

Case Study: Using IBM Rational Engineering Lifecycle Manager to Accelerate System Changes Fabrice Mendes – IBM Rational Engineering Team Technology

fabrice.mendes@fr.ibm.com

http://fabricemendes.wordpress.com/

Airbus Group at a Glance

Airbus Group Employees by country*

Globally leading aircraft manufacturer

- Since 2000, Airbus . commercial deliveries grew by 60%
- Backlog more than doubled in one decade (now equaling 8 years of production)

Leading helicopter manufacturer

- Accounts for 1/3 of the global helicopter fleet
- Delivered about 4,000 helicopters throughout the past decade

Europe's No.1 defence and space company

- · Worldwide, it ranks second for space and is among the top ten defence companies
- Revenues of approximately • €14 billion per year

Our Key Challenges for Engineering Lifecycle Management

- Geographically distributed engineering teams
- Complex IT infrastructure

- Complex Products
- Safety-critical Systems (Certification)

Today's situation at Industrial companies

Our Vision Develop concepts Industrial Gather Plan Demand System Workflows Change Impact Analysis Search data New: Verify Design to Engineering Trade-off Analysis Requirements Methods LINKED DATA Products Functions System Tip. New: Architectures 1-1-**Platform Layer** Requirements **Tool Layer** Analysis Tools **Functions Requirements Databases** Database

RUC2014

Key Enablers for our Vision

Users can work seamlessly across their tools

Linked Data will enable us to access, unlock and understand all engineering information, regardless of source – to enable the right decisions at the right times...

...but,

- "Just Enough" integration
 - Increased traceability

- OSLC is an <u>open</u> and <u>scalable</u> approach to lifecycle integration. It <u>simplifies</u> key integration scenarios across <u>heterogeneous</u> tools
- www.open-services.net

...but, we cannot solve this alone...

Industry:

 Transportation and Health Care companies

Provide Needs for tool interoperability

•Enable specification, design and analysis of complex systems

CRYSTAL Project:

•80 Partners – 100M USD Budget •Provide a generic method and tool framework for engineering of complex systems

- Modular and extensible
- High maturity for industrial use
- •Based on industry-wide accepted **Interoperability Specification**

 Loose coupling of process, tool and data level to enable application oriented configuration

Tool Vendors:

- •Provide modeling and analysis tools
- •Provide Integration solutions
- Agree on a common way to realize tool interoperability

RUC2014

Airbus, Sagem Thales, EADS, Cassidian

Common Aerospace Case Study

Use Case Objective:

- Definition of De-icing System for Regional Turboprop Aircraft, with:
 - Minimal Cost, Weight, Power Consumption
 - Fulfilling safety constraints
 - Fulfilling functional needs (i.e. keep Aircraft components free-of ice)

RUC2014

oprop Aircraft, with:

Different alternative concepts for De-icing:

Smarter products mean that complexity is rising

Aerospace and defense

Today's F35 has 10 million lines of code on board, twice the amount on the F-22, another stealth fighter.

Automotive

Electronics drives 80 percent of the automotive industry's functional innovation software is the key to most of it.

Electronics

By 2014, 230 million Smart TVs will be installed with 57 million homes watching web-based streams over broadband.

Energy and utilities

Smart meters for water utilities will lead to \$29.9 million in sales by 2017 compared with \$10.3 million in 2011.

Telecom

Between 2012 - 2016, mobile data traffic will multiply tenfold, with video content acting as the biggest driver.

Medical devices

- The da Vinci S surgical robotic system:
- 1.4 million lines of code
- Computing power of 7 laptops
- 10,000 individual parts

Smarter products require smarter development Traditional Product & Systems

Development

Physical Design and Bill of Materials (BoM) Centric Approach

- Silos of engineering disciplines with no connection and visibility of data between disciplines
- Proprietary formats and closed architecture
- Linear, with focus on CAD/CAM and BoM
- Slow to react to change

Development

Integrated Electronic, Mechanical, and Software Engineering

- United engineering teams with access to all engineering information
- Efficiency through strategic re-use and continuous verification
- Systems engineering methods optimize designs and collaboration
- Open standards via Linked Data
- Increased engineering agility

Introducing... Rational Engineering Lifecycle Manager

Extending the Rational solution for systems and software engineering

- Uniting engineering teams through:
 - Visibility across many engineering disciplines
 - Organization of information in context
 - Analysis to answer lifecycle engineering questions
 - Allows product development teams to:
 - Find the right information when it's needed
 - Understand and react to change quickly
 - Gain actionable insights from engineering data
 - Co-ordinate strategic re-use
- With no disruption to current engineering environments

"RELM demonstrates the power of linked data and provides an enterprise a new way to integrate tools and project tasks in one interface."

Systems Engineer

IBM Rational Engineering Lifecycle Manager: Lifecycle Query Engine

IBM Rational Engineering Lifecycle Manager Data Sources

Rational DOORS

Rational Team Concert

Rational DOORS NG

Rational Quality Manager

Rational Rhapsody

Rational Design Manager

Rational Asset Manager

Rational Focal Point

A core set of data sources from IBM Rational

A growing ecosystem of 3rd party data sources

Open & federated, not proprietary & monolithic

NATIONAL STRUMENTS

MathWorks[®]

Extensible via open specifications and toolkits

Objective:

Demonstrate how RELM leverages on link data for seamless navigation between different IBM engineering applications.

The next video shows:

1 – Navigation from the Overview to the Top Level Functional view to identify from the Top level requirements the linked resources.

2 – Open "Concept View" for a specific Model Element and display the different solution models depending of the different technology.

3 – From the overview:

- opening an analysis view specifically for one solution

elements, in case those one have to be modified.

4 – Displaying environmental Element for a specific resource and make focus of some 3rd party tools resources.

5 – Test view: For a specific test result, display all related resources.

RUC2014

- Identify via the linked data, requirements that are linked to specific Model

Objective:

Identify impact of a change request to engineering lifecycle data

The next video shows:

- 1 Definition of a Change Request (CR) using RTC
- 2 Link of CR to Source (reason of the CR) and target (main impacted Diagram)
- 3 RELM view: How would a System Architect discover and analyze the new Change Request:
 - Use of the RELM CR View
- 4 Use Impact Analysis Diagram.

- Go from RELM CR View to the detailed view for the main impacted diagram

Objective:

Run a simulation that requires data from different simulation models

- Simulink, Rhapsody, Open Modelica

Scenario:

RUC2014

- Retrieve the power consumption of a De-icing System solution for a flight scenario, and - Compare this power value with an alternative De-icing solution.

The next video shows how we use RELM:

1 – identify the different artefacts involved in the simulation

- e.g. a Rhapsody model for event-based behavior
- a Simulink model for the physical behavior of Ice Elimination
- and Modelica models for determining the creation of Ice
- 2 Rhapsody with Animation Panel
- 3 Rhapsody Simulation
 - The Simulation first shows the nominal behavior of the system
 - Then we show dysfunctional behavior

19

See the videos

At: <u>https://www.youtube.com/watch?v=zeFiGSwMsUc</u>

01 RELM overview https://www.youtube.com/watch?feature=player_embedded &v=DBQAJGu3BAo

02 CR process

https://www.youtube.com/watch?feature=player_embedded &v=bRnS2Aq-gB8

03 – Integrated Simulation https://www.youtube.com/watch?feature=player_embedded &v=msjOWwpOkDI

Change Impact Analysis based on Linked Data

Questions

Thanks

