as EJB
enterprise beans and Web services. Enterprise applications deployed to
WebSphere Application Server can interact CICS assets using a variety of
techniques described within this redbook.

For more information about WebSphere Application Server, refer to:

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Enterprise Service Bus

Mediates SOAP, JMS, and IIOP messages as they travel between service
requesters and service providers. The mediations can provide content-based
routing (to pick the service provider that should be used), protocol and
message transformation, and so forth. SOA interactions to or from CICS
Transaction Server can be mediated in WebSphere Enterprise Service Bus.

For more information about WebSphere Enterprise Service Bus, refer to:

http://www.ibm.com/software/integration/wsesb/

� WebSphere Process Server

Manages business processes which incorporate calls to automated activities
(such as Web services) and manual activities (such as those completed by a
human). Calls to CICS assets can be incorporated into business processes
running in WebSphere Process Server.

For more information about WebSphere Process Server, refer to:

http://www.ibm.com/software/integration/wps/

Note: Each of the three products listed above can all run on both z/OS or
distributed platforms.
 Chapter 1. Introduction to SOA and CICS 21

http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/integration/wsesb/
http://www.ibm.com/software/integration/wps/

22 Architecting Access to CICS within an SOA

Chapter 2. Architectural choices

This chapter is an introduction to the different architectures on which CICS SOA
solutions can be based. These include the Web services architecture and J2EE
Connector Architecture (JCA).

When deciding which architecture is best for your service application, consider
these questions:

� What are the security requirements of the application?

� Is there a requirement for CICS transactional updates to recoverable
resources to be synchronized with the updates of an external server?

� What are the performance objectives and what workload management
capabilities are required?

� What application interface will be used?

� Will a synchronous or asynchronous invocation be used?

� Will the client and server components be loosely coupled or tightly coupled?

� Do the CICS applications already exist or will they be created from scratch?

2

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 23

2.1 Which architecture should be used to access CICS?
To choose the most suitable architectural approach for a particular application,
you need to be able to articulate the functional and non-functional requirements
of the application, and map these onto the capabilities of the CICS SOA access
options. Because your application is likely to be delivered across several service
requesters, you may need to use a range of CICS access options.

The application requirements will typically encompass:

� Security
� Transactional scope
� Performance and workload management
� Application interface
� Synchronous or asynchronous invocation
� Client/server coupling.

Security
The first security requirement to consider is how end users and middle tier
servers will be authenticated. Simple user ID and password authentication is still
widely used, although SSL client certificates, Kerberos tickets and other
schemes are becoming popular. Whichever technique is adopted, the user's
credentials must eventually be mapped to an external security manager (ESM)
user ID in order to support the authorization and accounting requirements that
normally apply to CICS applications.

The security characteristics of different CICS SOA access solutions are
described in detail in Chapter 5, “Security” on page 101.

Transactional scope
This requirement refers to the capability of a given access option to support local
transactions (one-phase commit), enabling a number of updates performed by
CICS applications to be processed as a single unit of work; or global
transactions (two-phase commit), enabling an external server to coordinate
updates performed by CICS with updates to local resources held by that server.

Important: The choice of architectural approach is a key decision because it
might affect the costs of developing service applications and their long-term
value. Business factors, such as the availability of skills, might be as
significant as technical factors influencing this decision. It is important to
recognize is that there is no single right answer, just as there is no right
programming language for all applications.
24 Architecting Access to CICS within an SOA

The Web services and JCA architectures both support global transactions. CICS
provides support for the WS-Atomic Transaction specification, allowing us to tie
together a client transaction and the invoked CICS transaction.

The transactional characteristics of different CICS SOA access solutions are
described in detail in Chapter 6, “Transactional scope” on page 163.

Performance and workload management
Response time and CPU cost per transaction are important aspects of
performance in a production system. CICS seeks to minimize these and is highly
optimized for traditional styles of access, such as 3270 terminal access over a
System Network Architecture (SNA) network. Most SOA solutions require
additional elements such as connectors, adapters and encrypted data flows.
These are less optimized, and impose an overhead on the execution of the target
business program.

Workload Management is the process of spreading multiple requests for work
over the resources that can do the work. It optimizes the distribution of
processing tasks therefore improving performance, scalability, and reliability of
an application. It also provides failover when servers or systems are not
available.

The performance and workload management characteristics of different CICS
SOA access solutions are described in detail in Chapter 7, “Performance and
scalability” on page 201.

Application interface
The access option needs to support the CICS program interface either directly or
via an adapter without imposing additional restrictions. The interface
encompasses the data elements, the code page, and the size of the message.
The application interface of some access options are currently restricted by
architectural limits, for example, solutions which use the JCA are limited to a
32 KB COMMAREA.

Application development considerations, including the type of application
interface, for the different CICS SOA access solutions are described in detail in
Chapter 8, “Application development” on page 245 and data conversion
considerations are described in detail in Chapter 9, “Data conversion” on
page 273.

Note: While the COMMAREA can hold up to 32 KB of certain data
applications, such as CICS TG, it cannot utilize the full 32 KB available since
ECI control blocks must also be contained within the 32 KB.
 Chapter 2. Architectural choices 25

Synchronous or asynchronous invocation
The majority of access options support synchronous invocation, meaning that a
client request receives a single reply from CICS and the client waits for the reply.
In the alternative approach, known as asynchronous invocation, the client
request is not responded to immediately and the client may continue processing
before receiving the response. A polling or event-based mechanism is required
so that the response can be obtained at a later time. In some cases, an
immediate response is sent from the server to the client confirming receipt of the
original request, indicating therefore that the application response will be
delayed.

In general, asynchronous access solutions are more robust. Planned or
unplanned outages, software upgrades and other operational events have less
impact on a client’s ability to send requests. Synchronous access solutions, on
the other hand, normally offer better interoperability, for example, closer
coordination of transactional updates.

Client/server coupling
Some access options are described as tightly coupled, while others are
described as loosely coupled. Tight coupling implies that the client and server
share many assumptions and dependencies. Loose coupling is not a precise
concept but refers to several possibilities:

� Self-describing messages, that is, the format of the data messages
exchanged between the client and server programs is described separately
from the programs themselves

� Implementation independence, that is, the client may use dissimilar
technology from the server program, thus offering operating system,
middleware, programming language independence

� Server location independence, that is, the client program does not need to be
changed when the location of the server program changes

CICS has a range of access options that support the diverse requirements of the
service requesters that we have just discussed. These CICS SOA access
options can be based on the following standard architectures:

� Web services architecture
� J2EE Connector Architecture (JCA)

We discuss these standard architectures in 2.2, “Standard architectures” on
page 27.
26 Architecting Access to CICS within an SOA

Standard transports are suitable for use by applications that require greater
control of the protocol and do not need the development tools provided by the
standard architectures. The standard transports are:

� WebSphere MQ
� HTTP
� TCP/IP Sockets (the TCP/IP socket interface for CICS)

We discuss these standard transports in 2.3, “Standard transports” on page 33.

2.2 Standard architectures
This section introduces the major architectures which can be used to build CICS
SOA solutions. Solutions based on these architectures benefit from the
comprehensive set of development tooling which is provided to help in the
generation of applications.

Standard architectures such as the JCA provide built-in support for qualities of
service such as management of security and transactions. These qualities are
slowly being introduced into the Web services architecture. For example, the
WS-Security specification, which provides for message level security, and the
WS-Atomic transaction, which provides two-phase commit transactional
functionality, are now standard.

2.2.1 Web services
Web services are an implementation of a service-oriented architecture. A service
is an application component which has a well-defined published interface that
allows other application components to invoke operations on the service without
any knowledge of how the service is implemented.

The technologies that can be used to implement a Web services solution are
relatively new but they have received wide acceptance as the strategic way of
building distributed IT solutions which integrate heterogeneous applications over
the Internet.
 Chapter 2. Architectural choices 27

The Web service specifications are completely independent of programming
language, operating system, and hardware in order to promote loose coupling
between the service requester (or consumer) and service provider. The
technology is based on open standards such as:

� eXtensible Markup Language (XML)

� SOAP - a standard protocol for exchanging XML messages

� Web Services Description Language (WSDL), which defines an XML
grammar for describing Web services

� Universal Description, Discovery and Integration (UDDI), a registry
mechanism that can be used to look up Web service descriptions

Using open standards provides broad interoperability among different vendor
solutions. These principles mean that companies can implement Web services
without having any knowledge of the service requesters, and vice-versa. This
facilitates just-in-time integration and allows businesses to establish new
partnerships easily and dynamically.

Figure 2-1 shows how a SOAP message consists of an envelope containing zero
or more headers and exactly one body. Application designers determine the
contents of the headers; the SOAP specification itself does not define what
headers should be used. For example, application designers might define a
header that contains authentication credentials or information for transaction
management. The body is where the main end-to-end information (the payload)
conveyed in a SOAP message must be carried. This information might be
parameters for calling a service (for a service request) or the result of calling the
service (for a service response).

Figure 2-1 SOAP message

The major advantages of SOAP are as follows.

� It provides a standard for exchanging data in XML format, for example, the
parameters used in a program call (for the inbound message) and the data
resulting from the call (for the outbound message).

� It is protocol, platform, operating system and programming language
independent.

Envelope

 Header

Body

SOAP message
Optional
headers

Actual
message
28 Architecting Access to CICS within an SOA

� It is flexible and extensible.

� It enables the use of Web services standards such as WS-Security.

SOAP supports the remote procedure call (RPC) style of Web service, as well as
the document message style. Although it is transport protocol independent,
HTTP is the most widely used protocol today for transporting SOAP messages.

A Web service is fully defined in a Web Services Description Language (WSDL)
file. Usually, tools are used to import the WSDL file and generate a proxy for the
service requester to use to construct and send the SOAP message.

Application programs running in CICS TS V3.1 can participate in a
heterogeneous Web services environment as service requesters, service
providers, or both, using either an HTTP transport or a WebSphere MQ
transport. Figure 2-2 shows an outline of the Web services support in CICS

Figure 2-2 Web Services support in CICS V3.1

Refer to 3.1.1, “CICS Web services support in CICS TS V3.1” on page 40 for
more information about using CICS Web services.

2.2.2 J2EE Connector Architecture (JCA)
The J2EE Connector Architecture (JCA) defines a standard for connecting from
the J2EE platform to heterogeneous Enterprise Information Systems (EIS). CICS
is an example of an EIS.

The JCA enables an EIS vendor to provide a standard resource adapter which is
a middle-tier connector between a Java application and an EIS, which permits
the Java application to connect to the EIS.

JCA V1.5 defines a number of components that make up this architecture, shown
in Figure 2-3 on page 30.

CICS TS V3.1

Client

SOAP

Request

CICS Web
Service
Support

Service
Provider

Application

Service
Requester

Service
Requester
Application

CICS Web
Service
Support

Endpoint

Service
Provider

SOAP

Request
 Chapter 2. Architectural choices 29

Figure 2-3 J2EE Connector Architecture component structure

Figure 2-3 shows the JCA being used in a managed environment, that is, the
application is running in WebSphere Application Server. In this case,
management of connections, transactions and security are managed by the
application server. The JCA can also be used in an non-managed environment,
in which case the application must manage connections, transactions and
security itself.

The Common Client Interface (CCI) defines a common application programming
model for interacting with resource adapters and is independent of any specific
EIS. Of course, this does not mean a developer can write exactly the same code
to access one EIS (for example, CICS) as he writes to access another EIS (for
example, an IMS system). However, the generic CCI classes are the same in
that they are independent of the EIS, whereas specific EIS classes cater to the
differences. For example, the parameters used to call a CICS program are
different from those used to invoke an IMS transaction, but the programming
model is the same - independent of the EIS. As a result, you can increase

J2EE Server
(e.g WebSphere Application Server)

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection
Management

ƒ Transaction
Management

ƒ Security
Management

Common Client
Interface (CCI)

EIS Specific
Interface

Connection
Pooling

Transaction
Manager

Security
Manager

J2EE Server
(e.g. WebSphere Application Server)

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection

ƒ Transaction

ƒ Security

Common Client
Interface (CCI)

EIS Specific
Interface

Connection
Pooling

Transaction
Manager

Security
Manager

Enterprise Information Enterprise Information
System (e.g. CICS)System (e.g. CICS)

Resource Adapter
(e.g. CICS ECI
resource adapter)

Resource Adapter
(e.g. CICS ECI
resource adapter)

Note: We strongly recommend you use a managed environment over a
non-managed environment. The application development costs for a
non-managed environment are significant and the quality of service generally
not as good as that provided by a managed environment such as WebSphere
Application Server.
30 Architecting Access to CICS within an SOA

developer productivity when developing applications to communicate with
multiple EISs. The CCI programming interface is similar to other J2EE interfaces,
such as the JDBC™ (Java Database Connectivity) interface or JMS (Java
Message Service) interface.

Before the existence of the JCA, IBM recognized a need for a common way to
connect to EIS systems and introduced the Common Connector Framework
(CCF), JCA is an effective replacement now for the CCA. The JCA provides
similar function to the CCF, but it is an open specification that can be
implemented by any EIS vendor. In addition, the JCA provides a stronger
emphasis on system contracts and qualities of service, allowing closer
integration between the J2EE application server and the EIS.

Resource adapters
The CICS Transaction Gateway (CICS TG) provides two ECI (External Call
Interface) resource adapters.

cicseci.rar The CICS ECI resource adapter is provided with both
CICS TG for multiplatforms and CICS TG for z/OS. It
supports the LocalTransaction interface.

cicseciXA.rar The CICS ECI XA resource adapter that is provided with
CICS TG for z/OS only as of V6.1. It provides full support
for global transactions by implementing the XAResource
interface.

The ECI resource adapter is the simplest to use and the most commonly used
CICS TG resource adapter. Support is provided both for synchronous and
asynchronous calls. However, asynchronous calls using the CICS ECI resource
adapter have their limitations, for example, you cannot make several concurrent
calls and then wait for the response. You must take the response of each
previous call, before making another call.

The JCA resource adapters provided by the CICS TG are effective replacements
for the CICS ECI Java classes. Support for the ECI resource adapters is included
in the Rational® Software Development Platform series of products, whereas
tooling support for direct use of the ECI Java classes is not.

System contracts
The JCA defines a standard set of system-level contracts between a J2EE
application server and a resource adapter. The standard contracts include:

� A connection-management contract that provides a consistent application
programming model for connection acquisition and enables a J2EE
application server to pool connections to a back-end EIS. This leads to a
 Chapter 2. Architectural choices 31

scalable and efficient environment that can support a large number of
components requiring access to an EIS system.

� A transaction-management contract that defines the scope of transactional
integration between the J2EE application server and an EIS that supports
transactional access. This contract allows a J2EE application server to use a
transaction manager to manage transactions across multiple resource
managers (known as global transactions). This contract also supports the
LocalTransaction interface, which refers to transactions that are managed
internal to a resource manager without the involvement of an external
transaction manager.

� A security-management contract that enables secure access to an EIS. This
contract provides support for a secure application environment, which
reduces security threats to the EIS and protects valuable information
resources managed by the EIS. Both container-managed sign-on (in which
the J2EE application server is responsible for flowing security context to the
EIS) and component-managed sign-on (in which the application is
responsible for flowing security context to the EIS) are supported.

When used with WebSphere Application Server for z/OS, the CICS ECI
resource adapter enables automatic propagation of security credentials from
the application server to CICS. This functionality is known as thread identity
support.

These system contracts are transparent to the application developers, which
means they do not have to implement these services themselves. In a managed
environment it is these system contracts that make the JCA such a powerful
solution for integrating existing CICS applications with new J2EE applications
running in an application server such as WebSphere Application Server.

Figure 2-4 shows how the CICS TG enables SOA access to a CICS business
logic program.

Figure 2-4 SOA access to CICS using the JCA

A

Message adapter

CICS TS

DB

Client

CCI

CICS TG

CICS ECI
resource
adapter
32 Architecting Access to CICS within an SOA

A J2EE application uses the CCI programming interface to invoke the CICS ECI
resource adapter. The CICS TG ECI classes are packaged with the ECI resource
adapter and are used to pass the application request to the CICS TG.

The J2EE application can invoke the CICS business logic program (B) directly if
no message transformation is required. In this case, Rational Application
Developer can be used to create a Java bean to represent a COMMAREA
formatted as COBOL types, with Java methods for getting and setting fields.

A message adapter in CICS is required only if the message is to be transformed,
for example the request is in XML and the CICS business logic program requires
a COBOL record format. The length of the message is subject to the normal
CICS COMMAREA message length limitation of 32 KB.

The CICS TG is the preferred implementation for JCA connectors to access all
CICS servers from WebSphere Application Server, for applications that require a
high performing, secure and scalable access option with tight integration to
existing CICS applications. The CICS TG benefits from ease of installation,
flexible configuration options, and requires minimal changes to CICS and in most
cases no changes to existing CICS applications. In addition, the CICS TG
supports a range of non Java clients, including C, C++, COBOL and COM.

The JCA is considered a medium coupling architecture, compared to the EJB
architecture (high coupling) and the Web services architecture (low coupling).
The JCA can be used with a diverse range of supported environments and
different deployment options; these are described in detail in 3.1.2, “CICS
Transaction Gateway” on page 48.

2.3 Standard transports
Standard transports are suitable for use by applications that require greater
control of the protocol and do not need the development tools which are
generally provided by the standard architectures. These applications will also
normally assume more responsibility for security, transactions and recovery.

2.3.1 WebSphere MQ
WebSphere MQ allows you to easily exchange information across different
platforms, integrating existing business applications in the process. WebSphere
MQ assures reliable delivery of messages, dynamically distributes workload
across available resources, and helps to make programs portable.
 Chapter 2. Architectural choices 33

WebSphere MQ provides Java Message Service (JMS) APIs and native
WebSphere MQ APIs for use by service requesters on a wide variety of
platforms, with many options for routing and encrypting messages prior to
arriving on WebSphere MQ for z/OS.

Figure 2-5 SOA access to CICS using WebSphere MQ

Figure 2-5 shows the WebSphere MQ trigger monitor program provided by CICS,
which can be used to automatically start an appropriate message adapter
program when messages arrive. The message adapter uses WebSphere MQ
native APIs to receive the message, transform it if required and call the business
logic program. A reply message can be sent using the reply-to queue defined in
the message. For efficiency, the message adapter program will usually continue
to process messages on the inbound queue until it is empty.

The WebSphere MQ DPL bridge for CICS provides an alternative option (see
Figure 2-6). This generic adapter passes a message from a named input queue
to a business logic program through the COMMAREA. This is ideal in the
situation where the service requester can format the message into a form
acceptable by the business logic program.

Figure 2-6 SOA access to CICS using the WebSphere MQ DPL bridge

Client

A

Message adapter

CICS TS

DB

JMS

WebSphere MQ

MQ API

WebSphereMQ trigger monitor

Client

A
CICS TS

DBMessage adapter WebSphere MQ DPL bridge

JMS

WebSphere MQ
34 Architecting Access to CICS within an SOA

When using the WebSphere MQ DPL bridge, the client application writes a
structured message to the queue. This message must contain information in a
predefined format that the monitoring transaction can use to decide how to
handle the message. Several formats are possible, each starting with a block of
data called an MQMD header. This field contains control information used by the
monitoring transaction like the message format type, along with optional
information, such as a reply-queue identifier and a user ID.

For more information about the use of WebSphere MQ with CICS, refer to 3.2.1,
“WebSphere MQ” on page 64.

2.3.2 HTTP
Figure 2-7 shows how the HyperText Transmission Protocol (HTTP) can be used
directly with CICS TS. CICS Web support provides an HTTP listener and a
message adapter program can be written using standard CICS APIs.

Figure 2-7 SOA access to CICS using CICS Web support

CICS supports HTTP Basic Authentication for user ID identification or the more
secure SSL encryption and authentication with client and server certificates.
CICS Web support sets up the transaction and security environment and calls
the message adapter. The message adapter uses the CICS WEB APIs to extract
the HTTP user data, which is typically formatted as an HTML form. The message
adapter has access to the HTTP and TCP/IP headers if required. The message
adapter transforms this information into a COMMAREA and calls the business
logic program.

Client

A

CICS TS

DB

CICS Web support
HTTP

Message adapter

Web API
 Chapter 2. Architectural choices 35

If the service requester is a Web browser, the response message will typically be
formatted as HTML. If the service requester is an application, the response
message will normally be formatted as XML. The message adapter can use the
CICS DOCUMENT APIs to easily merge static HTML or XML with dynamic data
from the business logic program. The response is returned to the client for
display or processing.

HTTP is synchronous and stateless. However, if state management is required,
CICS provides a utility for storing state data indexed by a state management
token that the HTTP client can return on subsequent calls in order to retrieve the
state.

CICS Web support also allows a CICS application to initiate an HTTP request
and to receive the response from an HTTP server program, thus providing
bi-directional support for the HTTP protocol.

For more information about CICS Web support, refer to 3.1.4, “CICS Web
support” on page 60.

2.3.3 TCP/IP Sockets
The TCP/IP Socket Interface for CICS (sometimes referred to as “CICS sockets”)
is provided by z/OS Communications Server and supports peer-to-peer
applications in which both ends of the connection are programmable (see
Figure 2-8). CICS sockets provide a variant of the Berkeley Software Distribution
4.3 Sockets interface, which is a low-level API with no built-in support for
transactions or security.

Figure 2-8 SOA access to CICS using CICS sockets

Note: CICS TS currently supports the HTTP 1.0 and HTTP 1.1 specifications.

Client

A
CICS TS

DB

CICS Sockets listener
TCP/IP

Message adapter

Child server
36 Architecting Access to CICS within an SOA

CICS sockets provide a concurrent listener, or you can write your own listener to
meet your needs. The listener and child server use the CICS Sockets APIs to
receive and send data, and perform general communications control functions.
The programs can be written in COBOL, PL/I, assembler language or C. Client
adapters can be written to create new outbound connections.

For more information about CICS sockets, refer to 3.2.5, “CICS sockets” on
page 73.

2.4 Conclusion
CICS provides a range of access options to support modern connectivity
architectures, such as Web services and J2EE, and other standard transport
mechanisms. With the right external connectors and internal adapters, you can
maximize the reuse of your existing mission-critical CICS assets. The following
table compares the connection architectures and standard transport
mechanisms discussed in this chapter.

Table 2-1 Common architectures and standard transport mechanism

Capabilities Security to IBM
System z

Transactional
scope

Interface Coupling

Standard
architecture

Web services � Inbound and
outbound

� Synchronous
(HTTP)

� Asynchronous
(WebSphere
MQ)

� Web
services

� SSL
� User ID and

password

� Web
services

� Sync on
return

� COMMAREA
� CONTAINER

Low

JCA � Inbound only
� Synchronous
� Asynchronous
� 32 KB

maximum
message size

� SSL
� User ID and

password
� Thread

identity

� Local
� Global
� Sync on

return

� COMMAREA Medium
 Chapter 2. Architectural choices 37

Both CICS Transaction Server and WebSphere Application Server are strategic
middleware products that interoperate well using technologies, such as Web
services, to support end-to-end on demand systems. They exploit and
complement z/OS qualities of service, such as high availability and scalability at
low cost per transaction, with a high level of security. In combination, WebSphere
Application Server and CICS support almost any mission-critical SOA solution.

Standard
transport

WebSphere
MQ

� Inbound and
outbound

� Asynchronous
� Assured

delivery

� SSL
� User ID and

password

Sync on return � COMMAREA
� WebSphere

MQ API

Medium

HTTP � Inbound and
outbound

� Synchronous

� SSL
� User ID and

password

Sync on return CICS Web API Medium

TCP/IP
Sockets

� Inbound and
outbound

� Synchronous
� Asynchronous

� SSL
� User ID and

password

Sync on return CICS sockets API High

Capabilities Security to IBM
System z

Transactional
scope

Interface Coupling
38 Architecting Access to CICS within an SOA

Chapter 3. CICS access technologies

In this chapter, we introduce the CICS access technologies. We provide product
information as well as an overview of the components and topologies.

The three CICS access technologies we discuss here and again in later chapters
are:

� CICS Web service support
� CICS Transaction Gateway (CICS TG)
� CICS Web support

In addition to the above technologies, we also introduce other technologies
which might be appropriate for some business scenarios. These are not
discussed in Part 2 of this book, but we give references to existing Redbooks and
other publications. The other technologies are:

� WebSphere MQ
� CICS Enterprise JavaBeans™ (EJB) support
� SOAP for CICS feature
� Host Access Transformation Services
� TCP/IP Socket Interface for CICS

3

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 39

3.1 CICS access technologies
In the following sections, we provide a short introduction to the strategic CICS
access technologies discussed in this book.

� CICS Web service support
� CICS Transaction Gateway (CICS TG)
� CICS Web support

3.1.1 CICS Web services support in CICS TS V3.1
Application programs running in CICS TS V3.1 can participate in a
heterogeneous Web services environment as service requesters, service
providers, or both, using either an HTTP transport or a WebSphere MQ
transport. Figure 3-1 shows an outline of the Web services support in CICS.

Figure 3-1 Web Services support in CICS TS V3.1

The components of a CICS Web services solution are:

� A PIPELINE process

This controls processing of SOAP messages (SOAP is the message format
used to communicate between a service requester and a service provider).

� Tooling to create Web services artifacts

CICS provides a set of batch tools called the Web Services Assistant used to
create the WSDL and WSBIND files required for a CICS Web services
solution. Alternatively, these can be created using the WebSphere Developer
for System z integrated development environment.

� CICS resources for management

RDO (CICS Resource Definition Online) database for managing CICS Web
services solutions

CICS TS V3.1

Client

SOAP

Request

CICS Web
Service
Support

Service
Provider

Application

Service
Requester

Service
Requester
Application

CICS Web
Service
Support

Endpoint

Service
Provider

SOAP

Request
40 Architecting Access to CICS within an SOA

� A new EXEC CICS API for Web services

Functions of the CICS Web services support in CICS TS V3.1
This section provides more detail about the functions provided by CICS Web
services support:

� Web Services Assistant utility for Web services development.

The Web Services Assistant utility contains two programs, DFHWS2LS and
DFHLS2WS. DFHWS2LS helps you map an existing WSDL document into a
high-level programming language data structure, while DFHLS2WS creates a
new WSDL document from an existing language structure. The Web Services
Assistant supports the following programming languages:

– COBOL
– PL/I
– C
– C++

� Two different approaches to deploying your CICS applications in a Web
services environment.

– When using the Web Services Assistant a file called the WSBIND file is
generated. When your application runs, CICS uses the WSBIND file to
transform your application data into a SOAP message on output and to
transform the SOAP message to application data on input.

This option is also available when using the tooling available in the XML
Services for the Enterprise (XSE) support in WebSphere Developer for
System z.

– You can take complete control of the processing of your data.

You can write your own code to map between your application data and
the message that flows between the service requester and provider. For
example, if you want to use non-SOAP messages within the Web service
infrastructure, you can write your own code to transform between the
message format and the format used by your application.

� Pipeline configuration file to determine which message handlers should be
invoked.

A pipeline can be configured as a service requester pipeline or a service
provider pipeline but not both.

Whether you use the Web Services Assistant or take complete control of the
processing yourself, you can write your own message handlers to perform
additional processing on your request and response messages, or you can
use CICS-supplied message handlers.
 Chapter 3. CICS access technologies 41

� CICS supplied message handlers to help you process SOAP messages.

The pipelines that CICS uses to process Web service requests and
responses are generic, in that there are few restrictions on what processing
can be performed in each message handler. However, many Web service
applications use SOAP messages, and any processing of those messages
should comply with the SOAP specification. Therefore, CICS provides special
SOAP message handler programs that can help you to configure your
pipeline as a SOAP node.

– A service requester pipeline is the initial SOAP sender for the request, and
the ultimate SOAP receiver for the response.

– A service provider pipeline is the ultimate SOAP receiver for the request,
and the initial SOAP sender for the response.

You cannot configure a CICS pipeline to function as an intermediary node in a
SOAP message path.

The CICS-provided SOAP message handlers can be configured to invoke
one or more user-written header processing programs and to enforce the
presence of particular headers in the SOAP message.

� Many and different pipelines within a single CICS region.

You can configure a pipeline to support SOAP 1.1 or SOAP 1.2. Within your
CICS system, you can have some pipelines that support SOAP 1.1 and
others that support SOAP 1.2.

� New resource definitions to help configure support for Web services:

– PIPELINE
– URIMAP
– WEBSERVICE

If you used the SOAP for CICS feature, you may be able to use CICS
resource definitions to replace the logic you provided in your pipeline
programs to distinguish one application from another. For example, in a
service provider, you may be able to replace code that distinguishes between
applications based on a URI, with a suitable set of URIMAP resources.

� Provides new EXEC CICS application programming interface (API)
commands:

– SOAPFAULT ADD | CREATE | DELETE
– INQUIRE WEBSERVICE
– INVOKE WEBSERVICE

� Conforms to open standards including:

– SOAP 1.1 and 1.2
– HTTP 1.1
– WSDL 1.1
42 Architecting Access to CICS within an SOA

� Web service interoperability

It ensures maximum interoperability with other Web services implementations
by conforming with the Web Services Interoperability Organization (WS-I)
Basic Profile 1.0. This profile is a set of non-proprietary Web services
specifications, along with clarifications and amendments to those
specifications, which, taken together, promote interoperability between
different implementations of Web services.

� It supports the WS-Atomic Transaction specification.

� It supports the WS-Security specification.

Figure 3-2 shows an overview of how the component of the CICS Web services
support fits together.

Figure 3-2 Overview of CICS Web services support

CICS as a service provider
When CICS is a service provider, it receives a service request, which is passed
through a pipeline to a target application program. The response from the
application is returned to the service requester through the same pipeline. In this
section we discuss how to prepare for running a CICS application as a service
provider, and how CICS processes the incoming service request.

Preparing to run a CICS application as a service provider
Suppose that we have an existing CICS application that we want to expose as a
Web service that uses the HTTP transport. Suppose also that we want to use the

CICS

CICS Web Service

WSDL

WSBind
File

top down

bottom up

Tools

Runtime
PIPELINE CONVERSIONService

Requester
Business

Logic

IDE Tools
CICS Web
Services
Assistant

Language
Structure
 Chapter 3. CICS access technologies 43

Web Services Assistant rather than taking control of the processing ourselves.
We go through the following high level steps in Table 3-1.

Table 3-1 Expose CICS artefact as a Web service

Figure 3-3 on page 45 shows how the various artefacts relate to each other and
how the dynamic install of resources occurs.

� The batch tools create the WSBIND and WSDL files these are placed in the
‘Pick up’ directory.

� A PIPELINE is configured using an XML config file (or one of the samples
provided with CICS) and a pointer to the pickup directory.

� On installing the PIPELINE a WEBSERVICE resource is created and installed
for every WSBind file found in the pickup directory.

� For every WEBSERVICE resource that is installed a corresponding URIMAP
resource is created and installed referencing the WEBSERVICE and
PIPELINE.

Step Action Role

1. Generate WSBIND and WSDL files Application Developer

2. Create a TCPIPSERVICE resource definition System Programmer

3. Create a PIPELINE resource definition and a
PIPELINE configuration file

System Programmer

4. Install TCPIPSERVICE and PIPELINE definitions
- WEBSERVICE and URIMAP definitions created
automatically by CICS

System Programmer

5. Publish the WSDL System Programmer
44 Architecting Access to CICS within an SOA

Figure 3-3 CICS Web services artefacts

Processing the inbound service request
Figure 3-4 on page 46 shows the processing that occurs when a service
requester sends a SOAP message over HTTP to a service provider application
running in a CICS TS V3.1 region.

CICS TS V3.1

Pickup Directory

HFS

WSBind

WSDL

Batch Tools
WEBSERVICE

PIPELINE
WSBIND

WSDLFILE

PIPELINE
CONFIGFILE

SHELF
WSDIR

URIMAP
USAGE(PIPELINE)

HOST
PATH

PIPELINE
WEBSERVICE

dynamic
install

dynamic
install

Config

COMMAREA
structure

BINDING=
URI=
PGMNAME=
PGMINT=
 Chapter 3. CICS access technologies 45

Figure 3-4 Web service runtime service provider processing

The CICS-supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition; normally, this will
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and then scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its
PATH attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMAP, its uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions that it
will use to process the incoming request. CWXN also uses the TRANSACTION
attribute of the URIMAP definition to determine the name of the transaction that it
should attach to process the pipeline; normally, this will be the CPIH transaction.

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file. CPIH uses the pipeline configuration file
to determine which message handler programs and SOAP header processing
programs to invoke.

CICS TS V3.1
CWXN

Client

CICS
Application
Programs

WEBSERVICE

CPIH

PIPELINE

SOAP

Request

CSOL

TCPIP -
SERVICE URIMAPClient

Application

Config.xml

Service.wsbind
46 Architecting Access to CICS within an SOA

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the data mapper function.

CICS uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs
to map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing input in the format that it expects. The application program is not aware
that it is being executed as a Web service. The program performs its normal
processing, then returns an output COMMAREA or container to the data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

CICS as a service requester
When CICS is a service requester, an application program sends a request,
which is passed through a pipeline to a target service provider. The response
from the service provider is returned to the application program through the same
pipeline. In this section we discuss how to prepare for running a CICS application
as a service requester, and how CICS processes the outbound service request.

Preparing to run a CICS application as a service requester
Suppose we want to write a new CICS application that will invoke a Web service.
Suppose also that we want to use the Web Services Assistant rather than taking
control of the processing ourselves. We go through the following steps listed in
Table 3-2.

Table 3-2 Expose CICS asset as a Web service

Step Action Role

1. Generate WSBIND and language structures Application Developer

2. Create a PIPELINE resource definition and a
PIPELINE configuration file

System Programmer

3. Install the PIPELINE definiton
- WEBSERVICE definition created automatically
by CICS

System Programmer

4. Use the language structure from step 1 to write
the client application program

Application Programmer
 Chapter 3. CICS access technologies 47

Processing the outbound service request
Figure 3-5 shows the processing that occurs when a service requester running in
a CICS TS V3.1 region sends a SOAP message to a service provider.

Figure 3-5 Web service requester resources

When the service requester issues the EXEC CICS INVOKE WEBSERVICE
command, CICS uses the information found in the WSBIND file that is
associated with the specified WEBSERVICE definition to convert the language
structure into an XML document. CICS then invokes the message handlers
specified in the pipeline configuration file, and they convert the XML document
into a SOAP message.

CICS will send the request SOAP message to the remote service provider either
via HTTP or WebSphere MQ.

When the response SOAP message is received, CICS will pass it back through
the pipeline. The message handlers will extract the SOAP body from the SOAP
envelope, and the data mapping function will convert the XML in the SOAP body
into a language structure that is passed to the application program in container
DFHWS-DATA.

3.1.2 CICS Transaction Gateway
The CICS Transaction Gateway (CICS TG) is a set of client and server software
components that allow a remote client application to invoke services in a CICS

CICS TS V3.1

User Transaction

Service Provider

Provider
Application

SOAP

Request
Config.xml

Service.wsbind

CICS
Application
Programs

WEBSERVICE

PIPELINE
48 Architecting Access to CICS within an SOA

region. The client application can be either a Java application or a non-Java
application using either C, C++, COBOL or COM interfaces (depending on the
platform used).

When a Java application is used, then the application can be any type of client
(such as a servlet, or an enterprise bean). In the J2EE environment, the
application is typically a servlet or enterprise bean that is deployed into a J2EE
application server such as WebSphere Application Server.

CICS TG products
With CICS TG V6 and later there are now the following two distinct orderable
CICS TG products:

� CICS TG for Multiplatforms
� CICS TG for z/OS

CICS TG for Multiplatforms V6.0
CICS TG for Multiplatforms V6.0 is supported on the following range of operating
systems and platforms and is designed to support connectivity to all in-service
CICS servers:

� Linux on System z
� Linux on Intel®
� Linux on POWER™
� AIX®
� HP-UX (on PA-RISC)
� Sun™ Solaris™ (on SPARC)
� Windows® XP, Windows 2000, and Windows 2003

This version was announced on 30 November 2004 in a U.S. announcement
letter 204-2284, which is available at:

http://www-306.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subt
ype=ca&supplier=897&letternum=ENUS204-284

CICS TG for Multiplatforms is comprised of the following main runtime
components:

� The Gateway daemon, which listens for incoming work and manages the
threads and connections necessary to ensure good performance.

� The Client daemon, which provides the communication to CICS servers and
the non-Java APIs.

� A Java class library or JCA resource adapter, which is deployed into the client
runtime environment. When used in a JCA environment the resource adapter
is deployed into the J2EE application server.
 Chapter 3. CICS access technologies 49

http://www-306.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS204-284

A Java client program can connect to a remote Gateway daemon using the TCP
or SSL protocols. The Client daemon then provides the transport drivers to
connect to the CICS server, as shown in Figure 3-6. Note that because the
non-Java APIs are provided by the Client daemon, there is no remote
connectivity support for non-Java clients.

Figure 3-6 Components of CICS TG for Multiplatforms

3.1.3 CICS TG for z/OS V6.1

CICS TG for z/OS V6.1 is the latest version of the z/OS product. It is supported
on z/OS V1R4 and later and supports connectivity to CICS TS for z/OS V1.3,
V2.2, V2.3, and V3.1.

The product was announced on 04 October 2005 in a U.S. announcement letter
205-248, which is available at:

http://www-306.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subt
ype=ca&supplier=897&letternum=ENUS205-248

Note: The CICS Universal Client V6.0.2, which provides the Client daemon
functions within CICS TG, is available as a separate product. CICS Universal
Client provides the transport protocols and non-Java programming interfaces
for single user access to CICS.

CICS TG

Client
daemon

Gateway
daemon

CICS
Server

Protocol
handler APPC

TCP62
TCP/IP

TCP
or SSL

z/OS, OS/390
VSE, TxSeries

Distributed platform

ctgjni.dll

JNI module

Java

Client
ctgclient.jar
cicseci.rar
cicsepi.rar

ctgserver.jar

CICS TG

Client
daemon

Gateway
daemon

CICS
Server

Protocol
handler APPC

TCP62
TCP/IP

TCP
or SSL

z/OS, OS/390
VSE, TxSeries

Distributed platform

ctgjni.dll

JNI module

Java
Client

ctgclient.jar
cicseci.rar
cicsepi.rar

ctgserver.jar
50 Architecting Access to CICS within an SOA

http://www-306.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS205-248
http://www-306.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS205-248

CICS TG for z/OS uses the external communication interface (EXCI) provided by
CICS TS to communicate with CICS (Figure 3-7). It does not include the Client
daemon and does not provide any support for non-Java based applications
because this support is provided through the CICS EXCI interface.

Figure 3-7 Components of CICS TG for z/OS

CICS TG for z/OS V6 has many improvements principally in the area of systems
management, usability, and performance as follows:

� XA transaction support enables CICS Transaction Server (CICS TS) for z/OS
to participate in a global two-phase commit transaction that is initiated in a
distributed J2EE V1.4 application server, such as WebSphere Application
Server V6. XA transaction support was introduced in CICS TG V6.1.

� Management of the Gateway daemon from SDSF provides better system
administration capabilities, including a new normal shutdown mechanism.

� Direction of output to JES provides improved management for runtime
messages.

� An option to limit the number of EXCI pipes to one per thread improves
reliability and scalability with multiple CICS TORs.

CICS TG application programming interfaces
CICS TG for Multiplatforms provides the following programming interfaces for
accessing CICS applications:

� External Call Interface (ECI)
� External Presentation Interface (EPI)
� External Security Interface (ESI)

CICS TG

EXCI

Gateway
daemon

CICS TSProtocol
handler

MRO

TCP
or SSL

z/OS

libctgjni.so

JNI module

IRCctgserver.jar
ctgclient.jar
cicseci.rar
cicseciXA.rar

CICS TG

EXCI

Gateway
daemon

CICS TSCICS TSProtocol
handler

MRO

TCP
or SSL

z/OS

libctgjni.so

IRCctgserver.jar
ctgclient.jar
cicseci.rar
cicseciXA.rar

Java
Client
 Chapter 3. CICS access technologies 51

External Call Interface (ECI)
The ECI is used for calling COMMAREA-based CICS programs. The
COMMAREA is the buffer that is used for passing the data between the client
and the CICS server. CICS sees the client request as a distributed program link
(DPL) request.

The ECI enables a user application to call a CICS program synchronously or
asynchronously. It enables the design of new applications to be optimized for
client-server operation, with the business logic on the server and the
presentation logic on the client.

An ECI request can be invoked from a Java application using a variety of
different interfaces:

� The ECIRequest class that is provided by the CICS TG base classes.

This interface provides a simple procedural type interface to the ECI. It is
supported in any Java environment (such as an stand-alone application) and
provides similar capabilities to the JCA. However, it does not provide the
same qualities of service (such as XA transaction support).

� The Common Client Interface (CCI) that is provided by the CICS ECI
resource adapters (cicseci.rar or cicseciXA.rar).

These classes define a standard architecture for connecting the Java 2
Platform Enterprise Edition (J2EE) platform to a heterogeneous EIS such as
CICS. Java applications interact with resource adapters using the Common
Client Interface (CCI), which is a common framework of classes extended by
each resource adapter to allow communication with a specific EIS.

Note: The CICS TG on z/OS supports only the ECI, because of its reliance on
the CICS EXCI function that provides the call interface and connectivity
between the Gateway daemon and the CICS TS region.

Note: Before the existence of the JCA, IBM recognized a need for a common
way to connect to EIS systems and introduced the Common Connector
Framework (CCF) through the IBM VisualAge® for Java product. CCF was
similar in concept to JCA. However, CCF was not an open specification and
did not provide the same support for system contracts and qualities of service
(such as transaction support and connection pooling).

CICS TG V6.1 no longer provides support for the CCF. However, a
SupportPac (CE52) is available that provides runtime support for CCF using a
CICS TG V6 Java client. It is available at:

http://www.ibm.com/software/htp/cics/ctg/support
52 Architecting Access to CICS within an SOA

http://www.ibm.com/software/htp/cics/ctg/support

External Presentation Interface (EPI)
The EPI is used for invoking 3270-based transactions. A terminal is installed in
CICS, and CICS sees the request as running on a remote terminal controlled by
the CICS TG.

An EPI request can be invoked from a Java application using one of three
different interfaces:

� The EPIRequest class provided by the CICS TG base classes.

This class provides a Java interface to the EPI, and is used for invoking
3270-based transactions. Due to its low-level nature, using it for developing
EPI applications requires a strong knowledge of CICS and 3270 data
streams.

� The EPI support classes, which provide high-level constructs for handling
3270 data streams.

A wide range of classes is provided including AID, FieldData, Screen,
Terminal, Map and MapData. These are used to represent the interface to a
CICS 3270 terminal, and the resulting 3270 response.

� The Common Client Interface (CCI) provided by the CICS EPI resource
adapter (cicsepi.rar).

EPI is typically used when it is not possible to separate the presentation logic
from the business logic of an application, and allows the reformatting of the user
interface, without modification of the CICS application.

External Security Interface (ESI)
The ESI is used for verifying and changing the user ID and password information
held in the CICS external security manager (ESM), such as RACF®. It is based
on the CICS Password Expiration Management (PEM) function.

ESI calls to CICS can only be made using the ESIRequest class that is provided
by the CICS TG base classes. This class provides a Java interface to the ESI,
and provides two simple PEM requester functions:

Verify Password Allows a client application to verify that a password
matches the password for a given user ID that is stored by
the CICS ESM.

Change Password Allows a client application to change the password that is
held by the CICS ESM for a given user ID.

There is no other interface available for the ESI, although both the EPI and ECI
allow user IDs and passwords to be flowed within the actual requests. In this
case the user ID and password is authenticated either within CICS, if using a
Multiplatform CICS TG, or within the CICS TG, if using the CICS TG for z/OS.
 Chapter 3. CICS access technologies 53

CICS TG for z/OS modes of operation
There are two principle modes of operation for the CICS TG: remote and local.

Remote mode of operation
The remote mode of operation uses the Gateway daemon as a long running task
which listens on specified ports for incoming ECI requests and then forwards
them to the CICS server via the EXCI protocol. The Gateway daemon runs in its
own MVS address space and provides connection and thread management.

Local mode of operation
If the CICS TG is to be used on the same machine as WebSphere Application
Server, it is more efficient to use the CICS TG classes within WebSphere
Application Server to provide the gateway functionality. This mode of operation
allows WebSphere Application Server to manage the connections and threads
and reduces the communications overhead. This configuration is known as the
local mode of operation.

CICS TG and the JCA
The CICS TG is the preferred J2EE connector for CICS TS, and in conjunction
with IBM WebSphere Application Server provides, a high performing, secure,
scalable and tightly integrated access method in CICS.

The JCA system-level contracts between a J2EE application server, such as
WebSphere Application Server, and a resource adapter determine the scope of
the JCA managed environment. The standard contracts include a
connection-management contract, transaction-management contract and a
security-management contract. These contracts provide the mechanisms by
which the management of connections, security and transactions are performed:

� The connection-management contract enables the application server to pool
and re-use connections into CICS, enabling a more scalable and efficient
environment that can support a large number of concurrent accesses to a
CICS region.

� The transaction-management contract defines the scope of transactional
integration between a J2EE application deployed in WebSphere Application
Server and a CICS program.

� The security-management contract defines how security context information
is passed between the application server and CICS.
54 Architecting Access to CICS within an SOA

Using the CICS ECI resource adapter with different topologies
The JCA system contracts are the key to the qualities of service provided by
WebSphere Application Server and the CICS ECI resource adapter. However,
the qualities of service vary depending on the topology in use. The three most
common topologies shown in Figure 3-8 are:

Topology 1 WebSphere Application Server and the CICS TG are both
deployed on a distributed (non-System z) platform.

Topology 2 WebSphere Application Server is deployed on a
distributed platform and the CICS TG is deployed on a
z/OS system.

Topology 3 Both WebSphere Application Server and the CICS TG are
deployed on System z.

These topologies are discussed in more detail further in this section.

Figure 3-8 Common topologies for using CICS TG with WebSphere Application Server

1. WebSphere Application Server and CICS TG deployed on distributed
platforms

In topology 1 (Figure 3-9), both WebSphere Application Server and CICS
Transaction Gateway are deployed on one of the distributed platforms, such
as a Windows or UNIX® platform. Both ECI and EPI resource adapters can
be used in this configuration. Figure 3-9 shows an EJB application using the
ECI resource adapter to access a COMMAREA-based CICS COBOL
application.

WebSphere
Application Server
and CICS TG on a
distributed platform

WebSphere
Application Server
on a distributed

platform
WebSphere
Application

Server and CICS TG
on zSeries

CICS TG
z/OS

CICS

Topology 1

Topology 2

Topology 3

zSeries

Network
 Chapter 3. CICS access technologies 55

Figure 3-9 CICS TG Topology 1

In this configuration, the Gateway daemon is not required because the CICS
TG local: protocol is used to invoke the Client daemon directly from the
enterprise bean (this protocol parameter is specified as a setting on the
connection factory using the WebSphere Administrative Console).

A variation of this topology is where the WebSphere Application Server and
CICS TG are installed on one of the distributed platforms but reside on
different machines. The main difference in this variation is the connection
between the application server and the CICS TG is a physical network
connection rather than a local binding.

Using the local: protocol is the most efficient option for topology 1 because it
avoids a network flow and reduces the systems administration since there is
no Gateway daemon to manage.

2. Remote Gateway daemon on z/OS

In topology 2, where WebSphere Application Server is deployed on one of the
distributed platforms, it is possible to access CICS through a Gateway
daemon running on z/OS, as shown in Figure 3-10 on page 57.

SNA or
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Distributed platform

C
lie

nt
da

em
on

Service

SNA or
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

CICS TG
ECI resource
adapterCCI

z/OS

C
lie

nt
da

em
on

Service
request

EJB

JSPJSP ServletServlet
56 Architecting Access to CICS within an SOA

Figure 3-10 CICS TG Topology 2

In this configuration, the protocol used is one of the remote protocols (TCP,
HTTP, SSL or HTTPS). The communication from the CICS Transaction
Gateway on z/OS to the CICS server utilizes EXCI.

This configuration is widely used today for the following reasons:

– Topology 1 only supports native TCP/IP connections into System z
systems for CICS TS V2 onwards whereas topology 2 supports TCP/IP
connections into System z for CICS TS V1 onwards.

– When CICS security is enabled, topology 1 requires that a user ID and
password are flowed with each ECI request. In some situations, user ID
authentication by CICS does not easily fit within the security design of a
project. Using topology 2 can help to avoid this problem because CICS TG
for z/OS allows a pre-authenticated user ID to be flowed into CICS without
a password.

– Topology 2 enables integration with z/OS IP workload-management
functions, including Sysplex Distributor and TCP/IP port sharing.

– Deploying the CICS TG on z/OS can leverage the existing CICS
systems-management skills within the enterprise.

– Topology 2 provides XA transaction support, to enable resources to
participate in two-phase commit transactions. The two-phase commit
capability for this topology is provided through MVS resource recovery
services (RRS), an integral part of z/OS. RRS acts as the external
transaction coordinator for z/OS in managing the transaction scope
between WebSphere Application Server, CICS and other z/OS
subsystems, including IMS/TM, IMS/DB, IBM DB2 and WebSphere MQ
systems.

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Service

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

CICS TG
ECI or
ECI XA
resource
adapterCCI

z/OS

Service
request

EJB

JSPJSP ServletServlet

EXCI
 Chapter 3. CICS access technologies 57

3. WebSphere Application Server and CICS TG deployed on System z

In a System z topology, WebSphere Application Server can be deployed on
either a z/OS system or on a Linux operating system. The qualities of service
which will be discussed in subsequent chapters of this book differ significantly
between these two topologies.

a. WebSphere Application Server and the CICS TG on z/OS (Figure 3-11)

Figure 3-11 CICS TG Topology 3a

Topology 3a supports the CICS ECI resource adapter but not the EPI
resource adapter. As in topology 1, the most common z/OS configuration
makes use of a local CICS TG. On z/OS, this results in a direct
cross-memory EXCI connection between the application server and CICS.
Figure 3-11 shows the application deployed to WebSphere Application
Server for z/OS using a local CICS TG.

CICS TG also supports remote connections for this topology which allows
a connection from the application server to a z/OS Gateway daemon. This
functionality was introduced primarily for z/OS.e customers. z/OS.e is a
specially priced offering of z/OS that provides select z/OS function for the
System z 800 system. Traditional workloads, such as CICS TS, are not
licensed for z/OS.e. Because the CICS TG relies on the EXCI interface
provided by CICS TS for z/OS, the CICS TG must be installed in a
full-function z/OS LPAR. This means a remote connection must be used
from WebSphere Application Server into the CICS TG.

The highest qualities of service, however, can be achieved when a local
connection between the application server and the CICS region is used. In
particular, this topology is the only topology that provides thread identity
support.

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Service

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

CICS TG
ECI or
ECI XA
resource
adapterCCI

z/OS

Service
request

EJB

JSPJSP ServletServlet

EXCI
58 Architecting Access to CICS within an SOA

The unique thread identity support in WebSphere Application Server for
z/OS allows the application server to automatically pass the user ID of the
thread (for example, the caller's identity) to CICS when using the ECI
resource adapter. This satisfies a common end-to-end security
requirement of automatically propagating the authenticated caller’s user
ID from WebSphere Application Server to CICS.

b. WebSphere Application Server and CICS TG on Linux on System z

Topology 3b (see Figure 3-12) is where WebSphere Application Server is
deployed within Linux on System z.

The JCA qualities of service for this configuration are almost identical to
those described for topology 1 because Linux on System z (within a JCA
and CICS TG scenario) can be treated as a distributed platform. A
significant exception to this generalization is that HiperSockets™ can be
utilized to provide a highly efficient cross-memory transport for
TCP/IP-based communication into CICS (using the ECI over TCP/IP
function of CICS TS V2.2 and higher). In addition, the APPC protocol is
currently not supported when deploying the CICS TG on Linux. As a
result, the TCP62 protocol must be used if support is required for EPI
requests.

Figure 3-12 CICS TG Topology 3b

Comms Server
or

HiperSockets

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Linux on zSeries

C
lie

nt
da

em
on

Service
APPC,

TCP62 or
TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

CICS TG
ECI
resource
adapterCCI

z/OS

C
lie

nt
da

em
on

Service
request

EJB

JSPJSP ServletServlet
 Chapter 3. CICS access technologies 59

The same choice of where to deploy the CICS TG exists for
implementations of WebSphere Application Server on Linux on System z
as it does for implementations of WebSphere Application Server on
distributed platforms. CICS TG can be deployed within the same Linux
partition as WebSphere Application Server (in which case a local
connection from WebSphere Application Server is used) or on z/OS as in
topology 2 (in which case a remote connection is used).

The CICS TG topologies are referred to in subsequent chapters, in particular, in
terms of how they determine the qualities of service offered by the JCA system
contracts.

3.1.4 CICS Web support
CICS Web support is a set of resources supplied with CICS TS for z/OS that
provide CICS with a subset of the HTTP serving functions found in a
general-purpose Web server. This allows CICS applications to be invoked by and
reply to HTTP requests. A summary of how a CICS application can be
Web-enabled using the CICS Web support is illustrated in Figure 3-13.

Figure 3-13 CICS Web support overview

CICS Web support provides a native HTTP interface to CICS; this interface can
be used by both 3270-based transactions and applications that provide a callable
COMMAREA interface. Two different configurations can be used to route the
HTTP requests into the CICS region. Both configurations allow the use of the
same facilities in CICS, although the configuration of the two options is

Web Browser

Direct
Connection

CICS
TCP/IP
listener C

W
S

3270
presentation

logic

Web-aware
presentation

logic

CICS
application

C
O
M
M
A
R
E
A

3270
Web

bridge

CICS region
60 Architecting Access to CICS within an SOA

significantly different. These configurations are as follows:

� A direct connection from a Web browser to CICS. This uses the facilities of
the CICS TCP/IP listener to pass the request directly into CICS Web support.

� Through the IBM HTTP Server using the facilities of the CICS WebServer
Plugin. This is a CICS-supplied Go Webserver API (GWAPI) extension to the
IBM HTTP Server. It routes requests from the HTTP Server into the CICS
region using the EXCI. CICS supplies two GWAPI modules called
DFHWBAPI and DFHWBDLL. It you use the CICS WebServer plugin, you are
recommended to use DFHWBDLL because it has support for the FORMS API
commands (for example, EXEC CICS WEB READ FORMFIELD).

We will not be discussing the CICS WebServer Plugin any further in this book
since it is no longer a widely used configuration.

CICS Web support can be used to invoke two types of CICS applications:

1. To invoke a 3270 transaction, the facilities of the 3270 bridge are used. The
3270 transaction remains unchanged, and the 3270 output is converted to
HTML. This function is known as the 3270 Web bridge.

2. To invoke an existing application that provides a callable COMMAREA
interface, some new CICS presentation logic must be written. This logic uses
CICS facilities to interpret and act upon the HTTP request, and then build and
return the HTTP response. We will refer to application code containing such
logic as Web-aware. This Web-aware logic can be contained either within the
CICS Web support converter Encode and Decode routines, within the original
program, or in a separate Web presentation module that links to the original
program. CICS provides two different methods to create this Web-aware
presentation logic:

– WEB API

The WEB API, together with the DOCUMENT API and TCP/IP API,
provide a rich set of functions to interpret, manipulate, and build the HTTP
data streams within a CICS application. They are described in more detail
in the CICS Application Programming Guide, SC34-6231, CICS
Application Programming Reference, SC34-6232, and Chapter 2 in CICS
Transaction Server for OS/390 Version 1, Release 3: Web Support and
3270 Bridge, SG24-5480.
 Chapter 3. CICS access technologies 61

– COMMAREA manipulation

The COMMAREA manipulation technique was originally introduced with
CICS Web Interface support in CICS/ESA® V4.1. It uses the CICS
COMMAREA as a buffer for transferring the HTTP data stream along with
a range of utility programs to manipulate the data stream. The CICS Web
support HTML template manager program (DFHWBTL) can be used to
build the response. This technique is still available, but for ease of use and
higher functionality, we recommend the use of the WEB API.

CICS Web support: Direct connection
Figure 3-14 illustrates the major components of CICS Web support when using
Web-aware presentation logic via a direct connection to CICS. The light shading
is for CICS Web support components that run under the Web attach transaction;
the darker shading is for CICS Web support components that run under the alias
transaction.

Figure 3-14 CICS Web support

Using the CICS Web support direct connection and passing data in the
COMMAREA allows greater than 32 KB of data to be returned from the
application to the Web browser, although only 32 KB of data can be received by
the application. If the application uses the WEB and DOCUMENT API commands then
it can both send and receive greater than 32 KB.

Web attach transaction
CWXN

Web
attach

processing

Alias transaction
CWBA

CICS
Region

DFHCCNV
(headers)

Analyzer

DFHCCNV
(input data)

User
Application
Program

Business
Logic

Interface

Converter
Encode

Converter
Decode

DFHCCNV
(output data)

CICS Web support

z/OS
Comms.
Server

Web Browser

TCP/IP

z/OS

CICS
TCP/IP
listener
(CSOL)

HTTP
62 Architecting Access to CICS within an SOA

CICS TCP/IP listener
The CICS TCP/IP listener is part of the CICS Sockets domain, and runs as the
CSOL (Sockets listener) system task. It provides TCP/IP support to handle
requests for internal CICS functions that use TCP/IP services, currently HTTP,
IIOP, and ECI over TCP/IP support. As such, it is not a component of CICS Web
support, but a service used by CICS Web support.

Web attach transaction (CWXN)
The Web attach transaction (CWXN) performs the Web attach processing. It
invokes the DFHCCNV code page conversion routine to convert HTTP headers,
links to the analyzer, invokes DFHCCNV again to convert user data, and then
starts the alias. The CWXN task will terminate after invoking the alias, unless
persistent HTTP connections are used. The CWXN task also stores the data it
received from the client in temporary storage (TS) queues for later use by the WEB
API commands.

DFHCCNV
The DFHCCNV code page conversion routines are invoked by the Web attach
processing to convert the ASCII HTTP headers and user data of the Web
browser client to EBCDIC, and by the alias transaction to convert EBCDIC output
back to ASCII. This conversion only affects the data in the COMMAREA. It does
not affect the data in the TS queues that will be used by the WEB API commands.

Analyzer
The purpose of the analyzer is to analyze the incoming HTTP request. It runs
under the CWXN transaction, and decides if the request will be accepted, and if
so, what parameters will be set. Among other things, it can set the name of the
alias, converter, user ID, and user program.

This has now been superseded by the URIMAP definition, which allows URIs to
be mapped to programs using CICS RDO.

Alias
The alias transaction is invoked by the Web attach processing. The default alias
transaction code is CWBA, but this can be modified. The alias initially invokes
the program DFHWBA, which links to the business logic interface.

Note: The CICS TCP/IP listener is completely separate from, and not to be
confused with, the TCP/IP Socket Interface for CICS which provides an
application level TCP/IP socket interface to CICS applications, and is
described further in 3.2.5, “CICS sockets” on page 73.
 Chapter 3. CICS access technologies 63

Business logic interface
The business logic interface (BLI) is an externally callable interface to CICS Web
support. It is implemented by the module DFHWBBLI. It provides a mechanism
for implementing Web-aware presentation logic in the converter. The converter
provides Decode and Encode routines to receive the HTTP request and
construct a COMMAREA for the target application and to take the COMMAREA
from the application and send out an HTTP response. Note that it is possible to
bypass the converter and implement the Web-aware logic in a separate module
which would communicate directly with the business logic through a
COMMAREA interface. The business logic interface and the converter, when
present, provide the function which we call the message adapter.

3.2 Other solutions
Because there are so many combinations of browsers, servers, network
connections, CICS applications, and user environments, there may be a
requirement for access to CICS that none of the previously described
technologies meets completely. There are a number of other options which you
may also want to consider in these situations. We describe some of these
options in this section.

� WebSphere MQ
� CICS Enterprise Java Bean support
� SOAP for CICS feature
� WebSphere Host Access Transformation Services
� CICS Sockets

3.2.1 WebSphere MQ
WebSphere MQ is a family of products available on all major operating system
platforms. It provides an open, scalable, industrial-strength messaging and
information infrastructure enabling enterprises to integrate business processes.

WebSphere MQ provides Java Message Service (JMS) APIs and native
WebSphere MQ APIs for use by clients on a wide variety of platforms. This
makes it suitable for communication between a range of different types of
application and CICS applications.

Figure 3-15 on page 65 shows a typical scenario for access of a CICS
application using WebSphere MQ.
64 Architecting Access to CICS within an SOA

Figure 3-15 Using WebSphere MQ as a CICS access component

A message adapter program, which uses the WebSphere MQ native APIs, is
required to receive the message, transform it if required and call the business
logic program in CICS.

Another approach which avoids the need to write a message adapter program
yourself, is to use the WebSphere MQ DPL bridge.

The WebSphere MQ DPL bridge provides a CICS transaction that can monitor a
particular message queue across the connection between the CICS server and a
queue manager. A client can use one of the WebSphere MQ APIs to write a
structured message to this queue. This message must contain information in a
predefined format that the monitoring transaction can use to decide how to
handle the message.

Several message formats are possible, each starting with a block of data called
an MQMD header. The MQMD contains control information used by the
monitoring transaction like the message format type, along with optional
information, such as a reply-queue identifier and a user ID. The information that
follows the MQMD field can simply be the name of the application program to run
within CICS, with the option to include data that the program can receive as its
COMMAREA.

Figure 3-16 on page 66 shows the main components of this architecture.

Windows, UNIX, zOS zOS

Client
Web

Application
Server

WebSphere
MQ

PUT

GET

CICS

WebSphere
MQ

PUT

GET
Message
Adapter

NETWORK

Service
Requester
 Chapter 3. CICS access technologies 65

Figure 3-16 WebSphere MQ-CICS bridge for DPL requests

A connection must exist between the queue manager and CICS region, both
running in the same MVS system. You can achieve this connection using the
adapter, under the control of the CKQC transaction.

You must start a bridge-monitoring transaction (CKBR) to look for messages
arriving on a particular queue. Several monitoring transactions can run
concurrently to manage a set of queues in this way. When the message arrives,
the monitoring transaction detects it and starts a bridge DPL transaction to
process the message. The monitoring transaction continues to look for other
messages arriving on the queue. You can set up the bridge DPL transaction to
run requests using a system user ID or the user ID of the requester.

The DPL bridge transaction reads the message from the queue. From within the
message, the task finds the name of a CICS application program, any input data
it requires and, optionally, the name of a message queue to send a response to.
Next, the DPL bridge transaction sets up a COMMAREA containing the input
data and links to the named program, returning any output COMMAREA to the
reply queue after the program has ended. The client application can use this
mechanism either synchronously or asynchronously. It can wait for a response
by monitoring a particular queue, or it may send a message and continue
processing other transactions or even terminate without waiting for CICS to
process the request. If the client runs on the same system as the CICS server, it
can monitor the transmission queue for a response. If it is remote to the CICS
server, the client can use WebSphere MQ to route the response message from
the transmission queue to one defined to its local queue manager.

zOS

Queue Manager CICS

Connection
Manager

Request
Queue

Transmission
Queue

Bridge
Monitor

CKQC

MQGET Browse Request

MQGET Request

MQPUT Response

(Optional)

Connection

Start Transaction
LINK

RETURN
Bridge DPL
Transaction

Business
Logic

Program
66 Architecting Access to CICS within an SOA

Each DPL request executes in isolation, and no state is preserved in CICS to tie
up a series of requests that a client might make. So, if the client calls CICS more
than once, each piece of work is treated separately because the server doesn’t
retain any information to tie them together. The WebSphere MQ monitoring
transaction and DPL bridge transaction run within the same CICS region. The
program targeted by the DPL request can be made eligible for routing to another
CICS region. All to help balance the workload more effectively.

By using the Link3270 bridge with the WebSphere MQ DPL bridge you can also
enable access to a CICS terminal-oriented program.

For further information about WebSphere MQ refer to the following publications:

� WebSphere MQ for z/OS V5.3 Concepts and Planning Guide, GC34-6051

� WebSphere MQ for z/OS V5.3 System Setup Guide, SC34-6052

� WebSphere MQ for z/OS V5.3 System Administration Guide, SC34-6053

� WebSphere MQ Application Programming Guide, SC34-6064

3.2.2 CICS Enterprise JavaBeans support

JavaBeans and Enterprise JavaBeans are component architectures for the Java
language.

A JavaBean is a self-contained, reusable software component, written in Java,
usually intended for use in a desktop or client application. Typically, desktop
JavaBeans have a visual element, and execute within some type of visual
container, such as a form, panel, or Web page.

The Enterprise JavaBeans architecture supports server components. Server
components are application components that run in an application server such
as WebSphere Application Server and CICS. Unlike desktop components, they
do not have a visual element and the container they run in is not visual. Server
components written to the Enterprise JavaBeans specification are known as
enterprise beans. They are portable across any EJB-compliant application
server.

CICS provides support for session beans which are instantiated by a client and
represent a single conversation with the client. In most cases, this conversation
only lasts as long as the client is active. From this point of view, the session bean
is very similar to a pseudo-conversational transaction in CICS.
 Chapter 3. CICS access technologies 67

To be useful, server components require access to the application server’s
infrastructure services, such as its distributed communication service, naming
and directory services, transaction and security management services, data
access and persistence services, and resource-sharing services. Different
application servers implement these infrastructure services using different
technologies. However, an EJB-compliant application server provides an
enterprise bean with access to these services through standard interfaces, and
manages many of them on behalf of the bean.

In the EJB architecture a Java client is able to invoke methods on the Enterprise
JavaBean across a network. The Java client can invoke the bean once it obtains
a reference to it using a JNDI (Java Naming and Directory Service Interface) call
to lookup the bean’s home interface. The Java Object Request Broker (ORB)
acts as an intermediary between the client and the server by transparently
marshalling and unmarshalling parameters.

Figure 3-17 on page 69 shows how CICS EJB support can be used to enable
SOA access to a CICS business logic program. When an EJB request is received
the ORB decodes the Remote Method Invocation (RMI). The ORB in turn calls
the appropriate methods of the Enterprise JavaBean (a session bean) to process
the request. The session bean can call a business logic program either using the
CCI API (a CCI Connector is provided by CICS TS) or the JCICS classes. The
CCI is recommended because it is a non-CICS specific interface and therefore
enhances the portability of the session bean component. If the message needs
to be transformed, a message adapter could be called prior to calling the
business logic.

Note: CICS TS V3.1 supports session beans at the Sun Microsystems™’
Enterprise JavaBeans Specification, V1.1 level but does not have support for
other types of Enterprise JavaBeans such as entity beans and
message-driven beans.
68 Architecting Access to CICS within an SOA

Figure 3-17 Access to CICS using EJBs

The session bean in CICS has the option to be stateless between invocations or
stateful, in which case CICS will save the session bean data into a VSAM file and
restore the state automatically.

The EJB support provided by CICS supports SSL encryption and full transaction
coordination using the two-phase commit protocol. When used with WebSphere
Application Server for z/OS, the EJB support in CICS enables automatic
propagation of security credentials from the application server to CICS. This
functionality is known as asserted identity support.

The EJB architecture is considered a tightly coupled connection because both
ends need to be implemented by compatible J2EE technologies and EJB
interfaces.

For more information see Appendix A, “CICS EJB support” on page 307.

3.2.3 SOAP for CICS feature

The SOAP for CICS feature allows CICS to operate as a service requester or
service provider within a Web services architecture.

Using the SOAP for CICS feature CICS business logic programs can interact
securely and reliably with other Web services, exchanging XML based

Client

A

JCA

Message adapter

CICS TS

IIOP

DB

RMI

Java ORB Java ORB

Enterprise JavaBean

CCI

A

JCA

Message adapter

CICS TS

IIOP

DB

RMI

Java ORB Java ORB

Enterprise JavaBean

CCI

Note: In CICS TS V3.1 this feature has been superseded by the base CICS
Web services support.
 Chapter 3. CICS access technologies 69

messages, independently of platform, or application language. Within the
Service Orientated Architecture (SOA), standard definitions are used to describe
the message formats than can be sent. Thus developers can rapidly build open
standards based applications independently of the CICS business logic program
they will interact with. This is the essence of the service orientated architecture,
and the reason that is deemed to be loosely coupled.

The SOAP for CICS functionality was originally introduced as supportpac CA1M
which has now been replaced by an optional feature for CICS Transaction Server
V2.2 or V2.3.

The service provider and service requester functions within CICS are run as
pipelines utilizing CICS Business Transaction Services (BTS) functionality. User
application code running as part of the pipeline needs to be aware that it will be
within a BTS activity so that it correctly handles events and containers.

SOAP messages are sent as XML documents, for these messages to be
understood by an existing CICS application, they must be parsed, and so user
application code will need to be added to the pipeline to parse the XML.
Enterprise COBOL V3 and Enterprise PL/I V3 both provide built-in XML parsing
functionality for the PL/I and COBOL languages, and this can simplify the
development of parsing code. Alternatively, parsing code can be generated
automatically using a tool such as WebSphere Developer for System z.

For more information see Appendix B, “SOAP for CICS feature” on page 383.

3.2.4 WebSphere Host Access Transformation Services

IBM WebSphere Host Access Transformation Services (HATS) is a toolkit, or
plug-in, for the Rational Software Development Platform that enables customers
to provide access to 3270 or 5250 host applications using a Web browser and
WebSphere Application Server. Using the Java code that is deployed by the
toolkit, host screens are dynamically converted to a point-and-click Web interface
and delivered as HTML to the Web browser. This conversion takes place in real
time as the end user interacts with the host application.

The HATS toolkit provides a global default transformation that can convert all
screens of a host application to a graphical user interface (GUI), so there is no
requirement for host screens to be customized.
70 Architecting Access to CICS within an SOA

HATS also has the capability to provide for fully customized host screens. This is
the great value to customers; HATS can convert all screens of a host application
to GUIs with little or no effort required while also allowing any screen to be
individually customized to meet the customer’s requirements. This permits the
customization effort to be focused on the small percentage of screens that
require enhancement while providing for later phased transition of remaining
screens.

Beyond simply customizing individual screens, HATS provides tools to make
access to host applications easier and more effective. HATS functions allow
customers to skip screens, implement shortcuts, combine screens, enter data on
behalf of the end user, store data in global variables, create tabbed folders,
generate bar and line graphs, redirect to other URLs, and add new business
logic to a host application. Therefore HATS can transform not only the look and
feel of an earlier application, but provides the ability to redesign the user access
path. Most of these improvements can be accomplished without any
programming.

HATS merges the function provided by Host Publisher into a single, intuitive, and
powerful environment that retains the strengths of both products. HATS provides
a comprehensive solution that allows transactions with host systems to be
encapsulated into reusable integrated business services, such as Web services,
Java Beans, and Enterprise Java Beans. HATS can be used to create Web
pages that invoke the HATS integrated business services.

HATS has two components:

� HATS Studio, running on a client. Using HATS Studio, the application
developer creates a Web application in which host screens are transformed
into Web pages. The developer can start by building a simple HATS project
and then customize it iteratively. HATS Studio is installed in the same
directory path as Rational Software Development Platform and appears as a
perspective in the workbench window.

� The HATS runtime code, running inside one or more HATS applications
deployed on WebSphere Application Server and sending data back and forth
between the user and an application on the host. End users interact with the
HATS application through their Web browsers. After you have developed a
HATS application, you deploy it on the WebSphere Application Server the
same way you deploy applications developed using other WebSphere tools.
A WebSphere system administrator can monitor HATS applications using the
WebSphere Administrative Console.

Figure 3-18 on page 72 shows the HATS application developed in HATS Studio,
deployed to WebSphere Application Server, and used by an end user to access a
host application.
 Chapter 3. CICS access technologies 71

Figure 3-18 HATS application creation and deployment

For further details on Host Access Transformation Services, refer to Redpapers
HATS Concepts and Architecture, REDP-3706 and Creating and Modifying
HATS Projects, REDP-3698, and the redbook Using WebSphere Host Access
transformation Services V5, SG24-6099.

Windows, UNIX, zOS

Web
Application

Server

HATS
Application

Rational Software Development
Platform

HATS Studio

Creates

Client

Client
Browser

zOS

CICS

Host
Application
72 Architecting Access to CICS within an SOA

3.2.5 CICS sockets

The TCP/IP Socket Interface for CICS (also known as CICS sockets) is a feature
of z/OS Communications Server that brings the TCP/IP sockets API to your CICS
applications. It is illustrated in Figure 3-19.

Figure 3-19 CICS to TCP/IP Sockets Interface

The main function of the CICS to TCP/IP Sockets Interface is provided by the
Sockets Listener transaction (CSKL). This is a long running task that listens for
incoming TCP connection requests on a specified port. The provided EZAC
transaction can be used to configure the Sockets Listener, and in addition the
EZAO and EZAP transactions can be used for operational requests. It uses a
CICS Task Related User Exit (TRUE) to enable the use of native socket functions
which would otherwise cause CICS to be suspended while waiting for
outstanding socket requests.

Once CSKL receives a TCP connection request, it performs an EXEC CICS START
command for a child server transaction, and passes control of the socket
conversation using the givesocket() call. The child server transaction is the
user-written socket application, and must retrieve the socket data using an EXEC
CICS RETRIEVE and take control using a takesocket() call. This user application
can be written in any language supported by CICS, including C, COBOL,
Assembler or PL/I. The design of the client/server communication is entirely up to
the user application, which is responsible for all design issues including
authentication and data conversion issues.

CICS
Region

TCP/IP

givesocket()

Sockets
Listener

Transaction
(CSKL)

EZAC

TCP/IP

z/OS
Comms.
Server

Sockets
client

z/OS

Child
Server

Transaction

EXEC CICS
START

Supplied
transactionsEZAO

EZAP
 Chapter 3. CICS access technologies 73

For further details, refer to the Communications Server manual, IP CICS Sockets
Guide, SC31-8518, and to the redbook CICS/ESA and TCP/IP for MVS Sockets
Interface, GG24-4026.

3.3 CICS solution set table

Table 3-3 on page 75 is intended as a starting point in selecting a solution for
access to your CICS applications. Proceed through the columns in the table from
left to right.

1. The first column in the table (application interface) reflects the factor that will
influence your decision most fundamentally.

2. After selecting the application interface that applies to your environment,
choose an appropriate connection architecture from the second column. Note
if just a standard transport is utilized column two will not indicate a connection
architecture.

3. Column three indicates the transport that implements the selected connection
architecture.

4. Lastly, column four contains the CICS technology solution set options that
apply to your environment.

Note: The child server transaction is also capable of initiating outbound TCP
connections as well as receiving incoming requests.
74 Architecting Access to CICS within an SOA

Table 3-3 CICS solution set table

Application
interface

Connection
architecture

Transport
(connector or
protocol)

CICS solution set

COMMAREA JCA CICS TG CICS ECI resource adapter

- HTTP CICS Web Support (Web-awarea application)

a. A Web-aware application is a CICS application that has been written to use the CICS com-
mand-level API to interact directly with a HTTP client.

Web services HTTP CICS Web support and CICS Web services

Web services
and
messaging

WebSphere
MQ

WebSphere MQ and CICS Web services

messaging WebSphere
MQ

WebSphere MQ CICS DPL bridge

3270 JCA ECI CICS ECI resource adapter and Link3270 bridgeb

b. Any solution using Link3270 bridge may also use an internal adapter to format and process bridge
vectors.

JCA EPI CICS EPI resource adapter (not supported with
CICS TG on z/OS)

- HTTP CICS Web support (Web-aware application) and
Link3270 bridge

Web services HTTP CICS Web support, CICS Web services, and
Link3270 bridge

Web services
and
messaging

WebSphere
MQ

WebSphere MQ, CICS Web services, and Link3270
bridge

Messaging WebSphere
MQ

WebSphere MQ CICS DPL bridge and Link3270
bridge

- Telnet WebSphere Host Integration: HATS

EJB (session
bean)

EJB RMI over IIOP CICS EJB support
 Chapter 3. CICS access technologies 75

76 Architecting Access to CICS within an SOA

Chapter 4. CICS application access
technologies

Prior chapters presented architectures and technologies used to access CICS
regions from external clients and platforms. These included Web services and
JCA architectures, and CICS TG, CICS Web Support, and CICS Web services
technologies. These technologies are especially useful for accessing linkable
application business logic, otherwise known as COMMAREA applications.

However, once inside CICS, another layer of technology is required for
accessing terminal-oriented applications, and aggregating terminal-oriented
interactions into business process flows, or creating business process flows by
aggregating both terminal-oriented applications and COMMAREA applications.

This chapter explores the CICS Service Flow Feature and Link3270 bridge
strategic technologies.

4

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 77

4.1 CICS Service Flow Feature

The CICS Service Flow Feature is a composition of the WebSphere Developer
Service Flow Modeler (SFM) and the CICS Service Flow Runtime (SFR). CICS
SFR and SFM are used to provide business process integration inside CICS.

It is important to note that SFR uses the Link3270 bridge technology to access
terminal-oriented applications that use CICS Basic Mapping Support (BMS).

4.1.1 Wrapping process integration in CICS Web service requests

The WebSphere Developer V6.0 Service Flow Modeler (SFM) tooling and the
CICS TS V3.1 Service Flow Runtime (SFR) together enable distributed
applications to make business requests of existing CICS 3270 and COMMAREA
applications as callable services. They enable customer-written J2EE
applications to integrate seamlessly with business-critical 3270 and
COMMAREA applications.

4.1.2 CICS Service Flow Runtime
Vast amounts of business transactions occur every day through the massive
installed base of CICS applications and data. CICS SFR can be used to capture
and redeploy this business information in modern mixed-workload environments,
involving packaged applications written by independent software vendors and
J2EE applications that are based on the popular IBM WebSphere Application
Server. In addition, CICS SFR can be used to integrate existing CICS business
value into the service-oriented architectures (SOAs) that are used to speed
business process integration and to enable better responsiveness to changing
business environments and emerging business opportunities.

Much of this CICS business value is currently accessed via 3270-based
applications. However, 3270 applications are designed for human-to-computer
interaction and have made program-to-program integration difficult. CICS SFR is
a strategic solution that is used to avoid being forced into programming-intensive
solutions that are prone to error, especially when the host CICS applications are
changed for maintenance or upgrade.

CICS SFR supports two modes of operation:

� Passthrough mode

In pass-through mode, 3270 screens are passed directly to the distributed
application. That application can then manipulate the data and send
responses to the CICS system as required. Passthrough is intended as a
migration aid for customers who have already implemented distributed screen
78 Architecting Access to CICS within an SOA

scraping solutions. Passthrough mode does not require tooling and
consequently, unlike the tooled requests, 3270 screen navigation must be
performed in the client.

� Tooled mode

In tooled mode, CICS SFR uses SFM-generated adapter services, or
navigators, to provide the sequencing of 3270 screens in the CICS
application. Thus, when a service request comes to CICS from a distributed
application, CICS SFR navigates the appropriate 3270 screen sequences,
formulates a consolidated response, and sends a single service response to
the requester. Flow sequences for Link3270 Bridge, FEPI, DPL
(COMMAREA), and WebSphere MQ may be aggregated in a single service
request as shown in Figure 4-1.

Figure 4-1 CICS SFR runtime

4.1.3 Service Flow Runtime and Link3270 bridge
The Link3270 bridge is described in 4.2, “Link3270 bridge” on page 84. Here we
mention additional function provided by SFR when it is used to access
terminal-oriented applications under the Link3270 bridge. This additional function
supplements the function provided by the Link3270 bridge.

SFR receives the business request from the client and, with input mapping from
the SFM generated service adapter, casts the request into bridge vectors for the
Link3270 bridge.

As the service adapter interacts with the application through the Link3270 bridge,
SFR always provides a view of the current 3270 screen. This not only includes

Connection

3270
Pass Through

WebSphere
MQ

application

COMMAREA
application

BMS
Apps

+
Non-BMS

CSFR Core

Interface
Stub

Adapter
navigator

Adapter
service

State data
management

Pass Through
Management

Link3270
bridge

interface

Link3270
bridge
vector

processing

FEPI

Properties
file

Message
adapter

MQ
CICS
bridge

SOAP
Pipeline

HTTP/SOAP

JMS/MQ

CICS TG

MQ

DPL

Consumer Message

Payload formats:
• XML
• Fixed

Operation modes:
• Business request
• 3270 Pass through

CICS TS 3.1

XML
Parser
 Chapter 4. CICS application access technologies 79

the business data, but also field attributes (such as protect, color, and
highlighting). In addition SFR provides internal 3270 screen emulation at the
terminal level, using the Application Data Structure (ADS) and state
management. This is required to insure:

� That protected fields are not inadvertently updated.

� That specific fields are returned on the next leg of a pseudo-conversation,
even if the fields were not updated by the end user. This is indicated by the
application setting the Modified Data Tag (FSET) in the field base attribute.

� That all required fields are presented to the service adapter (screen
navigation). When the application issues a Send erase, and then on the next
leg of the pseudo-conversation issues a Receive, Send no erase. This is a
common technique to reduce transmission overhead and assumes that the
Send no erase is only providing data to update an existing screen.

It may be necessary or preferable to have the business client connect to a single
CICS Routing region. Transactions are received in the Routing region and routed
to an appropriate Application Owning Region (AOR). The Link3270 bridge
performs the routing either to a specific AOR where the application resides or to
one of a group of AOR’s for load balancing.

Multiple transactions in a single pseudo-conversation may execute in different
AOR’s. The CICS Service Flow Runtime transfers the terminal context (TCTUA
and Return COMMAREA) between AOR’s in a pseudo-conversation.

The Link3270 bridge provides a router program (DFHL3270). The router program
provides load balancing of transactions defined to CICS as dynamic (Figure 4-2
on page 81).
80 Architecting Access to CICS within an SOA

Figure 4-2 Shared application TS Queues

The Link3270 bridge in conjunction with the Terminal Autoinstall URM and the
CICS Service Flow Runtime provides the ability to maintain the same terminal ID
across AOR’s in a pseudo-conversation. This allows application TS queues
using the terminal ID as part of the name to be shared across AOR’s.

4.1.4 Service Flow Modeler
Although the importance of host applications has not lessened, the mechanisms
for accessing them have struggled to keep up with the modern trend - especially
the SOA model. Some of the reasons for this lag are:

� Reluctance of owners to move away from the tried and trusted

� Unavailability of standard means to transform applications and data

� Dependencies between applications create coupling difficulties

� Escalating conversion costs even when transformations are feasible

� Growing attrition of expertise related to host systems

Attach

Receive Map
vector

Send Map
vector

AOR2 3270 Bridge Wrapper

Receive Map

Send Map

3270
Application

TSQ
Bridge

Adapter

Attach

Receive Map
vector

Send Map
vector

AOR1

Allocate

Run1

Run2

Run3

Delete

WebSphere
MQ

CICS TG

SOAP

bridge
vectors

3270 Bridge Wrapper

Receive Map

Send Map

3270
Application

bridge
vectors

DFHL3270
Router

Bridge
Driver

Bridge
Driver

Routing Region

CICS TS V3.1
 Chapter 4. CICS application access technologies 81

CICS has made available a variety of mechanisms to access applications.
Figure 4-3 shows traditional terminal-based access to CICS applications.

Figure 4-3 Traditional 3270 application processing

Business
Logic

Data
Logic

Presentation
Logic

Business
Logic

Data
Logic

M
a
n
a
g
e
d

R
e
s
o
u
r
c
e

Presentation
Logic

Business
Logic

Data
Logic

Presentation
Logic

Business
Logic

A
c
c
e
s
s

M
e
t
h
o
d

Managed Procedural Program Services

CICS Transaction Server

Business
Users

3270
82 Architecting Access to CICS within an SOA

Figure 4-4 shows how CICS has responded to modern business technology
needs and has evolved to enable access for both terminal and non-terminal
paths.

Figure 4-4 Integrating CICS Web services with 3270

We now have all of the access mechanisms that we could possibly want to
integrate business systems in an unprecedented manner. Now SFM provides a
means to re-use existing 3270 and COMMAREA applications by modeling
business processes:

� Application flow, conversion, and integration are orchestrated in a Studio that
is rich with host tools.

� Round-trip connectivity to the host system is provided for development as
well as deployment

� Support is provided by Web service generation facilities in WebSphere
Developer.

Integrated Bus

Business
Logic

Data
Logic

Presentation
Logic

Business
Logic

Data
Logic

Business
Logic

Data
Logic

M
a
n
a
g
e
d

R
e
s
o
u
r
c
e

Presentation
Logic

Business
Logic

Data
Logic

Business
Logic

Data
Logic

Business
Logic

Data
Logic

T
r
a
n
s
p
o
r
t

M
e
t
h
o
d

A
c
c
e
s
s

M
e
t
h
o
d

Managed Procedural Program Services

CICS Transaction Server

Business
Users

B.I.
Adapter

SOAP

IIOP

3270

B2B
Interactions

P
O
R
T
A
L
S

SOAP
Service
Request Adapter New Service

Logic

J2EE Application Server

EJB EJB

EJB

Enterprise Service Bus

Business Integration
System
 Chapter 4. CICS application access technologies 83

4.2 Link3270 bridge

The Link3270 bridge provides a callable interface to allow you to run 3270-based
CICS transactions without emulating a 3270 terminal. In a Web-enabling
environment this has the benefit that 3270 based user transactions can be
retained within CICS where necessary, and access to them exposed via a more
simple callable interface.

The 3270 terminal and end-user are replaced by an application program, known
as the bridge client application. Commands for the 3270 terminal in the 3270
user transaction are intercepted by CICS and replaced by a messaging
mechanism that provides a bridge between the client application and the 3270
user transaction.

This mechanism was introduced in CICS TS V2.2 and provides a simplified link
interface that can be accessed using a distributed program link (DPL), an ECI
request or an EXCI request. All messages have a fixed vector format. This
mechanism supports CICSPlex® SM load balancing; bridge facilities are shared
between CICS regions on the CICSPlex.

The bridge client requests services of the Link3270 bridge using COMMAREA
messages in a prescribed format called bridge vectors, and the Link3270 bridge
returns results to the bridge client in formatted messages.

The Link3270 bridge consists of several components as shown in Figure 4-5 on
page 85.

Note: While you may write your own bridge client application, there is a fair
amount of complexity involved in this effort. We strongly recommend using the
CICS Service Flow Runtime which provides the bridge client function.
84 Architecting Access to CICS within an SOA

Figure 4-5 Link3270 bridge

The components in Figure 4-5 are discussed here:

� 3270 user transaction

The user transaction can be any 3270-based CICS transaction. It is accessed
from a bridge client application through the Link3270 bridge mechanism.

� Bridge facility and FACILITYLIKE definition

The bridge facility is a virtual terminal that provides the appearance of a
terminal to the user transaction. The FACILITYLIKE definition is the name of
a real terminal definition from which the bridge facility takes some of its
properties.

� Link3270 bridge router (DFHL3270)

The Link3270 bridge router, DFHL3270, dynamically routes the request to the
bridge driver task, which may be in the same or another CICS region. Load
balancing can be implemented in this way.

� Link3270 bridge driver

The Link3270 bridge driver starts the bridge wrapper, which creates the
bridge environment for the 3270 application transaction.

� Link3270 bridge wrapper

The Link3270 bridge wrapper is also invoked by CICS when terminal
commands are issued by the existing 3270 application in the bridge
environment.

The Link3270 bridge was first made available in CICS TS 2.2 and enhanced in
CICS TS 2.3.

Link3270 bridge wrapper

DFHL3270

3270 Receive
Map vector

z/OS
client

Distributed
client

Routing
Region

EXCI

ECI
Driver

DPL

Attach

3270 Send
Map vector

3270 RECEIVE MAP

3270 SEND MAP

3270
user

transaction

CICS TS 2.2 and above

AOR-2

AOR-1
 Chapter 4. CICS application access technologies 85

CICS TS 2.3 and above Link3270 features
There are two levels of support for the Link3270 bridge in CICS TS 2.3.

� Link3270 bridge with basic support provides the same support as that
provided in CICS TS 2.2. If you want to continue using basic support, you do
not need to take any action. Basic support is provided automatically.

� Link3270 bridge with extended support provides support for the ACCUM
option on EXEC CICS SEND TEXT, EXEC CICS SEND MAP, and EXEC
CICS SEND CONTROL, in addition to the basic support. To support the
ACCUM option, there are two new outbound vectors, SEND PAGE and
PURGE MESSAGE. If you want to take advantage of the extended support
provided by CICS TS 2.3, you must recompile your Link3270 bridge client
programs using the extended copybooks instead of the basic copybooks.

4.2.1 Link3270 bridge security

We will briefly examine the security issues when using the Link3270 bridge.

The rules governing Link3270 bridge security are fairly simple and are
summarized in the following list:

� Authorization to DFHL3270 is controlled by the transaction security settings
which are in effect for the specified transaction.

� Resource security can be used to protect the LINK requests to the DFHL3270
router program and the Link3270 bridge driver program.

� Transaction security is enforced for the 3270 user transaction running in the
AOR under the Link3270 bridge.

� When using session mode, the security context is established on the initial
(allocate) request to DFHL3270 and cannot change during the session.

� The 3270 application program cannot issue the EXEC CICS SIGNON command.

If using the ECI to call the Link3270 bridge, the authentication and authorization
of the user ID used to invoke the bridge depends on the standard security
procedures for ECI requests. If using a CICS TG on a distributed platform, the
user ID and password are flowed in each ECI request and will be verified by the
CICS external security manager, such as RACF. If using the CICS TG on z/OS,
the Gateway daemon can authenticate the user ID and password, and then
authorization is controlled by the user ID flowed to CICS.

For a distributed program link (DPL), issued from within CICS, the standard MRO
security rules apply, including the considerations for link security and equivalent
systems. For further details, refer to the redbook Securing Web Access to CICS,
SG24-5756.
86 Architecting Access to CICS within an SOA

4.2.2 Link3270 bridge transactional scope

An external client transaction may transmit a request to CICS that results in a
CICS transaction being executed under the Link3270 bridge. In this case the
external client executes under a transactional scope defined by its local resource
manager. However, the transactional scope of the CICS transaction executing
under the Link3270 bridge conforms to the scope for a traditional CICS
transaction which issues an implicit sync point at every task termination. This is
illustrated in Figure 4-6.

Figure 4-6 Single request resulting in two units of work

Updates to recoverable resources for transactions run under the Link3270 bridge
may be backed out in either of two ways.

� Prior to the conclusion of the transaction the application program may issue a
SYNCPOING ROLLBACK command.

� If the CICS-transaction has terminated a subsequent request must be
submitted that contains the appropriate compensation logic.

System z/CICS TS

Client layer

CTG

MQ

HTTP

Transport layer

Web
services

Internal Adapter layer

External client transaction unit-of-work CICS transaction unit-of-work

Web service

WBI message broker

External call interface (ECI)

External presentation interface (EPI)

HOD/HACL

HATS

CICS
SFR

Telnet Link3270
bridge

3270
Application
 Chapter 4. CICS application access technologies 87

Note that updates to recoverable resources for CICS transactions run under the
Link3270 bridge do not participate in the transactional context of the calling
application. For instance a if a ECI call from the CICS TG is used, the 3270
transaction that is invoked by the Link3270 bridge will not be backed out, if the
ECI call issues a roll-back.

4.2.3 Link3270 bridge performance

The principle advantage of the Link3270 bridge is that it accesses 3270
transaction data by using the Application Data Structure (ADS) rather than
screen scraping. Therefore, 3270 emulation is performed at the API level in
CICS. This avoids generating and transmitting an entire 3270 data stream,
including screen constants (headers and titles), to an external platform where it
must be interpreted.

In addition, 3270-application screen navigation logic may be performed in a
bridge client within CICS. This approach can dramatically reduce flows to an
external business client, resulting in improved performance and scalability
compared with other screen scraping solutions. WebSphere Developer SFM
generates service adapters for this purpose.

4.2.4 Link3270 bridge application development

The Link3270 bridge provides an interface to enable 3270-based CICS
transactions to be invoked using a LINK request, and without the facilities of a
3270 terminal. As such, it is not a means of providing Web access (since there is
no direct means of generating HTML), but it is an important enabling technology
because it allows a client module to link to existing 3270 transactions.

Link3270 bridge router, driver, and wrapper
The client requests services of the Link3270 bridge via COMMAREA messages
in a prescribed format. The Link3270 bridge router invokes the 3270 user
transaction and returns results to the client in formatted messages.

The client application LINKs to program DFHL3270, a component of the
Link3270 bridge, with a message in the COMMAREA. The LINK can be in any
form that CICS supports: a standard local LINK, a distributed program link, a
CICS client ECI call from another platform, or an EXCI from a non-CICS region in
the same z/OS sysplex.

Programming modes
There are two programming modes for using the Link3270 bridge: single
transaction mode and session mode.
88 Architecting Access to CICS within an SOA

Single transaction mode
The single-transaction mode is a simple, one-shot interface, in which each LINK
to a DFHL3270 request results in the execution of one transaction under the
bridge, and each request is independent of previous ones. The client has to send
all of the information required to run the transaction in the inbound COMMAREA,
and all of the transaction output has to fit into the COMMAREA upon return. The
key characteristic of single-transaction mode is that the Link3270 bridge creates
a new bridge facility for each request and discards it upon completion. The effect
of this is that no state is maintained between requests, because the bridge facility
(the terminal) is the anchor for state data: the TCTUA, next transaction identifier,
COMMAREA, START data, and so forth.

Session mode
In this mode, the bridge facility is kept over a series of transactions, making it
suitable for transaction sequences that depend on state being maintained
between transactions. This is illustrated in Figure 4-7 on page 90. The most
common requirement for preservation of state data between transactions is a
pseudo-conversational sequence, and for this reason the Link3270 bridge
returns the next transaction identifier to the client as well as the transaction
output and status information. Some applications and some installations
associate state data with a terminal over even longer sequences, and session
mode also meets this requirement.

There is more flexibility about the flows between the client and the Link3270
bridge in session mode. The client can provide input for a transaction across
multiple LINKs, as might be necessary in a conversational transaction where the
client cannot provide the input without inspecting the previous output. Output that
exceeds the length of the COMMAREA can be delivered piecemeal, and output
lost because of a link failure can be recovered and resent.

The session begins with an allocate request, in which the client LINKs to
DFHL3270 with a message that requests a new bridge facility (essentially the
bridge equivalent of auto-installing a terminal). CICS provides a default
message, which can be used unchanged for this purpose, but the client can also
change fields in the message to define the characteristics of the bridge facility.
The client can name an installed terminal to be used as a model, and can specify
the terminal name, NETNAME, user ID, and keep time. The keep time is the
length of time that the bridge facility can remain idle between transactions before
CICS discards it.

Note: CICS Service Flow Runtime uses the Link3270 session mode.
 Chapter 4. CICS application access technologies 89

The Link3270 bridge responds to an allocate request with a token that represents
the bridge facility. The client must return this token on every subsequent request
in the session to identify the session and the bridge facility to which state data is
anchored. The TERMID and NETNAME are also returned, because they will
have changed if the client did not specify them or if they were modified by the
autoinstall URM.

Figure 4-7 Link3270 bridge, session mode

The client now starts running transactions in sequence. It initiates each one by
LINKing to DFHL3270 with a run-transaction request message as in Figure 4-7.
This run-transaction message contains the transaction code to be run, the bridge
facility token from the allocate request, and input for any terminal input
commands (RECEIVE, RECEIVE MAP, CONVERSE) in the transaction. Session mode
offers considerable flexibility to the client for providing input, as we will describe
later, but usually the input is in the run message. The client can specify a number
of other values as well, although defaults are provided. These include values for
the attention identifier and cursor position at task attach time, the start code (how
the transaction should think it was initiated), and so on.

The messages used to communicate between the client and the bridge router
consist of a bridge header followed by one or more bridge vectors. Each vector
corresponds to input for one CICS command in an inbound message, and to
output from one CICS command or a request for input for one command in an
outbound message. Figure 4-8 on page 91 illustrates the bridge vector format.

Bridge wrapper

DFHL3270
3270 Receive
Map vector

ECI

Attach

3270 Send
Map vector

3270 RECEIVE MAP

3270 SEND MAP

3270
application

Allocate

Run1

Run 2

Run 3

Discard

Bridge
driver
90 Architecting Access to CICS within an SOA

Figure 4-8 Link3720 bridge, vector format

Client design considerations
The 3720 bridge client function may be implemented within CICS, in another
z/OS address space, or a distributed platform. Client function may include screen
navigation logic and business logic.

Generally, there are two client models. With the combined-client model, the client
contains both the business and screen navigation logic and the formatting and
interpretation logic for the Link3270 messages. Since variable ADS formats
containing both binary and display data are contained in the messages, complex
code page conversion is required for the combined-client model. The top portion
of Figure 4-9 on page 92 shows the combined-client model for the Link3270
bridge.

Common Vector
Header

Common-specific
fields

Input data or
transaction
output

ADSD
(optional,
outbound only)(< -------------- BRIV -------------- >)

Message Header
(BRIH)

Vector 1
(BRIV)

Vector 2
(BRIV)

 . . . Vector n
(BRIV)
 Chapter 4. CICS application access technologies 91

Figure 4-9 Two client models

The bottom portion of Figure 4-9 shows the split-client model. With the
split-client model, the client is broken into two parts: a business client and a
bridge client. The business client is responsible for the business logic.

Navigation logic, for 3270 screens, may be contained in either or both clients. For
example, static navigation might consist of a fixed series of screens where the
screen input and function keys (such as Enter, PF1, and so on) are known ahead
of time. Static navigation might be implemented in the bridge client. Variable
navigation logic is required when data returned from a response screen is used
to determine the field input or function key for the next request. Variable

DFHL3270
Router

Split-Client Model

Client
Run second transaction

Run first transaction

. . .

Run last transaction

Discard

Allocate

DFHL3270
Router

Business
Client

Run second transaction

Run first transaction

. . .

Run last transaction

Discard

Allocate

Bridge
Client

Private
protocol

CICS

Any platform

Combined-Client Model

Note: CICS SFR is an implementation of the split-client model with enhanced
bridge client function.
92 Architecting Access to CICS within an SOA

navigation logic might be considered business logic and therefore, appropriately
implemented in the business client. However, implementing variable navigation
logic in the bridge client can dramatically reduce flows between the two clients,
resulting in improved performance.

The business client passes its requests and receives its results through the
bridge client. The interface between the two is private to them and can be
anything on which they agree.

The bridge client casts the requests into Link3270 request messages or bridge
vectors, does the necessary LINKs to DFHL3270 to run the 3270 transaction,
converts and combines the responses to the private format and responds back to
the business client.

The advantage of splitting the client is that the two parts can be written by
different programmers, perhaps in different languages, allowing installations to
exploit existing programmer skills. In addition, the two parts of the client can run
on different platforms. For example, the business client might be a Java servlet,
and the bridge client might be a CICS program. For some applications, a single,
general-purpose bridge client could provide an application-specific API for a
variety of business clients.

We recommend that a split-client design be used with the Link3270 bridge, such
as that implemented by CICS SFR. However, the Link3270 bridge does also
support code page conversion for a combined-client design. For additional
information refer to Chapter 3 “Using the Link3270 bridge” in the CICS External
Interface Guide, SC34-6449.

Screen design considerations
CICS application programs have traditionally used screen design and interaction
techniques that should be taken into account when running 3270 transactions in
the 3270 bridge environment. The issues that arise from the following scenarios
can be appropriately handled in the bridge client of a split-client model.

3270 field attributes
Each field on a formatted 3270 screen has a base attribute that controls display
intensity, the ability of the operator to enter data into the field, and whether
supplied data is returned to the program if the operator does not overtype the
field. Optionally, a field may also have extended attributes that control text color
and highlighting. The base and extended field attributes may be given initial
values in the Basic Mapping Support (BMS) source.

A BMS source example is shown in Table 4-1 on page 94.
 Chapter 4. CICS application access technologies 93

Table 4-1 BMS source example

The 3270 application program may, at execution time, override these initial
attribute values. Bridge client applications that receive ADS vectors from the
3270 bridge should be able to handle 3270 field attributes as in the following
scenario.

A typical program may use a BMS map to collect input data when opening a new
customer account. The program would set the base field attributes to UNPROTect
(allowing data entry) and normal intensity with a default extended color attribute
of green. If operator input errors are detected when editing the data, the program
might return the error field to the screen with the base attribute set to high
intensity, extended color attribute set to the color red. The cursor could be
positioned to the error field by the setting the length field to a-1, which normally
results in the generation of an Insert Cursor order in the 3270 data stream. Fields

DFH0CGB DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), *
 LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY
DETAIL DFHMDI SIZE=(12,40)
TITLE DFHMDF POS=(1,15),LENGTH=12
 DFHMDF POS=(3,1),LENGTH=8,INITIAL='NUMBER:',COLOR=BLUE
NUMB DFHMDF POS=(3,10),LENGTH=6
 DFHMDF POS=(3,17),LENGTH=1
 DFHMDF POS=(4,1),LENGTH=8,INITIAL='NAME: ',COLOR=BLUE
NAME DFHMDF POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
 DFHMDF POS=(4,31),LENGTH=1
 DFHMDF POS=(5,1),LENGTH=8,INITIAL='ADDRESS:',COLOR=BLUE
ADDR DFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
 DFHMDF POS=(5,31),LENGTH=1
 DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE
PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
 DFHMDF POS=(6,19),LENGTH=1
 DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE
DATE DFHMDF POS=(7,10),LENGTH=8,ATTRB=UNPROT
 DFHMDF POS=(7,19),LENGTH=1
 DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE
AMOUNT DFHMDF POS=(8,10),LENGTH=8,ATTRB=NUM
 DFHMDF POS=(8,19),LENGTH=1
 DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT:',COLOR=BLUE
COMMENT DFHMDF POS=(9,10),LENGTH=9,ATTRB=UNPROT
 DFHMDF POS=(9,20),LENGTH=1
MSG1 DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39
 DFHMSD TYPE=FINAL
 END
94 Architecting Access to CICS within an SOA

that passed editing might be returned with the base field attribute set to PROTect
(do not allow data entry) with a modified data tag (MDT/FSET) set to on. This
prevents an operator from updating a field that was successfully edited and will
also return the field as though it had been modified.

The preceding scenario is typical of many applications and indicates both a
cosmetic (field color and intensity) and operational (allowing or restricting data
entry) requirement for dynamic 3270 field attribute modification by CICS
applications. For this reason, we see that 3270 field attributes can convey
information in addition to the actual field data.

While the 3270 field attribute information can be sent to the business client in a
split-client solution, the modified data tag information can be maintained as state
data in an ADS screen buffer.

Attention ID and relative cursor position
Some 3270 applications rely on detecting the screen relative cursor position
(RCP) when the operator presses an Attention ID key (Enter, PA, or PF key).
This is a technique that is more common when processing a menu screen. The
operator tabs to a protected menu item and presses the Enter key. The relative
cursor position is available to the application in the EIBCPOSN. The EIBCPOSN
field is set by the Link3270 bridge in BRIH-CURSORPOSITION. If RCP values
are required either the business or bridge client must supply them.

The AID key value is available to the application in the EIBAID field. The EIBAID
field is set by the Link3270 bridge in BRIH-ATTENTIONID. Either the business or
bridge client may supply AID key values.

BMS initial values
In a BMS source map initial data for a field may be supplied by using the
INITIAL= parameter on the DFHMDF macro. The value of this parameter is used
to supply data to the field if a EXEC CICS SEND MAP MAPONLY is issued or if no data
is supplied from the application program, signified by the first character in the
field being set to NULL.

When an application issues a SEND MAP MAPONLY command, no application data
or field attributes are supplied to the Link3270 bridge. The bridge client or
business client may need to supply default data, which, for 3270 transactions not
running under the Link3270 bridge, are supplied from the 3270 physical map.

When the application issues a SEND MAP (without MAPONLY), the bridge exit
receives the data supplied by the application program in the ADS (symbolic
map).
 Chapter 4. CICS application access technologies 95

However, if the application program does not supply data for a field (NULL value
in the first character) then initial values, normally supplied by the physical 3270
map, may need to be supplied by the bridge client, or business client.

Overlaying an existing screen with SEND MAP
3270-display hardware retains the screen image in the hardware buffer after an
attention key (Enter key, PF keys or PA keys) is pressed. If the application
program subsequently issues a SEND MAP DATAONLY without specifying the
ERASE option, then the 3270 device places the newly supplied data on the
screen overlaying any previous data in the same screen positions. Previous
screen data that is not overlaid continues to be displayed. This is a commonly
used technique when editing input screens where only error messages are
returned to the display. The operator can correct the error, and change any other
information, before re-submitting the input screen.

Since the CICS application program assumes that it is communicating with a
3270 display and expects that the previous presentation image will be overlaid
with newly supplied data, the bridge client may need to emulate the operation of
the 3270 display. This can be accomplished by saving the screen contents of the
output screen on a SEND MAP, RECEIVE MAP, SEND MAP DATAONLY (without erase)
sequence. Data sent on the SEND MAP must be saved in an ADS screen buffer.
Data that is returned from the browser must be formatted in the ADS to satisfy
the RECEIVE MAP, and it must also be merged with the saved ADS screen buffer.
New data supplied by the application on the next SEND MAP DATAONLY (without
erase) must also be merged with the saved ADS screen buffer. The ADS screen
buffer can then be returned as the response from the bridge client.

CICS application design considerations
CICS application programs have traditionally used design techniques that should
be taken into account when running 3270 transaction in the 3270 bridge
environment.

3270 data stream
Most CICS 3270 application programs are written using CICS Basic Mapping
Support (BMS) commands. These application programs send data to a terminal
by formatting an Application Data Structure (ADS), containing data fields and
3270 attributes, and then issuing a SEND MAP command. CICS uses the
application supplied ADS and the physical map, from assembled BMS source, to
generate a 3270 data stream. CICS transforms an inbound 3270 data stream

Note: CICS SFR provides support for all the screen design considerations
mentioned above.
96 Architecting Access to CICS within an SOA

into an ADS, which is used to satisfy a RECEIVE MAP command issued by the
application. When using the 3720 bridge, with application programs using BMS,
the ADS is supplied or received to satisfy the SEND MAP and RECEIVE MAP
commands.

Some application programs process their own 3270 data streams. These
application programs send the 3270 data stream to a terminal by issuing a SEND
command, and receive the 3270 data stream by issuing a RECEIVE command.
The IBM Development Management System for CICS (DMS/CICS) was
developed using this design. When running applications like DMS/CICS under
the 3720 bridge, a 3270 data stream must be supplied or received to satisfy SEND
or RECEIVE commands. Table 4-2 illustrates the contents of an example inbound
3270 data stream.

Table 4-2 Example inbound 3270 data stream

While the Link3720 bridge supports the SEND and RECEIVE commands, the bridge
client must be able to parse and generate 3270 data streams.

Location Contents Description

1 X'7D' AID, in this case the Enter key

2-3 X'C3C5' Cursor address: line 3, column 38, where the operator left it
after the last data key stroke.

4 X'11' Start Buffer Address (SBA), indicating that a buffer address
follows.

5-6 X'C26E' Address of line 3, column 15, which is the starting position of
the field to follow.

7-12 '123456' Input, the employee number entered by the operator.

13 X'1D' Start Field (SF), indicating another input field follows.

14-19 ‘ABC987' Input field, license plate number.

Note: CICS SFR supports a SEND command for a 3270 data stream containing
a single line of text.
 Chapter 4. CICS application access technologies 97

Link3270 bridge restrictions
There are a few minor restrictions when using the Link3720 bridge. These are
documented in Chapter 2 “Link3270 programming considerations” in CICS
External Interface Guide, SC34-6449.

4.2.5 Summary

To summarize, the Link3270 bridge offers you a powerful new tool for extending
the lifetime of existing 3270-based transactions. It allows you to use the business
logic in large bodies of existing code in new combinations, from new platforms,
with new user interfaces. You do not need to modify the old code, and you can
use it in the original 3270 form at the same time as you use it in the new
environment.

There are few restrictions on how you build your interface to the new source of
input and output, and yet the bridge overhead is relatively low, probably
comparable to the existing code running with 3270.

While developing a full function bridge client to interact with the Link3270 bridge
can be complex and challenging, using the WebSphere Developer Service Flow
Modeler with CICS Service Flow Runtime provides graphical tooling and an
enhanced bridge client implementation.
98 Architecting Access to CICS within an SOA

Part 2 CICS Web
technology
decisions

In Part 2, we provide an in-depth analysis of the important factors that are likely
to affect your choice of CICS Web-enablement technology. This includes factors
that affect security, transactional scope, performance, application development,
and data conversion.

Part 2
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 99

100 Architecting Access to CICS within an SOA

Chapter 5. Security

When you open your business to the Internet, you might change the landscape
of users on your system dramatically. Whereas you have very strict control over
the access to your applications through conventional 3270 terminals, your users
of applications might be in remote locations, and you cannot be sure what
intentions they will have. You might have better control over users in an intranet
or extranet environment, but you still will be faced with new security issues, such
as how to authenticate users and how to authorize access to your data.

When you consider the security design for your application, you will need to
weigh the following key issues:

� Do you want the runtime infrastructure to authenticate the users of the
applications or will the applications do it themselves?

� Will CICS do authentication itself or will an external server, such as
WebSphere Application Server, do authentication?

� What authorization mechanisms will be used to protect access to the CICS
system and access to resources such as transactions, files, and databases?

� How will you protect the confidentiality of data which is transported between
the different tiers of the physical configuration?

In this chapter, we first provide an introduction to security technologies as they
relate to securing access to CICS applications. Then we discuss the security
considerations for each of the main CICS SOA technologies.

5

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 101

5.1 Security concepts
The five parts of a security architecture are described by the International
Organization for Standardization in standard ISO 7498-2:

� Authentication
� Authorization
� Data integrity
� Confidentiality
� Non-repudiation

Authentication
Authentication means confirming someone’s identity. Typically, this involves a
sign-on mechanism based on a predefined secret such as a user ID and
password. RACF is a product that provides this type of authentication. For
Internet transmissions, authentication also means confirming the identity of the
message participants.

Authorization
Authorization involves checking that the authenticated users have access to the
system resources needed by the tasks they are performing. These resources
can include computer systems, application functions, transactions, programs,
databases, files, and other CICS resources.

Data integrity
Data integrity means ensuring that data is not lost or tampered with. Although
this includes stored data, we are interested mainly in data transmission over the
Internet and ensuring that the data received is the same as the data that was
sent. This involves checking that no data has been lost in the transmission and
that the data has not been modified.

Confidentiality
Confidentiality is also referred to as privacy. It means ensuring that data is not
disclosed to people or systems not authorized to read that data. Although privacy
issues include stored data, our main concern is with data transmissions over the
Internet. A common technique to provide privacy in data transmissions is
encryption.

Non-repudiation
Non-repudiation means ensuring that an action cannot be denied by the person
who performed it. For messages over the Internet, this means the ability to prove
that someone actually sent a message, so that they cannot deny it later. A key
factor for non-repudiation is logging to have this proof after event.
102 Architecting Access to CICS within an SOA

5.2 Introduction to digital security
In this section, we introduce the main concepts of cryptography and digital
signatures and then discuss the major security technologies that can provide
building blocks for designing your secure CICS system.

5.2.1 Cryptography and digital signatures
Cryptography is the scientific discipline for the study and development of ciphers,
in particular, encryption and decryption algorithms. These cryptographic
procedures are the essential components that will enable secure communication
to take place across non-secure networks.

We briefly introduce the following terminology:

� Secret (or symmetric) keys
� Public/private (or asymmetric) keys
� Digital signatures

Secret (or symmetric) keys
Secret key cryptography means that the sender and receiver share the same
(hence symmetric) key which is used to encrypt and decrypt the message, as
shown in Figure 5-1.

Figure 5-1 Secret key encryption and decryption

Secret key encryption/decryption performs reasonably fast and is often used to
provide privacy for high-volume data transmissions. However, the symmetric key
is a shared secret and it requires a secure channel for exchanging the key
initially; that is why symmetric keys are often used in combination with
asymmetric keys.

Internetclear text
message

Decryption
algorithm

Encryption
algorithm ?a4$*@"z

Secret Key

encrypted
message

clear text
message
 Chapter 5. Security 103

Public/private (or asymmetric) keys
Public/private key cryptography uses an asymmetric algorithm. The encryption
flow is visualized in Figure 5-2. The private key is known only by its owner and is
never disclosed. The corresponding public key can be known by anyone. The
public key is derived from the private key, but it cannot be used to deduce the
private key. Either key of the pair can be used to encrypt a message, but
decryption is only possible with the other key.

Figure 5-2 Public/private key encryption and decryption

Digital signatures
A message digesting algorithm (or hash) condenses a block of data into a shorter
string, the message digest (MD). The principle behind MDs is that the message
cannot be recovered from its digest, and that it is very hard to construct two
different blocks of data with the same MD. When the digest is sent with the
message, the receiver can use it as a data integrity check. However, this will
usually require that the digest itself be secured against third-party attacks by
encrypting it. The message digest is then called a message authentication code
(MAC).

A MAC can also provide non-repudiation if the sender’s private key is used to
encrypt the MD. The MAC is then called a digital signature and will carry the
proof of ownership of the transmitted message (Figure 5-3 on page 105).

Internetclear text
message

Decryption
algorithm

Encryption
algorithm ?a4$*@"z

Public Key

encrypted
message

clear text
message

Private Key
104 Architecting Access to CICS within an SOA

Figure 5-3 Digital signature verification

5.2.2 Security technologies
We will discuss these technologies in the following sections:

� Firewall
� De-militarized zone (DMZ)
� Digital certificates and certification authorities
� Secure Sockets Layer (SSL)

Firewall
A firewall, as shown in Figure 5-4, secures an internal, trusted network against
some external, untrusted network such as the Internet.

Figure 5-4 What is a firewall?

MD
Asymmetric
decryption
algorithm

Encrypted
 message

digest

Message
Message

digest
algorithm

compare

Message is
unchanged

AND
sender is

actual author
not equal

equal

Receive from
insecure channel

Internet

Sender's
public key

Message was altered
OR

MD was encrypted by
another author

MD

Internet Intranet

Fi
re

w
al

l

Corporate
systems
 Chapter 5. Security 105

The firewall may be created on a stand-alone, dedicated computer configured
with an IP packet-filtering router, proxy servers for various TCP/IP applications
such as HTTP and FTP, and a SOCKS server to provide a secure gateway for
TCP/IP sockets.

De-militarized zone (DMZ)
This is a type of firewall configuration that places your security software and
hardware between two firewalls, as shown in Figure 5-5. The outer firewall
controls traffic between the Internet and the DMZ, and its job is to filter out
unwanted protocols and restrict inbound traffic to a limited set of IP addresses
and ports. It only advertises the DMZ to the external network.

The inner firewall controls the traffic between the DMZ and the internal network,
and prevents unauthorized access from the DMZ to your secure network, and
conversely restricts access from the secure network to the non-secure network
or Internet.

Figure 5-5 A de-militarized zone (DMZ)

The DMZ is where you place the servers for the applications that you want
available on the Internet, such as Web servers, proxy servers, and SOCKS
servers.

Secure
network

Fi
re

w
al

l

DMZ

Fi
re

w
al

l

Internet

Application
gateway

Packet
filtering
router

Official
name
servers

Servers to be accessed
from the non-secure network,
for example, a Web server
106 Architecting Access to CICS within an SOA

Digital certificates and certification authorities
One of the problems with digital signatures is the secure transmission of the
public key. Digital certificates address this problem by binding an identity to a
public key. This identity is one of a trusted third party, the certificate authority
(CA) which, rather like a government passport office, certifies the public key and
its owner’s identity.

The resulting digital certificate is a file, containing someone’s public key and
identification, which has been encrypted with the private key of the CA. It
conforms to the X.509 format and is also referred to as an X.509 certificate.
Since nobody knows the CA’s private key, nobody can falsify a digital certificate.
See the diagram in Figure 5-6.

Figure 5-6 A digital certificate

To further complicate matters, there are many different CAs and one CA may not
trust the others. The solution to this problem is a trust-chain hierarchy of CAs,
where each CA has a digital certificate signed by a CA higher up the chain. You
simply start with the digital certificate and, using the public keys of the CAs, work
up the chain until you find a CA that you trust, as shown in Figure 5-7 on
page 108.

Digital certificate

Owner's public key

CA's identity

Private key
 of CA

Issuers
signature

Owner's identity

digest

Message
 Chapter 5. Security 107

Figure 5-7 Certificate authority trust-chain

Digital certificates signed by a CA are externally signed certificates. Digital
certificates can also be self-signed. A self-signed certificate cannot be used for
secure public key distribution because the public key required to decrypt the
certificate is the same as the key encrypted in it. The exception to this is a root
certificate which by definition is self-signed, implying a degree of trust in the
authority that distributed the certificate (and claimed to sign it). Apart from that,
both types are technically equivalent, and can be used with Secure Sockets
Layer protocol, which we discuss next.

Secure Sockets Layer (SSL)
SSL is a security protocol developed by Netscape Communications and RSA
Data Security, which provides a private communication channel over a TCP/IP
connection. It implements several of the cryptographic techniques discussed
above. The client initiates an SSL Web connection by using a URL starting with
https: instead of http:. With SSL, the data flowing back and forth between
client and server are encrypted using a secret key algorithm. The exchange of
the secret key occurs at the start of the communication during the SSL
handshake. This is illustrated in Figure 5-8 on page 109.

User-1 User-2

CA-1 CA-2

CA-root

trust

no trust

trust trust

trust
108 Architecting Access to CICS within an SOA

Figure 5-8 SSL handshake

The server’s certificate contains the server’s public key. The client uses this
public key to encrypt an initial value for a secret key to be sent to the server.
Once both client and server have obtained the same secret key value, the
handshake ends, and they will change their encryption algorithm to the new and
less intensive secret key procedure. With Version 3 of SSL, the server can also
request a digital certificate from the client, to verify its identity. Note that the SSL
handshaking (due to its use of secret key cryptography) is highly processor
intensive.

In summary, the SSL protocol provides:

� Authentication, through its use of public/private keys and digital certificates in
the handshaking phase.

� Data integrity, through its use of a MAC, generated from the secret key.

� Confidentiality, through its use of the secret key encryption for the data
flowing during the SSL session.

� Non-repudiation, if you use client certificates and implement the appropriate
logging. Note that your logging application on the server will have to take into
account that the symmetric key only exists for one SSL session, so any
logging you perform to provide non-repudiation will need to record not only
the symmetric key, but also the digital certificates and ciphers you used to

Client

client hello
server hello

client key exchange

server certificate

Server

server hello done

Change cipher spec

Finished

Change cipher spec

Finished

certificate request

certificate verify

(1)

(2)

(1) optional
(2) only if server requested client certificate in (1)
 Chapter 5. Security 109

generate the symmetric key. Storing this data in itself introduces some level of
security risk.

Transport Layer Security (TLS)
The IETF TLS Working Group was established in 1996 to standardize a transport
layer security protocol, and in 1999, RFC 2246, TLS Protocol Version 1.0 was
published as a Proposed Standard.

TLS work has been based on SSL V3.0 by Netscape. However, the differences
between TLS and SSL V3.0 are significant enough that TLS 1.0 and SSL V3.0 do
not interoperate.

Most of the SSL-enabled products are in the process of migrating to TLS support
as an alternate option to SSL. The same secure ports as for SSL are usually
used.

Backward compatibility with SSL is supported:

� TLS clients who want to negotiate with SSL 3.0 servers should send client
“hello” messages indicating support of SSL 3.0 and TLS 1.0. The server
responds with the highest protocol it supports.

� A TLS server which agrees to interoperate with clients that support only SSL
3.0 should accept SSL 3.0 client “hello” messages and respond with an SSL
3.0 server “hello.”

5.2.3 z990, z890 and z9 hardware support for cryptography
The z990 includes both standard cryptographic hardware and optional
cryptographic features, to give flexibility and growth capability. IBM has a long
history of providing hardware cryptographic solutions, from the development of
Data Encryption Standard (DES) in the 1970s to delivering the only integrated
cryptographic hardware in a server to achieve the US Government's highest
FIPS 140-2 Level 4 rating for secure cryptographic hardware.

The z990 cryptographic functions include the full range of cryptographic
operations needed for e-business, e-commerce, and financial institution
applications. In addition, custom cryptographic functions can be added to the set
of functions that the z990 offers.

Clear and secure keys
Encryption is the process of scrambling data using a cryptographic algorithm
controlled by a key. The security of this key is therefore important. If a third party
gains access to this key, they can decrypt data secured by it.
110 Architecting Access to CICS within an SOA

IBM cryptographic hardware can use both secure keys or clear keys:

� Secure key

A key which has itself been encrypted by another (master) key. In a z/OS
environment, the secure key must first be decrypted in System z
cryptographic hardware before it can be used to encrypt and decrypt data.
When the key is not in use, it can be stored securely outside of the
cryptographic hardware.

� Clear key

A key which has not itself been encrypted.

Secure keys provide additional protection for the key, but comes at the cost of
significant additional performance overhead.

Cryptographic hardware
There are two cryptographic devices available:

� CP Assist for Cryptographic Function (CPACF)

The CPACF is built onto the system board, and can be enabled with a
non-chargeable feature. There is a CPACF for each CP available in the
machine.

It provides synchronous cryptographic support (so when the CPACF is
processing a request the general purpose CP cannot process other work).
CPACF is a clear key device.

CPACF provides clear key hardware encryption for:

– Data Encryption Standard (DES) and Triple DES (TDES)
– Advanced Encryption Standard (AES)
– Secure Hash Algorithm-1 (SHA-1)

� Crypto Express2 (CEX2)

CEX2 is a PCI card and work passed to it is performed asynchronously
(meaning the general purpose CP is freed up to process other work). It
supports DES, TDES, SHA-1 and RSA.

CEX2 features two cryptographic processors:

– A cryptographic accelerator (CEX2A)

Used with clear keys to accelerate the handshake phase of an SSL
session.

– A cryptographic coprocessor (CEX2C)

Encrypts and decrypts secure keys in hardware by using a master key.
Also supports the SSL handshake API supported by CEX2A, but with less
efficiency than CEX2A.
 Chapter 5. Security 111

5.3 CICS security
We begin this section by providing a high-level overview of CICS security. Then
we discuss CICS’s support for cipher suites and key rings. We show you how to
activate support for SSL in your CICS region, and finally discuss how SSL can be
used with HTTP in a CICS environment.

5.3.1 Overview of CICS security
In a CICS environment, the assets you want to protect are the application
programs, the application data, and the application output. To prevent disclosure,
destruction, or corruption of these assets, you must first safeguard the CICS
system components themselves.

There are two distinct areas from which exposures to the CICS system can arise.
The first of these is from sources external to CICS. You can use RACF data set
protection to prevent unauthorized access, from either TSO users or batch jobs,
to the data sets CICS manages.

The other potential area of exposure arises from CICS users. CICS provides a
variety of security and control mechanisms. These can limit the activities of a
CICS user to only those functions that the user is authorized to use:

� Transaction security
This ensures that users who attempt to run a transaction are entitled to do so.

� Resource security
This ensures that users who use CICS resources are entitled to do so.

� Command security
This ensures that users who use CICS system programming commands are
entitled to do so.

� Surrogate security
A surrogate user is a RACF defined user who is authorized to act on behalf of
another user.

When CICS security is active, requests to attach transactions, and requests by
transactions to access resources, are associated with a user ID. When a user
makes a request, CICS calls the external security manager to determine if the
user ID has the authority to make the request. If the user ID does not have the
correct authority, CICS denies the request.

In many cases, a user is a human operator, interacting with CICS through a
terminal or a workstation. However, this is not always the case: the user can also
be a Web browser user or a program executing in a client system. In general, a
CICS user is an entity that is identified by a user identifier (or user ID).
112 Architecting Access to CICS within an SOA

For a complete discussion of CICS security, refer to CICS TS V3.1 RACF
Security Guide, SC34-6454.

5.3.2 Support for cipher suites in CICS
There are many different algorithms which can be used for encrypting data, and
for computing the message authentication code. Some provide the highest levels
of security, but require a large amount of computation for encryption and
decryption; others are less secure, but provide rapid encryption and decryption.
The length of the key used for encryption affects the level of security; the longer
the key, the more secure the data.

To allow users to select the level of security that suits their needs, and to enable
communication with others who may have different needs, SSL defines cipher
suites, or sets of ciphers. When an SSL connection is established, the client and
server exchange information about which cipher suites they have in common.
They then communicate using the common cipher suite that offers the highest
level of security. If they do not have a cipher suite in common, secure
communication is not possible.

The cipher suites supported by z/OS 1.4 and CICS TS 3.1 are shown in
Table 5-1 on page 114.
 Chapter 5. Security 113

Table 5-1 Cipher suites supported by z/OS 1.4 and CICS TS 3.1

5.3.3 Building a key ring
In CICS, the required server certificate and related information about certificate
authorities are held in a key ring in the RACF database. The key ring contains
your system’s private and public key pair, together with your server certificate
and the certificates for all the certificate authorities that might have signed the
certificates you received from your clients.

Before you can use SSL with CICS, you need to create a key ring which contains
a private and public key pair and a server certificate.

To create a RACF key ring, you can either migrate certificates you have already
built in a key data base with the gskkyman utility or you can generate new
certificates using the RACF RACDCERT command.

Cipher suite Encryption

algorithm

Key length MAC algorithm

01 No encryption MD5

02 No encryption SHA

03 RC4 40 bits MD5

04 RC4 128 bits MD5

05 RC4 128 bits SHA

06 RC2 40 bits MD5

09 DES 56 bits SHA

0A Triple DES 168 bits SHA

2F AES 128 bits SHA

35 AES 256 bits SHA

The terms used in this table are:

� MD5 - Message Digest algorithm
� SHA - Secure Hash algorithm
� RC2 - Rivest encryption
� RC4 - Rivest encryption
� DES - Data Encryption Standard
� Triple DES - DES applied three times
� AES - Advanced Encryption Standard
114 Architecting Access to CICS within an SOA

If you are creating your own self-signed certificate, you may want to use the
CICS-supplied sample REXX exec called DFH$RING. DFH$RING will create
several certificates and a RACF keyring, and will then add the new certificates as
well as the CA certificates to the keyring. DFH$RING is supplied in the
SDFHSAMP dataset.

You can optionally designate one certificate in the key ring as the default
certificate. When a client requests a certificate from CICS, the default certificate
is used unless you have specified otherwise:

� For inbound HTTP and IIOP requests, specify the certificate in the
CERTIFICATE parameter of the TCPIPSERVICE definition

� For outbound HTTP requests, specify the certificate in the CERTIFICATE
parameter of the URIMAP definition.

� For outbound IIOP requests, specify the certificate in the CERTIFICATE
parameter of the CORBASERVER definition

5.3.4 Activating SSL support
To activate SSL support in a CICS TS V3.1 and newer region, you must specify
values for the following system initialization parameters:

� ENCRYPTION={WEAK | MEDIUM | STRONG}

Specifies the cipher suites that are available for CICS to use, as shown in
Table 5-2.

Table 5-2 Available cipher suites for each ENCRYPTION parameter value

� KEYRING=key-database-pathname

Specifies the fully qualified name of the key ring within the RACF data base.

� SSLDELAY={ 600 | number}

Specifies the length of time in seconds for which CICS retains session ids for
secure socket connections. While CICS retains a session ID, it can continue
to communicate with the client without the significant overhead of an SSL
handshake.

ENCRYPTION parameter value Cipher suites available

WEAK 01, 02, 03, 06

MEDIUM 01, 02, 03, 06, 09

STRONG 01, 02, 03, 04, 05, 06, 09, 0A, 2F, 35
 Chapter 5. Security 115

� MAXSSLTCBS={8 | number}

Specifies the number of CICS subtask TCBs (S8) that are available in the
SSL pool. A maximum of 1024 can be specified. In previous releases the
number of S8 TCBs directly limited the number of concurrent SSL
connections CICS could process. This was because each task retained
exclusive use of the S8 TCB for its lifetime. In CICS TS V3.1 the S8 TCBs are
in a pool and get used for a single operation (such as a send or receive) and
get returned to the pool afterwards. This dramatically increases the number of
concurrent SSL connections able to be processed by CICS.

To activate SSL support for a given connection, you must set the value of the
SSL parameter on the connection’s TCPIPSERVICE definition to one of the
following:

� YES

If you set the value to YES, CICS will send a server certificate to the client.

� CLIENTAUTH

If you set the value to CLIENTAUTH, CICS will send a server certificate to the
client and the client must send a client certificate to CICS.

5.3.5 Transport-level security using HTTP with CICS

In this section we review how the different transport-level security mechanisms
can be used to secure a CICS application solution. This section is particularly
relevant when CICS Web services or CICS Web support solutions are selected.

When a CICS application is invoked using HTTP (using either CICS Web support
or a SOAP/HTTP message to the CICS Web services feature), standard HTTP
security mechanisms can be used to authenticate the client and to ensure
message integrity and confidentiality.

Basic authentication
HTTP basic authentication is a simple challenge and response mechanism with
which a server can request authentication information (a user ID and password)
from a client. The client passes the authentication information to the server in an
HTTP Authorization header. The authentication information is in base-64
encoding.

The AUTHENTICATE attribute on the CICS TCPIPSERVICE resource definition
specifies the authentication and identification scheme to be used for inbound
TCP/IP connections for the HTTP protocol. HTTP basic authentication is enabled
with CICS by specifying BASIC for the AUTHENTICATE attribute.
116 Architecting Access to CICS within an SOA

A CICS service provider application may be protected by HTTP basic
authentication. However, the HTTP basic authentication scheme can only be
considered a secure means of authentication when the connection between the
client and the CICS region is secure. If the connection is insecure, the scheme
does not provide sufficient security to prevent unauthorized users from
discovering and using the authentication information for a server. If there is a
possibility of a password being intercepted, basic authentication should be used
in combination with SSL, so that SSL encryption is used to protect the user ID
and password information.

SSL/TLS with HTTP
SSL/TLS (Secure Sockets Layer or Transport Layer Security) is a popular way to
encrypt communication between business partners over the Internet. The TLS
1.0 protocol is the latest industry standard SSL protocol and is based on SSL 3.0.
The TLS 1.0 specification is documented in RFC2246 and is available on the
Internet at:

http://www.ietf.org/rfc/rfc2246.txt

SSL/TLS provides for transport-level protection. It simply creates a secure
connection between two nodes and encrypts all traffic flowing between the
nodes.

SSL/TLS provides a straightforward way to provide confidentiality. It also
includes a built-in communication integrity check. Connection layer
authentication is achieved by the client always authenticating the server, and
optionally being authenticated by the server, through the exchange of X.509
certificates.

The client initiates an HTTPS connection by using a URL starting with https:
instead of http:. With SSL/TLS, the data flowing back and forth between client
and server are encrypted using a secret key algorithm. The exchange of the
secret key occurs at the start of the communication during the SSL handshake.

CICS support for SSL/TLS
CICS supports both the SSL 3.0 and TLS 1.0 protocols. HTTPS connections will
automatically use the TLS protocol, unless the client specifically requires SSL
3.0.

A CICS service provider application may be secured using HTTPS. HTTPS has
the following advantages.

� It can be used to provide a very fast and secure transport for CICS
applications.
 Chapter 5. Security 117

http://www.ietf.org/rfc/rfc2246.txt

� It provides for authentication through either HTTP basic authentication or a
client X.509 certificate.

� It provides integrity between the service requester and CICS by using
asymmetric key cryptography to establish authenticity of server and client and
to securely share a secret key.

� It provides confidentiality between the service requester and CICS through
efficient shared key cryptography.

� It can be used with hardware cryptographic devices which can significantly
reduce the cost of SSL handshakes. You can customize your encryption
settings to use only the cipher suites that use the Integrated Cryptographic
Facility (ICSF), such as the DES and SHA-1 cipher suites.

� It is mature and similarly implemented by most vendors, and therefore, is
subject to few interoperability problems.

In the case of CICS Web services, a CICS service requester application may
also use HTTPS to invoke a service provider application, with similar advantages
to those listed above.

Enabling CICS support for SSL/TLS
To activate SSL/TLS support in a CICS TS V3.1 region, you must specify values
for the following system initialization parameters:

� ENCRYPTION={STRONG | WEAK | MEDIUM}

Specifies the cipher suites that CICS uses for secure TCP/IP connections.
When a secure connection is established between the client and CICS, the
most secure cipher suite supported by both is used.

– Use ENCRYPTION=STRONG when you can tolerate the overhead of
using high encryption if the other system requires it.

– Use ENCRYPTION=WEAK when you want to use encryption keys up to
40 bits in length.

– Use ENCRYPTION=MEDIUM when you want to use encryption keys up to
56 bits in length.

For more information about cipher suites, see the CICS RACF Security
Guide.

� KEYRING=keyring-name

Specifies the name of a key ring in the RACF database that contains keys
and certificates used by CICS. It must be owned by the CICS region user ID.
You can create an initial key ring with the DFH$RING exec in the
CICS-supplied SDFHSAMP target library.
118 Architecting Access to CICS within an SOA

� MAXSSLTCBS={8 | number}

Specifies the maximum number of S8 TCBs that are available to CICS to
process secure sockets layer connections. The S8 TCBs are created and
managed in the SSL pool. An S8 TCB is only used by a task for the duration
of the SSL processing.

� SSLDELAY={600 | number}

Specifies the length of time in seconds for which CICS retains session IDs for
secure socket connections in the SSLCACHE. Session IDs are tokens that
represent a secure connection between CICS and an SSL client. The session
ID is created and exchanged between the SSL client and CICS during the
SSL handshake.

While the session ID is retained by CICS within the SSLDELAY period, CICS
will re-establish an SSL connection with a client without the significant
overhead of another SSL handshake. The value is a number of seconds in
the range 0 through 86400. The default value is 600.

Increasing the value of the SSLDELAY parameter retains the session IDs in
the cache for longer, therefore, optimizing the time it takes to perform SSL
negotiations.

� SSLCACHE={CICS | SYSPLEX}

Specifies whether CICS should use the local SSL cache in the CICS region,
or share the cache across multiple CICS regions by using the coupling facility.
If the cache is shared between a number of CICS regions, the throughput of
SSL connections will improve.

Caching across a sysplex can only take place when the regions accept SSL
connections at the same IP address.

Activating SSL for a TCPIPSERVICE
To activate SSL support for a given connection, you must set the value of the
SSL attribute on the connection’s TCPIPSERVICE definition to one of the
following:

� YES

If you set the value to YES, CICS will send a server certificate to the client.

� CLIENTAUTH

If you set the value to CLIENTAUTH, CICS will send a server certificate to the
client and the client must send a client certificate to CICS.

If you specify SSL(CLIENTAUTH) you can also specify
AUTHENTICATE(CERTIFICATE) in order to map the client certificate to a
RACF user ID which is then used as the identity for the client.
 Chapter 5. Security 119

5.4 CICS Web services

To provide the basis for the need of Web service security, we first discuss
general security and possible security exposures. Further, we provide detailed
information about security concerns specific to Web services. We explain the
available techniques and standards to set up a secure Web service environment.

We cover transport channel security solutions and then devote most of this
section to the discussion of the WS-Security specification in CICS TS V3.1

5.4.1 Web services security exposures

Web services security is one of the most important Web services subjects. When
using Web services, similar security exposures exists as for other Internet,
middleware-based applications, and communications.

To explain the Web services security exposures, let us use a bank teller scenario
as an example shown in Figure 5-9. The bank teller (Web service requester)
connects over the Internet to the bank’s data center (Web service provider). We
assume there is no security applied at all, which is not realistic, but needed for
the example.

Figure 5-9 Common security exposures in a sample Web services application

NetworkNetwork

<SOAPMessage
in clear text>
User: Teller1

Account No.1234
Balance

<SOAPMessage
in clear text>
User: Teller1

Account No.1234
Balance

Bank Teller 1

Attacker

Bank Data
Center

Tampering:
No Integrity

Eavesdropping:
No confidentiality

Spoofing:
No authentication
120 Architecting Access to CICS within an SOA

The three major risk factors in this example are:

� Spoofing—no authentication: An attacker could send a modified SOAP
message to the service provider, pretending to be a bank teller, to get
confidential information, or to withdraw money from another customer’s
account.

By applying authentication to the Web service, this security exposure can be
eliminated.

� Tampering—no integrity: The SOAP message is intercepted between the
Web service requester and provider. An attacker could modify the message,
for example, deposit the money into another account by changing the account
number. Because there is no integrity constraint, the Web service provider
does not check if the message is valid and will accept the modified
transaction.

By applying an integrity mechanism to the Web service, this security
exposure can be eliminated.

� Eavesdropping—no confidentiality: An attacker can intercept the SOAP
message and read all contained information. Because the message is not
encrypted, confidential customer or bank information can go the wrong
people. This exposure exists because the account number and balance
information is sent over the network in plain text.

By applying a confidentiality mechanism to the Web service, this security
exposure can be eliminated.

To prevent the described security exposures, the following mechanisms can be
applied to secure a Web services environment (Figure 5-10 on page 122):

� Transport-level security—TLS/SSL
� Message-level security—Web services security (WS-Security)
 Chapter 5. Security 121

Figure 5-10 Securing Web services

Depending on the required level of application security, one or more of these
security mechanisms can be applied. Also depending on other non-functional
requirements, a combination of message-level security and transport-level
security can be implemented.

When designing a Web services security solution, keep in mind that security has
an impact on the following non-functional requirements:

� System capacity—Any applied security mechanism has impact on system
resource usage (for example, CPU and memory usage). So, when planning a
Web service environment, the required security overhead must be considered
in the system capacity and volume planning.

The non-functional requirements, capacity and volume, cover the number of
concurrent users and the number of transactions per second. This has
influence on the required system infrastructure (hardware, network).

� Performance—Security mechanisms and functions also impact the
application’s response time. When defining the Web service system response
time requirements, keep in mind that the response time will be affected when
applying security.

The performance requirement for a system defines the response time for a
main application operation (for example, less than one second for 90% of all
transactions).

Securing
Web Services

Message-level Security
(WS-Security)

Transport-level Security
(TLS/SSL)

Encrypt message stream
(HTTPS for HTTP)

Authentication
Example:

Username/Password

Confidentiality
Message Encryption

Integrity
Message Signature
122 Architecting Access to CICS within an SOA

5.4.2 Transport level security

Web services messaging relies on two protocol layers, the transport layer and
the SOAP layer. Security can be implemented within either, or both, of these
layers.

In this section we review how the different transport-level security mechanisms
can be used to secure a CICS Web services solution. In 5.4.6, “Comparison of
transport versus SOAP message security” on page 141 we look at the main
decision factors for choosing between transport-level and SOAP message
security.

HTTP transport
When a CICS Web service is invoked using HTTP, standard HTTP security
mechanisms can be used to authenticate the Web service requester and to
ensure message integrity and confidentiality.

These mechanisms, and how they are implemented in CICS, are discussed in
5.3.5, “Transport-level security using HTTP with CICS” on page 116.

Setting the user ID on the URIMAP
It is possible to specify a user ID on the URIMAP to be used on behalf of a Web
service requester. This is done by setting the USERID attribute of the URIMAP
definition for a request. It specifies the 1-8 character user ID under which the
Web services pipeline alias transaction is attached.

Note: Applying security is not only a question of feasibility; the additional
system resources and the influence on the response time also must be
considered.

Note: If you define and install URIMAP resource definitions explicitly using
CEDA, and you are using the CICS Web services assistant to create the Web
services, you cannot take advantage of the dynamic installation of URIMAP
resources when the PIPELINE resource is installed.
 Chapter 5. Security 123

A user ID that you specify in the URIMAP definition is overridden by any user ID
that is obtained directly from the client.

Determining the user ID order of precedence when using HTTP
It is possible that for a single Web service request transported by HTTP, multiple
methods for setting the user ID will be used at the same time. In this event, the
following order of precedence is used for setting the user ID under which the
target business logic program runs:

1. A user ID specified by a message handler, or a SOAP header processing
program, that is included in the pipeline which processes the SOAP message.
For example, a SOAP header processing program could extract a username
from the SOAP message and specify that the CICS task should run with this
user ID.

2. A user ID obtained from the Web client using basic authentication, or a user
ID associated with a client certificate.

3. A user ID specified in the URIMAP definition for the request.

4. The CICS default user ID, if no other can be determined.

5.4.3 WebSphere MQ Security
To control security checking performed by WebSphere MQ, you must define
switch profiles. When a queue manager is started (or when the WMQ REFRESH
SECURITY command is issued), WebSphere MQ first checks the status of
RACF and the MQADMIN class. It sets the subsystem security switch off if it
discovers one of these conditions:

� RACF is inactive or not installed
� The MQADMIN class is not defined
� The MQADMIN class has not been activated

If both RACF and the MQADMIN class are active, WebSphere MQ checks the
MQADMIN class to see whether any of the switch profiles have been defined. If
subsystem security is not required, WebSphere MQ sets the internal subsystem
security switch off, and performs no further checks. The sequence of subsystem
security checks is shown in Figure 5-11 on page 125.

Important: It is important to note that if you use a URIMAP definition to set a
user ID, there is no authentication of the client's identity. You should only do
this when communicating with your own client system, which has already
authenticated it’s users, and communicates with the server in a secure
environment.
124 Architecting Access to CICS within an SOA

Figure 5-11 Sequence for deciding if security is on for WebSphere MQ

Switch profiles can be set at the queue manager level and at the queue-sharing
group level, but the queue manager level is always checked first. If your queue
manager is not a member of a queue-sharing group, then no queue-sharing
group checks are made. Switch profiles are not subject to any access list checks
and are merely used to indicate to WebSphere MQ whether a particular security
switch is on or off. A number of switch profiles exist which can be used to control
the security checking for your WebSphere MQ environment.

When using WebSphere MQ as the transport mechanism for accessing Web
services in CICS, you need to consider the following points.

� The SOAP MQ inbound listener transaction (CPIL) is started by the trigger
monitor using the same user ID as the trigger monitor transaction. This user

Start

qmgr-name.NO.SUBSYS.SECURITY

qsg-name.NO.SUBSYS.SECURITY

qmgr-name.YES.SUBSYS.SECURITY Security On

Present Absent

Present Absent

Present Absent

No further
security checks

No further
security checks

Security On
 Chapter 5. Security 125

ID must have UPDATE authority to the request queue and the backout queue
(if this is specified).

� If AUTH=IDENTIFY is specified in the USERDATA parameter of the
WebSphere MQ PROCESS definition for CPIL, then the user ID under which
CPIL runs must have surrogate authority to allow it to start transactions on
behalf of the user IDs in the MQ message descriptors (MQMDs) of the
messages.

More information about security for WebSphere MQ can be found in WebSphere
MQ Security, SC34-6588 and in the redbook WebSphere MQ Security in an
Enterprise Environment, SG24-6814.

SSL/TLS with WebSphere MQ
SSL/TLS can be used to secure SOAP messages which are transported using
WebSphere MQ. WebSphere MQ supports Version 3.0 of the SSL protocol. You
specify the cryptographic algorithms that are used by the SSL protocol by
supplying a CipherSpec as part of the channel definition. WebSphere MQ also
supports Version 1.0 of the Transport Layer Security (TLS) protocol.

See WebSphere MQ Security, SC34-6588 for more information about using
SSL/TLS with WebSphere MQ.

Determining the user ID order of precedence when using
WebSphere MQ

It is possible that for a single Web service request transported by WebSphere
MQ, multiple methods for setting the user ID will be used at the same time. In this
event, the following order of precedence is used for setting the user ID under
which the target business logic program runs:

1. A user ID specified by a message handler, or a SOAP header processing
program, that is included in the pipeline which processes the SOAP message.
For example, a SOAP header processing program could extract a username
from the SOAP message and specify that the CICS task should run with this
user ID.

2. A user ID obtained from the MQ message descriptor.

A message can contain message context information, such as a user ID. This
information is held in the message descriptor and can be generated by the
queue manager when a message is put on a queue by an application. or by
the application itself. This allows the receiving application to run with the
same identity as the application that put the message on the queue.

3. The CICS default user ID, if no other can be determined.
126 Architecting Access to CICS within an SOA

5.4.4 WS-Security

The WS-Security specification provides message-level security, which is used
when building secure Web services to implement message content integrity and
confidentiality.

The advantage of using WS-Security over SSL is that it can provide end-to-end
message-level security. This means that the message security can be protected
even if the message goes through multiple services, called intermediaries.

Additionally, WS-Security is independent of the transport layer protocol; it can be
used for any Web service binding (for example, HTTP, SOAP, RMI). Using
WS-Security, end-to-end security can be obtained (Figure 5-12).

Figure 5-12 End-to-end security with message-level security

The WS-Security specification, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004), is proposed by the OASIS WSS Technical Committee.
This specification defines a standard set of SOAP extensions. The specification
is flexible and is designed to be used as the basis for securing Web services
within a wide variety of security models, including PKI, Kerberos, and SSL. It
provides support for multiple security token formats, multiple trust domains,
multiple signature formats, and multiple encryption technologies based on XML
signature and XML encryption to provide integrity and confidentiality.

The specification includes security token propagation, message integrity, and
message confidentiality. However, these mechanisms by themselves do not
address all the aspects of a complete security solution. Therefore, WS-Security
represents only one of the layers in a complex, secure Web services solution
design.

Important: With WS-Security V1.0 the wire format changed in ways that are
not compatible with previous WS-Security drafts. Also, interoperabilty
between implementations based on previous drafts and Version 1.0 is not
possible.

IntermediaryService
Requester

Service
Provider

Security Context
 Chapter 5. Security 127

The WS-Security specification defines the usage of XML signature and XML
encryption:

� Message integrity is provided by XML signature in conjunction with security
tokens to ensure that modifications to messages are detected. For more
information, refer to:

http://www.w3c.org/Signature

� Message confidentiality leverages XML encryption in conjunction with
security tokens to keep portions of a SOAP message confidential. For more
information, refer to:

http://www.w3c.org/Encryption

Evolution of the WS-Security specification
Figure 5-13 shows the evolution of the WS-Security specification.

Figure 5-13 Evolution of Web services security

The first version of the WS-Security specification was proposed by IBM,
Microsoft, and VeriSign in April 2002. After the formalization of the April 2002
specifications, the specification was transferred to the OASIS consortium:

http://www.oasis-open.org

In OASIS activities, the core specification and many profiles that describe the
use of a specific token framework in WS-Security have been discussed. The

WS-Security
Version 1.0
April 2002

OASIS Activities

WS-Security 2004
X.509 Cert Token

Profile 1.0
March 2004

WS-Security 2004
Username Token

Profile 1.0
March 2004

WS-Security 2004
March 2004

WS-Security
Addendum
Version 1.0
April 2002
128 Architecting Access to CICS within an SOA

http://www.w3c.org/Signature
http://www.w3c.org/Encryption
http://www.oasis-open.org

latest specification and profiles of WS-Security were proposed in March 2004 as
an OASIS standard.

The latest core specification, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004) was standardized in March 2004. The two profiles, Web
Services Security UsernameToken Profile 1.0 and Web Services Security X.509
Certificate Token Profile 1.0, were standardized at the same time.

There are other token profiles on which, at the time of writing, OASIS is currently
working:

� Web Services Security: SAML Token Profile
� Web Services Security: Rights Expression® Language (REL) Token Profile
� Web Services Security: Kerberos Token Profile
� Web Services Security: Minimalist Profile (MProf)
� Web Services Security: SOAP Message with Attachments (SwA) Profile

To read more about these standards, refer to:

� Specification: Web Services Security (WS-Security) Version 1.0 (April 2002):

http://www.ibm.com/developerworks/webservices/library/ws-secure/

� Web Services Security Addendum (August 2002):

http://www.ibm.com/developerworks/webservices/library/ws-secureadd.h
tml

� Web Services Security: SOAP Message Security V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf

� Web Services Security: UsernameToken Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security: X.509 Token Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

WS-Security road map
As previously mentioned, the WS-Security specification addresses only a subset
of security services for all security aspects. A more general security model is
required to cover other security aspects, such as logging and non-repudiation.
The definition of those requirements is defined in a common Web services
security model framework, a security white paper Web Services Security
Roadmap, proposed by IBM and Microsoft. We describe this road map in the
following section.
 Chapter 5. Security 129

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ibm.com/developerworks/webservices/library/ws-secureadd.html
http://www.ibm.com/developerworks/webservices/library/ws-secure/

Web services security model framework
The Web services security model introduces a set of individual interrelated
specifications to form a layering approach to security. It includes several aspects
of security: identification, authentication, authorization, integrity, confidentiality,
auditing, and non-repudiation. It is based on the WS-Security specification,
co-developed by IBM, Microsoft, and VeriSign.

The Web services security model is schematically shown in Figure 5-14.

Figure 5-14 WS-Security road map

These specifications include different aspects of Web services security:

� WS-Policy—Describes the capabilities and constraints of the security
policies on intermediaries and endpoints (for example, required security
tokens, supported encryption algorithms, and privacy rules).

� WS-Trust—Describes a framework for trust models that enables Web
services to securely interoperate, managing trusts and establishing trust
relationships.

� WS-Privacy—Describes a model for how Web services and requesters state
privacy preferences and organizational privacy practice statements.

� WS-Federation—Describes how to manage and broker the trust
relationships in a heterogeneous federated environment, including support for
federated identities.

� WS-Authorization—Describes how to manage authorization data and
authorization policies.

� WS-SecureConversation—Describes how to manage and authenticate
message exchanges between parties, including security context exchange
and establishing and deriving session keys.

SOAP Foundation

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-Secure
Conversation WS-Federation WS-Authorization
130 Architecting Access to CICS within an SOA

The combination of these security specifications enables many scenarios that
are difficult or impossible to implement with today's more basic security
mechanisms such as transport securing or XML document encryption.

Authentication
Web services security provides a general-purpose mechanism to associate
security tokens with messages for single message authentication. A specific type
of security token is not required by Web services security. Web services security
is designed to be extensible and support multiple security token formats to
accommodate a variety of authentication mechanisms. For example, a client
might provide proof of identity and proof of a particular business certification.

Example 5-1 shows a sample SOAP message without applying WS-Security.
The SOAP message is an Order request for our sample catalog application.

Example 5-1 SOAP message without applying WS-Security

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header/>
<soapenv:Body>

<p635:DFH0XCMN
xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>

<p635:ca_order_request>
 <p635:ca_userid>srthstrh</p635:ca_userid>
 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

In Example 5-2 on page 132, the SOAP message does not have any SOAP
headers. We will apply WS-Security by inserting a SOAP security header.
 Chapter 5. Security 131

WS-Security defines a vocabulary that can be used inside the SOAP envelope.
The XML element <wsse:Security>1 is the container for security-related
information.

When using WS-Security for authentication, a security token is embedded in the
SOAP header and is propagated from the message sender to the intended
message receiver. On the receiving side, it is the responsibility of the server
security handler to authenticate the security token and to set up the caller identity
for the request.

In Example 5-2, we show the same SOAP message but this time with
authentication. As you can see, we have user name and password information
contained in the <UsernameToken> element.

Example 5-2 SOAP message with WS-Security

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-ws

s-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>

 <wsse:Username>WEBUSER</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#PasswordText">REDB00KS</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>

<soapenv:Body>
<p635:DFH0XCMN

xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>

<p635:ca_order_request>
 <p635:ca_userid>srthstrh</p635:ca_userid>
 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>

1 wsse stands for “Web services security extension”
132 Architecting Access to CICS within an SOA

 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

The <UsernameToken> element of the SOAP message in Example 5-2 on
page 132 contains credentials which can be used to authenticate the user
WEBUSER.

The simplest form of security token is the UsernameToken which is used to
provide a user name and password for basic authentication. A header
processing program can extract a UsernameToken from a SOAP header,
validate the username and password and set the user ID of the CICS task to the
username passed in the header.

A signed security token is one that is cryptographically signed by a specific
authority. For example, an X.509 certificate is a signed security token.

Security token usage for Web services security is defined in separate profiles
such as the Username token profile and the X.509 token profile.

To read more about these security token standards, refer to:

� Web Services Security: UsernameToken Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security: X.509 Token Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

Integrity
Integrity is applied to a message to ensure that no one modifies the message
while it is in transit. Essentially, integrity is provided by generating an XML digital
signature on a part of the SOAP message. If the message data changes, the
signature would no longer be valid.

A digital signature is a number attached to the message. This signature
establishes the following information:

� The integrity of the message:

Is the message intact? That is, has the message been modified between the
time it was digitally signed and now?
 Chapter 5. Security 133

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

� The identity of the signer of the message:

Is the message authentic? That is, was the message actually signed by the
user who claims to have signed it?

A digital signature is created in two steps.

1. The first step distills a part of the SOAP message (for example, the body) into
a large number. This number is the digest code or fingerprint.
Several options are available for generating the digest code, for example, the
MD5 message digest function and the SHA1 secure hash algorithm. Both
these procedures reduce a message to a number.

The crucial aspect of distilling the document to a number is that if the
message changes, even in a trivial way, a different digest code results. When
the recipient gets a message and verifies the digest code by recomputing it,
any changes in the document result in a mismatch between the stated and
the computed digest codes.

2. In the second step, the digest code is encrypted with the sender's private key.

This two step process creates the digital signature. The digital signature is
appended to the SOAP message before being sent to the service provider.

When the service provider receives the message, it follows these steps to verify
the signature:

1. Recomputes the digest code for the message.

2. Decrypts the signature by using the sender's public key. This decryption
yields the original digest code for the message.

The receiver normally obtains the sender’s public key from the sender’s
X.509 certificate which is sent as a security token in the SOAP message.

3. Compares the original and recomputed digest codes. If these codes match,
the message is both intact and authentic. If not, something has changed and
the message is not to be trusted.

XML encryption
Confidentiality is the process in which a SOAP message is protected so that only
authorized recipients can read the SOAP message. Confidentiality is provided by
encrypting the contents of the SOAP message using XML encryption. If the
SOAP message is encrypted, only a service that knows the key for confidentiality
can decrypt and read the message.

Important: The use of digital signatures has a significant impact on the
system CPU resource usage.
134 Architecting Access to CICS within an SOA

The XML encryption standard specifies a process for encrypting data and
representing the result in XML. XML encryption can be used to encrypt any part
of a SOAP message, normally sensitive data such as bank account numbers or
user credentials. The result of encrypting data is an XML encryption element that
contains or references the cipher data.

XML-Encryption was published as a W3C recommendation in December 2002.
More information can be found at:

http://www.w3.org/Encryption/2001/

5.4.5 CICS support for WS-Security

Support for WS-Security is provided by the CICS WS-Security message handler,
DFHWSSE1, which was shipped by APAR PK22736. More information regarding
the signature validation and signature generation algorithms, and the decryption
and encryption types that CICS supports can be found in the CICS Transaction
Server for z/OS V3.1 Web Services Guide, SC34-6458.

DFHWSSE1 provides support for digital signing and encryption of the entire
SOAP body for outbound messages. It also provides support for the body, or
elements of the body and header to be encrypted or digitally signed for inbound
messages.

WS-Security in CICS can be implemented via the configuration file referenced in
the CICS PIPELINE resource definition CONFIGFILE attribute. You do this by
adding a WS-Security message handler to your pipeline configuration files. We
discuss this in more detail in “Pipeline configuration file” on page 136.

Options for securing a SOAP message in CICS
CICS support for WS-Security provides both signing and encrypting of SOAP
messages. There are several options available, and which ones you choose will
depend on the level of security required for the data and the transmission path of
the data. CICS specific support for the following options is described here:

� Basic authentication

CICS supports service provider mode. The inbound SOAP message header
can contain a username token (UsernameToken) consisting of a user name
and password.

Username tokens are not supported for outbound SOAP messages or with
CICS as a service requester.

Note: CICS TS V3.1 does not support Web Services Security for atomic
transactions (WS-AT).
 Chapter 5. Security 135

http://www.w3.org/Encryption/2001/

� Signing with X.509 certificates

CICS supports both service provider and service requester modes. You can
provide an X.509 certificate in the SOAP message header to sign the body of
the SOAP message for authentication.

� Encrypting

CICS supports both service provider and service requester modes. You can
encrypt the SOAP message body using a symmetric-key algorithm such as
Triple DES or AES.

For inbound SOAP messages, an element in the SOAP body can be
encrypted and then the entire SOAP body encrypted. If CICS receives a
SOAP message with two levels of encryption, CICS will decrypt both levels
automatically. This is not supported for outbound SOAP messages.

CICS does not support inbound SOAP messages that only have an encrypted
element in the message header and no encrypted elements in the SOAP
body.

� Signing and encrypting

CICS supports both service provider and service requester modes. You can
sign and encrypt the SOAP message. CICS signs the SOAP message body
first and then encrypts it. This provides both message integrity and
confidentiality.

Pipeline configuration file
CICS TS uses a pipeline configuration file to handle Web service requests. The
configuration file is an XML document and resides in the z/OS UNIX System
Services hierarchical file system (HFS). You specify the name of the
configuration file on the CONFIGFILE attribute of the PIPELINE definition.

To implement WS-Security in CICS TS, you need to include a <wsse_handler>
message handler element and provide configuration information for the handler.
You do this by updating the configuration file for the appropriate pipeline.
DFHWSSE1 uses the configuration information specified for the <wsse_handler>
element. The configuration file is made up of different elements. The elements
that may be used for WS-Security are:

� <wsse_handler> - Specifies parameters used by DFHWSSE1. It can be used
in both a service provider and service requester pipeline. It contains a
<dfhwsse_configuration> element.

� <dfhwsse_configuration> - Specifies configuration information for
DFHWSSE1. It can be used in both a service provider and service requester
136 Architecting Access to CICS within an SOA

pipeline. It may contain the following optional elements; each of these is
discussed in more detail below:

– <authentication>

– <expect_signed_body/> - empty

– <expect_encrypted_body/> - empty

– <sign_body>

– <encrypt_body>

� <authentication> - Specifies the use of security tokens in the headers of
inbound and outbound SOAP messages. It can be used in both a service
provider and service requester pipeline. In a service provider pipeline, the
element specifies whether CICS should use the security tokens in an inbound
SOAP message to determine the user ID under which work will be processed.
In a service requester pipeline, it specifies that CICS should add an X.509
certificate to the security header for outbound SOAP messages.

The <authentication> element has two attributes: trust and mode. These
attributes determine whether asserted identity is used and the combination of
security tokens used in a SOAP message. The trust attribute can be set to
either none, basic or signature. The mode attribute can also be set to either
none, basic, or signature. For more information about the meaning and valid
combinations of these attributes, refer to the CICS Transaction Server for
z/OS V3.1 Web Services Guide, SC34-6458.

Asserted identity allows a trusted user to assert, or declare, that work should
run under a different identity (the asserted identity), without the trusted user
having the credentials associated with that identity. Messages contain a trust
token and an identity token. The trust token is used to check that the sender
has the correct permissions to assert identities, and the identity token holds
the asserted identity (user ID) under which the request is to run.

The <authenticate> element can contain the following elements:

– <certificate_label> - optional. Specifies the label associated with an
X.509 digital certificate. Ignored in a service provider pipeline.

– <suppress/> - optional. For service provider, the handler will not use any
security tokens in the message to determine under which user ID to run.

Note: If you use asserted identity, it requires that the service provider trusts
the requester to make this assertion. In CICS, the trust relationship is
established with security manager surrogate definitions: the requesting
identity must have the correct authority to start work on behalf of the
asserted identity.
 Chapter 5. Security 137

For service requester, the handler will not add any of the security tokens
required for authentication to the SOAP message.

– <algorithm> - Specifies the URI of the algorithm used to sign the body of
the SOAP message.

� <expect_signed_body/> - Indicates that the <body> of the inbound message
must be properly signed. If it is not, CICS rejects the message with a security
fault.

� <expect_encrypted_body/> - Indicates that the <body> of the inbound
message must be properly encrypted. If it is not, CICS rejects the message
with a security fault.

� <sign_body> - Directs DFHWSSE1 to sign the body of outbound SOAP
messages, and provides information regarding how the messages are to be
signed. It can be used in both a service provider and service requester
pipeline. It contains the following elements:

– <algorithm> - Specifies the URI of the algorithm used to sign the body of
the SOAP message.

– <certificate_label> - Specifies the label associated with an X.509 digital
certificate. The digital certificate should contain the private key since this
was used to sign the message. The public key associated with the private
key is then sent in the SOAP message, which allows the signature to be
validated.

� <encrypt_body> - Directs DFHWSSE1 to encrypt the body of outbound SOAP
messages, and provides information regarding how the messages are to be
encrypted. It can be used in both a service provider and service requester
pipeline. It contains the following elements:

– <algorithm> - Specifies the URI identifying the algorithm used to encrypt
the body of the SOAP message.

– <certificate_label> - Specifies the label associated with an X.509 digital
certificate. The digital certificate should contain the public key of the
intended recipient of the SOAP message so that it can be decrypted with
the private key when the message is received.

Example 5-3 (from the CICS Transaction Server for z/OS V3.1 Web Services
Guide, SC34-6458) shows a completed <wsse_handler> with all of the optional
elements present. You would add this to your configuration file for the pipeline:

Example 5-3 <wsse_handler>

<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
138 Architecting Access to CICS within an SOA

 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
</wsse_handler>

The <wsse_handler> element is contained in the <service_handler_list>
element. If you want to modify the pipeline configuration file for the CICS
supplied catalog Web sample application, you would add a
<service_handler_list> containing the <wsse_handler>. Example 5-4 shows the
original pipeline configuration file basicsoap11provider.xml for the EXPIPE01
service provider pipeline.

Example 5-4 CICS supplied sample pipeline configuration file - basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd
">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Example 5-5 on page 140 shows how you would modify the pipeline
configuration file to add the <service_handler_list> and <wsse_handler>
elements to implement WS-Security. CICS will read the pipeline configuration file
and when it finds the <wsse_handler> element it will load program DFHWSSE1
from library SDFHWSLD in your DFHRPL concatenation to process the security
information. For more information about the elements for the pipeline
 Chapter 5. Security 139

configuration file, and which ones are contained by other elements (high-level
structure diagrams), refer to the CICS Transaction Server for z/OS V3.1 Web
Services Guide, SC34-6458.

Example 5-5 WS-Security <wsse_handler> element added to pipeline configuration file -
basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd
">
 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
 </wsse_handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

If CICS is the service provider, CICS will decrypt any inbound encrypted SOAP
message automatically when it processes the message, provided you have the
<wsse_handler> element in the pipeline configuration file. The security header in
the received message provides all of the information needed for CICS to decrypt
it. In other words, the <encrypt_body> and <sign_body> elements do not need to
140 Architecting Access to CICS within an SOA

be specified in the provider pipeline configuration file in order to decrypt the
inbound SOAP message. But you can (and probably will want to) include the
<encrypt_body> and/or <sign_body> in the provider pipeline configuration file if
you want to encrypt and/or sign the reply body sent back to the requester. This is
what we have shown above in Example 5-5 on page 140.

RACF and WS-Security in CICS
You need to use RACF, or your external security manager, to create
public-private key pairs and X.509 certificates for signing and encrypting
outbound SOAP messages, and to authenticate and decrypt signed and
encrypted inbound SOAP messages. For more information, refer to CICS
Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458 and CICS
Transaction Server for z/OS V3.1 RACF Security Guide, SC34-6454.

5.4.6 Comparison of transport versus SOAP message security

We have shown in this section that it is possible to implement Web services
security at two levels: the transport-level and the SOAP message level. If your
Web services environment is simple (for example, it does not span multiple
nodes) a security solution based on transport-level security alone may be all that
you need. For more complex scenarios, however, it may not be enough on its
own.

In this section, we provide general guidelines to help you decide what type of
security solution to implement.

� You might chose to use transport-level security only to secure your CICS
Web services environment when:

– No intermediaries are used in the Web service environment.

– The transport is only based on HTTP.

– The Web services requester is a stand-alone program.

WS-Security can only be applied to clients that run in a Web services
environment that supports the WS-Security specification

Note: For more information about the pipeline configuration file, details on the
elements described above, and the message handlers, refer to the CICS
Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458.
 Chapter 5. Security 141

� You might chose to use WS-Security (probably in addition to transport-level
security) when:

– Intermediaries are used.

Security credentials which flow in the SOAP message can pass through
any number of intermediaries. An intermediary can provide an
authentication service to CICS, such that the intermediary server
authenticates the Web service requester and flows an asserted identity to
CICS.

– Multiple transport protocols are used.

WS-Security works across multiple transports and is independent of the
underlying transport protocol.

5.5 CICS Transaction Gateway

In this section, we will look into the security issues which arise when creating an
SOA solution using the CICS TG. For all CICS TG topologies, there is a need to
authenticate the user and to ensure that only authorized users have access to
the application and its resources. We will focus here on the security mechanisms
which apply when using the CICS ECI resource adapter with WebSphere
Application Server.

The choice of CICS TG topology has a significant impact on the security
management capabilities provided when using the JCA. These differences are
outlined in 5.5.3, “Topology decisions” on page 145.

5.5.1 CICS security options
In addition to the normal CICS transaction and resource security checking,
additional intercommunication and surrogate checks are performed.

Intercommunication security
Intercommunication security in CICS is concerned with incoming requests for
access to CICS resources. Requests from the CICS TG can arrive via APPC,
TCP/IP or EXCI connections and these are treated somewhat differently.

Note: In order to use WS-Security in a CICS TS environment, cryptographic
hardware must be enabled.
142 Architecting Access to CICS within an SOA

There are three fundamentally different intercommunication security checks that
can be performed as follows:

� Bind security
This verifies that the system wanting to connect (bind) to CICS is authorized to
do so.

� User security

This causes a check to be made against the flowed user ID when an inbound
request attaches the requested transaction in CICS. The flowed user ID can
be considered as the user ID which is associated with the end user. It is the
user ID which is displayed in CICS as a result of a CEMT INQUIRE TASK
command. The setting of the flowed user ID is controlled by the ATTACHSEC
parameter on the CONNECTION definition.

� Link security
This is an additional level of authorization checking that can apply to the
attached transaction. A specific user ID (the link user) can be thought of as
the user ID which is associated with the server which is passing the request to
CICS. The link user ID is often defined statically on the CONNECTION
definition for the remote system. This user ID, like the flowed user ID, must be
authorized to access all transactions and resources invoked as a result of the
request.

Surrogate user security
Surrogate user security within CICS controls the ability of the CICS region itself
to work on behalf of another user. It is enabled when the CICS region is started
with the XUSER=YES System Initialization (SIT) option. However, there is a special
use of surrogate user checking on an EXCI connection between CICS and
another MVS address space, for example, the CICS TG on z/OS. The EXCI
surrogate user ID check controls the ability of the connecting address space to
work on behalf of other user IDs flowed through the connection to CICS. The
Start/Define process is surrogate (for example, using the user ID DFHSTART) in
addition to the user ID DFHEXCI requests when surrogchk=YES is specified in
DFHXCOPT.

5.5.2 JCA and security
The JCA has specific support for enabling secure access from a J2EE
application to an EIS such as CICS. Both container-managed sign-on (in which
the J2EE application server is responsible for flowing security context to the EIS)
and component-managed sign-on (in which the application is responsible for
flowing security context to the EIS) are supported.
 Chapter 5. Security 143

In a managed J2EE environment, such as that provided by WebSphere
Application Server, container-managed sign-on is recommended because it is
good practice to separate the business logic of an application from qualities of
service, such as security.

When deploying the component, the deployer must set the res-auth element in
the deployment descriptor to indicate which method is being used.

Container-managed security
If you are using container-managed security, you must set the res-auth
deployment descriptor element to Container. The application deployer must set
up the authentication information (for example, the deployer sets the surname
(user ID) and password to be used for the connection); in some circumstances,
the container can derive the propagated identity from the currently executing
Java principal. The application uses the getConnection() method of the
connection factory and lets the application server manage the security to sign on
to CICS.

Component-managed security
For component-managed security, the res-auth element needs to be set to
Application. The application code can then supply the user ID and password
when making the connection. This can be seen in the code sample in
Figure 5-15. Note that even with res-auth=Application the application can
invoke a getConnection() without passing a user ID and password.

Figure 5-15 Component managed sign-on

Context ic = new InitialContext();

cnxf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS1");
// create a connectionSpec to hold the security information
ECIConnectionSpec cs = new ECIConnectionSpec();
// set the user ID/password
cs.setUserName(“user_ID”);
cs.setPassword(“password”);
Connection cxn = cxnf.getConnection(cs);
Interaction ixn = cxn.createInteraction();
ECIInteractionSpec ixnSpec = new

ECIInteractionSpec(SYNC_SEND_RECEIVE,"CICSPROG");
JavaStringRecord jsr = new JavaStringRecord();
jsr.setText("DATA1");
ixn.execute(ixnSpec, jsr, jsr);
ixn.close();
cxn.close();
144 Architecting Access to CICS within an SOA

5.5.3 Topology decisions
We will now consider the security issues when using the different CICS TG
topologies that were introduced in 3.1.2, “CICS Transaction Gateway” on
page 48. In particular, we will take a look at the different mechanisms which can
be used for authenticating the end user, authorizing access to resources and
ensuring the confidentiality and integrity of the request while it is being
transported from one physical tier to another.

CICS TG deployed on a distributed platform
In topology 1, both WebSphere Application Server and CICS TG are deployed on
one of the distributed platforms, such as a Windows or UNIX platform.

Figure 5-16 Authentication and authorization mechanisms for CICS TG Topology 1

Figure 5-16 shows when authentication and authorization checks are done for an
EJB application which uses the ECI resource adapter to access a
COMMAREA-based CICS application.

RACF

APPC,
TCP62 or

TCP/IP

z/OS

Authorization
checks

Authentication of
userid/password

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Distributed platform

C
lie

nt
da

em
on

WebSphere
Application Server

CICS TG
ECI
resource
adapterCCI C

lie
nt

da
em

onEJB

JSPJSP ServletServlet
HTTP(S)

Web server
plugin

Web server

Authentication and
authorization checks

Pluggable user
registry

CICS TS CICS TS

CICS
application

C
O
M
M
A
R
E
A

CICS
application

C
O
M
M
A
R
E
A

User ID
Password/

Client
Certificate
 Chapter 5. Security 145

Authentication
An authentication mechanism in WebSphere Application Server typically
collaborates closely with a pluggable user registry when performing
authentication. The user registry allows you to configure different databases to
store user IDs and passwords that are used for authentication and authorization.
There are three options:

� Local operating system user registry

When configured, the application server uses the operating system’s users
and groups for authentication.

� LDAP user registry

In many solutions, an LDAP user registry is recommended as the best
solution for large scale Web implementations. Most of the LDAP servers
available on the market are well equipped with security mechanisms that can
be used to securely communicate with WebSphere Application Server.

� Custom user registry

This is the option of any custom implementation of a user registry database.
An application server API provides the User Registry Java interface that can
be used to write the custom registry. This interface may be used to access
virtually any relational database, flat files and so on.

The authentication mechanism is responsible for creating a credential which is
an application server internal representation of a successfully authenticated
client user. WebSphere Application Server provides two authentication
mechanisms, Lightweight Third Party Authentication (LTPA) and Simple
WebSphere Authentication Mechanism (SWAM).

� LTPA is intended for use with multiple application servers and machine
environments. It supports the forwarding of credentials and single-sign on.

� SWAM is intended for simple, non-distributed, application server
configurations and is less secure than LTPA.

Authorization
Pluggable authorization interfaces will allow the use of different authorization
mechanisms for WebSphere applications. WebSphere Application Server
standard authorization mechanisms are based on the J2EE security specification
and Java Authentication and Authorization Services (JAAS).

The following steps describe the main authentication and authorization events
from the point when a Web browser sends the request to the WebSphere
application.

1. The Web user requests a Web resource protected by WebSphere Application
Server.
146 Architecting Access to CICS within an SOA

2. The Web server receives the request, recognizes that the requested resource
is on the application server, and, using the Web server plug-in, redirects the
request.

3. The Web server plug-in passes the user credentials to the Web Container of
the application server, which performs user authentication against the user
registry.

4. After successful authentication, the Web container does authorization checks
against the user registry of the user’s credentials and the security information
contained in the deployment descriptor.

5. Upon subsequent requests, further authorization checks are performed either
by the Web Container or the EJB Container with user credentials which are
extracted from the established security context.

6. When the EJB uses the ECI resource adapter to make a request to the CICS
application, the security credentials (user ID and password) need to be
propagated through to CICS. This can be the responsibility of the application
(component managed sign-on) or it can be the responsibility of the Web or
EJB container (container managed sign-on).

For both container and component-managed sign-on, the principal means of
enabling authentication is by specifying a predefined security credential
known as the JAAS authentication alias.

7. After defining the JAAS authentication alias, it can be associated with a
particular connection to CICS by selecting it from a drop-down box when
defining the connection factory. Another way of determining which user
ID/password combination is propagated to CICS is to specify these in a
ECIConnectionSpec when the connection is created (see Figure 5-15 on
page 144).

8. When the request arrives in CICS, CICS verifies the user ID and password
combination against the RACF database. The CICS CONNECTION or
TCPIPSERVICE definition must be specified with ATTACHSEC=VERIFY.

This means that there needs to be some form of mapping between the user
IDs stored in the user registry used by the application server and the user IDs
stored in RACF.

9. After successful authentication by CICS, the CICS application is invoked and
CICS resource authorization checking is performed against the flowed user
ID (the user ID which is specified in the JAAS authentication alias). The same
checks are also performed against the link user ID if one is specified on the
 Chapter 5. Security 147

CICS SESSIONS definition. Note that the option of using a link user ID is not
available when a TCP/IP connection to CICS is used.

Data integrity and confidentiality
Figure 5-16 on page 145 shows that HTTPS can be used to secure the link
between the Web server and the WebSphere Application Server. The Java
Secure Socket Extension (JSEE) is the SSL implementation used by WebSphere
Application Server. It is a set of Java packages that enable secure Internet
communications. It implements a Java version of SSL and Transport Layer
Security (TLS) protocols and includes functionality for data encryption, message
integrity, server authentication, and client authentication.

The link between the application server and CICS, however, cannot be secured
using SSL, that is, the user ID and password are not encrypted. The security of
this link, therefore, is dependent on the security offered by the physical
configuration.

Remote Gateway daemon on z/OS
In topology 2, where WebSphere Application Server is deployed on one of the
distributed platforms, access to CICS is through a Gateway daemon running on
z/OS, as shown in Figure 5-17.

Note: To change the user ID and password information held in the CICS
external security manager (ESM) you have to use the External Security
Interface (ESI) which is based on the CICS password expiration management
(PEM) function. There is no JCA resource adapter support for the ESI (only
the CICS TG base classes provide support).
148 Architecting Access to CICS within an SOA

Figure 5-17 Authentication and Authorization mechanisms for CICS TG Topology 2

There are several important security differences between this topology and
topology 1 shown in Figure 5-16 on page 145.

Authentication
The same application server authentication options that were discussed for
topology 1 apply equally to topology 2. There is, however, an important
difference in the authentication processing on z/OS.

Topology 1 requires that a user ID and password are flowed with each ECI
request. This can be inconvenient in situations when authentication is being
undertaken using a mechanism other than user ID and password authentication,
such as client certificate authentication. In these situations, user ID
authentication by CICS does not easily fit within the overall security design of the
solution. Using topology 2 can help to avoid this problem because CICS TG for
z/OS allows a pre-authenticated user ID to be flowed into CICS without a
password. The authentication of user ID and password in this topology is
optional.

To enable the CICS TG to authenticate each user ID and password flowed on an
ECI request, the environment variable AUTH_USERID_PASSWORD must be
set in the CICS TG environment variables. If user ID/password checking is not
performed, it will probably be necessary to devise a way to establish a trust
relationship between the application server and the Gateway daemon so that the

CICS TG
Gateway
Daemon

JNI

RACF

TCP, SSL

z/OS

Authorization
checks

Optional
authentication
of userid/
password

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Distributed platform

WebSphere
Application Server

CICS TG
ECI
resource
adapterCCI

EJB

JSPJSP ServletServlet
HTTP(S)

Web server
plugin

Web server

Authentication and
authorization checks

Pluggable user
registry

User ID
Password/

Client
Certificate

CICS TS

CICS
Application

EXCI
 Chapter 5. Security 149

application server can be trusted to flow only the user ID on the request through
to CICS via the Gateway daemon. Solutions such as SSL client authentication
and virtual private networks (VPN) can be used to establish such a trust
relationship.

Since no password is flowed to CICS when the CICS TG on z/OS is used, the
EXCI CONNECTION definition needs to be defined with ATTACHSEC=IDENTIFY.
IDENTIFY means that CICS uses the flowed user ID in the EXCI request, but
does not expect a password to be flowed with the request, as this is (optionally)
checked by the CICS TG itself.

Authorization
In addition to the authorization checks described for topology 1, additional
authorization checks can be used when the CICS TG is deployed on z/OS:

� MRO bind security

MRO bind security can be used to prevent unauthorized attached MRO
regions from starting transactions in a CICS region. It is implemented using
DFHAPPL profiles in the FACILITY class of RACF; these profiles control
logon to DFHIRP. This is used to control whether a particular CICS TG can
connect(bind) to a particular CICS.

� Link security

The link user ID which will be used for authorization checks in CICS is the
user ID which is associated with the started task of the CICS TG Gateway
daemon. Since this is likely to remain the same after the initial configuration,
this can be pre-set on the EXCI SESSIONS definition.

� Surrogate security

Surrogate security can be used to authorize the user ID which is associated
with the CICS TG started task to switch the security context of an EXCI
request to the flowed user ID. It is implemented using a profile in the
SURROGAT class of RACF.

Data integrity and confidentiality
The CICS TG for z/OS provides SSL support via the Java Secure Sockets
Extension (JSSE). Here are some of the features of JSSE on z/OS:

� RACF keyring support

SSL keystores can now be stored in a RACF database.
150 Architecting Access to CICS within an SOA

� System z hardware cryptographic support

This provides the ability for the CPU to offload SSL handshakes to
hardware. This can substantially reduce the CPU cost of SSL handshakes
and SSL data encryption.

� SSL cypher suite selection

The SSL cypher suite in use can be configured.

When using SSL with this topology, it is particularly important to have an efficient
connection-pooling mechanism because otherwise, a significant proportion of the
time from making the connection to receiving the result from CICS and closing
the connection, can be in the SSL handshaking. The JCA connection-pooling
mechanism mitigates this overhead by allowing connections to be pooled by the
WebSphere Application Server pool manager so that SSL handshaking for each
request is not required.

WebSphere Application Server and CICS TG deployed on System z
In a System z topology, WebSphere Application Server can be deployed on
either a z/OS system or on a Linux operating system. The security mechanisms
differ significantly between these two topologies.

WebSphere Application Server and CICS TG on z/OS
This topology has significant security advantages because:

� The application server and CICS are able to share the same RACF user
registry for authentication and authorization checks (see Figure 5-18).

� The application server and CICS are installed in the same MVS LPAR and,
therefore, the connection between the servers is inherently more secure.

� Thread identity support is enabled (see “Authorization” on page 152).

Note: The link between CICS TG and CICS TS in this topology is MRO (Cross
Memory), so cryptography is not necessary.
 Chapter 5. Security 151

Figure 5-18 Authentication and Authorization mechanisms for CICS TG Topology 3a

Let us look at the authentication, authorization, and data integrity aspects of this
topology.

� Authentication

When WebSphere Application Server is running on z/OS, the same options
for a pluggable user registry apply, that is, a local operating system registry,
an LDAP registry or a custom user registry. When the application server is
configured to use a local operating system registry (such as RACF), the
security identity established after authentication in WebSphere Application
Server will be a RACF user ID if you use basic authentication (or form-based
login). If an SSL client certificate is used to authenticate, you can configure
RACF to map that certificate to a RACF user ID. This means that the Java
thread in WebSphere Application Server on z/OS will have a security identity
that is a RACF user ID.

� Authorization

When using container-managed sign-on, a z/OS system-specific functionality
known as thread identity support is provided by WebSphere Application
Server for z/OS. This support is unique to WebSphere Application Server for
z/OS and allows the application server to automatically pass the user ID of
the thread (the caller's identity) to CICS when using the ECI resource adapter.

Thread identity support is enabled when:

– WebSphere Global security is enabled and RACF is being used as the
local operating system registry.

Authorization
checks

z/OS

CICS TS CICS TS

CICS
application

C
O
M
M
A
R
E
A

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

WebSphere
Application Server

CICS TG
ECI
resource
adapterCCI

EJB

JSPJSP ServletServlet
HTTP(S)

Web server
plugin

Web server

Authentication and
authorization checks

Pluggable user
registry

User ID
Password/

Client
Certificate

EXCI

Optional

RACF
152 Architecting Access to CICS within an SOA

– A local connection is being used between the application server and
CICS.

– Container-managed security is being used (the res-auth deployment
descriptor is set to Container).

– The connection factory does not specify a JAAS Authentication Alias.

Most z/OS customers will want to use this feature because it enables the
application server to behave in a way that traditional z/OS address spaces
behave, that is, once you have authenticated, your user ID flows with any
work you do within the z/OS system.

The CICS authorization mechanisms apply to this topology as follows:

– MRO bind security

MRO bind security can be used to establish a trust relationship between
the application server and CICS servers. It is implemented using
DFHAPPL profiles in the RACF FACILITY class that control logon to
DFHIRP.

– Link security

The link user ID which will be used for authorization checks in CICS is the
user ID which is associated with the started task of the WebSphere
Application Server J2EE servant region. Since this is likely to remain the
same after the initial configuration, this can be pre-set in the EXCI
SESSIONS definition.

– Surrogate security

Surrogate security checks can be enabled to authorize the user ID
associated with the J2EE servant region to flow a specific user ID (or one
of a generic set of user IDs) to CICS.

WebSphere Application Server and CICS TG on Linux on System z
Topology 3b is where WebSphere Application Server is deployed within Linux on
System z. The security options for this topology are almost identical to those
described for topology 1. One notable exception is that in this topology
HiperSockets can be used to connect from the CICS TG running on Linux to the
CICS server. It is unlikely, therefore, that you will need to encrypt the data that is
passed on this link.
 Chapter 5. Security 153

5.5.4 Security coordination between WebSphere and CICS
In this section, we summarize the key security points you need to understand
when using the JCA to connect to CICS from a J2EE application running in
WebSphere Application Server:

� You have a choice of using container-managed or component-managed
sign-on. Container-managed sign-on is the recommended approach.

� When using the ECI resource adapter, the support provided by the JCA
security-management contract is dependent on the CICS TG topology being
used.

� Defining a JAAS Authentication Alias is the principal way of specifying the
user ID and password to be flowed to CICS when using topologies 1 and 2
(WebSphere Application Server installed on a distributed platform).

� When using the ECI resource adapter with topology 1 (CICS TG installed on
a distributed platform) it is a requirement that a user ID and password is
flowed with each ECI request. By contrast, you have the option of flowing only
the user ID when using topology 2 (CICS TG installed on z/OS).

� When using the ECI resource adapter with topology 3 (WebSphere
Application Server installed on z/OS) the application server is capable of
automatically passing the caller’s authenticated user ID to CICS.

� A number of CICS security mechanisms, including bind, link and surrogate
security can be used to provide additional security checks.

� SSL can be used in most configurations if there is a need to encrypt the data
which is passed between the different physical tiers in the topology.

5.6 CICS Web support

In this section, we look at the two main security issues that you will face when
accessing your CICS applications using CICS Web support; authenticating and
authorizing the user, and using SSL support to provide encryption of the data
being sent and received.

A summary of where you need to consider security options is shown in
Figure 5-19 on page 155.
154 Architecting Access to CICS within an SOA

Figure 5-19 Security with CICS Web Support

5.6.1 Authenticating and authorizing the user

When using a direct connection in to CICS Web support the user ID that the alias
task, and consequently the required business logic, will run under can be
determined in one of the following ways:

� The user ID is associated with an SSL certificate supplied by the client.

� The user ID and password are requested using HTTP Basic Authentication.

� A URIMAP specifies the user ID to use with the request.

� The analyzer program determines the user ID to be used.

Using an SSL client certificate
Using SSL with CICS Web support enables the client to supply a digital
certificate in order to identify itself. If you want to use client certificates, specify
one of the following values for the AUTHENTICATE parameter on the
TCPIPSERVICE definition that was used to define the relevant CICS TCP/IP
listener:

– CERTIFICATE

The SSL client certificate is used to authenticate and identify the client.
The client must send a valid certificate which is already registered to the
security manager, and associated with a user ID. If a valid certificate is not
received, or the certificate is not associated with a user ID, the connection
is rejected.

CICS TS 3.1

Analyzer
CSOL

CWXN

URIMAP

CWXN

URIMAP

Alias
Task
Alias
Task Web-Aware

Application

SSL
Basic
Authentication

Attach

Client
Certificate
 Chapter 5. Security 155

When the end user has been successfully authenticated, the user ID
associated with the certificate identifies the client.

– AUTOREGISTER

The SSL client certificate is used to authenticate the client.

• If the client sends a valid certificate that is already registered to the
security manager, and associated with a user ID, then that user ID
identifies the client.

• If the client sends a valid certificate that is not registered to the security
manager, then HTTP Basic Authentication is used to obtain a user ID
and password from the client. Provided that the password is valid,
CICS registers the certificate with the security manager, and
associates it with the user ID. The user ID then identifies the client.

– AUTOMATIC

This combines the AUTOREGISTER and BASIC functions.

• If the client sends a certificate that is already registered to the security
manager, and associated with a user ID, then that user ID identifies the
client.

• If the client sends a certificate that is not registered to the security
manager, then HTTP Basic Authentication is used to obtain a user ID
and password from the client. Provided that the password is valid,
CICS registers the certificate with the security manager, and
associates it with the user ID. The user ID then identifies the client.

• If the client does not send a certificate, then HTTP Basic Authentication
is used to obtain a user ID and password from the user. When the user
has been successfully authenticated, the user ID supplied identifies the
client.

Using HTTP Basic Authentication
Basic Authentication is an HTTP feature whereby the user ID and password are
flowed over the network in a scrambled format that uses the Base64 encoding
scheme; it is, however, easily unscrambled. If you want to use HTTP Basic
Authentication, specify BASIC as the value of the AUTHENTICATE parameter of
the TCPIPSERVICE definition.

Using a URIMAP
The USERID attribute of the URIMAP resource specifies the user ID of the
attached alias task. This user ID will apply to all inbound requests that match the
SCHEME, HOST and PATH specified in the URIMAP. This would only be used
when the specific user does not need to be authenticated, but a user ID other
156 Architecting Access to CICS within an SOA

than the CICS default user ID is required to authorize access to the associated
resources.

An example of when this might be used is if the CICS default user ID is not
authorized to run any Web alias transactions. If the real user is to be
authenticated using an HTML forms based dialog then an alias transaction will
be required. A special user ID can be setup to allow a specific alias transaction
and associated programs to be run before the real user ID is established.

Using the analyzer
In many cases an analyzer is not required. For example, it is not required if a
suitable URIMAP definition is defined.

However when an analyzer is required, it can use any information in the
incoming HTTP request or obtained using the EXEC CICS WEB and TCPIP API to
determine what user ID should be used for the alias task.

The analyzer may also determine that the user must supply their user ID and
password. This could be done via HTTP Basic Authentication or a HTML forms
based dialog. CICS ships sample analyzer programs for both alternatives, but
you might like to write your own analyzer, as discussed in Chapter 5 of the
redbook Securing Web Access to CICS, SG24-5756. Another helpful resource
may be the CICS SupportPac CA8D, containing a more elaborate code skeleton.
It is available at:

http://www.ibm.com/software/ts/cics/txppacs

5.6.2 SSL support
In order for the CICS server to use SSL, you first need to create a server
certificate. If your Web application is on an intranet or extranet, it may suffice to
create a self-signed certificate. For an Internet application, you should go
through an external certification process with a certificate authority (CA).

Note: You should write or customize an analyzer program to authenticate the
user only if the other methods of authentication are unsuitable. The analyzer
program can perform other functions though, and may still be required even if
not used for authentication. For example, it is a good place to produce an
audit of Web access to your CICS region.
 Chapter 5. Security 157

http://www.ibm.com/software/ts/cics/txppacs

Next, you need to install the server certificate in a RACF keyring and specify the
name of the keyring in the KEYRING system initialization parameter. If you also
specify the certificate name in the CERTIFICATE parameter of the
TCPIPSERVICE definition, you can use a different certificate in the keyring for
each TCPIPSERVICE installed in CICS. If you do not specify the certificate name
in the TCPIPSERVICE definition, CICS will use the default certificate in the
keyring.

To activate SSL support for an incoming HTTP request, specify one of the
following for the value of the SSL parameter of the TCPIPSERVICE definition:

� YES

If you set the value to YES, CICS will send a server certificate to the client.

� CLIENTAUTH

If you set the value to CLIENTAUTH, CICS will send a server certificate to the
client and the client must send a client certificate to CICS.

If you are using the outbound HTTP support and the remote server requests a
client certificate then the default certificate from the RACF keyring will be sent
unless a URIMAP is being used on the EXEC CICS WEB OPEN command. In
which case the certificate named in the URIMAP will be sent.

Ciphers
There are many different algorithms that can be used for encrypting data, and for
computing the message authentication code.Some provide the highest levels of
security, but require a large amount of computation for encryption and
decryption; others are less secure, but provide rapid encryption and decryption.
The length of the key used for encryption affects the level of security - the longer
the key, the more secure the data.

The individual ciphers that can be used by CICS are dependant on the
ENCRYPTION system initialization parameter. Table 5-3 shows the maximal set
of ciphers available with the different ENCRYPTION settings.

Table 5-3 Available ciphers

Important: You must specify TCPIP=YES and the KEYRING system
initialization parameters for SSL to be available in your CICS region.

ENCRYPTION parameter Available ciphers

ENCRYPTION=WEAK 03060102

ENCRYPTION=MEDIUM 0903060102
158 Architecting Access to CICS within an SOA

For inbound requests the ciphers to be used are specified in the TCPIPSERVICE
resource definition. For outbound requests the ciphers are specified in the
URIMAP resource definition. The list of ciphers is ordered from left to right with
each cipher being a 2 hexadecimal digit value. You can specify exactly which
ciphers are used and the order of preference by reordering the list or removing
ciphers from the list. You cannot add additional ciphers to the list.

When specified in the TCPIPSERVICE definition the final CIPHERS list
determines the setting of the PRIVACY attribute. Table 5-4 shows the
relationship between the CIPHERS and PRIVACY attributes.

Table 5-4 PRIVACY setting based on CIPHERS value

The available ciphers also depends on the operating system. The operating
system must support all the ciphers that you have specified CICS to use.
Table 5-1 on page 114 lists the cipher suites that are available with z/OS 1.4.

5.6.3 Design issues
In summary, these are the key points to consider when designing a secure
solution with a CWS direct connection.

� A De-Militarized Zone (DMZ) is a key part of a secure Web-enablement
strategy. With CICS Web support you can participate in this architecture by
installing a dedicated CICS region, the listener region, in a separate Web
LPAR. Rather like a terminal-owning region (TOR), the listener region just

ENCRYPTION=STRONG 0504352F0A0903060201

CIPHERS PRIVACY

Contains ONLY 01 and 02 NOTSUPPORTED

Does NOT contain 01 or 02 REQUIRED

Any other set of ciphers SUPPORTED

Important: If cipher suite 01 or 02 gets used then no encryption occurs. Data
will be transmitted in the clear. This may not be the desired effect when using
SSL support in CICS. Ensure 01 and 02 get removed from the list of ciphers if
encryption is required.

ENCRYPTION parameter Available ciphers
 Chapter 5. Security 159

serves to handle incoming requests from the Web. It also acts as a protocol
switch converting TCP/IP requests into the internal CICS protocols.

After the listener region has authenticated the user ID, a CICS user program
can be invoked in another CICS region using a distributed program link (DPL)
call, as shown in Figure 5-20. This program can possibly be on a different
LPAR within the same sysplex if the DPL call utilizes XCF communications.

Figure 5-20 Sample CICS Web Support listener region configuration

� Another argument for setting up a listener region may be to have link security
between the listener region and the application-owning region (AOR) where
the business logic runs. The link user ID will carry the maximum level of
authorization for any transaction in the AOR. All authorizations in the AOR are
checked against both the link user ID and the user ID flowed with the DPL
request, and both authorizations are required for the business logic to be
called.

z/OS Sysplex

Internet
Web

browsers AOR

TOR

3270
users

Intranet
Web

browsers

Internet

Terminal
Owning
Region

Terminal
Owning
Region

Terminal
Owning
Region

Listener
Region

Data

CICS
business

logic

AOR

CICS
business

logic

Note: A separate listener region is only possible if the business logic is a
COMMAREA based application. Applications using the EXEC CICS WEB API
cannot be run remotely.
160 Architecting Access to CICS within an SOA

� You should also consider using URIMAPs, or if just using the default
analyzer, disabling the program auto-install. This is because the URL format
expected by the default analyzer allows any CICS program to be invoked.
Obviously, you are unlikely to want just any Web browser to invoke any
program that can be found in your CICS load libraries.
 Chapter 5. Security 161

162 Architecting Access to CICS within an SOA

Chapter 6. Transactional scope

CICS is the predominant transaction processing system in use in today’s IT
systems. Therefore, any service requester which needs to connect to and utilize
information from within CICS will most likely need to consider the transactional
scope of such calls.

When considering the transactional scope of your new service requester, you will
need to think about the following key issues:

� Do any of the programs you invoke within CICS perform work on recoverable
CICS resources, such as VSAM files or DB2 tables?

� Do you need to ensure that multiple calls to the same CICS program are
handled as a single recoverable unit?

� Do you need to coordinate recoverable work within CICS with work that is
performed on other recoverable resources outside of CICS?

� Do you require CICS to control the runtime infrastructure to manage your
transactional integrity or will your applications handle it themselves?

First, however, let us take a step back and look at some of the fundamentals of
the transactional infrastructure provided by CICS and the SOA connectors before
looking at the transactional support provided in each scenario.

6

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 163

6.1 Transactions: What are they?
In the J2EE world, a transaction is a unit of activity within which multiple updates
to recoverable resources can be made atomic (that is, an indivisible
unit-of-work), such that all or none of the updates are made permanent.
However, this is not the same as the traditional usage of the term transaction in
CICS, so let’s first have a look at CICS transactions and associated terminology.

6.1.1 CICS transactions, tasks and syncpoints
In this chapter, we will refer to a CICS-transaction as the work initiated in a CICS
region, and which runs as a CICS task under a four-character transaction ID
(tranid). These tranids are static definitions which specify the initial program to be
loaded and the properties of the CICS transaction under which the program will
run. They are defined in TRANSACTION definitions within the CICS resource
definition online (RDO) database. At task initiation, CICS implicitly starts a
unit-of-work (UOW) for all CICS transactions; this is usually the initial boundary
of the transactional work to be undertaken. All updates to recoverable resources
or requests to other transactional systems are now part of this unit-of-work, until
either a synchronization point (sync point) is reached within the CICS program,
or the CICS-transaction finishes and the task terminates (Figure 6-1).

Figure 6-1 CICS synchronization points

EXEC CICS
SYNCPOINT End of task

Unit-of-work 1 Unit-of-work 2

Transaction initiation

Load initial program

Start of task
164 Architecting Access to CICS within an SOA

In certain circumstances, such as though an inter-system distributed program
link (DPL) request is used, the CICS-transaction that is linked to can be
co-ordinated by a remote CICS system; in this instance the called mirror task in
CICS remains suspended until the end of the transaction. This is referred to as a
long-running mirror task (Figure 6-2).

Figure 6-2 Link with long-running mirror task

Additionally, the converse situation is also possible; this is where the invoked
CICS transaction runs in a separate transactional context to that of the invoking
application. This is referred to as running with sync-on-return, which refers to the
fact that the controlling mirror transaction in CICS issues a sync point on
returning control to the calling application (see Figure 6-3). The use of a
sync-on-return type link also allows the called CICS program to issue EXEC CICS
SYNCPOINT commands, since it is not subordinate to another transaction
manager.

Start of mirror task

Mirror
transaction

extended unit-of-work

CICS region

1st ECI
request

2nd ECI
request

Mirror task suspends

Commit

Mirror task issues
SYNCPOINT

Commit
response

termination of
mirror task
 Chapter 6. Transactional scope 165

Figure 6-3 Link with SYNCONRETURN

6.2 Transactional building blocks

Within a distributed transactional system, each distributed system is either
referred to as a resource manager or a transaction manager. The transaction
manager controls the outcome of the transaction and is responsible for the
recovery of its resources; it has to implement a recoverable logging mechanism
in order to be able to coordinate multiple resource managers. The resource
managers control access to recoverable resources, and as such have to
implement the necessary network flows and logging procedures to provide
transactional coordination.

Transactional standards
In order to enable distributed systems to send and receive transactional requests
the partners must send and receive the requests using a common standard. It is
unlikely that you will have the desire or need to understand the standards in
detail but we will give a brief summary here to help you understand upon what
standards each of the technologies is built.

CICS CICS itself has its own private transactional intersystem communication
(ISC) protocols, which are predominantly based upon the LU6.2 SNA
formats and protocols. The ISC protocols allow multiple CICS systems
across different MVS systems or different platforms (such as Windows or
UNIX systems) to support extended units of work between CICS
applications in these disparate systems. For more information, refer to
the CICS Intercommunication Guide, SC34-6243.

JTA The Java Transaction API (JTA) is a specification of the interfaces
between a transaction manager and the other parties involved in a

Start of mirror task

Mirror
transaction

unit-of-work

CICS region

LINK with
SYNCONRETURN

termination of
mirror task

Link to user
program

Return to
mirror
transaction

EXEC CICS
SYNCPOINT
166 Architecting Access to CICS within an SOA

distributed transaction processing system: the application programs, the
resource managers, and the application server. The EJB architecture
requires that the EJB container support the JTA.

JTS The Java Transaction Service (JTS) API is a Java binding of the CORBA
Object Transaction Service (OTS) 1.1 specification. JTS provides
transaction interoperability using the standard Internet Inter-ORB
Protocol (IIOP) for transaction propagation between servers.

JCA The J2EE Connector Architecture (JCA) is part of the J2EE standard. The
JCA specifies the system contracts for connection management,
transaction management, and security management, that exist between
the application server and enterprise information system (EIS). For
further details, refer to “JCA” on page 188.

XA A specification for distributed transaction processing, allowing two-phase
commit processing.

Two-phase commit
An essential part of all transactional standards is the two-phase commit process.
This is an architected set of flows that transaction managers use to ensure all
resource managers in a transaction can be reliably coordinated, irrespective of
any failure. It is implemented by all transactional protocols and the fundamental
concepts are essentially the same. The following description summarizes the
flows according to the XA specification (see Figure 6-4 on page 168); other
protocols such as CICS or LU6.2 may use different terminology and variants on
the flows. (For further details on the CICS sync point flows refer to Chapter 2
“Recovery and restart in interconnected systems” of the CICS
Intercommunication Guide, SC34-6243.)

In the first phase (or stage 1), the transaction manager asks all the resource
managers to prepare to commit recoverable resources (prepare), each resource
manager can vote either positively (prepared) or negatively (rolled-back). If a
resource manager is to reply positively, it records stably the information it needs
to do so and replies prepared, and is then obliged to follow the eventual outcome
of the transaction as determined at the next stage. The resource manager is now
described as in-doubt, since it has delegated eventual transaction control to the
transaction manager.

In stage 2, providing all the resource managers voted positively, the transaction
manager replies to each resource manager with a commit flow. Upon receipt of
the commit flow, the resource manager finalizes updates to recoverable
resources, and releases any locks held on the resources. The resource manager
 Chapter 6. Transactional scope 167

then responds with a final committed flow, which indicates to the transaction
manager that it is no longer in-doubt. If the final committed flow is not received by
the resource manager, the transaction manager must assume the commit was
also not received by the resource manager, and must re-transmit the commit.

Figure 6-4 Two-phase commit

Although the two-phase commit process is usually a prerequisite to distributed
transactional support, there are certain instances where a single-phase commit
process can be sufficient. This is referred to as last resource optimization, and is
implemented by a variety of transaction managers. It essentially allows the
commit decision to be delegated to the one-phase commit resource, allowing the
one-phase commit to participate in a global transaction with any number of
two-phase commit capable resources (Figure 6-5 on page 169).

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

 Commit

Commit

Transaction
Manager

Global
Transaction

Prepared

Prepare

Stage 1 - Prepare

Prepare

Prepared

Transaction
Manager

Resource
Manager

Resource
Manager

Committe

d

Committed
168 Architecting Access to CICS within an SOA

Figure 6-5 Last resource optimization

At transaction commit, the application server first prepares the two-phase commit
resource managers and, if this is successful, the one-phase commit-resource is
then called to commit. The two-phase commit resources are then committed or
rolled back depending on the response of the one-phase commit resource,
effectively delegating transaction coordination to the one-phase commit
resource.

Unlike a two-phase commit resource, there is no recovery from a communication
failure with a one-phase commit resource. Such a communication failure during
commit of the one-phase commit resource introduces the risk of a mixed
outcome to the transaction. The two-phase commit resources are rolled back,
but the outcome of the one-phase commit resource is unknown; it could have
committed or rolled back. Applications must therefore be configured to accept
the additional risk of such heuristic outcomes.

Global
Transaction

Stage 2 - Commit

Resource
Manager

Resource
Manager

Commit

Global
Transaction

Prepare

Stage 1 - Prepare

Prepare

Transaction
Manager

Resource
Manager

Resource
Manager

Resource
Manager

(one phase)

Resource
Manager

(one phase)

Transaction
Manager

1

2

Co
m

m
it

Commit

3

5

4

 Chapter 6. Transactional scope 169

Last resource optimization is implemented within WebSphere Application Server
as Last Participant Support, and within CICS and APPC flows as last agent
optimization. However, applications that exploit last participant support are
subject to an increased risk of a mixed outcome in a global transaction if the
one-phase commit resource fails during the commit processing.

Compensating transactions
A compensating transaction is a group of operations that undoes the effects of a
previously committed transaction. There are many circumstances where
compensating transactions may play a role:

� They may be used to restore consistency after an unrecoverable failure that
prevented a distributed transaction from normal completion.

� A resource manager may have been left in-doubt because it did not receive a
reply in the second stage of the two-phase commit process. If so it may have
taken a heuristic decision about the probable outcome of the transaction and
so some participants might have committed while others did not.

� When one of the global transaction participants is a non-transactional
resource manager. If such a transaction performs a rollback, its
non-transactional participant may need to be rolled back via the
compensating transaction.

� In certain business transaction scenarios, especially ones that span several
systems, maintaining long-lived locks and restricting data access for
extended periods of time might not be acceptable options. In these situations,
it might not be desirable to map business transactions into global ones, but
split them into more manageable units of work (global or local transactions)
and provide compensating transactions to perform rollbacks.

� They might be used in some long-lived workflow type transactions (flows)
composed of several atomic transactions executing outside of the global
unit-of-work, in the workflow controlled sequence. Since these individual
transactions commit independently of each other, a failure in one of the
downstream transactions may require some compensating transactions to
reverse (undo) previously committed ones.

It is important to stress that an application that depends on compensating
transactions must have extra logic to deal with failures and the possibility that
further updates are made to the resource in between the original committed
transaction and the undo transaction. Otherwise, the data may be left in an
inconsistent state. For these reasons, their usage should be carefully evaluated.
170 Architecting Access to CICS within an SOA

6.3 CICS Web services

In this section we will look at the support available for Web services to support
transactions. We begin by looking at the various specification associated with
Web services and transactions then move on to look at the CICS implementation
of these.

6.3.1 Specifications

There are several related specifications that go together to make up the support
in Web services for transactions. The following section gives details of some of
the specifications that are relevant to CICS. Figure 6-6 shows how the
specifications relate to each other.

Figure 6-6 Relationship of Web service transaction specifications

WS-Coordination
The WS-Coordination specification describes an extensible framework for
providing protocols that coordinate the actions of distributed applications. Such
coordination protocols are used to support a number of applications, including
those that have to reach consistent agreement on the outcome of distributed
activities.

WS-Coordination is a standard developed by IBM, Microsoft, and BEA. A similar
standard, WS-CAF, is being developed by OASIS based on WS-Context,
WS-Coordination Framework, and WS-Transaction Management specifications
published by Arjuna, Fujitsu, Iona, Oracle, and Sun Microsystems.

WS-Coordination

WS-Transaction

WS-BusinessActivity WS-AtomicTransaction
 Chapter 6. Transactional scope 171

The specification defines a message exchange that can occur between
transactional components within an application. In a typical exchange we might
see that:

� An application sends a message to the Activation Service asking for a
transactional context

� The Activation Service sends a response containing a transactional context to
the application

� A Database-1 and a Database-2 each send a Register message to the
Registration Service and receives a reply

We still need to define what these messages should contain.

Although CICS TS V3.1 was developed and tested when the November 2004,
version was the current version, the nature of the differences between the
November 2004, version and the August 2005, version is such that it may
accurately be said that CICS TS V3.1 also supports the August, 2005, version.

All information items defined by the November, 2004, and August, 2005,
versions are identified by the XML namespace URI:

http://schemas.xmlsoap.org/ws/2004/10/wscoor

We associate the namespace prefix “wscoor” with this namespace by using the
attribute:

xmlns:wscoor=”http://schemas.xmlsoap.org/ws/2004/10/wscoor”

The specification defines:

� A coordination service

� The following messages:

– CreateCoordinationContext
– CreateCoordinationContextResponse
– Register
– RegisterResponse

Coordination service
As shown in Figure 6-7 on page 173 a Coordination service (or Coordinator) is
an aggregation of the following services:

� Activation service

When the application sends a CreateCoordinationContext element, the
Activation service creates a new activity and returns its coordination context
in a CreateCoordinationContextResponse element.
172 Architecting Access to CICS within an SOA

http://schemas.xmlsoap.org/ws/2004/10/wscoor

The Coordination service may, but does not have to, support the Activation
Service.

� Registration Service

The Registration Service defines a Register operation that allows a Web
service to register to participate in a coordination protocol.

The Coordination service must support the Registration Service.

� A set of coordination Protocol Services for each supported coordination type.

These are defined in the specification that defines the coordination type (for
example, in the WS-Atomic Transaction specification).

Figure 6-7 A Coordination service (or Coordinator)

Additional information about WS-Coordination can be found at:

http://www.ibm.com/developerworks/library/ws-coor/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf

Note: Some products provide this as an external service for others to call.
CICS has chosen not to do this, and only supports the creation of
coordination contexts internally, for use by the workloads that it manages.

Coordinator

Protocol
Service

Activation
Service

Application

Requesting Service

Registration
Service

Protocol
Services for
Protocol X

Protocol
Services for
Protocol Y

Create
Coordination

Context

Create
Coordination

Context
Response

Register Register
Response

Protocol YProtocol X
 Chapter 6. Transactional scope 173

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf
http://www.ibm.com/developerworks/library/ws-coor/

WS-Transaction
The WS-Transaction specification describes coordination types that are used
with the extensible coordination framework described in the WS-Coordination
specification. It defines two coordination types: WS-AtomicTransaction and
WS-BusinessActivity. Developers can use either or both of these coordination
types when building applications that require consistent agreement on the
outcome of distributed activities.

WS-Transaction is a standard developed by IBM, BEA, and Microsoft. More
information can be found at:

http://www.ibm.com/developerworks/library/specification/ws-tx/

WS-Atomic Transaction
The WS-Coordination specification defines an extensible framework for defining
coordination types. The WS-Atomic Transaction (WS-AT) specification builds on
WS-Coordination by providing the definition of the atomic transaction
coordination type.

Atomic transactions have an all-or-nothing property. The actions taken prior to
commit are only tentative (that is, not persistent and not visible to other
activities). When an application finishes, it requests the Coordinator to determine
the outcome for the transaction. The Coordinator determines if there were any
processing failures by asking the participants to vote. If the participants all vote
that they were able to execute successfully, the Coordinator commits all actions
taken. If a participant votes that it needs to abort or a participant does not
respond at all, the Coordinator aborts all actions taken. Commit makes the
tentative actions visible to other transactions. Abort makes the tentative actions
appear as though the actions never happened.

IBM, Microsoft, and BEA published the Web Services- Atomic Transaction (WS -
Atomic Transaction) specification in September of 2003; they updated it in
November of 2004. Arjuna Technologies Ltd., Hitachi Ltd., and IONA
Technologies joined IBM, Microsoft, and BEA in publishing Web Services -
Atomic Transaction (WS - Atomic Transaction) Version 1.0 in August of 2005.
You may find these at:

http://www-128.ibm.com/developerworks/library/specification/ws-tx

Although CICS TS V3.1 was developed and tested when the November,2004,
version was the current version, the nature of the differences between the
November,2004, version and the August, 2005, version is such that it may
accurately be said that CICS TS V3.1 also supports the August, 2005, version.
174 Architecting Access to CICS within an SOA

http://www-128.ibm.com/developerworks/library/specification/ws-tx
http://www.ibm.com/developerworks/library/specification/ws-tx/

All information items defined by the November, 2004, and August, 2005,
versions are identified by the XML namespace URI:

http://schemas.xmlsoap.org/ws/2004/10/wsat

We associate the namespace prefix “wsat” with this namespace by using the
attribute:

xmlns:wsat=”http://schemas.xmlsoap.org/ws/2004/10/wsat”

The WS-AT specification defines the following protocols for atomic transactions:

� Completion
� Volatile Two-Phase Commit
� Durable Two-Phase Commit

Completion protocol
The Completion protocol is used by an application to tell the Coordinator to try to
either commit or abort an atomic transaction. The Completion protocol initiates
commitment processing. Based on each protocol’s registered participants, the
Coordinator begins with Volatile 2PC and then proceeds through Durable 2PC.
After the transaction has completed, a status (Committed or Aborted) is returned
to the application.

An initiator registers for this protocol by specifying the following URI for the
contents of the ProtocolIdentifier element in the Register element:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion

Figure 6-8 on page 176 abstractly illustrates the protocol.
 Chapter 6. Transactional scope 175

http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion

Figure 6-8 Completion protocol

The initiator generates:

� Commit

Upon receipt of this notification, the Coordinator knows that the initiator has
completed application processing and that it should attempt to commit the
transaction.

� Rollback

Upon receipt of this notification, the Coordinator knows that the initiator has
terminated application processing and that it should abort the transaction.

The Coordinator generates:

� Committed

Upon receipt of this notification, the initiator knows that the Coordinator
reached a decision to commit.

� Aborted

Upon receipt of this notification, the initiator knows that the Coordinator
reached a decision to abort.

Two-Phase Commit protocol
The Two-Phase Commit (2PC) protocol defines how multiple registered
participants reach agreement on the outcome of an atomic transaction. The 2PC
protocol has two variants: Volatile 2PC and Durable 2PC.

Active

Aborting

Completing Ended

State
Key Initiator Generated Coordinator Generated

notification message notification message
176 Architecting Access to CICS within an SOA

Participants managing volatile resources such as a cache should register for this
protocol by using the following protocol identifier:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC

Participants managing durable resources such as a database should register for
this protocol by using the following protocol identifier:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC

After receiving a Commit notification in the Completion protocol, the root
Coordinator begins the Prepare phase of all participants registered for the
Volatile 2PC protocol. All participants registered for this protocol must respond
before a Prepare is issued to a participant registered for the Durable 2PC
protocol. We illustrate this in Figure 6-9 where participants P1 and P3 registered
for the Volatile 2PC protocol and participant P2 registered for the Durable 2PC
protocol. Both P1 and P3 must respond to the Prepare notification before the
Coordinator can send Prepare to P2.

Figure 6-9 Mixture of participants registered for Durable 2PC and Volatile 2PC

Upon successfully completing the prepare phase for Volatile 2PC participants,
the root Coordinator begins the Prepare phase for Durable 2PC participants. All
participants registered for this protocol must respond Prepared or ReadOnly
before a Commit notification is issued to a participant registered for either
protocol. A volatile participant is not guaranteed to receive a notification of the
transaction’s outcome.

Figure 6-10 abstractly illustrates the 2PC protocol.

Note: When CICS TS V3.1 is a participant in an atomic transaction, it always
requests the Durable2PC protocol when it sends a Register request. When
CICS TS V3.1 is the coordinator of an atomic transaction, it will tolerate a
Register request for Volatile2PC but it will treat it as a Durable2PC request.

Service
Application

Volatile 2
Phase Commit

Volatile 2
Phase Commit

Durable 2
Phase CommitCoordinator

1. Prepare

4. Prepared

2. Prepare

3. Prepared

5. Prepare
P2

P1

P3

Commit
 Chapter 6. Transactional scope 177

http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC
http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC

Figure 6-10 Two-Phase Commit protocol

The Coordinator generates:

� Prepare

Upon receipt of this notification, the participant should enter phase 1 and vote
on the outcome of the transaction.

– If the participant has already voted, it should resend the same vote

– If the participant does not know of the transaction, it must vote to abort

� Rollback

Upon receipt of this notification, the participant should abort, and forget, the
transaction. This notification can be sent in either phase 1 or phase 2. Once
sent, the Coordinator may forget all knowledge of this transaction.

� Commit

Upon receipt of this notification, the participant should commit the
transaction.This notification can only be sent after phase 1 and if the
participant voted to commit. If the participant does not know of the
transaction, it must send a Committed notification to the Coordinator.

The participant generates:

� Prepared

The participant is prepared and votes to commit the transaction.

� ReadOnly

The participant votes to commit the transaction and has forgotten the
transaction. The participant does not want to participate in phase two.

Active

Aborting

Preparing Ended

State of
participant

Key Participant Generated Coordinator Generated

notification message notification message

Committing Prepared
Prepare Prepared Commit Committed

Rollback

Aborted

ReadOnly or Aborted
178 Architecting Access to CICS within an SOA

Suppose, for example, that the participant received an account number that it
could not match to an entry in a database. It might return an error to the
requesting application, but, having registered as a participant in the atomic
transaction, it would then go on to be coordinated during 2PC processing.
When the Coordinator sends Prepare, the participant replies ReadOnly and
then terminates without waiting for the Commit. The Coordinator, on receipt of
the ReadOnly, would then delete its own record of the interaction with the
participant and would not attempt to send a Commit to it.

� Aborted

The participant has aborted, and forgotten, the transaction.

� Committed

The participant has committed the transaction. The Coordinator may safely
forget that participant.

� Replay

The participant has suffered a recoverable failure. The Coordinator should
resend the last appropriate protocol notification.

CICS TS V3.1 and resynchronization processing
We have completed our discussion of the WS-AT specification. Unfortunately, the
current version of the specification does not completely cover all of the issues
surrounding the use of the 2PC protocol. In particular, it does not completely
describe the resynchronization processing that should take place following a
failure in one of the systems involved in the 2PC protocol or in the network
connections that link the systems together. The only thing that the specification
mentions relating to resynchronization is the Replay notification. Therefore, in
this section we describe some aspects of how CICS TS V3.1 handles
resynchronization processing for transactions which use the 2PC protocol.

Network failures can result in messages not being delivered in a timely manner.
System failures prevent processing altogether until a restart takes place.

Within the 2PC processing sequence there is a period of time, known as the
in-doubt window, during which one system is unable to complete processing

Note: For the sake of brevity we do not describe all of the possible issues. For
example, we do not describe:

� What happens when resync processing is driven from both sides and a
“race” condition results

� What happens when a resync request fails
 Chapter 6. Transactional scope 179

because it does not know what the other system has done. The distributed UOW
is said to be in-doubt when:

� A participant Protocol Service has replied Prepared in response to a Prepare
notification, and

� Has written a log record of its response to signify that it has entered the
in-doubt state, and

� Does not yet know the decision of its coordinator (to Commit or to Rollback).

Barring system or network failures, the UOW remains in-doubt until the
coordinator issues either the Commit or Rollback request as a result of responses
received from all UOW participants. If a failure occurs that causes loss of
connectivity between a participant and its coordinator, the UOW remains
in-doubt until either:

� Recovery from the failure has taken place and synchronization can resume,
or

� The in-doubt waiting period is terminated by some built-in control mechanism,
and an arbitrary (heuristic) decision is then taken (to commit or back out).

Note that while the UOW remains in-doubt, the recoverable resources that it
owns remain locked.

If a system or network failure occurs during the in-doubt window, additional steps
must be taken to ensure that the updates are completed in a consistent manner
by both systems. This is known as resynchronization processing.

Previous releases of CICS provided a Recovery Manager that dealt with
resynchronization processing for distributed workloads that made use of VTAM®
networks or which used MRO connections. These releases dealt with failures
during the in-doubt window in one of three ways:

� Automatic heuristic decision

You could cause CICS to make an automatic heuristic decision by specifying
the WAIT, WAITTIME, and ACTION attributes on a TRANSACTION definition.

� Manual heuristic decision

You could force an in-doubt UOW to complete by issuing a CEMT SET
UOW(uowid) [COMMIT | BACKOUT] command or its EXEC CICS equivalent.

� Automatic resynchronization

If you set the WAIT attribute to YES and the WAITTIME attribute to 00.00.00,
the transaction would wait until it could communicate with its partner system,
after which it could either explicitly request that the message it was waiting for
be sent again, or it could resend the last message that it generated.
180 Architecting Access to CICS within an SOA

CICS TS V3.1 extends the Recovery Manager for use by WS-AT workloads.
CICS applications that form part of a WS-AT workload can be controlled by any
of these mechanisms. However, automatic resynchronization is somewhat
different for WS-AT workloads.

The principle difference arises from the fact that WS-AT processing takes place
over a TCP/IP network.

� Other forms of distributed transactions make use of communication
mechanisms such as VTAM, and resynchronization across a VTAM network
can be triggered when the connection between a pair of systems is
re-established.

� CICS does not currently support TCP/IP connections in the same way that it
does its VTAM connections, and so CICS can only drive resynchronization of
WS-AT requests when a region starts.

During any type of startup except an initial start, CICS reads the system log to
discover any units of work that were in-doubt when the region previously shut
down or failed. While reading through the log, CICS may find that it has
outstanding units of work that indicate they were involved in an atomic
transaction. These log records also indicate whether the UOW was acting as a
coordinator or a participant.

� Coordinator

If it is a coordinator and the log record indicates that the UOW was waiting for
a Committed or Aborted response from a participant when CICS shut down,
then the UOW is reactivated (unshunted) and sends out its decision message
(Commit or Rollback) to the participant identified in the log record.

– If a response is received, then the UOW completes its processing and
terminates.

– If a response is not received before the coordination UOW times out, then
CICS shunts the UOW (moves it aside for processing later on). The UOW
then persists until another resynchronization attempt takes place or until
someone manually forces it to complete. (The coordination UOW times
out after 30 seconds, a value set internally by CICS).

� Participant

If it is a participant and the log record indicates that the UOW had voted in
response to a Prepare message and was waiting for a Commit or Rollback
decision from its coordinator when communication was lost, then the UOW is

Important: CICS only drives resynchronization of WS-AT requests during a
CICS region restart.
 Chapter 6. Transactional scope 181

reactivated, sends a Replay message to its coordinator, and once again waits
for the decision message to arrive.

– If the decision message is then received, the participant acts on it and
sends a Committed or Aborted message back to the coordinator before
terminating.

If the decision message does not arrive before the participant UOW times out,
then CICS shunts the participant UOW. The UOW then persists until another
resynchronization attempt takes place or until someone manually forces it to
complete.

6.3.2 CICS support for WS-Atomic Transaction

CICS Web services support enables the defining of SOAP processing pipelines.
These pipelines can be configured with message handler programs. CICS
supplies a message handler for SOAP 1.1 and a handler for SOAP 1.2. These
CICS supplied message handlers also have the capability to process SOAP
headers. To do this a SOAP header processing program is added that is defined
to the pipelines configuration file to be invoked on a match of a particular header.

This section provides an overview of how CICS supplies support for Web service
Atomic Transaction through the use of custom message handlers and header
processing programs. For simplicity of explanation the example given is of a
CICS to CICS Web service. It is understood that most customers would not
choose to use WS-AT for workloads distributed entirely within CICS however this
allows a single example to show how CICS operates in the role of an atomic
transaction coordinator and as a participant in a wider atomic transaction.

Figure 6-11 on page 183 shows two CICS regions: AOR1 and AOR2. A service
requester application running in AOR1 invokes a service provider application
running in AOR2.
182 Architecting Access to CICS within an SOA

Figure 6-11 CICS as transaction coordinator and participant

In AOR1 the request passes through a pipeline which contains a CICS-provided
SOAP message handler module. The SOAP message handler is configured to
invoke the CICS-provided header processing program DFHWSATH.
DFHWSATH adds a SOAP header containing a CoordinationContext to each
message that it sends out.

In AOR2 the request passes through a pipeline which supports the Web service
that AOR1’s application is calling and also invokes the CICS SOAP handler. The
handler invokes the header processing program DFHWSATH when it detects a
SOAP header which contains a CoordinationContext header.

To enable WS-AT support both regions have a requester pipeline named
DFHWSATR and a provider pipeline named DFHWSATP for registration and
protocol processing. The DFHWSATP pipeline invokes the CICS-supplied
message handler DFHWSATX as the last message handler in the pipeline.

For the workload we have shown, AOR1’s DFHWSATP pipeline receives
registration requests and protocol notifications, while its DFHWSATR pipeline
sends registration responses and protocol instructions.

AOR2’s DFHWSATP pipeline receives registration responses and protocol
instructions, while its DFHWSATR pipeline sends registration requests and
protocol notifications.

CICS AOR2CICS AOR1

Registration
and

Protocol
services

(DFHPIRS)

Web services
Provider app

Registration
and

Protocol
services

(DFHPIRS)

DFHWSAUTHWeb services
Provider app

DFHWSAUTH

WS Requester Pipeline WS Requester Pipeline

1. Invoke WS with
Coordination Context

4. WS response

DFHWSATX

DFHWSATX

RS Provider pipeline
(DFHWSATP)

RS Provider pipeline
(DFHWSATP)

RS Requester pipeline
(DFHWSATR)

RS Requester pipeline
(DFHWSATR)

7. Commit

5. Prepare

3. Register Response

8. Committed

6. Prepared

2. Register
 Chapter 6. Transactional scope 183

Resources required for WS-AT processing
CICS TS V3.1 provides a new resource group DFHWSAT to assist customers
with setting up WS-AT support in CICS. The DFHWSAT group contains the
resources shown in Table 6-1.

Table 6-1 CICS supplied resource definitions for WS-AT

Since DFHLIST does not include the DFHWSAT group and you cannot add the
DFHWSAT group to DFHLIST, specifying DFHLIST in the system initialization
table GRPLIST parameter will not cause CICS to install DFHWSAT automatically
during an initial start.

Configuring WS-AT support
As seen above all the notifications for WS-AT are Web service messages. A Web
service requires an endpoint for the message to target. The question is how does
the participant application know where to register to join the transaction?

Note: The DFHWSATP pipeline acts as the registration endpoint for CICS.

Resource Resource Name Description

Pipeline DFHWSATP Registration Services
provider PIPELINE

Pipeline DFHWSATR Registration Services
requester PIPELINE

Urimap DFHRSURI URIMAP used by the
Registration Services
provider

Program DFHPIRS Registration and protocol
services program

Program DFHWSATH SOAP header processing
program

Program DFHWSATR Registration and
coordination services
handler program

Program DFHWSATX CICS message handler
program
184 Architecting Access to CICS within an SOA

The answer is in the pipeline configuration file for the service requester
application (running in CICS AOR1) must specify:

� One of the CICS-provided SOAP message handlers (cics_soap_1.1_handler
or cics_soap_1.2_handler)

� The mandatory invocation of the DFHWSATH header processing program to
add a CoordinationContext header to the SOAP request

A <registration_service_endpoint> element within the pipeline configuration
files <service_parameter_list> as shown in Example 6-1.

Example 6-1 Service requester pipeline configuration file which supports WS-AT

<?xml version="1.0" encoding="UTF-8"?>
<requester_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

requester.xsd">
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </service_handler_list>
 </service>
 <service_parameter_list>
 <registration_service_endpoint>

http://requester.example.com:3207/cicswsat/RegistrationService
 </registration_service_endpoint>
 </service_parameter_list>
</requester_pipeline>

The <registration_service_endpoint> element contains the address of the
Registration Service endpoint which runs in the requesting CICS region (AOR1).
The path component of this address matches the PATH attribute defined in the
DFHRSURI URIMAP resource definition of AOR1. Participant Web services
 Chapter 6. Transactional scope 185

should send Register requests and Prepared and Committed (or Aborted)
notifications to this address.

In the service requester pipeline:

� Since the <mandatory> element contains True, the pipeline will flow a
CoordinationContext with the message.

� If you change the <mandatory> element to False or remove DFHWSATH from
the pipeline, the pipeline will not flow a CoordinationContext with the
message.

The pipeline configuration file for the service provider application must specify:

� One of the CICS-provided SOAP message handlers (cics_soap_1.1_handler
or cics_soap_1.2_handler)

� Invocation of the DFHWSATH header processing program whenever the
SOAP message contains a CoordinationContext header.

� A <registration_service_endpoint> element within a
<service_parameter_list>

This is shown in Example 6-2.

Example 6-2 Service provider pipeline configuration file which supports WS-AT

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

provider.xsd ">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>false</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
 <service_parameter_list>
186 Architecting Access to CICS within an SOA

 <registration_service_endpoint>
 http://provider.example.com:3207/cicswsat/RegistrationService
 </registration_service_endpoint>
 </service_parameter_list>
</provider_pipeline>

This time the <registration_service_endpoint> element contains the address
of the Registration Service endpoint which runs in the provider CICS region. The
Coordinator should send RegisterResponse messages and Prepare and Commit
(or Abort) notifications to this address.

In the service provider pipeline in Example 6-2 on page 186:

� The pipeline will accept flows with a CoordinationContext, and such flows will
be treated as part of a WS-AT transaction.

� Since the <mandatory> element contains False, the pipeline will also accept
messages without a CoordinationContext but they will not be part of any
WS-AT transaction.

� If you change the <mandatory> element to True, the pipeline will require that a
CoordinationContext flow with the message. A Fault will be raised if a
requester attempts to use the service without a CoordinationContext.

If you remove DFHWSATH from the pipeline, the pipeline will raise a
mustUnderstand fault when a CoordinationContext arrives with mustUnderstand
set to True.

6.4 CICS Transaction Gateway

This section details transactional considerations when using the JCA resource
adapters provided by the CICS TG.

Extended logical units of work
The ECI and EXCI communications protocols used by the CICS TG extend the
CICS DPL concept (see 6.1.1, “CICS transactions, tasks and syncpoints” on
page 164) by allowing the invoking application to initiate and co-ordinate the
CICS unit-of-work. Within the terms of the CICS TG this is referred to as an
extended logical unit-of-work, and will cause the CICS mirror task to be long
running so that it does not terminate on return from the initial call. The
transactional capabilities of the CICS ECI resource adapter are built upon this
ability of the CICS TG to extend the unit-of-work.

An extended logical unit of work is shown in Figure 6-12 on page 188.
 Chapter 6. Transactional scope 187

Figure 6-12 Extended logical unit-of-work

JCA
The JCA is part of the J2EE standard and specifies the system contracts to be
implemented by a resource adapter. These system contracts define the qualities
of service that a resource adapter provides for transaction management,
connection management, and security (Figure 6-13).

Figure 6-13 JCA system contracts

Start of mirror task

Mirror
transaction

extended unit-of-work

CICS region

CICS Transaction
Gateway

1st ECI
request

2nd ECI
request

Mirror task suspends

Commit

Mirror task issues
SYNCPOINT

Commit
response

termination of
mirror task

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection
Management

ƒ Transaction
Management

ƒ Security
Management

Common Client
Interface (CCI)

EIS Specific
Interface

Application
Component (e.g. EJB)

System Contracts

Container-Component
Contract

ƒ Connection

ƒ Transaction

ƒ Security

Common Client
Interface (CCI)

EIS Specific
Interface

Enterprise Information Enterprise Information
System (e.g. CICS)System (e.g. CICS)

Resource Adapter
(e.g. CICS ECI
resource adapter)

Resource Adapter
(e.g. CICS ECI
resource adapter)

J2EE Server
(e.g WebSphere Application Server)

Connection
Pooling

Transaction
Manager

Security
Manager

J2EE Server
(e.g. WebSphere Application Server)

Connection
Pooling

Transaction
Manager

Security
Manager
188 Architecting Access to CICS within an SOA

For transaction management, the resource adapter is required to implement one
of the following contracts, as defined in the resource adapter's deployment
descriptor (ra.xml):

� XAResource

A transaction participant that is called during two-phase commit and which
can influence the outcome of the transaction. Typically, an XAResource is
implemented by a resource manager and is used to support the external
coordination of the resource manager's transaction branch. Enlistment of an
XAResource in a transaction is managed by the application server and is not
a concern of the application.

� LocalTransaction

A resource adapter that can participate in transactions that are local to the
resource manager, but cannot participate in two-phase commit transactions
(other than as an only agent or a last participant). For the sake of clarity in this
document and other WebSphere-related publications and papers, we use the
term resource manager local transactions (RMLTs) to refer to a transaction
that is local to a single resource manager.

� NoTransaction

A resource adapter with no transactional properties, this can participate in a
transactional context but is not influenced by, and has no effect upon the
outcome of the transaction.

The WebSphere Application Server transaction support provides coordination,
within a transaction, for any number of two-phase capable resource managers. It
also enables a single one-phase capable resource manager to be used within a
transaction in the absence of any other transactional resource managers.
Non-transactional resource managers may also be used within a global
transaction but do not participate in the scope of the global transaction.

ECI resource adapter
The CICS ECI resource adapter implements the LocalTransaction interface and
so has limited support for global transactions. However, when running within
WebSphere Application Server for z/OS, the CICS ECI resource adapter
supports global transactions, if a local Gateway is used. This signifies the CICS
Transaction Gateway runs within the WebSphere Application Server address
space and so can use internal functions of the MVS Resource Recovery
Services (RRS) available only on z/OS. This provides RRS global transaction
support, and allows the CICS ECI resource adapter to participate in a global
transaction in WebSphere Application Server for z/OS with any number of other
two-phase capable resource managers.
 Chapter 6. Transactional scope 189

ECI XA resource adapter
The CICS ECI XA resource adapter implements the XAResource interface and
so has full support for global transactions. The CICS TG must run on z/OS but
the WebSphere Application Server may be on a distributed platform.

6.4.1 WebSphere Application Server transactional support
WebSphere Application Server provides differing qualities of services for the
different types of J2EE components, achieved through the use of a set of
containers. The four containers are the Web container, EJB container, client
container and applet container. JCA support is provided within the Web and EJB
containers, both of which provide support for the JCA connection pooling
mechanism and propagation of the transaction context from the J2EE
component to a JCA interaction.

Transactions in the Web container
The Web container has limited transactional support, as its principal function is
for servlet and JSP™ components which are primarily concerned with
presentation logic. The Web container does not provide any container-managed
transaction services. This means that it is not possible to utilize the Web
container to make multiple ECI calls to CICS as part of an extended unit-of-work.
For example, if the following code (Figure 6-14) is used within a servlet
application the two requests 1 and 2 will run as two separate units-of-work within
CICS. This is due to the auto-commit behavior of the Web container as defined
by the JCA. This specifies that a transactional resource adapter is required to set
the auto-commit mode to “on” for all Connection instances outside a transaction.
190 Architecting Access to CICS within an SOA

Figure 6-14 Multiple JCA requests from a servlet

However, servlet applications can programmatically utilize either local
transactions or global transactions. Local transactions can be controlled by
invoking the method getLocalTransaction() on the ECI resource adapter
Connection object; this provides a programmatic transactional context specific to
the instance of the JCA connection factory. This can be used to control the scope
of the extended unit-of-work created by the CICS ECI resource adapter. Thus in
Figure 6-15 requests 1 and 2 will now run as one unit-of-work within CICS.

Context ic = new InitialContext();

cxnf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS1");
Connection cxn = cxnf.getConnection();
Interaction ixn = cxn.createInteraction();
ECIInteractionSpec ixnSpec = new

ECIInteractionSpec(SYNC_SEND_RECEIVE,"CICSPROG");
JavaStringRecord jsr = new JavaStringRecord();

jsr.setText("DATA1");
1 ixn.execute(ixnSpec, jsr, jsr);

jsr.setText("DATA2");
2 ixn.execute(ixnSpec, jsr, jsr);

ixn.close();
cxn.close();
 Chapter 6. Transactional scope 191

Figure 6-15 Local transaction demarcation in a servlet

Global transactions can also be created within the Web container by using the
javax.transaction.UserTransaction interface to begin and end a transaction. If
the ECI resource adapter is being used in local mode on WebSphere Application
Server for z/OS, or the ECI XA resource adapter in conjunction with CICS TG for
z/OS, the CICS Transaction Gateway RRS support does allow an ECI request to
participate in a bean-managed global transaction. However, as the Web
container does not support container management of global transactions, all
servlet global transactions must be controlled using the
javax.transaction.UserTransaction interface (that is, a bean-managed
transaction). When the WebSphere Application Server and CICS Transaction
Gateway are both on distributed platforms global transaction usage in the Web
cannot be used, because of the restriction that the ECI resource adapter only
supports the LocalTransaction interface.

Note that it is not possible, or desirable, to extend the life cycle of a transaction
over multiple HTTP requests to a servlet, and any global transactions not ended
by the end of the HTTP request are rolled-back by WebSphere Application
Server.

Context ic = new InitialContext();

cxnf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS1");
Connection cxn = cxnf.getConnection();
Interaction ixn = cxn.createInteraction();
ECIInteractionSpec ixnSpec = new

ECIInteractionSpec(SYNC_SEND_RECEIVE,"CICSPROG");
JavaStringRecord jsr = new JavaStringRecord();
LocalTransaction tran = cxn.getLocalTransaction();

tran.begin();
jsr.setText("DATA1");

1 ixn.execute(ixnSpec, jsr, jsr);

jsr.setText("DATA2");
2 ixn.execute(ixnSpec, jsr, jsr);

tran.commit();

ixn.close();
cxn.close();
192 Architecting Access to CICS within an SOA

Transactions in the EJB Container
The EJB container in WebSphere Application Server is ideally suited to the
deployment of transactional components, and provides support for both
container managed transactions and bean managed transactions. Session
beans and message-driven beans may employ either type; entity beans are
restricted to contain managed transactions only. Beans using bean-managed
transactions are responsible for transaction demarcation and must use the
javax.transaction.UserTransaction interface to begin and end a transaction.
Container-managed transactions are the preferred mechanism as this delegates
transactional control to the Application Server, allowing the application developer
to concentrate on developing the business logic, while still allowing the
transactional properties of the application to be decided upon deployment. The
key to transactional control with container managed transactions is the EJB
transaction attribute.

EJB transaction attribute
The transaction attribute is set in the assembly descriptor section of the EJB
deployment descriptor (that is, the file ejb-jar.xml). This attribute is used by the
EJB container to control under which circumstances a global transaction is
started when a bean method is invoked.

This transaction attribute appears in the <container-transaction> section and is
specified with the <trans-attribute> tag. For example, the following XML
specifies that the execute() method on the CTGTesterCCI bean has the
transaction attribute of Required.

<container-transaction>
<method>

<ejb-name>CTGTesterCCI</ejb-name>
<method-intf>Remote</method-intf>
<method-name>execute</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
 Chapter 6. Transactional scope 193

The possible values for the transaction attribute are NotSupported, Required,
RequiresNew, Supports, Mandatory and Never, and their meanings are
described in Table 6-2.

Table 6-2 EJB transaction attribute settings

Local Transaction Containment (LTC)
The EJB 2.0 specification does not specify the behavior of the container in the
case where a method runs without a global transaction. This can happen for
servlets, session beans with a transaction attribute of Never, NotSupported or
Supports, and a few other scenarios. In this case the application is said to be
executing under an unspecified transaction context and WebSphere Application
Server implements this unspecified transaction context using a local transaction
containment (LTC) policy.

Transaction
Attribute

Meaning Resulting ECI JCA
request

CICS mirror task

NotSupported Bean method cannot execute within
context of an OTS transaction

Non-extended LUW SYNCONRETURN

Required Bean method must execute within
context of an OTS transaction.

Extended LUW Long running

RequiresNew Bean method must execute within
context of a new OTS transaction.

Extended LUW Long running

Supports Bean method can execute with or
without an OTS transaction context.

Non-extended or
extended LUWa

a. For Supports the result depends on the existing transactional context; the bean method is exe-
cuted either under the caller's transaction context, and the ECI call will used an extended logical
unit-of-work, or, if there is none present, then it executes under an unspecified transaction context.
If under an unspecified transaction context, then the LTC settings control the resulting ECI call type.
For further details refer to“Local Transaction Containment (LTC)” on page 194.

SYNCONRETURN
or long running

Mandatory Bean method must execute within
context of client's OTS transaction.

Extended LUW or
Exception thrown b

b. For Mandatory, the bean method is executed under the caller's transactional context. If the caller
does not supply a context (in other words there is no global transaction active), then the execute fails
with an exception. If there is a global transaction active, the ECI call will used an extended logical
unit-of-work

Long running

Never Bean method must not be invoked in
context of an OTS transaction.

Non-extended LUW SYNCONRETURN
194 Architecting Access to CICS within an SOA

This LTC policy is effectively a scoping device used by the Web and EJB
containers to demarcate the beginning and end of work dispatched outside a
global transaction. Any access to a resource manager within such a LTC is via a
resource manager local transaction (RMLT) that must be resolved by the end of
the LTC. There is no programmatic control of the LTC possible; instead the
following three EJB extended deployment descriptors are used to control the
scope of the LTC:

� Boundary

This can have the value BeanMethod (default) or ActivitySession. It controls
the scope of the LTC provided by the EJB container. ActivitySession is an
extension to the EJB container available in WebSphere Application Server
Enterprise Version 5 onwards. It provides an extended unit-of-work scope
beyond the method boundary for local transaction based resource managers.
For further information refer to the Redpaper Transactional services in
WebSphere Application Server Enterprise V5, REDP-3759

� Resolver

This can have the values ContainerAtBoundary or Application (default).
When an ECI request is made from the EJB container outside of a global
transaction context (such as with a transaction attribute of Never), then if the
Resolver attribute is set to Application, the ECI call type will be non-extended.
Conversely, if the Resolver attribute is set to ContainerAtBoundary, then a
resource manager local transaction will be started, and the ECI call type will
be extended and be resolved by the container at the EJB method boundary.

� UnresolvedAction

This can have the value Commit or Rollback (default). It can be specified for
the EJB or Web containers, and signifies how the container should clean up
any Connections with an outstanding RMLT at the LTC boundary. This is the
only configurable LTC setting for Web components (servlets), and applies to
bean managed transactions using the LocalTransaction.begin() method on a
Connection. All container managed transactions are auto-committed after the
interaction completes, and so this attribute is not used by container managed
transactions in the Web container.

LTC support limitations: LTC scope is local to each J2EE component; thus if
EJB component A is dispatched under LTC A and then calls EJB component
B, component B will be dispatched under a separate LTC. Also the container
always establishes an LTC scope if an application executes outside a global
transaction, unless Web components or enterprise beans are at a level prior to
J2EE 1.3.
 Chapter 6. Transactional scope 195

WebSphere Application Server for z/OS
The WebSphere Application Server for z/OS transaction manager has the
capability to coordinate both XA and RRS compliant connectors in the same
transaction automatically on behalf of the application. This means that any
number of local CICS ECI connection factories can be coordinated in a global
transaction with other two-phase commit connectors such as IMS or JDBC
resources. See Figure 6-16 on page 196.

Figure 6-16 Global transaction support in WebSphere Application Server on z/OS

The two-phase commit capability that is provided when using the CICS ECI
resource adapter with WebSphere Application Server on z/OS requires that a
local connection is used between the application server and the CICS TS region.
In addition, the CICS TS region must be running on the same MVS LPAR as the
application server.

WebSphere Application Server for z/OS also permits the usage of a single
one-phase commit capable resource with any RRS-capable resources in the
same transaction. If CICS is accessed via a remote connection using the CICS
TG TCP protocol, WebSphere Application Server for z/OS includes CICS as the
last participant in the global transaction as long as all other resource connectors
used by the application (for example, a Java Database Connection (JDBC) to
DB2 for z/OS and Java Message Service (JMS) to WebSphere MQ for z/OS) are
local and exploit RRS as their transaction manager.

Local
CICS TG

CICS ECI
Resource adapter

Transaction
Manager

JDBC
data source

CICS ECI
Connection

Factory

CICS ECI
Connection

Factory

CICS TS
region

CICS TS
region

DB/2

Global Transaction Scope

WebSphere Application Server for z/OS

EXCI

EXCI
196 Architecting Access to CICS within an SOA

6.4.2 Transactional coordination from WebSphere to CICS
So what are the implications for your transactional JCA applications? In this
section, we summarize the key points you need to understand when designing
and deploying your transactional JCA applications.

We use the topologies introduced in “Using the CICS ECI resource adapter with
different topologies” on page 55.

� In topology 3, the use of the CICS ECI resource adapter with a local CICS TG
in WebSphere Application Server for z/OS, provides the ability for any number
of CICS regions to participate in a global transaction with two-phase commit
coordination with any number of other RRS or XAResource capable resource
managers (see Figure 6-16 on page 196).

� In topology 2, the use of the CICS ECI XA resource adapter provides the
ability for any number of CICS regions to participate in a global transaction
with two-phase commit co-ordination with a number of other XAResource
capable resource managers.

� In topology 1 or 2, the WebSphere Application Server transaction manager
can provide coordination, within a transaction, for any number of two-phase
capable resource managers (such as a JDBC resource). It also enables a
single one-phase capable resource manager such as the CICS ECI resource
adapter to be used within a global transaction in the absence of any other
transactional resource managers.

� In topology 1, to commit a JCA request to a CICS region as part of a global
transaction with other two-phase commit resource managers, it is necessary
to utilize the Last Participant Support function of WebSphere Application
Server. This is also true of topology 2, unless the CICS ECI XA resource
adapter is used.

� In topology 1 or 2, to commit multiple JCA requests to the same CICS region
as one unit-of-work, you can use the EJB transaction attribute to specify the
requests as being part of the same global transaction.

� In topology 1 or 2, to commit multiple JCA requests to different CICS regions
as part of the same one-phase commit unit-of-work scope you can use one of
two methods:

– The LTC scoping of the EJB container, by specifying a Transaction scope
of None and a LTC scope of ContainerAtBoundary.

– The getLocalTransaction() method (see Figure 6-15 on page 192) to
programmatically define the scope of a local transaction containing all the
updates. This is supported in the Web or EJB containers.
 Chapter 6. Transactional scope 197

� It is not possible in topology 1 to commit multiple JCA requests to different
CICS regions as part of the same global transaction with other two-phase
commit resource managers.

� Non-transactional resource managers may be used within a global
transaction. These are not coordinated as part of the global transaction and
have no affect on the transaction.

6.5 CICS Web support

CICS Web support has no support for participating in global transactions. All the
work is done in standard CICS transactions, though there are several that are
used in processing a single request from a client as shown in Figure 6-17.

Figure 6-17 Transactions used to process an HTTP request

The sockets listener task, CSOL, is the first transaction involved in processing
the request. It is a long running CICS system task that accepts the new
connection and starts the CWXN task to receive the data. It will also attach a
CWXN task when new HTTP requests arrive on existing connections.

CICS TS 3.1

CSOL

Attach

CWXN

Return
Static
Content

OR

Attach
New
Connection

New HTTP
Request

HTTP Response

HTTP Response

Alias
Task

URIMAP

Web-Aware
Application

Business
Logic

Socket

Async
Receive

OR
198 Architecting Access to CICS within an SOA

The Web receiver task, CWXN, receives the request from the client. It uses
URIMAPs and/or the analyzer program to determine how to handle the request.
The URIMAP can indicate that the request is for static content. In which case
CWXN will return the data to the client, issue an asynchronous receive to wait for
further input, and it will not attach an alias task. Otherwise the alias task is
attached. Regardless of whether the alias is attached or not CWXN then
terminates.

The alias task is the third CICS transaction involved in processing the request.
This is where the actual user application runs. The default tranid for the alias task
is CWBA but it can be changed by a URIMAP or the analyzer program to be any
tranid currently installed in the CICS region. The alias task must run in the same
region as the CWXN task that started it. The user application can run in a remote
region as long as it only uses a COMMAREA interface and does not attempt to
use the EXEC CICS WEB API commands. Any updates to recoverable resources
will be committed or rolled back at the end of the alias transaction assuming an
explicit sync point request has not been made by the application. At the end of
the alias task, if HTTP persistent sessions are being used an asynchronous
receive will be issued to wait for further requests from the same client. This
receive does not require the alias task to remain in the system so it terminates.
 Chapter 6. Transactional scope 199

200 Architecting Access to CICS within an SOA

Chapter 7. Performance and scalability

In this chapter, we start by providing an introduction to the theory of performance
and capacity planning as it applies to CICS systems. Then, for each of the CICS
access technologies, we discuss the best approach for optimizing the
performance and scalability of the desired solution.

The key factors to consider for performance optimization for a particular solution
are listed here:

� The application architecture which the client will use

� The performance characteristics of the existing CICS applications

� Network considerations such as message size, SSL encryption and use of
persistent connections

� System constraints such as thread or TCB usage

� The workload management techniques which you will use to create a
scalable solution

7

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 201

7.1 The theory of performance
CICS has proven to be a high performing and scalable transaction processing
system. Good performance implies the efficient use of computing resources and
a resulting fast response time. Scalability, on the other hand, implies that the
system is capable of running a large number of simultaneous transactions, and
that the cost of running a transaction does not increase as the workload
increases. A truly scalable solution can be regarded as one that initially performs
well at a low rate of usage and whose throughput increases in linear proportion to
the number of end users, up to the point at which it saturates the system. This is
known as positive linear scaling.

The two graphs in Figure 7-1 illustrate how a linearly scalable system should
behave. The plot of CPU cost against throughput (transactions per second)
shows that the cost per transaction should remain constant as the workload
increases. The plot of throughput against number of users shows a linear
increase as workload increases, until a resource constraint is reached. The plots
are simplistic and for illustration purposes only; the assumption is made that
each user is initiating the same amount of work.

Figure 7-1 Performance of a linearly scalable system

Since computer systems are not infinitely fast, there is always a limit to the
system performance level at which the system is saturated; the question is
whether or not this limit is acceptable, and what is the limiting factor. The four
limiting physical factors are the CPU system, the memory system, the disk I/O
system, and the network I/O system.

(number of users)
Workload

(T
ra

ns
/s

ec
on

d)
Th

ro
ug

hp
ut

Throughput vs. Workload

resource
constraint

(transactions/second)
Throughput

(m
s/

tra
ns

ac
tio

n)
C

PU
 C

os
t

CPU cost vs. Throughput
202 Architecting Access to CICS within an SOA

Given an ever-increasing load, any computer system will eventually be limited by
one of these factors. A good architecture will ensure that this limitation does not
occur too early. Figure 7-2 outlines a sensible approach for reviewing
performance and capacity of a system.

Figure 7-2 Performance flowchart

The CICS access solutions described in this redbook function principally as
Internet gateways to enterprise systems. Because of this, they are unlikely to be
bound by disk I/O constraints which often affect transaction processing and
database systems. Instead, these systems will typically be limited by how quickly
and efficiently the components in the system can send the message from the
client through the network via the memory structures of the intervening software
components.

This is borne out by scaling tests using the CICS Transaction Gateway (CICS
TG), which have shown that given sufficient physical memory, its performance is
CPU-limited and is inversely proportional to message length. This is illustrated in
Figure 7-3 on page 204, with some real-time data for a CICS TG ECI workload.

Is system
network
bound?

Is system
disk I/O
bound?

Is system
memory
bound?

Is system
CPU

bound?

Actions

Actions

Actions

Actions

ActionsAdditional
Tests

Yes No

YesYes

Yes

No

No

No
 Chapter 7. Performance and scalability 203

Figure 7-3 Scalability of a CICS TG ECI workload

In this chapter, we analyze the CICS access solutions and contrast how each is
likely to affect the performance and scalability of a CICS architecture. Where
possible, we highlight practical information. Most of this has been researched
using simple CICS applications with very little or no business or data logic within
them, unlike typical customer applications.

Thus, a two-fold increase in CPU consumption observed when a particular CICS
solution was used does not imply that a real customer application will experience
a two-fold decrease in performance. However, whatever architecture is chosen,
its performance and scalability should always be verified by a pilot before
deployment.

For further details on the performance implications of Web-enabling CICS
applications, refer to A Performance Study of Web Access to CICS, SG24-5748,
which provides actual CPU utilization figures and a detailed discussion of tuning
recommendations.

7.2 CICS Web services

CICS TS V3.1 provides fully integrated support for Web services through the use
of PIPELINE and WEBSERVICE resources. It provides support for CICS

0 20 40 60 80 100 120 140 160

(numbers of users)
Workload

(tr
an

sa
ct

io
ns

/s
ec

on
d)

Th
ro

ug
hp

ut

CICS Transaction Gateway
Throughput vs. Workload
204 Architecting Access to CICS within an SOA

applications to function as both service providers and service requesters. It also
provides utilities for creating the artefacts required to marshall and demarshall
XML into language structures using the WEBSERVICE resource.

In this section we compare the performance and scalability of the Web service
support available in CICS V3.1 using the CICS Web services assistant, CICS
V3.1 Web service support using WebSphere Studio Enterprise Developer V5.1
converter programs for XML marshalling, and the SOAP for CICS feature in a
CICS TS V3.1 environment. We will also discuss briefly how application design
and architecture choices will affect the performance.

The data in this section is based on a the CICS TS v3.1 performance report from
the CICS System z Performance team at IBM Hursley. The workload is based on
what they considered to be a typical SOAP message request.

The general observations based on the performance data are:

� Total CPU increases linearly as the transaction rate increases.

� CPU/transaction increases linearly as the return message size increases.

� CPU/transaction increases linearly as the number of elements in the XML
message increases.

� CICS V3.1 Web service support significantly out-performs the SOAP for CICS
feature.

� Persistent connections improve SOAP performance.

7.2.1 Throughput
In this section we compare the relative throughput performance of the Web
service enablement options available including:

� Choice of XML marshalling technology
� Choice of transport technology

Note: These comparisons do not consider WebSphere Developer for System
z V6 XML converter programs. Significant performance improvements have
been made in this area between WebSphere Studio Enterprise Edition V5.1
and WebSphere Developer for System z v6.

Tip: Significant performance improvements have been delivered through
service on the CICS TS V3.1 code. Always apply the latest service available
for the Web service support to take advantage of this.
 Chapter 7. Performance and scalability 205

CICS as a Web service provider
Figure 7-4 shows the relative CPU requirements to process a typical SOAP
message. The comparison is between the Web services support of CICS TS
V3.1 using a custom written XML parser, a parser generated using WebSphere
Studio Enterprise Developer V5.1 (shown as WSED) and marshalling performed
by the CICS Web Services Assistant (shown as CWSA). Note the performance
improvement achieved with service applied to the CICS Web Services Assistant.

Figure 7-4 Comparison of CPU usage of Web service support

Note: Significant performance improvements have been made in the
generated XML converters between WebSphere Studio Enterprise Edition
V5.1 and WebSphere Developer for System z V6.

V2.3
User

Program

V3.1
User

Program

V3.1
WSED

Converter
V3.1

CWSA
without

PTF
V3.1

CWSA
with PTF

CPU
usage
per
trans

SOAP
Feature

SOAP
Pipeline

SOAP
Pipeline

SOAP
Pipeline

SOAP
Pipeline
206 Architecting Access to CICS within an SOA

Figure 7-5 CPU Utilization against transaction rates

Figure 7-5 shows a linear increase in CPU usage as the transaction rate
increases. We can see here that once again the CICS Web Services Assistant
support provides the best performance in this particular test.

CICS as a Web service requester
The SOAP for CICS feature for CICS TS V2.3 introduced the capability for CICS
to be a Web service requester making outbound calls to other Web service
providers. The Web services support in CICS TS V3.1 also has this support.
Figure 7-6 on page 208 shows the relative performances of these two
implementations.

100 200 300 400 500 600 700 800 900 1000
Trans/sec

50

100

150

200

250

SOAP2.3 WSED3.1 SOAP3.1 CWSA3.1
 Chapter 7. Performance and scalability 207

Figure 7-6 Web service requester: CICS Web services support verses SOAP feature

7.2.2 Transport considerations
There are two transports supported by the CICS Web services support:

� HTTP
� WebSphere MQ

When HTTP is used as the transport, persistent connections outperform
non-persistent connections. The reason for this is that, when using persistent
connections, the client will reuse both the connection and the CWXN task in
CICS on subsequent invocations of a service provider on the same CICS
system. If the connection is not persistent then the client will have to establish a
new connection and also cause a new CWXN transaction to be created for every
invocation of a service provider.

When WebSphere MQ is used as the transport, WebSphere MQ storage
requirements, address space storage, data storage, library storage, system LX
usage, logging, and backup and recovery environments will have an impact on
the performance. For more information, see WebSphere MQ for z/OS Concepts
and Planning Guide, GC34-6051.

Figure 7-7 on page 209 shows the relative performance of a Web service
provider with HTTP and MQ. Both transports appear to scale linearly. Note again
the importance of applying service to the Web service support.
208 Architecting Access to CICS within an SOA

Figure 7-7 CPU utilization against transaction rates for HTTP versus WebSphere MQ

7.2.3 Design and architecture considerations
Designing and architecting a solution that meets the performance requirements
has to be considered from the start, not afterwards.

The architecture should guarantee the behavior of the application and operate
within a range of acceptable measurements; it must also ensure that the overall
behavior of the solution is predictable. Here we will briefly look at the
performance impact of message size, message structure, and WebSphere
tooling.

Keep message size small
The obvious rule is to keep your payload small and simple. However, in the real
world, you do not always have the luxury of adhering to this rule. Larger
messages result in longer parsing times. It increases linearly as shown in
Figure 7-8 on page 210. You should be aware of these impacts and try to
minimize the size of the XML message.

50 100 150 200 250 300
Trans/sec

25

50

75

100

CWSA HTTP CWSA WMQ CWSA WMQ +PTF
 Chapter 7. Performance and scalability 209

Figure 7-8 CPU versus message size

Keep message structure simple
Complex XML structures with nested elements result in longer times for
marshalling and un-marshalling the XML elements. XML elements are extensible
and they have relationships as shown in Example 7-1. The book is the root
element. Title, prod, and chapter are child elements of book. Book is the parent
element of title, prod, and chapter. Title, prod, and chapter are siblings because
they have the same parent.

Example 7-1 An XML example showing XML elements

<book>
<title>All you wanted to know about CICS Web services</title>
<prod id="SG241234" media="paper"></prod>
<chapter>Overview of Web services

<para>what is a Web services</para>
<para>How do Web services relate to SOA</para>

</chapter>

<chapter>Expose a CICS application as a Web service
<para>The CICS Web Services Assistant</para>
<para>WebSphere Developer for System z V6</para>

</chapter>

</book>

There is a linear increase in CPU/transaction as the number of elements
increases as shown in Figure 7-9 on page 211.

5 10 15 20 25 30
Outbound msg size in K

1

1.4

1.8

2.2

2.6

3

210 Architecting Access to CICS within an SOA

Figure 7-9 CPU/Transaction versus number of elements

7.2.4 SSL considerations
As mentioned earlier, security comes with a performance cost. How much
security is enough depends on the business requirements. The security between
network nodes over the Internet is traditionally provided using SSL over HTTP
(HTTPS). With HTTPS, you can perform mutual authentication of both the
sender and receiver of messages and ensure message confidentiality.

If security is needed end-to-end through the application stack, or if security must
be independent of the networking protocol, then other means must be
considered. WS-Security specifies authentication and message integrity through
XML Digital Signatures and message confidentiality through XML encryption
using X.509 certificates in both instances. For details, see Chapter 5, “Security”
on page 101. However, there are performance trades-offs that must be
understood and evaluated against the overall set of requirements.

A common practice is to combine the two approaches by using SSL for
encryption and then using XML Digital Signatures to authenticate the application
end points and to ensure message integrity. Keep in mind that SSL will also
involve at least one authentication of the server to whom a message is being
sent, thus some redundancy is occurring.

Also different SSL key size and the encryption algorithms have different
performance impacts.

500 1000 1500 2000 2500 3000
outbound elements

0

4

8

12

16

20

1 byte tags 30 byte tags30 byte tags1 byte tags 30 byte tags1 byte tags
 Chapter 7. Performance and scalability 211

7.2.5 Workload balancing
As the transaction rate increases it will become necessary to balance the
workload across multiple CICS regions. For HTTP this can be achieved by using
the Sysplex Distributor to route the incoming requests to different CICS regions.
For WebSphere MQ a queue sharing group (described in WebSphere MQ for
z/OS Concepts and Planning Guide V5.3.1, GC34-6051) can be setup to allow
multiple CICS regions to service messages on the same queue.

Once within CICS the existing business logic application that is linked to from the
message adapter can be on an AOR and workload managed, for example, by
CICSPlex SM. This is shown in Figure 7-10.

Figure 7-10 Workload can be balanced across multiple listener regions and AORs

7.2.6 Scalability and availability considerations

After you have successfully configured and tested your CICS Web service
configuration, you should consider how you can clone the CICS regions in order
to improve scalability and availability.

The principal areas for consideration are:

� How to load balance TCP/IP requests across multiple CICS listener regions

� How to load balance Web service requests dynamically across multiple CICS
AORs

TCP/IP load balancing
CICS is designed to work with Sysplex Distributor. Sysplex Distributor is an
integral part of z/OS Communications Manager, which offers the ability to load
balance incoming socket open requests across different address spaces running
on different IP stacks (usually on different LPARs). The routing decision is based

z/OS

DB2

Sysplex
Distributor

MQ
Shared
Queue

Listener Region AOR

CICS CICS

Existing
Business
Logic

CWXN

CKTI

Inbound SOAP
Pipeline
212 Architecting Access to CICS within an SOA

on real-time socket status and z/OS Quality of Service (QoS) criteria. This
provides the benefit of balancing work across different MVS images, providing
enhanced scalability and failover in a z/OS Parallel Sysplex.

High availability configuration
Figure 7-11 shows the recommended high availability configuration. CICSPlex
SM provides a dynamic routing program which supports the dynamic routing of
transactions. This provides the ability for applications invoked by Web service
requests to be dynamically routed across a CICSplex.

Figure 7-11 High scalability and availability configuration

Routing inbound Web service requests
Inbound Web service requests can be routed to a different CICS region than the
one that receives the request using one of two routing models:

� Distributed routing
� Dynamic program routing

The distributed routing model
The transaction that runs the target application program is eligible for routing
when one of the following is true:

� The content of the DFHWS-USERID container has been changed by a
program in the pipeline

� The content of the DFHWS-TRANID container has been changed by a
program in the pipeline

� The transaction is defined as DYNAMIC or with REMOTESYSTEM(sysid)

z/OS Sysplex

LPAR-1

LPAR-2

LPAR-3
CICS Listener

Region 1

CICS Listener
Region 1

CICS AORs
CICS AORs

CICS
Program

SOAP

HTTP
Sysplex

Distributor
 Chapter 7. Performance and scalability 213

Figure 7-12 shows how the distributed routing model can be used to route
requests for the ORDR transaction. The routing can be controlled by the routing
program specified in the DSRTPGM system initialization parameter. CICSPlex
SM can be used to balance the routing requests across multiple AORs.

Figure 7-12 Web service provider - distributed routing

Special considerations have to be made when configuring a pipeline to be used
in a distributed routing environment. Table 7-1 shows the resource definition
requirements for both the listener region and AOR, and whether each resource
definition can be shared between the regions.

Table 7-1 Pipeline resource definitions in dynamic routing configuration

The dynamic routing model
An alternative way to dynamically route a Web service request, is at the point
where CICS links to the user program, in our case DFH0XCMN. At this point
(Figure 7-13 on page 215) the request is routed using the dynamic routing
model. In this scenario, the routing can be controlled by the program specified in
the DTRPGM system initialization parameter. CICSPlex SM can be used to
balance the program link requests across multiple AORs.

Resource Listener region AOR

TCPIPSERVICE required not required

PIPELINE required, shared required, shared

WEBSERVICE automatically installed
from PIPELINE, shared

required, automatically
installed from PIPELINE,
shared

Pipeline configuration file required, shared required, shared

TRANSACTION definition DYNAMIC(YES) DYNAMIC(NO)

Distributed Routing
(DSRTPGM)

CSOL
Sockets

Listener Task

CWXN
Web Attach

Task

CPIH
Pipeline alias

task

ORDR
Transaction DFHPITP
214 Architecting Access to CICS within an SOA

Figure 7-13 Web service provider - dynamic routing

7.2.7 Other performance considerations
The majority of other runtime performance issues for a CICS Web services
solution will be no different than other CICS applications. As previously
mentioned, consider these issues:

� Hardware, capacity settings
� Operating system parameter settings
� Memory management
� LE runtime
� Transaction logs
� Server logs

Once the solution is operational, then an iterative process is applied to fine-tune
a solution by capturing measurements from simulated loads, making
adjustments and measuring again to understand their influence. You can iterate
as many times as you need until the solution meets the business requirements.

7.3 CICS Transaction Gateway
This section discusses performances considerations when using the CICS
Transaction Gateway (CICS TG). It contains the following topics:

� Comparison of JCA versus CICS TG base classes
� Application architectures
� Topology decisions

Dynamic Routing
(DTRPGM)

CSOL
Sockets

Listener Task

CWXN
Web Attach

Task

CPIH
Pipeline alias

task
DFHPITP DFH0XCMN
 Chapter 7. Performance and scalability 215

7.3.1 Comparison of JCA versus CICS TG base classes

The CICS TG offers a variety of Java-based APIs to access existing CICS
applications. These include:

� The JCA and the CCI-based interfaces provided with the ECI and EPI
resource adapters

� The lower level classes including the ECIRequest, EPIRequest, and
JavaGateway classes

� The EPI support classes

The JCA offers the distinct advantage that if the application is deployed into the
managed environment of WebSphere Application Server, the application will
benefit from the connection pooling, transaction and security management
provided by the application server. These qualities of service are controlled by
system contracts between the application server and the resource adapter, and
can be configured and modified at the time of deployment. This frees the
application programmer to concentrate on developing the business logic within
the application.

The lower level classes, on the other hand, offer a simple, more procedural style
of application development and can be utilized from any Java runtime
environment. Any transactional, security or connection usage considerations will
need to be carefully designed into the existing application.

7.3.2 Application architectures
When using the CICS TG to provide SOA access to your CICS applications, you
will need to decide which is the most appropriate application architecture to use.
The recommended and most common architecture is to use the ECI JCA
approach which is what will be discussed here. There are further considerations
are as follows:

� Whether to use tool generated code or write your own code by hand.

� How to minimize the amount of data which is transmitted between different
tiers of the physical configuration.

Comparison of tool generated code versus hand coding
The CCI provided by the JCA is targeted primarily toward application
development tools and enterprise application integration frameworks. Rational
Application Developer provides a development environment that contains a
range of JCA resource adapters, including the CICS ECI adapters.
216 Architecting Access to CICS within an SOA

Rational Application Developer is targeted to development projects requiring
integration with back-end systems and provides support for a variety of client
types, including Web services clients.

Several factors should be considered when choosing between a hand-coded
development process and a tooled solution like Rational Application Developer.
From a strictly performance point of view, the performance of hand-coded CCI
applications for accessing simple CICS applications is likely to be better than
tool-generated applications because of the additional abstraction and runtime
requirements of the tool-generated applications. The performance differential for
more complex applications is less significant and hand-coded applications are
more expensive to develop and maintain.

Reduction of data transmitted
The performance of the CICS TG has been shown to be inversely proportional to
length of data transmitted, suggesting that the limiting factor is the path length of
the communications stack. Figure 7-14 plots throughput against COMMAREA
size, for an ECI based Java client calling a CICS program. Throughput
substantially decreases when message ECI COMMAREA length increases.

Tip: Performance tests have shown that a significant performance benefit can
be obtained when using the CCI by caching the result of the connection
factory instance lookup so that the lookup is not repeated each time the
application is invoked. Rational Application Developer has the option of
caching the connection factory when using the wizards to build the service
proxy or EJB which is used to access the generated CICS ECI service.
 Chapter 7. Performance and scalability 217

Figure 7-14 Throughput versus COMMAREA size for a CICS TG ECI workload

There are several techniques for reducing data flowed through the CICS TG, but
broadly speaking there are three ways of addressing the problem.

� The application should be designed so that it has the minimum number of
data flows from the service requester through to the CICS server. Options
may be limited by the existing interface offered by the CICS application, and
the ability to re-engineer these interfaces.

� The application should be designed to transmit only the data essential to the
CICS TG, that is, only the data directly required by the business logic.

� The data flowed across the network can be compressed or truncated.

Data truncation facilities are built into the CICS TG and CICS client/server flows
and can be invoked as follows:

� The CICS Transaction Gateway in combination with the CICS servers,
provide built-in truncation for ECI flows. Any trailing nulls are not physically
passed across the network between client and server. This truncation is
automatic and not configurable. Thus you should design your CICS
COMMAREAs to be padded with trailing nulls and to store data efficiently in
the beginning of the COMMAREA.

� Outbound data from the JCA ECI resource adapter is automatically truncated.
This truncation is based on the length of the input data in the CCI record.

0 10 20 30
ECI COMMAREA size (KBytes)

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
 p

er
 u

ni
t o

f t
im

e) CTG ECI COMMAREA size vs. throughput

218 Architecting Access to CICS within an SOA

� Inbound data to the JCA ECI resource adapter can be restricted using the
setReplyLength() method on the ECIIntersactionSpec. This controls the
amount of data returned from the CICS LINK and should only be used if the
size of the data required is known in advance. It is not normally required if the
COMMAREA data is null truncated, as in this case the CICS null truncation
routines will be automatically invoked.

Data compression is applicable when the system is network I/O bound and yet
still has spare CPU cycles. This is likely to happen if many clients are trying to
transfer large amounts of data via the CICS TG, for instance, multiple ECI
applications transferring 32 KB COMMAREAs to the CICS server over a low
bandwidth network. When using a remote Java application it is possible to
compress data as it flows from the Java client to the Gateway daemon and as it
flows via SNA from the Gateway daemon to the CICS server.

� The CICS TG security exits can be used to compress data instead of, or as
well as, encrypting data. The data is compressed as it leaves the Java client
application, and is uncompressed as it enters the Gateway daemon.
Examples of how to use these exits for data compression are given in the
ClientCompression.java and ServerCompression.java samples in the
samples\Java\com\ibm\ctg\security directory, and a working example is
given in Revealed! CICS Transaction Gateway with More CICS Clients
Unmasked, SG24-5277.

� The IBM Communications Servers provide compression on LU6.2 RU
packets using the Run Length Encoding (RLE) or Lempel_Ziv (LZ)
algorithms. For more details on which algorithms are supported on each
platform, refer to the platform-specific IBM Communications Server
documentation.

It is best to compress the data as early as possible in its life cycle to reduce the
flows through the various components. Data encryption, where used, should be
performed after any compression routines for reasons of efficiency.

7.3.3 Topology decisions
In this section we will review the three different topologies which can be used
with the CICS TG and analyze the network considerations, system limits, and the
workload management possibilities for each solution.
 Chapter 7. Performance and scalability 219

WebSphere Application Server and CICS TG deployed on
distributed platforms

Figure 7-15 illustrates the use of WebSphere Application Server and the CICS
TG on a distributed platform (topology 1).

Figure 7-15 CICS TG topology 1

Network considerations
When the CICS TG is deployed on a distributed platform the network connectivity
from the distributed platform to CICS TS is provided by the Client daemon
component of the CICS TG. The Client daemon flows the ECI request to the
CICS server using a SNA connection, TCP62 connection or TCP/IP directly.

As a general principle, native methods (in this instance LU6.2 over SNA or native
TCP/IP) should perform better than non-native methods (TCP62), due to the
overhead incurred in translation and encapsulation when performing protocol
switching. Also Communications Server for z/OS currently provides the ability for
native TCP/IP communications to exploit the QDIO mode of OSA-Express
adapters, providing higher bandwidth usage with gigabit ethernet networks. For
further details refer to the IBM Redbook OSA-Express Implementation Guide,
SG24-5948. In addition LU6.2 over SNA also utilizes more complex pacing
algorithms within the communications stack, including DLC pacing, session level
pacing and APPN high performance routing, which are not provided by TCP62.

SNA or
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Distributed platform

C
lie

nt
da

em
on

Service

SNA or
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

CICS TG
ECI resource
adapterCCI

z/OS

C
lie

nt
da

em
on

Service
request

EJB

JSPJSP ServletServlet
220 Architecting Access to CICS within an SOA

Connection pooling
When the application is written using the JCA and deployed into WebSphere
Application Server, pooling of connections is provided seamlessly by the pool
manager component of WebSphere Application Server. This allows the reuse of
connections to the resource adapter between multiple J2EE components, such
as enterprise beans or servlets. The pool parameters are configured through the
connection pool settings for the connection factory. Because the CICS TG and
WebSphere Application Server both reside on the same host in this
configuration, these pooled connections are actually a set of connection objects,
each representing a local connection between WebSphere Application Server
and the CICS TG. As a result, the connection pooling provides a benefit in terms
of reduced memory and CPU utilization. The network connections from the CICS
TG into CICS TS are managed and pooled independently by the CICS TG Client
daemon component.

System limits
The principal system limits that are applicable to this topology are the threading
limits within the WebSphere Application Server JVM™ environment, and the
limits on concurrent requests within the CICS TG Client daemon.

WebSphere Application Server thread usage
The number of threads in the WebSphere Application server thread pool for
running Java servlet or EJB components can be pre-configured within
WebSphere Application Server. The trade-off between a thread bottleneck, and
over-commitment of resources if too many threads are used, should be found by
performance benchmarking. Generally speaking, low numbers of threads will
give the best throughput when the calls to the CICS server execute quickly.
Conversely, higher numbers of threads may give better throughput when using a
multi-CPU architecture, or when CICS applications take longer to respond due to
network delays or more complex CICS business logic. In WebSphere Application
Server on distributed platforms, the thread settings are specific to the Web or
EJB containers and are specified as follows:

EJB container ORB Service -> Thread Pool -> Maximum Size

Web container Web container -> Thread Pool -> Maximum Size

Tip: Note that fundamental differences between SNA and IP, as well as the
different approaches that are required for tuning, may in practice give different
results for the same workload running over the same physical network. For a
comprehensive summary of LU6.2 tuning, and comparative information about
LU6.2 via SNA and IP protocols, see the Communications Server for AIX
Planning and Performance Guide, SC31-8220.
 Chapter 7. Performance and scalability 221

CICS TG concurrent requests
The maximum number of concurrent requests from the CICS TG to all connected
CICS servers is controlled by the MaxRequests parameter in the CTG.INI file. This
defaults to 256 and must be increased if more parallel requests need to be
supported. In addition on the CICS server, the maximum number of active tasks
is controlled by the MXT CICS SIT parameter. If your CICS transactions are
short-lived, this is unlikely to be limiting. However, if your ECI applications use
extended units-of-work or your 3270 CICS applications use conversational
transactions, this could become a bottleneck.

Workload management
Workload Management is the process of spreading multiple requests for work
over the resources that can do the work. It optimizes the distribution of
processing tasks thus improving performance, scalability, and reliability of an
application. It also provides failover when servers or systems are not available.

The following workload management techniques can be used with topology1:

� WebSphere Application Server workload management
� MVS TCP/IP port sharing
� Sysplex distributor
� CICSPlex SM
� CICS TG Workload Manager

WebSphere Application Server workload management
WebSphere Application Server Network Deployment implements workload
management using clustering. A cluster is a set of application servers that are
managed together and participate in workload management. Application servers
participating in a cluster can be on the same node or on different nodes.

Cluster members are required to have identical application components, but can
be sized differently in terms of weight, heap size, and other environmental
factors. This allows large enterprise machines to belong to a cluster that also
contains smaller machines.

Since Web applications often maintain state between different legs of a user
dialog, you will need to consider the management of state data when designing a
workload management solution. The CICS TG itself does not store application
state, although state data may be stored within the application server or within
CICS.
222 Architecting Access to CICS within an SOA

For further details on the workload management capabilities of WebSphere
Application Server on the distributed platforms, including the techniques for state
management, refer to IBM WebSphere V5.1 Performance, Scalability, and High
Availability WebSphere Handbook Series, SG24-6198. This IBM Redbook
discusses various options for scaling applications based on WebSphere
Application Server Network Deployment V5.1.

MVS TCP/IP port sharing
TCP/IP port sharing is a feature provided by z/OS Communications Server which
allows multiple address spaces (such as CICS regions) to listen for IP requests
on the same port. It functions by allowing incoming socket open requests to be
distributed among the listening address spaces according to both the socket
backlog and current usage. Because the CICS TCP/IP sockets listener only
utilizes a single socket for each connection from a CICS TG, TCP/IP port sharing
can only be used to provide for failover of CICS regions in this topology and not
for load balancing across regions.

Sysplex distributor
Sysplex Distributor offers the ability to load balance incoming socket open
requests across different address spaces running on different IP stacks (usually
on different LPARs). Because the CICS TCP/IP sockets listener only utilizes a
single socket for each connection from the CICS TG Client daemon, Sysplex
Distributor can only be used to provide for failover of CICS regions in this
topology and not for load balancing across CICS regions.

CICSPlex SM
The CICS dynamic routing program allows for the dynamic routing of LINK
commands or 3270 transaction requests. This provides the ability for applications
to be dynamically routed within the CICSplex.

CICS TG Workload Manager
The CICS TG on Windows incorporates its own Workload Manager. This allows
simple round robin or a biased distribution of non-extended ECI requests across
configured CICS servers. Workload management is configured on a per program
basis. Both biasing and round-robin methods are able to provide failover. Should
requests to a region unexpectedly fail, requests are directed to another region.
The unavailable region is bypassed until a region time-out value is reached, at
which point, if it is available, the region is returned to the pool of available
regions. If the CICS TG Workload Manager is used, we recommend the use of
the round-robin method, as it is a simpler scheme to configure, and it is not easy
to calculate the correct relative weights to use in a biased scheme.
 Chapter 7. Performance and scalability 223

Remote Gateway daemon on z/OS
Figure 7-16 illustrates the use of WebSphere Application Server on a distributed
platform and the CICS TG daemon on z/OS (topology 2).

Figure 7-16 CICS TG topology 2

Network considerations
When the CICS TG is deployed on the z/OS platform and the CICS ECI resource
adapter is used in a distributed WebSphere Application Server, network
connectivity from the distributed platform to System z is provided by CICS TG
Gateway daemon on z/OS. This supports two protocols: TCP and SSL variants.

Connection pooling
The connection pool represents physical network connections between
WebSphere Application Server and the Gateway daemon on z/OS. In this
configuration it is essential to have an efficient connection-pooling mechanism
otherwise, a significant proportion of the time from making the connection to
receiving the result from CICS and closing the connection can be in the creation
and destruction of the connection itself. The JCA connection pooling mechanism
mitigates this overhead by allowing connections to be pooled by the WebSphere
Application Server pool manager.

CICS TG
Gateway
Daemon

JNI

TCP, SSL

z/OS

WebSphere
Application Server

EJB CICS TG
ECI resource
adapterCCI

Distributed platform

WebSphere
Application Server

CICS TG
ECI or
ECI XA
resource
adapterCCI

EJB

JSPJSP ServletServlet

CICS TS

CICS
Application

EXCI

Service
request COMMAREA
224 Architecting Access to CICS within an SOA

SSL considerations
When using the CICS TG on z/OS the secure SSL network protocol can be used
to secure network flows into System z. The CPU cost of SSL is predominantly in
the initial handshake phase, as this uses public key/private key encryption, which
is more expensive than the secret key encryption used for SSL data
transmission. There are several means of reducing the cost of SSL encryption
with the CICS TG; these are summarized here:

� Persistent connections

When you use a persistent connection, a subsequent connection re-uses a
previously opened TCP/IP socket. This ensures that after the initial SSL
handshake, no other handshake is performed until the persistent socket
connection is closed. If using an SSL connection from a JCA application in
WebSphere Application Server the Pool Manager in WebSphere Application
Server will automatically provide this function.

� Encryption algorithms

Different SSL key sizes (1024 or 512 bit) used in the SSL handshake, and the
different SSL data encryption algorithms (DES,TDES, RC4, and so forth),
have considerably different performance characteristics.

Gateway daemon thread usage
The Gateway daemon is a sophisticated multi-threaded Java application. It can
handle multiple requests simultaneously and uses a set of properties configured
in the CTG.INI configuration file. Two pools of threads can be configured, the
ConnectionManager threads and the worker threads. For each connected client,
one ConnectionManager thread is used in the CICS TG, and is held until the
Java client issues a disconnect. In order for an ECI call to be performed via an
allocated ConnectionManager thread, a thread must be allocated from the
worker thread pool for the duration of the request. This relationship is
summarized in Figure 7-17 on page 226.
 Chapter 7. Performance and scalability 225

Figure 7-17 CICS TG threading model

The ConnectionManager threads limit the maximum number of connected Java
clients, while the worker threads limit the number of concurrent ECI calls that can
be issued by these attached clients. The initial and maximum numbers of these
ConnectionManager and worker threads are set in the CTG.INI file. Requests can
be timed out if a ConnectionManager or worker thread does not become
available within a specified time, or if the Gateway daemon detects that a client is
idle or is not responding.

When using the CICS ECI JCA resource adapter the connection pool is
controlled by the pool manager component of WebSphere Application Server.
The WebSphere Administrative Console provides an administrative interface to
control the number of managed connections in the pool.

Since the Gateway daemon on z/OS runs as a Unix System Services (USS)
application the USS system limits will affect the amount of storage, sockets and
threads the Gateway daemon JVM process can utilize. Refer to the manual UNIX
System Services Planning, GA22-7800, for more details on these limits.

Support for large numbers of threads within a JVM is limited by storage
requirements per thread and the practical limitations on multi-threading with a
given process. On most 32-bit JVMs (or the 31-bit z/OS JVM) the Gateway
daemon will be limited to a practical maximum of around 5,000 threads in total.

Gateway daemon

open
Connect

Connection
Managers

Workers

flow

Wait

ECI request

ECI reply

Java client

close

Flow

Disconnect

226 Architecting Access to CICS within an SOA

When you configure a connection to a remote Gateway daemon, we advise you
to use the following general rules to configure the thread pools.

� The maximum number of Gateway daemon ConnectionManager threads
(maxconnect) should be the same as the maximum number of managed
connections in the JCA connection pool (max connection)

� Gateway daemon minconnect is equal to pool manager min connection
� The maximum number of Gateway daemon worker threads (maxworker)

should be set to less than or equal to the number of connection manager
threads (maxconnect)

� The longer the response time of your CICS applications the more worker
threads you should define in the Gateway daemon. This will help to prevent
the Java client applications being suspended while trying to obtain a
managed connection.

In addition both the pool manager and the Gateway daemon have a set of
timeout parameters to control how long connections are maintained. The pool
manager settings are as follows:

Aged timeout The total age of a managed connection from initial
creation to the current time.

Reap time The interval at which the reaper (timer) thread runs.

Unused timeout The amount of time that a given managed connection can
be inactive in the free pool before being closed.

The Gateway daemon settings are as follows:

closetimeout How long a connection manager thread waits for work to
finish on a disconnected client.

connecttimeout How long the protocol handler waits to obtain a
connection manager thread from the connection manager
thread pool.

idletimeout How long a connection is allowed to remain dormant
before it is closed.

pingfrequency How often the Gateway daemon will ping a remote Java
client.

sotimeout How frequently the protocol handler wakes from
accepting inbound connections.

solinger The TCP/IP SO_LINGER value for any socket used by
this connection

workertimeout How long a connection manager thread will wait to obtain
a worker thread from the worker thread pool
 Chapter 7. Performance and scalability 227

We recommend that the timeout settings are specified so that timeouts are
triggered as close as possible to the component that will receive the error, that is
the J2EE component in WebSphere Application Server. Bearing this in mind we
recommend the following settings:

� Pool manager reap time < unused timeout
� Pool manager unused timeout < Gateway daemon idletimeout
� Pool manager aged timeout can be disabled, unless you require that

connections are closed down after a certain age

� Pool manager connect timeout < Gateway daemon connecttimeout, so that a
timeout obtaining a connection to the CICS TG will be triggered from the pool
manager.

EXCI pipe usage
On z/OS the CICS TG uses the facilities of the External CICS Interface
(EXCI) to flow ECI requests into CICS. When using the EXCI, CICS currently
limits each client address space to 250 simultaneous sessions (pipes) to all
attached CICS regions.

An attempt to use more than 250 pipes per address space will be rejected by
the EXCI. The 250 pipe limit is usually sufficient to provide the required
throughput although the following points should be considered when
designing a scalable CICS TG solution:

� The maximum number of worker threads (maxconnect in the CTG.INI) should
be set to less than or equal to 250, and less than or equal to the number of
sessions defined on the EXCI connection.

� For reasons of performance, once a call has been made to a CICS region
from a given thread the CICS TG will keep the pipe allocated to that particular
CICS region for the lifetime of the thread, or until the CICS region terminates
or closes IRC.

� If a pipe shortage situation is encountered then multiple Gateway daemons
can be used and work shared across them using z/OS IP workload balancing
solutions such as TCP/IP port sharing or Sysplex Distributor. For more details
refer to“Workload management” on page 229.

Note: The EXCI pipe limit can be set between 100 and 250 using the
LOGONLIM parameter within SYS1.PARMLIB. For CICS TS V2.3 and CICS
TS V2.2 an APAR must first be supplied. Prior to CICS TS V2.2 the value is
fixed at 100.
228 Architecting Access to CICS within an SOA

Workload management
The CICS TG on z/OS is designed for use with the z/OS IP load balancing
topologies, due to its usage of multiple socket connections. The following z/OS
IP load balancing technologies can be utilized:

� MVS TCP/IP port sharing
� Sysplex distributor
� CICSPlex SM

Workload management with a CICS TG on z/OS is illustrated in Figure 7-18.

Figure 7-18 Workload management with a CICS TG on z/OS

MVS TCP/IP port sharing
TCP/IP port sharing is a feature provided by z/OS Communications Server which
allows multiple address spaces (such as Gateway regions) to listen for IP
requests on the same port. It functions by allowing incoming socket open
requests to be distributed among the listening address spaces according to the
socket backlog and current usage. It is a very simple feature to implement, and
provides effective load balancing across multiple Gateway regions listening on
the same TCP/IP stack in the same LPAR.

EXCI LPAR - 3

CICS
program

TCP/IP

Gateway
daemon

TC
P/IP Port Sharing

TC
P/IP Port Sharing

CICS router
region 1

LPAR -1

LPAR -2

Sysplex
Distributor

EXCI

z/OS sysplex

Gateway
daemon

CICS AORs

DPL

CICS router
region 2

DPL
 Chapter 7. Performance and scalability 229

Sysplex distributor
Sysplex Distributor offers the ability to load balance incoming socket open
requests across different address spaces running on different IP stacks (usually
on different LPARs). The routing decision is based on real-time socket status,
and MVS Quality of Service (QoS) criteria. This provides the benefit of balancing
work across different MVS images, providing enhanced scalability and failover in
a z/OS Parallel Sysplex.

The use of both of these workload management techniques is shown in
Figure 7-18 on page 229.

When using these techniques, it is important to be aware of a potential
affinity-related problem which might be created. For example, in Figure 7-18 on
page 229, if a request for CICS router region1 is routed by Sysplex Distributor to
LPAR-1 then a cross-memory (XM) EXCI connection is used between the
Gateway daemon and the CICS router. However, if the request is instead routed
to LPAR-2 then a cross-system coupling facility (XCF) EXCI connection is used.
The performance and transactional characteristics of these types of connection
are different, and certain restrictions apply to XCF group membership; therefore,
it is preferable to use MRO XM connections.

It is possible to use the EXCI user exit DFHXCURM to resolve this affinity
problem. DFHXCURM is able to dynamically change the APPLID of the CICS
router such that all requests which are routed to the Gateway daemons running
on LPAR-1 are passed to CICS router 1 and all requests which are routed to the
Gateway daemons on LPAR-2 are passed to CICS router 2.

CICSPlex SM
The CICS dynamic routing program allows for the dynamic routing of LINK
commands; this provides the ability for applications invoked by ECI requests to
be dynamically routed within the CICSplex. Note that due to transactional
limitations, the EXCI connection from the Gateway daemon must be to a CICS
region in the same LPAR, although further XCF links to CICS regions across the
CICSPlex are supported (Figure 7-18 on page 229).

WebSphere Application Server and CICS TG deployed on
System z

Figure 7-19 on page 231 illustrates the use of WebSphere Application Server
and the CICS TG deployed on z/OS (topology 3a).
230 Architecting Access to CICS within an SOA

Figure 7-19 CICS TG topology 3a

Network considerations
As in topology 1, the most common WebSphere Application Server for z/OS
configuration makes use of a local Gateway. On z/OS, this results in a direct
cross-memory EXCI connection between the application server and CICS. Note
that due to transactional limitations, the EXCI connection from the Gateway
daemon must be to a CICS region in the same LPAR, although further XCF links
from the initial linked-to CICS region to other CICS regions across the CICSPlex
are supported (Figure 7-20 on page 233).

WebSphere Application Server thread usage
The number of threads in a J2EE servant region can be pre-configured within
WebSphere Application Server. (See “Workload management” on page 233 for
an explanation of what a servant region is). The trade-off between a thread
bottleneck, and over-commitment of resources if too many threads are used,
should be found by performance benchmarking. Generally speaking, low
numbers of threads will give the best throughput when the calls to the CICS
server execute quickly. Conversely, higher numbers of threads may give better
throughput when using a multi-CPU architecture, or when CICS applications take
longer to respond due to network delays or more complex CICS business logic.
In WebSphere Application Server for z/OS, the number of threads in a J2EE
servant regions is controlled by the server workload profile. This can take the
following values:

IOBOUND 3 x the number of CPUs (max of 3x32=96)
CPUBOUND The number of CPUs online (max 24)
ISOLATE 1 thread
LONGWAIT 40 threads

z/OS

CICS TS CICS TS

CICS
application

C
O
M
M
A
R
E
A

COBOL
application

C
O
M
M
A
R
E
A

EJB

CCI

WebSphere Application Server

CCI

HTML

EXCI

JSP

Servlet

EJB CICS TG
ECI resource
adapter

CICS TG

CICS ECI
resource
adapter

MRO

J2EE Servant region
 Chapter 7. Performance and scalability 231

EXCI pipe usage
Within WebSphere Application Server for z/OS the CICS TG uses the
facilities of the external CICS interface (EXCI) to flow ECI requests into CICS.
When using the EXCI, CICS currently limits each client address space to a
limit of 250 simultaneous sessions (pipes) time to all attached CICS regions.

An attempt to use more than 250 pipes per address space will be rejected by
the EXCI. The 250 pipe limit is usually sufficient to provide the required
throughput although the following points should be considered when
designing a scalable CICS TG based solution:

� The maximum number of JVM threads within a J2EE servant region is
defined in the server workload profile, and has an upper maximum of either
40 or 96, depending on the setting of the application server workload profile.
For reasons of performance, once a call has been made to a CICS region
from a given thread the CICS TG will keep the pipe allocated to that particular
CICS region for the lifetime of the thread, or until the CICS region terminates
or closes IRC.

� The JCA connection pool managed by WebSphere Application Server is a set
of local connection objects which map on the CICS TG JavaGateway
connections. These connection objects do not map onto the EXCI pipes
allocated by the CICS TG. Instead EXCI pipes are allocated directly by the
JVM threads within the J2EE servant region.

� An EXCI pipe shortage situation will only occur if multiple JCA connection
factories are used naming different CICS regions. This has the potential to
cause pipes to become allocated to multiple CICS regions from a single
thread. In this instance you should configure the J2EE servant region to
have fewer threads, and then you use multiple servant regions to obtain
the desired throughput. Alternatively you can utilize the EXCI user exit
DFHXCURM to cause all EXCI calls to go to the same local CICS routing
region, before being forwarded onto the CICS AOR, using CICSPlex SM
or another routing technology (Figure 7-20).
232 Architecting Access to CICS within an SOA

Figure 7-20 DFHXCURM usage with WebSphere Application Server on z/OS

Workload management
WebSphere Application Server for z/OS takes full advantage of the workload
management and high availability features provided by z/OS Parallel Sysplex
and System z.

The following workload management techniques can be used with topology 3a:

� WebSphere Application Server workload management
� MVS TCP/IP port sharing
� Sysplex distributor
� CICSPlex SM

WebSphere Application Server workload management
The application server on z/OS (also known as a J2EE server) is made up of two
different address spaces:

Servant Region The servant region runs the Web and EJB containers.

Controller Region The controller region controls and routes work into the
servant regions.

A J2EE server is made up of one controller region and one or more related
servant regions (see Figure 7-21). The controller region controls and routes work
into the servant regions based on the performance goals defined in MVS
Workload Manager (WLM). These goals may be based on a number of criteria,
including the caller’s user ID or the type of caller, for example, an intranet user or
an Internet user. The control region can dynamically start and stop servant
regions based on the needs of the workload.

z/OS sysplex

EJB

CCI

WebSphere Application Server

CCI

EXCI

JSP

Servlet

EJB CICS TG
ECI resource
adapter

CICS TG

CICS ECI
resource
adapter

J2EE Servant region

DFHXCURM
MRO
XM

CICS
AOR

CICS
AOR

CICS
routing
region

DPL
 Chapter 7. Performance and scalability 233

The J2EE server lives within the boundaries of a z/OS image. Since the work
runs in multiple address spaces and on multiple physical processors, MVS WLM
can differentiate and prioritize work based on Service Level Agreements allowing
MVS WLM to manage the workload.

Figure 7-21 WebSphere Application Server for z/OS and MVS WLM

As on the distributed platforms, WebSphere Application Server for z/OS also
support clustering. A cluster is a logical grouping of replicated J2EE server
instances, allowing you to partition your workload and still see it as one entity.
The server instances belonging to a cluster can run on the same z/OS image, or
can span more images in a sysplex.

From the client point of view, the cluster is an entity, and the client should not
know which server instance will perform the given request. The cluster may span
multiple z/OS images in a sysplex, therefore providing a horizontal scaling
capability.

Thread 2

Thread 3

Thread n

Thread 2

Thread 3

Thread n

Thread 1

Thread 2

Thread 3

Thread n

Thread 1

Thread 1

Controller
Region

COBOL
Application

CICS

MVS
WLM
queue

T
C
P
I
P

Servant Regions
234 Architecting Access to CICS within an SOA

The clustering capabilities of a WebSphere Application Server Network
Deployment also allow for nondisruptive changes to software components and
enable continuous application availability in the event of unexpected failures.

MVS TCP/IP port sharing
TCP/IP port sharing is not normally required with this topology because the
workload management features of WebSphere Application Server for z/OS can
be used instead.

Sysplex distributor
Sysplex Distributor offers the ability to load balance incoming socket open
requests across different J2EE servers running on different LPARs. The routing
decision is based on real-time socket status, and MVS quality of service criteria.
This provides the benefit of balancing work across different MVS images,
providing enhanced scalability and failover in a z/OS Parallel Sysplex.

CICSPlex SM
This topology supports the use of CICS dynamic program routing which provides
the ability for CICS applications invoked by ECI requests to be dynamically
routed within the CICSplex. Note that due to transactional limitations, the EXCI
connection from the WebSphere servant region must be to a CICS region in the
same LPAR, although further XCF links to CICS regions across the CICSplex are
supported

The use of these workload management techniques in combination is shown in
Figure 7-22 on page 235.

Figure 7-22 Workload management with WebSphere Application Server for z/OS

LPAR - 3

CICS
program

TCP/IP Sysplex
Distributor

z/OS sysplex

CICS AORs

DPL

DPL

EXCIServant
regions

CICS
router

region 1

LPAR -1

Daemon
Controller

region

EXCIServant
regions

CICS
router

region 2

LPAR -2

Daemon
Controller

region
 Chapter 7. Performance and scalability 235

For further details on the workload management capabilities of WebSphere
Application Server for z/OS, including the techniques for state management,
refer to Architecting High Availability Using WebSphere V6 on z/OS, SG24-6850.

7.4 CICS Web support
CICS Web support refers to the ability of a CICS region to process HTTP
requests from Web browsers. This section reviews the major design choices
which will have to be made when architecting the CICS application, and how they
are likely to affect the performance of the solution. This includes looking at SSL
and non-SSL communication.

7.4.1 Transactions and TCBs

There are up to three tasks involved in processing an HTTP request.

� CICS TCP/IP Listener task (CSOL)
� CICS Web attach task (CWXN)
� CICS Web Alias task (CWBA or a user defined transid)

The CICS TCP/IP listener task (CSOL) runs as a CICS system task listening for
socket requests. You can configure the listener task to listen on multiple ports by
configuring multiple TCPIPSERVICE definitions. When CSOL receives an HTTP
request, it attaches the Web attach transaction (CWXN) to continue processing
the HTTP request. CWXN analyzes the HTTP request and then starts an alias
transaction (CWBA) to continue processing the HTTP request and return the
HTTP response to the Web browser. If the HTTP request matched a URIMAP
and was for static content then CWXN will return the HTTP response without
attaching an alias task.

To support this architecture, CICS uses some additional Task Control Blocks
(TCBs). The SL TCB is used by CSOL to process new connections and the
notification of data arriving to satisfy an outstanding asynchronous receive. The
SO TCB is used by CWXN and the alias task to send and receive data over the
socket connection. There is also a pool of S8 TCBs used for SSL processing.
They get used by CWXN or the alias task for the SSL handshake and to encrypt
and decrypt data being sent and received. The S8 TCBs are used for the
duration of the function they are performing and returned to the pool afterwards.
This differs from previous CICS releases where the S8 TCB was owned by the
associated task until the task terminated.

The use of multiple TCBs means that the additional TCP/IP socket processing
incurred by using the CICS TCP/IP listener does not run within the main CICS
TCB, and so will not affect the processing of requests within the Quasi
236 Architecting Access to CICS within an SOA

Re-entrant TCB (QR TCB), on which the majority of CICS business logic is
processed.

Since the HTTP requests are processed directly within the CICS address space,
it is not surprising that performance tests have shown this to be a very efficient
and scalable means of accessing CICS applications from the Web. (For further
details, refer to Chapter 5 in the redbook A Performance Study of Web Access to
CICS, SG24-5748). However, you need to consider that processing HTTP
requests does add an extra load to your CICS region, and you may want to
separate the work into dedicated Web-owning regions.

7.4.2 COMMAREA interface or 3270 interface?

When designing your CICS Web support architecture, you first need to know if
you have separate presentation and business logic within your CICS
applications. A call to the business logic is considerably more efficient than
accessing a CICS application using the services of the 3270 Web bridge.

Simple Web workloads have demonstrated that using a Web-aware application
design will be at least twice as efficient in terms of z/OS CPU usage as the 3270
bridge route. This approach also offers the advantage that you will no longer be
tied to the original 3270 application design and can directly access the business
logic in your CICS application.

7.4.3 Designing an efficient Web application

URIMAPs should be used to map HTTP requests to CICS resources. Avoid
using an analyzer program if at all possible. If an analyzer program is required
then try to avoid performing any processing that is likely to invoke delays, such
as allocating storage, ENQs, or disk I/O requests. If you use a converter program
program instead of a normal Web-aware application program then the efficiency
of later processing can also be improved if the Decode method of the converter
sets the decode_input_data_len to the exact length of the data to be passed to
the business logic in the COMMAREA.

7.4.4 Improving HTTP performance

The overhead of the HTTP protocol can be significantly reduced by enabling
HTTP KeepAlive (persistent connections); this provides for long-lived HTTP
connections. These long-lived connections allow multiple HTTP requests to be
sent over the same TCP socket connection, instead of the usual stateless HTTP
model whereby every HTTP request opens a new TCP/IP socket. With
HTTP/1.1, persistent connections are the default. As such, in CICS TS 3.1 it is
recommended to set SOCKETCLOSE on the TCPIPSERVICE definition to NO to
 Chapter 7. Performance and scalability 237

take full advantage of this. Unlike previous releases of CICS, an active CWXN
task is not required to wait for the client to send in another request.
Asynchronous receives are used in the same manner as us are done for IIOP
and ECI over TCPIP.

The following charts show CPU and storage usage for HTTP based transactions.
The data is for inbound HTTP transactions. It does not cover the outbound HTTP
support. Comparison is also shown between CICS TS 3.1 which uses HTTP/1.1
persistent connections and CICS TS 2.3 with and without using HTTP/1.0
persistent connections.

Figure 7-23 on page 238 shows the amount of storage used in CICS to maintain
an HTTP connection. This is CICS internal storage in the sockets and Web
domains and does not include user application storage. The amount is
approximately 4.8K per connection.

Figure 7-23 Storage usage per HTTP connection

Figure 7-24 shows a comparison in the CPU cost between CIC TS 3.1 and CICS
TS 2.3. Two measurements were made for CICS TS 2.3; one with persistent
sessions and one without. The values relate to applications processing the HTTP
request and response in the COMMAREA.
238 Architecting Access to CICS within an SOA

Figure 7-24 CPU per transaction (COMMAREA based)

Figure 7-25 shows a comparison in the CPU cost between CIC TS 3.1 and CICS
TS 2.3. Two measurements were made for CICS TS 2.3; one with persistent
sessions and one without. The values relate to applications processing the HTTP
request and response using the EXEC CICS WEB and DOCUMENT API commands.

Figure 7-25 CPU per transaction (WEB API less than 32K)
 Chapter 7. Performance and scalability 239

In both Figure 7-24 on page 239 and Figure 7-25, CICS TS 3.1 is shown to be
using more CPU per transaction than an equivalent transaction run with
persistent connections in CICS TS 2.3. The increase is about 3 to 4% on a
2.5 ms transaction. However, CICS TS 3.1 allows up to 65,000 concurrent
connections, where as CICS TS 2.3 required an active task for each connection
and so could only support 999 at most with a realistic usable value being much
lower than that.

Figure 7-26 on page 240 shows a comparison of the amount of CPU time used
when sending very large HTTP responses. It can be seen that for very large
HTTP responses CICS TS 3.1 actually uses less CPU time than an equivalent
transaction running on CICS TS 2.3.

Figure 7-26 CPU per transaction (WEB API over 32K)

If you are using HTTPS (HTTP via SSL) to secure the Web connection to CICS
Web support, then the cost of SSL encryption can be reduced by the following
means:

� Persistent HTTP connections

Use of a persistent HTTP connection, whereby a subsequent HTTP
connection re-uses a previously opened persistent TCP/IP socket connection,
ensures that after the initial SSL handshake, no other handshake is
performed until the persistent HTTP connection is broken, which will usually
only occur when the HTTP connection is timed out by the server.
240 Architecting Access to CICS within an SOA

� SSL session ID reuse

Session ID reuse allows the Web client and server to communicate with a
shortened SSL handshake by allowing the client to reuse an SSL session ID
without re-negotiating encryption keys with the server. When using the HTTP
Server for z/OS, session ID re-use is controlled by the SSLV3Timeout and
SSLV2Timeout directives. When using the CICS TCP/IP listener, session ID
re-use is enabled using the SSLDELAY SIT parameter.

� Cryptographic hardware

The Cryptographic Coprocessor feature is a hardware feature available on
S/390® and zSeries processors. It consists of dual cryptographic module
chips protected by tamper-detection circuitry and a cryptographic battery unit.
It can be used to off-load CPU processing from the main CEC processors
when performing cryptographic operations, and as such, can provide a
significant reduction in CPU usage. The Cryptographic Coprocessor Feature
can be used to reduce the CPU costs of SSL data transmission when using
the DES or triple DES ciphers, and SSL handshaking when using the RSA
PKCS#1 cipher. In order to use this hardware feature, the z/OS Integrated
Cryptographic Service Facility (ICSF) has to be installed and operational.

� Encryption algorithms

Different SSL key sizes (1024 or 512 bit) used in the SSL handshake, and the
different SSL data encryption algorithms (DES, Triple DES, RC4, and so on)
have considerably different performance characteristics. For full detail of the
CPU costs when used with CICS Web support, refer to Chapter 6 “SSL with
CWS” in the redbook A Performance Study of Web Access to CICS,
SG24-5748.

Figure 7-27 shows the effect of different encryption algorithms on performance.
Specifically CPU usage related to size of data.
 Chapter 7. Performance and scalability 241

Figure 7-27 SSL encryption/decryption costs

7.4.5 Workload balancing

Utilizing CICS Web support to Web-enable your CICS application is quite likely to
mean that the workload within your CICS regions will increase. CICS Web
support makes use of multiple TCBs (SL, SO, S8, and QR), and thus it is able to
concurrently utilize multiple processors in a multi-CPU LPAR. With the expansion
in OTE and threadsafe support in CICS TS v3.1 it is now also possible to have
significant business logic run on open TCBs

Work can be distributed across multiple CICS regions using workload balancing
techniques. There are several different ways of balancing work across multiple
CICS regions when using CICS Web support; we will provide a summary of them
in the following sections. However, for a full analysis of the different options
available, refer to the redbook Workload Management for Web Access to CICS,
SG24-6118.

SSL_RSA_WITH_3DES_EDE_CBC_SHA (approx. 0.022 ms CPU per 1k)
SSL_RSA_WITH_RC4_128_SHA (approx. 0.038 ms CPU per 1k)
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 (approx. 0.180 ms CPU per 1k)
SSL_RSA_WITH_DES_CBC_SHA (approx. 0.015 ms CPU per 1k)
TLS_RSA_WITH_AES_256_CBC_SHA (approx. 0.046 ms CPU per 1k)
242 Architecting Access to CICS within an SOA

Dynamic routing of LINK commands
CICS allows for the dynamic routing of LINK commands. This includes the LINK
to the COMMAREA driven business logic made from either the CICS Business
Logic Interface or a Web-aware application program. This allows the user
application running in an AOR to be accessed from a remote listener CICS
region using a distributed program link (DPL) request; therefore enabling a CICS
Web support workload to be workload-balanced across a z/OS sysplex in
conjunction with the services of CICSPlex SM.

TCP/IP port sharing
TCP/IP port sharing provides a simple way of workload balancing HTTP requests
across a group of cloned address spaces (including CICS regions or Web
servers) running in the same z/OS image. As incoming client connections arrive
for this port, TCP/IP will distribute them across the address spaces that are
listening on the shared port. TCP/IP will select the address space with the least
number of connections (both active and in the backlog) at the time that the
incoming client connection request is received.

This allows you to workload-balance incoming HTTP requests across several
cloned CICS regions or standalone HTTP server address spaces. The load
balancing is based entirely on the number of IP connections, and so does not
take into account the individual health or capacity of any given CICS region.
However, it does provide a very simple means of providing failover and workload
balancing within an LPAR.

Sysplex Distributor
Sysplex Distributor is implemented in OS/390 V2R10 and offers major
enhancements to TCP/IP workload management in a sysplex. It has four main
functions:

� Balancing of IP packets across multiple z/OS LPARs
� Close integration with MVS WLM
� Failover of the cluster IP address
� Re-routing of IP packets away from one node

As such, it offers a very efficient means of workload managing IP requests from
within the heart of an z/OS Parallel Sysplex, in tight conjunction with MVS WLM
and z/OS virtual IP addressing (VIPA). A more detailed discussion of Sysplex
Distributor may be found in TCP/IP in a Sysplex, SG24-5235.

Note: If the target of the LINK is DFHWBTTA, DFHWBTTB, or DFHWBTTC
(the 3270 Web Bridge) or the user program is using the EXEC CICS WEB or
TCPIP API commands, then the LINKed to program cannot be in a remote
region.
 Chapter 7. Performance and scalability 243

244 Architecting Access to CICS within an SOA

Chapter 8. Application development

In this chapter, we look at each of the CICS enablement options from an
application development point of view, and give you an overall description of the
steps you need to follow to implement each option.

Before you embark on your chosen application development strategy, these are
some of the questions you will need to consider:

� Do your developers have CICS or COBOL skills, or Java or Web skills?

� Do you want a hand-coded or tooled application development solution?

� Does the CICS application use a 3270 interface or does it have other
interfaces, such as a communication area (COMMAREA) interface, or an
APPC or socket interface?

� Is the CICS application based on a two-tier model with separate presentation
and business logic, or are they intertwined?

� Does your application currently use a state control design that introduces
inter-transaction affinities?

� Are you willing to invest in modifying and enhancing the CICS application?

� Do you want to develop a pure Java solution?

� Does your application need to be accessed by your external partners?

8

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 245

8.1 Development products overview

IBM provides high quality application development tools that are based around
the Eclipse platform.

Eclipse is an open source, Java-based, extensible development project aimed at
providing an integrated tool framework. At the heart of Eclipse is an extensive
tool framework offering a set of core capabilities that supports extension through
a plug-in architecture.

The following products are available, and are relevant to this chapter:

� WebSphere Developer for System z
� Rational Application Developer
� WebSphere Integration Developer

8.1.1 WebSphere Developer for System z

WebSphere Developer for System z consists of a common workbench and an
integrated set of tools that support end-to-end, model-based application
development, runtime testing, and rapid deployment of on demand applications.
WebSphere Developer for System z V6 is based on the Rational Software
Development Platform and facilitates the development of both Java- and
z/OS-based applications. It includes capabilities that make traditional z/OS
mainframe development, Web development, and integrated composite
development faster and more efficient.

Upgraded XML and Web services support, enabling SOA access to CICS
Transaction Server V3.1 and IMS V9 are now included.

More information about WebSphere Developer for System z can be found at:

http://www.ibm.com/software/awdtools/devzseries/

8.1.2 Rational Application Developer

Rational Application Developer is a development environment for creating J2EE
enterprise applications targeted for WebSphere Application Server. It includes a
test environment for WebSphere Application Server, and a full set of
development wizards.

Rational Application Developer contains wizards to create connections to
Enterprise Information Systems using J2EE Connector Architecture resource
adapters. This includes support for using the CICS ECI resource adapter to
connect to CICS TS.
246 Architecting Access to CICS within an SOA

http://www.ibm.com/software/awdtools/devzseries/

More information about Rational Application Developer can be found at:

http://www.ibm.com/software/awdtools/studioappdev/

8.1.3 WebSphere Integration Developer

WebSphere Integration Developer is the development environment for building
integrated business applications that are targeted for WebSphere Enterprise
Service Bus and WebSphere Process Server. One of the primary purposes of
WebSphere Integration Developer is to provide the appropriate tools to build and
test Service Component Architecture (SCA) based solutions easily.

WebSphere Integration Developer provides the Enterprise Service Discovery for
creating SCA imports and exports to connect with Enterprise Information
Systems such as CICS TS.

More information about WebSphere Integration Developer can be found at:

http://www.ibm.com/software/integration/wid/

8.2 CICS Web services

In this section we introduce the tooling options available for transforming a CICS
asset into a Web service endpoint. The main choice available is in the
development tool utilized. The two options are:

� CICS Web Services Assistant
� WebSphere Developer for System z

The following section provides a high-level overview of how to transform an
existing CICS asset into a Web service endpoint as either a provider or
requester. We give a high level overview of the tooling available in the CICS Web
Services Assistant and the XML Services for the Enterprise (XSE) capability of
WebSphere Developer for System z.

8.2.1 CICS Web services assistant

The CICS Web services assistant is a set of batch utilities which can help you to
transform existing CICS applications into Web services and to enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with the minimum of programming effort.

When you use the Web services assistant for CICS, you do not have to write
your own code for parsing inbound messages and for constructing outbound
 Chapter 8. Application development 247

http://www.ibm.com/software/integration/wid/
http://www.ibm.com/software/awdtools/studioappdev/

messages; CICS maps data between the body of a SOAP message and the
application program’s data structure.

The most important output from the CICS Web Services Assistant is the WSBind
file. This file contains the metadata required to marshall and demarshall the XML
of the SOAP request to and from the language structure of the application
program. The metadata contained in the WSBind file is installed to an in-memory
form when the corresponding WEBSERVICE resource is installed. This allows
for very efficient marshalling and demarshalling of the SOAP messages from
within core CICS code.

The assistant can create a WSDL document and WSBind file from a simple
language structure, or a language structure from an existing WSDL document,
and supports COBOL, C/C++, and PL/I. It also generates information used to
enable automatic runtime conversion of the SOAP messages to containers and
COMMAREAs, and vice versa.

However, the assistant cannot deal with every possibility, and there are times
when you will need to take a different approach. For example:

� You do not want to use SOAP messages

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs will be responsible for parsing inbound
messages, and constructing outbound messages.

� You want to use SOAP messages, but do not want CICS to parse them

For an inbound message, the assistant maps the SOAP body to an
application data structure. In some applications, you may want to parse the
SOAP body yourself.

� The CICS Web services assistant does not support your application’s data
structure

Although the CICS Web services assistant supports the most common data
types and structures, there are some which are not supported or do not have
simple obvious equivalents in XML, for example, OCCURS DEPENDING ON
and REDEFINES on data description entries are not currently supported. For
full details on the data types and structures supported by the CICS Web
Services assistant, see the CICS Web Services Guide, SC34-6458.

In this situation, you should consider one of the following alternatives:

– Provide a wrapper program that maps your application’s data to a format
that the assistant can support.

– Use WebSphere Developer for System z
248 Architecting Access to CICS within an SOA

Utility programs
The CICS Web Services Assistant provides two utilities:

� DFHLS2WS

Create Web service artefacts from a program language structure. Will
produce only provider Web services.

� DFHWS2LS

Creates Web service artefacts from a WSDL Web service description. Will
produce provider or requester Web services based on the presence or
absence of the PGMNAME parameter.

DFHLS2WS
This program generates a Web services description and Web services binding
file from a language structure. Example 8-1 shows sample JCL for running
DFHLS2WS.

Example 8-1 DFHLS2WS JCL sample

//LS2WS JOB ’accounting information’,name,MSGCLASS=A
//JAVAPROG EXEC DFHLS2WS
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
/*

The main input parameters are as follows:

� PDSLIB

Specifies the name of the partitioned data set that contains the high level
language data structures to be processed.

� REQMEM

Specifies the name of the partitioned data set member which contains the
high level language structure for the Web service request. This is the data
structure that the target application will take as input.
 Chapter 8. Application development 249

� RESPMEM

Specifies the name of the partitioned data set member which contains the
high level language structure for the Web service response. This is the data
structure that the program will return as output.

� LANG

Specifies the language of the language structure to be parsed.

� PGMNAME

Specifies the name of the target CICS application program that is being
exposed as a Web service.

� URI

Specifies the relative URI that a client will to use to access the Web service.
CICS uses the value specified when it generates a URIMAP resource from
the Web service binding file created by DFHLS2WS: the parameter specifies
the path component of the URI to which the URIMAP definition applies.

� PGMINT

Specifies how CICS passes data to the target application program (using a
COMMAREA or a channel).

� WSBIND

Specifies the location on HFS of the Web service binding file.

� WSDL

Specifies the name on HFS of the Web service description file.

DFHWS2LS
This program generates a language structure and Web services binding file from
a Web services description. Example 8-2 shows sample JCL for running
DFHWS2LS.

Example 8-2 DFHWS2LS JCL sample

//WS2LS JOB ’accounting information’,name,MSGCLASS=A
//JAVAPROG EXEC DFHWS2LS
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
250 Architecting Access to CICS within an SOA

WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
BINDING=exampleAppInquireSingleHTTPSoapBinding
/*

The main differences to the parameters for DFHLS2WS are:

� REQMEM

Specifies the name of the partitioned data set member into which a language
structure will be generated that corresponds to the Web service request

– For a service provider, the Web service request is the input to the
application program.

– For a service requester, the Web service request is the output from the
application program.

� RESPMEM

Specifies the name of the partitioned data set member into which a language
structure will be generated that corresponds to the Web service response.

– For a service provider, the Web service response is the output from the
application program.

– For a service requester, the Web service response is the input to the
application program.

� LANG

Specifies the language of the language structure to be generated.

� PGMNAME

Used to switch between provider and requester Web services. If no
PGMNAME is specified the Web service will be generated as a requester
Web service. If specified, contains the name of the target CICS application
program that is being exposed as a provider Web service.

� BINDING

A WSDL document may contain more than one Web service description. The
BINDING parameter is required to identify a unique Web service and
collection of operations within the WSDL file.

Supported datatypes
As mentioned above there are some datatypes that at the time of writing cannot
currently be supported by the CICS Web Services Assistant. Some of the most
significant of these are listed in Table 8-1.
 Chapter 8. Application development 251

Table 8-1 CICS Web Services Assistant unsupported data types

8.2.2 WebSphere Developer for System z

WebSphere Developer for System z V6 is based on the IBM Rational Software
Development Platform and facilitates the development of both Java and
z/OS-based applications. It includes capabilities that make traditional z/OS
mainframe development, Web development, and integrated composite
development faster and more efficient.

In particular, WebSphere Developer contains tools that support the development
of Web services and the XML enablement of existing CICS COBOL applications.

The XML Services for the Enterprise (XSE) capability of WebSphere Developer
provides tools that let you adapt COBOL-based applications so that they can
consume and produce XML messages. The XSE tool will perform much the
same functionality as the CICS Web Services Assistant in that it will take a
language structures in the form of COBOL copybooks or Web service
descriptions as WSDL documents and produce wsbind files that can be installed
into a CICS region. As the tool is driven through an interactive wizard a greater
degree of flexibility is available to the developer though the option of optimizing
the generation is obviously limited. At the time of writing the functionality of the
XSE tool is limited to the COBOL language only.

Note: The CICS Web Services Assistant is constantly being upgraded. For
the current list of supported data types, refer to the CICS InfoCenter.

Language Data type

COBOL OCCURS DEPENDING ON
REDEFINES
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
BINARY

C / C++ decimal
float
double
long double

PL I decimal
float
double
long double
PICTURE strings
252 Architecting Access to CICS within an SOA

Invoking the XSE tooling can be as simple as importing a COBOL copybook into
your workspace, right-clicking it and selecting as shown in Figure 8-1.

Figure 8-1 Invoking the XSE tool

When using the XSE tool there a two main options available to you as. These are
selected on the first panel of the XSE tool as shown in. They are:

� Compiled style
� Interpretive style

Figure 8-2 shows the first panel of the XSE tool wizard. It is here that you select
the style of the WSBind file produced.
 Chapter 8. Application development 253

Figure 8-2 XSE tool generation styles

Compiled style
The compiled style of program generation is the traditional tooled style and is an
update to the tooling that was available in WebSphere Studio Enterprise Edition.
In this style XSE supports the creation of driver programs that work with existing
CICS applications. A vendor style wsbind file is created that delegates the XML
marshalling and demarshalling to the externally generated conversion programs.

The Web Services Enablement wizard is the XSE tool that supports the
bottom-up approach for creating Web services based on existing CICS COBOL
programs. It takes as input the COMMAREA copybook. The XML structure and
data types are then derived from the COBOL data declarations. Based on these,
the Web Services Enablement wizard generates the set of artifacts shown in
Figure 8-3 on page 255.
254 Architecting Access to CICS within an SOA

Figure 8-3 WebSphere Developer for System z

The artifacts generated by the Web Services Enablement wizard are:

� WSBind

Web service binding file used by CICS to define the WEBSERVICE resource.

� WSDL

Web service description file.

� Input converter

A COBOL program that takes an incoming XML document and maps it into
the corresponding COBOL data structure that the existing CICS application
expects. Optionally this module can be inlined into the driver module.

� Output converter

COBOL program that takes the COBOL data results returned from the CICS
application and maps them to an XML document. Optionally this module can
be inlined into the driver module.

� Converter driver

COBOL program that shows how the input and output converters can be used
to interact with the existing CICS application. Optionally this module can also
perform the conversion without the need for separate driver programs.

CICS

WSDL

WSBind

Schema
Definition

Input
Converter

Output
Converter

Driver
Converter

Language
Structure

WebSphere
Developer for

zSeries
 Chapter 8. Application development 255

� Input document XML schema definition (XSD)

XML schema that describes the incoming XML document.

� Output document XML schema definition (XSD)

XML schema that describes the outgoing XML document

Interpretive style
The XSE tool within WebSphere Developer for System z v6.0.1 now also
includes the capability to create CICS Web Service Assistant metadata driven or
interpretive style wsbind files. When selecting this option for generation you are
actually invoking the same generation code as used by the CICS Web Services
Assistant. In this case the only artefacts generated are:

� WSBind

Web service binding file used by CICS to define the WEBSERVICE resource

� WSDL

Web service description file

8.2.3 Development tool comparison

This section compares the use of the CICS Web Service Assistant with
WebSphere Developer for System z.

Development style
The most obvious difference between the two development styles is the interface
exposed to the end user. The CICS Web Services Assistant has a traditional JCL
batch tool bases interface. This interface should be well known (and loved) by
traditional CICS application developers and systems programmers. It also allows
for the option of automating the creation of Web services artefacts.

The XSE tool in WebSphere Developer for System z provides a wizard based
interface to the user. The tooling is aimed primarily at application developers and
provides interactive panels through the GUI development workbench. The
advantage of this interface is that it opens up CICS tooling to a new development
community who are comfortable with the modern style of a development
workbench. Also being interactive allows for more complex data structure to be
interpreted as the user can select the appropriate sections of the data structure
to be processes.

Architecture and capabilities
In terms of the experience of the application programs invoking the Web services
generated by either the Web Services Assistant or the XSE tooling of
256 Architecting Access to CICS within an SOA

WebSphere Developer for System z there is little to separate them. The main
difference is number of artefacts that must be managed and maintained by the
CICS systems programmer. it is important to keep the corresponding WSDL
documents and WSBind files together as the data conversion in the WSBind file
is represented by the schema in the WSDL document.

In the case of the Web Services Assistant there is just the WSDL document and
the WSBind file that must be handled. All the information required to marshall
and demarshall the XML is contained within the metadata of the WSBind file.
This is also true when selecting the Interpretive XML Conversion style in the
XSE tooling.

When using the Compiled XML Conversion style in the XSE tool along with the
WSDL document and WSBind file one or more COBOL source programs will be
produced to perform the mashalling and demarshalling of the XML. As well as
keeping the WSDL document and WSBind files together, these source programs
must also be kept with their corresponding WSBind files and deployed into CICS
with program names matching the file names as generated. This allows the CICS
Web service runtime to know what program to call out to perform the conversion
based on the information stored in the WSBind file.

If using COBOL, conversion capabilities of the two methods are fairly similar. As
noted before there are several COBOL data types that are currently not
supported with the CICS Web Services Assistant or interpretive XML conversion
style that are available in the Compiled XML conversion style of the XSE tool.
The XSE tool currently only supports COBOL data structures.

We recommend that where possible the CICS Web Services or Interpretive XML
conversion styles be used. This has the advantages of less artefacts to manage
and service/performance improvements to the CICS runtime will be automatically
exploited without the need for code to be regenerated.

8.3 CICS Transaction Gateway
The development environments for the CICS Transaction Gateway (CICS TG)
offer a solution in tune with the object-oriented application development
environments that are often used for distributed SOA applications. Development
of such a CICS TG architecture will involve Java programming, and working with
a COMMAREA call interface.

This section introduces three ways to develop applications that use the CICS
Transaction Gateway:

� Develop Common Client Interface (CCI) applications with CICS ECI resource
adapter by hand
 Chapter 8. Application development 257

� Use the Rational Application Developer tool

� Use the WebSphere Integration Developer tool

8.3.1 CCI application development with the CICS ECI resource
adapter

The CCI is the Java interface for all J2EE Connector Architecture resource
adapters. You can create Java classes (in tools such as Rational Application
Developer, or using the Java SDK) which make use of these resources adapters.

The CICS ECI resource adapter, which is used to make ECI calls the CICS TG,
can be programmed in this way by hand.

The following list shows the basic outline for using the CCI with the CICS ECI
resource adapter and sample code for programming CCI with the CICS ECI
resource adapter (Example 8-3):

1. Look up a ConnectionFactory for the ECI resource adapter.

2. Create a Connection object using this ConnectionFactory. A
ConnectionFactory Connection is a handle to the underlying network
connection to the EIS. Specific connection properties, such as a user name
and password, can be passed using an ECIConnectionSpec object.

3. Create an Interaction from the Connection. Specific interaction properties can
be passed using an ECIInteractionSpec object. The call to the EIS is initiated
by invoking the execute() method on the Interaction, passing data as input
and output records.

4. After the required interactions have been processed, the Interaction and
Connection should be closed.

Example 8-3 Sample code for programming CCI with CICS ECI resource adapter

1
//lookup an ECI Connection Factory
javax.naming.Context ic = new InitialContext();
cf = (ConnectionFactory) ic.lookup("java:comp/env/ECI");

2
//Create a Connection object using this ConnectionFactory
eciConn = (Connection) cf.getConnection();

3
//Create an Interaction from the Connection
eciInt = (Interaction) eciConn.createInteraction();

// setup the interactionSpec.
258 Architecting Access to CICS within an SOA

eSpec.setFunctionName(funcName);
eSpec.setCommareaLength(commareaLength);

// create a record for use
jsr = new JavaStringRecord(encoding);
// set input data if we have any
if (commareaLength > 0){
 jsr.setText(commarea);
}

// make the call
try{
 eciInt.execute(eSpec, jsr, jsr);
}

4
//close the Interaction and Connection and set our references to null.
eciInt.close();
eciConn.close();
eciInt = null;
eciConn = null;

CCI accessing CICS via the ECI resource adapter can be either used in an EJB,
exposed as a Web service or simply used in a servlet. We will not cover details
here; for more complete examples, refer to the Redbooks Java Connectors for
CICS, SG24-6401, and Rational Application Developer V6 Programming Guide,
SG24-6449.

Table 8-2 and Table 8-3 on page 260 provide a brief description of the main
generic CCI classes (as they apply to CICS) and the specific ECI resource
adapter classes.

Table 8-2 Generic classes

ConnectionFactory Creates a Connection object from supplied connection
settings. The connection settings are defined using the
WebSphere Administrative Console, which are then looked
up by the application in order to create the
ConnectionFactory.

Connection A handle to a connection managed by
the J2EE application server.

Interaction A specific interaction with CICS that occurs over an
established connection.

Record A generic wrapper for the data passed within the CICS
COMMAREA.
 Chapter 8. Application development 259

Table 8-3 Specific ECI resource adapter classes

8.3.2 Rational Application Developer J2C Java Bean wizard
Rational Application Developer contains a wizard called the J2C Java Bean
wizard, which can be used to create Java resources that use the CICS ECI
resource adapter. These Java resources can then be deployed to WebSphere
Application Server.

Using this tool overcomes many of the problems encountered when hand-coding
CCI code to use the CICS ECI resource adapter. In particular the data type
conversions (for example from a COMMAREA described in COBOL, to the Java
data types used by CCI).

The J2C Java Bean wizard produces two artifacts:

� A J2C Java Bean that uses the CICS ECI resource adapter to make a call to
a CICS program. This Java Bean can be wrappered as an EJB session bean
or as a Web service and deployed to WebSphere Application Server.

� Data handling classes, for converting data types to and from the
COMMAREA structure that is passed to the CICS program. These data
handling classes are used by the J2C Java Bean to send messages to and
from CICS applications. Additionally, these classes can also be used
independently with other applications, as they are themselves stand-alone
Java Beans.

Using the J2C Java Bean wizard
The J2C Java Bean wizard in Rational Application Developer can be used to
generate a Java bean that makes calls to the CICS ECI resource adapter to
invoke CICS programs.

In this section we provide an overview of using the J2C Java Bean wizard. For
more detailed information and a step-by-step guide refer to Chapter 6 of the
redbook WebSphere for z/OS V6 Connectivity Handbook, SG24-7064.

ECIConnectionSpec CICS-specific connection information, such as user ID and
password, which can be used to override values set in the
ConnectionFactory.

ECIInteractionSpec CICS-specific interaction information, such as the mirror
transaction identifier and program name.

Note: Rational Application Developer uses the acronym J2C to refer to the
J2EE Connector Architecture.
260 Architecting Access to CICS within an SOA

The high level steps for using the J2C Java Bean wizard are:

� Starting the wizard
� CICS ECI resource adapter installation
� Java bean settings
� Message mapping settings
� Connection properties

Starting the wizard
In Rational Application Developer, to start the process click File → New →
Other, then select the J2C Java Bean option as shown in Figure 8-4.

Figure 8-4 Wizard to create J2C Java Bean

This will open the J2C Java Bean wizard.

CICS ECI resource adapter installation
Rational Application Developer requires the use of the relevant resource adapter
to use this wizard. Therefore you will need to add the CICS ECI resource adapter
to the workbench.

When the CICS ECI resource adapter has been made available to Rational
Application Developer, select it in the wizard to indicate that this J2C Java bean
should use the CICS ECI resource adapter to connect to CICS (Figure 8-5).

Note: To be able to perform this task, ensure that the J2C connectivity feature
is installed in Rational Application Developer.
 Chapter 8. Application development 261

Figure 8-5 Selecting the V6 CICS Resource Adapter

Java bean settings
The next stage of the J2C Java Bean wizard requires you to specify the following
information:

� If the connection to the CICS ECI resource adapter is to be managed by
WebSphere Application Server, the JNDI name of where the resource
adapter can be found (Figure 8-6).

Figure 8-6 Setting JNDI Name

� The Java class name to use for the generated J2C Java bean, and the project
where this Java class should be created.

Message mapping settings
In this stage we must create a new Java method that correspond to a call to a
CICS program. We need to specify the following information:

� The name of the new Java method to create in the J2C Java bean.
262 Architecting Access to CICS within an SOA

� The message to send as input when invoking the CICS program. For
example, you must provide the wizard with a copy of the COBOL
COMMAREA structure to use (Figure 8-7).

Figure 8-7 Locating the COBOL program

� The platform and code page to use to communicate with CICS, and the
portion of the COBOL data structure to use (Figure 8-8 on page 263).

Figure 8-8 Display after setting z/OS as the platform and querying the data structure

This will generate a Java class that will map the COBOL data structure fields into
Java.
 Chapter 8. Application development 263

Connection properties
The final stage is to set the J2C connection properties, including the following
(Figure 8-9):

� The CICS program name (function) to invoke
� The size of the COMMAREA to send
� The interaction type (synchronous or asynchronous)

Figure 8-9 Completed Java Bean method display

Output of the J2C Java Bean wizard
When you complete the J2C Java Bean wizard, a number of classes will be
created (Figure 8-10 on page 265).
264 Architecting Access to CICS within an SOA

Figure 8-10 Display showing the new Java Beans

These classes include:

� Java bean classes for interacting with the CICS ECI resource adapter

� Java data handling classes to handle the conversion of Java objects to and
from the COMMAREA structure that is passed to the CICS program

After development of the J2C Java bean is complete, you can use the Web page,
Web service, or EJB from J2C bean wizard to generate a Web service or
enterprise session bean from this Java bean. The Web service or enterprise
session bean can then be deployed to WebSphere Application Server.

Sample tutorials
Sample tutorials on how to run the J2C wizards are available in Rational
Application Developer, by selecting Help → Tutorials to reach the display shown
in Figure 8-11 on page 266.
 Chapter 8. Application development 265

Figure 8-11 Sample tutorials in Rational Application Developer

8.3.3 WebSphere Integration Developer Enterprise Service Discovery

WebSphere Integration Developer is a tool for creating applications for
deployment to WebSphere Process Server and WebSphere Enterprise Service
Bus.

WebSphere Process Server allows you to construct a business process using
WS-BPEL. WebSphere Enterprise Service Bus allows you to mediate requests
between service requesters and service providers. Both WebSphere Process
Server and WebSphere Enterprise Service Bus are based on Service
Component Architecture (SCA).

Using the Enterprise Service Discovery wizard in WebSphere Integration
Developer you can create SCA import components that make calls to CICS
resources using the CICS ECI resource adapter. Therefore, CICS assets can be
used in an SCA environment in the following ways:

� CICS programs can participate in business processes running in WebSphere
Process Server

� Service requesters making calls to CICS can be mediated by WebSphere
Enterprise Service Bus

� CICS can make calls to service providers through WebSphere Enterprise
Service Bus

A step from the Enterprise Service Discovery wizard is shown in Figure 8-12 on
page 267.
266 Architecting Access to CICS within an SOA

Figure 8-12 Connector Import screen of the Enterprise Service Discovery wizard

For an example of using the Enterprise Discovery Wizard with WebSphere
Enterprise Service Bus, see Chapter 11 of the redbook Getting Started with
WebSphere Enterprise Service Bus V6, SG24-7212.

8.4 CICS Web support
CICS Web support allows you to build your Web logic entirely within your existing
CICS system. There are several options for developing applications using CICS
Web support.

� Develop a brand new Web-aware application using the EXEC CICS WEB and
DOCUMENT API commands.

� Write a Web-aware program to wrapper an existing COMMAREA driven
business logic application. This can be written to operate using the converter
interface or it can link directly to the business logic.

� Use CICS Web support to return static content such as images.

� Use the 3270 Web Bridge to provide access to 3270 applications from a Web
browser.
 Chapter 8. Application development 267

CICS Web support can also act as an HTTP client. A new Web-aware
application would be required, using the EXEC CICS WEB and DOCUMENT API to
send requests to remote HTTP servers and to receive the responses.

CICS TS V3.1 is an HTTP/1.1 server. By default it expects to process HTTP/1.1
requests and produce HTTP/1.1 responses. It will still process HTTP/1.0
requests and produce HTTP/1.0 responses if the client specifically states that it
is using HTTP/1.0.

8.4.1 Web-aware/converter presentation logic
You will either have an existing COMMAREA driven business logic application or
be developing a completely new Web based application. In both cases the
presentation logic, handling the HTTP request and response, should be kept
separate from the business logic. This allows for the greatest flexibility in re-using
the business logic.

The presentation logic can either be written in a converter program or in an
application program that links directly to the business logic itself. Figure 8-13
illustrates the two options.

Figure 8-13 Using a converter or a Web-aware application

Table 8-4 on page 269 shows the main differences between the two options.

Important: The API commands should be used in all new applications for
CICS Web support. The alternative, of processing the HTTP request and
response in the COMMAREA, will be withdrawn in a future release of CICS.

CICS
Business

Logic
Interface

CICS
Business

Logic
Interface

Converter

Converter

Business
Logic

Business
Logic

Web-Aware
Application

LINK

LINK

Channel or
COMMAREA

COMMAREA

Decode

Encode

LINK
COMMAREA
268 Architecting Access to CICS within an SOA

Table 8-4 Differences between converter program and Web-aware application program

Whether a converter program or separate application program is used, CICS
supplies a set of API commands to be used by Web-aware presentation logic.
These commands enable HTTP requests to be processed and HTTP responses
to be constructed easily. The same commands are available whether CICS is
acting as an HTTP server or as a client. The commands are as follows:

� EXEC CICS DOCUMENT allows you to build and manipulate documents,
especially HTML pages, possibly based on templates defined as a
DOCTEMPLATE resource.

� EXEC CICS WEB is the basic HTTP interface: you can use it to read information
from the incoming HTTP header, handle the native HTTP datastream, and
send an HTTP output containing a DOCUMENT.

� EXEC CICS EXTRACT TCPIP returns TCP/IP information.

� EXEC CICS EXTRACT CERTIFICATE allows you to extract information from digital
certificates exchanged over an SSL direct connection.

It is possible to process the HTTP request and response in the COMMAREA.
This is not recommended and new applications should use the API commands.

8.4.2 Making the application work

With the presentation logic and business logic written you need to consider how
the end user with a Web browser is going to access the application. This section
looks at the options for mapping the URL used on the browser to the resources in
CICS representing the requested application.

The recommended way to achieve this mapping is by using the CICS URIMAP
resource. The URIMAP allows a URL to be mapped to a set of CICS resources
such as alias transid and converter program name. The mapping allows URLs to

Converter program Web-aware application

Linked to with a defined COMMAREA
format

Linked to with COMMAREA containing
first 32K of the HTTP request. Contents
can be completely ignored when using the
API commands

Called twice. Once for decode and once
for encode

Called once

Link to business logic done by the CICS
business logic interface using a
COMMAREA only

Link to business logic done directly by the
application so can use a CHANNEL or a
COMMAREA
 Chapter 8. Application development 269

be used that do not contain any CICS specific information. An example URL
would be:

http://www.example.com/processpayment

The URL has not exposed any CICS internal information. A URIMAP can match
this URL and map it to CICS resources. For instance it could specify that the
alias transid is WPAY, there is not a converter, and the target application program
is WEBPAY.

An alternative to using URIMAPs is to use an analyzer program. This program
examines the incoming HTTP request and then determines the CICS resources
that should be used to process it. CICS supplies several sample analyzers to
perform different functions. DFHWBAAX is now the default analyzer. It forces
URIMAPs to be used and issues a more informative error message if a request
not matching a URIMAP is received. The default from previous releases of CICS
is DFHWBADX. This enables HTTP requests to flow into CICS via a URL of the
format:

http://<hostname:port>/<converter>/<alias>/<program>

In this URL:

� hostname is the IP address or hostname of your z/OS system. If port is
specified, it is the PORTNUMBER specified in the TCPIPSERVICE for the
listener transaction.

� converter is the name of your converter program used; if there is no
converter, you should use cics in the URL.

� alias is the name for the alias transaction under which your converter and
user program will run. The default alias is CWBA. To use this, you specify
CWBA in the URL. If you want to use a different transaction, its resource
definition should specify DFHWBA as the program name.

� program is the actual CICS application program being Web-enabled and
which will be called by the BLI.

To issue the same request as with the URIMAP above, the URL would be in this
format:

http://www.example.com/cics/WPAY/WEBPAY

This format of the URL runs the same alias transaction and same application
program, but has exposed the names of those CICS resources directly in the
URL. This is not ideal for security or maintainability.
270 Architecting Access to CICS within an SOA

8.4.3 Static content

Some of the content being requested by a user may be static. Such content does
not require any application logic to be run. Examples of this would be GIF or
JPEG images used for icons and background images on Web pages, and
Cascading Style Sheets used to describe the formatting of Web pages.

Static content is able to be returned by using a URIMAP resource definition. The
URIMAP specifies the URL to match, the location of the static content, and its
mediatype. If the response is text based then code page conversion properties
can also be set.

8.4.4 Chunking and pipelining

Another application design issue is the use of chunking and pipelining with
HTTP/1.1 requests.

Chunking is where a potentially very large response is split into much smaller
chunks which are sent as separate HTTP requests or responses. Chunking can
be very useful when a response is going to take a long time to produce, such as
retrieving information from a database query, but some information is available to
return without waiting for the whole request to complete. Using the database
query as an example the first part of the Web page can be returned as a chunk,
then the first 10 records from the database can be formatted and returned as a
chunk. Further records can then be formatted and returned in chunks. Finally the
end of the Web page is returned in a chunk. While it takes the same time to

Note: An analyzer can be used in conjunction with a URIMAP. For example,
the analyzer is a good place to perform auditing of Web access into CICS. In
such a setup the URIMAP would match the URL and specify the CICS
resources to be used and request that the analyzer be called. The analyzer
can then audit the request and allow processing to continue. It can also audit
failed access attempts by identifying that the request did not match a URIMAP.
Another good use of the analyzer is to set field WBRA_COMMAREA to
indicate that the Web-aware application is going to return an HTTP/1.0
response. This prevents CICS trying to add HTTP/1.1 specific headers to such
responses.

Note: Static content can reside in HFS files. A generic URIMAP able to match
many different requests can refer to an HFS directory allowing you to easily
serve images and other content residing in the same HFS directory using only
a single URIMAP.
 Chapter 8. Application development 271

return all the data to the client as without using chunking, the user does not suffer
such a long delay before getting a response.

Pipelining is where multiple HTTP requests are sent by a client without waiting
for any responses. Responses must then be returned from the server in the
same order that the requests were received. If CICS receives a series of
pipelined HTTP requests from a client then each is processed in turn. The next
request in the pipeline is not processed until the current request has completed
and its response sent back to the client.

8.4.5 Summary

Use URIMAPs to define the URL formats used to access your CICS system with
CICS Web support. They allow you to mask the CICS resources being used from
the end users. They also allow both dynamic and static content to easily be
returned.

Write new Web-aware applications using the API commands and not the
COMMAREA. The API commands remove the necessity to know about the
format of HTTP requests and responses, while still allowing the flexibility to work
with specific HTTP headers if required.
272 Architecting Access to CICS within an SOA

Chapter 9. Data conversion

When using CICS applications for SOA access, data conversion is a key issue,
because CICS, which runs on IBM System z processors, grew up in an EBCDIC
world, whereas the Web evolved from the ASCII-based, PC, and UNIX worlds,
and has now proliferated into almost every corner of the globe.

Consider these key issues when designing your CICS solution:

� Do you want to perform the data conversion within CICS?

� Are you using an Integrated Development Environment (IDE)? If so does it
offer any data conversion functionality?

� Do you have simple character-based data or are you using more complicated
numeric formats?

� Do you have any specific national or regional language considerations?

First, however, let us take a step back and look at the basics of data conversion.

9

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 273

9.1 Data conversion basics
This section introduces the following basic concepts involving data conversion:

� Character sets
� Unicode
� z/OS Unicode Services
� HTTP data streams
� Unescaping HTTP user data
� IIOP data streams
� XML
� Data conversion with Java
� CICS data conversion table DFHCNV
� Big-endian and little-endian
� Sharing CICS programs between architectures
� Customizing NLS support

Character sets
Fundamentally, computers just deal with numbers. Thus, to store letters and
other character data, encoding schemes have been developed to represent each
character using a given numeric value. Principally, two completely unrelated
schemes are in use, American National Standard Code for Information
Interchange (ASCII) and Extended Binary-Coded Decimal Interchange Code
(EBCDIC). ASCII is predominant on UNIX platforms and Intel-based machines,
whereas EBCDIC is used on IBM z/OS and OS/400® systems. To further
complicate matters, different nationalities use different languages and national
alphabets. Thus, to accommodate the different characters required for each
alphabet, different versions of ASCII and EBCDIC encoding schemes (termed
character sets) exist for each local language.

Each character set is referenced by a specific code page identifier unique to itself
(examples being 037 for US EBCDIC and 297 for French EBCDIC). Most
Latin-based character sets are coded with single-byte character sets (SBCS),
where one byte represents each character, thus providing for up to 256
characters. However, to support languages with large numbers of alphabetic
characters (such as Asian languages), double-byte character sets (DBCS) have
been defined, where two bytes are used for each character, thereby providing for
over 64,000 characters.
274 Architecting Access to CICS within an SOA

Unicode
Unicode is a double-byte character set developed by the Unicode consortium
(http://www.unicode.org) that aims to provide a unique number for every
character, “no matter what the platform, no matter what the program, no matter
what the language.” It has been adopted as the underlying character set for the
Java language, and is fundamental to its portability. It is also required by many
modern standards such as XML, LDAP, CORBA 3.0 and WML.

There are several different encodings of Unicode character data in use. UTF-8
and UTF-16 are the common ones. UTF stands for Unicode Transformation
Format.

UTF-8 is an octet (8-bit) lossless encoding of Unicode characters. It encodes
each Unicode character as a variable number of 1 to 4 octets, where the number
of octets depends on the integer value assigned to the Unicode character. It is an
efficient encoding of Unicode documents that use mostly US-ASCII characters
because it represents each character in the range U+0000 through U+007F as a
single octet.

UTF-16 encodes each character in the range U+0000 to U+D7FF and U+E000 to
U+FFFF as a single 16 bit value that is the same as the value of the Unicode
character. Unicode characters in the range U+10000 to U+10FFFF are encoded
as a pair of 16 bit values where each 16 bit value is between D800 and DFFF.

Further details on these encodings can be found on the Unicode consortiums
Web site at:

http://www.unicode.org

z/OS Unicode Services
z/OS provides data conversion for Unicode data. Typically this will be converting
Unicode to and from the EBCDIC code page that the z/OS system is using.
However, it can handle conversion to ASCII code pages and can even be used to
perform standard ASCII to EBCDIC conversion.

CICS Transaction Server has always had its own code page conversion facility.
This is provided by DFHCCNV and does not support Unicode. CICS Transaction
Server 3.1 uses the z/OS Unicode Services to provide support for Unicode.

The Unicode Services consist of two major parts:

� Conversion Environment
� Conversion Services

The conversion environment is created for the entire z/OS image. The initial
creation requires an IPL. Subsequent modifications to the environment do not
 Chapter 9. Data conversion 275

http://www.unicode.org
http://www.unicode.org

require an IPL to take effect. The environment specifies all the supported code
page conversions as well as the conversion techniques that are allowed to be
used.

The Conversion Services are a set of APIs that allow applications to perform
code page conversion.

HTTP data streams
HTTP data streams consist of a request or response line followed by one or more
HTTP headers followed by user data. The HTTP header information is always
transmitted as ASCII data using the ISO 8859-1 (Latin-1) character set. This is
the base character set for HTTP and HTML. The user data is transmitted in the
code page of the HTTP client, which is specified using the charset parameter of
the Content-Type HTTP header. The Accept-Charset and Accept-Language
HTTP headers are used to indicate the character sets and languages that the
client can accept responses in. An example of some HTTP headers is shown in
Figure 9-1. For full details on the meaning of these values, refer to the
HTTP/1.1specification, RFC2616 at:

http://www.ietf.org/rfc/

Figure 9-1 HTTP headers

Note: It is likely that a z/OS Unicode Services conversion environment has
already been setup for use with DB2. If the conversion environment was
generated before applying APAR OA08723 then the conversion techniques
required for DB2 will not work with CICS. The conversion services calls made
by CICS require the conversion technique to not be specified. To support both
CICS and DB2 each code page combination needs to be specified twice in the
conversion environment. Once with the technique left blank, for use by CICS,
and once with the technique specified as ER required by DB2. A conversion
environment built with OA08723 applied will work with CICS and DB2 without
requiring duplicate definitions.

Connection: Keep-Alive
User-Agent: Mozilla/4.72 [en] (WinNT; U)
Host: <<HOST>>
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-Language: en
Content-type: application/x-www-form-urlencoded
276 Architecting Access to CICS within an SOA

http://www.ietf.org/rfc/

Unescaping HTTP user data
When a Web browser builds a HTTP datastream, it will convert some special
characters in user data fields into an escape sequence of the form %nn, where
nn is the ASCII value of the character. This is because those characters are used
as delimiters in the HTTP datastream. For example, the character “&” is used to
delimit the end of a parameter=value pair. If the user enters the string “big&blue”
in an HTML form, the browser will convert the string to “big%26blue” before
sending it in the HTTP datastream.

The analyzer program in CICS Web support has a parameter wbra_unescape to
specify whether or not it should unescape the HTTP user data before passing it
on to the Business Logic Interface. By default, the analyzer will not unescape the
incoming request.

IIOP data streams
The Internet Inter-ORB Protocol (IIOP) is a TCP/IP based implementation of the
General Inter-ORB Protocol (GIOP) that defines formats and protocols for
distributed applications. It is part of the Common Object Request Broker
Architecture (CORBA). While the IIOP header information is transmitted as
ASCII data using the ISO 8859-1 character set, the application data can be any
kind of object. More information about IIOP is provided in The Common Object
Request Broker: Architecture and Specification at:

http://www.omg.org/technology/documents/formal/index.htm

XML
The eXtensible Markup Language (XML) is a subset of SGML. Its goal is to
enable SGML to be served, received, and processed on the Web in the way that
is now possible with HTML. XML has been designed for ease of implementation
and for interoperability with both SGML and HTML.

XML documents are usually encoded in UTF-8 (the default) or UTF-16 and XML
processors are required to read both of these encodings. Other encodings may
be used by use of an encoding declaration within the entity declaration to which
that encoding applies. If the encoding applies to the whole document then the
encoding declaration is part of the XML declaration. A couple of examples of this
are shown in Example 9-1.

Example 9-1 XML declarations containing encoding declarations

<?xml encoding=’UTF-8’?>
<?xml encoding=’EUC-JP’?>

More details about XML can be found in the specification which is located at:

http://www.w3.org/TR/REC-xml/
 Chapter 9. Data conversion 277

http://www.omg.org/technology/documents/formal/index.htm
http://www.w3.org/TR/REC-xml/

Data conversion with Java
The Java programming language, from its very conception, was designed to be
platform neutral. Applications written in Java are compiled into byte code, which
can then be transferred unmodified to any platform, and executed without
change.

To implement its neutrality, Java uses neither ASCII or EBCDIC, but instead uses
the Universal Character Set, also known as Unicode. Unicode is a double-byte
character set (DBCS), which stores each character as a 2-byte value, and thus
provides for a huge range of possible characters in order to encompass most of
the written alphabets of the world. Importantly, this means that in Java the String
object is represented by a sequence of Unicode characters, whereas primitives
(including bytes and byte arrays) are represented in the default encoding of the
platform in use. Communication with CICS generally requires the use of byte
arrays.

Also, importantly, the first 256 characters of Unicode are the same as the 256
1-byte characters of the ASCII ISO 8859-1 character set, the only difference
being that the Unicode characters are prefixed with an all-zero most significant
byte, since they are double-byte characters. This makes conversion between
Unicode and ASCII relatively easy, but can also lead to some pitfalls when
porting code to z/OS. For further details refer to the redbook Integrating Java
with Existing Data and Applications on OS/390, SG24-5142.

CICS data conversion table DFHCNV
DFHCNV is the CICS data conversion table, and is used by DFHCCNV, the
CICS data conversion program. It is invoked from the CICS mirror program and
from the CCI Connector for CICS TS to convert both incoming and outgoing
data. It is also used by CICS Web support and invoked from CWXN to convert
incoming data and by the alias task to convert the outgoing data. There is only
one DFHCNV table per CICS region, and it must be assembled and link-edited
ahead of time. In it, you need to define a DFHCNV table entry for resources for
which you require data conversion (Figure 9-2 on page 279). For CICS
Web-enablement, such a resource will typically be a CICS program (RTYPE=PC)
that is linked to. For each resource, you specify a data length (DATALEN), a data
type (DATATYP), a client code page (CLINTCP), and a server code page
(SRVERCP). If you have mixed data types (such as character and binary data) in
a resource, you can specify multiple TYPE=FIELD entries to signify that different
conversion rules apply to each type.
278 Architecting Access to CICS within an SOA

Figure 9-2 DFHCNV table: CICS data conversion table

Big-endian and little-endian
The representation of numeric (or integer data) is also different on different
computer systems. The two different schemes are referred to as big-endian and
little-endian. Big-endian uses the format where the most significant byte (big
end) is stored first (at the lowest storage address). Little-endian uses the
opposite format, whereby the most significant byte is stored last (at the highest
storage address).

Thus a big-endian 2 byte (16-bit) unsigned integer of decimal value 255 (or
hexadecimal X’FF’) is stored as the value X’00FF’, whereas on a little-endian
architecture, it would be stored as X’FF00’. The System z and RISC based
platforms (UNIX) use a big-endian architecture, whereas Intel platforms
(Windows) use a little-endian architecture.

DFHCNV supports the conversion of numeric data from little-endian format to
big-endian. This is achieved using DATATYP=NUMERIC as illustrated in
Figure 9-3. Either 2-byte (16 bit) or 4-byte (32 bit) data types can be converted. In
this example, the COMMAREA has two fields of 4-byte little-endian numeric data,
followed by 120 bytes of character data.

Figure 9-3 Sample DFHCNV conversion template for binary fields

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=TRADERBL, *
CLINTCP=8859-1,SRVERCP=037
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=372
DFHCNV TYPE=FIELD,OFFSET=372,DATATYP=NUMERIC,DATALEN=4, *

 LAST=YES

DFHCNV TYPE=ENTRY,RTYPE=PC, *
CLINTCP=8859-1,SRVERCP=037, *
RNAME=USERPGM,USREXIT=NO

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=NUMERIC, *

DATALEN=4
DFHCNV TYPE=FIELD,OFFSET=4,DATATYP=NUMERIC, *

DATALEN=4
DFHCNV TYPE=FIELD,OFFSET=8,DATATYP=CHARACTER, *

DATALEN=120,LAST=YES
 Chapter 9. Data conversion 279

If you want to convert 64 bit integers or other types of numeric data (such as
packed decimal or floating point), you cannot use the support in DFHCNV.
Instead, you have to rely on another method, either in the client using the Java
data conversion methods, or using the CICS DFHUCNV user replace module
(refer to CICS Family: Communicating from CICS on System/390, SC33-1697.

Customizing NLS support
CICS 3270 users have access to different national language message catalogs
for the system messages through the use of the LANGUAGE field on the CESN
sign-on screen. CICS Web support messages (HTTP responses) are in English,
but a user-replaceable module (URM) exists, the Web error program DFHWBEP,
which allows the error responses to be added or modified. It is described in the
CICS Internet Guide, SC34-6450. Products that install on non-z/OS platforms,
like the CICS TG and the CICS Service Flow Feature, offer translated menus,
messages, help, and documentation in a selection of languages, which are
chosen at installation time.

9.2 CICS Web services

The CICS Web services support is based on the new CICS TS V3 Channel and
Container support. This support allows multiple containers to be passed between
application programs in channels. These containers can be placed into, or
retrieved from, a channel through simple PUT and GET commands. EXEC CICS
API commands that took a COMMAREA as a parameter have been updated to
allow the option of passing a channel instead. One new capability available with
this function is the ability to perform data conversion on the contents of a
container when it is placed into or retrieved from a channel.

9.2.1 Service provider: Inbound pipeline

The transmitted SOAP request will be processed by the PIPELINE in UTF-8
format. In most cases this is the format that the request will have been sent in.
The data is stored in containers as a CHAR (character) datatype. If the transport
code page is not UTF-8 then the z/OS administrator must set up conversion
routines between the transport code page and UTF-8 to be invoked by the CICS
container code. The transmitted SOAP request will be placed in the container
DFHREQUEST.

In a normal scenario the contents of this container will be processed by a CICS
supplied SOAP 1.1 or SOAP 1.2 pipeline message handler. This processing is
done on the data as UTF-8. The SOAP body is extracted into a container
DFHWS-BODY of type CHAR before being passed to the CICS WEBSERVICE
280 Architecting Access to CICS within an SOA

resource or the custom conversion program depending on the PIPELINE
definition. The response will also be in UTF-8 format in the container
DFHRESPONSE.

The CICS WEBSERVICE resource will always get this container as EBCDIC. It is
therefore required that conversion between UTF-8 (1208) and EBCIDIC be
defined to the z/OS conversion services tables. The code page the
WEBSERVICE resource will use to pass the language structure to the target
application is by default the value set for LOCALCCSID. If it is required that the
language structure be passed to the target application in a different code page
the optional parameter CCSID can specified when generating the Web services
artefacts when using the Web Services Assistant. Figure 9-4 shows how the data
conversion occurs in an provider pipeline.

Figure 9-4 CICS Web services and data conversion

For more information about the z/OS conversion services see z/OS(R) Support
for Unicode: Using Conversion Services.

9.2.2 Service requester: Outbound pipeline

As with the service provider case, the final SOAP message that is transmitted
over the transport will be in UTF-8 format. This message is normally built by a
CICS supplied SOAP 1.1 or 1.2 pipeline message handler and placed into the
container DFHREQUEST.

CICS

PIPELINE Processing

Service
Requester

Business
Logic

Language Structure
LOCALCCSID /
CCSID Override

DFHREQUEST
UTF-8

DFHRESPONSE
UTF-8

WEBSERVICE
Conversion

DFHWS-BODY
UTF-8
 Chapter 9. Data conversion 281

When using the EXEC CICS INVOKE WEBSERVICE API command to send a
Web service request, the container DFHWS-DATA must be placed on a channel
and passed as a parameter to the API. The contents of this container will be
converted to EBCDIC for processing by the CICS WEBSERVICE conversion
routines before being passed to the PIPELINE. This code page will be the value
set in LOCALCCSID unless an override has been specifically set when creating
the Web service artefacts using the CCSID parameter of the Web Services
Assistant. If the application program invoking the Web service has placed the
contents of the container as a different code page then a conversion routine
between the code pages must be specified in the z/OS conversion services
tables.

9.3 CICS Transaction Gateway

Because WebSphere Application Server runs on ASCII based platforms and
CICS runs on an EBCDIC based platform, the need arises for code page
conversion to be performed on data passed between J2EE applications and
CICS programs. Here we explain how the data that is passed to a CICS program
on an ECI call can be converted correctly between ASCII and EBCDIC with the
following data conversion considerations:

� DFHCNV
� Code page aware Java programs with DFHCNV
� Code page aware Java programs without DFHCNV
� Using Rational Application Developer

9.3.1 DFHCNV and the mirror program

ECI applications use the facilities of the CICS mirror program to link to the
specified user program, passing the COMMAREA for input and output. The CICS
mirror program (DFHMIRS) invokes the services of the data conversion program
(DFHCCNV) to perform the necessary code page conversion of the
COMMAREA (Figure 9-5 on page 283).
282 Architecting Access to CICS within an SOA

Figure 9-5 ECI data conversion

If DFHCCNV finds a conversion template in the DFHCNV table whose resource
name (RNAME) matches the target program name, it performs code page
conversion for the COMMAREA associated with the ECI request.

Example 9-2 DFHCNV entry

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC01,USREXIT=NO,
 SRVERCP=037,CLINTCP=850
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767,
 LAST=YES

Example 9-2 shows an example DFHCNV entry for the CICS application EC01.
SRVERCP represents the EBCDIC code page in which the data is stored within
CICS. CLINTCP is the default code page for client requests. DATALEN is the
maximum length of the COMMAREA you require to be translated.

9.3.2 Code page aware Java programs

All Java strings are stored in Unicode, a double byte character set which is
similar to ASCII. The trailing byte maps to the ASCII code point for the common
ASCII characters, for example, the character “A” represented by the ASCII code
point X ‘41’ is represented in Unicode by X ‘0041’. The COMMAREA flowed to
CICS in an ECI request must be a byte array (composed of single byte
characters).

CICS
application

C
O
M
M
A
R
E
A

CICS TS

CICS TG

z/OS

ECI

DFHCCNV

Mirror
program

DFHMIRS

Distributed platform
or z/OS

Service
request

CICS
application

C
O
M
M
A
R
E
A

CICS TS

CICS TG

z/OS

ECI

DFHCCNV

Mirror
program

DFHMIRS

Distributed platform
or z/OS

Service
request
 Chapter 9. Data conversion 283

Typically, within Java, the getBytes() method on the String object is used to
convert a String to a byte array, and similarly, the default String constructor is
used to convert a byte array into a String. Unless an encoding is specified on
these calls, the conversion from Unicode to the byte array will be performed
using the default platform encoding. On Intel or UNIX platforms, this encoding
will usually default to U.S. ASCII (ISO 8859-1); however, within the z/OS JVM, it
could also be 1047 (an extended 037 EBCDIC code page).

Because Unicode and ASCII share the first 256 code points, String to ASCII byte
array conversion performs well, as it just involves removal of the high-order byte.
Example 9-3 shows an example of this technique using the ECI Sample
JavaStringRecord class provided by the CICS TG to perform the data conversion
from Unicode to an ASCII byte array.

Example 9-3 Code page-aware Java application, ASCII COMMAREA

Context ic = new InitialContext();
cxfn = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS");
Connection cxn= cxnf.getConnection();
Interaction ixn= cxn.createInteraction();
ECIInteractionSpec ixnSpec= new
ECIInteractionSpec(SYNC_SEND_RECEIVE,"ECIPROG");
JavaStringRecord jsr = new JavaStringRecord("8859_1");
jsr.setText("DATA1");
ixn.execute(ixnSpec, jsr, jsr);
ixn.close();
cxn.close();

This technique means that the COMMAREA character data always flows to
CICS in ASCII, and so a DFHCNV table entry is required in CICS to convert the
COMMAREA from ASCII to EBCDIC.

Numeric data
If you want to flow numeric data to CICS from a Java application then it will be
necessary to convert all integer values into a byte array before they can be
passed to CICS. The description of how to do this is beyond the scope of this
book, but further details are provided in Appendix B of Java Connectors for
CICS: Featuring the J2EE Connector Architecture, SG24-6401.

Note: Since the arrival of WebSphere Application Server V5 on z/OS, the
default JVM encoding has been U.S. ASCII (ISO 8859-1). This allows EJB
components that rely on the JVM behavior instead of explicit specification of
encoding to execute unchanged when ported to WebSphere Application
Server for z/OS.
284 Architecting Access to CICS within an SOA

9.3.3 Code page aware Java programs without DFHCNV

An alternative to passing an ASCII COMMAREA to CICS and having the ASCII
data converted to EBCDIC is to create an EBCDIC byte array, using the code
page IBM037 as the encoding. This removes the need for the DFHCNV usage in
CICS but can increase the cost within the Java code, because conversion from
Unicode to EBCDIC in Java requires a table lookup rather than simply removing
the high-order byte.

Example 9-4 shows a Java code example.

Example 9-4 Code page-aware Java application — EBCDIC COMMAREA

Context ic = new InitialContext();
cxfn = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS");
Connection cxn= cxnf.getConnection();
Interaction ixn= cxn.createInteraction();
ECIInteractionSpec ixnSpec= new ECIInteractionSpec();
ixnSpec.setInteractionVerb(ixnSpec.SYNC_SEND_RECEIVE);
ixnSpec.setFunctionName("ECIPROG");
JavaStringRecord jsr = new JavaStringRecord("IBM037");
jsr.setText("DATA1");
ixn.execute(ixnSpec, jsr, jsr);
ixn.close();
cxn.close();

9.3.4 Using Rational Application Developer
Instead of hand-coding JCA-based applications the facilities of Rational
Application Developer can be used to build dynamically generated code. A key
advantage of the use of the tooling is that it allows use of the COBOL importer
wizard. This provides a find-grained set of controls for automatic marshalling of
the CICS-COBOL data types from Java to native z/OS formats and vice-versa.
The use of the Rational Application Developer tooling for developing JCA
applications is discussed further in, 8.3.2, “Rational Application Developer J2C
Java Bean wizard” on page 260.

Using the COBOL importer means the programmer can rely on the data
marshalling capabilities of the tooling, and no longer need be concerned with
creation of DFHCNV macro entries or the manual marshalling of data within the
Java environment. Instead, all the fields can now be correctly accessed using
supplied getter and setters dynamically generated by the tooling.

The Rational Application Developer COBOL importer provides the following
functions:

� Character data conversion between ASCII and EBCDIC code pages
 Chapter 9. Data conversion 285

� Numeric conversion for big and little-Endian binary data types, including 16,
32 or 64-bit integers

� Numeric conversion for internal decimal (packed-decimal) data types

� Handling of external decimal signs in character data

� Handling of quote, trunc and symbol options

9.4 CICS Web support

When CICS exchanges HTTP messages with a Web client or server, character
data in the messages normally needs to undergo code page conversion when
entering and leaving CICS. Non-character data, such as images or application
specific data formats, does not require conversion.

In releases of CICS prior to CICS TS V3.1, code page conversion for CICS Web
support was handled using a code page conversion table (DFHCNV). In CICS
TS V3.1, the code page conversion table is no longer required for CICS Web
support, except in limited circumstances for migration purposes. CICS Web
support handles code page conversion using z/OS conversion services.

9.4.1 HTTP header conversion

HTTP headers are always transmitted in code page ISO-8859-1 (819). CICS
converts them to the local EBCDIC code page specified by the LOCALCCSID
system initialization parameter. If the LOCALCCSID is not compatible with
ISO-8859-1, for example it is a DBCS code page, then code page 037 is used
instead. Appropriate definitions need to be made to allow the z/OS conversion
environment to convert between 819 and the local EBCDIC code page or 037.
Example 9-5 on page 287 shows the statements that need to be added to the

Note: If CICS is already configured to perform data conversion using the
DFHCNV conversion table entries, then you should ensure that double
conversion of the data does not occur, which will result in corruption of data.

Note: The DFHCNV table is now only required when:

� The incoming HTTP request is processed by the IBM HTTP Server and the
CICS WebServer plugin.

� The analyzer program returns a value in field wbra_dfhcnv_key that
specifies a conversion table entry to be used to convert the user data
associated with this HTTP request.
286 Architecting Access to CICS within an SOA

z/OS conversion environment to allow the HTTP header conversion to work for
code page 037 and code page 500.

Example 9-5 z/OS conversion statements

CONVERSION 037,819;
CONVERSION 819,037;

CONVERSION 500,819;
CONVERSION 819,500;

When sending the HTTP response, the HTTP headers get converted from
EBCDIC code page 037 to ASCII code page ISO-8859-1 (819).

9.4.2 HTTP user data conversion

CICS assumes a default ASCII code page of ISO-8859-1 and a default EBCDIC
code page of the LOCALCCSID or 037, for HTTP user data. When performing
conversion CICS will attempt to determine the character set of the incoming
request based on the content-type HTTP header and only use the default,
ISO-8859-1, if the character set cannot be determined or is not supported.

Data in the COMMAREA is converted using the code pages specified by the
analyzer program. A URIMAP can be used in place of an analyzer program. If
this is the case then the default code pages are used for conversion.

Data accessed by Web-aware applications using the EXEC CICS WEB RECEIVE
command can choose:

� To not perform conversion

� To allow CICS to determine the ASCII and EBCDIC code pages to be used

� To explicitly specify the code pages that should be used

When the HTTP response is sent, data in the COMMAREA gets converted using
the same code pages that were used to convert the inbound user data. Data sent
using the EXEC CICS WEB SEND command gets converted based on the options
specified on the command by the Web-aware application.

Note: Data in a CICS document cannot be converted to unicode (UTF-8 or
UTF-16) when being sent by the EXEC CICS WEB SEND command. To return a
response in UTF-8 or UTF-16 then the data must be in a buffer and the FROM
option used on the EXEC CICS WEB SEND command.
 Chapter 9. Data conversion 287

Static responses can also be returned by CICS. Conversion of such responses is
based on the MEDIATYPE, CHARACTERSET and HOSTCODEPAGE
attributes of the associated URIMAP resource. Only responses with a text based
MEDIATYPE are eligible to be code page converted.
288 Architecting Access to CICS within an SOA

Part 3 Customer
scenarios

In Part 3, we provide details of different customer scenarios, in which existing
corporate information systems were successfully Web-enabled using the
technologies described in this book.

Part 3
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 289

290 Architecting Access to CICS within an SOA

Chapter 10. Customer scenario: CICS
Web services

In this chapter we discuss how a large banking organization has used CICS TS
V3.1 Web services support to integrate an existing CICS application with newly
available data in a remote location.

10
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 291

10.1 Infrastructure

The bank has over 1700 CICS regions spread across 48 LPARS running 24 by 7.
They process over 5 billion transactions every month. The CICS systems are a
mix of CICS TS 2.2 and TS 3.1. About half of them have been upgraded to TS
3.1.

Through mergers and acquisitions the bank has many different data sources that
are holding information on its customers. It is very expensive and time
consuming to move the information on these systems to a central repository and
manipulating the data into a standard format. This is a long term goal though.
The alternative, shorter term solution, has been to expose access to the
information using Web services and an Enterprise Service Bus. In this case
webMethods is being used as the service endpoint to facilitate the integration of
the data sources and the rest of the organization.

The first application that has been extended to use Web services in CICS TS 3.1
is a PIN mailing application. This is used to mail out new PINs for customers who
have lost their Internet banking or ATM card PIN. Figure 10-1 shows the different
systems and protocols used to process a single request for a new PIN.

Figure 10-1 Application infrastructure

The customer uses Internet banking from a Web browser and requests a new
PIN. This uses SSL and comes into WebSphere Application Server running on
AIX. WebSphere MQ is then used as the transport to get the PIN request to the
mailing application in CICS TS V3.1. The CICS application acts as a service
requester and uses DFHPIRT to send a SOAP request over HTTP to a service
provider running in webMethods on Solaris. The service provider in webMethods
then sends a SOAP request which IMS Connect processes, enabling the

Internet
Banking

HTTP

SOAP
HTTP

MQ

IMS Connect

Data Center 1 Data Center 2
AIX

WebSphere
Application Server

z/OS

CICS

z/OS

CICS

Solaris

webMethods

Solaris

webMethods

z/OS

IMS

z/OS

IMS
292 Architecting Access to CICS within an SOA

required name and address details to be extracted from the geographically
remote IMS database. The information from IMS is returned in a SOAP response
to the CICS application which is then able to mail the new PIN to the customer.

10.2 Implementation

When using Web services in CICS there are several options for implementing the
SOAP processing.

� CICS Web Services Assistant
� Converter program generated by WebSphere Developer for System z
� Perform your own SOAP/XML parsing

The original intention (and what was used for the early prototypes) was to use
the CICS Web Services Assistant to process the WSDL describing the Web
service hosted on webMethods, and produce a container structure for use by the
CICS application on the EXEC CICS INVOKE WEBSERVICE command. By using the
assistant, CICS will perform the SOAP processing and XML parsing at runtime.
The application would only have had to populate the generated container
structure, invoke the Web service and process the container that was returned.

Using the CICS Web Services Assistant requires files to be available in the HFS.
Due to system management and process issues surrounding use of the HFS that
are mentioned in 10.3, “Issues raised” on page 294, the assistant could not be
used. Another reason for not using the assistant was the requirement for multiple
namespace support within a WSDL document. That support was provided by
APAR PK15904 but was not going to be available in the banks production
systems within the timeframe of this project.

The decision was made to generate a template for the SOAP request and install
that in CICS as a DOCTEMPLATE resource. The template contained all the XML
required in the SOAP request and variables in place of user data. The EXEC CICS
DOCUMENT API commands are then used to build a document containing the
SOAP request. The application provides values for all of the variables within the
document. Once the document is built it is sent to the remote Web service using
an EXEC CICS LINK PROGRAM(‘DFHPIRT’). DFHPIRT had to be used instead of
EXEC CICS INVOKE WEBSERVICE because it tells CICS not to perform any SOAP
processing due to the request already being a complete SOAP request. EXEC
CICS INVOKE WEBSERVICE also requires the CICS Web Services Assistant to have
been used to generate the Web service. This was another reason that the
command could not be used by this application.

When the SOAP response is received then it is returned directly to the CICS
application which then has to parse the XML and extract the relevant information.
 Chapter 10. Customer scenario: CICS Web services 293

In this case that includes the name and address of the customer requiring the
new PIN.

The rest of the infrastructure was already in place. All that was required to
change was a minor alteration to the data returned by the Web service hosted in
webMethods. The CICS application required some additional data that was not
currently returned to existing users of that service.

10.3 Issues raised

The initial Web services project in CICS TS 3.1 has been a success and more
are planned for the future. There were some important issues raised during this
project which are summarized here. Those relating to use of the HFS delayed
the uptake of the CICS Web Services Assistant for creation of Web services.

� Traditional CICS mainframe developers have little or no UNIX skills. The
CICS Web services functionality makes significant use of the HFS. There is a
significant learning curve to get existing developers able to create and test
new Web services in CICS.

� There were many issues relating to the system management of HFS files,
directories, and the underlying datasets. The bank did not have in place
sufficient processes to handle backup, recovery, change management or
promotion of files in the HFS. Also each LPAR had its own HFS structure
instead of sharing a single HFS within the SYSPLEX. This meant that the files
required by the CICS regions had to be duplicated in all the individual HFS
structures.

� The process issues with the HFS resulted in a DOCTEMPLATE containing
the format of the SOAP request being used by the CICS application. The
CICS application also performed its own XML parsing of the SOAP response.
Late in the project the WSDL for the service hosted in webMethods was
changed. This required a change to the DOCTEMPLATE as well as
application changes to populate it and to parse out new response elements.
This led to a 2 month delay. If the CICS Web Services Assistant
(DFHWS2LS) had been used to generate the language structures necessary
to call the service then the delay would have been significantly reduced as
only minor application changes would have been required.

� A security issue encountered was that it was not possible to use basic
authentication with the outbound HTTP call made by the CICS requester
pipeline. The user ID and password could only be passed by adding them to
the SOAP message as elements within the SOAP envelope header element.
The service provider would then need modifying to extract and use this data.
The extra effort was not justified for this purely internal Web service so no
authentication of any kind was used.
294 Architecting Access to CICS within an SOA

10.4 Conclusions

The first use of CICS TS 3.1 and Web services was very successful and many
more applications are being written to use Web services. CICS will primarily be
used as a service requester interacting with existing Web services hosted in
webMethods.

The HFS management issues will be resolved and the CICS Web Services
Assistant will be used for all future projects. This will reduce the application
complexity and lessen the effects on development and test from changes to the
WSDL describing the services being used.

The Web services support provided in CICS TS 3.1 has enabled the bank to
easily integrate CICS applications with disparate data sources scattered across
the organization.
 Chapter 10. Customer scenario: CICS Web services 295

296 Architecting Access to CICS within an SOA

Chapter 11. Customer scenario: CICS
Web support

In this chapter, we discuss how CICS Web support was used by the New Jersey
State Police, to Web-enable a new interface to the Federal Bureau of
Investigation (FBI) National Crime Information Center.

11
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 297

11.1 Business description
The New Jersey State Police provides a computer system which services 767
local, county, state, and Federal agencies located across the state. This
CICS/COBOL system contains information such as: motor vehicle data, "state
only" warrants, firearms licensing, and criminal history information. It has over
10,000 users, which access the system 24 hours a day, 7 days a week.

Figure 11-1 shows the CICS Web infrastructure.

Figure 11-1 New Jersey State Police — CICS Web infrastructure

In addition, New Jersey State Police is the conduit through which New Jersey
law enforcement agencies access other state and federal agencies such as the
New Jersey Administrative Office of the Courts, the New Jersey Department of
Corrections, the National Law Enforcement Telecommunications System, and
the National Crime Information Center.

The New Jersey State Police services are about as mission critical as you can
get. The difference between a 2 second response time and a 30 second
response time can sometimes mean the difference between life and death. It is
for that reason that the New Jersey State Police chose to implement their system
on the mainframe using CICS and MQSeries®.

Internet

Web
browser

Other
State and
Federal

Agencies

Law enforcement
officer

New Jersey
State Police

CICS
Web

Support

S/390
298 Architecting Access to CICS within an SOA

The National Crime Information Center is a computer system provided by the
FBI, serving as the national repository for all sorts of criminal justice information.
Located in Clarksburg, West Virginia, the FBI maintains 17 separate databases,
containing information about wanted persons, stolen vehicles, violent gangs, and
a host of other things.

The National Crime Information Center uses a tree architecture, where over
80,000 criminal justice agencies across the nation access a designated control
terminal agency to derive services. It is the responsibility of the control terminal
agency to provide the interface to the end user, and a message switch to
National Crime Information Center. The New Jersey State Police is the control
terminal agency for the State of New Jersey.

Each day the National Crime Information Center processes over 2 million
transactions in sub-second fashion. In 1999 alone, information returned resulted
in 113 000 individuals being arrested; 39,000 missing children and 8 500 missing
adults being located; and 110 000 cars valued at over half a billion dollars being
recovered.

11.2 Technology description
Using a CICS Web support solution designed by IBM Global Services, New
Jersey State Police have provided the Web browser interface for their 10,000
users to access images of wanted or missing persons, stolen property, fingerprint
data and more, in addition to text information such as person information and
criminal history. This was accomplished by implementing a CICS TS region
supporting CICS Web support, a Generic Converter solution, a Graphics
Converter, application programs, and an MQSeries back-end. The design is such
that business logic and presentation logic are completely separate.

The specific software technology used consisted of the following products:

� OS/390 V2.8

� CICS Transaction Server V1.3

– CICS Web support
– CICS to TCP/IP Sockets interface

� IBM MQSeries V5.1

� IBM HTTP Server V5.2
 Chapter 11. Customer scenario: CICS Web support 299

When a Person Inquiry is submitted (based on name and date of birth) from the
Web browser, the response that is returned from the National Crime Information
Center includes all relevant text and images relating to that inquiry. The text is
displayed in keyword/value format to maintain compatibility with existing systems
and mitigate training issues.

The Fingerprint Inquiry performs biometrics inquiries using file uploads to CICS
from a Web browser. The response to a fingerprint inquiry could contain both text
and images.

JavaScript™ embedded in the Web pages prevent the user from transmitting an
inquiry with the mandatory fields left blank, or basic relational edit errors. After
the page is submitted, more comprehensive editing occurs within CICS. If any
errors are found, the same Web page is returned to the client, with an error
message, focus on the error field (cursor positioning), and all check boxes and
selection boxes set correctly as the end user had submitted them.

Any relevant images, such as "mugshots" or identifying tattoos are stored in a
CICS VSAM data table, as a JPEG grayscale image using a compression ratio
designed to reduce the image size to between 4 - 8K. An image reference is
placed in the HTML response. Upon receiving the response, the browser links to
a CICS based graphics converter that retrieves the image, which is inserted in
the browser window.

An entire response is usually received at the browser in under 3 seconds. That is
a significant achievement considering the bundling being done, the number of
systems which are traversed, the telecommunications issues, and the data
requests coming from West Virginia.

Business logic interface
Figure 11-2 on page 301 demonstrates the isolation of presentation and
business logic which is supported by the CICS business logic interface. The
converter programs perform conversion of symbol strings from the browser into a
fixed length COMMAREA expected by the business logic application program
and back again into HTML after processing.
300 Architecting Access to CICS within an SOA

Figure 11-2 Solution of presentation and business logic

11.3 Technical implementations
The "Generic Converter" solution, available from IBM Global Services, takes this
idea one step higher. This single converter can be used in place of all other
application specific converters because it is driven by a fast access VSAM Data
table. This meta data table contains the output HTML template names and the
COMMAREA data format for the business application program. Each application
program entry is defined by using the "Application Entry" program.

Generic Converter
When Web-enabling a CICS application using the Generic Converter a
relationship is established between an HTML template, the Generic Converter,
an Application entry, and a CICS application program.

Business
Logic

Interface

Converter
(decode)

Application

Converter
(encode)

NJJim

NJJim No wants

Name=Jim&STATE=NJ

Symbol string:

Fixed Format Commarea

HTML Page:
Wanted person query results
Name: Jim State: NJ
Status: No wants

CICS TS V1.3
 Chapter 11. Customer scenario: CICS Web support 301

The Generic Converter shields the application program from interfacing with
State Management, Template Management, and HTTP environmental modules.
It also extends CICS Web support function by supporting input HTTP with
enctype=multipart to handle file uploads.

Graphics Converter
While static images may be served from any Web server, the Graphics Converter
provides a means to display JPEG or GIF images from a VSAM file. This allows
CICS to store and serve dynamic images received in real time from remote
systems.

Statistics collection and reporting
This feature of the Generic Converter system is used for stress testing,
application problem determination, and system performance monitoring. It
provides the following daily and interval statistics in real time:

� Generic Converter statistics

– Maximum, average, and last application program response time
– Maximum, average, and last environmental response time
– Transaction counts
– Transaction rate
– Maximum, average, and last HTML input and output sizes

� Graphics Converter statistics

– Transaction counts
– Transaction rate
– Maximum, average, and last image output size

11.4 Issues raised
This project has been a great success for both New Jersey State Police and IBM,
however the following issues encountered during the project are summarized
here:

� A security design should be planned as early as possible. The solution
required customization of the supplied sample CICS security analyzer, which
now links to a customer security program that authorizes the target
application program. Additional Web environmentals are retrieved to
authorize the client IP address. An SSL implementation was undertaken in
2000 to improve authentication and provide text encryption.

� File upload required further customization to the supplied security analyzer to
prevent ASCII/EBCDIC data conversion of inbound binary data. Additionally,
an ActiveX® control was used to process digital images into JPEG files, and
302 Architecting Access to CICS within an SOA

also to automate the selection of the JPEG file for upload at the browser
workstation.

� The supplied sample state management program uses a default size of 256
bytes for allocating state data area. While this size can be increased, it is a
global value used for all state data requests. To provide support for update
application programs, the state data program was modified to provide
cleanup of temporary storage queues, created by application programs to
store large amounts of state data.

� Graphics support for the retrieval of "mugshot" images required further
customization of the security analyzer to pass the image key to the Graphics
Converter.

� A "cookie cutter" design approach was developed as a standard methodology
for Web-enabling applications. This approach proved to increase productivity
for new members of the New Jersey State Police Web-enabling team.

11.5 Conclusions
The production CICS region supporting the Web components listener region was
installed and a successful production system test was conducted on February
10, 2000. Beta sites began using the system in early March 2000. The New
Jersey State Police was the first state agency in the US with the ability to perform
fingerprint query of the National Crime Information Center 2000 database.

CICS Web support, along with the Generic Converter suite of programs, is
viewed by the New Jersey State Police as an excellent solution for their business
requirements. Performance is a critical factor for this application and the fact that
a textual inquiry is able to return a response, including a mugshot image, in an
average of 3 seconds, exceeded expectations. The implementation was
achieved at a low cost, mainly due to leveraging existing CICS COBOL skills,
supplemented with basic HTML training. The Generic Converter solution is easy
to use and additional applications are being Web-enabled without assistance
from IBM.

The New Jersey State Police is positioned to make use of WebSphere
Application Server. All or part of their present system can be migrated into a Java
environment. Since their present system has successfully implemented business
logic that is separate from presentation logic, this business logic could be
accessed from a Java application using the CICS Transaction Gateway and the
External Call Interface (ECI). With minor modifications, the HTML templates
could be converted to Java Server Pages.
 Chapter 11. Customer scenario: CICS Web support 303

304 Architecting Access to CICS within an SOA

Part 4 Appendixes

Part 4 describes two additional Web-enablement technologies in these
appendixes:

� CICS EJB support

� SOAP for CICS feature

Part 4
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 305

306 Architecting Access to CICS within an SOA

Appendix A. CICS EJB support

This appendix provides an overview of the CICS Enterprise JavaBean (EJB)
support introduced in CICS V2.2, and improved in CICS TS V2.3. It contains the
following sections:

� Enterprise JavaBeans

� Security

� Transactional scope

� Performance and scalability

� Application development

� Data conversion

A

© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 307

Enterprise JavaBeans
This appendix details CICS support for the Enterprise JavaBean (EJB)
specification. We begin by introducing the concepts of EJBs then give details of
CICS implementation.

Introduction
Enterprise beans are reusable Java server components written to Sun
Microsystem Enterprise JavaBeans (EJB) specification. They can be used in an
application server called an Enterprise Java Server (EJS). The EJS provides
interfaces and services defined by the EJB specification.

Enterprise beans execute within a container provided by the EJS. They are
located by looking up their names in a name server using the Java Naming and
Directory Interface™ (JNDI). The EJB container provides services such as
transaction support, persistence, security and concurrency.

CICS TS V3.1 provides partial support for Version 1.1 of the EJB specification, in
that it supports session beans only, and not entity beans. The EJB container
within CICS provides the services required by enterprise beans running within
the CICS EJB server.

Session beans
A session bean is instantiated by a client and represents a single conversation
with the client. In most cases, this conversation only lasts as long as the client is
active. From this point of view, the session bean is very similar to a
pseudo-conversational transaction in CICS.

A session bean performs business actions such as transferring data, or
performing calculations on behalf of the client. These business actions can be
transactional or non-transactional. If the actions are transactional, the session
bean can manage its transaction using the Object Transaction Service (OTS), or
it can use the container-managed transaction services provided by the EJB
container.

The CICS EJB server, like any other EJB server which complies with EJB
specification, provides support for stateful as well as stateless session beans.
The option as to whether an enterprise bean is to be deployed as a stateful or
stateless session bean is specified in the deployment descriptor.
308 Architecting Access to CICS within an SOA

Stateless session beans
A stateless session bean does not store conversation state specific to a client. It
provides a service without storing the state between method calls. An example
would be a share quote service which returns the share price of a company and
does not store details of the conversation for any subsequent inquiry. If a
stateless session bean manages its own transactions, it must commit or roll back
the transaction in the same method which began the transaction. In most EJB
servers a pool of stateless session beans can be created to serve multiple
clients. However, in CICS, each bean instance runs in a new request processor
transaction, which is terminated after usage, and so the bean is removed.

Stateless session beans could implement their own state management
techniques, such as returning state to the client or storing state on the EJB
server (perhaps in a CICS temporary-storage queue). However, before
designing such a solution, you need to consider the complexity of providing state
management, as opposed to using the automatic state management process
provided by stateful session beans.

Stateful session beans
When using stateful session beans, the EJB container automatically manages
object state on behalf of the enterprise bean. In practice, this means all class
instance variables are stored across method invocations. This conversation state
is specific to the client that instantiated the session bean, and the session bean
maintains this state across methods and transactions. The conversation state
within a stateful session bean is stored in memory and may be moved to auxiliary
storage by the CICS EJB container once the method request has terminated.
This process is called passivation and the converse is called activation, whereby
the state data is recreated. EJB containers typically use a least recently used
algorithm to identify which beans are to be passivated. The CICS EJB server,
however, has a more aggressive policy on passivation, and passivates all beans
not in an OTS transaction at the end of the client method call. This ensures
optimal performance in CICS, but is still compliant with the EJB specification.

Entity beans
An entity bean is an object representation of business data, such as a customer
or an account. Usually an instance of an entity bean corresponds to a row in a
relational database. This allows the data to be manipulated in a normal
object-oriented manner by invoking methods on the entity bean. CICS TS v2
does not support entity beans. Session beans are a natural extension to the
existing transactional capabilities of CICS; however, entity beans have no
obvious mapping to existing CICS functionality.
 Appendix A. CICS EJB support 309

How CICS provides EJB support
This section describes how CICS provides the capability to run enterprise beans
in the CICS environment. The components that make up the CICS EJB Server
environment in CICS TS are:

� TCP/IP listener
� Request receiver
� Request models
� Request stream
� Request processor
� EJB container
� Object store
� Java Virtual Machine
� CorbaServer
� Deployed JAR files

These components are illustrated in Figure A-1. If the components are split
between a listener region and an AOR in a logical CICS EJB Server, then the
components on the left must run in the listener region and the components on the
right in the AOR.

Figure A-1 Components of the CICS EJB Server

Security
URM

DFHXOPUS

IIOP
request

IIOP
reply

TCP/IP
listener

Region boundary
(optional)

Request
Processor

EJB
Container

CIRP

invoke
enterprise

bean

Request
Receiver

CIRR

DFHIIRRS
DFJIIRP

CICS Java
environment

CICS Sockets
domain

Request
processing
(non Java)

Request Stream

bean

Request stream
directory

DFHEJDIR Object Store
DFHEJOS

REQUESTMODEL
matching

activation

CORBASERVER

DJAR

passivation
310 Architecting Access to CICS within an SOA

� TCP/IP listener

The CICS TCP/IP listener monitors a specified port for inbound IIOP
requests. When a request is received, the listener starts the CICS CIRR
transaction which invokes the DFHIIRRS, the request receiver program.

� Request receiver

The request receiver retrieves the incoming message and examines the
contents of the IIOP message stream. If a message is processed, a response
is sent to the client. The request receiver transaction stays running while the
IIOP connection is open, and terminates when it has no more work to do.

� Request models

To associate the incoming request stream with a CICS transaction, you need
to provide and install REQUESTMODEL resource definitions for all the
possible requests that CICS can process. CICS compares fields in the
request against values defined in the REQUESTMODELs, to find the best
match. The REQUESTMODEL definitions must be installed in both the
listener regions and the AORs in a logical EJB Server.

� Request stream

Requests are passed from the request receiver to the request processor
using the associated request stream. Request streams are a new task-to-task
communication mechanism in CICS. They are used for distributed routing of
method requests for enterprise beans.

� Request processor (DFJIIRP)

The request processor, DFJIIRP, manages the execution of the IIOP request
and is responsible for locating the object identified by the request and calling
the container to process the bean method for an enterprise bean request.

The request processor is also responsible for processing the request for a
stateless Common Object Request Broker (CORBA) object.

� EJB container

The EJB container creates and manages enterprise bean instances at
runtime, and isolates the enterprise beans from direct client access.

The EJB container supports a number of implicit services, including life cycle,
state management, security, transaction management, and persistence.
These services are required by each enterprise bean running in the container.

Life cycle: Individual enterprise beans do not need to manage process
allocation, thread management, object activation, or object passivation
explicitly. The EJB container automatically manages the object life cycle on
behalf of the enterprise bean.
 Appendix A. CICS EJB support 311

State management: Individual enterprise beans do not need to save or
restore object state between method calls explicitly. The EJB container
automatically manages object state on behalf of the enterprise bean.

Security: Individual enterprise beans do not need to authenticate users or
check authorization levels explicitly. The EJB container can automatically
perform all security checking on behalf of the enterprise bean.

Transaction management: Individual enterprise beans do not need to
specify transaction demarcation code to participate in distributed
transactions. The EJB container can automatically manage the start,
enrollment, commitment, and rollback of transactions on behalf of the
enterprise bean.

Persistence: Individual enterprise beans do not need to retrieve or store
persistent data from a database explicitly. The EJB container can
automatically manage persistent data on behalf of the enterprise bean.

� Object store (DFHEJOS)

The object store is a non-recoverable shared file used by the CICS AORs in a
logical EJB Server to store stateful session beans that have been passivated.
In CICS enterprise beans are passivated at the earliest opportunity, which will
occur for all enterprise beans which are not within an OTS transaction and
have finished executing method requests.

� Java Virtual Machine

CICS uses the IBM SDK for z/OS Java 2 Technology Edition, Version 1.4.
This can be used in resettable mode, continuous mode, or as part of a shared
class cache involving a master JVM and a set of worker JVMs. The use of the
JVM is described in more detail in IBM Developer Kit for z/OS Java 2
Technology Edition V1.4 Persistent Reusable Java Virtual Machine User’s
Guide, SC34-6201.

� CorbaServer

The CorbaServer provides the execution environment for enterprise beans.
This execution environment provides a means to logically group enterprise
beans within a CICS EJB server. The CorbaServer environment is configured
by installing a CORBASERVER resource definition.

Restriction: CICS TS V3 does not support entity beans and so does not
support the persistence of enterprise beans.
312 Architecting Access to CICS within an SOA

� Deployed JAR files

A deployed JAR file is an EJB-JAR file containing enterprise beans on which
code generation has been performed, and which has been stored in the HFS
used by the CICS region. The DJAR CICS resource definition is used to
specify the attributes of the deployed JAR file. Installing the DJAR definition in
CICS results in the deployed JAR file (and the classes it contains) being
copied to the CICS shelf directory in the HFS. At the same time, CICS reads
the deployed JAR file from the shelf, parses its deployment descriptor, and
stores the information it contains.

Web access using CICS EJB support
In this section we discuss the different ways that the EJB support in CICS can be
used to enable Web access to CICS applications. We also discuss how these
applications can be enhanced by adding business components which can invoke
services within WebSphere or enable database access.

Session beans in CICS
Figure A-2 on page 314 shows how you can first provide Web access to existing
CICS applications by developing a session bean which uses the CICS Connector
for CICS TS or the JCICS classes to invoke the existing application. In this
scenario, the Web presentation logic for the application can be provided by
developing servlets and JSPs which can be deployed within WebSphere on z/OS
or on a distributed platform. For further details on this, refer to Chapter 10 in the
redbook Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server
V2.2, SG24-6284.

Database access
Having provided Web access to the application, new functionality can be added,
or the existing application can be rewritten to use session beans and JDBC,
SQLJ, or Data Access Beans to provide database access. For details on
developing a session bean using these methods, refer to Chapter 12 in the
redbook Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server
V2.2, SG24-6284.

Entity beans
CICS TS V2 does not provide support for entity beans. However, from CICS, you
can access entity beans on any other EJB server that does support them.
WebSphere Application Server does support entity beans, and therefore new
components can be added to your session beans to invoke entity beans in
WebSphere Application Server. One reason why you would run your session
beans in CICS and entity beans in WebSphere Application Server is that CICS is
 Appendix A. CICS EJB support 313

optimized to run pseudo-conversational transactions, which are similar to
session beans in the EJB model. WebSphere Application Server, however, is
optimized for long-lived data objects, which are similar to entity beans in the EJB
model.

Session beans in WebSphere Application Server
It may be appropriate for some business objects to be deployed as session
beans in WebSphere Application Server. This may be due to specific resource or
platform requirements. In this case, these session beans can be part of an
application which encapsulates business logic across session beans running in
CICS and in WebSphere Application Server. The WebSphere Application
Server, in this scenario, may be running on a distributed platform which has the
specific resources required by the CICS application.

Figure A-2 Web access using CICS EJB support

This flexibility of design enables business components to be deployed where the
platform and the products provide the most efficient environment for the business
logic embodied within the application.

CICS TS V2.3
EJB Server

RMI/IIOP

session bean

z/OS

session bean

SQLJ
JDBC

session bean

servlet

entity bean

Java client

DB2

WebSphere
Application

Server

HTTP

 DB2

RMI/IIOP

Web Browser
314 Architecting Access to CICS within an SOA

Security
Accessing enterprise beans requires the use of the IIOP protocol. Support for
IIOP is provided by the CICS TCP/IP listener. Figure A-3 on page 315 shows a
typical CICS enterprise bean environment.

Figure A-3 Using SSL with EJB clients

Applets or Java applications may require the use of SSL. But a servlet or an
enterprise bean running in WebSphere may not need SSL security, since both
CICS and WebSphere are likely to be in your private network.

Thus providing security for enterprise beans involves:

� Providing an appropriate level of privacy and data integrity (SSL support)
� Confirming the identity of the client (authentication)
� Controlling what the client can do (authorization)

SSL support
To activate SSL support for an incoming IIOP request for an enterprise bean,
specify one of the following for the value of the SSL parameter of the
TCPIPSERVICE definition:

� YES
� CLIENTAUTH

Applet
or Java
application

WebSphere
Application

Server

Web server

Servlet or
enterprise

bean

Firewall

CICS region

TCP/IP listener

bean bean

Naming
ServerJNDI

IIOP / SSL

Container

JNDI

IIOP or
IIOP / SSL

Port=xx Port=yy
EJB client
 Appendix A. CICS EJB support 315

CICS also support outbound IIOP requests. This enables an enterprise bean in a
CICS EJB Server to invoke an enterprise bean in another EJB Server using
Remote Method Invocation over IIOP (RMI/IIOP). This communication can also
be encrypted using SSL; the Interoperable Object Reference (IOR) of the remote
enterprise bean will specify whether SSL should be used.

The remote server can request CICS to authenticate itself with a client certificate.
CICS finds the label of the client certificate that it should use in the
CERTIFICATE parameter of the CORBASERVER definition and then obtains the
certificate from the KEYRING (as specified in the SIT).

Improved SSL support in CICS TS V2.3 and above
CICS allows you to restrict the cipher suites which CICS advertises for
connections that use the HTTP protocol. You can use the same values of the
PRIVACY parameter of the TCPIPSERVICE definition, namely:

� NOT SUPPORTED
� SUPPORTED
� REQUIRED

This is in order to also restrict the cipher suites which CICS advertises for
inbound IIOP requests.

To restrict the cipher suites which CICS uses for outbound IIOP requests, you
may specify one of the same values for the OUTPRIVACY parameter of the
CORBASERVER definition.

Authentication
Since CICS authorization is based on a user ID, CICS must derive one from the
IIOP request and authenticate it. It can do so by using information associated
with or provided by the following:

� An SSL client certificate
� The security user-replaceable module (DFHXOPUS)
� Asserted identity

SSL client certificate
If you are using SSL to send an IIOP message, you can use client certificates to
authenticate the user. This is achieved by setting SSL(CLIENTAUTH) and
AUTHENTICATE(CERTIFICATE) in the TCPIPSERVICE definition and
CLIENTCERT(tcpipservicename) in the CORBASERVER definition.
316 Architecting Access to CICS within an SOA

The mapping from a certificate to a user ID exists when:

� The certificate is already registered to a user ID in your external security
manager’s data base (single certificate).

� The information sent in the client certificate matches a RACF Certificate
Name Filtering profile, which allows multiple SSL client certificates to be
associated with a single user ID.

Security user-replaceable module (DFHXOPUS)
If no SSL client certificate is provided, you can assign a user ID by coding a
user-replaceable module (URM) and specifying its name in the URM parameter
of the TCPIPSERVICE definition. If you do not specify a module name, CICS will
assign the default user ID set in the DFLTUSER system initialization parameter.

CICS provides the sample DFHXOPUS module, which is a C program. An
alternative COBOL version (named COBXOPUS) is available as additional
material for the redbook Enterprise JavaBeans for z/OS and OS/390 CICS
Transaction Server V2.2, SG24-6284.

Since it is possible for a CICS region to have several TCP/IP listeners, we can
use different URM modules. The URM should return a pointer to an 8-byte
character field in its COMMAREA, and CICS will associate the user ID in that
field with the server transaction.

The URM can use a variety of designs to choose the correct identification;
possibilities include:

� Passing a user ID and password in the IIOP message and performing custom
authentication using the EXEC CICS VERIFY PASSWORD command.

� Extracting user information, such as the client TCP/IP address and port
number, using the EXEC CICS EXTRACT TCPIP command.

� Mapping user IDs based on enterprise bean names and method names.

� Assigning a single user ID for all IIOP messages.

Asserted identity
Assume that an HTTP request drives a servlet in WebSphere which then invokes
a method on an enterprise bean in CICS, as shown in Figure A-4 on page 318.
 Appendix A. CICS EJB support 317

Figure A-4 Invoking a bean method through an intermediate server

In CICS TS V2.2, CICS does not recognize that there is a server on the other end
of the IIOP connection. WebSphere may present a client certificate, but it is not
the end-user’s certificate. Rather, it is WebSphere’s own certificate (and thus
WebSphere’s identity). So the work in CICS will execute under some user ID
other than “Joe.” This may be the CICS region default user ID, one assigned by
the URM, or the one associated with a certificate presented by WebSphere.

IBM has developed a proprietary protocol called Asserted Identity to address this
problem. Implemented by WebSphere V4 and above and CICS TS V2.3 and
above, Asserted Identity will allow “Joe” to be known in all the servers and his
security identification will be passed from WebSphere to CICS.

Asserted identity authentication can be used when an IIOP client communicates
with the target server (CICS TS V2.3 and above) through an intermediate server
(CICS TS V2.3 and above, WebSphere V4.0 and above), and both servers use
the same security manager. It works as follows:

1. The intermediate server’s identity is authenticated by the target server using
SSL client certificate authentication.

2. Through the security manager, the target server verifies that the intermediate
server can be trusted to authenticate its clients.

3. When the intermediate server receives a request, it authenticates the client
using whatever authentication protocol is appropriate. If the client is
successfully authenticated, the intermediate server passes the request to the
target server.

DB2IMSVSAMVSAM IMS DB2

WebSphere/390

HTTP
RMI-IIOP COBOL

program

userID=XXXXuserID=Joe

EJB

CICS

cert=(Joe)

Servlet
318 Architecting Access to CICS within an SOA

4. Because the target server trusts the intermediate server to authenticate the
client, it makes no further checks of the client’s authenticity before processing
the client’s request.

To establish a trust relationship between the intermediate and target servers,
where the target server is a CICS CorbaServer, perform the following steps:

1. Configure your CICS region to use SSL authentication and specify
AUTHENTICATE(ASSERTED) and SSL(CLIENTAUTH) in the TCPIPSERVICE
definition.

2. Associate the intermediate server’s client certificate with a RACF user ID.

3. Create a profile named DFH.applid.corbaserver.ASSERTID in the
SERVAUTH general resource class, where:

– applid is the APPLID of the CICS region

– corbaserver is the name of the target CorbaServer.

For example, use the following RACF command:

RDEFINE SERVAUTH DFH.applid.corbaserver.ASSERTID UACC(NONE)

4. Give the intermediate server’s user ID (established in step 2) READ authority
to the profile. For example, use the following RACF command:

PERMIT DFH.applid.corbaserver.ASSERTID CLASS(SERVAUTH) ID(server_user_ID)
ACCESS(READ)

5. If the intermediate server is:

– WebSphere, then specify Send asserted identities allowed on its
properties form. Fill in the values for the SSL-related elements (SSL
RACF-keyring, SSL V2 timeout, and SSL V3 timeout).

– CICS, then no additional setup is required. CICS will always send
asserted identities if the target server is capable of receiving them.

User ID authentication summary
Table A-1 on page 320 summarizes the relation between the TCPIPSERVICE
and CORBASERVER parameters, concerning SSL, and shows how the user ID
is obtained.
 Appendix A. CICS EJB support 319

Table A-1 User ID authentication summary

Authorization
Authorization involves verifying that a user is allowed to access a particular
method in a bean, and then to access the resources which that method uses.

Authentication
method

 TCPIPSERVICE
AUTHENTICATE
parameter

TCPIPSERVICE
SSL
parameter

Associated
CORBASERVER
parameter

Client
Cert
associa-
ted with
user ID

How user ID of
IIOP client is
identified

IIOP with no
authentication

NO NO UNAUTH
(tcpipservice)

N/A User ID provided
by URM
specified on
TCPIPSERVICE
(2)

IIOP with no
authentication

NO YES SSLUNAUTH
(tcpipservice)

N/A User ID provided
by URM
specified on
TCPIPSERVICE
(2)

IIOP with SSL
client certificate
optional

NO CLIENTAUTH SSLUNAUTH
(tcpipservice)

NO User ID provided
by URM
specified on
TCPIPSERVICE
(2)

YES That user ID is
used

IIOP with SSL
client certificate
required

CERTIFICATE CLIENTAUTH CLIENTCERT
(tcpipservice)

NO Connection is
rejected

YES That user ID is
used

IIOP with
asserted
identity
authentication

ASSERTED CLIENTAUTH ASSERTED
(tcpipservice)

NO (1) Connection is
rejected

YES (1) User ID sent in
IIOP request by
intermediate
server

1. Intermediate server’s certificate
2. If a program is not specified in the URM parameter of the TCPIPSERVICE definition, then the CICS default
user ID is used
320 Architecting Access to CICS within an SOA

Associating methods with transaction IDs
CICS runs each method call as a CICS transaction. The association between a
method and a CICS transaction is specified in a REQUESTMODEL resource
definition. A CICS-supplied transaction, CREA, enables you to generate
REQUESTMODEL definitions that can be installed dynamically into the CICS
region, or written to the CICS system definition file (CSD), or both. CREA
displays a list of beans and bean methods within the JAR file related to an
installed DJAR resource definition, and enables you to associate transaction IDs
with those beans and methods. Once you have finished associating transaction
IDs with beans and methods, a list of request models, which best match the
transaction IDs with the beans and methods in the JAR file, is generated. Each
REQUESTMODEL definition is presented to you with the option to:

� Install the REQUESTMODEL in CICS
� Define the REQUESTMODEL to the CSD
� Both install and define the REQUESTMODEL
� Ignore the REQUESTMODEL

Next, a list of the REQUESTMODELs that you have installed and defined is
displayed. Any REQUESTMODELs installed in CICS that are not used by the
DJAR (but refer to beans within the DJAR) are also shown. Similarly, any
transaction IDs that are used but not currently installed are listed as well.

Matching method calls to REQUESTMODELs
Figure A-5 on page 322 illustrates the process of matching a method request to a
REQUESTMODEL. CICS uses the bean name, the interface type (home or
remote), the CorbaServer name and the method name (in this order) to match
the incoming method request with a REQUESTMODEL. A more specific match
overrides a generic match. If you do not define a REQUESTMODEL, CICS uses
the default REQUESTMODEL, which always maps the method name to
transaction CIRP. The CIRP transaction points to the default request processor
DFJIIRP.
 Appendix A. CICS EJB support 321

Figure A-5 Using REQUESTMODELs to map a Bean method to a transaction ID

In your external security manager, you would have to give access to the
transaction CIRP to the user ID associated with any request for a method in
EJBtwo. Similarly, you would have to give access to transaction TRX2 to the
user ID associated with a client request for the breakd() method in EJBone, and
access to transaction TRX1 to the user ID associated with a client request for
any other method in EJBone.

Security roles
In the Enterprise JavaBeans Specification v1.1 access to enterprise bean
methods is based on the concept of security roles. A security role represents a
type of user of an application in terms of the permissions that the user must have
to successfully use the application. A role is a logical security identification.

For example, in a payroll application:

� A manager role could represent users who are permitted to use all parts of
the application

Request without
matching

REQUESTMODEL

Transaction
TRX1

Transaction
TRX2

Transaction
CIRP

REQUESTMODEL: TRX2
BEANNAME: EJBone
OPERATION: breakd
CORBASERVER: PJA1
TRANSID: TRX2

REQUESTMODEL: TRX1

CorbaServer: PJA1

JNDIPrefix: ITSO/PJA1

DJAR: EJBone

EJBoneBean

CorbaServer: COR1

JNDIPrefix: ITSO/COR1

DJAR: EJBtwo

EJBtwoBean

EJBtwo.anyMethod() EJBone.breakd() EJBone.otherMethods()

BEANNAME: EJBone
OPERATION: *
CORBASERVER: PJA1
TRANSID: TRX1
322 Architecting Access to CICS within an SOA

� A team_leader role could represent users who are permitted to use the
administrative functions of the application

� A data_entry role could represent users who are permitted to use the data
entry functions of the application

The security roles for an application are defined by the application assembler,
and are specified in the bean's deployment descriptor, as shown in Figure A-6.

Figure A-6 Definition of security roles in XML deployment descriptor

The security roles that are permitted to execute a bean method are also specified
in the bean's deployment descriptor, again by the application assembler. The
association between security roles and the bean methods is defined by using
method-permission tags. Figure A-7 shows an example of giving the security role
Manager access to all the methods in the bean named Payroll.

Figure A-7 Access rights for the Manager role

<security-role>
 <description>
 A user with this role may access any method
 </description>
 <role-name>
 Manager
 </role-name>
</security-role>
<security-role>
 <description>
 A user with this role may use administrative functions
 </description>
 <role-name>
 Team_leader
 </role-name>
</security-role>

<method-permission>
 <role-name>Manager</role-name>
 <method>
 <ejb-name>Payroll</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
 Appendix A. CICS EJB support 323

In the example, methods which update the hours worked by employees each
week might be assigned to the data_entry role, while methods which delete an
employee from the payroll might be assigned to the team_leader role.

To distinguish similarly named security roles in different applications, or in
different systems, the security roles specified in the bean's deployment
descriptor can be given a one- or two-part qualifier when the bean is deployed in
a CICS system.

For example:

Security role with no qualifier team_leader

Security role with one qualifier payroll.team_leader

Security role with two qualifiers prodcics.payroll.team_leader

In this example, payroll qualifies the security role at the application level and is
used to distinguish between the team_leader role in the payroll application and
the team_leader role in other applications. Similarly, prodcics qualifies the
security role at the system level and is used to distinguish between the
payroll.team_leader role in the prodcics region and the payroll.team_leader
role in test regions.

At the application level, security roles are qualified by the display name, if one is
specified in the deployment descriptor. At the system level, security roles are
optionally qualified with a prefix which is specified in the EJBROLEPRFX system
initialization parameter.

A security role with its qualifiers is known as a deployed security role. The
mapping of individual users or groups to deployed security roles is done in the
RACF entity class EJBROLE or the RACF grouping class GEJBROLE.

Using the RACF EJBROLE generator utility
The RACF EJBROLE generator utility (dfhreg) is a Java application program that
extracts security role information from a deployment descriptor, and generates
an output file which contains the RACF commands that define security roles as
members of a profile in the GEJBROLE class.

Example A-1 on page 325 shows an example of a Unix System Services (USS)
command that invokes the RACF EJBROLE generator utility. In this example:

� -secprfx PRODCICS specifies the name used to qualify the security role at the
system level. The value you specify must match the value of the
EJBROLEPRFX system initialization parameter for the CICS system where
the security roles will be used.
324 Architecting Access to CICS within an SOA

� PayrollSessionBeanEJB.roles specifies the name of the file to which dfhreg
will write its output.

� PayrollSessionBeanEJB.jar specifies the name of the input file which
contains the deployment descriptor.

Example: A-1 Executing dfhreg from a USS command line

dfhreg -secprfx PRODCICS -out PayrollSessionBeanEJB.roles
PayrollSessionBeanEJB.jar

Example A-2 shows the output file generated by dfhreg.

Example: A-2 PayrollSessionBeanEJB.roles file created by dfhreg

/***/
/* RACF EJBROLE GENERATOR TOOL */
/***/
/* Default enterprise role used to group EJBROLE definitions. */

RDEFINE GEJBROLE DFLTROLE

/* Manager role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.manager)

 /* Team Leader role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.team_leader)

/* Data Entry role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.data_entry)

These RACF commands define the three deployed security roles
(PRODCICS.Payroll.manager, PRODCICS.Payroll.team_leader, and
PRODCICS.Payroll.data_entry) as members of the profile DFLTROLE in the
RACF grouping class GEJBROLE. You would then use the RACF PERMIT
command to give the appropriate users READ access to the DFLTROLE profile:

PERMIT DFLTROLE CLASS(GEJBROLE) ID(user1,user2) ACCESS(READ)

Alternatively, you could use the following commands to define deployed security
roles in the EJBROLE entity class:

RDEFINE EJBROLE (PRODCICS.Payroll.manager) UACC(NONE)
RDEFINE EJBROLE (PRODCICS.Payroll.team_leader) UACC(NONE)
RDEFINE EJBROLE (PRODCICS.Payroll.data_entry) UACC(NONE)
 Appendix A. CICS EJB support 325

Then you could use the RACF PERMIT command to give a user access to one
security role without giving him access to the other security roles:

PERMIT PRODCICS.Payroll.manager) CLASS(EJBROLE) ID(user1) ACCESS(READ)
PERMIT PRODCICS.Payroll.team_leader) CLASS(EJBROLE) ID(user2) ACCESS(READ)
PERMIT PRODCICS.Payroll.data_entry) CLASS(EJBROLE) ID(user3) ACCESS(READ)

Application-managed security
Applications can query the session context object to retrieve security information.
Normally, this should be avoided, since the objective of EJB is to let the
application programmer concentrate on the business logic, but sometimes it may
be necessary.

The EJB 1.1 specification provides the following two methods:

� isCallerInRole(String roleName)

Returns true if the caller is in the security role specified as the single string
argument; otherwise false is returned.

� getCallerPrincipal()

Returns an object of the class java.security.Principal which may then be
used to extract more information such as the distinguished name (DN) which
is associated with this session. Figure A-8 shows a Java code sample for
extracting the distinguished name.

Figure A-8 Extracting distinguished name

When a Java program calls the getName() method, the distinguished name is
extracted from the X.509 certificate provided by the client. The distinguished
name includes user information like: Common Name, Title, E-mail address,
Organization Unit, Organization, Location, State, and Country.

If a certificate is not available, the DFHEJDNX user-replaceable module is
invoked to generate the distinguished name, given the following inputs:

� The Common Name, that is, the user name associated with the caller’s user
ID. The user name is a 20-character name of the user obtained from the
external security manager (ESM).

� Certain fields from the CICS client certificate, used by outbound SSL and
specified in the CERTIFICATE parameter of the CORBASERVER definition.

// obtain the caller principal
 callerPrincipal = ejbContext.getCallerPrincipal();
// obtain the caller principal’s name
 callerName = callerPrincipal.getName();
326 Architecting Access to CICS within an SOA

If a CORBAServer certificate is not available, the default certificate provided
in the keyring is used instead.

Design issues
The solution design must consider the security needs, the performance issues,
and possible implications of flowing IIOP requests through firewalls that may not
provide an IIOP capable proxy server.

Transactional scope
The transaction management rules which are applied to enterprise bean method
invocations are based on the Object Transaction Service (OTS) which is part of
the CORBA specification.

OTS permits transaction management in a distributed heterogeneous
environment. The instigator of an OTS transaction registers the start of the
transaction with an OTS Transaction Coordinator which returns a transaction
context that uniquely identifies the transaction. The transaction context, which
includes a reference to the OTS Transaction Coordinator responsible, is passed
as part of the protocol for method invocations on remote objects such as
enterprise beans.

As shown in Figure A-9 on page 328, the transaction context is propagated
throughout all method invocations on any enterprise beans which are involved
during the life of the transaction.
 Appendix A. CICS EJB support 327

Figure A-9 EJB transaction propagation

That is not to say that the enterprise beans involved necessarily participate in the
OTS transaction. The transaction context which is sent with the method
invocations is an invitation to participate in the transaction, but the invitation may
be declined.

For the remainder of this section we use the term OTS transaction to differentiate
these transactions from CICS-transactions.

When designing a session bean that will run in CICS, the bean provider must
decide whether the session bean will demarcate OTS transactions
programmatically in the business methods (bean-managed transactions), or
whether the OTS transaction demarcation is to be performed by the container
based on the transaction attribute in the deployment descriptor
(container-managed transactions).

The bean provider of a session bean must use the transaction-type element in
the deployment descriptor to declare whether the session bean is of the
bean-managed or container-managed transaction demarcation type. The
transaction-type element must be one of the two following:

� <transaction-type>Bean</transaction-type>

� <transaction-type>Container</transaction-type>

OTS
Coordinator

Enterprise
Bean 1

Enterprise
Bean 2

Enroll in T1
5

R
equest (T1) 4

R
esponse

En
ro

ll i
n

T1

3

6

Request (T1)
Response

2

7Start T1

1

Com
m

it T1

8

Java
Client
328 Architecting Access to CICS within an SOA

With bean-managed transactions, the session bean code demarcates OTS
transactions using the javax.transaction.UserTransaction interface. All
resource manager accesses between the UserTransaction.begin() and
UserTransaction.commit() method calls are part of an OTS transaction. With
container-managed transactions, the container demarcates OTS transactions
using the transaction attribute provided by the application assembler in the
deployment descriptor. The transaction attribute is used to tell the container
whether it should include the work performed by an enterprise bean method in a
client’s OTS transaction, run the enterprise bean method in a new OTS
transaction started by the container, or run the method with no OTS transaction.

Every client method invocation on a session bean object, via the bean’s remote
interface is interposed by the container, and every connection to a resource
manager used by a session bean is obtained via the container. It is this managed
execution environment that allows the container to affect the session bean’s OTS
transaction management.

We discuss bean-managed transactions further in , “Bean-managed
transactions” on page 329,and container-managed transactions in ,
“Container-managed transactions” on page 330.

Bean-managed transactions
The J2EE specifications provide an application programming interface to allow
the application developer to explicitly set OTS transaction boundaries. This
interface is called the Java Transaction API (JTA).

The Java Transaction API is used by obtaining an instance of the class
UserTransaction from the enterprise bean’s session context, and then invoking
methods on the instance to request OTS transaction management services.
Here are four of the methods provided by the JTA:

begin() Start a new OTS transaction

commit() Commit the current OTS transaction

getStatus() Retrieve the status of the current OTS transaction

rollback() Roll back the current OTS transaction

Figure A-10 on page 330 shows a fragment of code in which a bean manages its
own OTS transaction.
 Appendix A. CICS EJB support 329

Figure A-10 An example of a bean-managed transaction

There are two kinds of session bean:

Stateful A stateful session bean has a client-specific conversational state,
which it maintains across methods and OTS transactions; for
example, a shopping cart object would maintain a list of the items
selected for purchase by the user. A stateful session bean that
manages its own OTS transactions can begin a transaction in one
method and commit or roll it back in a subsequent method.

Stateless A stateless session bean has no client-specific (nor any other kind
of) non-transient state; for example, a stock quotation object might
simply return current share prices. A stateless session bean that
manages its own OTS transactions and begins a transaction must
commit (or roll back) the transaction in the same method in which it
started it.

Container-managed transactions
We recommend that you leave OTS transaction management to the EJB
container in order to simplify your application development. The EJB container
uses the transaction attribute to automatically manage the start, enrollment,
commitment, and rollback of OTS transactions on behalf of your session bean’s
methods. The transaction attribute is set in the assembly descriptor section of the

public void deposit(int amt) throws AccountException{

 /* get a user transaction object from the session context */
 javax.transaction.UserTransaction userTran = ctx.getUserTransaction();

 /* start the transaction */
 userTran.begin();

 /* update the balance */
 balance += amt;

 /* code to update the database */
 /* commit the transaction */
 try{
 userTran.commit();
 }
 catch(Exception e){
 throw new accountException("error:"+e.toString());
 }
}
330 Architecting Access to CICS within an SOA

EJB deployment descriptor (that is, the file ejb-jar.xml) using the
trans-attribute element. The trans-attribute element associated with a
business method specifies how the container must manage transactions for that
method when a client invokes the method via the session bean remote interface.

The Enterprise JavaBeans 1.1 specification, defines the possible values for the
transaction attribute as: NotSupported, Required, RequiresNew, Supports,
Mandatory and Never. Table A-2 shows how the CICS EJB container behaves
for different settings of the trans-attribute element.

Table A-2 CICS behavior for different values of trans-attribute

Transaction
attribute

If client is participating in an
OTS transaction

If client has no OTS
transaction

NotSupported OTS transaction is suspended
for duration of the method call.
CICS starts a unit-of-work and
commits at end of method. OTS
transaction is resumed when
method is completed.

Equivalent to
SYNCONRETURN behavior.

CICS starts a unit-of-work and
commits at end of method.
Equivalent to SYNCONRETURN
behavior.

Required CICS registers interest in the
OTS transaction with the OTS
coordinator.

Container starts a new OTS
transaction; CICS functions as
the OTS transaction coordinator
and commits or rolls back the
OTS transaction when the bean
method ends.

Supports CICS registers interest in the
OTS transaction with the OTS
coordinator.

CICS starts a unit-of-work and
commits at end of method.

Equivalent to SYNCONRETURN
behavior.

RequiresNew OTS transaction is suspended
for the duration of the method
call.Container starts a new OTS
transaction. CICS functions as
the OTS transaction
coordinator and commits or
rolls back the OTS transaction
when the bean method ends.
OTS transaction is resumed
when the method is completed.

Container starts a new OTS
transaction. CICS functions as
the OTS transaction coordinator
and commits or rolls back the
OTS transaction when the bean
method ends.
 Appendix A. CICS EJB support 331

Session bean methods always execute in a CICS-task, under a CICS
unit-of-work. Even if a session bean method executes under no OTS transaction,
any updates that the method makes to recoverable resources are committed
only at normal termination of the CICS task, and backed out if there is a need to
roll back.

The setting of a method’s trans-attribute element determines whether or not
the CICS task under which the method executes makes its unit-of-work part of a
wider, distributed transaction.

Application assembler’s responsibilities
The application assembler uses the container-transaction elements to define
the transaction attributes for the methods of the session bean. Each
container-transaction element consists of a list of one or more method
elements, and the trans-attribute element. The container-transaction
element specifies that all the listed methods are assigned the specified
transaction attribute value.

The method element uses the ejb-name, method-name, and method-params
elements to denote one or more methods of the session bean.

Figure A-11 on page 333 shows an example of the specification of the
transaction attributes in the deployment descriptor. The updatePhoneNumber()
method of the EmployeeRecord session bean is assigned the transaction attribute
Mandatory; all other methods of the EmployeeRecord bean are assigned the
attribute Required.

Mandatory CICS registers interest in the
OTS transaction with the OTS
transaction coordinator

CICS throws
TransactionRequiredException
exception

Never CICS throws Remote Exception
exception.

CICS starts a unit-of-work, and
commits at end of method.

Equivalent to SYNCONRETURN
behavior.

Transaction
attribute

If client is participating in an
OTS transaction

If client has no OTS
transaction
332 Architecting Access to CICS within an SOA

Figure A-11 Transaction attributes in a deployment descriptor

Performance and scalability
CICS provides support for Enterprise JavaBeans which enables clients such as
servlets, session beans, and Java applications to invoke session beans running
within the CICS EJB server. These clients use Remote Method Invocation (RMI)
over IIOP to invoke business methods on the session beans.

We begin this section by outlining some of the improvements to support for Java
in CICS TS V2.3. Next we discuss some things that you should consider when
configuring a CICS TS V2.3 and above region to support a particular Java
workload. Then we help you estimate how many JVMs you will need and how
many JVMs your region will support. After that we discuss ways to balance IIOP
requests across CICS listener regions and method requests across AORs. We
conclude this section by looking at some network considerations.

<ejb-jar>
 ...
 <assembly-descriptor>
 ...
 <container-transaction>
 <method>
 <ejb-name>EmployeeRecord</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 <container-transaction>
 <method>
 <ejb-name>EmployeeRecord</ejb-name>
 <method-name>updatePhoneNumber</method-name>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>
 ...
 </assembly-descriptor>
</ejb-jar>
 Appendix A. CICS EJB support 333

Improvements to support for Java in CICS TS V2.3
The improvements to support for Java in CICS TS V2.3 include the following:

� A new execution mode for long-lived Java Virtual Machines (JVMs) called the
continuous JVM

� A Shared Class Cache facility which permits Java classes to be cached and
shared by a number of JVMs

� Extension of storage protection to Java programs

� Improved algorithms for assigning requests for Java programs to JVMs

We discuss each of these in turn.

The continuous JVM
CICS has a small number of Task Control Blocks (TCBs) which it uses when
running application programs. Of these, the Quasi Reentrant (QR) TCB is used
to single thread the entire workload. At any point in time there may be a number
of transactions running in a CICS region. Only one of these will have use of the
QR TCB at any time. If that application needs to pause for some reason, for
example, when writing to a data set or waiting for a resource lock, it becomes
suspended by CICS. This allows another application to gain control of the QR
TCB and carry out some work. This permits CICS to serialize the execution of all
the applications it has concurrently running, preventing the actions of one from
interfering with those of any others.

This mechanism was developed for applications written in fully compiled
languages such as COBOL, PL/1, or C. However, the introduction of support for
Java programs presented some additional challenges which CICS has had to
address.

Pure Java requires an execution environment provided by a JVM written for the
operating system on which it runs. On z/OS, a JVM can sometimes issue
blocking calls, such as MVS waits, which cause the TCB used by the JVM to go
into a wait state. If a JVM was started on the QR TCB then blocking calls would
cause the entire CICS workload to pause. To address this issue, CICS TS 1.3
introduced a new type of TCB, known as the J8 TCB. CICS uses one of these for
each JVM it starts. As we will see later, with CICS TS V2.3 there is now a J9 TCB
as well.

The JVM that is used by CICS supports multithreaded applications. However,
only one application can run in a JVM at any one time. More than one TCB can
be used when a single CICS region has to support multiple concurrent Java
applications. In this way a CICS region can have a single pool of J8 and J9 TCBs
to support its Java workloads.
334 Architecting Access to CICS within an SOA

All new CICS transactions start on the QR TCB. If the transaction makes use of a
Java program, then CICS switches to either a J8 or a J9 TCB and runs the
program under the control of a JVM there. When the program terminates, or if it
needs to access a CICS-managed resource, then CICS switches control back to
the QR TCB for that piece of processing. In this way the JVM can pause without
interrupting the rest of the CICS workload, so serialization of access to CICS
resources and the management of the start and end of all transactions is done
using the QR TCB.

There are significant Central Processing Unit (CPU) costs in starting and
stopping a JVM. Often these are greater than those incurred from the running of
an application within a JVM. If a JVM can be serially reused by a number of CICS
programs, then the overhead of starting and stopping the JVM is confined to the
first and last program in the sequence, and those in between gain significant
performance benefits from this.

However, if a JVM is reused then the potential exists for one Java application
program to leave around objects whose state may interfere with the successful
execution of programs that later reuse the same JVM. EJBs are inherently
self-contained and as such cannot leave state around after their execution.
Individual Java applications, on the other hand, tend to treat the JVM where they
run as something to which they have exclusive use. They may assume that the
JVM will be destroyed when the application finishes, and that all object
instances, created during program execution, will be removed as a result of the
termination of the JVM. This assumption is not valid when a JVM is serially
reused and side effects, resulting from objects remaining in the JVM’s storage
heap following the termination of one application, may interfere with other
applications which later reuse the same JVM.

To address this issue, the IBM Development Kit for z/OS, Java 2 Technology
Edition (SDK) provides a JVM with a modified heap structure; this JVM can be
driven in an attempt to reset its storage areas between separate program
invocations. CICS TS V2 can be configured to make use of this mechanism.
Reset processing extends the operation of the JVM but does have some adverse
effect on its performance characteristics.

Not all applications cause these problems and, for them, this reset processing is
an unnecessary overhead. CICS TS V2.3 and above and the SDK 1.4.1 provide
support for another JVM configuration, which offers the potential for reuse, but
which places responsibility for reset processing onto the applications which run
there. This provides significant performance benefits but does present
opportunities for badly behaved programs to interfere with others that reuse the
same JVM.
 Appendix A. CICS EJB support 335

Configuring JVMs for reuse
CICS determines the JVM reuse option from a JVM profile which it reads prior to
starting a new JVM. The JVM profile is a text file, stored in the UNIX Hierarchical
File System (HFS), which is named in the PROGRAM resource definition for the
Java program. CICS keeps track of the reuse setting for each JVM that it
manages. The reuse setting is included as part of the Java Native Interface (JNI)
call which CICS uses to start a new JVM. When a Java program has finished
executing, CICS decides whether the JVM should be called for reset processing,
and whether to allow the JVM to persist or to be terminated, based on its reuse
property.

Three such settings are supported in CICS TS V2.3 and above. These are
defined with the REUSE option in a JVM profile and illustrated in Figure A-12.

� REUSE=NO

This setting causes CICS to terminate the JVM after it has been used once.
Such a JVM is referred to as a single-use JVM.

� REUSE=RESET

This setting indicates that the JVM is long-lived and that a controlled reset is
required between program invocations. This is referred to as a resettable
JVM.

� REUSE=YES

This setting indicates that a JVM is intended for reuse without the reset
operation at the end of every program invocation. It is known as a continuous
JVM.

Figure A-12 JVM modes in CICS TS V2.3

Create JVM PROG1 Destroy JVM

Single-use JVM (REUSE=NO)

Continuous JVM (REUSE=YES)

Resettable JVM (REUSE=RESET)

Create JVM PROG1 Reset JVM PROGnReset JVM PROG2 ... Destroy JVM

Create JVM PROG1 PROGnPROG2 Destroy JVM
336 Architecting Access to CICS within an SOA

Single-use JVMs
Single-use means that a JVM is created for each request, the Java application
program is run there, and then the JVM is thrown away. In this way, CICS
effectively prevents the actions of one Java program from interfering with any
other. This level of transaction isolation is expensive because every application
incurs the cost of starting and stopping the JVM, and of loading all of the classes
which it needs.

The JVM has a single heap structure, unlike the one used by the resettable JVM,
and does not undergo any reset processing prior to termination. This is how Java
runs on most other platforms.

The resettable JVM
The resettable JVM provides the potential to run consecutive Java application
programs under its control. When an application program finishes executing
there, CICS calls the JVM to reset its storage areas, and waits for this operation
to complete before terminating the current program. If the reset operation is
successful, then the JVM becomes available for use by another CICS program. If
the reset fails, then CICS terminates the JVM.

The storage heap used by the resettable JVM is divided up into a number of
areas, each with its own class loader. These areas are treated differently during
reset processing, as shown in Figure A-13 on page 338. In particular, there is a
Transient Heap which contains objects created by a Java application as it
executes. All these objects are deleted at reset time. There is also a Middleware
Heap, used for objects constructed by middleware classes which are trusted to
reset the objects they create to some known state, as part of reset processing.
 Appendix A. CICS EJB support 337

Figure A-13 Reset operations against the Resettable JVM’s heap structure

This heap structure is extensively documented in the publication IBM Developer
Kit for z/OS Java 2 Technology Edition V1.4 Persistent Reusable Java Virtual
Machine User’s Guide, SC34-6201.

Reset processing can fail for a number of reasons, such as a Java application
changing one of the JVM’s system properties or loading a Native Library. If the
reset operation fails, CICS issues a JNI call to delete the JVM. This deletion
prevents another application from encountering objects which erroneously
remain in the storage heap after a reset failure.

Program startsResetJavaVM()Program ends

System
heap

System
heap

Heap remains unchanged
(no garbage collection)

Classes remain unchanged

Application
class

system
heapHeap remains unchanged

(no garbage collection)

Classes are reset

Application
class

system
heap

Heap re-created

Classes and objects discarded

Heap might be garbage
collected

Middleware object state is
determined by the TidyUp and
Reinitialize methods

Transient
heap

Middleware
heap

Transient
heap

Non-system
 heap

Middleware
heap
338 Architecting Access to CICS within an SOA

The continuous JVM
This is a potentially long-lived JVM that is started with a non-system heap which
is not divided into separate middleware and transient heaps. There is no
mechanism for automatically resetting this storage when a Java program finishes
execution. Each program is responsible for removing unwanted state data when
it terminates, or restoring objects to their initial state prior to completion.
Programs can intentionally leave data for subsequent applications to use, and by
doing so they make use of a form of caching which is not available through the
resettable JVM.

The simplified storage management of the continuous JVM offers large
performance benefits over the resettable JVM. However, there are risks
associated with running applications which do not conform to the reuse
requirements of this mode.

Java programs running in this mode should not carry out actions which alter the
JVM’s state unless they restore the original values before ending. The most
common cause of this is from the inclusion of static storage objects in Java
programs. These are not automatically reinitialized on subsequent program
invocations and should be used with care when running in this mode. One way to
prevent this is by defining all class fields as final.

The Shared Class Cache facility
We begin by providing an overview of the Shared Class Cache and then we
describe the benefits of using it.

Overview
The SDK V1.4 provides a mechanism which allows Java classes to be cached
centrally and shared between different JVMs. CICS TS V2.3 introduces a shared
class cache facility which extends this function to some, or all, of the JVMs that it
controls. See Figure A-14 on page 340.
 Appendix A. CICS EJB support 339

Figure A-14 One view of the Shared Class Cache

The collection of JVMs which use this facility is referred to as a JVMset. This
consists of a single JVM, known as the master, whose role is to manage the
shared class cache, together with other JVMs, called workers, which service
individual Java requests. These requests can be to run a Java program, an EJB,
or an IIOP application. Figure A-15 on page 341 shows another view of the
relationship between master and worker JVMs within a CICS region’s JVM pool;
in this figure DFHJVMPR, DFHJVMPC, USERJVM1, and USERJVM2 are the
names of JVM profiles.

WorkerN JVMWorker1 JVMMaster JVM

Shared Memory

Nonsystem
Heap

System Heap

Nonsystem
Heap

Nonsystem
Heap

ACSH

JIT compiled code

JIT compiled code
340 Architecting Access to CICS within an SOA

Figure A-15 Another view of the shared class cache

A CICS region can only have a single active shared class cache which uses this
feature. CICS controls the launching of the master JVM and any workers that are
needed to service requests to run Java components. Individual worker JVMs in a
JVMset can have different characteristics, defined in their associated JVM
profiles and JVM properties files. These may be used to define the size of a
JVM’s storage heaps, to set the trace options it uses, or to add some security
controls.

Some characteristics of a JVMset are common to all of its JVMs. They are taken
from the JVM profile of the master JVM and include the REUSE option discussed
earlier. A master JVM is potentially long-lived and as such must be started in
either resettable or continuous mode. The master JVM cannot be configured with
REUSE=NO and, as a result, worker JVMs cannot run in this mode either.
Figure A-16 on page 342 shows a master JVM running with REUSE=RESET.
Therefore, the worker JVMs must also run with REUSE=RESET. However, the
standalone JVMs (JVM8 and JVM10) may run with any of the REUSE options.

J9 TCB

J8 TCB

J8 TCB

J9 TCB

Available
for reuse

Allocated
to task

Allocated
to task

Allocated
to task

DFHJVMPR
User key

USERJVM1
CICS key

USERJVM2
CICS key

DFHJVMPC
User key

JVM Pool
MAXJVMTCBS=5

JVM6JVM10

JVM9

JVM8

Shared
class cache

JM TCB

Master
JVM

DFHJVMCC
User key

J9 TCB

Available
for reuse

DFHJVMPC
User key

JVM7
worker

worker

worker
 Appendix A. CICS EJB support 341

Figure A-16 REUSE and the shared class cache

Benefits of using the shared class cache
The shared class cache facility offers a number of benefits to customers. Java
classes are loaded once per CICS region rather than once per JVM, reducing the
class loading overhead for all the workers in a JVMset. It also reduces the overall
storage requirement for the JVMset, by having one copy of each class in the
cache area, instead of one in each worker JVM’s storage heap. Because worker
JVMs run in either resettable or continuous mode they receive the performance
benefits described earlier, when the JVM is reused for a number of programs.
Early internal IBM testing showed that startup for worker JVMs is at least 60%
better than for CICS TS V2.2 standalone JVMs and the storage footprint is down
by over 30%.

JVM Pool
MAXJVMTCBS=5

Shared
class cache

Allocated
to task

USERJVM3
REUSE=YES

JVM10

Available
for reuse

USERJVM2
REUSE=NO

JVM8

Allocated
to task

DFHJVMPC
REUSE=RESET

JVM6

Allocated
to task

USERJVM1
REUSE=RESET

JVM9

Master
JVM

DFHJVMCC
REUSE=RESET

Available
for reuse

DFHJVMPC
REUSE=RESET

JVM7
342 Architecting Access to CICS within an SOA

Storage protection for Java programs
Storage protection prevents a user application from inadvertently overwriting
CICS control blocks or its own programs. Prior to CICS TS V2.3, all Java
programs ran in CICS key 8 storage areas. They made use of JVMs which were
started on a separate open TCB, known as a J8 TCB. As a result, the CICS
storage protection mechanism could not be used with Java programs. In CICS
TS V2.3, customers can choose to run Java programs in either CICS or User
key. Those selected to run in User key do so by using JVMs which are started on
a new open TCB: the J9 TCB.

The storage key information is derived from the Java program’s PROGRAM
resource definition. This defaults to User key if not explicitly defined there.
However, if storage protection is turned off in the CICS region, then all Java
applications will run on JVMs which use J8 TCBs.

Assigning requests to JVMs
A number of factors influence the way that a CICS region matches Java requests
with the JVM resources it controls. Options in the CICS PROGRAM resource
definitions, the JVM profiles, and the System Initialization Table (SIT) all affect
the running of Java workloads. This section explains how these options can be
used to configure the behavior of a CICS region.

Each CICS region has a maximum number of TCBs that it can use for its Java
workload. This value is defined using the MAXJVMTCBs option in the SIT. The
default value of 5 TCBs can be overridden during CICS initialization or by using
System Programming Interface (SPI) commands or the CEMT transaction.

One TCB is used for each JVM. The set of JVMs that a CICS region controls is
referred to as the JVM pool. The maximum pool size is equal to the value of
MAXJVMTCBS. The master JVM is started using a special TCB, the JM TCB,
and is not considered as part of the overall JVM pool size.

With storage protection active, the JVM pool can contain a mixture of JVMs
running with J8 and J9 TCBs at the same time. Those that have REUSE=NO run
for one transaction and are then removed from the JVM pool. Others can remain
there for some time. When a pool contains a number of long-lived JVMs, then at
any time some of these may be servicing program requests while others are
waiting for work.

The JVM pool can contain a number of JVMs which have been started with the
same JVM profile. JVMs started with different JVM profiles are distinguished
from each other by CICS, even if different JVM profiles contain identical sets of
options.

Figure A-17 shows the algorithm that CICS uses to satisfy a request for a JVM.
 Appendix A. CICS EJB support 343

Figure A-17 Algorithm CICS uses to satisfy a request for a JVM

When a new request for a JVM arrives, CICS attempts to match the storage key
and the JVM profile name, taken from the Java program’s PROGRAM resource
definition, with that of a JVM which it has within the JVM pool. If a match is found
and that JVM is free, then CICS dispatches the new request to it. If no match can
be found, or if all JVMs that are suited to the request are currently carrying out
other work, then CICS looks to see if the JVM pool has reached its maximum
size and if CICS is MVS storage constrained. If neither is the case, then a new
JVM is started to service this request. However, once the pool is full or CICS is
MVS storage constrained, no more JVMs can be created. If there are no free
JVMs or if there is a free JVM which has the wrong profile or EXECKEY and the

Request for
JVM

Free JVM
with correct
profile and

EXECKEY?

Assign request
to free JVM

MAXJVMTCBS
not reached

and MVS
storage not

constrained?

Allocate TCB,
create new JVM

Add request
to end of
queue

Request
EXECKEY
= free JVM
EXECKEY?

Steal TCB
(re-create JVM

and TCB)

Profile
Mismatch
(re-create
JVM on

same TCB)

Any free
JVM?

Demand:
Supply

Yes

(4)

True

False

No

Yes

Request
should wait

Request
should
not wait

No

Yes

No
(1) (2)

(5)

<

(3)
>

1. One of the following is the case:
There are no free JVMs
There is a free JVM with the wrong profile
There is a free JVM with the wrong EXECKEY

2. One of the following is the case:
System has reached MAXJVMTCBs
System is MVS storage constrained

3. This free JVM has one of the following:
Wrong profile
Wrong EXECKEY

4. Since we don't have any free JVMs and cannot create any more, we add the request to the end of the queue of
requests waiting for a JVM to become free

5. Since we have a free JVM with the right EXECKEY, the profile of the free JVM must be wrong. Thus we can keep
the TCB but we must destroy the free JVM and recreate one with the correct profile.
344 Architecting Access to CICS within an SOA

demand for that type of JVM is less than the supply, then the new request is
placed on the end of a work queue for processing when a suitable opportunity
arises. Figure A-18 shows the results of applying this algorithm to two requests
for a JVM.

Figure A-18 Two requests for a JVM

Request B wants to run program DFJIIRP. The PROGRAM resource definition
for DFJIIRP specifies a JVM profile of DFHJVMPR and an execution key of User.
JVM3 in the JVM pool runs with the desired JVM profile and execution key and
JVM3 is available for use, so CICS assigns request B to JVM3.

Request D wants to run program PROG1. The PROGRAM resource definition for
PROG1 specifies a JVM profile of USERJVM2 and an execution key of CICS.
There are no JVMs in the JVM pool running with the desired JVM profile.
Furthermore, since there are already five JVMs in the JVM pool and
MAXJVMTCBs is five, CICS will not create a new JVM. However, JVM2 is
available for reuse, so CICS uses an algorithm to calculate the demand for, and
supply of, JVMs with a profile of USERJVM2 and an execution key of CICS. If the
demand is greater than the supply, then request D should not wait so CICS will

J8 TCB

J9 TCB

J9 TCB

J8 TCB

J9 TCB

Available
for reuse

Available
for reuse

Allocated
to task

Allocated
to task

Allocated
to task

USERJVM1
User key

USERJVM1
User key

DFHJVMPR
CICS key

DFHJVMPR
User key

DFHJVMPR
CICS key

JVM Pool
MAXJVMTCBS=5

JVM2

JVM1JVM5

JVM4

JVM3

PROGRAM
resource definition:
PROG1

JVM profile:
USERJVM2
Execution key:
CICS

Request D

JVM2 is
free

Queue

Demand
>

Supply?

Yes

No

PROGRAM
resource definition:
DFJIIRP

JVM profile:
DFHJVMPR
Execution key:
User

Request B

Suitable
JVM available No suitable

JVM available

MAXJVMTCBs
reached

Receate JVM2
and TCB

Req
EXECKEY not
equal JVM2

EXECKEY
 Appendix A. CICS EJB support 345

compare request D’s execution key with the execution key of JVM2. Since they
are not equal, CICS will destroy JVM2 and its TCB and recreate JVM2 on a new
TCB. If the demand is less than the supply, then request D can wait and CICS
adds request D to the end of the work queue.

When the JVM pool is full, it may have some JVMs which match the
requirements of a new request, but which are currently active. There may be
others which are not active, but which do not match the JVM profile and/or the
storage key requirements of the new request. CICS makes use of an elaborate
algorithm to match requests in its work queue with its JVMs. CICS can destroy a
JVM which is free, and then start a new one using a different JVM profile on the
same TCB. Alternatively, CICS may recycle both TCB and JVM.

Figure A-19 on page 347 shows how CICS handles the requests in its work
queue when a JVM becomes free.
346 Architecting Access to CICS within an SOA

Figure A-19 Algorithm CICS uses when a JVM becomes free

When a JVM finishes its current work assignment, CICS looks at all outstanding
requests on the work queue. Priority is not always given to the oldest item, and
CICS may decide that some other request is a better use for this JVM. However,
once a request has been on the work queue for a prolonged period it will be
given priority over all other requests, thus preventing it from being overlooked
indefinitely.

The termination and startup of a JVM is expensive, both in terms of the CPU
these processes consume, and in the slowing of response rates for individual
requests. There is a larger overhead when a TCB has to be recycled as well as a
JVM.

No

Yes

Yes

Yes

Request should
not waitNo

Yes

Request
should wait

Yes

No

NoNo

(2)

(1)

>

<

Requests are on
queue, JVM

becomes free

Request has
waited longer
than critical

period?

Assign free JVM
to request

Request
matches JVM's

profile and
EXECKEY?

Any more
requests to

check?

Proceed to
first request

in queue

Request
EXECKEY =

free JVM
EXECKEYSteal TCB

(re-create JVM
and TCB)

Profile Mismatch
(re-create JVM
on same TCB)

Any more
requests to

check?

Keep JVM free
to await suitable

use

Demand:
Supply

1. The request at the front of the queue has waited too long (longer than the CICS-defined critical period) so
we will do whatever we have to do to satisfy it, including destroying and recreating the JVM and the TCB.

2. Although the request had to wait a little while on the queue, it was worth making it wait because we have
found a JVM with the correct profile and EXECKEY and thus have avoided the costly process of creating
a new JVM and/or TCB.
 Appendix A. CICS EJB support 347

The request matching process will reduce the number of JVM and TCB recycle
events. The delay this might cause for individual requests which are made to wait
for a JVM that matches their precise requirements is often less than the time it
takes to recycle a JVM and its TCB.

Recommendations for configuring to support a Java workload
There can be large differences between the needs of individual workloads. As a
result, there is no single configuration which matches the needs of all customers
who use Java within CICS. Therefore, we now offer advice to help customers
select the best configuration for their specific needs.

Reuse settings
Selection of the REUSE setting for a particular JVM is largely influenced by the
applications it is to service. You might not thoroughly understand the reuse
characteristics of existing applications, whether they have been written in-house
or have been provided by another party. You should extensively test those which
are not understood to determine if they can be used with a persistent reusable
JVM. When developing new CICS Java applications, you should give
consideration to how they may eventually be run within a long-lived JVM.

Another factor which may influence this decision is whether the application is
running in a test or production environment. In production, a mixture of
performance and system stability criteria apply. In a test system, the emphasis
might be more on examining the behavior of a new application rather than getting
it to run quickly. As a result you may want to develop an application in a
single-use JVM and then move it to a resettable or a continuous JVM for system
testing before transferring it to the most suitable environment for the production
system.

The single-use JVM is best suited to a development environment. Other
programs running in CICS cannot inadvertently affect an application running in a
single-use JVM. Since the JVM will load fresh copies of classes each time a
program is run, it will automatically pick up code changes. You may find that
helpful when you develop new applications where the classes are being modified
frequently so the developer needs to pick up the latest version each time he runs
a test.

There is seldom a role for single-use JVMs in production systems. The overhead
of starting and stopping them for each application makes them unattractive for all
but infrequently-used applications. If the bulk of the workload runs on one set of
JVMs with the occasional execution of some other work which requires a JVM
with a different profile, there may be some advantage to using a single-use JVM
348 Architecting Access to CICS within an SOA

for the rarely run applications as the JVM is automatically thrown away leaving a
spare slot in the JVM pool for the main part of the workload to use. However, the
majority of applications run in a production system require the performance gains
which persistent reusable JVMs offer.

The resettable JVM provides the benefits of reuse while offering the greatest
protection between program invocations. Applications whose reset
characteristics are not well understood, or which do not comply with those
needed by the continuous JVM, should be run in this mode. Some performance
overhead will result from management of the non-system heap.

An application run in a resettable JVM may take actions which prevent the reset
processing operation from completing successfully. This will result in the JVM
being destroyed, and CICS may have to start up a new JVM for later requests
before it can process them. Such unresettable events will adversely affect a Java
workload as a whole. As discussed in “Unresettable events” on page 355, you
can use trace options with the resettable JVM to help you determine the causes
of these events; when you have found them, you should take remedial action so
that the reset operation completes successfully.

The continuous JVM offers significant performance benefits over a resettable or
single-use JVM. Existing applications whose behavior is not well-understood are
better run in the resettable JVM unless you can extensively test them in
continuous mode before placing them in a production system. New applications
should be written in such a way that they can receive the performance benefits of
the continuous JVM without unduly affecting other CICS transactions which
reuse the same environment.

If the enterprise bean developer follows the Enterprise JavaBeans Specification,
an enterprise bean will not leave state around after it has finished executing.
Therefore, you should be able to run your EJBs in a continuous JVM.

Sharing cached classes
Your decisions about whether and how to use the shared class cache facility will
be more affected by the scale and scope of the Java workload that your CICS
region supports than by the nature of the individual transactions. If a system has
more than one JVM running in it at any time supporting a common workload,
then there are benefits to be gained from the use of shared classes, as we
discussed earlier. As the number of duplicate JVMs increases, the benefits
increase as well.
 Appendix A. CICS EJB support 349

A single CICS region can only have one active JVMset. All the JVMs that make
up a JVMset must be running either in continuous mode or resettable mode. If a
Java workload makes use of a mixture of continuous and resettable JVMs, then
you will need multiple CICS regions if both the continuous JVMs and the
resettable JVMs are to make use of the shared class cache facility.

If you have a mixed workload which uses different JVMs for different
applications, you will have to suitably size the shared class cache facility to hold
the classes of the combined workload rather than that for an individual worker.
Classes are not removed from the shared cache when workers are recycled for
different workloads. The starting of new workers may result in different classes
being loaded into the shared class cache, and this will only be possible if it has
space for them.

If you are using the Just-In-Time (JIT) compiler, then you will also need space in
the shared class cache for the JIT code. Internal IBM testing showed that
specifying java.compiler=jitc in the JVM properties files of both the master and
worker JVMs significantly improved performance.

You specify the size of the shared class cache by setting the SIT JVMCCSIZE
parameter. When you are trying to choose a value for JVMCCSIZE, the CICS
performance group recommends that you overallocate rather than try to calculate
the size by adding up the sizes of the components of the shared class cache.
Then use the CEMT INQ CLASSCACHE command and the Class Cache section
of the DFH0STAT JVMPOOL report to monitor the results.

JVM recycling events
The recycling of JVMs in the JVM pool is controlled by CICS, but you can have
some influence over how often CICS recycles them. In a busy system, recycling
events will have an impact on the overall performance of the system and should
be kept to a minimum.

If an entire Java workload can be run in a particular storage key then TCBs will
never have to be recycled. If all of the Java programs also share a common JVM
profile, then the recycling mechanism is in effect disabled as all queued requests
will match all JVMs in the pool.

The use of a different JVM profile for every application in a workload will not
usually be necessary. If you use two JVM profiles with different names but
identical options, you will unnecessarily increase the potential for recycling
events to take place in the JVM pool. To avoid this you should use a common
JVM profile.
350 Architecting Access to CICS within an SOA

You might also investigate whether you could combine compatible options in
different JVM profiles to create a single JVM profile. For example, if you found
two infrequently-used JVM profiles that contained similar options, but one
specified a larger non-system heap size, you could consider combining these
into a single JVM profile that specified the larger non-system heap size. This
would mean that some applications would be using an unnecessarily large JVM,
but the reduction in the incidence of mismatches and steals might make this
worthwhile.

You can use a small number of JVM profiles to combine Java applications into
groups so that individual JVMs can be used to run any of the applications in a
group rather than only one type of application. If the number of JVM profiles is
small compared to the size of the JVM pool and the number of requests against
each of these JVMs is roughly the same, then little recycling should take place.
On the other hand, if the number of JVM profiles is large compared to the
number of JVMs in the JVM pool or if some JVMs are used less frequently than
others, then recycling events are more likely to occur. As a result, we
recommend that you keep the ratio between the number of JVM profiles and the
number of JVMs in the JVM pool as low as possible.

If you have a common profile for those applications which require the same
options and thus allow a range of applications to run in a standalone JVM, the
size of the application class system heap for that JVM will end up a lot larger than
if it was used for a single application. As a result the collective heap size of the
JVM pool will end up being larger than if it was made up of JVMs supporting
single applications. You can use the shared class cache facility to centralize
much of this heap and remove the duplication of class data across the members
of the JVM pool.

JVM storage management
A JVM in CICS runs as a UNIX System Services (USS) process in a Language
Environment® (LE) enclave created using the LE pre-initialization module,
CEEPIPI. (Using LE pre-initialization services allows CICS to initialize an
environment once, perform multiple executions using that environment, and then
explicitly terminate that environment). The JVM uses LE services rather than
CICS services to obtain storage. As a result, all storage obtained by the JVM is
MVS storage which resides within the CICS address space but outside of the
CICS dynamic storage areas (DSAs).

Each JVM executes within its own LE enclave. The JVM’s system heap,
application class system heap, middleware heap, and transient heap are
allocated from the heap storage of the LE enclave. You set the sizes of these
heaps using parameters in the JVM’s profile as shown in Table A-3 on page 352.
 Appendix A. CICS EJB support 351

Table A-3 JVM profile parameters which set heap sizes for the JVM

The LE enclave for each JVM needs to contain not only the heaps shown in
Table A-3 but also a basic amount of storage for each JVM as shown in
Figure A-20.

Figure A-20 Each JVM has an LE enclave

The CICS JVM domain enforces some of the LE runtime options for this enclave;
CICS takes other options from the DFHJVMRO user-replaceable module.
Table A-4 on page 353 shows the runtime options contained in the
CICS-supplied version of DFHJVMRO.

Parameter Meaning

Xinitsh Initial size of system heap

Xinitacsh Initial size of application class system heap

Xms Initial size of middleware heap

Xinitth Initial size of transient heap

Xmx Maximum total size of non-system heap (which consists of
the middleware and transient heaps)

CICS

LE enclave N

LE enclave 1

LE enclave 2
JVM storage
allocated within
the heap of the
LE enclave:
- Heaps
- Stack
- Sysmalloc
 requests

JITted
codeStacks

Middleware
heap

Transient
heap

System
heap

Malloced
storage

Byte
codes

ACSH
352 Architecting Access to CICS within an SOA

Table A-4 LE runtime options used by CICS for the JVM enclave

Of particular interest is the HEAP parameter, which specifies that the initial size
of the enclave’s heap storage should be 4M and the size of additional increments
should be at least 1M.

You can modify these settings to match more closely with the storage use of your
JVMs. To improve the use of MVS storage, you should use DFHJVMRO to set
the initial allocation for the HEAP runtime option to a value that approximates the
amount of storage actually used by your Java applications. Note that the settings
that you make using DFHJVMRO apply to all the JVMs that run in your CICS
region (with the exception of the master JVM that initializes the shared class
cache), so you should consider the different storage heap sizes that JVMs with
different JVM profiles might have.

You can use the CICS statistics to see how much LE enclave heap storage is
used by your JVMs. The field “Peak Language Environment (LE) heap storage
used” in the JVM profile statistics shows the peak amount of LE enclave heap
storage that was actually used by a JVM with the specified execution key and
profile. See Figure A-21 on page 354.

LE runtime option Value in CICS-supplied DFHJVMRO

Library heap storage that is not restricted
to a location below 16 MB

ANYHEAP(4K, 8176, ANY, FREE)

Library heap storage that must be located
below 16 MB

BELOWHEAP(4096, 2048, FREE)

Storage for user-controlled dynamically
allocated variables

HEAP(4M, 1M, ANY, FREE, 0K, 4080)

Library stack storage LIBS(8, 900, FREE)

Controls the allocation of the thread's
stack storage for both the upward and
downward- growing stacks

STACK(128K, 128K,ANY,KEEP)

Amount of storage reserved for the
out-of-storage condition and the initial
content of storage when allocated and
freed

STORAGE(,,,0K)
 Appendix A. CICS EJB support 353

Figure A-21 DFH0STAT JVM Profiles report

To obtain this information:

1. Use the EXEC CICS INQUIRE JVMPROFILE command to identify each of
the JVM profiles in use in your CICS region. (There is no CEMT equivalent for
this command). Note that this command will not find a JVM profile which has
only been used for the master JVM.

2. Specify the option LEHEAPSTATS=YES in each of the JVM profiles that you have
identified.

3. Purge your JVMs using the CEMT SET JVMPOOL PHASEOUT command (or the
equivalent EXEC CICS command) around the time of a statistics reset (either
before or immediately afterwards). This ensures that the statistics collected in
the next statistics interval are a more accurate reflection of the storage used
for your JVMs. It also ensures that your JVMs will be re-created using the
LEHEAPSTATS=YES option.

4. Run a representative sample of the transactions that use your JVMs. When
you have finished, you can use the STAT transaction (which invokes the
DFH0STAT sample statistics program) to view the JVM profile statistics that
have been collected during the statistics interval.

5. Examine the field “Peak Language Environment (LE) heap storage used” in
the JVM Profile statistics for each JVM profile. Use this value to set the initial
heap size in the HEAP runtime option in DFHJVMRO. If the peak amount of
storage used varies between JVM profiles, select a suitable value based on
the relative use of each JVM profile. Try to select a value that is close to the
storage used by most of your JVMs, bearing in mind that LE can make

 JVMprofiles

 Jvmprofile Name. : DFHJVMPR
 Jvmprofile Class Cache : No
 JVMprofile Reuse status : RESET
 Jvmprofile HFS File Name . . . : /u/ideeley/JVMProfiles/DFHJVMPR
 CICS User Total

 Total number of requests for this profile. : 0 1 1
 Current number of JVMs for this profile. : 0 1 1
 Peak number of JVMs for this profile : 0 1
 Number of new JVMs created for this profile. : 0 1 1
 Number of times JVMs were unresettable for this profile. : 0 0 0
 Number of times this profile stole a TCB : 0 0
 Number of times this profile was the victim of TCB stealing. : 0 0
 Peak Language Environment (LE) heap storage used : 0K 16,460K
 Peak JVM heap storage used . : 0K 2,846K
 Number of JVMs destroyed due to Short-on-Storage : 0 0 0
 -Xmx value for this profile. : 83886080
354 Architecting Access to CICS within an SOA

additions to the heap storage, but it cannot remove unnecessary storage that
is given in the initial allocation.

Collecting this statistic affects the performance of JVMs, so you should not carry
out this process in a production environment.

Unresettable events
If an application is using a resettable JVM, you need to make sure that the Java
programs are not performing unresettable actions, because this causes the JVM
to be destroyed instead of being reset, which greatly reduces the performance of
your application. In the CICS statistics for JVM profiles, the field “Number of
times JVMs were unresettable for this profile” shows the number of unresettable
JVMs for each JVM profile and execution key. If the statistics show that there
were unresettable JVMs for a JVM profile that specifies the option
REUSE=RESET, then it is probable that some of the applications requesting that
JVM profile are performing unresettable actions. You can identify those
applications by looking at byte 6, bit 0 of the transaction flags field, TRANFLAG
(field 164 in group DFHTASK), in the CICS performance class monitoring record
for each transaction.

To determine the cause of an unresettable event, you need to specify a value for
ibm.jvm.events.output in the JVM properties file; this value will tell the JVM
where to log three kinds of events:

� Unresettable events
� Reset trace events
� Cross heap events

Then you must specify a value of min or max for
ibm.jvm.unresettable.events.level in the JVM properties file to enable the
logging of unresettable events and to specify the level of logging detail.
Figure A-22 on page 356 shows an example of the message written to the
ibm.jvm.events.output destination in response to the detection of an
unresettable event. The event types are documented in the manual Persistent
Reusable Java Virtual Machine User’s Guide, SC34-6201.

In this example, 0x0000000e is a SCJVM_REF_FROM_MW_TO_TH condition
which is raised because a middleware object (instance or array) contained a
current reference to an application object when a reset was requested.
 Appendix A. CICS EJB support 355

Figure A-22 Example of an unresettable event message

Reset trace events
The existence of references from a middleware object to an object in the
transient heap causes a reset trace event. When the JVM finds one of these
references, it has to determine if the middleware object that contains it is actually
dead and hence eligible for garbage collection. This process is expensive in
terms of CPU costs. If the middleware object is actually alive, the JVM is marked
unresettable. Figure A-23 shows an example of an active cross heap reference.

Figure A-23 Active cross heap reference

Figure A-24 on page 357 shows an example of an inactive cross heap reference.

[EVENT 0x0000000e]
TIME=15/03/2001 at 11:59:24.456
THREAD=TRGQIIRP.TASK29785.TRGQ (0:17129590) CLASS=UnresettableEvent
DESCRIPTION=0x5172A4F0 is an instance of MickSF/MickeySFBean from address
0x505FAFA0
[END EVENT]

Middleware heap

Transient heap

Object A Object B

Object D

Object C

Active cross heap
reference found at
reset

JVM reset fails and
JVM destroyed
356 Architecting Access to CICS within an SOA

Figure A-24 Inactive cross heap reference

All references from middleware objects to application objects should be set to
null before the application terminates so that this trace is avoided as shown in
Figure A-25.

Figure A-25 No heap cross references

Setting ibm.jvm.resettrace.events=on will log the presence of these traces at
reset time and indicate the object that has the reference.

Setting ibm.jvm.crossheap.events=on will only work when the JVM is in debug
mode and will trace every time a cross heap reference is actually created. Many
of these trace entries will be innocent as they may well have been set to null by
the time the reset happens. The trick here is to match up the reset trace event to
the rogue cross heap reference event. The cross heap reference entry will have
a stack trace to identify the creator.

Middleware heap

Transient heap

Object A Object B

Object D

Object C

Inactive cross heap
reference found at
reset

JVM reset ok but costly
Nulled
reference

Middleware heap

Transient heap

Object A Object B Object C

No cross heap
references found at
reset

JVM reset ok
No performance hit

Object D

Nulled
reference
 Appendix A. CICS EJB support 357

Figure A-26 shows an example of the message written to the
ibm.jvm.events.ouput destination in response to the detection of a reset trace
event. The event types are documented in Persistent Reusable Java Virtual
Machine User’s Guide, SC34-6201.

In this example, 0x1 is a RESETTRACEEVENT_REFERENCE_TO_TH
condition. A middleware object contained a current reference to an application
object when a reset was requested and it is necessary to determine whether the
middleware object is live or unreferenced.

Figure A-26 Example of a reset trace event message

System limits
One of the first considerations you will have with regard to running enterprise
beans or any other Java programs in CICS is how many JVMs you will need to
run. To estimate how many JVMs you need to support a desired level of
transaction throughput, use the formula:

ETR x Response time = Number of JVMs

Where:

� ETR is the desired level of transaction throughput

� Response time is the time taken to run your transaction in a JVM

By following the tuning processes described in the CICS TS V2.3 Performance
Guide, SC34-6247, you might be able to reduce the Number of JVMs by
decreasing the response time for your transactions. For example, you should:

� Check that you have chosen the optimum level of reusability for each of your
JVMs, considering the design of the applications that use them. This will
ensure that you are not wasting CPU time by performing a JVM initialization
or reset in situations where these actions are not required for the correct
operation of the applications that use the JVM.

[EVENT 0x1]
TIME=14/03/2001 at 12:03:58.439
THREAD=TRGQIIRP.TASK29685.TRGQ (0:17129580)
CLASS=ResetTraceEvent
DESCRIPTION=0x18C24D70 is an instance of zc01/_callcobolImpl
from address 0x1809Fd80 within obj or array at 0x1809FD78.
0x1809FD78 is an instance of vendor/io/ObjectClass/cache
[END EVENT]
358 Architecting Access to CICS within an SOA

� Make sure that you have stopped any unnecessary CPU usage caused by
any of the following:

– The use of tracing

– The use of the USEROUTPUTCLASS option in JVM profiles (new in CICS
TS V2.3)

– Application programs that take unresettable actions and therefore cause
resettable JVMs to be re-initialized instead of reset

When you have calculated the required Number of JVMs, then decide if you want
to increase or reduce the number of JVMs in your CICS region. You should take
the following into consideration:

� The time that transactions are having to wait to acquire a JVM

Look at the delay time for the JVM pool, shown in the statistics field "Total
Max TCB Pool Limit delay time" in the CICS dispatcher TCB pool statistics.
This tells you how long your transactions waited to acquire a JVM at those
times when the MAXJVMTCBs limit had been reached for the JVM pool. If the
delay time seems high, divide it by the statistics field “Total Attaches delayed
by Max TCB Pool Limit” in the CICS dispatcher TCB pool statistics, to find the
average time a transaction had to wait.

� Your level of QR TCB utilization

Calls made by a Java program for CICS services, such as using a JCICS
class to access VSAM data, require a switch to the QR TCB. Once the QR
TCB has reached a high level of utilization, then adding more JVMs (on J8
and J9 TCBs) might produce no further increase in the throughput of your
CICS system. You can check your level of QR TCB utilization by looking at
the statistics field "Accum CPU Time / TCB" for the QR mode in the CICS
dispatcher TCB mode statistics.

If you find that you want to increase the number of JVMs, calculate the maximum
number of JVMs that your CICS region can support with the free storage
available in its address space. The CICS TS V2.3 Performance Guide,
SC34-6247, shows you how to do this.

Taking your findings about CPU usage and storage availability into account, you
can now choose and set an appropriate MAXJVMTCBS limit for the CICS region.
The MAXJVMTCBs system initialization parameter limits the total number of
TCBs in the pool of J8- and J9-mode TCBs that CICS uses for JVMs. Each JVM
executes on a J8 or J9 TCB, so MAXJVMTCBs limits the number of JVMs that
can be active in the CICS region. The JM TCB, which is used by the master JVM
that initializes the shared class cache, does not count towards the
MAXJVMTCBs limit. You can change MAXJVMTCBs dynamically with the CEMT
SET command.
 Appendix A. CICS EJB support 359

If you set a MAXJVMTCBs limit that is too high, CICS might attempt to create too
many JVMs for the available MVS storage, resulting in an MVS storage
constraint. CICS has a storage monitor for MVS storage, which notifies it when
MVS storage is constrained or severely constrained, so that it can take
short-term action to reduce the number of JVMs in the JVM pool. (The storage
monitor uses exits in Language Environment routines; it is not a monitoring
transaction.)

If a JVM makes a request for MVS storage and the storage monitor determines
that the largest unallocated contiguous block of MVS storage above 16 MB has
dropped below the system-defined threshold of 40 MB, CICS issues message
DFHSM0137 - The amount of storage available to MVS is low - and deletes
JVMs not currently in use, thereby freeing any MVS storage the inactive JVMs
are holding. Incoming requests for a JVM can reuse an existing free JVM of the
correct profile and EXEC key, be assigned a mismatching JVM, or be queued to
wait for a JVM to become free. When the MVS storage shortage reported by
DFHSM0137 has ceased, CICS issues DFHSM0138.

When there is no unallocated contiguous block of storage large enough to satisfy
an MVS request for storage, CICS issues message DFHSM0139 'The amount of
storage available to MVS is critically low'. Either CICS has been forced to satisfy
the request by releasing storage from an MVS storage cushion of 20 MB that it
keeps in reserve or there is at least one task suspended due to insufficient
contiguous free storage. In this case CICS terminates all JVMs as soon as they
are released by programs and does not start new JVMs until the storage
shortage is relieved. When the MVS storage shortage reported by DFHSM0139
has ceased, CICS issues DFHSM0140.

Workload balancing
Figure A-27 on page 361 shows the components of a CICS EJB server, which
are also discussed in the following text.
360 Architecting Access to CICS within an SOA

Figure A-27 Components of a CICS EJB server

� TCP/IP listener

The job of the CICS TCP/IP listener is to listen for (and respond to) incoming
TCP/IP connection requests. An IIOP listener is configured by a
TCPIPSERVICE resource definition to listen on a specific TCP/IP port and to
attach an IIOP request receiver transaction to handle each connection. For
IIOP services, the request receiver TRANSACTION definition must have the
PROGRAM attribute set to DFHIIRRS, the request receiver program. The
default transaction name is CIRR.

Once an IIOP connection has been established between an client program
and a particular request receiver, all subsequent requests from the client
program over that connection flow to the same request receiver.

� Request receiver

The request receiver analyzes the structured IIOP data. It passes the
incoming request to a request processor by means of a request stream, which
is an internal CICS routing mechanism. The object key in the request
received, or a transaction service context, determines whether the request
must be sent to a new or existing request processor. (A transaction in this
context means a unit of work defined and managed using the Object
Transaction Service - OTS - specification).

Request
Processor

EJB
Container

DFJIIRP

bean

CIRP

Request stream

Region boundary

TCP/IP
listener

Request
Receiver

DFHIIRRS

CIRR

DFHXOPUS

link

security
 URM

receive

send

connect request

IIOP request

IIOP reply
 Appendix A. CICS EJB support 361

If the request must be sent to a new request processor, a CICS TRANSID is
determined by comparing the request data with templates defined in
REQUESTMODEL resource definitions. (If no matching REQUESTMODEL
definition can be found, the default TRANSID, CIRP, is used). The TRANSID
defines execution parameters that are used by the request processor.

� Request processor

The request processor is a transaction that manages the execution of the
IIOP request. For an enterprise bean it performs the following functions:

– Locates the object identified by the request
– Calls the container to process the bean method

You can implement a CICS EJB server in a single CICS region. However, in a
sysplex, it is likely that you will want to create a server consisting of multiple
regions. Using multiple regions makes failure of a single region less critical and
enables you to use workload balancing to handle higher peak workloads, but still
provides a single system image.

A CICS logical EJB server consists of one or more CICS regions configured to
behave like a single EJB server (Figure A-28) and consists of the following
elements:

� A set of cloned listener regions which have identical TCPIPSERVICE
definitions to listen for incoming requests

� A set of cloned application-owning regions (AORS), each of which supports
an identical set of enterprise beans in identically-defined CorbaServers

Figure A-28 A CICS logical EJB server

Figure A-28 also shows that you can implement workload balancing at two levels:

� Balancing client connections across the listener regions
� Balancing method requests across the AORs

Listener Regions

IIOP

Distributed
Routing

CICS Logical EJB Server

Request
Receiver
(CIRR)

Request
Processor

(CIRP)

AORs

Client
362 Architecting Access to CICS within an SOA

Balancing client connections across listener regions
You have five options for balancing client connections across the listener
regions:

� TCP/IP port sharing
� Network dispatcher
� Domain Name System (DNS) connection optimization
� Sysplex distributor
� Sysplex distributor with MultiNode Load Balancing

Chapter 5 “Setup of the CICS logical EJB Server” in the redbook Enterprise
JavaBeans for z/OS and OS/390 CICS Transaction Server V2.2, SG24-6284,
provides a brief overview of the first four of these options and tells you where you
can find more information about them. In addition the redbook Communications
Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5: Availability,
Scalability, and Performance, SG24-6517, provides a detailed discussion of the
last three of these options which includes the advantages and disadvantages of
each.

Balancing method requests across the AORs
The CICS listener regions use REQUESTMODEL resource definitions to match
the incoming method requests to CICS transaction IDs. Therefore, to balance
method requests across AORS, you have the following two options:

� Write a customized version of the CICS distributed routing program

For information about writing a customized distributed routing program, refer
to the publication CICS TS V2.3 Customization Guide, SC34-6227.

� Use the distributed routing program, EYU9XLOP, provided with CICSPlex SM

For information about CICSPlex SM Workload Management refer to the
manual CICS TS V2.3 CICSPlex SM Managing Workloads, SC34-6259.

Clients can begin, commit, and roll back transactions using an implementation of
the Java Transaction Service (JTS) or the CORBA Object Transaction Service
(OTS). Whether the method of an enterprise bean needs to run under a client’s
OTS transaction (if there is one) is determined by the setting of the trans-
attribute specified in the bean’s deployment descriptor. The possible settings of
the trans-attribute attribute determines whether the method runs under the
client’s OTS transaction, under a separate transaction which is created for the
duration of the method, or under no OTS transaction.

CICS invokes the routing program for requests for methods that will run under a
new OTS transaction, but not for requests for methods that will run under an
existing OTS transaction, these it directs automatically to the AOR in which the
existing OTS transaction runs.
 Appendix A. CICS EJB support 363

What we mean by new and existing OTS transactions is:

� By a new OTS transaction, we mean an OTS transaction in which the target
logical server is not already participating prior to the current method call; it is
not necessarily an OTS transaction that was started immediately before the
method call.

� By an existing OTS transaction, we mean an OTS transaction in which the
target logical server is already participating, prior to the current method call;
not simply an OTS transaction that was started some time ago.

For example, if a client starts an OTS transaction, does some work, and then
calls a method on an enterprise bean with the Supports transaction attribute, as
far as the CICS EJB server is concerned this is a new OTS transaction, because
the server has not been called within this transaction’s scope before. If the client
then makes a second and third method call to the same target before committing
its OTS transaction, these second and third calls occur within the scope of the
existing OTS transaction.

CICS invokes the distributed routing program for method requests that will run
under a new OTS transaction, or outside the scope of an OTS transaction.
However, requests that will run under an existing OTS transaction are not
dynamically routed; these are directed automatically to the AOR in which the
existing OTS transaction is already running.

Enterprise beans in CICS can be used in a number of ways. If they are used to
wrap existing applications, you will need to consider any particular affinity
characteristics of the application. For new CICS Java applications you also need
to consider transaction affinities, especially if a transaction uses JCICS classes
to access resources within a region as this may force subsequent transactions to
run in the same region.

Network considerations
In a multi-region EJB server configuration, the request stream, which is an
internal CICS mechanism for routing of IIOP requests between request receivers
and request processors, is transported using MRO. You therefore need to
configure MRO connections between your listener regions (request receivers)
and your AORs (request processors). Note that request streams cannot be
transported over ISC connections. In a sysplex configuration, you can use
MRO/XCF connections between listener regions and AORs running on separate
LPARs.

For optimal performance of your CICS EJB applications running in a multi-region
EJB server, you need to make sure that the connections between the listener
regions and AORs are tuned for the expected IIOP workload.
364 Architecting Access to CICS within an SOA

In the TCPIPSERVICE definition the SOCKETCLOSE parameter specifies if,
and for how long, CICS should wait before closing the socket, after issuing a
receive for incoming data on that socket. When SOCKETCLOSE is set to NO, the
socket is left open until data is received, or until it is closed by the client. If
SOCKETCLOSE is set to a non-zero period of time, CICS will close the socket
after that period of time. Choose a value that is appropriate to the
responsiveness of the client, and the reliability of your network. This will allow the
majority of requests to use persistent connections, but still allow dormant
connections to time out.

The BACKLOG parameter of the TCPIPSERVICE definition specifies the
number of TCP/IP connections for this service which are queued in TCP/IP
before TCP/IP starts to reject incoming client requests. The number should be
less than or equal to the value of the TCP/IP SOMAXCONN parameter. The
default value for BACKLOG is one; you may want to set a higher value.

SSL considerations
Authentication and encryption of IIOP requests coming into the listener regions
requires the use of SSL. You specify the use of SSL on the TCPIPSERVICE
definition which the listener and AOR regions share and the associated
CORBASERVER definition which the AORs share.

You can reduce the cost of SSL encryption by using one of the following:

� Persistent IIOP connections: Use of a persistent IIOP connection,
whereby a subsequent IIOP connection re-uses a previously opened
persistent TCP/IP socket connection, ensures that after the initial SSL
handshake, no other handshake is performed until the persistent IIOP
connection is broken, which will usually only occur when the IIOP connection
is timed out by the server.

� SSL session ID reuse: When an SSL client and server negotiate a
handshake, the SSL client obtains a session ID. If the same client presents
this session ID in a new SSL connection (after closing and re-opening the
socket, for example) the server can re-establish the connection with a highly
optimized handshake. However, the session ID should only remain valid for a
limited time (to avoid impersonation of the client). The SSLDELAY parameter
specifies what this time limit should be.

� Cryptographic hardware: The Cryptographic Coprocessor feature is a
hardware feature available on S/390 and System z processors. It consists of
dual cryptographic module chips protected by tamper-detection circuitry and
a cryptographic battery unit. It can be used to off-load CPU processing from
the main CEC processors when performing cryptographic operations, and as
such, can provide a significant reduction in CPU usage. The Cryptographic
Coprocessor Feature can be used to reduce the CPU costs of SSL data
 Appendix A. CICS EJB support 365

transmission when using the DES or triple DES ciphers, and SSL
handshaking when using the RSA PKCS#1 cipher. In order to use this
hardware feature, the z/OS Integrated Cryptographic Service Facility (ICSF)
has to be installed and operational.

� Encryption algorithms: Different SSL key sizes (1024 or 512 bit) used in
the SSL handshake, and the different SSL data encryption algorithms (DES,
Triple DES, RC4, and so on) have considerably different performance
characteristics.

Application development
A significant benefit of the introduction of support for Enterprise JavaBeans
(EJB) into CICS is that it enables a whole new set of software development tools
and practices to be used to write software for the CICS environment.

The following sections give an overview of how to design, develop, and deploy
an enterprise bean in a CICS EJB server.

Design
CICS provides support for session beans that conform with Sun Microsystem
Enterprise JavaBeans Specification V1.1, which is described at this URL:

http://www.javasoft.com/products/ejb

These session beans can:

� Invoke a session bean in CICS or another EJB server.

� Invoke an entity bean in another EJB server, such as WebSphere Application
Server V5.1 and above.

� Call a CICS program, using the resource adapters for CICS TS via CCI
Interface.

� Use the JCICS classes to access CICS resources, such as linking to a
program or accessing a VSAM file.

� Use Java facilities, such as manipulating XML, using the networking support
provided by the java.net package, and so on.

� Receive and send over 32 KB of data from or to an EJB client, with the
marshalling and unmarshalling of the data handled by the Java infrastructure.
366 Architecting Access to CICS within an SOA

http://www.javasoft.com/products/ejb

Development
A tool such as Rational Application Developer enables you to easily develop and
test Java programs and enterprise beans right inside the Integrated
Development Environment (IDE). It includes a single WebSphere Application
Server which has full functionality of the WebSphere Application Server and
provides server runtime support for testing and debugging enterprise beans. It
also includes a feature which will generate a test client to enable you to easily
and quickly unit test your enterprise beans without having to write any client
code.

Coding a session bean
A session bean is composed of the following:

� Home interface
� Remote interface
� Bean implementation
� Deployment descriptor

The home interface
The home interface specifies the life cycle events such as the creation and
removal of a session bean instance.

public interface EJBoneHome extends javax.ejb.EJBHome {
 EJBone create() throws javax.ejb.CreateException,

 java.rmi.RemoteException;}

The remote interface
The remote interface exposes the methods in the enterprise bean
implementation that may be used by a client.

public interface EJBone extends javax.ejb.EJBObject {
 public ResultsBean execute(

String funcName,
String encoding,
String commarea,
int commareaLength,
String username,
String password,
boolean managed,
String gatewayURL,
int gatewayPort,
String cicsServer,
String mirror,
int trace,
int iterations,
boolean appTrace)
throws ResourceException,
 Appendix A. CICS EJB support 367

 Exception,
java.rmi.RemoteException;

}

The bean implementation
The bean implementation contains the code that actually carries out both the
business logic that will be called by the client and the life cycle methods that will
be invoked by the container. By convention, the name given to this class is the
name of the remote interface with the suffix Bean appended to it as shown in
Example A-3.

Example: A-3 Sample EJB implementation

import com.ibm.connector2.cics.*;
import com.ibm.ctg.client.T;
import javax.resource.cci.*;
import javax.resource.*;
import javax.naming.InitialContext;
import javax.ejb.*;
import java.io.PrintWriter;

public class EJBoneBean implements SessionBean {
 private SessionContext mySessionCtx;
 transient private Connection eciConn;
 transient private Interaction eciInt;
 transient private ECIInteractionSpec eSpec;

 ...

//This is the main method that does the call to the CICS Server
public ResultsBean execute(
 String funcName,
 String encoding,
 String commarea,
 int commareaLength,
 String username,
 String password,
 boolean managed,
 String gatewayURL,
 int gatewayPort,
 String cicsServer,
 String mirror,
 int trace,
 int iterations,
 boolean appTrace)
 throws ResourceException, Exception {
 JavaStringRecord jsr = null;

getConnection();
...
//setup the interactionSpec
368 Architecting Access to CICS within an SOA

eSpec.setFunctionName(funcName);
eSpec.setCommareaLength(commareaLength);
// set reply length to same size as commarea
eSpec.setReplyLength(commareaLength);
eSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);
...

//create a record for use
jsr = new JavaStringRecord(encoding);
// set input data if we have any
if (commareaLength > 0){

jsr.setText(commarea);
}
//make the call
try{

eciInt.execute(eSpec, jsr, jsr);
}catch (ResourceException e){
...

}
...

 }
 //Get a connection to the EIS using the resource adapter

 private void getConnection() throws Exception{
 ConnectionFactory cf = null;
 try{
 javax.naming.Context ic = new InitialContext();
 cf = (ConnectionFactory) ic.lookup("java:comp/env/ECI");
 }catch (Exception e){

...
}

 try{
 eciConn = (Connection) cf.getConnection();
 }catch (Exception e){

...
 }

 try {
 eciInt = (Interaction) eciConn.createInteraction();
 }catch (Exception e){

...
 }
 }

.........
}

We purposely omitted the ejbActivate(), ejbPassivate(), ejbRemove(),
getNonManagedConnection(), and setters/getters for the Session Bean.
 Appendix A. CICS EJB support 369

The deployment descriptor
The deployment descriptor provides declarative information to the container
about the enterprise bean, such as transactional functionality and security.
Typically it is generated by the application development tools (such as Rational
Application Developer). A deployment descriptor is an XML document, and an
example is shown (Example A-4).

Example: A-4 EJBone EJB deployment descriptor source

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">
<ejb-jar id="ejb-jar_ID">

<display-name>EJBoneEJB</display-name>
<enterprise-beans>

<session id="EJBone">
<ejb-name>EJBone</ejb-name>
<home>itso.cics.eci.j2ee.testercci.EJBoneHome</home>
<remote>itso.cics.eci.j2ee.testercci.EJBone</remote>
<ejb-class>itso.cics.eci.j2ee.testercci.EJBoneBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref id="ResourceRef_1">

<description>CICS ECI Resource adapter</description>
<res-ref-name>ECI</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</session>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>EJBone</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

To see what the resource reference is bound to, see ibm-ejb-jar-bnd.xml as
shown in Example A-5:

Example: A-5 Source of ibm-ejb-jar-bnd.xmi

<?xml version="1.0" encoding="UTF-8"?>
370 Architecting Access to CICS within an SOA

<ejbbnd:EJBJarBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:ejbbnd="ejbbnd.xmi" xmlns:ejb="ejb.xmi" xmlns:commonbnd="commonbnd.xmi"
xmlns:common="common.xmi" xmi:id="ejb-jar_ID_Bnd">
 <ejbJar href="META-INF/ejb-jar.xml#ejb-jar_ID"/>
 <ejbBindings xmi:id="EJBone_Bnd" jndiName="ejbs/EJBone">
 <enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-jar.xml#EJBone"/>
 <resRefBindings xmi:id="ResourceRefBinding_1" jndiName="eis/CICSA">
 <bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1"/>
 </resRefBindings>
 </ejbBindings>
</ejbbnd:EJBJarBinding>

Coding a client application
Figure A-29 illustrates the steps a client program needs to perform to invoke the
methods in an enterprise bean.

Figure A-29 EJB overview

These steps for accessing EJBs are as follows:

1. Locate the enterprise bean’s home interface in a naming service, using the
Java Naming and Directory Interface (JNDI).

2. Call the bean’s home interface to gain access to the bean’s remote interface
(as known as EJBObject).

3. Make business method calls against the remote interface.

4. Call the bean’s home interface to remove the bean.

JNDI lo
okup

EJB Container

EJBHome
create()

businessmethods
EJBObject

enterprise
bean

ejbCreate4 remove()

2

1

3

ejbRemove

JNDI Server

Java
Client
 Appendix A. CICS EJB support 371

There are many ways an EJB can be consumed. These are the most likely
clients for a CICS enterprise bean:

� A requester of Web services if we turn the EJB into an Enterprise service.

� Another enterprise bean, running inside another EJB Server such as another
CICS EJB Server or WebSphere Application Server.

� A servlet, running in an Web application server, such as WebSphere
Application Server.

� A Java application, running in any available platform.

Sample Servlet, JavaBean, Web deployment descriptor, and JSP code is shown
shown from Example A-6 to Example A-9 on page 374 as the clients of the EJB.

Example: A-6 A Servlet accessing an EJB

public class EJBoneServlet extends HttpServlet {
...
// names of attributes set in the request
private static final String attrCicsProgram = "funcName";
private static final String attrCommareaLength = "commareaLength";
private static final String attrCommarea = "commareaInput";
private static final String attrEncoding = "encoding";

...
public void init(ServletConfig sc) throws ServletException {

// call HttpServlet init method
super.init(sc);
...

}

...
 //Common processing routine.
public void processRequest(HttpServletRequest request, HttpServletResponse

response)
throws IOException, ServletException {

...
// retrieve HTTP request parameters
funcName = request.getParameter("funcName");
encoding = request.getParameter("encoding");
commareaInput = request.getParameter("commareaInput");
commareaLength = request.getParameter("commareaLength");

...
// set common attributes in the request
request.setAttribute(attrCicsProgram, funcName);
request.setAttribute(attrEncoding, encoding);
372 Architecting Access to CICS within an SOA

request.setAttribute(attrCommarea, commareaInput);

...
// execute the CICS request using the session bean
try{

// lookup our session bean
Context ic = new InitialContext();

 Object or = ic.lookup("java:comp/env/ejb/EJBone");
 EJBone tester = null;
 if (or != null) {

 EJBoneHome home = (EJBoneHome)PortableRemoteObject.narrow(or,
EJBoneHome.class);
 tester = home.create();
 }

 ResultsBean resultsB = tester.execute(funcName, encoding,
commareaInput, commareaLengthInt, username, password, managedBool, gatewayURL,
gatewayDaemonPort, cicsServer, mirror, traceInt, iterationsInt, appTraceBool);

...
tester.remove();

}
...

}

Example: A-7 ResultsBean

import java.io.Serializable;

//Data Bean which stores a results string and a byte array representing the
//data which created the string. Initially has an empty string and zero length
//byte array.
public class ResultsBean implements Serializable {

private String resultsString = "";
private byte[] resultsBytes = new byte[0];

public void setResultsString(String data){
resultsString = data;

}
public String getResultsString(){

return resultsString;
}
public void setResultsBytes(byte[] data){

resultsBytes = data;
}
public byte[] getResultsBytes(){

return resultsBytes;
}

}

 Appendix A. CICS EJB support 373

Example: A-8 Web deployment descriptor

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app id="WebApp">

<display-name>EJBoneWeb</display-name>
<servlet>

<servlet-name>EJBoneServlet</servlet-name>
<display-name>EJBoneServlet</display-name>

<servlet-class>itso.cics.eci.j2ee.testercci.EJBoneServlet</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>EJBoneServlet</servlet-name>
<url-pattern>EJBoneServlet</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
</welcome-file-list>
<ejb-ref id="EjbRef_1">

<description></description>
<ejb-ref-name>ejb/EJBone</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>itso.cics.eci.j2ee.testercci.EJBoneHome</home>
<remote>itso.cics.eci.j2ee.testercci.EJBone</remote>

</ejb-ref>
</web-app>

Example: A-9 Results jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>CTGTesterCCI - Results</TITLE>
</HEAD>
<jsp:useBean class="java.lang.String" id="results" scope="request"/>
<jsp:useBean class="java.lang.String" id="commareaInput" scope="request"/>
<jsp:useBean class="java.lang.String" id="encoding" scope="request"/>
<jsp:useBean class="java.lang.String" id="defaultResults" scope="request"/>
<jsp:useBean class="java.lang.String" id="hexResults" scope="request"/>

<BODY>
<%@ include file="include.jsp" %>

<P> </P>
<TABLE BGCOLOR=white CELLPADDING=0><TBODY>
374 Architecting Access to CICS within an SOA

<TR ALIGN=LEFT><TH>Results </TH><TH> COMMAREA </TH></TR>
<TR><TD>Input:</TD><TD BGCOLOR=yellow><%= commareaInput %></TD></TR>

<TR><TD>Output using <%= encoding %>:</TD><TD BGCOLOR=yellow><%= results
%></TD></TR>

<TR><TD>Output using default encoding: </TD><TD BGCOLOR=yellow><%=
defaultResults %></TD></TR>

<TR><TD>Output in HEX: </TD><TD BGCOLOR=yellow><%= hexResults %></TD></TR>

</TBODY></TABLE>

<TABLE BGCOLOR=white><TBODY>
<TR><TH>Request succeeded.</TH></TR>
</TBODY></TABLE>

</BODY>
</HTML>

Deployment
Deployment is the process of taking a generic enterprise bean definition
(consisting of home and remote interfaces, a bean class, and an XML
deployment descriptor) and turning it into a server specific implementation, and
installing it into an EJB server, and making it accessible to clients. CICS supports
the use of two WebSphere products to generate the server specific
implementation, and provides a tool to help installing enterprise beans in CICS.

Packaging a deployed JAR file
Once you have written your enterprise bean you should have a bean class, and a
home and remote interface, along with an XML deployment descriptor. We now
need to turn these into a server specific implementation by using a tool which will
generate the stubs and ties and other classes needed to run it on the EJB server,
and allow the client to access it. This can be done in two ways, as shown in
Figure A-30 on page 376.
 Appendix A. CICS EJB support 375

Figure A-30 Creating a deployed JAR file for CICS

If you developed your bean in Rational Application Developer, you can use that
tool to generate the deployed code. You can then export an EJB JAR from
Rational Application Developer, and your bean will be deployed straight into
CICS.

If you are using another IDE, WebSphere Application Server (with the exception
of the Express configuration) provides the Assembly Toolkit in the Application
Server Toolkit for packaging applications. The Assembly Toolkit is shown in
Figure A-31 on page 377. For more information about how to use the Assembly
Toolkit, refer to IBM WebSphere Application Server V5.1 System Management
and Configuration WebSphere Handbook Series, SG24-6195.

Assembly
Toolkit

Deployed
JAR file

Rational
Application
Developer

Other
IDE

Text Editor
+

Java
Compiler

Optional

session
bean

CICS EJB Server

WebSphere Application Server
for Windows

Install Enterprise
Application

Define DJAR
Publish DJAR

session
bean
376 Architecting Access to CICS within an SOA

Figure A-31 Application Server Toolkit J2EE perspective

Deploying to CICS
Once you have generated the deployed JAR file, it must be installed into a CICS
EJB server. This step involves the creation of CICS resource definitions,
publishing bean references to an external namespace, and making the EJB-JAR
file accessible to CICS. The following two deployment options are possible:

� Manual deployment

This method involves manually creating and installing the required definitions,
and then publishing your DJARs manually. This method is recommended for
system programmers, and people who want to have more control over what is
installed when and where.

� Deployment using the Resource Manager for Enterprise Beans (RMEB)

The RMEB along with some new attributes on the CORBASERVER definition
mean that it is very simple to install and update enterprise beans in a CICS
system with very little knowledge of CICS. This method is recommended for
systems where application developers will be writing and testing applications
using enterprise beans.
 Appendix A. CICS EJB support 377

Manual deployment
Manually performing the enterprise bean deployment allows you to test the
technology and helps you understand the whole process. The steps in order to
manually deploy an enterprise bean in CICS are as follows:

1. Create the CICS resource definition, namely a CORBASERVER, DJAR,
REQUESTMODEL (optional) and TCPIPSERVICE.

2. Store the deployed JAR file in a HFS directory accessible to CICS.

3. Install the CICS resource definitions.

4. Publish the reference to the enterprise bean’s home interface, also called the
interoperable object reference (IOR) to the COS Naming Server, using the
CEMT PERFORM DJAR() PUBLISH command.

For application developers who are not familiar with CICS, this is not a very easy
option, and could slow down development. Therefore the following option is
provided.

Deployment using the Resource Manager for Enterprise Beans
The RMEB is designed to speed up the development of EJB applications that run
in CICS. It provides a simple Web based interface for the developers who can
use it to install enterprise beans. If they want to make a change to the code, all
they have to do is copy the new JAR to HFS, and click the Scan button. The
enterprise beans will then be re-installed and re-published. Using this tool the
developer does not need any knowledge of RDO or CICS commands. Using this
tool requires that some initial setup has been done by the system programmer,
such as correctly configuring a CORBASERVER (specifying a pickup directory
and setting Autopublish to Yes). They must also have done the necessary tasks
to setup RMEB (which uses the HTML interface provided by CICS Web support).
378 Architecting Access to CICS within an SOA

Data conversion
CICS TS V2.1 introduced support for enterprise beans running in a Java Virtual
Machine (JVM) within CICS.

All String objects or char types are internally represented in Java as Unicode.
However, when the Java program needs to interface with CICS resources (such
as passing COMMAREAs to a COBOL program), all information must be in Java
byte arrays, which do not use Unicode.

Data types
The z/OS JVM, by default, uses its native EBCDIC code page when converting
strings or chars into byte-arrays. Figure A-32 shows the data flow between an
EJB client and an enterprise bean in CICS.

Figure A-32 EJB character set flow

In this flow of data there are basically five data types in use at different locations:

� The Web client application usually processes data in the Web browser’s
ASCII code page.

� The EJB client will use the ISO 8859-1 code page to build the IIOP header
information. This is transparent to the Java programmer.

� The application data flowing between the EJB client and the EJB container
will be Java objects, which are transported in a Unicode stream, unless the
client marshals character data into a byte array. If this is the case, then you
need to know the code page used by the sender to create the data.

� The CICS container will take care of proper code page conversion to invoke
the enterprise bean. In fact, the request processor (DFJIIRP) program is a
Java program and will interface with the user enterprise bean in Unicode.

� The server platform’s native code page; for z/OS this is an EBCDIC code
page, and conversion will be required if data needs to be passed from String

Web
browser

EJB
client

Unicode

ASCII

Client System

DFJIIRP
Unicode Enterprise

bean
CICS EJB
container

CICS Transaction Server

CICS pgm
EBCDICJava object

IIOP
headers
 Appendix A. CICS EJB support 379

objects (Unicode) to the byte arrays, which are required for all access to CICS
resources.

Accessing CICS resources
An enterprise bean running inside CICS can be designed to access CICS
resources using two different sets of classes:

� JCICS classes
� CCI connector, supported by the new CICS connector for CICS TS

JCICS classes
Support for Java programs was first introduced by CICS TS V1.3 using the
JCICS classes. The JCICS classes, as provided in dfjcics.jar, is the Java
equivalent of the EXEC CICS application programming interface (API).

A CICS Java program or CICS enterprise bean can use the JCICS classes to link
to an existing CICS program or to perform a variety of CICS operations, such as
wiring to VSAM files or temporary storage queues.

Using JCICS
Figure A-33 shows an example of a COBOL program writing a record in a VSAM
file, using the traditional CICS API.

Figure A-33 Writing a VSAM record using COBOL

The same access is shown in Figure A-34 on page 381, using the JCICS
classes.

MOVE "00010" TO REC-KEY.
MOVE "Writing a record to VSAM" TO REC-TEXT.

EXEC CICS WRITE FILE("MYFILE")
 LENGTH(LENGTH OF RECORD-DATA)
 RIDFLD(REC-KEY) RESP(RESP-FLD)
 FROM(RECORD-DATA) END-EXEC.
IF (RESP-FLD NOT = DFHRESP(NORMAL))
* ---> Error checking...
END-IF.
380 Architecting Access to CICS within an SOA

Figure A-34 Writing a VSAM record using JCICS

Note that programs using the JCICS API do not implicitly call the CICS
conversion program DFHCCNV, so all conversion from Unicode into EBCDIC
byte arrays must be done inside the Java code, before and after invoking CICS
services. Since JCICS programs can only run in the EBCDIC CICS environment,
we do not have to be concerned about portability of code.

The method getBytes() will convert a Unicode string of character data into a
byte array, using the default code page (EBCDIC) for the CICS JVM
environment. But what if our data is composed of other data types such as 16 or
32-bit integers or packed decimal fields? In this case you will need to develop
more complex data marshalling logic either within your Java application or within
CICS. For further details on converting numeric data within Java refer to the IBM
Redbook Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401.

CCI Connector for CICS TS
CICS TS V2.3 introduced the CCI Connector for CICS TS. This enables a Java
program running within CICS to link to an existing program using the facilities of
Common Client Interface (CCI). The CCI is defined by the JCA and is the same
interface as provided by the CICS ECI resource adapter from the CICS
Transaction Gateway. This means that enterprise beans that invoke existing
CICS applications can be made portable, since the CCI can be used by any Java
application, including servlets and other enterprise beans running in a different
Enterprise JavaServer™.

The function is equivalent to that provided by the JCICS link() method of the
Program object, but does not tie the Java program to running in a CICS
environment.

String sKey = "00010";
String sText = "Writing a record to VSAM ";
String sRec=sKey+sText;
KSDS myFile = new KSDS();
myFile.setName("MYFILE");
try {
 myFile.write(sKey.getBytes(),sRec.getBytes());
 System.out.println("Record write successful");}
catch (Throwable t) { // Error handling...}
 Appendix A. CICS EJB support 381

Data conversion
When using the CCI Connector for CICS TS, you can handle data conversion
using one of two methods:

1. Using the services of the CICS conversion program, DFHCCNV. First you
have to convert the data from Unicode to ASCII. Then you must provide a
conversion template in the DFHCNV conversion table. The connector invokes
DFHCCNV before and after the program link call.

2. Using your own data conversion routines either within CICS or within your
Java application.

More information concerning usage of the CCI Connector for CICS TS,
restrictions and recommendations is available in the CICS Information Center.
382 Architecting Access to CICS within an SOA

Appendix B. SOAP for CICS feature

This appendix covers the SOAP for CICS feature available with CICS TS V2.2
and V2.3.

This appendix contains the following sections:

� Introduction

� Security

� Transactional scope

� Performance and scalability

� Application development

� Data conversion

B

Note: The SOAP for CICS feature has been replaced in CICS TS V3.1 with
the Web services support feature described throughout this redbook. We
strongly recommend using the Web services support in CICS TS V3.1 in place
of the SOAP for CICS feature.
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 383

Introduction
The SOAP for CICS feature allows CICS to operate as a service requester or
service provider within a Web services architecture.

Using the SOAP for CICS feature CICS business logic programs can interact
securely and reliably with other Web services, exchanging XML based
messages, independently of platform, or application language. Within the
Service Orientated Architecture (SOA), standard definitions are used to describe
the message formats than can be sent. Thus developers can rapidly build open
standards based applications independently of the CICS business logic program
they will interact with. This is the essence of the service orientated architecture,
and the reason that is deemed to be loosely coupled.

The SOAP for CICS functionality was originally introduced as supportpac CA1M
which has now been replaced by an optional feature for CICS Transaction Server
V2.2 or V2.3.

The service provider and service requester functions within CICS are run as
pipelines utilizing CICS Business Transaction Services (BTS) functionality. User
application code running as part of the pipeline needs to be aware that it will be
within a BTS activity so that it correctly handles events and containers.

SOAP messages are sent as XML documents, for these messages to be
understood by an existing CICS application, they must be parsed, and so user
application code will need to be added to the pipeline to parse the XML.
Enterprise COBOL V3 and Enterprise PL/I V3 both provide built-in XML parsing
functionality for the PL/I and COBOL languages, and this can simplify the
development of parsing code. Alternatively, parsing code can be generated
automatically using a tool such as WebSphere Studio Enterprise Developer.

The rest of this section describes the supported transports and the inbound and
outbound pipeline structure.

Note: In CICS TS V3.1 the SOAP for CICS feature has been replaced by Web
services support.
384 Architecting Access to CICS within an SOA

Supported transports
The SOAP for CICS feature supports two transports, HTTP and WebSphere MQ.

HTTP
The HTTP transport is supplied by CICS Web support. The standard format URL,
if using the default analyzer program DFHWBADX, for use with SOAP for CICS
is /cics/cwba/dfhwsdsh/prog where dfhwsdsh is the HTTP dispatcher program
that will start the service provider pipeline and prog is the target user written
message adapter within the service provider pipeline.

WebSphere MQ
In addition to HTTP you can use WebSphere MQ as the transport for the SOAP
for CICS feature. The service provider pipeline will be started by the MQ trigger
monitor task (CKTI) starting a transaction in response to receiving a new
message. By default the transaction is CWSQ and it will run program
DFHWSDSQ which is the MQ dispatcher program. The TRIGDATA parameter on
the queue definition specifies the target message adapter program. Figure B-1
illustrates the flow of a message between MQ and CICS and shows the queues
and tasks involved.

Figure B-1 Message flow between WebSphere MQ and CICS

Note: You can use a different format URL (with a custom analyzer program)
but you should ensure that the message adapter program name appears after
the final slash in the URL. If it does not then the application mapper
(DFHWSAMX) within the service provider pipeline will have to be used to
specify the program name.

MQPUT SOAPQ

MQ Queue Mananger CICS

 Trig
msgs

SOAP
msgs SOAPQ

InitQ

 SOAP dispatcher
 (DFHWSDSQ) CWSQ

MQGET SOAPQ

1

2 3

5

Task initiation trans

MQGET InitQ
CKTI

START CWSQ

4

 Appendix B. SOAP for CICS feature 385

Inbound pipeline: service provider
The inbound pipeline is shown in Figure B-2 and identifies the three different
types of program involved.

CICS supplied CICS code that is not changeable by the user.

User replaceable CICS supplies a default version that can be modified.

User supplied User written application code.

Figure B-2 SOAP inbound pipeline

Dispatcher
The main role of the dispatcher program is to create the BTS process that the
pipeline will run in and then link to the pipeline manager activity. There are two
different dispatcher programs supplied by CICS. DFHWSDSH is for HTTP and
DFHWSDSQ is for MQ. In addition to starting the pipeline, DFHWSDSQ also
receives the message from WebSphere MQ.

Dispatcher Pipeline manager

SOAP
message
handler

SOAP
envelope
builder

SOAP
envelope

parser
Service
provider
transport Message

Adapter
Existing
Program

User
supplied

CICS
supplied

User
replaceable

Abend
Handler

HTTP

MQ

Application
mapper
386 Architecting Access to CICS within an SOA

Pipeline manager
The inbound pipeline manager is a CICS-supplied module called DFHWSPMI.
The pipeline manager ensures that each stage of the pipeline is executed in turn.
It also manages the movement of data between the various stages of the
pipeline. That data includes the SOAP request received from the client, the
SOAP response created by the application, and any user application specific
data. The pipeline manager establishes an abend handler so that any errors are
processed correctly and a suitable error response is returned to the client.

Service provider transport
The service provider transport program is provided by CICS. There is one for
each supported transport. DFHWSTIH is for HTTP and DFHWSTIQ is for MQ.

The service provider transport program handles the sending and receiving of the
SOAP message using the appropriate protocol (HTTP or MQ). It is called twice
during the pipeline. The first time it is called, it has to receive the SOAP request
and make it available to the next stage of the pipeline. The second time it is
called, it takes the completed SOAP response and sends it back to the client.

SOAP message handler
The SOAP message handler is a user replaceable program called DFHWSHDX.
If it is changed it must still be called DFHWSHDX which means you can only
have one per CICS region.

The SOAP message handler is called twice in the inbound pipeline: immediately
after the service provider transport program has received the SOAP request and
immediately before the service provider transport program sends the SOAP
response. The SOAP message handler is given as input the entire SOAP
message and has to supply as output a complete SOAP message. This is the
only user replaceable program in the pipeline that gets to see the entire SOAP
message.

The SOAP message handler can be used to directly manipulate and change the
SOAP message. A possible reason to change the message is to add information
into the SOAP envelope header section of the SOAP response. The SOAP
message handler can also parse part or all of the message and extract
information for use in later stages of the pipeline. This could be useful if there is
information in the SOAP envelope header needed later, for example, some form
of authentication such as a user ID and password.

The SOAP message handler could also be a good point in the pipeline to perform
logging or auditing functions.

CICS supplies a default version of DFHWSHDX which does not perform any
processing of the SOAP message.
 Appendix B. SOAP for CICS feature 387

SOAP envelope parser
The SOAP envelope parser is a CICS-supplied module called DFHWSSH. It
parses the SOAP request using an XML parser. The purpose of parsing the
SOAP request is to extract the body of the request, which is the data required by
the message adapter, and to extract the XML namespace definitions.

The SOAP body and the namespaces are then made available to the message
adapter. The namespaces are required to allow the SOAP body to be correctly
parsed by the message adapter.

Application mapper
The application mapper is called DFHWSAMX. It is a user replaceable module
responsible for determining the security context for the message adapter and
target business logic application. Even if the program is modified, it must still be
called DFHWSAMX. This means that you can only have one version per CICS
region.

The application mapper can set the user ID, transaction ID, and program name
for the activity used to run the message adapter program. It is given as input the
values that the pipeline manager has determined will be used and can accept
them or change any or all of them. The CICS-supplied version of DFHWSAMX
accepts the values chosen by the pipeline manager.

Message adapter
This is a user-written program that needs to:

1. Convert the body of the SOAP request that was received into a correctly
formatted COMMAREA structure for input to the existing program

2. Link to the existing program to perform the required business logic

3. Convert the COMMAREA returned by the business logic into the body of a
SOAP response.

The program needs to understand XML and will need some means of parsing the
XML it has been passed. The program can be written by hand or can be
generated using appropriate tooling such as WebSphere Studio Enterprise
Developer.

Existing program
The existing COMMAREA based program. This implements the required
business logic and will be linked to from the message adapter program.
388 Architecting Access to CICS within an SOA

SOAP envelope builder
The SOAP envelope builder is DFHWSSH which was also the SOAP envelope
parser. When called to build the SOAP envelope it will wrapper the XML
produced by the message adapter with the required tags (Envelope and Body)
for the SOAP envelope. It will also add any application-supplied namespaces to
the SOAP envelope tag.

Abend handler
The pipeline manager has established DFHWSABE as the HANDLE ABEND
program. If an abend should occur at any stage in the pipeline then DFHWSABE
will get control to handle it assuming that a lower level user written abend handler
has not already handled it. DFHWSABE will create a SOAP fault message to be
returned to the service requester. The message is sent and any outstanding
activities within the pipeline are cancelled. Finally, the pipeline is abended if
using MQ as the transport or a SYNCPOINT ROLLBACK is issued if using
HTTP. Example B-1 shows the SOAP fault that gets returned to the service
requester. abcode would be replaced by the actual abend code and abprog
would be replaced with the name of the program that abended.

Example: B-1 Format of the SOAP fault produced by DFHWSABE

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <env:Fault>
 <faultcode>env:Server</faultcode>
 <faultstring>The Server suffered an Internal Error</faultstring>
 <detail>
 <abend xmlns="http://cts.software.ibm.com/cicsts/soap">
 <abcode>abcode</abcode>
 <program>abprog</program>
 </abend>
 </detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Outbound pipeline
The outbound pipeline is shown in Figure B-3 on page 390 and identifies the
three different types of program involved.

CICS supplied CICS code that is not changeable by the user.

User replaceable CICS supplies a default version that can be modified.

User supplied User written application code.
 Appendix B. SOAP for CICS feature 389

Figure B-3 SOAP outbound pipeline

Business logic
This user written program performs the necessary business logic before and
after linking to the message adapter. This is unlikely to be an existing application
as it would need to be performing a client function rather than a server function.

Message adapter
This user written program will be linked to from a business logic program. It has
to perform several functions.

� Convert the COMMAREA into the body of a SOAP request.

� Specify the URI of the remote service provider.

� Invoke the outbound SOAP pipeline using the outbound router.

� Convert the response from the outbound router into a COMMAREA and
return to the business logic program.

SOAP
envelope

parser

SOAP
message
handler

Service
requester
transport

Pipeline manager

SOAP
envelope
builder

S
e
r
v
i
c
e

P
r
o
v
i
d
e
r

Resp

Req

Message
adapter

Outbound router

Send

Receive
HTTP or MQ

 User
Supplied

CICS
Supplied

User
Replaceable

Business
logic

390 Architecting Access to CICS within an SOA

Outbound router
The outbound router is a CICS-supplied module called DFHWSRT. It has to
determine which transport protocol is being used and start the pipeline manager
to use that protocol. It is also responsible for passing the data from the message
adapter to the pipeline and for returning the response from the pipeline manager
back to the message adapter.

Pipeline manager
The outbound pipeline manager is a CICS supplied module called DFHWSPMO.
The pipeline manager ensures that each stage of the pipeline is executed in turn.
It also manages the movement of data between the various stages of the
pipeline. That data includes the SOAP request received from the client, the
SOAP response created by the application, and any user application specific
data.

SOAP envelope builder
The SOAP envelope builder and the SOAP envelope parser in the outbound
pipeline is the same program that was used in the inbound pipeline which is
DFHWSSH. See “SOAP envelope parser” on page 388 and “SOAP envelope
builder” on page 389. DFHWSSH performs exactly the same functionality in the
outbound pipeline as it did in the inbound pipeline except the order of the calls is
reversed. In the outbound pipeline, the first call is to build the SOAP envelope.

SOAP message handler
The SOAP message handler is DFHWSHDX. This is the same program that was
used in the inbound pipeline and details can be found in “SOAP message
handler” on page 387. It is still called twice but in the outbound pipeline, it is
called before the service requester transport program sends the request and
after the service requester program receives the reply.

Service requester transport
The service requester transport program is supplied by CICS. There is one
program for each supported transport. DFHWSTOH is for HTTP and
DFHWSTOQ for MQ. The service requester transport is responsible for sending
the SOAP request to the remote service provider, receiving the SOAP response
and making it available to the rest of the pipeline.

Security
In this section, we look at the security issues that you will need to consider when
implementing a SOAP service provider or service requester using the SOAP for
CICS feature.
 Appendix B. SOAP for CICS feature 391

Service provider
There are two separate areas to consider when implementing a SOAP service
provider.

� Security for the transport mechanism used, which is either HTTP (using CICS
Web support) or WebSphere MQ.

� Security within the SOAP inbound pipeline.

Transport security
The two supported transports will be discussed separately.

HTTP
The HTTP transport is supplied by CICS Web support. This means that all the
security features available with CICS Web support are automatically available for
use with the SOAP for CICS feature.

For example, to use SSL to encrypt the SOAP request you would define a
TCPIPSERVICE with the SSL parameter set to either YES. You would also
optionally provide the name of a server certificate to be used. If you are using the
well-known port numbers, then remember to specify the value of the
PORTNUMBER parameter as 443 for SSL.

If you require a means to authenticate the client then you can use either of the
following:

� Basic authentication

This will request a user ID and password.

� SSL client authentication

To use this, define a TCPIPSERVICE with the SSL parameter set to
CLIENTAUTH. This will request that the client provide a certificate which can
then be authenticated by RACF and mapped to a user ID.

WebSphere MQ
When using WebSphere MQ as the transport, you will need to consider the
following points.

The transport transaction (CWSQ) will be started by the trigger monitor using the
same user ID as the trigger monitor. This user ID must have UPDATE authority
to the input queue, the backout queue (if this is specified), and the BTS
repository.
392 Architecting Access to CICS within an SOA

If AUTH=IDENTIFY is specified in the USERDATA parameter of the WebSphere
MQ PROCESS definition for CWSQ, then the user ID under which CWSQ runs
must have surrogate authority to allow it to start transactions on behalf of the
user IDs in the MQ message descriptors (MQMDs) of the messages.

The process user IDs must have UPDATE authority to the reply queue, and to
the BTS repository.

More information about security for WebSphere MQ can be found in WebSphere
MQ Security, SC34-6079, and in the redbook WebSphere MQ Security in an
Enterprise Environment, SG24-6814.

Pipeline security
The main security concern within the SOAP pipeline is in securing access to the
target service provider application. The pipeline runs as a BTS process and is
managed by the inbound pipeline manager program which is DFHWSPMI.
DFHWSPMI runs each stage of the pipeline as a separate activity using EXEC
CICS LINK ACTIVITY. The message adapter and business logic application may
be executed using EXEC CICS RUN ACTIVITY SYNCHRONOUS which allows them to
use a different user ID or transaction ID.

The inbound pipeline provides a user replaceable module, known as the
application mapper, which is able to set the security context (program name,
transaction ID and the user ID) for the requested service provider application.
The module is called DFHWSAMX and a default version is supplied.

The position of the application mapper in the inbound pipeline is shown in
Figure B-4 on page 394.
 Appendix B. SOAP for CICS feature 393

Figure B-4 SOAP inbound pipeline

To allow DFHWSAMX to determine the security context, CICS supplies it with
several pieces of information in a set of input containers. These containers are:

� TARGET-TRANSID: contains the transaction ID CSAC.

� TARGET-USERID: contains the user ID that the pipeline is currently running
under. This is either the user ID under which the CWS alias transaction is
running or the user ID under which CWSQ is running.

� APP-HANDLER: contains the name of the service provider application as
determined by the pipeline manager.

� TARGET-URI: contains the URI used by the client to request this service.

� USER-CONTAINERS: optional list of user-defined containers.

DFHWSAMX may need to use part of the SOAP request to determine the user
ID, transaction ID, and program name. The only way to achieve this is to use the
user message handler program (DFHWSHDX) to save any relevant part of the
SOAP request into a user defined container. The name of that container will be
passed to DFHWSAMX in the USER-CONTAINERS container. The container
can then be accessed using an EXEC CICS GET CONTAINER call. DFHWSAMX can
set the transaction ID, user ID, and program name by using EXEC CICS PUT
CONTAINER calls specifying the container and the required value.

Depending on the transport security used you may or may not need to change
the user ID.

SOAP
envelope
builder

HTTP/MQ
request
sender

SOAP
envelope

parser

Existing
application

Application
Handler

Service
provider

application

Logical flow

HTTP/MQ
request
receiver

User
Message
Handler

User
Message
Handler

Application
Mapper
394 Architecting Access to CICS within an SOA

If the URI used follows the default format for the SOAP for CICS feature then
program name will not need to be changed. If the URI is generic with the name of
the service provider supplied within the SOAP headers then the user message
handler program will need to have extracted this information earlier in the
pipeline and saved it in a user defined container.

Service requester
The service requester runs as a standard CICS transaction so normal CICS
resource security will be in place. There may be some security constraints placed
upon you by the remote service provider.

When using HTTP as the transport, you may be required to use SSL (with or
without a client certificate). This is achieved by specifying HTTPS:// instead of
HTTP:// at the beginning of the URI in the TARGET-URI container. If the remote
server requests a client certificate, then CICS will send the default certificate
from the keyring. This means that the remote server can identify the CICS region
that sent the request but it cannot determine the individual user who sent it.
Another form of identification would have to be used in combination with SSL and
a client certificate.

Web Services Security (WS-Security)
WS-Security V1.0 was announced by IBM, Microsoft, and Verisign on April 11,
2002. It presents a strategy for addressing security issues within a Web services
environment.

WS-Security describes enhancements to SOAP messaging to provide quality of
protection through message integrity, message confidentiality, and single
message authentication. These mechanisms can be used to accommodate a
wide variety of security models and encryption technologies.

WS-Security also provides a general-purpose mechanism for associating
security tokens with messages. No specific type of security token is required by
WS-Security. It is designed to be extensible (for example, support multiple
security token formats). For example, a client might provide proof of identity and
proof that they have a particular business certification.

Tip: If you use the application mapper to specify the user ID then you should
also specify the transaction ID. If you specify just the user ID then the
transaction ID will default to CSAC.
 Appendix B. SOAP for CICS feature 395

Additionally, WS-Security describes how to encode binary security tokens.
Specifically, the specification describes how to encode X.509 certificates and
Kerberos tickets as well as how to include opaque encrypted keys. It also
includes extensibility mechanisms that can be used to further describe the
characteristics of the credentials that are included with a message.

Composable architecture
By using the SOAP extensibility model, SOAP-based specifications are designed
to be composed with each other to provide a rich messaging environment. By
itself, WS-Security does not ensure security nor does it provide a complete
security solution. WS-Security is a building block that is used in conjunction with
other Web service and application-specific protocols to accommodate a wide
variety of security models and encryption technologies. Implementing
WS-Security does not mean that an application cannot be attacked or that the
security cannot be compromised.

Further details on WS-Security can be found at:

http://www-106.ibm.com/developerworks/Webservices/library/ws-secure/

WS-Security and the SOAP pipeline
The SOAP for CICS feature does not provide any built-in support for
WS-Security. However, the user message handler, DFHWSHDX, has access to
the entire SOAP request so it can be modified to implement some of the
WS-Security techniques. For example, ID assertion (where the service requester
is trusted and allowed to specify only the user ID for the service provider) can be
implemented. Typically, the user ID would be sent in the SOAP headers as
shown in Example B-2.

Example: B-2 Passing user ID in SOAP headers

<S:Envelope xmlns:S=”http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
 <S:Header>
 ...
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>Zoe</wsse:Username>
 </wsse:UsernameToken>
 </wsse:Security>
 ...
 </S:Header>
 ...
</S:Envelope>
396 Architecting Access to CICS within an SOA

http://www-106.ibm.com/developerworks/Webservices/library/ws-secure/

DFHWSHDX could parse the headers and extract the user ID from the
<wsse:Username> tag. This user ID could then be placed in a container using
EXEC CICS PUT CONTAINER and the name of that container added to the list
held within the USER-CONTAINERS container. This user ID is now available to
be used by the application mapper (DFHWSAMX) to set the security context of
the service provider application.

Transactional scope
In this section we will look at the current transactional capabilities in the SOAP
for CICS feature and then provide a brief introduction to the Web services
transaction standard, WS-Transaction.

SOAP for CICS transactional support
The SOAP for CICS feature has no support for participating in global
transactions. The service provider and service requester pipelines run as
separate CICS-transactions in their own units-of-work.

The pipelines run as activities within a BTS process. The original design of BTS
meant that user syncpoints were not allowed. APAR PQ76073 for CICS TS V2.2
made enhancements to BTS processing to allow user syncpoints within an
activity, but this support is only available with the SOAP for CICS feature if HTTP
is used as the transport. If WebSphere MQ is used as the transport then user
syncpoints are still not allowed.

Web services transaction standard (WS-Transaction)
Web services increasingly tie together a large number of participants forming
large distributed applications. The resulting activities can be complex in
structure, with complex relationships between their participants. It requires a
flexible and extensible mechanism for controlling requests and outcomes in
addition to the behavior offered by traditional distributed and database
transaction models. So in August 2002, IBM, BEA, and Microsoft released
WS-Transaction along with Business Process Execution Language for Web
Services (BPEL4WS), and WS-Coordination specifications for transactional
integrity, reliably choreographing Web services-based applications, providing
business process management, and generic coordination facilities.
 Appendix B. SOAP for CICS feature 397

The WS-Transaction specification provides the definition of two coordination
types:

� Atomic transaction (AT)

AT is used to coordinate activities having a short duration and executing
within limited trust domains. It has an all or nothing property.

� Business activity (BA)

BA is used to coordinate activities that are long in duration and desire to apply
business logic to handle business exceptions. It defines that actions are
applied immediately and are permanent. Compensation logic is required to
allow each participant to undo the operations it has performed within the
conversation.

A Web services application can include both atomic transactions and business
activities.

For more information regarding WS-Transaction and WS-Coordination, refer to
these Web sites:

http://www.ibm.com/developerworks/library/ws-transpec/
http://www.ibm.com/developerworks/library/ws-coor/

Performance and scalability
SOAP for CICS is now available as a fully supported feature of CICS TS V2.2
and V2.3. It provides support for both inbound and outbound SOAP messages.
The SOAP for CICS SupportPac which became available for CICS TS V1.3 and
V2.2 in March, 2003, only provided support for inbound SOAP messages.

In this section we will compare the performance and scalability of the SOAP for
CICS feature, the SOAP for CICS SupportPac, and HTTP in a CICS TS V2.2
environment. We will also discuss briefly how application design and architecture
choices will affect the performance.

The data in this section is based on a simple COBOL SOAP-aware application
from the CICS zSeries Performance team at IBM Hursley. A sample of both the
request and response message is shown in Example B-3 and Example B-4 on
page 399.

Note: The SOAP for CICS feature does not currently support the
WS-Transaction specification.
398 Architecting Access to CICS within an SOA

http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-transpec/

Example: B-3 Sample request message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" >
 <SOAP-ENV:Body>
 <Length>00100</Length>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example: B-4 Sample response message

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" >
 <SOAP-ENV:Body>
 <Commarea>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX
 </Commarea>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The general observations based on the performance data are:

� Total CPU increases linearly as the transaction rate increases.

� CPU/transaction increases linearly as the return message size increases.

� CPU/transaction increases linearly as the number of elements in the XML
message increases.

� HTTP message processing is faster than the SOAP for CICS feature.

� SOAP for CICS feature significantly out-performs the SOAP SupportPac.

� Persistent connections improve SOAP performance.

Throughput
As the transaction rate increases, the CPU usage increases as shown in
Figure B-5 on page 400. The graph shows a comparison between the SOAP for
CICS feature, the SOAP for CICS SupportPac, and a request being processed by
a Web aware application that does not use SOAP for CICS. The SOAP for CICS
feature outperforms the supportpac because the feature can function without
using the BTS repository dataset. The effects on performance of this dataset are
described in “BTS considerations” on page 401.
 Appendix B. SOAP for CICS feature 399

Figure B-5 CPU versus Transactions

Workload balancing
As the transaction rate increases it will become necessary to balance the
workload across multiple CICS regions. For HTTP this can be achieved by using
the Sysplex Distributor to route the incoming requests to different CICS regions.
For WebSphere MQ a queue sharing group (described in WebSphere MQ for
z/OS Concepts and Planning Guide V5.3.1 GC34-6051) can be setup to allow
multiple CICS regions to service messages on the same queue.

Once within CICS the existing business logic application that is linked to from the
message adapter can be on an AOR and workload managed, for example, by
CICSPlex SM. This is shown in Figure B-6.

Figure B-6 Workload can be balanced across multiple listener regions and AORs

0 200 400 600 800 1000

Transactions/second

25

50

75

100

125

150

To
ta

l C
PU

 %

SupportPac
Feature

HTTP

z/OS

DB2

Sysplex
Distributor

MQ
Shared
Queue

Listener Region AOR

CICS CICS

Existing
Business
Logic

CWXN

CKTI

Inbound SOAP
Pipeline
400 Architecting Access to CICS within an SOA

Transport considerations
There are two transports supported by the SOAP for CICS feature:

� HTTP
� WebSphere MQ

When HTTP is used as the transport, persistent connections outperform
non-persistent connections. The reason for this is that, when using persistent
connections, the client will reuse both the connection and the CWXN task in
CICS on subsequent invocations of a service provider on the same CICS
system. If the connection is not persistent then the client will have to establish a
new connection and also cause a new CWXN transaction to be created for every
invocation of a service provider.

When WebSphere MQ is used as the transport, WebSphere MQ storage
requirements, address space storage, data storage, library storage, system LX
usage, logging, and backup and recovery environments will have an impact on
the performance. For more information, see WebSphere MQ for z/OS Concepts
and Planning Guide, GC34-6051.

BTS considerations
A BTS repository dataset will be used if WebSphere MQ is the transport. The
dataset will also be used if HTTP is the transport in a service requester pipeline
and the DEFINE PROCESS command does not use the NOCHECK option.

Using the repository dataset will have the following impacts on performance:

� I/O to the dataset restricts throughput
� Control Interval lock contention on the dataset restricts throughput
� Use of the dataset causes additional MVS Logging

If the repository dataset is used then monitoring data produced by CICS can be
used to improve the performance. For information about CICS monitoring, see
the CICS Performance Guide, SC34-6247.

SSL considerations
Security comes with a performance cost. How much security is enough depends
on the business requirements. The security between network nodes over the
Internet is traditionally provided using SSL over HTTP (HTTPS). With HTTPS,
you can perform mutual authentication of both the sender and receiver of
messages and ensure message confidentiality.
 Appendix B. SOAP for CICS feature 401

If security is needed end to end through the application stack, or if security must
be independent of the networking protocol, then other means must be
considered. WS-Security specifies authentication and message integrity through
XML Digital Signatures and message confidentiality through XML encryption
using X.509 certificates in both instances. For details, see Chapter 5, “Security”
on page 101. However, there are performance trades-offs that must be
understood and evaluated against the overall set of requirements.

A common practice is to combine the two approaches by using SSL for
encryption and then using XML Digital Signatures to authenticate the application
end points and to ensure message integrity. Keep in mind that SSL will also
involve at least one authentication of the server to whom a message is being
sent, thus some redundancy is occurring.

Also different SSL key size and the encryption algorithms have different
performance impact.

Design and architecture considerations
Designing and architecting a solution that meets the performance requirements
has to be considered from the start, not afterwards.

The architecture should guarantee the behavior of the application and operate
within a range of acceptable measurements; it must also ensure that the overall
behavior of the solution is predictable. Here we will briefly look at the
performance impact of message size, message structure, and WebSphere
tooling.

Keep message size small
The obvious rule is to keep your payload small and simple. However, in the real
world, you do not always have the luxury of adhering to this rule. Larger
messages result in longer parsing times. It increases linearly as shown in
Figure B-7 on page 403. You should be aware of these impacts and try to
minimize the size of the XML message.
402 Architecting Access to CICS within an SOA

Figure B-7 CPU versus message size

Keep message structure simple
Complex XML structures with nested elements result in longer times for
marshalling and un-marshalling the XML elements. XML Elements are extensible
and they have relationships as shown in Example B-5. The book is the root
element. Title, prod, and chapter are child elements of book. Book is the parent
element of title, prod, and chapter. Title, prod, and chapter are siblings because
they have the same parent.

Example: B-5 An XML example showing XML elements

<book>
<title>Architecting e-business access to CICS</title>
<prod id="SG245466" media="paper"></prod>
<chapter>Introduction to e-business

<para>what is e-business</para>
<para>Product options</para>

</chapter>

<chapter>Performance and scalability
<para>CICS Transaction Gateway</para>
<para>SOAP for CICS features</para>

</chapter>

</book>

There is a linear increase in CPU/transaction as the number of elements
increases as shown in Figure B-8 on page 404.

0 10 20 30
Message size in KB

1

2

3

4

5

6

C
PU

 m
s

/ t
ra

ns
ac

tio
n

 Appendix B. SOAP for CICS feature 403

Figure B-8 CPU/Transaction versus number of elements

Other performance considerations
The majority of other runtime performance issues for a CICS SOAP solution will
be no different than other CICS applications. As a previous section already
mentioned, the following list needs to be considered:

� Hardware, capacity settings
� Operating system parameter settings
� Memory management
� LE runtime
� Transaction logs
� Server logs

Once the solution is operational, then an iterative process is applied to fine-tune
a solution by capturing measurements from simulated loads, making
adjustments and measuring again to understand their influence. You can iterate
as many times as you need until the solution meets the business requirements.

0 10 20 30 40 50 60
Number of XML elements

2.5

3

3.5

4

C
PU

 m
s

/ t
ra

ns
ac

tio
n

404 Architecting Access to CICS within an SOA

Application development
The SOAP for CICS feature enables existing or new CICS applications, written in
any supported programming language, to communicate outside of the CICS
environment using the Simple Object Access Protocol (SOAP). The feature
supports inbound and outbound SOAP requests. WebSphere Studio Enterprise
Developer (WSED) provides a new generation of development tool sets to
facilitate the development process.

In this section, we will discuss how to design, develop, and test the Web service
of Service Oriented Architecture (SOA) style from an existing 3270 catalog
management application named EXCATMAN, which is a greatly simplified
COBOL application, as shown in Example B-6. It is a catalog management
system for stationery orders and supports both inquiries and orders. In order to
keep it simple, we will use the inquiry function only.

Example: B-6 CICS COMMAREA used between the 3270 presentation logic and the
EXCATMAN business logic

* Inquire Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
 * Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-CAT-ITEM OCCURS 15.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC ZZZ.99.
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
 * Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC 9(8).
 05 CA-CHARGE-DEPT PIC 9(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).
 Appendix B. SOAP for CICS feature 405

Design
Companies need to keep up with today’s fast moving marketplace, but traditional
mainframe applications are very tightly coupled, and developers often cannot
rapidly build applications that satisfy the needs of on demand business. With
SOA and Web services existing requirements, enterprise application integration
can be wrapped and exposed as services to provide loosely coupled accessibility
to other functions, flows and applications, as well as provide a foundation for
extending the platform to meet specific business demands as shown in
Figure B-9.

We will take the simplest approach to demonstrate how to design and develop a
Web service from EXCATMAN. This approach is often referred to as bottom-up.

Figure B-9 The bottom-up approach for SOAP enablement

Development
As with any other development, you can write it by hand or take advantage of an
IDE. We will list higher level steps of SOAP enabling the application by hand,
then go through an IDE aided development approach for the same application
and you will see for yourself why WebSphere Studio Enterprise Developer is the
recommended tool for the job.

Hand-coded approach
In order to SOAP enable the EXCATMAN, we have to go through following steps
to achieve the task. We will not go into detailed implementation here, only
outlines the basic steps.

� From a COMMAREA to an XML document

� Implementing a CICS SOAP Web Service Provider

– The message adapter
– BTS Handling

Inbound
SOAP

message

CICS

Web
Services

Catalog
management

system
EXCATMAN

EIS

Inbound
Converter

Driver

XML data

Binary data

Binary data

Outbound
ConverterXML data

XML data

Outbound
SOAP

message XML data

SOAP
for

CICS
406 Architecting Access to CICS within an SOA

– XML parsing
– XML generation
– Building the SOAP body

� Implementing a CICS SOAP Web Service Requester

– The message adapter
– Building the SOAP body
– BTS Handling

� Error Handling

– Error handling in the Web Service provider
– Error handling in the Web Service requester

� Handling Namespaces

� Web service test client

WebSphere Studio Enterprise Developer aided development
As you can see, there is a lot of tedious work to be done and many places could
go wrong if you don’t pay enough attention to the details. Now let’s take a look at
how the WebSphere Studio Enterprise Developer can help us simplify and speed
up the SOAP enablement.

Locating your existing application
In order to locate the application, we need to define and connect to the remote
z/OS system by using the tooling for z/OS in WebSphere Studio Enterprise
Developer. Once we are connected, then locate the source for EXCATMAN.

XML conversion
1. Create a WebSphere Studio Enterprise Developer project

In WebSphere Studio Enterprise Developer, switch to the Resource
perspective and invoke the New Project wizard and follow the wizard to
create a project called WSEDXML.

2. Moving your existing application to WebSphere Studio Enterprise Developer

Use copy and paste operations on the source COBOL files for EXCATMAN
into your local WSEDXML Project.

If the source file is located in the local file system, then use the File -> Import
operation provided in the Workbench to import the source files into the local
project.
 Appendix B. SOAP for CICS feature 407

3. Invoke the XML Converter generator wizard

Select EXCATMAN.cbl in the Navigator view and right-click and select
Enable XML -> Generate XML Converter from the menu.

4. Specify input and output files for the wizard

Use the first page of the XML Converter wizard to select input and output files
for the Converter, Driver template, and the XML Schema files as follows:

– Source file: specify where your existing COBOL program is located

– Converter folder: specify folder(s) where the wizard will generate converter
program(s)

– Converter file name: specify the name you want to give your converter file.

– Converter driver file name: specify the name you want to give your
converter driver.

– Generate converters and converter driver to the Input converter file:
choose whether you want to generate the converters and converter driver
to the file specified in the Input converter file name field. The driver will
appear first in the file.

– XSD file folder: specify where the wizard will generate the XML Schema
file.

– XSD file names: specify the name you want to give your XML Schema
file(s)

– Overwrite files without warning: select if you want to overwrite existing
output files

5. Specify the generation options

Use the second page of the XML Converter wizard to specify generation
options for your Converter and Driver programs as follows:

– Program name - specify the value for the program name.

– Author name - specify the value for the AUTHOR paragraph

– Driver type - specify the desired driver type. Choose CICS. The CICS
driver type provides some conveniences to minimize the need for
modifications.

Note: The XML Schema files are automatically generated that contains the
description of the names and types of XML elements. These elements can
appear in an XML document that our program will process and generate.
408 Architecting Access to CICS within an SOA

– Maximum message size - specify the maximum size of the XML message
that will need to be allocated when processing and generating the XML
message.

– Code pages - specify code page(s) for the encoding of the inbound and
outbound XML documents, and the code page for the host data.

– Inbound Namespace - specify the inbound namespace or accept the
default. This is currently not validated.

– Outbound Namespace - specify the namespace container for messages
created by the outbound converter.

6. Specify input and output data structures

We will only use the INQUIRE function of our existing business logic. In order
to optimize the flows, we select the CA-REQUEST-ID
EXCATMANCOMMAREA field, and only this one. We do the same type of
optimization for the output COMMAREA.

7. Generate code

Click Finish to complete the generation process. After the wizard processing
completes, you will notice that your Converter and Driver files are generated
and displayed in the Navigator view.

8. Modify the CICS SOAP converter driver programs

You can now modify the converter driver template that was generated by the
tool. The section of the WSEDXMLD driver program should be modified as
follows in Example B-7 (the necessary changes are highlighted in bold).

Example: B-7 WSEDXMLD driver program

* ***
* Business Program Binary Interface
* ***
* 01 DFHCOMMAREA .
 01 EXCATMAN-COMMAREA.

* ---
* Execute Current Business Program
* ---
 exec cics link
 program ('EXCATMAN')
 commarea (EXCATMAN-COMMAREA)
 end-exec
 Appendix B. SOAP for CICS feature 409

9. Create the CICS SOAP Web Service provider

Under File -> Dataset -> Member selection of Generate XML converter
Wizard window, we will have WebSphere Studio Enterprise Developer
generate a single COBOL program, and use the EXCATSOA prefix.

Edit the EXCATSOAD.cbl file, and change the EXEC CICS LINK to the
following as shown in Example B-8.

Example: B-8 Change the EXEC CICS LINK

* ---
 * Execute Current Business Program
 * ---
 exec cics link
 program ('EXCATMAN')
 commarea (EXCATMAN-COMMAREA)
 end-exec

10.Creating the Web Service WSDL file

The input and output XML Schemas have been generated already. Now we
will use them as input to our Web Service WSDL file generation, in order to
expose our EXCATMAN Web service to the world by selecting File -> New ->
Other -> Web Services -> WSDL and naming it EXCATMAN_INQUIRY_Service.
When you click the Finish button, the new WSDL file will be generated and
added to your project.

Now we will switch to the Graph view of the WSDL source, and create a
complete WSDL file as in the following steps:

– Create a Port Type: EXCATMAN_PortType

– Create an Operation: EXCATMAN_INQUIRY_Operation

– Create request and response messages:
EXCATMAN_INQUIRY_Request_Message,
EXCATMAN_INQUIRY_Response_Message.

– create parts for both request and response messages: Select the Type of
element radio button, then browse EXCATSOAI.xsd and
EXCATSOAO.xsd respectively.

– Associate messages with the Port Type: click the Port Types tab, and
click the Browse button, and select the EXCATMANWSDLFile.wsdl file on
the pop-up window, then choose the request message for the request and
the response message for the response.

– Create a binding for the Port Type: click the Bindings tab, select a SOAP
binding type with a CICSSOAPBinding name. Click the Next button. We
will use the SOAP over HTTP binding type, with document style.
410 Architecting Access to CICS within an SOA

– Create the service: select the Services tab, name the Web service
EXCATMAN_Service, create a new SOAP Port named
EXCATMAN_Service_Port, and click the Next button, then specify the
URL (http://ipaddress:port/CICS/CWBA/DFHWSDSH/EXCATSOD), and click
the Finish button to generate the WSDL file as shown in Example B-9.

– Validate the WSDL file: Right-click the WSDL file and select the Validate
WSDL file option.

Example: B-9 A complete WSDL file

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="EXCATMAN_INQUIRY_Service"
targetNamespace="http://example.com"
xmlns:tns="http://example.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://www.EXCATSOAI.com/schemas/EXCATSOANIInterface"
xmlns:xsd2="http://www.EXCATSOAO.com/schemas/EXCATSOAOInterface">
 <wsdl:import namespace=http://www.EXCATSOAI.com/schemas/EXCATSOANIInterface
location="EXCATSOAI.xsd">
 </wsdl:import>
 <wsdl:import namespace="http://www.EXCATSOAO.com/schemas/EXCATSOAOInterface"
location="EXCATSOAO.xsd">
 </wsdl:import>
 <wsdl:message name="EXCATMAN_INQUIRY_Request_Message">
<wsdl:part name="EXCATMAN_INQUIRY_Request_Message_Part"
type="xsd1:EXCATMANCOMMAREA">
</wsdl:part>
 </wsdl:message>
 <wsdl:message name="EXCATMAN_INQUIRY_Response_Message">
 <wsdl:part name="EXCATMAN_INQUIRY_Response_Message_Part"
type="xsd2:EXCATMANCOMMAREA">
</wsdl:part>
 </wsdl:message>
 <wsdl:portType name="EXCATMAN_PortType">
<wsdl:operation name="EXCATMAN_INQUIRY_Operation">
 <wsdl:input name="EXCATMAN_INQUIRY_OperationRequest"
 message="tns:EXCATMAN_INQUIRY_Request_Message">
</wsdl:input>
<wsdl:output name="EXCATMAN_INQUIRY_OperationResponse"
 message="tns:EXCATMAN_INQUIRY_Response_Message">
</wsdl:output>
</wsdl:operation>
 </wsdl:portType>
<wsdl:binding name="CICSSOAPBinding" type="tns:EXCATMAN_PortType">
 Appendix B. SOAP for CICS feature 411

 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="EXCATMAN_INQUIRY_Operation">
 <soap:operation soapAction="urn:EXCATMAN_PortType" style="document" />
 <wsdl:input name="EXCATMAN_INQUIRY_OperationRequest">
<soap:body parts="EXCATMAN_INQUIRY_Request_Message_Part" use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:EXCATMAN_PortType" />
 </wsdl:input>
 <wsdl:output name="EXCATMAN_INQUIRY_OperationResponse">
 <soap:body parts="EXCATMAN_INQUIRY_Response_Message_Part" use="encoded"
encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
namespace="urn:EXCATMAN_PortType" />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>
<wsdl:service name="EXCATMAN_Service">
 <wsdl:port name="EXCATMAN_Service_Port" binding="tns:CICSSOAPBinding">
 <soap:address location="http://ipaddress:port/CICS/CWBA/DFHWSDSH/EXCATSOD"
/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

Generating a Web Service test client with WSED
Now that the WSDL file is ready to be used to test the EXCATMAN Web service
provider.

Right-click the WSDL file and select Web Services ->Test with Web Services
Explorer. Navigate to EXCATMAN_INQUIRY_Operation in the Web Services
Explorer navigator view, give 01INQC as the value of the ca__request__id field
and click the Go button in the invocation form; the results of executing the Web
Service will be returned.

You can find the complete set of documentation about using the Web Services
Explorer in the online WebSphere Studio Information Center.

Data conversion
This section discusses the code page considerations when using the SOAP for
CICS feature. XML data is usually sent in UTF-8. CICS does not support code
page conversion from UTF-8 to EBCDIC so the SOAP for CICS feature relies on
the fact that the first 256 characters of UTF-8 are the same as ISO-8859-1 from
which CICS does support conversion to EBCDIC.
412 Architecting Access to CICS within an SOA

Service provider: Inbound pipeline
The way data gets converted within the inbound pipeline differs depending on
whether HTTP or MQ is being used as the transport mechanism.

HTTP
If HTTP is used as the transport then the SOAP request is assumed to be
transmitted in code page ISO-8859-1. An EXEC CICS WEB RECEIVE is issued by
the inbound transport handler DFHWSTIH to retrieve the data. This specifies that
it should be converted to EBCDIC code page 037. The SOAP response sent
back to the service requester is assumed to be in code page 037 and is
converted to ISO-8859-1 when DFHWSTIH issues the WEB SEND command.

WebSphere MQ
If WebSphere MQ is used as the transport then the data is converted by MQ on
the MQGET call issued by DFHWSDSQ. CICS specifies the default values for
the conversion which is MQMD_ENCODING set to MQENC_NATIVE and
MQMD_CODEDCHARSETID set to MQCCSI_Q_MGR.

MQENC_NATIVE and MQCCSI_Q_MGR are the default values set in the
MQMD for these parameters. They are described in the WebSphere MQ
Application Programming Reference, SC34-6062.

Service requester: Outbound pipeline
The different transport mechanisms used will affect how data is converted when
CICS acts as a service requester.

HTTP
DFHWSTOH is the outbound transport handler for HTTP. It uses the outbound
HTTP support provided by DFHWBCLI. The call to DFHWBCLI specifies that the
SOAP request is in code page 037 and is to be converted to ISO-8859-1. When
the SOAP response is received it is converted back to code page 037 from the
code page of the remote service provider. If the data was UTF-8 then it is first
converted to ISO-8859-1 and then that is converted to 037. The reason for this is
that DFHCCNV, which handles code page conversion in CICS, does not support
conversion with unicode code pages.
 Appendix B. SOAP for CICS feature 413

WebSphere MQ
DFHWSTOQ is the outbound transport handler for WebSphere MQ. It does not
do any data conversion when sending the SOAP request to the remote service
provider. It uses MQPUT which will associate the default server code page with
the message. The remote service provider would need to convert the message it
receives using normal MQ methods. The SOAP response is received using an
MQGET call which specifies code page conversion using the same options as
the inbound pipeline.
414 Architecting Access to CICS within an SOA

acronyms
ADS Application Data Structure

AES Advanced Encryption
Standard

AOR application-owning region

API application programming
interface

AT Atomic transaction

BA Business activity

BLI business logic interface

BMS Basic Mapping Support

BTS Business Transaction
Services

CA certificate authority

CCF Common Connector
Framework

CCI Common Client Interface

CEX2 Crypto Express2

CEX2A cryptographic accelerator

CEX2C cryptographic coprocessor

CORBA Common Object Request
Broker Architecture

CPACF CP Assist for Cryptographic
Function

CPU Central Processing Unit

CSD CICS system definition file

DBCS double-byte character set

DES Data Encryption Standard

DMZ De-militarized zone

DN distinguished name

DNS Domain Name System

DPL distributed program link

EBCDIC Extended Binary-Coded
Decimal Interchange Code

ECI External Call Interface

Abbreviations and
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006.
EIS Enterprise Information
Systems

EJB Enterprise JavaBean

EJS Enterprise Java Server

EPI External Presentation
Interface

ESB Enterprise Service Bus

ESI External Security Interface

ESM external security manager

EXCI External CICS Interface

GIOP General Inter-ORB Protocol

GUI graphical user interface

GWAPI Go Webserver API

HATS Host Access Transformation
Services

HFS Hierarchical File System

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

ICF Internal Coupling Facility

ICSF Integrated Cryptographic
Service Facility

IDE Integrated Development
Environment

IFL Integrated Facility for Linux

IIOP Internet Inter-ORB Protocol

IOR Interoperable Object
Reference

IP Internet Protocol

IRD Intelligent Resource Director

ITSO International Technical
Support Organization

J2EE Java 2 Platform Enterprise
Edition
 All rights reserved. 415

JAAS Java Authentication and
Authorization Services

JCA J2EE Connector Architecture

JDBC Java Database Connection

JIT Just-In-Time

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JSEE Java Secure Socket
Extension

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LE Language Environment

LTC Local Transaction
Containment

LTPA Lightweight Third Party
Authentication

MAC message authentication code

MD message digest

ORB Object Request Broker

OTS Object Transaction Service

PEM Password Expiration
Management

QoS Quality of Service

QR Quasi Reentrant

RCP relative cursor position

RDO resource definition online

REL Rights Expression Language

RII redundant I/O interconnect

RLE Run Length Encoding

RMEB Resource Manager for
Enterprise Beans

RMI Remote Method Invocation

RMLT resource manager local
transaction

ROI return on investment

RPC remote procedure call

RRS Resource Recovery Services

SBA Start Buffer Address

SBCS single-byte character sets

SCA Service Component
Architecture

SF Start Field

SFM Service Flow Modeler

SFR Service Flow Runtime

SIT System Initialization Table

SNA System Network Architecture

SOA service-oriented architecture

SPI System Programming
Interface

SSL Secure Sockets Layer

SWAM Simple WebSphere
Authentication Mechanism

TCB Task Control Block

TDES Triple DES

TLS Transport Layer Security

TOC total operating cost

TOR terminal-owning region

TRUE Task Related User Exit

TS temporary storage

UDDI Universal Description,
Discovery and Integration

UOW unit-of-work

URL Uniform Resource Locator

URM user-replaceable module

USS UNIX System Services

VIPA virtual IP addressing

VPN virtual private networks

WLM Workload Manager

WSDL Web Services Description
Language

WSED WebSphere Studio Enterprise
Developer
416 Architecting Access to CICS within an SOA

XSD XML schema definition

zIIP z9 Integrated Information
Processor
 Abbreviations and acronyms 417

418 Architecting Access to CICS within an SOA

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 422. Note that some of the documents referenced here may be available
in softcopy only.

� Patterns: Connecting Self-Service Applications to the Enterprise, SG24-6572

� Patterns on z/OS: Connecting Self-Service Applications to the Enterprise,
SG24-6827

� Patterns: Direct Connections for Intra- and Inter-enterprise, SG24-6933

� Patterns: Self-Service Application Solutions Using WebSphere for z/OS V5,
SG24-7092

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.2,
SG24-6284

� Host Access Client Package V4 Update, SG24-6182

� Using IBM WebSphere Host Access Transformation Services V5, SG24-6099

� CICS/ESA and TCP/IP for MVS Sockets Interface, GG24-4026

� WebSphere Application Server for z/OS V5 and J2EE 1.3 Security Handbook,
SG24-6086

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.2,
SG24-6284

� Securing Web Access to CICS, SG24-5756

� A Performance Study of Web Access to CICS, SG24-5748

� Revealed! CICS Transaction Gateway with More CICS Clients Unmasked,
SG24-5277

� OSA-Express Implementation Guide, SG24-5948
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006. All rights reserved. 419

� IBM WebSphere V5.1 Performance, Scalability, and High Availability
WebSphere Handbook Series, SG24-6198

� Architecting High Availability Using WebSphere V6 on z/OS, SG24-6850

� Workload Managment for Web Access to CICS, SG24-6118

� TCP/IP in a Sysplex, SG24-5235

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide
Volume 5: Availability, Scalability, and Performance, SG24-6517

� Exploring WebSphere Studio Application Developer Integration Edition 5.0,
SG24-6200

� CICS Transaction Server for OS/390 Version 1 Release 3: Web Support and
3270 Bridge, SG24-5480

Other publications
These publications are also relevant as further information sources:

� CICS Application Programming Guide, SC34-6231

� CICS Application Programming Reference, SC34-6232

� WebSphere MQ for z/OS V5.3 Concepts and Planning Guide, GC34-6051

� WebSphere MQ for z/OS V5.3 System Setup Guide, SC34-6052

� WebSphere MQ for z/OS V5.3 System Administration Guide, SC34-6053

� WebSphere MQ Application Programming Guide, SC34-6064

� IP CICS Sockets Guide, SC31-8518

� CICS Transaction Server V2.3 RACF Security Guide, SC34-6249

� CICS Transaction Server V2.3 Performance Guide, SC34-6247

� CICS Transaction Server for z/OS V2.3 CICS Operations and Utilities Guide,
SC34-6229

� CICS External Interfaces Guide, SC34-6006

� CICS Intercommunication Guide, SC34-6243

� Communications Server for AIX Planning and Performance Guide,
SC31-8220

� UNIX System Services Planning, GA22-7800

� IBM Developer Kit for z/OS Java 2 Technology Edition V1.4.2 Persistent
Reusable Java Virtual Machine User’s Guide, SC34-6201

� CICS TS V2.3 CICSPlex SM Managing Workloads, SC34-6259
420 Architecting Access to CICS within an SOA

� Java applications in CICS, SC34-6000

� CICS Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458

� WebSphere MQ Security, SC34-6079

� WebSphere MQ Security, SC34-6588

� CICS Transaction Server for z/OS V3.1 CICS External Interfaces Guide,
SC34-6449

� CICS Transaction Server for z/OS V3.1 RACF Security Guide, SC34-6454

� CICS Transaction Server for z/OS V3.1 Internet Guide, SC34-6450

� CICS Transaction Server for z/OS V2.3 CICS Customization Guide,
SC34-6227

� WebSphere MQ Application Programming Reference, SC34-6062

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM CICS SupportPac Library

http://www.ibm.com/software/ts/cics/txppacs

� WS-Security

http://www.ibm.com/developer%20works/webservices/library/ws-secure/

� WS-Transaction

http://www.ibm.com/developerworks/library/ws-transpec/

� WS-Coordination

http://www.ibm.com/developerworks/library/ws-coor/

� Sun Microsystem’s Enterprise JavaBeans Specification V1.1

http://www.javasoft.com/products/ejb

� Unicode

http://www.unicode.org

� HTTP Header information RFC

http://www.ietf.org/rfc/

� The Common Object Request Broker: Architecture and Specification

http://www.omg.org/technology/documents/formal/index.htm

� XML details

http://www.w3.org/TR/REC-xml/
 Related publications 421

http://www.ibm.com/software/ts/cics/txppacs
http://www.ibm.com/developer%20works/webservices/library/ws-secure/
http://www.ibm.com/developerworks/library/ws-transpec/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.javasoft.com/products/ejb
http://www.unicode.org
http://www.ietf.org/rfc/
http://www.omg.org/technology/documents/formal/index.htm
http://www.w3.org/TR/REC-xml/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
422 Architecting Access to CICS within an SOA

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
3270 bridge

Link3270 bridge 84

A
ActivitySession 195
AIX 49
APARs

PQ76073 397
Application Data Structure (ADS) 88
application-owning region (AOR) 160, 243
ASCII 273–274
asymmetric key 104
AUTH_USERID_PASSWORD 149
authentication 316
authorization 320

B
basic authentication, with HTTP 156
Basic Mapping Support (BMS) 16
big-endian 279
bind security 143
BPEL4WS 397
business logic interface 64
business logic interface (BLI) 300
Business Transaction Services (BTS) 70, 384
byte arrays 379

C
C 41
C++ 33, 41
CA1M, supportpac 70, 384
CCI Application development with CICS JCA 258
CCI Connector for CICS TS 381
CEMT PERFORM DJAR() PUBLISH 378
CEMT SET JVM PHASEOUT 360
certificate authority (CA) 107
CESN 280
changing a password 53
character sets 274
CICS

transaction
© Copyright IBM Corp. 1999, 2001, 2002, 2005, 2006.
CPIH 46
Web Services Assistant 41
Web services assistant

DFHLS2WS 249
DFHWS2LS 250

CICS business logic program 18
CICS COMMAREA programs 16
CICS data conversion table 278
CICS EPI resource adapter (cicsepi.rar) 53
CICS security 112

Command security 112
Resource security 112
Surrogate Security 112
Transaction security 112

CICS Service Flow Feature 78
CICS Service Flow Runtime 78
CICS sockets 36
CICS TCP/IP listener 63, 236, 311
CICS terminal-oriented programs 16
CICS TG

overview 48
workload manager 223

CICS TG concurrent requests 222
CICS TG for Multiplatforms 49
CICS TG for z/OS V6.1 50
CICS TG on Linux on zSeries 59
CICS TG workload manager 223
CICS to TCP/IP Sockets Interface 63, 73, 299
CICS transaction

CWXN 46
CICS Transaction Gateway 48

application development 257
CTG.INI, configuration file 222, 225
Programming interfaces 54
worker threads 225, 228, 232

CICS Transaction Gateway and the JCA 54
CICS TS 51
CICS Universal Client V6 50
CICS Web services support 40
CICS Web support (CWS) 60

 See also 3270 Web bridge
 See also business logic interface
 See also CICS WebServer Plugin
alias 63
 All rights reserved. 423

See also CWBA
analyzer 63
Certificate Autoregistration 155
COMMAREA manipulation 62
customer scenario 297
data conversion issues 286
HTML template manager See DFHWBTL
performance 236
TCP/IP listener 63
Web attach transaction See CWXN
workload balancing 242

cicseci.rar 52
cicseciXA.rar 52
CICSPlex SM 84, 223, 230, 243
CICS-supplied message handlers 41
CIRR, request receiver transaction 311
CKTI, MQ trigger monitor transaction 385
COBOL 33, 41, 49, 285
COBOL importer wizard 285
COMMAREA 52, 282, 388, 390
Common Client Interface (CCI) 52
Common Connector Framework (CCF) 52
compensating transactions 170
confidentiality 102
Continuous JVM 334
converter, CICS Web support 64
CorbaServer 312
CORBASERVER definition 378
Core system transactions capability 12
COS Naming Server 378
CPIH

transaction 46
CPU usage 204
CREA, request model transaction 321
Cryptographic Coprocessor Feature, S/390 241,
365
Cryptographic function support 103
Cryptographic Synchronous Functions 103
Cryptography and digital signatures 103
CSKL, Sockets Listener Transaction 73
CSOL See CICS TCP/IP listener
CTG.INI, configuration file 222, 225
customer scenarios

CICS Web support 297
CWBA, alias transaction 63
CWSQ 385
CWXN

transaction 46
CWXN, Web attach transaction 63, 236

D
data conversion 282, 382

character sets 274
DFHCNV 278

Data Encryption Standard 111
Data Encryption Standard (DES) 110
Data Integrity and Confidentiality 148
database access 313
DB2 tables 163
DBC (Java Database Connectivity) 31
DBCS 274
decode, BLI routine 64
De-Militarized Zone (DMZ) 106
deployed JAR file 313
deployment descriptor 370
DFHBRMP, link3270 bridge driver 86
DFHCCNV 381
DFHCCNV, data conversion program 63, 278
DFHCNV, data conversion table 278
DFHEJOS, object store 312
DFHIIRRS, request receiver 311
DFHL3270, Link3270 bridge router 85
DFHLS2WS 249
DFHMIRS, CICS mirror program 282
dfhreg, CICS EJB role generator 324
DFHWBA, alias program 63
DFHWBADX 385
DFHWBAPI, CICS WebServer Plugin 61
DFHWBBLI, See business logic interface
DFHWBDLL 61
DFHWBEP, Web error program 280
DFHWBTL, HTML template manager 62
DFHWS2LS 250
DFHWSABE 389
DFHWSAMX 385, 388
DFHWS-DATA 48
DFHWSDSH 385–386
DFHWSDSQ 385–386
DFHWSHDX 387, 391
DFHWSPMO 391
DFHWSRT 391
DFHWSSH 388, 391
DFHWSTIH 387
DFHWSTIQ 387
DFHWSTOH 391
DFHWSTOQ 391
DFHWS-WEBSERVICE

container 47
dfjcics.jar 380
424 Architecting Access to CICS within an SOA

digital certificates 107
digital security 103
digital signature 104, 133
distinguished name 326
distributed program link (DPL) 52
DJAR 313, 378
DOCUMENT API 61

E
EBCDIC 273–274
ECI

password, verify 53
ECI request 52, 283
EIBAID 95
EIBCPOSN 95
EJB container 311
encode, BLI routine 64
encryption

authorization 102
confidentiality 102
data integrity 102
non-repudiation 102
performance considerations 225, 241, 366

encryption algorithms 225
Enterprise Information System (EIS) 29
Enterprise Java Server (EJS) 308
Enterprise JavaBeans (EJB) 308

application development 366
data conversion 379
performance issues 333
roles 324
security 315
See also entity beans
See also session beans

entity beans 309, 313
EPI 53
EPI support classes 53
EPIRequest 53
ESI 53

password, change 53
EXCI

use by CICS WebServer Plugin 61
EXCI interface 51
EXCI pipe usage 228
EXEC CICS API commands 42

INQUIRE WEBSERVICE 42
INVOKE WEBSERVICE 42
SOAPFAULT ADD | CREATE | DELETE 42

EXEC CICS DOCUMENT 61, 269
EXEC CICS EXTRACT CERTIFICATE 156, 269
EXEC CICS EXTRACT TCPIP 269
EXEC CICS RECEIVE MAP 96
EXEC CICS SEND MAP MAPONLY 95
EXEC CICS SIGNON 86
EXEC CICS START 73
EXEC CICS WEB 61, 269
EXEC CICS WEB READ FORMFIELD 61
eXtensible Markup Language (XML) 28
External Call Interface. See ECI.
External Presentation Interface.See EPI.
External Security Interface. See ESI.
external security manager (ESM) 24, 53
EZAC, CICS to TCP/IP Sockets transaction 73
EZAO, CICS to TCP/IP Sockets transaction 73
EZAP, CICS to TCP/IP Sockets transaction 73

F
FACILITYLIKE definition 85
files

cicseci.rar 52
cicseciXA.rar 52

firewall 105
FORMS API commands 61

G
Gateway daemon 50
Gateway daemon thread usage 225
givesocket() 73
Go Webserver API (GWAPI) 61
GWAPI modules 61

H
hash function 104
header processing programs 42
Host On-Demand 70
HP-UX 49
HTML

escape sequences 277
HTTP 27

datastream 276
transport 43

HTTP protocol 36
HTTP Server for OS/390, directives

SSLV2Timeout 241
SSLV3Timeout 241
 Index 425

HTTP user data 277
HTTPS 117
HyperText Transmission Protocol (HTTP) 35

I
ICAPI

ICAPI DLL, See DFHWBAPI
IIOP connection 311
IIOP data streams 277
Integrated Development Environment (IDE) 273
intercommunication security 142
intermediary 142
intersystem communication (ISC) 364
IOR 378

J
J2EE Connector Architecture (JCA) 26
J2EE Connector Architecture (JCA).

Resource adapters 31
System contracts 31

J2EE Connector Architecture. See JCA.
Java

data conversion 278
Java 2 Platform Enterprise Edition 52, 282
Java in CICS TS V2.3 334
Java Message Service (JMS) 34
Java Naming and Directory Interface (JNDI) 308,
371
JavaBean 67
JCA
JCA and security 143
JCA versus CICS TG base classes 216
JCICS 380
JCICS classes 68, 380
JVM recycling events 350
JVM storage management 351

K
Kerberos tickets 24

L
last agent optimization 170
Last Participant Support 170
linear scaling 202
link security 143
Link3270 bridge 79, 84
Link3270 bridge driver 85

Link3270 bridge wrapper 85
Linux 49
little-endian 279
local mode of operation 54
Local Transaction Containment (LTC) 194
Local Transaction Containment (LTC) policy 194
loosely coupled 70, 384

M
message authentication code (MAC) 104
message digest (MD) 104
MQ DPL bridge 34
MQMD header 65
MQSeries 65, 299
Multi Region Operation (MRO) 364
MVS TCP/IP port sharing 229

N
network considerations 224
NLS support 280
non-repudiation, definition of 102
null truncation, of COMMAREA 218

P
password, changing 53
password, verity 53
performance 202
PIPELINE 42
Pipeline configuration 41
Pipeline manager 387
pipes, EXCI sessions 228, 232
PL/I 41
principal, Java 316
private key 104
programming

CICS Web application development 245
COMMAREA manipulation 62
See also ECI, EPI, ESI
Web-aware 61

pseudoconversational 17
public key 104

Q
Quality of Service (QoS) 12
Quasi Re-entrant TCB 236
426 Architecting Access to CICS within an SOA

R
RACF

GEJBROLE class 324
RACF EJBROLE generator utility 324
Rational Application developer (RAD)

J2C, sample tutorials 265
Redbooks Web site 422

Contact us xiv
Remote Gateway daemon on z/OS 56
remote mode of operation 54
request processor (DFJIIRP) 311
request receiver (DFHIIIRRS) 311
request streams 311
REQUESTMODEL definition 321, 378
resettable JVM 337
Resource Manager for Enterprise Beans (RMEB)
377
RMLT, resource manager local transactions 189
roles, EJB 324
RSA Data Security 108

S
scalabilty 202
screen scraping 88
secret key, encryption 103
Secure Sockets Layer (SSL) 108

explanation of 108
performance considerations 225, 240, 365
session ID reuse 241, 365

security 101
transport-level

comparison with SOAP message security
141

security concepts 102
authentication 102
authorization 102
confidentiality 102
data integrity 102
non-repudiation 102

security roles 322
security technologies 105
security user-replaceable module (DFHXOPUS)
317
service consumer 10
Service Flow Modeler 81
service provider 10, 42, 47
service requester 42
session beans 67–68, 308

shared secret 103
Simple Object Access Protocol (SOAP) 405
SIT parameters

ENCRYPTION 316
KEYRING 316
MAXJVMTCBS 359
MXT, max tasks 222
SSLDELAY 241, 316
SSLTCBS 316

SOA 4
communication protocols 7
interfaces 7
services 7
the business and IT benefits 8
what is SOA and why adopt it 4
what is SOA? 4

SOAP 40
body

inbound data conversion 47
outbound data conversion 47

SOAP envelope 391
SOAP for CICS Feature

BTS considerations 401
Transport considerations 208, 401
Transport security 392
Workload balancing 400

SOAP for CICS feature
Abend handler 389
Application mapper 388
Business logic 390
Inbound pipeline 413
Message adapter 388
Outbound pipeline 389
Outbound router 391
Pipeline manager 391
Service provider transport 387
SOAP envelope builder 391
SOAP envelope parser 388
SOAP message handler 387, 391
Supported transports 385

Sockets
 See CICS to TCP/IP Sockets Interface
 See CSOL, CICS Sockets transaction

sockets, domain in CICS 63
split-client model, Link3270 bridge 92–93, 95
SQLJ 313, 360
SSL

protocol 50
SSL client certificates 24, 316
 Index 427

SSL considerations 225, 401
SSL/TLS

with HTTP 117
SSLight 151
SSLV3Timeout, HTTP Server directive 241
State management 312
stateful, session beans 360
storage constraints 360
SupportPacs, CICS freeware

CA8D - CWS analyzer 157
symmetric key 103
SYNCPOINT ROLLBACK 389
Sysplex distributor 223, 230, 243
System Network Architecture (SNA) 25
System z Integrated Information Processor (zIIP)
14

T
takesocket() 73
Task Related User Exit (TRUE) 73
TCBs, in CICS

QR TCB 237
TCP

protocol 50
TCP/IP listener, CICS 63
TCP/IP port sharing 223, 229, 235, 243
TCP/IP Sockets (the TCP/IP socket interface for
CICS) 27, 36
TCPIPSERVICE 46
TCPIPSERVICE, CICS definition 378
timeouts 227
transaction attribute 328
Transport Layer Security(TLS) 110

U
Unescaping, HTML documents 282
Unicode 275, 278, 379
Universal Description, Discovery and Integration
(UDDI) 28
UNIX platform 55
URIMAP 42
user security 143

V
variables

AUTH_USERID_PASSWORD 149
vectors, Link3270 bridge 90

verifying a password 53
Virtualization 13

W
WEB API 61–62
Web attach transaction (CWXN) 63
Web services 9

usage models 10
basic callback 10
one-way 10
synchronous request/response 10

Web Services Assistant 41
See CICS:Web Services Assistant

Web Services Description Language (WSDL) 28
Web Services Security (WS-Security) 395
Web-aware, CICS application 61
WEBSERVICE 42
WebSphere Host Integration solution 70
WebSphere MQ 27, 33, 385
WebSphere Studio Application Developer Integra-
tion Edition 285
WebSphere Studio Enterprise Developer (WSED)
405
Windows 2000 49
Windows 2003 49
Windows XP 49
workload balancing 242
WSBIND 44
WSED aided development 407
WS-Security

message authentication 131
message integrity 133

WS-Security and the SOAP pipeline 396
WS-Transaction 397

X
XA transaction 51
XML 277
XML conversion 407
XML data 412
XML encryption 134

Z
z990 and z890 hardware support for cryptography
110
zAAP (z Series Application Assist Processor) 13
zSeries 800 system 58
428 Architecting Access to CICS within an SOA

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Architecting Access to CICS w
ithin an SOA

®

SG24-5466-05 ISBN 0738496952

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Architecting Access to
CICS within an SOA

All the information
you need to design
your CICS SOA
architecture

Fully updated for
CICS TS V3.1 and
CICS TG V6

Covers CICS Web
services, CICS TG,
CICS Web support,
and CICS Service
Flow Feature

With the emergence of service-oriented architecture (SOA), the
options for accessing existing CICS assets have become more
varied than ever. This IBM Redbook is intended for IT architects
who select, plan, and design SOA solutions that make use of
CICS assets.

First, we provide an introduction to SOA and the options for
transforming CICS assets into SOA solutions. Then we introduce
the different architectures and technologies on which a CICS
SOA solution can be based.

Next we offer a broad overview of the different technologies
available for SOA enablement of CICS applications. We also
offer a comparison of some of the current strategic
technologies that include the CICS Web services support in CICS
TS 3.1, CICS Transaction Gateway, CICS Web support,
Link3270 bridge, and the CICS Service Flow Feature.

We continue with an in-depth analysis of the issues pertaining
to security, transaction management, performance, application
development, and data conversion when designing and
developing your SOA solutions.

Finally, we document different customer scenarios, where
these technologies have been successfully used to integrate
existing enterprise information systems into new SOA solutions.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	Second Edition, March 2001
	Third Edition, July 2001
	Fourth Edition, October 2002
	Fifth Edition, February 2005
	Sixth Edition, October 2006

	Part 1 Introduction
	Chapter 1. Introduction to SOA and CICS
	1.1 Service-oriented architecture on System z
	1.1.1 What is SOA and why adopt it?
	1.1.2 The business and IT benefits of SOA
	1.1.3 Web services
	1.1.4 System z and why is it appropriate for SOA

	1.2 Transforming CICS assets into SOA solutions
	1.2.1 Transformation strategies
	1.2.2 Which CICS assets can be transformed?
	1.2.3 Access to COMMAREA programs
	1.2.4 Access to terminal-oriented programs

	1.3 Interaction between CICS and other core WebSphere SOA products

	Chapter 2. Architectural choices
	2.1 Which architecture should be used to access CICS?
	2.2 Standard architectures
	2.2.1 Web services
	2.2.2 J2EE Connector Architecture (JCA)

	2.3 Standard transports
	2.3.1 WebSphere MQ
	2.3.2 HTTP
	2.3.3 TCP/IP Sockets

	2.4 Conclusion

	Chapter 3. CICS access technologies
	3.1 CICS access technologies
	3.1.1 CICS Web services support in CICS TS V3.1
	3.1.2 CICS Transaction Gateway
	3.1.3 CICS TG for z/OS V6.1
	3.1.4 CICS Web support

	3.2 Other solutions
	3.2.1 WebSphere MQ
	3.2.2 CICS Enterprise JavaBeans support
	3.2.3 SOAP for CICS feature
	3.2.4 WebSphere Host Access Transformation Services
	3.2.5 CICS sockets

	3.3 CICS solution set table

	Chapter 4. CICS application access technologies
	4.1 CICS Service Flow Feature
	4.1.1 Wrapping process integration in CICS Web service requests
	4.1.2 CICS Service Flow Runtime
	4.1.3 Service Flow Runtime and Link3270 bridge
	4.1.4 Service Flow Modeler

	4.2 Link3270 bridge
	4.2.1 Link3270 bridge security
	4.2.2 Link3270 bridge transactional scope
	4.2.3 Link3270 bridge performance
	4.2.4 Link3270 bridge application development
	4.2.5 Summary

	Part 2 CICS Web technology decisions
	Chapter 5. Security
	5.1 Security concepts
	5.2 Introduction to digital security
	5.2.1 Cryptography and digital signatures
	Digital signatures
	5.2.2 Security technologies
	5.2.3 z990, z890 and z9 hardware support for cryptography

	5.3 CICS security
	5.3.1 Overview of CICS security
	5.3.2 Support for cipher suites in CICS
	5.3.3 Building a key ring
	5.3.4 Activating SSL support
	5.3.5 Transport-level security using HTTP with CICS

	5.4 CICS Web services
	5.4.1 Web services security exposures
	5.4.2 Transport level security
	5.4.3 WebSphere MQ Security
	5.4.4 WS-Security
	5.4.5 CICS support for WS-Security
	5.4.6 Comparison of transport versus SOAP message security

	5.5 CICS Transaction Gateway
	5.5.1 CICS security options
	5.5.2 JCA and security
	5.5.3 Topology decisions
	5.5.4 Security coordination between WebSphere and CICS

	5.6 CICS Web support
	5.6.1 Authenticating and authorizing the user
	5.6.2 SSL support
	5.6.3 Design issues

	Chapter 6. Transactional scope
	6.1 Transactions: What are they?
	6.1.1 CICS transactions, tasks and syncpoints

	6.2 Transactional building blocks
	6.3 CICS Web services
	6.3.1 Specifications
	6.3.2 CICS support for WS-Atomic Transaction

	6.4 CICS Transaction Gateway
	6.4.1 WebSphere Application Server transactional support
	6.4.2 Transactional coordination from WebSphere to CICS

	6.5 CICS Web support

	Chapter 7. Performance and scalability
	7.1 The theory of performance
	7.2 CICS Web services
	7.2.1 Throughput
	7.2.2 Transport considerations
	7.2.3 Design and architecture considerations
	7.2.4 SSL considerations
	7.2.5 Workload balancing
	7.2.6 Scalability and availability considerations
	7.2.7 Other performance considerations

	7.3 CICS Transaction Gateway
	7.3.1 Comparison of JCA versus CICS TG base classes
	7.3.2 Application architectures
	7.3.3 Topology decisions

	7.4 CICS Web support
	7.4.1 Transactions and TCBs
	7.4.2 COMMAREA interface or 3270 interface?
	7.4.3 Designing an efficient Web application
	7.4.4 Improving HTTP performance
	7.4.5 Workload balancing

	Chapter 8. Application development
	8.1 Development products overview
	8.1.1 WebSphere Developer for System z
	8.1.2 Rational Application Developer
	8.1.3 WebSphere Integration Developer

	8.2 CICS Web services
	8.2.1 CICS Web services assistant
	8.2.2 WebSphere Developer for System z
	8.2.3 Development tool comparison

	8.3 CICS Transaction Gateway
	8.3.1 CCI application development with the CICS ECI resource adapter
	8.3.2 Rational Application Developer J2C Java Bean wizard
	8.3.3 WebSphere Integration Developer Enterprise Service Discovery

	8.4 CICS Web support
	8.4.1 Web-aware/converter presentation logic
	8.4.2 Making the application work
	8.4.3 Static content
	8.4.4 Chunking and pipelining
	8.4.5 Summary

	Chapter 9. Data conversion
	9.1 Data conversion basics
	9.2 CICS Web services
	9.2.1 Service provider: Inbound pipeline
	9.2.2 Service requester: Outbound pipeline

	9.3 CICS Transaction Gateway
	9.3.1 DFHCNV and the mirror program
	9.3.2 Code page aware Java programs
	9.3.3 Code page aware Java programs without DFHCNV
	9.3.4 Using Rational Application Developer

	9.4 CICS Web support
	9.4.1 HTTP header conversion
	9.4.2 HTTP user data conversion

	Part 3 Customer scenarios
	Chapter 10. Customer scenario: CICS Web services
	10.1 Infrastructure
	10.2 Implementation
	10.3 Issues raised
	10.4 Conclusions

	Chapter 11. Customer scenario: CICS Web support
	11.1 Business description
	11.2 Technology description
	11.3 Technical implementations
	11.4 Issues raised
	11.5 Conclusions

	Part 4 Appendixes
	Appendix A. CICS EJB support
	Enterprise JavaBeans
	Introduction

	Security
	SSL support
	Authentication
	Authorization
	Design issues

	Transactional scope
	Bean-managed transactions
	Container-managed transactions

	Performance and scalability
	Improvements to support for Java in CICS TS V2.3
	Recommendations for configuring to support a Java workload
	System limits
	Workload balancing
	Network considerations
	SSL considerations

	Application development
	Design
	Development
	Deployment

	Data conversion
	Data types
	Accessing CICS resources

	Appendix B. SOAP for CICS feature
	Introduction
	Security
	Service provider
	Service requester
	Web Services Security (WS-Security)

	Transactional scope
	SOAP for CICS transactional support
	Web services transaction standard (WS-Transaction)

	Performance and scalability
	Throughput
	Workload balancing
	Transport considerations
	BTS considerations
	SSL considerations
	Design and architecture considerations
	Other performance considerations

	Application development
	Design
	Development

	Data conversion
	Service provider: Inbound pipeline
	Service requester: Outbound pipeline

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

