
Lotus® Software

Composite Applications in Notes - Benefits and Technical Overview

���

Lotus® Software

Composite Applications in Notes - Benefits and Technical Overview

���

Note

Before using this information and the product it supports, read the information in Appendix C, “Notices ,” on page 71.

Contents

About this book v

Who should read this book v

How this book is organized v

Related information vi

Introduction: Applying knowledge . . . 1

Business value of Notes 8.x application

development 3

Fostering business and IT potential for flexibility,

growth and integration 3

Bridging Line of Business and Information

Technology 3

The challenge 3

Linking the people to the process (End User view) . 4

Extending the process to the people (Application

Developer view) 4

Involve business users in process innovation . . . 5

Business partners 5

Exploring the power of Composite Applications . . 5

Improve End User effectiveness by running

different applications together in context 5

The value of reusing new and existing assets . . 8

The value of Lotus Notes as an integration

platform 12

Where to use Composite Applications 14

Executive conclusion 15

Roles and tools 17

The roadmap to information optimization 17

Composite Applications 17

Mashups 17

Your skills and tools 18

Notes developers 18

Java and Eclipse developers 19

Application Assembly/Application Deployment 19

Architecture overview 21

The Composite Application data model 23

Composite Applications on the rich client platform 24

Widgets and Live Text 25

Getting started with Eclipse as a Notes

developer 27

Eclipse Plug-ins, Features, and Fragments 27

The Eclipse Workbench 29

Threading 101 for Eclipse and Notes 29

Making your Eclipse plug-ins dynamic aware . . . 30

Creating your first Eclipse view 30

Building NSF components 31

What are NSF components? 31

Deployment of NSF components 32

Using the property broker - built in properties and

actions 32

Using the property broker - custom properties and

actions 33

Using static component properties 34

Open Notes documents on pages 35

What are NSF widgets? 35

Building Java components 37

The Lotus Expeditor Toolkit 37

Using the toolkit 37

Creating Components 38

Using Notes.jar 38

Notes Extension points 38

Creating your first Eclipse component 39

Custom Navigator for a Composite Application . . 39

Composite Application Infrastructure, Topology,

and Navigation page hierarchy and preferences . 40

Composite Application Data Model and the

TopologyHandler Service 40

Default Navigators 40

Assembling Composite Applications

and creating widgets 43

Composite Applications 43

Predefined Components in Notes 43

Enabling Notes Users to Use the Composite

Application Editor 44

Widgets 44

Domino Server Policy for Widget Enablement . . 44

Using Widget Wizards 44

Using the Composite Application Editor 45

Working with the Composite Application Editor 46

Adding Components to the Palette 46

Creating the Application Layout 47

Setting Page Properties 47

Setting Component Properties 47

Save the Application Changes Made with the

CAE 47

Wiring Components 47

Disable Strict Type Checking 48

Cross page wiring 49

Deploying applications 51

IBM Lotus Notes/Domino 51

Creating an NSF Update Site 51

Creating an all-in-one NSF based Composite

Application 52

White Lists 52

Setting Access Rights for Composite Application

Pages 52

Calculate Links in NSF Components at Runtime 53

Providing Extensions with Composite

Applications 53

Install Extensions as Notes Plug-ins 53

© Copyright IBM Corp. 2008 iii

Updating Components with New Versions . . . 54

Widgets Catalogs 55

Creating a Widgets Catalog 55

Catalog Access Rights 55

Publishing to the Catalog and Controlling Access 56

Managing Rich Clients using the Portal server . . 56

Rich Client Layout Administration Portlet . . . 57

The Generic Placeholder portlet 57

″Administration proxy″ portlet 57

Connecting to Portal 58

Using the Portal Catalog 58

User management of applications 58

Using the Static Contributing extension point . . 58

Appendix A. Reference 61

Lotus Notes and Expeditor Feature Comparison

Table 61

Appendix B. External resources and

links 67

Business value of Notes 8.x application development 67

Roles and tools 67

Getting started with Eclipse as a Notes developer 67

Building NSF components 68

Building Java components 68

Assembling Composite Applications and creating

widgets 69

Deploying applications 69

Appendix C. Notices 71

Trademarks 72

iv Composite Applications in Notes - Benefits and Technical Overview

About this book

This document is designed to illustrate how businesses can accelerate business

processes by building a bridge between its employees and the information that

they need on a day to day basis. This book describes how composite applications

can be used to optimize information in a Lotus® Notes® environment.

Always check the Composite Application wiki for the most current version of this

publication:

http://www-10.lotus.com/ldd/compappwiki.nsf

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this material, use either

of the following options:

v Use the online reader comment form, which is located at:

http://www.ibm.com/software/data/rcf/

v Send your comments by E-mail to comments@us.ibm.com. Be sure to include the

name of the book and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

Who should read this book

This guide is intended for Business Leaders (Line of Business Development),

Technical Leaders (I/T Senior Management, CIO) and Business Partners (Lotus,

WebSphere®, Eclipse). Business Leaders will get the most out of the sections

“Introduction: Applying knowledge” on page 1 and “Business value of Notes 8.x

application development ” on page 3. Technical Leaders can then explore the value

of Composite Applications illustrated by the remainder of the document and with

the hands on samples hosted in the accompanying wiki.

How this book is organized

This book contains the following sections:

v Executive overview:

– “Introduction: Applying knowledge” on page 1

– “Business value of Notes 8.x application development ” on page 3

- “Exploring the power of Composite Applications” on page 5

- “Where to use Composite Applications” on page 14

- “Executive conclusion ” on page 15
v Application development roadmap:

– “Roles and tools” on page 17

– “Architecture overview” on page 21

– Component development:

- “Getting started with Eclipse as a Notes developer” on page 27

- “Building NSF components” on page 31

- “Building Java components” on page 37
– Application production:

© Copyright IBM Corp. 2008 v

http://www-10.lotus.com/ldd/compappwiki.nsf
http://www.ibm.com/software/data/rcf/

- “Assembling Composite Applications and creating widgets” on page 43

- “Deploying applications” on page 51

Related information

This section lists documentation that you might find helpful:

v IBM Composite Applications wiki

vi Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf

Introduction: Applying knowledge

Your employees apply their knowledge every day in order to keep your business

running. This involves the coordination of scarce resources, the prioritization of

what is important, as well as leveraging the expertise of your organization.

Yet every day, people go through an information safari, hunting for what that they

need to do their jobs – searching through multiple silos of applications, cutting and

pasting information needed to complete the business process. This manual process

wastes precious time.

As a CTO, CIO or business leader, you know that providing your people with the

right information can accelerate your business processes. Linking the people who

run your business to the information they need can make your people more

productive (working quickly), more effective (working on the right things) and

more efficient (aligned with business goals)

The purpose of this document is to illustrate how your business can apply

knowledge to accelerate business processes by building a bridge between your

employees and the information that they need on a day to day basis using

Composite Applications in IBM® Lotus Notes.

Composite applications integrate multiple applications together on the desktop to

share and dynamically change information in real time as the end user works the

business process. By optimizing the information for the task at hand and freeing

the end users from distraction, precious seconds can be shaved off of time sensitive

business processes.

Composite applications can bridge both information technology and line of

business systems so that end users have the right information, at the right time.

This enables your team to respond to changes in the information as they happen,

to speed up response time and to increase their ability to adapt to external

pressures placed on the business.

Leveraging the power of Lotus Notes, composite applications can provide your

team with the ability to coordinate calendaring, project management and other

activities so that scarce resources are used efficiently.

This document illustrates the business value of accelerating information across

your organization, regardless of which of the following is your source of

information:

v Information technology

v Line of business

v End users

v External sources

Optimization of information can be as simple as publishing real time information

to your employees' desktop systems, creating a context sensitive toolbar to

eliminate unwanted distractions or to integrate a new productivity tool into the

desktop.

© Copyright IBM Corp. 2008 1

The document also relies on the existing skills within your organization, so that

your information technology and line of business developers can easily understand

the concepts it presents. It relies on your existing applications and technologies, so

that results can be felt in your business quickly. The document also shows the art

of the possible or end game, but also contains samples that can be used to

illustrate the concepts.

This document, the demonstrations and the accompanying wiki is meant to be

used by your development team as a roadmap to optimizing information

throughout your business.

2 Composite Applications in Notes - Benefits and Technical Overview

Business value of Notes 8.x application development

This section introduces the business value of Composite Applications by describing

the business and information environment as well as the challenges to be solved.

Next, the benefits are applied to key roles. Composite applications provide benefits

v End users - by linking people to the process

v IT - by extending the process to the people as well as extending application

development beyond traditional boundaries

v Business partners - by exposing an easily extended programming model

Lastly, this section's examples reinforce the value of Notes 8.x application

development and describe several scenarios.

Fostering business and IT potential for flexibility, growth and

integration

“What used to take our employees 6 minutes, now takes them 40 seconds.” The

ability to optimize information across multiple applications is key to delivering

phenomenal gains in productivity and achieving the efficiency needed to focus on

innovation.

Bridging Line of Business and Information Technology

Business and Information Technology (IT) are intricately entwined. A business

needs to respond, grow and succeed with applications that leverage existing assets

- including technology, skills and intellectual capital - to streamline business

processes and support innovation. Time on task, the number of calls per hour, the

number of customer visits per day and customer satisfaction are all important

considerations for a business which strives to give its employees the tools they

need to get the job done faster and with greater accuracy. The role of Information

Technology is to build scalable systems that keep the business running in

compliance to corporate policy, while maintaining governance and audit readiness.

The focus is on systems integrity, completing new projects on time and reducing

risk. As internal pressures for new systems functions and features, or external

pressures such as competition or new partnerships, both Line of Business (LOB)

and IT search for solutions to bridge one another and to provide the best potential

for flexibility, growth and integration.

The challenge

For many IT departments, operational silos, heterogeneous environments and

disjointed development platforms are the norm. These kinds of infrastructures keep

development teams from effectively sharing and reusing assets, such as data

models, and also make it difficult to leverage skills across multiple projects.

Proprietary and closed applications limit IT’s ability to extend the value of existing

investments and infrastructure, and lock organizations into single vendor

relationships. Moreover, when IT or application issues arise, or when new

initiatives, such as service-oriented architecture (SOA), are launched, lack of

support and resources from reliable and trusted vendors can hinder worker

productivity.

© Copyright IBM Corp. 2008 3

Linking the people to the process (End User view)

IBM Lotus Software makes it easier to integrate line-of-business solutions and data

into new types of applications, called Composite Applications. With Composite

Applications, developers can create and aggregate components on the screen to

present content from multiple systems in a unified interface for the end user. By

integrating information across applications, your employees will notice they no

longer need to switch between applications to get the job done. The screens

automatically appear, as needed, and can be pre-populated with data. As the users

change the data, they will notice that other applications that rely on that data

automatically change. The desktop environment is no longer a place for static and

stale information, but rather a dynamic work environment that has up to the

minute information, presented in the context of what the user is doing. Silos of

applications are integrated together in one desktop that can accelerate the business

process and reduce the amount of time it takes to get tasks done. Existing

applications can also be integrated into the Composite Application desktop. Reuse

of applications can reduce the amount of retraining for your staff. New functions

can be introduced beside old ones to minimize migration concerns.

Another key strength often overlooked is the ability to leverage existing native

application code. Legacy Microsoft® Visual Basic, ActiveX, or Microsoft .NET

applications that run on desktops today, integrate into the Notes 8 client to provide

end users with a highly productive work environment. Information can be shared

across applications and optimized for the user. The reuse of applications and the

reduction in training can lead to cost savings.

For example, a Composite Application for a sales team might include access to

relevant back end sales order entry, order tracking, service management and

accounts receivable programs, as well as such front end productivity-enhancing

and collaboration components as E-mail, calendars, people finders and document

libraries.

Bottom line: A Composite Application provides collaboration in context, providing

the information your people need, when they need it.

Extending the process to the people (Application Developer view)

Your application developers will discover that Composite Applications are built on

an extensible client integration platform that provides the bridge between IT and

LOB. This provides them with existing applications that run your business today,

and the flexibility you need to innovate and grow your business in the future.

Existing applications are reused, avoiding the rip and replace of other proprietary

systems. Applications that can be integrated into the environment include web,

Portal, Host Access, Java™ EE, WebSphere, Eclipse, spreadsheets, documents, Lotus

Notes and legacy Visual Basic, Microsoft .NET, ActiveX or SharePoint based

applications. In addition, widgets that provide up to the minute information, such

as RSS Feeds, can also be integrated into the desktop.

The platform utilizes the existing skills and tools that your developers have today,

so that they can adapt the people to the process very quickly. Your Lotus Notes

developers, using Domino Designer®, will be able to develop components which

develop components which link the people to the process. IT developers can

continue to build components and assemble Composite Applications to provide

more flexible applications targeted to meet their end users requirements, extending

the process to the people.

4 Composite Applications in Notes - Benefits and Technical Overview

Additional benefits can be realized by developers designing and creating a catalog

of reusable components which can be shared across the organization or company

Bottom Line: You save development time, reduce silos of information and enable

your company to be more responsive to changing business needs and customer

demands.

Involve business users in process innovation

With the Composite Application platform, IT can now expand the possible

resources to empower advanced business users to assemble applications while still

maintaining infrastructure integrity and security.

Lotus software provides tools that enable developers to build Composite

Applications and the components that constitute them. The Composite Application

Editor allows developers and authorized business users to assemble components

into Composite Applications relevant to current business requirements. This

separation has defined a new role of application assembler. Components can be

used to create new or extend existing Composite Applications by additional

authorized and trained resources in the application assembler role. This increases

the pool of resources able to develop applications, as well as allowing the

resources who best understand the business solution to adapt to business changes.

Business partners

So far, the business value has been illustrated using scenarios related to companies.

However, business partners can also realize many of the benefits mentioned to this

point for their own solution development as well as for providing benefits to their

customers. All components need not be developed in house by a company’s IT

organization. IT organizations can augment their component catalogs by

purchasing components from business partners who have specific domain

experience. In addition to components, business partners can also develop

Composite Applications that can be extended by customers to meet changing

business requirements.

Exploring the power of Composite Applications

The Composite Application programming model is flexible, bridging the

information to the people who need it, and allowing you to leverage any or all of

the benefits. Over time, benefits can be realized and functionality adopted as you

gain experience or have specific business requirements. Both the development

organization, and the business as a whole, will respond more quickly to

marketplace changes that require new ways of doing business. Lotus software can

help you achieve just that with the ability to create Composite Applications.

From a business perspective, the following examples reinforce the value of running

different applications together in context, reusing new and existing assets, and

Notes as an integration platform.

Improve End User effectiveness by running different

applications together in context

The integration of information from multiple business components enables

developers to provide application users with content specifically geared to their

business roles and tasks in the appropriate context. This is accomplished with

Business value of Notes 8.x application development 5

event and action relationships among the components to support communication

across application and system boundaries.

User-facing Composite Applications also help improve effectiveness, reduce

learning curves and create opportunities for innovation. When you can work

within a UI that unifies content from multiple applications and systems, you can

complete tasks more quickly and reduce errors. User initiated actions in one

component can trigger the publication of information, causing other components to

execute logic. For example, a Composite Application for a sales team might include

access to relevant back end sales order entry, order tracking, service management

and accounts receivable programs, as well as such front end productivity-
enhancing and collaboration components as E-mail, calendars, people finders and

document libraries. This application can be further improved by adding context.

When a user selects an entry in an order entry component, the updated status can

display in the accounts receivable component. This relationship is defined when

the Composite Application is assembled and reduces the need for the user to rely

on "copy and paste" or search to manually transfer the context between

components. You can reduce the chances of introducing errors and impacting user

efficiency, by removing the additional steps to manually transfer context. The

following explores a few samples to better understand how context is used in

Composite Applications.

Figure 1 has extended a user's E-mail, which in Notes 8 is a Composite

Application, to include two new components. These components display

contextual information from Lotus Connections for Bookmarks and Profiles. As the

user navigates through his or her E-mail, the Profiles and Bookmarks component

updates to show information for people listed in the To, From and Cc fields or

Subject. The user does not have to copy a name or retype information into the

components; the information is automatically transferred as defined by the

application assembler. This is different then the Activities Sidebar plug-in, which

displays global information for the logged in user instead of leveraging any

context from the active Composite Application.

6 Composite Applications in Notes - Benefits and Technical Overview

Lotus Notes 8.0.1 enables end users to see and act on Live Text within their Notes

documents, including mail. For example, in Figure 2, a Notes user can see a

person’s name specially highlighted and instantly act on it to look up information

about the person in the corporate directory. Without this function, the user would

need to copy the person’s name, find and launch the corporate directory Web page

and then paste or retype the name. Productivity is improved by making common

operations easier to perform. Developers or power users can create widgets that

drive this type of function based on Notes views, forms, documents or even

external sources such as a Web page, feed or Google Gadget and deploy them from

a central catalog to specific users. Superficial information can be filtered from a

Web page, allowing the user to focus on only the requested information. Live Text

can be used to obtain instant information for phone numbers, addresses, part

numbers, customer IDs, flight numbers and many other options.

Power users can create widgets based on a Notes view, form, or document (or a

Web page, feed, or Google Gadget) and deploy them from a central catalog to

specific users. Superficial information can be filtered from a Web page widget,

allowing the user to focus on only the requested information. Live Text recognizers

can include any pattern definable by a regular expression. Examples include phone

numbers, addresses, part numbers, customer IDs, flight numbers and many more.

Figure 1. Sharing information between Lotus Notes 8 and Lotus Connections

Business value of Notes 8.x application development 7

The value of reusing new and existing assets

In today’s world, everyone is busy meeting their business requirements.

Companies are distributed over a variety of locations and time zones, making it

difficult to share assets. In many cases, developers create new assets and duplicate

features, as code developed for one solution is often difficult to reuse in another.

The Composite Application Framework provides a programming model which

breaks down many of these barriers.

A Composite Application is comprised of constructed components which can be

developed using different tools and frameworks. This enables a business to

establish a set of common components that can be used across multiple

applications, resulting in higher quality components, less maintenance and greater

software asset reuse within an organization. To avoid duplication and achieve

greater reuse, components can also be shared across the development team using a

catalog. One example of a product catalog is the Widget Catalog (8) provided with

Notes 8. Both developers and application assemblers (power users) can create and

publish widgets to the catalog for use throughout the organization. It can also be

used to augment a company’s component catalogue with Third Party Widgets.

This enables build versus buy, and component sharing on an industry-wide basis.

The Composite Application Component Library on OpenNTF.Org is an example of

a catalog that uses conventions, and can be adopted by a company or organization.

This reduces the resources needed to build components, which in turn increases

the shared assets used in Composite Applications.

So far, the discussion has focused on component reuse, but the real advantage can

be seen when you assemble Composite Applications from components. The Lotus

Notes 8 Banking Industry Composite Application Demo is a perfect example, as

Figure 2. Avoiding Copy and Paste with the LiveText and Directory Widget

8 Composite Applications in Notes - Benefits and Technical Overview

http://www.openntf.org/Projects/pmt.nsf/852fcfa76eb36baa85256bae00100855/998edc82d1fb2f3686257399005fe8e0!OpenDocument

shown in Figures 3 and 4. This demo reuses CIF Data, Alerts, and Account Details

components and the sharing of information between components along with

Personal Information Management (PIM), such as Contacts (Personal Address

Book), Mail, and Calendar.

Figure 3. Customer Service Bank Call Center Composite Application

Business value of Notes 8.x application development 9

The last benefit of reuse does not lie between components in Composite

Applications, but rather sharing functionality from an existing application.

The Lead Manager Composite Application sample for IBM Lotus Notes 8 was

developed from four existing Lotus Notes applications (Figure 5). All component

creation can be accomplished without breaking existing functionality. This allows

part of your user community to continue using the existing applications as others

are migrated to the Composite Application (Figure 6). This reuse of applications

can reduce the amount of training for end users, since they are already familiar

with the function of an application. Because applications share information, the

additional integration saves them time navigating through multiple screens and

applications.

Figure 4. Loan Composite Application

10 Composite Applications in Notes - Benefits and Technical Overview

Figure 5. Existing Lotus Notes applications used to track Sales Lead

Business value of Notes 8.x application development 11

This Lead Manager Composite Application sample serves as a transition to the

next section, because Composite Applications improve integration. For more

information on this sample, refer to the IBM Composite Applications wiki page

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/ibm-lead-manager.

Additional articles and information are available at http://www-10.lotus.com/
ldd/compappwiki.nsf/dx/lead-manager-sample-composite-application-articles.

The value of Lotus Notes as an integration platform

Lotus Notes 8 software provides support for heterogeneous technologies in

Composite Applications. Developers can mix and match Lotus Notes applications

with a wide variety of both client (Web, Web 2.0, Eclipse and legacy ActiveX,

Sharepoint and .NET) and server (Portlets, Host Access, Transaction Processing...)

applications. So far, the examples and values discussed have focused on context

and reusability, but they also provide examples of Lotus Notes as an integration

platform. Multiple applications were integrated on the glass to create a new

application to help employees complete their tasks faster and with less errors. The

following examples provide more detail on these benefits.

The Customer Service Bank Call Center and Loan Composite Application (Figures

3 and 4) illustrates an integration with many different types of components. Both

applications include Host Access Transformation Services (HATS), Eclipse Standard

Widget Toolkit (SWT), Lotus Symphony, JSR 168 portlets and Lotus Notes Views.

IBM Lotus Symphony, included in Notes 8, provides functionality for the end user

to operate on spreadsheets, presentations and documents. It can also be used as a

component in a Composite Application. Figure 7 illustrates how a chart can be

created by integrating a spreadsheet with a Lotus Notes View. In this figure,

Figure 6. Lead Manager Composite Application sample

12 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/ibm-lead-manager
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/lead-manager-sample-composite-application-articles
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/lead-manager-sample-composite-application-articles

specific view columns populate a spreadsheet, which then creates the chart. By

leveraging the Lotus Symphony Public APIs to build components, many

integration options are revealed. For example, a document template component

which uses a property from another component to populate template values.

 Open source Eclipse projects represent another community that can be leveraged to

build components. The Business Intelligence and Reporting Tools (BIRT)

Eclipse-based reporting system is one such example, shown in Figure 8. A similar

technique for integrating BIRT was also used with Lotus Symphony, detailed in

Figure 7. Instead of populating cells in a spreadsheet, the component uses the

Lotus Notes Java API to extract the information for a view. The necessary view and

category information is specified as a component action.

Figure 7. IBM Lotus Symphony in a Composite Application

Business value of Notes 8.x application development 13

http://www.eclipse.org/birt/phoenix/

The integration described previously allows end users to leverage the information

they need. But how are these solutions created?

Without Composite Applications, these solutions would be created by IT and

application developers, a critical resource in many companies. With Composite

Applications, the pool of available resources increases beyond IT to also include

authorized LOB users. Application assembly is a new role which uses the

Composite Application Editor to layout and wire components. Besides creating

applications, resources can also be saved through incremental updates and

modification to existing applications by LOB users. As business environments and

processes change, an authorized LOB user can add reusable components from a

catalog to enhance applications without having to burden IT. This shortens the

development cycle, as a LOB user who understands the new requirements is able

to apply and verify the changes.

In addition to Composite Applications, the new architecture of Lotus Notes enables

a wide range of options to extend and customize the user experience. For example,

using Eclipse plug-ins to extend the sidebar and toolbar. Lotus Notes uses this

technique by providing constant access to your IBM Lotus Sametime® Contacts,

Calendar, Feed Reader, and Activities on the sidebar.

Where to use Composite Applications

To realize the benefits of Composite Applications discussed so far, you must

understand where to use and not to use Composite Applications. The following

rules can serve as a guide:

1. They must be used for on the glass integration.

2. They can be used to integrate different technologies in a platform independent

approach.

Figure 8. BIRT – Third Party Reporting Tool integrated into Notes 8

14 Composite Applications in Notes - Benefits and Technical Overview

3. They are not a replacement of NSF database design, but rather an evolution.

4. They do not require Eclipse skills.

5. They do not require an IBM WebSphere Portal server for Lotus Notes.

The first and most important rule to understand is that Composite Applications

provide on the glass integration of coarse grained components. Until a reasonable

limit is reached, the platform becomes more valuable as more components are

integrated. All the components can come from a common technology, as described

in Figure 6, the Lead Manager Composite Application sample. Or many separate

technologies can also be used, as described in Figure 3, Customer Service Bank Call

Center Composite Application.

The second rule is an extension of the first. When providing on the glass

integration, a platform independent technique integrates different technologies.

This is accomplished by creating components which access the technology. You can

add these components and/or plug-ins to the sidebar or assemble them into

Composite Applications using the Composite Application Editor.

The remaining three rules attempt to resolve possible confusion. Developing NSF

components is not a replacement for NSF database design, but an evolution to

create reusable components. Your existing skills and experience with Lotus Domino

Designer are relevant and can be leveraged. Eclipse skills are not required and

components can be created using Lotus Domino Designer. Eclipse skills provide

additional integration options, and as they are learned they can be applied. IBM

WebSphere Portal server is not required. Components and Composite Applications

can be developed and deployed in a Lotus Notes and Domino® only configuration.

If an IBM WebSphere Portal server configuration already exists, then it can be

leveraged.

Executive conclusion

IBM Lotus Software makes it easier to integrate line-of-business solutions and data

into Composite Applications. With Composite Applications, developers can create

and aggregate components on the screen to present content from multiple systems

in a unified interface for the end user. With this platform, end users can also

assemble Composite Applications to create personal productivity tools. Because

composite applications are based on a Notes and Domino infrastructure, integrity

and security are maintained throughout the process. Finally, reusable components,

shared between developers on an industry level, can help a business get the most

value out of code reuse. Code that is tested, proven in production, and written by

someone else.

This concludes the Executive Overview of Composite Applications within a Notes

8 environment. The remainder of this document allows your developers to begin

exploring in more detail the concepts and value described above.

Business value of Notes 8.x application development 15

16 Composite Applications in Notes - Benefits and Technical Overview

Roles and tools

The roadmap to information optimization

Application development is best shown in light of samples and examples. Which

technologies, which tools and which APIs will help you to respond to the needs of

the business? This paper is designed to act as demonstration vehicle, showing you

how to optimize information to end users. When used in conjunction with the IBM

Composite Applications wiki, it provides a roadmap to assist you in applying the

concepts illustrated.

First, there are two types of development: fast and furious in response to a one-off

requirement or need for information, and the integration of multiple applications

together on the desktop for mass deployment. Mashups versus Composite

Applications.

While both mashups and Composite Applications provide a framework for

integrating disparate applications into a common user experience, one can think of

mashups as a lightweight implementation of Composite Applications. Mashups

and Composite Applications use widgets and components respectively as the

building blocks for the application.

Composite Applications

Composite applications involve a “service-oriented” wiring between applications

and are deployed to enterprise platforms. This event-based wiring of data between

applications can create a dynamic desktop where, as the workflow inside one

application is completed, all other applications that rely on this application can

reflect the change. The completed application is then placed in the background and

the user focuses on the next task.

This enables not only component reuse within an organization, but also provides a

framework for application reuse across the business. In this way, both line of

business (LOB) and Information Technology (IT) applications can be integrated

together on the desktop.

Mashups

A ″mashup″ combines data from multiple applications into an extremely

lightweight application rendered in a browser. Mashups can extend enterprise data

with services from the public internet such as Google Maps for location services,

RSS (Really Simple Syndication) Feeds to publish content or Widgets (web

plug-ins) that provide specific functions such as blog, wiki or social networking

capabilities.

Mashups are not intended to be strategic, systematically built, industrial-strength

enterprise applications; rather, they are created quickly or opportunistically to meet

a focused tactical need. Mashups are generally personalized to fulfill personal

productivity needs rather than the requirements of a long-standing corporate role.

1

Mashups leverage content and logic from other Web sites and Web applications,

they’ are lightweight in implementation and are built with a minimal amount of

1. G. Phifer, D. Gootzit, 2007, Gartner, Inc., Hype Cycle for Client applications

© Copyright IBM Corp. 2008 17

http://www-10.lotus.com/ldd/compappwiki.nsf
http://www-10.lotus.com/ldd/compappwiki.nsf

code (which can be client-side JavaScript™ or server-side scripting languages, such

as PHP or Python). These are not fixed requirements, but reflect the original

implementation of the mashup concept in Web 2.0 startup companies, which

typically do not use enterprise oriented platforms, such as Java or .NET.

Your skills and tools

Your skills and tools can be leveraged to create Composite Applications. The

framework minimizes the amount of rework necessary to integrate applications

into the composite desktop.

Typically, there are three developer types who work on component and application

creation:

v Notes developers

v Java developers

v Eclipse developers

v

Notes developers

By defining the UI through a set of design elements, adding controls to those

elements and defining the behavior of those controls, developers can build a fully

functional application without having to write any code. This has made Notes

developers extremely productive, as well as making the Notes programming model

widely accepted.

The Notes application model’s flexibility has allowed it to support a variety of

application types. This includes project management, document tracking, CRM and

sales force automation. The nature of Notes’ semi structured data store and its

associated APIs allow developers to quickly build workflow functionality into their

applications.

The Notes application model also benefits from platform services, such as security,

allowing fine grained control over data access or replication allowing workers to

with the application when disconnected.

For applications that require more complex business logic, or for access to the data

and business logic in a Notes application, a wide variety of application

programming interfaces are provided, including LotusScript, COM, JavaScript,

Java, Web services, RSS, XML and ODBC. Notes applications can also be hosted on

a Domino server for browser access, leveraging developers skills in HTML,

JavaScript, CSS and XML.

For Notes developers, Domino Designer continues to provide an integrated

development environment (IDE) for building NSF components. You can directly

apply many of the skills you use today to develop Notes applications towards

developing components.

For Notes developers, the IBM Composite Applications wiki contains updated

exercises and a roadmap so that you can begin to place the concepts into

production.

18 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf

Java and Eclipse developers

There are over two million Eclipse developers worldwide. The Eclipse Rich Client

Platform and Equinox form the core of the Lotus client products. For all

developers, it simply enables applications to integrate together to form a dynamic

work environment.

For Java and Eclipse developers, it provides a framework for application

integration within Notes, Symphony, Sametime and Expeditor environments with

application and component reuse across the entire organization.

It enables developers to use their favorite Integrated Development Environment

(Eclipse, Rational® Application Developer, Instantiations Window Builder Pro, etc.).

As Java developers with knowledge of the Eclipse plug-in model, you will be able

to:

v Integrate existing applications to reduce end user retraining

v Integrate both line of business and information technology applications to bridge

end users to the information they need for their job

v Easily integrate third party applications so that functions, such as reports, can be

integrated into applications

v Reparent applications that utilize other technologies, such as, Java, host access,

Eclipse, native and legacy .NET, VB, Office, to further enhance end user

productivity

v Wire portal applications to accelerate information to customer care employees in

your call centre or point of sale, point of service

For Java developers, the IBM Composite Applications wiki has updated exercises

and a roadmap, so that you can begin placing the concepts into production.

Application Assembly/Application Deployment

The value in Composite Applications is the ability to wire applications together to

optimize information to the end user. To create this dynamic end user

environment, both Notes developers and Java developers will use the Composite

Application Editor and the underlying Property Broker provide the event-based

between applications.

As previously mentioned, there is an updated set of applications and roadmap on

the IBM Composite Applications wiki.

Roles and tools 19

http://www-10.lotus.com/ldd/compappwiki.nsf
http://www-10.lotus.com/ldd/compappwiki.nsf

20 Composite Applications in Notes - Benefits and Technical Overview

Architecture overview

At the core of the Composite Applications architecture is the Eclipse Rich Client

Platform (RCP). RCP is an application integration framework that allows

developers to quickly build a professional-looking application with a native

look-and-feel on multiple platforms, allowing them to focus on their value-add.

The inherent extensibility of Eclipse allows them to not only build products, but

also an open-ended platform.

Extensibility is accomplished by delivering Plug-ins or components to the Eclipse

RCP. Each component includes a manifest file that declares the extension points it

provides to other components and the extension points it makes use of from other

components. This defines how the component can be used.

The multiple components inside a composite application can consist of many

applications and controls - from Java Foundation Class Swing, Microsoft Visual

Basic and ActiveX and applets to native or Web views like Asynchronous

JavaScript and XML (Ajax), Adobe PDF and Java Server Pages.

When the component is installed, the extensions are registered with the registry.

Events are sent to those interested that a new extension has been installed.

Lotus Expeditor is a commercial implementation of the Eclipse Rich Client

platform and adds middleware, security, provisioning and the ability to run

Portlets, integrate host access and use IBM Lotus Forms as components.

In addition to the components supported through Lotus Expeditor, Lotus Notes 8

enables the following design elements to be ″surfaced’ as NSF components in

composite applications:

v Pages

v Forms

v Views

v Folders

v Framesets

Lotus Notes 8.0

Lotus Expeditor Platform

NSF Components

Composite Application
Editor

Figure 9. Lotus Expeditor platform and Lotus Notes 8.0

© Copyright IBM Corp. 2008 21

v Navigators

Component interaction is loosely coupled through properties and actions across

database boundaries, enabling developers to mix-and-match component

technologies across applications.

The component model also enables Widgets to be integrated on the desktop.

Widgets in the sidebar panel in Lotus Notes allow users to quickly and easily

perform business actions using widgets created from Lotus Notes views, Web

pages, feeds and Google Gadgets. These widgets can be standalone or launched

from Live Text in Lotus Notes documents.

Instead of implementing ″hard-wired communication″ components, Widgets can

rely on the selection service. It decouples components where items can be selected

from others reacting on selection changes.

A property is a typed exchangeable data item that a component produces while an

action is the logic to consume a property. Components define their properties and

actions. Wiring connects properties to actions with a causal relationship.

The composite programming model present on the client is based on declarative

communication between two applications or components. The Property Broker is a

framework that provides registration, wiring and communications to decoupled

components. This delivers a messaging system where actions can be called with

input property changes and any number of output property changes.

Notes Design Elements

Notes
Actions

Notes
Properties

WSDL
File

Figure 10. Notes Design Elements

22 Composite Applications in Notes - Benefits and Technical Overview

Other applications that have registered for changes are notified and can

dynamically react. For example, the data in a spreadsheet application can be wired

to a host access session on the desktop. As a cell within the spreadsheet changes,

the Host Access screen automatically reflects the change in data. The framework

can also be used to launch or close views on the desktop to respond to input from

either the user or the system. Property changes can also be chained together to

drive a dynamic desktop environment where the screens change according to the

input from the user. This is very similar to the inter Portlet communication wiring

mode.

The Composite Application data model

There are three levels of data:

1. Application

2. Pages

3. Components

A page in the client platform is equivalent to an Eclipse perspective. The page ID

(which can be accessed from the Page class) is actually the Eclipse perspective ID.

You can use the Eclipse APIs to show a page using that same ID.

Most components, not all, are equivalent to Eclipse views. The secondary ID of the

view is used as the unique ID for the component. You can get a handle to the

preferences of a component by using the secondary ID of a view part.

Java developers can access the model using the Topology Handler or Eclipse

extension registry APIs in Lotus Expeditor.

More information is available on the Composite Application Wiki under these two

areas:

v Understanding the data model

NSF
Components

Property
Broker

Eclipse
Components

Portal
Components

Figure 11. Property Broker framework

Architecture overview 23

http://www.ibm.com/developerworks/wikis/display/appdev/Understanding+the+data+model

v Accessing component data using Eclipse API’s

Composite Applications on the rich client platform

Lotus Expeditor is IBM’s client side services oriented architecture platform. It is a

universal client platform spanning Windows®, Macintosh, WinMobile, Linux® and

more. The Composite Application infrastructure allows for the interoperation of

new components based on virtually any kind of technology. This means you can

use existing data and applications within this framework with little or no coding

changes.

Although the Portal windowing environment is different, a mapping from Portal

Pages to Eclipse perspectives and portlets enables the use of Portlets (JSR 186)

within composite applications. Figure 9 illustrates this relationship map.

 Table 1 shows the different products that use Composite Applications and the

containers they support. *Lotus Notes inherits all of the component support from

Expeditor.

 Table 1. Composite Application products, components and samples

 Lotus Notes

NSF based Existing notes components

Symphony Document, Spreadsheet, etc.

Widget support Notes views, Web pages, feeds, and Google

gadgets

 Lotus Expeditor

Embedded Web browser HTML, Ajax, CSS, Dynamic HTML, Applets,

Active X controls

Web JSP 2.0, Servlet 2.4

Portlet JSR 168

SWT RCP Eclipse view support

AWT Swing Standard Java

OLE NET SWT based OLE container wrapper

Window Re-parenting Legacy applications - VB, C++, etc.

Figure 12. Relationship map

24 Composite Applications in Notes - Benefits and Technical Overview

http://www.ibm.com/developerworks/wikis/display/appdev/Accessing+component+data+using+Eclipse+API%27s

In addition to basic components that can be laid out on the screen and wired

declaratively with a tool like the Composite Application Editor, components can

also be defined using the Lotus Widget wizard. Using this wizard, you can define

four different kinds of widgets to be displayed in a pop up window, a new tab, or

attached to the right sidebar. The Widgets are closely tied to the Live Text feature –

where widgets can be launched from the Live Text menu.

Widgets and Live Text

The Eclipse platform has a very powerful selection and context menu architecture.

This architecture lets developers create decoupled associations with well known

selection types. The Lotus client platform extends this capability to include a

declarative content type system that seamlessly integrates with Eclipse context

selection menus. This capability gives users, assemblers, and developers the ability

to associate common text with a widget and actions. For instance, Live Text allows

you to associate an E-mail address with a specific web page. That web page can

not only be launched as a new window tab, pop up window, or sidebar view, but

also driven by the selected (underlined) text. The Live Text feature automatically

recognizes text that fits a specific pattern and makes accessible, through the context

menu, all available actions and widgets for that content type.

Architecture overview 25

26 Composite Applications in Notes - Benefits and Technical Overview

Getting started with Eclipse as a Notes developer

Eclipse can be thought of as a universal tool platform – an open extensible

Integrated Development Environment (IDE) for anything and nothing in

particular.2 Eclipse is an open source project that started as a development platform

for providing a flexible programming development environment, and then evolved

into a flexible Rich Client Platform (RCP).3 The Eclipse Newcomers FAQ will prove

valuable if you are new to Eclipse.4

The same feature and plug-in architecture the IDE was built on is now the core

framework for the Eclipse Rich Client Platform. The runtime platform is based on

the Open Services Gateway Initiative (OSGi) and the implementation is called

Equinox. The Eclipse project Equinox

5 is the implementation of the OSGi R4

specification.6 OSGi technology provides a service-oriented, component-based

environment for developers, and offers standardized ways to manage the software

lifecycle.7 At the very core of the rich client platform is the feature and plug-in

architecture. This architecture allows each plug-in to have its own class loader,

along with defining its dependencies on other plug-ins.

Eclipse Plug-ins, Features, and Fragments

Eclipse is not a single, monolithic program, but rather a small kernel called a

plug-in loader surrounded by hundreds (and potentially thousands) of plug-ins.8

Plug-ins may rely on and provide services to other plug-ins. This allows for better

modularity and the reuse of functionality to build applications not intended by the

original plug-in developer. Plug-ins describe their dependencies using a descriptor

(or manifest), which consists of a plugin.xml and MANIFEST.MF file. This descriptor

tells the runtime what other plug-ins and Java packages are needed in order for

the plug-in to resolve properly. In Eclipse, the dependent plug-in only loads if

requested by the depending plug-in. On startup, the plug-in loader scans the

plugin.xml or manifest file for each plug-in and builds a structure containing this

information.9 This structure is used later to load the appropriate classes from the

correct plug-in.

A plug-in provides extensibility through extension points. These extension points

define how the feature of a particular plug-in can be extended by other plug-ins,

which can also provide extensions to the extension points, as shown in Figure 10.

An extension point is the definition of a port – an entry point for other plug-ins to

offer services. The extension implementation is the actual service, packaged in a

2. Eclipse.org, available online at Eclipse.org

3. Eclipse RCP, available online at http://wiki.eclipse.org/index.php/Rich_Client_Platform

4. Eclipse Newcomers FAQ, available online at http://www.eclipse.org/home/newcomers.php

5. Equinox, available online at http://www.eclipse.org/equinox/

6. P. Carlson, 21 Aug. 2007, IBM, Getting started with the IBM Lotus Expeditor Toolkit 6.1, available online at http://
www.ibm.com/developerworks/lotus/library/expeditor-toolkit/

7. OSGi Home page, available online at http://www.osgi.org/Main/HomePage

8. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building Commercial-Quality Plug-ins, page 129

9. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building Commercial-Quality Plug-ins, page 130

© Copyright IBM Corp. 2008 27

http://www.eclipse.org
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.eclipse.org/home/newcomers.php
http://www.eclipse.org/equinox/
http://www.ibm.com/developerworks/lotus/library/expeditor-toolkit/
http://www.ibm.com/developerworks/lotus/library/expeditor-toolkit/
http://www.osgi.org/Main/HomePage

way that makes it callable through an extension point.10

 One or more Eclipse plug-ins can be grouped together into an Eclipse feature so

that a user can easily load, manage, and brand those plug-ins as a single unit.11

Features allow the packaging of one or more plug-ins and usually describe a set of

functionality that the containing plug-ins bring to the platform as a collective.

Sometimes it is useful to make parts of a plug-in optional, allowing it to be

installed, uninstalled or updated independently from the rest of the plug-in. For

example, a plug-in may have a library that is specific to a particular operating

system or windowing system, or a language pack that adds translations for the

plug-in’s messages.12 In this case you would want to implement a plug-in

fragment. All three of these types of projects (plug-in, feature, and fragment) can

easily be created using the Eclipse project wizard.

10. B. Marchal, 3 Feb. 2005, Working XML: Define and load extension points, available online at http://www.ibm.com/
developerworks/xml/library/x-wxxm29.html

11. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building Commercial-Quality Plug-ins, page 653

12. Eclipse wiki, FAQ What is a plug-in fragment?, available online at http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F

Figure 13. Extensions and extension points

28 Composite Applications in Notes - Benefits and Technical Overview

http://www.ibm.com/developerworks/xml/library/x-wxxm29.html
http://www.ibm.com/developerworks/xml/library/x-wxxm29.html
http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F

Features and plug-ins are installed from an Eclipse update site. An update site is a

set of files and a directory structure that is recognized by the update manager. The

article How To Keep Up To Date13, is an excellent primer for creating features and

update sites. An update site can be referenced in a local directory structure, on a

web site and, in the case of Lotus Notes, inside of a notes database that uses the

Update Site template. This gives Lotus Notes administrators a lot of options for

how they want to administer their feature deployment. For example, Lotus Notes

shops that do not deploy a Domino server can use basic NSF technology (over

NRPC) to deploy features. If Domino servers are in the environment, then the

update sites will simply be a directory structure on the server or a container in a

database that inherits the Update Site template. The Composite Application Wiki

14

has a section dedicated to the management of features and plug-ins.

The Eclipse Workbench

The Eclipse workbench is where the entire user interface is defined. Like Eclipse,

Lotus Notes has the same definition and uses the same technology under the

covers. The Workbench provides the UI building blocks that make Eclipse

applications easy to write, easy to use, scalable and extendable.15 The workbench

defines an explicit lifecycle for the window, toolbars, action menus and

components. Lotus Notes provides its own Workbench advisor and also offers a

convenience layer above it called the Personality framework. The personality of an

application defines the framework the platform uses to determine what

perspectives or windows, menus, action bar items and status line controls are

displayed when the application starts.16 This means you can build a custom

look-and-feel, or "branding", for your entire client platform.

Being a scalable and extensible platform means you can contribute extensions to

many parts of Lotus Notes 8 in ways you could not do very easily in previous

versions of Lotus Notes.

Threading 101 for Eclipse and Notes

There are two basic sets of threads in the rich client platform – threads that run in

the UI and threads that run in the background. For a best practice, you should use

the Eclipse Job

17 application programming interfaces for all of your threading

needs. The Job API’s give you easy to use classes for both background and

foreground (user interface) threads. The API’s also allow easy integration with the

progress monitoring dialogs that come with the base Eclipse framework. This

means your job status can display in the status bar or in a modeless dialog that

shows the percentage complete. The API comes complete with scheduling and run

rules to insure you have complete control over the execution of the thread.

For jobs that you want to run against Lotus Notes data (threads requiring a Notes

Session) you should use the NotesJob class. This job class ensures you have proper

session access to the Notes runtime. See Table 2 on page 30 for the list of job

13. D. Glozic, D. Birsan, 27 September 2003, IBM, How To Keep Up To Date, available online at http://www.eclipse.org/articles/
Article-Update/keeping-up-to-date.html

14. Composite Application Wiki, IBM, Introduction to provisioning and updating, available online at http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/introduction-to-provisioning-and-updating

15. J. McAffer, J. Lemieux, 2005, Addison-Wesley, Eclipse – Rich Client Platform, page 215

16. Personalities, 2007, Lotus Expeditor InfoCenter, available online at http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/
index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_usingpersonalities.html

17. M. Valenta, 20 September 2004, IBM, On the Job: The Eclipse Jobs API, available online at http://www.eclipse.org/articles/Article-
Concurrency/jobs-api.html

Getting started with Eclipse as a Notes developer 29

http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html
http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html
 http://www-10.lotus.com/ldd/compappwiki.nsf/dx/introduction-to-provisioning-and-updating
 http://www-10.lotus.com/ldd/compappwiki.nsf/dx/introduction-to-provisioning-and-updating
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_usingpersonalities.html
http://publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/com.ibm.rcp.tools.doc.appdev/ui_usingpersonalities.html
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html

classes and their descriptions.

 Table 2. Job classes and descriptions

Package Class Description

org.eclipse.core.runtime.jobs Job A Job is a units of runnable work that can be

scheduled to be run with the job manager

org.eclipse.ui.progress UIJob The UIJob is a Job that runs within the UI

Thread using an asyncExec

com.ibm.notes.java.api.util NotesJob Eclipse Job wrapper for the NotesThread

Making your Eclipse plug-ins dynamic aware

One of the key factors of the Eclipse platform is its ability to be completely

dynamic. Which means your plug-ins can come and go in the runtime and not

adversely affect other plug-ins still running. In order to “fit” within this platform

and function properly with other installed plug-ins, your plug-in must follow some

basic guidelines. Your plug-in must be dynamic aware and dynamic enabled.

Dynamic-awareness has to do with updating your plug-ins data structures in

response to changes in the set of installed plug-ins.18 This means your plug-in must

know when other plug-ins are added or removed from the system. The Eclipse

runtime broadcasts registry change events to any registered listeners. To register

your plug-in as a registry change listener, consult the Eclipse Javadoc.19 Once

registered, your plug-in can react to the addition or removal of other plug-ins.

Dynamic-enablement means writing a dynamic-enabled plug-in so that it correctly

handles its own dynamic addition and removal. This means properly cleaning up

objects and cache to prevent leaks. These should be handled in the start() and

stop() methods of your plug-in (or bundle). Objects to look for are files, graphical

objects (images, fonts, colors, and so on) and socket connections.

Creating your first Eclipse view

One of the first things you are likely to attempt is creating an Eclipse view part.

View parts are the corner stone of Composite Applications. They are the primary

“wrapper” for all component types. If it is a component, then it is ultimately an

Eclipse view part. Since the Composite Application infrastructure uses views and

dynamically adds views to the perspectives, you need control of the secondary

identifier of the view part. This means all views that are to be “components” must

allow for multiple instances. The allowMultiple=”true” setting must be set in the

view extension definition. You can learn more about creating Eclipse based

components in “Building Java components” on page 37.

18. J. McAffer, J. Lemieux, 2005, Addison-Wesley, Eclipse – Rich Client Platform, page 357

19. Eclipse.org, Extension Registry API’s, available online at http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/
reference/api/org/eclipse/core/runtime/IExtensionRegistry.html

30 Composite Applications in Notes - Benefits and Technical Overview

http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/runtime/IExtensionRegistry.html
http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/runtime/IExtensionRegistry.html

Building NSF components

This section describes how NSF components can be developed with Lotus Domino

Designer, as well as how existing NSF databases can be used in Composite

Applications.

What are NSF components?

A component in a Composite Application is basically a rectangle in the UI. A NSF

component displays a Notes object like a Notes view in a rectangle. A NSF

component can be configured differently for every occurrence in an application as

part of the Composite Application using static component preferences.

Additionally, a NSF component defines its output properties and actions.

In summary, a NSF component consists of:

v A Notes URL

v Static component preferences (optional)

v Output properties and actions (optional)

The lead manager sample application

20 shows how four different NSF applications

can be set as NSF components in a Composite Application.

NSF components can be added to the palette in the Composite Application Editor

(for more information, refer to “Using the Composite Application Editor” on page

45) by selecting Add Components > Add NSF component. From the CAE, a NSF

component picker allows you to navigate to a specific Notes database and then

pick the Notes object you want. Alternatively, NSF components can be added to

the “MyWidgets” category on the palette from the Notes client directly by opening

the NSF object and then selecting Configure widget from current context.

Notes URLs can be used to refer to Notes objects. When using a Notes view the

navigator can be hidden through the URL parameter &HideNavigator

21. The

property broker can only be used from Notes forms and Notes views.

The Notes URL can contain paths to databases or it can contain replica IDs. To

identify special types of databases, the following special ‘replica ID’ can be used

22:

v notes:///0000000000000E00 - Opens the current user’s mail database.

v notes:///0000000000000E01 - Opens the current user’s contacts database.

v notes:///0000000000000000 - Searches for a NSF component in the same

database that has the Composite Application XML file.

20. Sales lead manager sample application overview, available online at: http://www-10.lotus.com/ldd/compappwiki.nsf/dx/ibm-lead-
manager

21. Refer to the Manage Real Estate for NSF Components in Composite applications section of the Composite Applications wiki, available

online at http://www-10.lotus.com/ldd/compappwiki.nsf/dx/managing-real-estate-for-nsf-components-in-composite-
applications

22. Refer to Deployment with NSF based Composite Applications with components in the same NSF section of the Composite Application

Wiki available online at http://www-10.lotus.com/ldd/compappwiki.nsf/dx/deployment-of-nsf-based-composite-applications-
with-components-in-the-same-nsf

© Copyright IBM Corp. 2008 31

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/ibm-lead-manager
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/ibm-lead-manager
http://www.ibm.com/developerworks/wikis/display/appdev/Manage+Real+Estate+for+NSF+Components+in+Composite+Applications
http://www.ibm.com/developerworks/wikis/display/appdev/Manage+Real+Estate+for+NSF+Components+in+Composite+Applications
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/deployment-of-nsf-based-composite-applications-with-components-in-the-same-nsf
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/deployment-of-nsf-based-composite-applications-with-components-in-the-same-nsf

Deployment of NSF components

Composite applications are typically developed in non-production environments

and test databases are often used to test the applications. When moving the

Composite Applications with hardcoded links from a test database to a production

environment the links can break. To avoid this, relative links can be used through

@Formulas that are executed in the database containing the Composite Application

XML file. The @Formulas are defined in the advanced component properties in the

CAE (com.ibm.notes.ComputedNotesURL). For example, in these @Formulas you can

access fields in Notes profile documents that contain the links to the databases. The

values in these profile documents can then be changed using LotusScript as part of

an automated deployment. For more details, refer to the section How to calculate

links to NSF Components at Runtime in the Composite Applications wiki, available

online here http://www-10.lotus.com/ldd/compappwiki.nsf/dx/how-to-calculate-
links-to-nsf-components-at-runtime.

Using the property broker - built in properties and actions

Composite Applications allow the reuse of existing NSF applications. In many

scenarios, it is desirable to use NSF components without changing their designs.

One reason is to avoid development work for extending existing NSF applications.

When building their first Composite Applications in proof-of-concepts, developers

often do not have designer access to the deployed databases that they want to

reuse. Another reason is to simply avoid the redeployment of the changed

databases for various reasons such as avoiding retesting the databases.

Because of this, Notes has built in properties and actions for NSF components.

These properties and actions can be used without changing the databases (no

WSDL needs to be defined).

Built in property SelectedNotesDocumentURLChanged:

A typical scenario is that an action is supposed to be invoked when another

view entry is selected. The built in property can be used to publish the Notes

URL of the currently selected view entry. Other components can then use this

URL as callback to access any field of the selected document using LotusScript

or the Java API. To define which views this property is to be published from,

the views need to be defined in the advanced component property

com.ibm.notes.publishBuiltInPropsFromView.

Built in action FilterCurrentUIViewViaCategory:

In order to filter the current UI view, a built in action can be used (constrained

list). These views have to have a sorted column which is used as the key for

the lookup. Only view entries are then shown, whose values of the first sorted

column match with the input property of the action.

Built in action SearchCurrentUIView:

This action performs a full text search on the current UI view.

Built in properties and actions need to be enabled in CAE:

v On page level: com.ibm.notes.enable.preferences=true

v On component level: com.ibm.notes.enableBuiltInPB=true

 Refer to the Using built-in properties and actions in Notes 8.0.1 section of the

Composite application Wiki, available online at http://www-10.lotus.com/ldd/
compappwiki.nsf//dx/using-built-in-properties-and-actions-in-notes-8.0.1 for more

details.

32 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/how-to-calculate-links-to-nsf-components-at-runtime
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/how-to-calculate-links-to-nsf-components-at-runtime
http://www-10.lotus.com/ldd/compappwiki.nsf//dx/using-built-in-properties-and-actions-in-notes-8.0.1
http://www-10.lotus.com/ldd/compappwiki.nsf//dx/using-built-in-properties-and-actions-in-notes-8.0.1

Using the property broker - custom properties and actions

For more sophisticated scenarios, there are no built in properties and actions

available. For example, if you want to publish a column of a view on selection

change rather than the Notes URL. Another example might be providing an action

in a form that sets certain field values received from other components. A further

example is the publication of a field value in a document to other components as a

property.

In these cases you need to follow these steps:

1. Define the names of your output properties and actions and their data types

using the Property Broker Editor included as part of Domino Designer (result:

WSDL).

2. For actions:

a. Map your Notes actions in forms and views to the (property broker) actions

defined in the WSDL.

b. Implement your action with LotusScript and use the property broker APIs

to retrieve the input property.
3. For output properties:

a. Properties that are declaratively published when view selections change:

Map the column to an output property in the WSDL.

b. Properties that are programmatically published: Use the property broker

APIs in any events in forms and views (such as OnSelect) to publish any

property you want.

See the tutorial Building Composite Applications for IBM Notes 8 available online at

http://www-128.ibm.com/developerworks/lotus/library/tutorials/notes8-comp-
apps/lz-dw-lz-notes8-comp-apps.html?S_TACT=105AGX13&S_CMP=LP for more

information. For more details on how to use the Property Broker Editor, refer to

the Property Broker Editor for NSF Components section of the Composite Applications

Wiki, available online at http://www-10.lotus.com/ldd/compappwiki.nsf/dx/
property-broker-editor-for-nsf-components. See in the Domino Designer help for

more details on the LotusScript property broker APIs (LotusScript classes:

NotesPropertyBroker and NotesProperty).

All data types are represented as single strings when accessing them from

LotusScript. You can then initiate your own LotusScript classes with whatever

information these strings contain. Essentially, you must deserialize the strings in

the object structure you want to use. For example, one string could contain a list of

URLs that another component passed to a Notes action. You could then represent

this list of URLs in an array of strings in LotusScript or use your own classes.

For data types that are more complex than just strings (such as lists) it is

recommended you use JSON to serialize and deserialize these data types from and

to strings. JSON is much simpler to handle than complex XML and JSON libraries

are available in many other languages that other components might use.

You can either use your own JSON library or find one on the internet. For

example, SNAPPS has recently released a JSON library for LotusScript that is

under the Apache license.

Building NSF components 33

http://www.ibm.com/developerworks/lotus/library/tutorials/notes8-comp-apps/lz-dw-lz-notes8-comp-apps.html?S_TACT=105AGX13&=LP
http://www.ibm.com/developerworks/lotus/library/tutorials/notes8-comp-apps/lz-dw-lz-notes8-comp-apps.html?S_TACT=105AGX13&=LP
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/property-broker-editor-for-nsf-components
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/property-broker-editor-for-nsf-components

Using static component properties

Every component can be configured differently for every occurrence in a

Composite Application. This is important when you want to provide a reusable

component that can be used in many different scenarios that you might not have

considered. For example, you might want to use another logo or caption to be

displayed on your component dependent on the context it runs in.

In order to do this, static component properties can be set in the CAE from the

Advanced Component Properties. Here you can define these static properties as

opposed to the dynamic properties that the property broker uses.

NSF components can read the values of these properties using a LotusScript API or

through a @Formula:

v NotesUIWorkspace.GetComponentViewPreference

v @GetComponentViewPreference

See the section How to run NSF Components in Context of the Composite

Applications Wiki, available online at http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/running-nsf-components-in-context for more details.

The same APIs can be used to receive properties that are not set as static

component properties but that are passed in through a URL to open an application.

Composite applications can be referenced using CAI:// URLs that contain the IDs

of Composite Applications and/or the NRPC:// URLs pointing to the actual Notes

database with the Composite Application XML. You can append your own

parameters to these URLs:

 CAI://... &CustomParam=CustomParamValue

NSF components can then receive the value of the custom parameter in the same

way they read the static component preferences. These custom parameters in the

URL do not have to be defined in the static component preferences. However, if

they are defined in the static component preferences, the values are overwritten

with whatever is passed in using the CAI URL.

For more information, see the section Passing Context to Components when opening

Composite Applications of the Composite Applications Wiki , available online at

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/passing-context-to-
components-when-opening-composite-applications.

In some scenarios you do not have to know a static component preference, only

whether your NSF component runs inside a Composite Application or not

(standalone, as in Notes 7). When running a component inside of a Composite

Application there is often less space for the component than running it standalone.

In these cases, you might want to hide and show certain user interface controls.

For example, you might want to hide certain view actions when running the view

component as one of multiple components on a Composite Application page.

To find out the context your NSF components are running in, you can use any of

the following APIs:

v NotesUIWorkspace.IsInCompositeApp

v @IsInCompositeApp

34 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/running-nsf-components-in-context
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/running-nsf-components-in-context
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/passing-context-to-components-when-opening-composite-applications
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/passing-context-to-components-when-opening-composite-applications

Open Notes documents on pages

Notes documents can also be put on pages in Composite Applications together

with other components. However, documents are special compared to other Notes

objects such as views. Composite Applications can have a fixed number of static

pages. However, when documents are opened from views, each document is

opened in a new tab. In order to do this, template pages can be defined in the

CAE that are then cloned for each document at runtime. On this template page, a

placeholder component (com.ibm.notes.isDocumentPlaceholder) points to a Notes

form of the documents that are supposed to be shown.

In order for Notes to know when to open a document ‘standalone’ as opposed to

on a Composite Application page, a naming convention is used. If there is a page

with the same alias (com.ibm.rcp.alias) as the alias of the form, the cloned page is

used to show the document when triggered from a Notes view. See the section

Open Notes Documents on Pages of the Composite Applications Wiki, available

online at http://www-10.lotus.com/ldd/compappwiki.nsf/dx/opening-notes-
documents-on-pages for more details.

What are NSF widgets?

NSF widgets are essentially special types of NSF components. They can be used in

Composite Applications exactly like NSF components. NSF widgets can be added

to the “MyWidgets” category on the CAE palette from the Notes client directly by

opening the NSF object and then selecting Configure widget from current context.

In addition to NSF components, widgets provide more capabilities:

v NSF widgets can be put in the sidebar

v NSF widgets can be triggered from live text

In order to put a NSF widget in the sidebar, line of business (LOB) users can use

the Add to sidebar toolbar icon to add the currently opened Notes object (such as

a Notes view) to the sidebar with one click. This icon also creates the widget and

adds it to the “MyWidgets” sidebar and to the “MyWidgets” category in the CAE

palette. NSF widgets can also be added to the sidebar by administrators using the

catalog. In both cases, it can be defined whether the NSF widgets should be shown

in the sidebar on client startup (contributeToSideshelfOnStartup="false"). Note

that NSF widgets can not use the property broker to interact with other

components when running in the sidebar (Notes 8.0.1).

NSF widgets can either point to a Notes object, such as a Notes view, or they can

be used to perform a full text search for a specific live text. You can define a full

text search NSF widget by opening a view that you want to query and then

selecting Configure a widget from current context. You can then define the NSF

full text search widget to be used for specific live text or a text selection within a

Notes document. The search results can be shown as any widget either in the

sidebar, floating window or tab (for more information, refer to “Widgets” on page

44).

Building NSF components 35

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/opening-notes-documents-on-pages
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/opening-notes-documents-on-pages

36 Composite Applications in Notes - Benefits and Technical Overview

Building Java components

When talking about IBM Lotus Notes, most references to Eclipse are specifically

referring to the Eclipse Rich Client Platform (RCP), which is the basis for Lotus

Expeditor, Lotus Notes, Lotus Sametime, and Lotus Symphony. Before the RCP

platform emerged from Eclipse.org, Eclipse was a highly pluggable Integrated

Development Environment (IDE). It is in the IDE context that this section discusses

Eclipse. Eclipse is a natural tooling platform for Eclipse RCP based runtime

environments such as IBM Lotus Notes. The Eclipse IDE, specifically the Java

Development Tools (JDT) and the Plug-in Development Environment (PDE),

provide the base platform on which the IBM Lotus Expeditor Toolkit is built. The

IBM Lotus Expeditor Toolkit allows Java developers to build plug-ins for the IBM

Lotus Notes Client. Additionally, the toolkit allows developers to build Web

Applications, Web Services, and Portlets for execution on the client platforms. This

section describes some of the tasks that can be used to create Java components for

use in IBM Lotus Notes.

The Lotus Expeditor Toolkit

IBM Lotus Expeditor Toolkit provides a complete, integrated set of tools that

allows you to develop, debug, test, package and deploy client applications to IBM

Lotus Expeditor 6.1, IBM Lotus Sametime 7.5.1, and IBM Lotus Notes 8. You can

use the toolkit to develop the following types of client applications:

v Eclipse Rich Client Platform (RCP) applications (desktop client only)

v Eclipse embedded Rich Client Platform applications

v Web applications

v Embedded transaction applications

v Portlet applications (desktop client only)

v Database applications using DB2e and Derby

v Messaging applications (JMS)

v Web services applications

The toolkit provides wizards that enable you to create Client Services projects to

develop client applications. The toolkit uses target definitions to provide a

convenient method for you to specify the runtime environment, the build-time

environment, and the set of components that can run on the platform. For

example, when you create a Client Services project, you select a target definition

from a list of available targets, and then a set of features from a list in the target

definition. The toolkit uses this information to automatically set up the Java build

path and runtime for your project. You can then edit, compile and debug your

project. The toolkit provides a default list of target definitions; however, you can

also create your own definitions.

Using the toolkit

For detailed configuration and usage instructions for the Expeditor Toolkit and

Notes 8, please see http://www.ibm.com/developerworks/lotus/library/
expeditor-notes-sametime/.

© Copyright IBM Corp. 2008 37

http://www.ibm.com/developerworks/lotus/library/expeditor-notes-sametime/
http://www.ibm.com/developerworks/lotus/library/expeditor-notes-sametime/

Creating Components

The Expeditor Toolkit allows developers to create different types of Java

components for deployment to IBM Lotus Notes. The toolkit provides multiple

project types under the Client Services category. For the Lotus Notes developer, the

most commonly used projects are “Client Services Portlet Projects,” “Client

Services Web Projects,” and the standard “Client Services Projects.”

The standard Client Services Project is the project to use when creating Eclipse

SWT based user interfaces, business logic, and other types of standard Java code.

The Client Services Portlet Project is used to create new portlets or reuse existing

Portlets on the Notes client. Finally, the Client Services Web Project aids in the

creation of new web applications (JSP/Servlet based) or the reusing of existing web

applications on the Notes client. The following sections illustrate how to create

new components of different types. See the Developing Applications for Lotus

Expeditor 6.1.x documentation, available online at http://publib.boulder.ibm.com/
infocenter/ledoc/v6r11/index.jsp for additional details on these project types and

the other types of projects available.

Using Notes.jar

A plug-in within the Notes platform called com.ibm.notes.java.api allows

developers access to Notes and Domino data. By using this plug-in, applications

can directly read and write to Notes databases and documents. This allows

Eclipse-based components to leverage and extend any systems in place. In

particular, this allows sidebar and toolbar components to be more interactive with

the data that is most important to the user. More information and detailed

examples are available here: http://www.ibm.com/developerworks/lotus/library/
notes8-data

Notes Extension points

When a plug-in wants to allow other plug-ins to extend or customize portions of

its functionality, it declares an extension point. After an extension point has been

defined by a bundle in the platform, other bundles can extend this extension point

to contribute their piece of functionality. For example, the Eclipse workbench

defines an action set extension point that allows other plug-ins to contribute items

to the menu bar or the toolbar. The declaration of the extension point and any

extension to it is done declaratively in a plugin.xml file. Having a solid

understanding of the Eclipse extension point framework is important if you want

to be able to extend the Notes or Expeditor workbench with your application. For

additional information about the fundamentals of extension points, visit the Eclipse

site.

The Lotus Notes Client can be extended in several ways, including:

Contributing a shelf view to the sidebar

The Lotus Notes sidebar provides significant screen real estate and, as such, is

very a important contributable part of the workbench. Contributing a

component to the sidebar is no more difficult than creating a standard Eclipse

view.

Contributing to the toolbar

Another important contribution point in the workbench is the

ToolBar/CoolBar. This provides quick access to any frequent operations,

eliminating the need to navigate through the top level menus.

38 Composite Applications in Notes - Benefits and Technical Overview

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp
http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp
http://www.ibm.com/developerworks/lotus/library/notes8-data
http://www.ibm.com/developerworks/lotus/library/notes8-data
http://www.eclipse.org
http://www.eclipse.org

Contributing to a top level menu

You can contribute to top level workbench menus, such as File > Open > Your

entry.

Working with content selections

One of the main values of having a rich client platform, is having a framework

in place that allows extensions to know the current user context.

Contributing to a context menu

Many items in Lotus Notes provide context menus for the user. By

right-clicking on an item, the user is able to see all the actions that can be

performed based on that selection. The entries on these menus, in fact,

represent a hierarchy of selection.

Tracking the Selection

A component that is visible in a global location, such as the toolbar or sidebar,

might find it useful to track the current selection, as it represents the user’s

current context.

 For more information on this topic, see the developerWorks® article entitled

“Leveraging user context in the IBM Lotus Notes 8 sidebar and toolbar” at the

following location: http://www.ibm.com/developerworks/lotus/library/
notes8-context

Drag and Drop

You can drag and drop certain selected items between components. Notably,

Notes 8.01 has the ability to drag documents and attachments out of Notes

views and documents and drop them on Composite Application and sidebar

components. In Eclipse-based components, drag and drop is performed

through Transfer types. More information is available here:

http://www.eclipse.org/articles/Article-SWT-DND/DND-in-SWT.html

Creating your first Eclipse component

Creating your own custom component for use in a Composite Application is as

easy as creating an Eclipse plug-in project with an SWT view. After the simple

view component has been created you can add it to the Composite Application

Editor (CAE) palette and then to your Composite Applications. The processes

consists of:

v Creating a client services project

v Adding a view to your project

v Adding a UI to your component

v Adding the component to your Composite Application

For a full tutorial, refer to Developing an Eclipse component for Lotus Notes 8

(part 1) and Developing an Eclipse component for Lotus Notes 8 (part 2).

Custom Navigator for a Composite Application

To obtain a custom look and feel, developers may desire to create a custom

navigator to move between the pages of their Composite Applications, instead of

using the default navigator. Creating a custom navigator gives you the following

advantages:

v Options to change the look and feel of the navigator

v Options to change the screen location of the navigator

v Extended options to control visibility

Building Java components 39

http://www.ibm.com/developerworks/lotus/library/notes8-context
http://www.ibm.com/developerworks/lotus/library/notes8-context
http://www.eclipse.org/articles/Article-SWT-DND/DND-in-SWT.html
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/developing-an-eclipse-component-for-lotus-notes-8-part-1
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/developing-an-eclipse-component-for-lotus-notes-8-part-1
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/developing-an-eclipse-component-for-lotus-notes-8-part-2

v Can be arranged similarly to other components, to conserve and maximize work

space

v Can interact and communicate with other components

Composite Application Infrastructure, Topology, and

Navigation page hierarchy and preferences

In order to create a custom navigator for Composite Applications, you should have

a high level understanding of the underlying data structure for Composite

Applications. Composite applications consist of one or more application pages,

grouped together in a hierarchy. At the top of the hierarchy is the root page. The

root page does not appear within the Composite Application Editor (CAE), and

you cannot switch to it or add components to it. However, it is provided through

the Topology Handler as a consistent starting point to group top level pages. These

top level pages, in turn, can be containers for other child pages, and so on for as

many levels as required.

Clients can access the page hierarchy model through the TopologyHandler service.

The TopologyHandler provides an API to both the hierarchical page model and the

components within each page. Each page and component within an application

can contain any number of name/value pairs representing meta-data for the object.

Lastly, when creating a custom navigator, you will need to configure some

application and page properties in order to emulate some of the original

functionality of the default navigator. The properties tell the underlying Composite

Application infrastructure that you are overriding the default navigation system.

First, from the advanced page properties settings window in the Composite

Application Editor, set com.ibm.rcp.navigationModel as "custom" and

com.ibm.rcp.useNavigator as ″true″ . This makes each perspective show in the

same tab. By default, these application page settings display each page of your

Composite Application in the same tab. For any page you want displayed in a

separate tab, set com.ibm.rcp.useNavigator to "false″ for that page’s properties.

Composite Application Data Model and the TopologyHandler

Service

With Lotus Expeditor, pages are implemented as Eclipse perspectives. As a result,

you can navigate between pages by using the Eclipse platform routines to navigate

to a perspective with the right ID. The platform, however, assigns the IDs for

pages, and the Topology Handler maintains them. They must be retrieved from the

Topology Handler in order to be used. In turn, to retrieve the pages in an

application you must have the ID for that application, which can also be retrieved

from the Topology Handler.

Default Navigators

All three of the following navigators (figures 11, 12 and 13) share the exact same

content and label providers. The only difference is the implementation of the look

and feel, which is done in the viewer where the widget lives.

40 Composite Applications in Notes - Benefits and Technical Overview

Send and receive properties from SWT views

When you have SWT view components in your application you may want to have

these components communicate with each other. SWT views can publish and

consume property changes to and from the property broker. Some views publish

properties as values change, while some views consume properties published

elsewhere. The property broker has to be aware of any property that a component

wants to publish or consume. Thus, a property must be registered with the

property broker. After the property has been defined and registered with the

property broker, it can be used in your classes.

In order for the property broker to know your component is to be notified of a

specific property change, you must wire your component to another component

that publishes that property. Wiring a publisher and a consumer is done through

the Composite Application Editor (CAE). You can find more information on wiring

components in “Assembling Composite Applications and creating widgets” on

page 43.

Launch and debug of the Notes Client

The Lotus Expeditor Toolkit provides a custom configured launcher that can be

used to launch Lotus Notes without the need for additional configuration settings.

You can access the launcher, named Client Services, by choosing Run... > Run from

the IDE menu. Select the Client Services launcher in the left pane, and then click

the New button. This creates a new instance of the Client Services launcher.

If you select the Target tab of the launch configuration, you can see that the Lotus

Notes 8 target has been selected already. Because there can be only one Lotus

Notes instance running at any time, shut down Lotus Notes before launching from

Figure 14. Tab navigator with breadcrumb support

Figure 15. Breadcrumb navigator

Figure 16. Button navigator

Building Java components 41

the IDE. Clicking the Run button launches the Lotus Notes 8 platform. If running

with Lotus Notes 8.0.1, select it from the dropdown list, You can make Lotus Notes

8.0.1 the default selection by changing the Default Target Selection from the

Window > Preferences > Client Services > Development preference page.

Additional instructions on using the run and debug capabilities of the Expeditor

Toolkit can be found at http://www.ibm.com/developerworks/lotus/library/
expeditor-notes-sametime/.

After you log into Lotus Notes, you can see your normal Lotus Notes workspace.

Java applications running in the Notes environment can be debugged in the

standard Eclipse manner. For more details on debugging application from Eclipse,

see Debugging with the Eclipse Platform at http://www.ibm.com/
developerworks/java/library/os-ecbug/.

42 Composite Applications in Notes - Benefits and Technical Overview

http://www.ibm.com/developerworks/lotus/library/expeditor-notes-sametime/
http://www.ibm.com/developerworks/lotus/library/expeditor-notes-sametime/
http://www.ibm.com/developerworks/java/library/os-ecbug/
http://www.ibm.com/developerworks/java/library/os-ecbug/

Assembling Composite Applications and creating widgets

This section explains how to assemble Composite Applications using the

Composite Application Editor (CAE) in IBM Lotus Notes 8 and IBM Lotus

Expeditor 6. Additionally, we discuss the concept of widgets as introduced with

Notes 8.0.1. CAE and widgets are related because neither require any

programming skills.

Composite Applications

As outlined in “Business value of Notes 8.x application development ” on page 3,

the Composite Application technology offers benefits on many levels to companies

and organizations. In fact, this technology is part of the Notes 8 core infrastructure,

as the standard Notes Mail Application has been built as a Composite Application.

It contains the Notes Mail Navigator, the Notes Mail View and the Notes Mail

Mini View. A Composite Application usually consists of a root page and many

child or sibling pages which induce the basic structure of the application.

Components are place on these application pages, as well as connections (“wires”)

between the components for their communication and reactive interaction.

Components are coupled loosely. This means that components do not depend on

each other and can be used in any Composite Application. A component never

calls services of other components directly. Instead, components produce properties

(typed exchangeable data items) which can be consumed by the actions of other

components. Thus, Composite Applications provide a frontend of a service

oriented architecture (SOA). Using the Composite Application Editor (CAE), it is

very easy to design the layout of Composite Applications and to specify

component interaction. Please refer to “Using the Composite Application Editor”

on page 45 to learn more about the CAE.

From the user’s perspective, every component instance is represented by a view

part which displays as a rectangle in the UI. Internally, a component also has a set

of static component properties that can be set with the CAE (for more information,

see “Working with the Composite Application Editor” on page 46). The

component’s properties and actions, which are used for component interaction, are

defined in the component’s WSDL file. The section “Wiring Components” on page

47 discusses the Composite Application Editor’s wiring UI, which illustrates a

property of one component being wired to an action of another component.

Predefined Components in Notes

Besides the various component types which are listed and explained in

“Architecture overview” on page 21, Notes comes with various predefined

components which are part of the default installation.

PIM components

Personal information management (PIM) components enable the Notes

Calendar, Contacts, Mail and ToDo features for Composite Applications. They

can be found in the component palette in CAE (see “Using the Composite

Application Editor” on page 45) and added to any Composite Application in a

straightforward way. Thus, for instance, the standard Notes Mail View can be

included in a Composite Application and connected with other line of business

components. For more information and a sample see Using PIM Components.

© Copyright IBM Corp. 2008 43

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/using-pim-components

Embedded browser (since 8.0.1)

The embedded browser displays web pages. For example, if a component

provides a URL as a property, it can be wired to the embedded browser. It

would then load the site specified by the URL provided as property from

another component. For more information, refer to Using the Embedded

Browser Component to learn more.

Symphony document view (since 8.0.1)

This component displays Symphony documents: word processing, spreadsheets

and presentations. For more information, refer to Using the Symphony View

Component.

Enabling Notes Users to Use the Composite Application Editor

In Domino server, the Desktop policy settings document contains a setting, Allow

user to use the Composite Application Editor, that you can set to Enabled to

allow Notes Client users to edit Composite Applications with the Composite

Application Editor. To access the field, in the Desktop policy settings document,

click the Database tab and scroll to the section Composite Application settings .

Widgets

As explained in “Architecture overview” on page 21, the IBM Lotus Notes My

Widgets feature enables end users to see and act on automatically recognized Live

Text in their Notes documents, including mail, using widgets created specifically

for their use. In the context of Composite Applications, widgets offer the simplest

way to create components for use in Composite Applications. Any widget created

by a user is available as a component on the component palette in CAE (see

“Using the Composite Application Editor” on page 45) and can be used in

Composite Applications. For example, the section “Using static component

properties” on page 34 describes how NSF widgets can be created for use as

special types of NSF components.

For detailed information on creating and using widgets, refer to the Domino 8.0.1

Administrator Help.

Domino Server Policy for Widget Enablement

By default, IBM Lotus Notes users will not see the My Widgets sidebar panel.

However, they can display it by clicking File > Preferences > Widgets and

enabling the Show Widget Toolbar and the My Widgets Sidebar panel option.

Enabling this option allows for full My Widgets access. However, the administrator

can use IBM Lotus Domino™ policy or Notes PLUGIN_CUSTOMIZATION.INI

preferences to control user access to various aspects of My Widgets functionality.

For example, a policy can be used to hide the My Widgets user interface such that

the end user cannot work with My Widgets. Please refer to “Catalog Access

Rights” on page 55 for more information about these policies.

Using Widget Wizards

You can configure a new widget by displaying the widget context and then

starting the widget configuration wizard, which guides you through the process of

creating and configuring the widget. Widgets can be configured from any of the

following contexts as listed in the user interface:

v Notes view, form, or document

v RSS/Atom feed

v Web page

44 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/using-the-embedded-browser-component
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/using-the-embedded-browser-component
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/using-the-symphony-view-component
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/using-the-symphony-view-component
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/H_MY_WIDGETS_OVER.html
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/H_MY_WIDGETS_OVER.html

v Google Gadget

Wizards are available for all widget creation tasks. Click the Getting Started with

Widgets toolbar button to begin. Alternatively, you can navigate to the IBM Lotus

Notes view, form, or document, or Web page, gadget, or feed target and then click

the Configure a Widget from Current Context toolbar button to begin creating the

widget within the context of the active Notes or Web item. The general process for

configuring a new widget is as follows:

1. Start the appropriate widget configuration wizard in one of the following ways:

v Open the Notes view/form/document, Web page, RSS/Atom feed, or

Google Gadget from within Notes and click the Configure a Widget from

Current Context

toolbar button. This starts the appropriate wizard

based on the active context.

v Allow the wizard to fully guide you through the process of building the

widget by clicking Getting Started with Widgets

. Then select one of

four types to base the new widget on, as instructed by the wizard.
2. Use the wizard prompts and fields to configure the new widget.

3. Test the new widget.

4. Publish the widget to the catalog on the designated server (please refer to

“Deploying applications” on page 51)

If possible, the Add to Sidebar toolbar button

creates a widget from the

current context and adds it to the sidebar in a single step. You can also install

widgets using XML extensions obtained from E-mail attachments or from a file

server. After you have added widgets to the My Widgets sidebar panel, you can

publish them to the catalog to be provisioned to various users. Please refer to

“Deploying applications” on page 51 for information about widget deployment.

It is very easy and straightforward to create a widget as the dedicated wizards

guide the user through all necessary steps. After creation, a new widget is added

to the My Widgets sidebar panel which is also available as a component on the

CAE palette.

Using the Composite Application Editor

The Composite Application Editor (CAE) is the main tool to assemble or edit

Composite Applications. To see a list of Composite Applications that reside on a

Domino server, select File > Open > Lotus Notes Application (or press Ctrl-O) to

browse for an application on a server or on the local host.

Composite applications hosted on an IBM WebSphere Portal are listed in the Portal

applications catalog. To see the Portal applications catalog or the Portal template

library, you must have a home Portal account specified as part of your user

preferences. You can view the Portal applications catalog by choosing Open >

Portal Applications. Only the applications and templates to which you have access

display. Because the CAE, in principle, works equivalently on any application type,

the remainder of this section focuses on non-portal applications.

If you have access to edit an application, you can use the CAE to edit any active

application. The changes that you make reflect immediately in the application. To

edit a Composite Application, open the application and select Actions > Edit

Application. When editing an application, your workplace displays an application

Assembling Composite Applications and creating widgets 45

menu pane on the left that provides you with direct access to edit application

elements (pages and components), and a component palette on the right, which

lists components you can add to your application. The center of the workspace

displays the application components for the current page. Figure 17 illustrates the

CAE user interface.

Working with the Composite Application Editor

On the palette, you can select between different palette instances. The read-only

Component Library palette contains components that come with the Notes

installation arranged into appropriate categories. In the My Palette instance, new

components can be added. If the component palette does not already contain the

components you need for your Composite Application, you can import a palette of

components, if one is available, or add components to the palette for use in the

application.

Adding Components to the Palette

In order to add components to My Palette, right click and select Add Components.

This gives you the option to add a component from an update site, locally installed

components or NSF components. Eclipse components are usually packaged as an

update site as explained in “Getting started with Eclipse as a Notes developer” on

page 27. Locally installed components have been added to Notes using its

application management facility (see “Deploying applications” on page 51). They

could also be part of the Notes install or contained in the workspace of Notes,

running through the Eclipse IDE, and can thus be included in the palette. NSF

components can be added from Domino servers or from the local machine. For

Composite Applications hosted on a Portal server, portlets can be added from the

server to the palette.

Figure 17. The Composite Application Editor (CAE)

46 Composite Applications in Notes - Benefits and Technical Overview

Creating the Application Layout

You can add pages to organize the components in an application. To add a page,

right-click the application name (for adding a top-level page) or any existing page

and then:

v click Add page > After... to add a page at the same level as the selected page.

v click Add page > As child... to add the page as a child page of the selected

page.

For the new page, a page name must be provided and an optional description can

be entered. Existing pages can be reordered in different ways: they can be moved

up or down on the same hierarchy level or they can be moved between different

levels. Adding components to an application is simple, you only need to select a

component on the palette and drag it to the desired page in the center of the CAE

workspace. A placement box shows you the regions where you can drop the

component on a page: either in a tab structure or side-by-side in any direction. To

reposition a component, just drag it to a new position on a page.

Setting Page Properties

Pages have properties and there is a dedicated dialog for setting them. Thus, it is

possible to edit the title and description of a page and also to provide translations

into different languages for both the page title and the page description. An

advanced properties dialog gives access to edit settings for more sophisticated

settings such as the association of an icon with a page. This dialog lists all

advanced property names and their associated values which can be edited here.

Every application has a root page, which cannot be deleted and which also has

some specific properties not available to other pages. These properties act as

application wide preferences (such as, for specifying the navigation model). Please

refer to http://www-10.lotus.com/ldd/compappwiki.nsf/dx/advanced-page-
properties for a list of all available page properties.

Setting Component Properties

Similar to advanced page properties, there is also a dialog for setting advanced

component properties. Here, for NSF components, the Notes URL which points to

a certain design note in a specific Notes database can be set. Besides others, for

Eclipse components, the provisioning details can be set and it is possible to flag

components as hidden. Refer to http://www-10.lotus.com/ldd/compappwiki.nsf/
dx/advanced-component-properties for a complete list of component properties

and see “Building Java components” on page 37 for how to access these values

from components programmatically.

Save the Application Changes Made with the CAE

In the CAE, any change is saved implicitly to the application definition in order to

reflect changes immediately. When the CAE is closed, the user is asked if the

changes should be kept or not. If the changes are requested to be discarded, the

original version of the application from before launching the CAE is restored. Note

that when working with the CAE, changes to an application hosted on Domino

server are only persisted if the user has at least Designer access.

Wiring Components

Communication or interaction between components is achieved by “wiring”

properties of components to actions of other components. When the value of a

property changes in the source component, the target component reacts to that

change by executing the action the property is wired to. These interactions are

Assembling Composite Applications and creating widgets 47

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/advanced-page-properties
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/advanced-page-properties
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/advanced-component-properties
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/advanced-component-properties

managed by a property broker. The wiring interface allows you to configure

connections, or wires, between cooperative components. Right-click a component in

the navigation pane and click “Wiring”. The component is selected as the source

component in the appearing wiring interface. It is a visual representation that

shows the existing wires between components in an application. It also displays

the properties from one component that can connect to another component.

Figure 18 shows the wiring interface of the Composite Application Editor.

 To create a new wire, select a property in the source component and drag it to an

action in the target component. A dotted line connects the two components and a

plug icon displays next to the source property and target action to indicate the

presence of a wire. The user interface for the wiring component displays one

component as the source at all times but the source component can be changed by

right-clicking on the title of the desired component and selecting Select as wire

source. Only wires from the currently selected output property of the source

component are shown. However, other properties and actions display a wired icon

if they are currently wired to something. Alternatively, it is possible to view all

wires by clicking the dedicated View All Wires... button.

Disable Strict Type Checking

In CAE’s default settings, it is possible to create a wire between the two

components only if the property of one component is compatible with an action in

another component.

Two properties are compatible if there is a match of the data type and name space

between them. Sometimes, this type checking is too strict. For instance, a

Figure 18. The Wiring Interface of the CAE

48 Composite Applications in Notes - Benefits and Technical Overview

component might provide a property of type lastname while another component

could have an action of type surname. Using strict type checking, these two types

are not compatible, although both might represent a person’s surname and their

values might be given as simple strings. By clicking the Disable strict type

checking button, wiring between this property and action is possible.

Cross page wiring

Wiring is not restricted to components residing on the same page. The Include

another page button allows users to include other pages and their components into

the wiring interface. Wires can then be created in the same way as for components

on the same page. In terms of the application’s behavior, whenever a property is

changed in the source component, the other page displays and shows the reaction

in the wired component.

There are many more possibilities to create sophisticated applications and the next

section provides some links for further exploration.

Assembling Composite Applications and creating widgets 49

50 Composite Applications in Notes - Benefits and Technical Overview

Deploying applications

The previous chapters focus mainly on how to build components and Composite

Applications. This section describes how Composite Applications can be deployed

to production environments. Additionally, widget catalogs are discussed.

IBM Lotus Notes/Domino

This section explains the available deployment mechanisms specific to Composite

Applications using Lotus Notes and Domino. For example, how to create an NSF

update site for deploying Eclipse components.

Creating an NSF Update Site

As explained in “Getting started with Eclipse as a Notes developer” on page 27,

Eclipse components are packaged as Eclipse features and plug-ins and usually put

as Eclipse update sites on an HTTP server. Additionally. Notes/Domino 8 allows

you to create an NSF-based update site. This allows for installing and updating

custom or third-party Eclipse features into Notes 8. You can create an NSF-based

update site (which is essentially a specific NSF database) using the updatesite.ntf

template. This template dynamically provides the site.xml and it can also contain

the desired Eclipse features and plug-ins.

There are some advantages of NSF-based update sites compared with “classic”

update sites:

v You can assign access rights to the update site/database.

v An NSF-based update site can be easily distributed using Domino replication.

v Easy-to-read Notes documents provide intelligent analysis and meta-data

presentation of the entire update site, (for example, all plug-ins used by a feature

are doc-linked.

v updatesite.ntf contains tools to globally and automatically modify embedded

URLs inside plug-in JAR files.

The NSF-based update site feature in Domino allows for importing individual

features, one ore more local update sites or another NSF-based update site. These

import actions are not mutually exclusive. For example, an administrator might

initially import an entire Eclipse update site and later choose to import specific

additional or updated features. In the same manner, the administrator may later

choose to import an additional NSF-based update site.

In order to use this feature in Composite Applications, you have to create your

own update site database and import your Eclipse features. Then you can open the

Composite Application Editor (refer to “Using the Composite Application Editor”

on page 45 for more information) and point it against your NSF using the Add

Components > Add Components from Update Site context menu item on the

CAE’s component palette. The dialog requires you to enter the URL of your update

site. At this point you have to enter an HTTP or NRPC URL manually by using

this syntax:

Domino server: http://updates.ibm.com/updatesite.nsf/site.xml

Domino server: nrpc://updates.ibm.com/__85257258006500E2/site.xml

Local replica: nrpc:///__85257258006500E2/site.xml

© Copyright IBM Corp. 2008 51

Editing a Composite Application’s Feature Requirements Update

Site URL

To use the CAE to edit the update site URL for a feature requirement, perform the

following procedure:

1. In Lotus Notes, open the Composite Application and click Actions > Edit

Application... to launch the application in the CAE.

2. Right-click the desired component and select Edit Component Properties.

3. Click the Advanced... button and select the desired feature (for example,

url.feature_NN) and click Edit. Enter the update site URL.

4. Click OK twice to close all dialogs and close the CAE by clicking Done.

Creating an all-in-one NSF based Composite Application

It is possible to create Composite Applications which solely use components in the

same databases. To do so, perform the following procedure:

1. Create an NSF-based update site as explained in “Creating an NSF Update

Site” on page 51.

2. In Domino Designer, configure this application to launch as Composite

Application.

3. Import all update sites of the used Eclipse components and add all NSF

components

4. Open this application in the CAE and add the desired components from an

internal update site.

In this case, it is not recommended to refer to the NSF components through a

Notes URL that contains a replica ID or file path. Whenever the NSF is moved to

another server, or whenever a new NSF based on an NTF is created, it is necessary

to change the CA.XML with the new Notes URL. There is a special type of Notes

URL: if 0000000000000000 is used in the Notes URL, Notes opens the NSF

components from the same database it read the CA.XML from. Finally, deploy the

application to a Domino server from where it can be provisioned as a single

self-contained database.

White Lists

A new feature in Notes 8.0.1 provides a “white list”, which consists of allowed

update sites. When the white list option is used, the update sites specified in

individual components can be ignored and the provisioning system inspects the

sites listed in the white list only. The white list can be configured by the Domino

server administrator23.

Setting Access Rights for Composite Application Pages

Access rights for a page in a Composite Application can be set so that only the

specified users can interact with that page in an application. For example, in a

human resources application you may want a page that is only available to

managers. Application users only see pages they can access listed in the

application navigator. If there is an embedded way to access a page, for example a

button in one component that opens a new page, an error message informs a user

they do not have access to the page. To set access to a page in the CAE, right click

the name of a page in the application navigator and select Set page access.

Complete the dialog fields to allow or restrict access to the page. In Domino

23. http://www-10.lotus.com/ldd/compappwiki.nsf/dx/white-lists-and-updates

52 Composite Applications in Notes - Benefits and Technical Overview

http://www-10.lotus.com/ldd/compappwiki.nsf/dx/white-lists-and-updates

Designer, you can select a page design element in the design pane, then control the

access for that page. The Set page access... context menu opens a dialog to let you

change the access for that page.

Domino Designer also supports a new parameter on the Composite Application

URL that specifies the retrieval of all pages regardless of access. This lets you edit

the entire application, including pages that you would not see when using the

application.

Calculate Links in NSF Components at Runtime

Links to NSF components (the Notes URLs - for more information, refer to

“Building NSF components” on page 31 for more information) in a Composite

Application typically change between development environment and production

environment. Links may become invalid when an application deploys to a

production environment. Here, the ComputedNotesURL preference can help.

Additionally, it could be useful to have a dynamic Notes URL to customize an

application at runtime based on the role or rights of the current user which is

addressed by the ProcessOnlyOnUpdate preference. These two preferences can be

set as advanced component properties as described in “Assembling Composite

Applications and creating widgets” on page 43.

ComputedNotesURL (“com.ibm.notes.ComputedNotesURL”)

This preference can be set to a value that is a macro of @functions, which

resolves to a Notes URL. In the advanced component properties dialog, enter a

formula to compute the Notes URL as the corresponding property value. For

instance, if this preference is set with a value @GetProfileField("URL

Profile"\;"NotesURL"), a field NotesURL is retrieved from a profile document

URL Profile. Note that any semicolons used in the formula must have a

preceding backslash ("\").

ProcessOnlyOnUpdate (“com.ibm.notes.ProcessOnlyOnUpdate”)

This preference is set as a value of true or false. A value of true (default)

would indicate that the CA.XML cache recomputes only when the CA.XML design

note is updated. A value of false would indicate that the CA.XML cache

recomputes each time it is requested. By default, the CA XML cache is only

updated when the CA.XML design note is modified. It is worth noting that

moving the Composite Application CA.XML to a new location (such as to deploy

the Composite Application) results in a new CA.XML cache for the user. The

preference “page level access” overrides the preference ProcessOnlyOnUpdate.

For example, if “page level access” is turned on, the CA.XML is always returned

even if the setting for ProcessOnlyOnUpdate is set to true.

Providing Extensions with Composite Applications

This approach creates an NSF-based update site which contains an “empty”

Composite Application that solely serves for triggering the provisioning process of

the feature to be deployed. Essentially, you must set the provisioning properties

properly, especially the url.feature property to point to the site.xml file

contained in the NSF-based update site and deploy it to a Domino server.

End-users have to open this application only once to trigger provisioning for the

desired extension.

Install Extensions as Notes Plug-ins

As Notes 8 is based on Eclipse, it is possible to install Eclipse plug-ins (such as

sidebar panels) directly into any Notes client. You must provide the features and

plug-ins as an Eclipse update site, either on a remote HTTP server or as local files

Deploying applications 53

in a folder or zipped archive (see “Getting started with Eclipse as a Notes

developer” on page 27). Then, Notes must be enabled for “self-management”,

which allows for installing features manually. To do so, perform the following

procedure:

1. 1. Edit <notes_dir>/framework/rcp/plugin_customization.ini and add this line

to the file: com.ibm.notes.branding/enable.update.ui=true

2. Restart Notes.

3. Using the new menu item File > Application > Install, an update manager

wizard allows for installing the new feature from the update site.

Updating Components with New Versions

IBM Lotus Expeditor introduced the manageability of Eclipse features and plug-ins

by allowing the administrator or application assembler to identify what features

need to be installed when a user opens a Composite Application. Each component

in an application can specify what Eclipse-based features (if any) are needed for

this component to be properly rendered in the client. Like the Portal managed side,

the Lotus Notes side has the same capability using the Composite Application

Editor.

When you bundle your plug-ins, they are contained within a feature. Each feature

has a version associated with it. This is important to remember because the Eclipse

provisioning system only installs new or compatible features and plug-ins.

Generally, if you have a feature with a single plug-in or even several plug-ins you

should keep the version of the feature and its plug-ins the same. This make

problem resolution easier. If your feature happens to include other plug-ins, then

the Eclipse provisioning system looks at it in layers. It first checks whether the

version of the feature is already installed – if so, it will no longer examine the

plug-ins. This means that if you deployed your feature once, then added a plug-in

to it, you must increment the version number before deploying again, or the new

plug-ins will not install on existing systems.

Composite applications handle downloading plug-ins and features in a way that is

similar to Eclipse features. Composite applications only reference features in their

descriptor (the CA.XML file). Just as with Eclipse feature deployments, if you change

a plug-in in a Composite Application, you must change its version number and

one of its containing features in order for it to be correctly deployed. Composite

Applications also add another level of complexity, for performance reasons. The

Composite Application Infrastructure (CAI) only looks at applications definitions

(CA.XML) that have changed – the last time and date stamp of the file are preserved

in the cache. As a result, if it does not appear your application has changed, the

CAI does not open the file to install features. The change dependency tree looks

like this:

 ---ca xml - time and date change

 ---------feature - version change

 -------------plug-in - version change

In order for a new plug-in to install, all three of these logic points must pass.

An Eclipse component added to a Composite Application through the Composite

Application Editor contains information identifying the features that contain the

Java files and other supporting files that allow the component to run. When a new

version of a component is available, and you wish to have your application use the

new version, you must update the information to reflect the new version of the

54 Composite Applications in Notes - Benefits and Technical Overview

component. Updating in the simplest case involves modifying the version number.

In a more complex case you might need to add or remove features.24

Widgets Catalogs

The My Widgets feature installs with Notes 8.0.1. Using available policy and

preference settings, an administrator can control which users may display My

Widgets in their sidebar, as well as various levels of access to My Widgets

functionality.

Creating a Widgets Catalog

Administrators can use the supplied catalog template to create a widgets catalog

on a server. The catalog is an IBM Lotus Notes application. You must first obtain

the “Widget Catalog (8)” template (toolbox.ntf), which installs with the IBM

Lotus Domino 8.0.1 server. Create the catalog as a new Notes application using the

template and assign appropriate ACLs to control access rights to the catalog

application. After you have created the catalog, you can optionally create its initial

set of categories. There are two types of predefined categories in the catalog -

administrator categories and general categories. When you enable the “Toolbox

Sweeper” agent, which is a scheduled agent set to run against new and modified

documents, it ensures that Widget documents are properly created and populated;

if a problem is found the offending document is removed from the user views,

placed in the Administration/Document Queue, and an E-mail is sent to the

document author informing him of the problem. A local copy of the catalog will

automatically be created on the user’s client system. Catalog replication is done

based on low priority replication

Users who can display the My Widgets panel in their sidebar can click Catalog >

Replicate Catalog and Update Widgets on the My Widgets option menu to initiate

immediate update of their local catalog replica based on the settings in their File >

Preferences > Widgets panel.

Catalog Access Rights

The administrator can assign catalog access rights based on user type, using a

combination of standard Notes application Access Control Lists (ACLs) and policy

or preference settings. The administrator can control a variety of My Widgets and

catalog access settings using server based policies. If using My Widgets outside of

a server-managed environment, there are equivalent settings in the Notes

plugin_customization.ini file. Note that if a setting resides in both the Domino

policy and the plugin_customization.ini file, the Domino policy value takes

precedence. If a setting is changed using the Widgets preferences panel, that setting

takes precedence for the duration of the active Notes session. For example, an

administrator can control widget deployment based on categories. Categories are

created in the catalog, but are administered by user policy or preference settings.

Specific widgets can be deployed to specific users based on the category in which

a given widget resides and the categories for which a given user is assigned.

There are preferences to set the host address of the catalog server, catalog name,

the allowed widgets types, the right to publish widgets, and so on. For a complete

list of all preferences, refer to the Domino Administrator Help.

24. http://www-10.lotus.com/ldd/compappwiki.nsf/dx/defining-feature-and-match-rules

Deploying applications 55

http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/H_SETTING_CATALOG_PREFERENCES_USING_A_CUSTOMIZATION_FILE_OVER.html
http://www-10.lotus.com/ldd/compappwiki.nsf/dx/defining-feature-and-match-rules

Publishing to the Catalog and Controlling Access

You can publish widgets from the My Widgets sidebar panel to the catalog on the

server. When you publish a widget, it exports the component and all its actions,

including any custom content types and recognizers those actions are wired to. The

published result is a widget IBM Lotus Notes document in the catalog application.

The document is named according to the widget name and contains description

information as well as an XML extension attachment representing the actual

widget. When you publish to the catalog, you can specify a category for that

widget so that it can be provisioned to users who are subscribed to that category.

A widget can be part of more than one category. You can control user access to

categories by using the IBM Lotus Domino policy settings available on the Widgets

tab in the desktop policy settings document, or in the Notes

plugin_customization.ini file. Only those widgets that did not originate from the

catalog can be published to the catalog (for example, in your My Widgets sidebar

panel, you can right-click on a widget that you have created and publish it to the

catalog).

Managing Rich Clients using the Portal server

You can enable your Lotus Expeditor Client workstations to receive configuration

information from a WebSphere Portal server. This allows you to centrally

administer your Lotus Expeditor Client environment. Centrally administered

role-based access control is a critical requirement of all large enterprises.

WebSphere Portal provides a set of powerful functions specifically targeted at these

requirements. The Managed Browser Administration Portlet exposes each instance

of the browser as a portlet. Additionally, configurable elements of the browser

instance (such as the address bar or URL restrictions) are also exposed through the

portlet. By exposing these configurable elements, they can now be managed in a

role-based fashion. Integrating with WebSphere Portal allows the overall user

administration to remain as unified as possible, which reduces both financial and

personnel cost.

Administrators can use the same page and place management, user management,

and access controls to integrate, manage, and reuse application components

running across a variety of device types, ranging from pervasive devices such as

cell-phones and PDAs to browser-based desktops. The Portal-administered client

extends this reach further to support “rich client” desktop devices based on Lotus

Expeditor Client.

The term Portal-administered client simply means a side of the Lotus Expeditor

Client that can install, load, and run applications defined by Portal. Portal

applications are a specific kind of application, essentially a collection of pages,

portlets, policies and roles. A WebSphere Portal application is much different than

other applications, such as a rich client application in terms of Eclipse. The

equivalent of a Portal application on the rich client is a set of navigable

perspectives (pages) that contain views (portlets) and are configured with Eclipse

preferences (policy) and can communicate through a property broker (wiring).

A Portal portlet maps to an Eclipse view, not a client portlet. This view can be any

proper Eclipse view resident on the client. One of the views included with the

client is a viewer to render HTML output from a real portlet running in the portlet

container on the client. The client and the administration portlets treat this portlet

viewer view in special ways, so it is easy to consider that a portlet maps to a

portlet.

56 Composite Applications in Notes - Benefits and Technical Overview

WebSphere Portal applications running on the client require extended client side

properties that need to be specified on the pages and portlets on the server. To

make the process of specifying these attributes easier, use the following portlets.

These portlets expose Properties and Actions that map to the Eclipse counterpart

on the client. The WAR file must then have an equivalent SWT plug-in that uses

the same WSDL for the client-side property broker registration. This usage is

basically SWT applications aggregated on, and deployed from, Portal.

Rich Client Layout Administration Portlet

This is an extension to the Portal page customizer that is used to manage common

rich client-specific Metadata. It can inject this data into any portlet on any page as

portlet preferences. A typical application with one or more pages may include

instances of several types of portlets. The placeholder and administration proxies

serve to establish position of portlets on pages that project as views and

perspectives on the client.

JSR168 portlets also project as views but can, in addition, have client-side

equivalents that run in the portlet container. Since JSR168 portlets do not have to

be explicitly instrumented to manage rich client specific data, the same rich client

unaware portlet can serve as an administration proxy for versions deployed at the

rich client and be used as a ″normal″ portlet on the server for delivery through a

browser. The Rich Client Layout Administration Portlet does not manage

view-specific attributes, such as wiring properties/actions or view configuration. If

this is needed for a given view, an appropriately programmed administration

proxy will be required.

The Generic Placeholder portlet

This portlet aggregates any generic Eclipse view that does not expose properties

and actions, or require view specific custom configuration. This portlet is little

more than a container for the common layout preferences managed by the Rich

Client Layout Administration Portlet (for example, the view ID, ratio, or feature

requirements). This portlet is included in the web module with the Rich Client

Layout Administration Portlet and can be copied and renamed as necessary by the

administrator, then placed on pages to represent views.

″Administration proxy″ portlet

Unlike the generic placeholder portlet, an administration proxy is tightly coupled

to the rich client view it represents. It may expose ″dummy″ properties and actions

so that the portlet wiring tool can be used to create wires between administration

proxies that are then sent in the Composite Application XML from the Portal

server. This assumes the plug-in developer has implemented an action that can

scope the wire to a specific view/secondary ID within the plug-in. This portlet

may also provide a custom JSP that is used to manage view-specific configuration

properties. Lotus Expeditor Client includes two administration proxies: the

Managed Browser Administration portlet and the Rich Client WSRP Viewer

Enablement Portlet. In general, an administration proxy must be created by the

developer as part of the process of developing client-side plug-ins that support

wiring and/or view configuration.

The Network Client Installer installs these portlets on the Portal server. For more

information, refer to Installing with the Network Client Installer.

Deploying applications 57

http://publib.boulder.ibm.com/infocenter/ledoc/v6r11/topic/com.ibm.rcp.tools.doc.admin/serverbasedclientinstallation.html

Connecting to Portal

Use the Home Portal Account Preference page to allow the Notes client to access

applications and preferences on a Portal server. Access this page by navigating to

File > Preferences > Home Portal Account. Enter the base URL for the server (for

example, http://wps6.example.com/portal) in the Server field. Also enter the user

ID and password that is used to access the portal server. The rest of the default

settings are correct in most cases.

Using the Portal Catalog

You access the portal applications catalog by clicking Open, and then selecting

Portal Applications from the list. If you do not see Portal Applications on the list,

make sure that you have specified a home portal server by selecting File >

Preferences, and then clicking Home Portal Account. To open a portal application

listed in the catalog, double-click the name of the application.

User management of applications

End users can be manage their own applications through Eclipse Update sites

hosted on HTTP servers. In order to use this feature, an administrator must enable

user-initiated updates. For more details, see the Domino Administrator Help. Once

enabled, users can install and remove applications using the Application Manager.

Using the Static Contributing extension point

This section provides detail on using the Stating Contributing extension point.

Packaging a Composite Application in an Eclipse plug-in.

In addition to deploying Composite Applications from Portal Server and NSF files,

the XML which describes a Composite Application can be contributed using an

extension point and deployed in a plug-in. The Composite Application XML is

creating using the Composite Application Editor (CAE) in stand alone mode. The

XML file is then added to one of the plug-ins that make up the application. The

XML file is identified to the Notes client using the

com.ibm.rcp.portal.app.CompositeApplicationStaticContribution extension

point. For example:

<extension

 id="example"

 name="Static Projection of a CA"

 point="com.ibm.rcp.portal.app.CompositeApplicationStaticContribution">

 <staticfile path="CASample.xml"/>

</extension>

Expeditor Server

The Device Manager component of the Lotus Expeditor Server provides a common

software management function for the Lotus Expeditor Client and Lotus Expeditor

Client applications running on a variety of desktop and mobile devices. Device

management functions provided include:

v Device enrollment - For registering the client.

v Client and application configuration - For setting client and application

parameters.

v Software distribution - For distributing, installing and uninstalling software on

the client. Includes the ability to see the status of requests.

v Inventory - For collecting hardware and software information about the device

(available only on certain client platforms).

58 Composite Applications in Notes - Benefits and Technical Overview

http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/H_ENABLING_USER_INITIATED_UPDATE_FOR_NOTES_8_STANDARD_3064_OVER.html

The Device Manager supports industry standards, such as the Open Mobile

Alliance Device Management and the Open Service Gateway Initiative (OSGi). The

Device Manager consists of a Web application and a relational database to store

device management data. Managed clients require an agent to interact with the

server. To manage an OSGi client, such as IBM Lotus Expeditor Client for Desktop

and Devices, you need the plug-in and the device agent for OSGi devices. The

OSGi Agent resides on the device and is responsible for running the commands

sent by the Device Management Server. The OSGi Agent connects and interacts

with the Device Management Server using the SyncML/DM protocol and is part of

the Lotus Expeditor Client framework. The OSGi Agent does not have to be

connected to the server at all times. When the agent connects, the server identifies

the client and runs the jobs pending for the device.

Deploying applications 59

60 Composite Applications in Notes - Benefits and Technical Overview

Appendix A. Reference

Lotus Notes and Expeditor Feature Comparison Table

The following table lists the features that install by default in Lotus Notes and

Lotus Expeditor. Some Lotus Expeditor features are not part of the Lotus Notes

default install (identified as 'optional' below) and most collaboration features in

Lotus Notes do not come with an Expeditor client license.

Developers who build software components that run on Lotus Notes 8.0.1 and

require one of the 'optional' features listed below must install them onto Lotus

Notes 8.0.1. For information on this installation process, refer to the

developerWorks article Installing additional features from IBM Lotus Expeditor

6.1.2 onto IBM Lotus Notes 8.0.1.

 Table 3. Lotus Notes and Lotus Expeditor Default Features

Feature Expeditor Notes

com.ibm.db2e.feature X X (optional)

com.ibm.esupport.client.product.SSC4TNF.feature X X

com.ibm.esupport.client.product.SSC4TNF61.feature X

com.ibm.eswe.preference.feature X X

com.ibm.langware.engine.feature X X

com.ibm.langware.v27.dic.feature X X

com.ibm.langware.v27.feature X X

com.ibm.langware.v5.dic.feature X X

com.ibm.langware.v5.feature X X

com.ibm.logging.icl.feature X X

com.ibm.micro.admin.feature X X (optional)

com.ibm.micro.feature X (optional)

com.ibm.mobileservices.isync.db2j.feature X (optional)

com.ibm.mobileservices.isync.feature X X (optional)

com.ibm.mqe.feature X X (optional)

com.ibm.mqe.jms.feature X X (optional)

com.ibm.mqttclient.feature X (optional)

com.ibm.mqttclient.jms.feature X (optional)

com.ibm.osg.service.cm.feature X X

com.ibm.osg.webapp.feature X

com.ibm.osg.service.metatype.feature X

com.ibm.portal.cai.feature X

com.ibm.osg.service.useradmin.feature X X (optional)

com.ibm.portal.feature X X

com.ibm.pvc.ejb.feature X

com.ibm.pvc.jms.feature X X (optional)

com.ibm.pvc.jndi.provider.java.feature X X

© Copyright IBM Corp. 2008 61

http://www.ibm.com/developerworks/lotus/library/expeditor-notes/
http://www.ibm.com/developerworks/lotus/library/expeditor-notes/

Table 3. Lotus Notes and Lotus Expeditor Default Features (continued)

Feature Expeditor Notes

com.ibm.pvc.jta.feature X (optional)

com.ibm.pvc.runtime.doc.user.feature X

com.ibm.pvc.servlet.feature X X

com.ibm.pvc.servlet.jsp.feature X X

com.ibm.pvc.servlet.jsp.jstl.feature X X

com.ibm.pvc.wct.osgiagent.ext.core.feature X X

com.ibm.pvc.wct.osgiagent.ext.native.feature_2.1.1.0-
200804210300

X X

com.ibm.pvc.wct.osgiagent.feature X X

com.ibm.pvc.wct.workbench.feature X X

com.ibm.pvc.webcontainer.feature X X

com.ibm.pvc.webhttpservice.feature X X

com.ibm.pvcws.feature X X (optional)

com.ibm.pvcws.osgi.feature X X (optional)

com.ibm.pvcws.wsrf.feature (optional)

com.ibm.pvcws.wss.feature X (optional)

com.ibm.rcp.accounts.feature X X

com.ibm.rcp.accounts.ui.feature X X

com.ibm.rcp.browser.service.feature X X

com.ibm.rcp.core.logger.monitor.feature X

com.ibm.rcp.core.logger.ui.feature X X

com.ibm.rcp.database.derby.feature X X (optional)

com.ibm.rcp.database.feature X (optional)

com.ibm.rcp.dombrowser.feature X X

com.ibm.rcp.eclipse.emf.feature X X

com.ibm.rcp.eclipse.gef.feature X X

com.ibm.rcp.eclipse.jdt.feature X X

com.ibm.rcp.eclipse.platform.feature X X

com.ibm.rcp.eclipse.platform.ui.feature X X

com.ibm.rcp.eclipse.rcp.ui.feature X X

com.ibm.rcp.eclipse.xsd.feature X X

com.ibm.rcp.esupport.client.doc.feature X X

com.ibm.rcp.esupport.client.feature X X

com.ibm.rcp.jvm.feature X X

com.ibm.rcp.lapinvoker.feature X

com.ibm.rcp.locationmanager.feature X X

com.ibm.rcp.locationmanager.ui.feature X X

com.ibm.rcp.managedsettings.feature X X

com.ibm.rcp.managedsettings.portal.feature X X

com.ibm.rcp.net.feature X X

62 Composite Applications in Notes - Benefits and Technical Overview

Table 3. Lotus Notes and Lotus Expeditor Default Features (continued)

Feature Expeditor Notes

com.ibm.rcp.os.feature X X

com.ibm.rcp.os.ui.feature X X

com.ibm.rcp.osgiagent.cit.installhandler.feature X

com.ibm.rcp.personality.default.branding.feature X

com.ibm.rcp.personality.default.feature X X

com.ibm.rcp.personality.framework.feature X X

com.ibm.rcp.platform.feature X X

com.ibm.rcp.platform.management.feature X X

com.ibm.rcp.portal.app.ui.feature X X

com.ibm.rcp.portal.catalog.ui.feature X X

com.ibm.rcp.portal.feature X X

com.ibm.rcp.portletcontainer.feature X X

com.ibm.rcp.portletviewer.feature X X

com.ibm.rcp.propertybroker.feature X X

com.ibm.rcp.propertybroker.swt.feature X X

com.ibm.rcp.provisioning.feature X X

com.ibm.rcp.provisioning.ui.feature X X

com.ibm.rcp.rte.feature X X

com.ibm.rcp.security.feature X

com.ibm.rcp.servlet.jsf.ext.feature X X (optional)

com.ibm.rcp.servlet.jwl.feature X (optional)

com.ibm.rcp.sharedbundle.ui.feature X X

com.ibm.rcp.sync.feature X X

com.ibm.rcp.syncui.feature X X

com.ibm.rcp.syncui.scheduler.feature X X

com.ibm.rcp.textanalyzer.feature X X

com.ibm.rcp.topologyhandler.ui.feature X X

com.ibm.rcp.ui.browser.feature X X

com.ibm.rcp.ui.browser.launcher.feature X X

com.ibm.rcp.ui.browser.portal.feature X X

com.ibm.rcp.ui.widgets.feature X X

com.ibm.rcp.webcontainer.jspcompilerbridge.feature X X

com.ibm.rcp.ws.axis.feature X X

com.ibm.rcp.wsrp.feature X X

com.ibm.rcp.xulrunner.runtime.feature X

com.ibm.syncml4j.feature X X

org.apache.axis.feature X X

org.apache.commons.feature X X

org.apache.derby.feature X X

org.apache.myfaces.feature X X

Appendix A. Reference 63

Table 3. Lotus Notes and Lotus Expeditor Default Features (continued)

Feature Expeditor Notes

org.apache.portals.bridges.feature X (optional)

org.osgi.service.webapplication.feature X X

Collaboration Features

com.ibm.collaboration.realtime.activitymonitor.feature X X

com.ibm.collaboration.realtime.annotate.feature X X

com.ibm.collaboration.realtime.app.services.feature X X

com.ibm.collaboration.realtime.application.feature X X

com.ibm.collaboration.realtime.bluepages.feature X X

com.ibm.collaboration.realtime.browser.feature X X

com.ibm.collaboration.realtime.calendar.common.feature X X

com.ibm.collaboration.realtime.calendar.feature X X

com.ibm.collaboration.realtime.chat.feature X X

com.ibm.collaboration.realtime.chat.logging.feature X X

com.ibm.collaboration.realtime.chat.logging.impl.feature X X

com.ibm.collaboration.realtime.chat.logging.ui.feature X X

com.ibm.collaboration.realtime.community.st.feature X X

com.ibm.collaboration.realtime.contactlist.feature X X

com.ibm.collaboration.realtime.core.feature X X

com.ibm.collaboration.realtime.credentialstore.feature X X

com.ibm.collaboration.realtime.embedded.feature X X

com.ibm.collaboration.realtime.filetransfer.feature X X

com.ibm.collaboration.realtime.help.feature X X

com.ibm.collaboration.realtime.im.community.feature X X

com.ibm.collaboration.realtime.im.community.impl.feature X X

com.ibm.collaboration.realtime.location.feature X X

com.ibm.collaboration.realtime.login.feature X X

com.ibm.collaboration.realtime.meetings.feature X X

com.ibm.collaboration.realtime.messages.feature X X

com.ibm.collaboration.realtime.notes.connector.feature X X

com.ibm.collaboration.realtime.notes.messages.feature X X

com.ibm.collaboration.realtime.notifications.feature X X

com.ibm.collaboration.realtime.palettes.feature X X

com.ibm.collaboration.realtime.people.feature X X

com.ibm.collaboration.realtime.people.impl.feature X X

com.ibm.collaboration.realtime.quickfind.feature X X

com.ibm.collaboration.realtime.rtc.core.feature X X

com.ibm.collaboration.realtime.rtc.st.feature X X

com.ibm.collaboration.realtime.rtcadapter.feature X X

com.ibm.collaboration.realtime.spellchecker.feature X X

com.ibm.collaboration.realtime.stjavatk.feature X X

64 Composite Applications in Notes - Benefits and Technical Overview

Table 3. Lotus Notes and Lotus Expeditor Default Features (continued)

Feature Expeditor Notes

com.ibm.collaboration.realtime.telephony.base.feature X X

com.ibm.collaboration.realtime.telephony.prod.feature X X

com.ibm.collaboration.realtime.ui.feature X X

com.ibm.content.operations.registry.feature X

com.ibm.content.operations.registry.infra.feature X

com.ibm.csi.feature X

com.ibm.csi.notes.feature X

com.ibm.directoryservices.feature X

com.ibm.notes.aaf.feature X

com.ibm.notes.branding.feature X

com.ibm.notes.client.feature X

com.ibm.notes.client.win32.feature X

com.ibm.notes.dip.feature X

com.ibm.notes.esupport.client.product.SSKTWPR8.feature X

com.ibm.notes.gettingstarted.feature X

com.ibm.notes.ipc.feature X

com.ibm.notes.java.api.feature X

com.ibm.notes.links.feature X

com.ibm.notes.pd.feature X

com.ibm.notes.pim.feature X

com.ibm.notes.sametime.installed.feature X

com.ibm.notes.search.common.feature X

com.ibm.notes.search.googledesktop.feature X

com.ibm.notes.toolbox.ca.adapter.feature X

com.ibm.notes.toolbox.feature X

com.ibm.notes.toolbox.langware.feature X

com.ibm.productivity.tools.base.win32.feature X

com.ibm.productivity.tools.feature X

com.ibm.productivity.tools.gallery.feature X

com.ibm.productivity.tools.notes.branding.feature X

com.ibm.productivity.tools.serviceability.feature X

com.ibm.productivity.tools.share.feature X

com.ibm.productivity.tools.standalone.feature X

com.ibm.productivity.tools.template.feature X

com.ibm.rcp.aaf.feature X X

com.ibm.rcp.contentspots.feature X

com.ibm.rcp.feedreader.feature X

com.ibm.rcp.feedreader.notes.feature X

com.ibm.rcp.feedreader.notes.providers.feature X

com.ibm.rcp.feeds.parser.feature X

Appendix A. Reference 65

Table 3. Lotus Notes and Lotus Expeditor Default Features (continued)

Feature Expeditor Notes

com.ibm.rcp.g11n.feature X

com.ibm.rcp.notes.util.feature X

com.ibm.rcp.pim.typeahead.feature X

com.ibm.rcp.pim.views.feature X

com.ibm.rcp.pim.widgets.feature X

com.ibm.rcp.realtime.livenames.feature X X

com.ibm.rcp.search.engines.google.feature X

com.ibm.rcp.search.engines.yahoo.feature X

com.ibm.rcp.search.feature X

com.ibm.rcp.threading.monitor.feature X

com.ibm.rcp.ui.browser.content.feature X

com.ibm.siapi.feature X

66 Composite Applications in Notes - Benefits and Technical Overview

Appendix B. External resources and links

This Appendix contains a comprehensive list of URLs and references provided in

each section of the document.

Business value of Notes 8.x application development

1. OpenNTF.org: http://www.openntf.org/Projects/pmt.nsf/
852fcfa76eb36baa85256bae00100855/
998edc82d1fb2f3686257399005fe8e0!OpenDocument

2. Business Intelligence and Reporting Tools: http://www.eclipse.org/birt/
phoenix/

3. Sales lead manager sample: http://www-10.lotus.com/ldd/compappwiki.nsf/
dx/ibm-lead-manager

4. Sales lead manager sample articles: http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/lead-manager-sample-composite-application-articles

Roles and tools

Composite Applications wiki: http://www-10.lotus.com/ldd/compappwiki.nsf

Getting started with Eclipse as a Notes developer

 1. Eclipse: http://www.eclipse.org

 2. Eclipse RCP: http://wiki.eclipse.org/index.php/Rich_Client_Platform

 3. Eclipse Newcomers FAQ: http://www.eclipse.org/home/newcomers.php

 4. Equinox: http://www.eclipse.org/equinox/

 5. P. Carlson, 21 Aug 2007, IBM, Getting started with the IBM Lotus Expeditor

Toolkit 6.1; available online at: http://www.ibm.com/developerworks/lotus/
library/expeditor-toolkit/

 6. OSGi Home page: at http://www.osgi.org/Main/HomePage

 7. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building

Commercial-Quality Plug-ins, page 129

 8. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building

Commercial-Quality Plug-ins, page 129

 9. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building

Commercial-Quality Plug-ins, page 130

10. B. Marchal, 3 Feb. 2005, Working XML: Define and load extension points;

available online at: http://www.ibm.com/developerworks/xml/library/x-
wxxm29.html

11. E. Clayberg, D. Rubel, 2004, Pearson Education Inc., Eclipse, Building

Commercial-Quality Plug-ins, page 653

12. Eclipse wiki, FAQ What is a plug-in fragment?: http://wiki.eclipse.org/
FAQ_What_is_a_plug-in_fragment%3F

13. D. Glozic, D. Birsan, 27 September 2003, IBM, How To Keep Up To Date;

available online at: http://www.eclipse.org/articles/Article-Update/keeping-
up-to-date.html

© Copyright IBM Corp. 2008 67

14. Composite Application Wiki, IBM, Introduction to provisioning and updating:

http://www.ibm.com/developerworks/wikis/display/appdev/
Introduction+to+provisioning+and+updating

15. J. McAffer, J. Lemieux, 2005, Addison-Wesley, eclipse – Rich Client Platform,

page 215

16. Personalities, IBM Lotus Expeditor InfoCenter: http://
publib.boulder.ibm.com/infocenter/ledoc/v6r1/index.jsp?topic=/
com.ibm.rcp.tools.doc.appdev/ui_usingpersonalities.html

17. M. Valenta, 20 September 2004, IBM, On the Job: The Eclipse Jobs API;

available online at: http://www.eclipse.org/articles/Article-Concurrency/jobs-
api.html

18. J. McAffer, J. Lemieux, 2005, Addison-Wesley, eclipse – Rich Client Platform,

page 357

19. Eclipse.org, Extension Registry API’s: http://help.eclipse.org/help32/topic/
org.eclipse.platform.doc.isv/reference/api/org/eclipse/core/runtime/
IExtensionRegistry.html

Building NSF components

 1. Sales lead manager sample: http://www-10.lotus.com/ldd/compappwiki.nsf/
dx/ibm-lead-manager

 2. Hide view navigator: http://www.ibm.com/developerworks/wikis/display/
appdev/
Manage+Real+Estate+for+NSF+Components+in+Composite+Applications

 3. Special replica IDs: http://www.ibm.com/developerworks/wikis/display/
appdev/
Deployment+of+NSF+based+Composite+Applications+with+Components+in+the+same+NSF

 4. Deployment of NSF components: http://www.ibm.com/developerworks/
wikis/display/appdev/
How+to+calculate+Links+to+NSF+Components+at+Runtime

 5. Built in properties and actions: http://www.ibm.com/developerworks/wikis/
display/appdev/Using+built-in+properties+and+actions+in+Notes+8.0.1

 6. Simple tutorial: http://www.ibm.com/developerworks/lotus/library/
tutorials/notes8-comp-apps/lz-dw-lz-notes8-comp-
apps.html?S_TACT=105AGX13&S_CMP=LP

 7. Usage of the property broker editor: http://www.ibm.com/developerworks/
wikis/display/appdev/Property+Broker+Editor+for+NSF+Components

 8. Access of static component preferences: http://www.ibm.com/
developerworks/wikis/display/appdev/
How+to+run+NSF+Components+in+Context

 9. CAI URL: http://www.ibm.com/developerworks/wikis/display/appdev/
Pass+Context+to+Components+when+opening+Composite+Applications

10. Open Notes documents on pages: http://www.ibm.com/developerworks/
wikis/display/appdev/Open+Notes+Documents+on+Pages

Building Java components

 1. Using Lotus Expeditor Toolkit with Notes 8 and Lotus Sametime:

http://www.ibm.com/developerworks/lotus/library/expeditor-notes-
sametime/

 2. Developing Applications for Lotus Expeditor, 6.1.x: http://
publib.boulder.ibm.com/infocenter/ledoc/v6r11/index.jsp

68 Composite Applications in Notes - Benefits and Technical Overview

3. Notes.jar: http://www-128.ibm.com/developerworks/lotus/library/notes8-
data/

 4. Eclipse: www.eclipse.org

 5. Lotus Notes 8 Sidebar/Toolbar: http://www-128.ibm.com/developerworks/
lotus/library/notes8-context/

 6. Drag and Drop: http://www.eclipse.org/articles/Article-SWT-DND/DND-in-
SWT.html

 7. Developing an Eclipse Component, part 1: http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/developing-an-eclipse-component-for-lotus-notes-8-
part-1

 8. Developing an Eclipse Component, part 2: http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/developing-an-eclipse-component-for-lotus-notes-8-
part-2

 9. Lotus Expeditor Run/Debug: http://www.ibm.com/developerworks/lotus/
library/expeditor-notes-sametime/

10. Debugging with Eclipse: http://www.ibm.com/developerworks/java/library/
os-ecbug/

Assembling Composite Applications and creating widgets

1. PIM component example: http://www-10.lotus.com/ldd/compappwiki.nsf/
dx/using-pim-components

2. Embedded Browser component example: http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/using-the-embedded-browser-component

3. Symphony component example: http://www-10.lotus.com/ldd/
compappwiki.nsf/dx/using-the-symphony-view-component

4. Widgets: http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/
index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/
H_MY_WIDGETS_OVER.html

5. Page properties: http://www-10.lotus.com/ldd/compappwiki.nsf/dx/
advanced-page-properties

6. Component properties: http://www-10.lotus.com/ldd/compappwiki.nsf/dx/
advanced-component-properties

Deploying applications

1. White lists: http://www-10.lotus.com/ldd/compappwiki.nsf/dx/white-lists-
and-updates

2. Feature and match rules: http://www-10.lotus.com/ldd/compappwiki.nsf/dx/
defining-feature-and-match-rules

3. My Widgets preferences: http://publib.boulder.ibm.com/infocenter/domhelp/
v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/
H_SETTING_CATALOG_PREFERENCES_USING_A_CUSTOMIZATION_FILE_OVER.html

4. Network Client Installer: http://publib.boulder.ibm.com/infocenter/ledoc/
v6r11/index.jsp?topic=/com.ibm.rcp.tools.doc.admin/
serverbasedclientinstallation.html

5. User-initiated updates: http://publib.boulder.ibm.com/infocenter/domhelp/
v8r0/index.jsp?topic=/com.ibm.help.domino80x.doc/DOC/
H_ENABLING_USER_INITIATED_UPDATE_FOR_NOTES_8_STANDARD_3064_OVER.html

Appendix B. External resources and links 69

70 Composite Applications in Notes - Benefits and Technical Overview

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 71

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

Department LZMS

11501 Burnet Road

Austin, TX 78758-3400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Trademarks

IBM, the IBM logo, ibm.com®, Lotus, and Expeditor are trademarks or registered

trademarks of International Business Machines Corporation in the United States,

other countries, or both. If these and other IBM trademarked terms are marked on

their first occurrence in this information with a trademark symbol (® or

™), these

72 Composite Applications in Notes - Benefits and Technical Overview

symbols indicate U.S. registered or common law trademarks owned by IBM at the

time this information was published. Such trademarks may also be registered or

common law trademarks in other countries. A current list of IBM trademarks is

available on the Web at ″Copyright and trademark information″ at

www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linux Torvalds in the United States, other

countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Intel and Pentium® are trademarks or registered trademarks of Intel Corporation or

its subsidiaries in the United States and other countries.

Other company, product or service names may be trademarks or service marks of

others.

Appendix C. Notices 73

74 Composite Applications in Notes - Benefits and Technical Overview

����

Printed in USA

	Contents
	About this book
	Who should read this book
	How this book is organized
	Related information

	Introduction: Applying knowledge
	Business value of Notes 8.x application development
	Fostering business and IT potential for flexibility, growth and integration
	Bridging Line of Business and Information Technology
	The challenge
	Linking the people to the process (End User view)
	Extending the process to the people (Application Developer view)
	Involve business users in process innovation
	Business partners
	Exploring the power of Composite Applications
	Improve End User effectiveness by running different applications together in context
	The value of reusing new and existing assets
	The value of Lotus Notes as an integration platform

	Where to use Composite Applications
	Executive conclusion

	Roles and tools
	The roadmap to information optimization
	Composite Applications
	Mashups

	Your skills and tools
	Notes developers
	Java and Eclipse developers
	Application Assembly/Application Deployment

	Architecture overview
	The Composite Application data model
	Composite Applications on the rich client platform
	Widgets and Live Text

	Getting started with Eclipse as a Notes developer
	Eclipse Plug-ins, Features, and Fragments
	The Eclipse Workbench
	Threading 101 for Eclipse and Notes
	Making your Eclipse plug-ins dynamic aware
	Creating your first Eclipse view

	Building NSF components
	What are NSF components?
	Deployment of NSF components
	Using the property broker - built in properties and actions
	Using the property broker - custom properties and actions
	Using static component properties
	Open Notes documents on pages
	What are NSF widgets?

	Building Java components
	The Lotus Expeditor Toolkit
	Using the toolkit
	Creating Components
	Using Notes.jar
	Notes Extension points
	Creating your first Eclipse component

	Custom Navigator for a Composite Application
	Composite Application Infrastructure, Topology, and Navigation page hierarchy and preferences
	Composite Application Data Model and the TopologyHandler Service
	Default Navigators
	Send and receive properties from SWT views
	Launch and debug of the Notes Client

	Assembling Composite Applications and creating widgets
	Composite Applications
	Predefined Components in Notes
	Enabling Notes Users to Use the Composite Application Editor

	Widgets
	Domino Server Policy for Widget Enablement
	Using Widget Wizards

	Using the Composite Application Editor
	Working with the Composite Application Editor
	Adding Components to the Palette
	Creating the Application Layout
	Setting Page Properties
	Setting Component Properties
	Save the Application Changes Made with the CAE

	Wiring Components
	Disable Strict Type Checking
	Cross page wiring

	Deploying applications
	IBM Lotus Notes/Domino
	Creating an NSF Update Site
	Editing a Composite Application's Feature Requirements Update Site URL

	Creating an all-in-one NSF based Composite Application
	White Lists
	Setting Access Rights for Composite Application Pages
	Calculate Links in NSF Components at Runtime
	Providing Extensions with Composite Applications
	Install Extensions as Notes Plug-ins
	Updating Components with New Versions

	Widgets Catalogs
	Creating a Widgets Catalog
	Catalog Access Rights
	Publishing to the Catalog and Controlling Access

	Managing Rich Clients using the Portal server
	Rich Client Layout Administration Portlet
	The Generic Placeholder portlet
	"Administration proxy" portlet
	Connecting to Portal
	Using the Portal Catalog
	User management of applications
	Using the Static Contributing extension point
	Packaging a Composite Application in an Eclipse plug-in.
	Expeditor Server

	Appendix A. Reference
	Lotus Notes and Expeditor Feature Comparison Table

	Appendix B. External resources and links
	Business value of Notes 8.x application development
	Roles and tools
	Getting started with Eclipse as a Notes developer
	Building NSF components
	Building Java components
	Assembling Composite Applications and creating widgets
	Deploying applications

	Appendix C. Notices
	Trademarks

