

BlueZ Secure Systems
IBM Zurich Research Laboratory

BlueZ PKCS#15
An implementation for Open Platform

Java Cards

(Rev 2.01, 30/06/2003)

Copyright © 2003, IBM Corporation

Technical contact: javacard@zurich.ibm.com

This paper is for general guidance only.

References in this publication to IBM products, programs or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
references to any IBM product, program or service is not intended to imply that only
IBM’s product, program or service may be used. Any functionally equivalent product,
program or services may be used instead.

Table of Contents

1 Abstract.. 1
2 Introduction... 1
3 Implementations .. 1
4 The File System... 2
5 Application Selection .. 3

5.1 DF(PKCS#15) FCI.. 3
6 Application Installation.. 4
7 Application Initialization and Personalization... 5
8 Supported Cryptographic Algorithms .. 5
9 Key Format In Files.. 6

9.1 DES or AES Keys ... 6
9.2 RSA Keys .. 7

9.2.1 RSA Public Key.. 7
9.2.2 RSA Private Key... 7
9.2.3 RSA Private Key in CRT Format ... 7

10 Key Management .. 8
10.1 RSA Private Key Import... 8
10.2 FIPS 140-2 .. 8

11 APDU Command Details.. 9
11.1 Considerations ... 9
11.2 Token Personalization Commands ... 9

11.2.1 Open Platform INITIALIZE UPDATE Command 9
11.2.2 Open Platform EXTERNAL AUTHENTICATE Command 10
11.2.3 INITIALIZE TOKEN Command .. 10

11.3 File System Commands .. 11
11.3.1 PUT DATA Command ... 11
11.3.2 CREATE FILE Command .. 12

11.3.2.1 Command Data ... 13
11.3.2.2 Security Attributes .. 13

11.3.3 DELETE FILE Command .. 14
11.3.4 CHANGE REFERENCE DATA Command .. 15
11.3.5 RESET RETRY COUNTER Command ... 16

11.3.5.1 Valid P1/LC combinations.. 16
11.3.6 READ BINARY Command .. 17
11.3.7 UPDATE BINARY Command ... 17
11.3.8 ERASE BINARY Command .. 18
11.3.9 SELECT FILE Command ... 19

11.3.9.1 EF FCI... 20
11.3.10 VERIFY Command .. 21
11.3.11 GET CHALLENGE Command .. 22

11.4 Commands To Perform Security Operations .. 22
11.4.1 MUTUAL AUTHENTICATE Command .. 22
11.4.2 MANAGE SECURITY ENVIRONMENT Command 23

11.4.2.1 Command Data ... 24

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

2

11.4.2.2 Required CRDOs in CRTs .. 25
11.4.3 COMPUTE CRYPTOGRAPHIC CHECKSUM Command 25
11.4.4 ENCIPHER Command ... 26
11.4.5 DECIPHER Command ... 27
11.4.6 COMPUTE DIGITAL SIGNATURE Command 28
11.4.7 HASH Command .. 29
11.4.8 GENERATE PUBLIC KEY PAIR Command ... 30

12 Secure Messaging .. 31
12.1 Mutual Authentication .. 31
12.2 Cryptographic Algorithms .. 32

12.2.1 Padding Algorithm.. 32
12.2.2 Data Encryption .. 32
12.2.3 Authentication Cryptogram (MAC) Generation....................................... 33

12.3 Secure Messaging Format ... 34
12.3.1 Abbreviations .. 34
12.3.2 Case 1 APDU.. 35
12.3.3 Case 2 APDU.. 35
12.3.4 Case 3 APDU.. 36
12.3.5 Case 4 APDU.. 37

13 References.. 38

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

1

1 Abstract

This documentation provides detailed information about the BlueZ PKCS#15
implementation. After a brief introduction into the architectural concept of the application
it mainly documents it s features, usage and command APDU specification. It is not
intended to aim as an introduction into the PKCS#15 or ISO 7816-x standards.

2 Introduction

The purpose of the PKCS#15 Cryptographic Token information Syntax Standard ([1]) is
to promote interoperability between host applications and cryptographic tokens, such as
smart cards, with respect to security-related information stored on such tokens. For
example, the holder of a PKCS#15 compliant smart card should be able to present the
card to any application running on any host connected to any smart card reader and
successfully use it to present his credentials or authenticate himself.
To achieve this the standard specifies certain properties of an application residing on a
smart card, which has support for an ISO/IEC 7816-4/-5/-6 hierarchical file system.
These properties are basically the file format (the content of the files) and to some extend
the file system structure of a PKCS#15 compliant application. The standard does,
however, not define its own set of commands to access these files but refers to the ISO
standards ([2], [6], [7]) providing file system commands and in addition to that also
commands for cryptographic operations.
The BlueZ PKCS#15 application is a JavaCard implementation of these standards. It
provides an emulation of a PKCS#15 compliant ISO file system layout in combination
with the ISO commands mentioned above. Features as dynamic memory management
and a large variety of cryptographic algorithms lead to a very flexible implementation,
which allows to be set up in accordance with different application profiles.

3 Implementations

Three implementations of the BlueZ PKCS#15 application are available. One, which is
fully Java Card 2.1.1 compliant and can run on any Java Card 2.1.1 implementation
providing sufficient resources. The second is optimized for the BlueZ JCOP platform and
offers more performance and functionality (see table of supported algorithms) as well as
significant savings in resource consumption. Typically the JCOP platform (e.g.
JCOP31bio) comes with this PKCS#15 application already included in the ROM mask
and thus the complete EEPROM space remains free for application use (e.g. keys,
certificates, data etc.). Finally, the third implementation is a variant of the PKCS#15
application for JCOP which is about to received FIPS 140-2 certification as part of the
JCOP21id product.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

2

4 The File System

The picture below illustrates a typical instance of the BlueZ PKCS#15 application. The
PKCS#15 standard defines that compliant IC cards should support direct application
selection as defined in [2] and [4] (the full AID is to be used as parameter for a
‘SELECCT FILE’ command). This means that the basic parts of a file system-based card
like the MF and an EF(DIR) are not necessary for application selection. Thus this
implementation does not emulate an MF or EF(DIR). The direct selection of the
PKCS#15 application via its AID makes it to the current selected applet on an Open
Platform Java Card and subsequent commands are handled by the BlueZ applet, which
then emulates the relevant part of the file system.
All files under the DF(PKCS#15) directory are allocated out of one file system memory
pool. The size of this pool can be defined at application installation time. The application
manages this memory pool so that newly created files (using the CREATE FILE
command) are placed into the free space of the pool whereas on file deletion (using the
DELETE FILE command) the space is freed. The application also performs memory
defragmentation during file deletion. The files represented by the solid ovals are allocated
by default during application installation. The EF(ODF) and EF(Token Info) are
mandatory and have fixed file identifiers. Other directory files are in general optional but
always present in this implementation. Their file identifiers are freely chosen by the
implementation.
After application installation and initialization the issuer or the user can create (or delete)
files (e.g. RSA key pairs, certificates, etc.). The dashed ovals represent such dynamically
allocated (non-default) files. All files are direct children of the DF(PKCS#15).
Whereas the lines represent hierarchical relations in the file system the arrows are
referencing relations in PKCS#15 terms. This means the ASN.1 encoded entries in the
directory files, maintained by the host application, include references to files. These
references are in fact the file identifiers. See [1] for details on the file format. One
exception is the references to the authentication objects (PIN1, PIN2, PIN3). The PINs
are not files in the file system and therefore not referenced by file identifiers but by
logical PIN reference numbers. The fact that the token provides three PINs is a fixed
property and cannot be configured. PIN 3 acts as the security officer PIN (soPIN), which
allows unblocking or changing the user PINs (PIN1 and PIN2).
The two files, “MAC key” and “ENC key”, are always present and host DES keys
available for setting up a secure channel between the application and the host computer.
The setting up of a secure channel is based on mutual authentication involving the MAC
key. Upon authentication, data can be sent over the secure channel either in plain or
encrypted and MACed. These variants can be used as authentication object. For example,
it is possible to allow updating a file only via an encrypted secure channel.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

3

other DFs/EFs

xxxx

DF(PKCS#15)

MF

EF(DIR) other DFs/EFs

EF(ODF)
EF(Token

Info)

EF(PuKDF) EF(PrKDF) EF(CDF) EF(AODF) EF(DODF) EF(SKDF)

MAC key ENC key

PIN1 PIN2 PIN3
RSA public

key
RSA private

key

X.509
certificate

Data blob Secret key

3F00

xxxx2F00

50325031

502B 502C 502D 502E 502F 5030

5029 502A

xxxx xxxx

xxxx

xxxx xxxx

AID

PKCS#15 application

xxxx

xxxx

File system hierarchical relation

References to existing files

Reference to possible user files

File ID as defined in standard

File ID (freely defined)

File creatdby default

File created by user

5 Application Selection

As mentioned in the previous chapter the BlueZ PKCS#15 application is selected directly
via its AID as described in [2]. Since the AID is A000000063504B43532D3135HEX , the
command to select the DF(PKCS#15) is 00A404000CA000000063504B43532D3135HEX.
Upon receipt of the select command the token responds with its FCI (File Control
Information), which conveys some information about the token and its current state.

5.1 DF(PKCS#15) FCI

Byte Value[HEX] Remarks

1 6F FCI tag
2 XX FCI length
3 81 No. of bytes used in the file system tag
4 02 Length
5 XX No. of bytes used in the file system (high byte)
6 XX No. of bytes used in the file system (low byte)

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

4

7 82 File descriptor byte tag
8 01 File descriptor byte length
9 38 File descriptor byte (DF)
10 84 DF name tag
11 02 DF name length

12-23 XX PKCS#15 AID
24 86 Proprietary security attributes tag
25 03 Length
26 XX Tries remaining PIN 1
27 XX Tries remaining PIN 2
28 XX Tries remaining PIN 3
29 85 Proprietary information
30 XX Length

31-34 XX Unique chip ID
35 XX Number of files in the file system
36 XX File identifier 1 (high byte)
37 XX File identifier 1 (low byte)
.
.
.

.

.

.

.

.

.
XX XX File identifier N (high byte)
XX XX File identifier N (low byte)
XX 90 SW1
XX 00 SW2

6 Application Installation

The BlueZ PKCS#15 application is installed in accordance with [9]. Since during
installation time certain application resources (e.g. the default file system layout) are
allocated the following application specific install parameters must be passed.

Byte Value[HEX] Remarks

1 C9 Application specific install parameters tag (see [9])
2 1A Length
3 XX Security attributes for default files (byte 1)
4 XX Security attributes for default files (byte 2)
5 XX Security attributes for default files (byte 3)
6 XX Overall file system space(high byte)
7 XX Overall file system space(low byte)
8 XX Size EF(PuKDF) (high byte)
9 XX Size EF(PuKDF) (low byte)
10 XX Size EF(PrKDF) (high byte)
11 XX Size EF(PrKDF) (low byte)

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

5

12 XX Size EF(CDF) (high byte)
13 XX Size EF(CDF) (low byte)
14 XX Size EF(AODF) (high byte)
15 XX Size EF(AODF) (low byte)
16 XX Size EF(DODF) (high byte)
17 XX Size EF(DODF) (low byte)
18 XX Size EF(SKDF) (high byte)
19 XX Size EF(SKDF) (low byte)
20 XX Size EF(ODF) (high byte)
21 XX Size EF(ODF) (low byte)
22 XX Size EF(TokenInfo) (high byte)
23 XX Size EF(TokenInfo) (low byte)
24 01-7F Retry counter limit for PIN 1
25 01-7F Retry counter limit for PIN 2
26 01-7F Retry counter limit for PIN 3
27 XX Zero means RSA private keys are importable, else otherwise
28 01-05 Defines the authentication object, which protects the

CREATE FILE Command
Values:
 1 - PIN 1
 2 - PIN 2
 3 - PIN 3
 4 - AUTH
 5 - SM

7 Application Initialization and Personalization

The application is initialized base on the Open Platform secure channel as described in
the section “Token Personalization Commands”. Further personalization (e.g. key
generation, certificate upload etc.) can be done at any later point in time based on the
standard commands described in this document.

8 Supported Cryptographic Algorithms

The following table describes the algorithms supported by the token and their algorithm
identifier, which can be used in the MANAGE SECURITY ENVIRONMENT command.
It also indicates in which CRT and thus in which command the algorithm identifiers are
to be used.

Algorithm
Identifier

[HEX]

Algorithm Key
length
[bit]

Block
length
[bit]

Automat
ic

padding

Automatic
digest

RSA
public

exponent

CRT

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

6

01 DES MAC 64(56) 64 - - - CCT
03 DES ECB 64(56) 64 - - - CT
04 DES CBC 64(56) 64 - - - CT
11 DES3 MAC 128(112) 64 - - - CCT
13 DES3 ECB 128(112) 64 - - - CT
14 DES3 CBC 128(112) 64 - - - CT
21 AES MAC1 128 128 - - - CCT
23 AES ECB1 128 128 - - - CT
24 AES CBC1 128 128 - - - CT
31 AES MAC1 192 128 - - - CCT
33 AES ECB1 192 128 - - - CT
34 AES CBC1 192 128 - - - CT
41 AES MAC1 256 128 - - - CCT
43 AES ECB1 256 128 - - - CT
44 AES CBC1 256 128 - - - CT

69/02 RSA 512-20483 (key length) PKCS#1 - - CT/DST
6F/12/22 RSA 512-20483 (key length) PKCS#1 Digest Info

(SHA/MD5)
- DST

6A/00 RSA 512-20483 (key length) - - - CT/DST2
6B RSA1 512-2048 (key length) PKCS#1 SHA-1 - DST
6C RSA1/4 512-2048 (key length) PKCS#1 MD5 - DST
6D RSA1 512-2048 (key length) ISO9796 SHA-1 - DST
6D RSA key

generation
512-20483 (key length) - - 3 DST

6E RSA key
generation

512-20483 (key length) - - 65537
(Fermat-4)

DST

57 SHA-11 - 512 - - - HT
58 MD51/4 - 512 - - - HT

1 supported on the JCOP platform only.
2 PKCS#1 padding must be done by the host.
3 RSA key length of 512-2048 bits is supported on the JCOP platform only, otherwise the
key length is fixed to 1024 bits.
4 Not supported in the FIPS 140-2 certified version of BlueZ PKCS#15 (included in
JCOP21id).

9 Key Format In Files

The format used by the BlueZ PKCS#15 token to store cryptographic keys in transparent
files is described in the following. If keys are imported using the UPDATE BINARY
command this key format must be honored.

9.1 DES or AES Keys

DES and AES keys are stored in plain format. This means the key material starts with the
byte at offset zero in the key file. The token determines the length of the key material by
evaluating the algorithm reference defined in the Security Environment for a specific type

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

7

of operation. Files holding symmetric keys must be smaller than files holding the smallest
possible RSA private key.

9.2 RSA Keys

9.2.1 RSA Public Key

RSA public keys are stored in files as defined below. This format also applies for the
response APDU of a GENERATE PUBLIC KEY PAIR command.

Number of bytes Description
1 Key type (value: 04HEX)
1 Key length in byte/4 (e.g. 20HEX for a 1024 bits key)
N Modulus (e.g. N = 128 for a 1024 bits key)
4 Public exponent (3 or Fermat-4)

9.2.2 RSA Private Key

RSA private keys are stored in files as defined below.

Number of bytes Description
1 Key type (value: 05HEX)
1 Key length in byte/4 (e.g. 20HEX for a 1024 bits key)
N Modulus (e.g. N = 128 for a 1024 bits key)
N Private exponent

9.2.3 RSA Private Key in CRT Format

RSA private keys in CRT (Chinese Remainder Theorem) format are stored in files as
defined below.

Number of bytes Description
1 Key type (value: 06HEX)
1 Component length in byte/4 (e.g. 10HEX for a 1024

bits key)
N Prime-1 (P) (e.g. N = 64 for a 1024 bits key)
N Prime-2 (Q)
N Exponent-1 (DP)
N Exponent-2 (DQ)
N Coefficient (QP)

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

8

10 Key Management

The restrictions described in this section apply in addition to the standard access
conditions defined for file operations.

10.1 RSA Private Key Import

During applications installation it is possible to define whether the token allows the
import of RSA private keys or not. If private key import is forbidden then it is not
possible to update files that can potentially be used in private key operations.
Furthermore, it is ensured that private key files are no longer readable or modifiable upon
key pair generation.
The size of a file in combination with its access conditions indicate if it can hold a private
key or not. The minimum length of a valid private key is 130 bytes for the JCOP specific
version of the application and 258 bytes for Java Card compatible version. Additionally,
the access condition for signing or decryption must be other than NEVER. In contrary,
public keys can only be used for encryption so that it is still possible to import public
keys of any size as long as signing and decryption is forbidden on these files. Also, DES
and AES keys are still importable since they do not need to be larger than 32 bytes
anyway.

10.2 FIPS 140-2

For the FIPS 140-2 certified version of the BlueZ PKCS#15 application (as included in
JCOP21id) additional restrictions apply. These restrictions are:

• The size of files holding symmetric (DES/AES) keys must be equals the size of
the key. Consequently, the size of such key files can be in the range of 8-32 bytes.

• Read, update and erase operations on secret or private key files are only allowed
if secure messaging is used. To enforce this it is not possible to access files
smaller than 33 bytes which allow any of the crypto operations (sing, encrypt,
decrypt) without secure messaging. The same is true for larger files that allow
sign or decrypt operations since these files might hold RSA private keys. Files
greater than 32 bytes which allow the encryption operation only, however, can be
updated without secure messaging since they can only be used for public key
operations.

• It is not possible to define the authentication object that protects the modification
of the secure messaging keys. The access condition is automatically set to “SM”,
which means secure messaging is required to update these keys. The
corresponding byte in the personalization command is silently ignored.

Apart from the modified key management, the FIPS 140-2 version of the PKCS#15
applet does not support any algorithms involving the execution of the MD5 hash
algorithm. Furthermore, the token automatically verifies the correctness of RSA key

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

9

pairs upon key generation and enters halt mode if an error occurs. Also, secure
messaging must be used whenever a PIN related command (CHANGE REFERENCE
DATA, RESET RETRY COUNT, VERIFY) holding one ore more PIN values is
sent.

11 APDU Command Details

11.1 Considerations

As specified in [2], in general all command APDUs can hold a payload of 255 data bytes
and response APDUs can hold 256 bytes. Please be aware that in case of secure
messaging this payload is decreased by the number of bytes needed for the secure
messaging format defined in [3]. This limits the maximum payload for command APDUs
to 239 bytes and for response APDUs to 231 bytes during secure messaging. As a result,
it is, for instance, not possible to generate a 2048 bits signature while secure messaging is
enabled.

11.2 Token Personalization Commands

The personalization of the PKCS#15 application is based on certain Open Platform
functionality. For detailed information about Open Platform application life cycles, Open
Platform secure messaging etc. see [9].
Upon installation of the BlueZ PKCS#15 application the application life cycle state is
“LOADED”. In this state it only accepts a special set of commands, which allow to
initially personalize the application via Open Platform secure messaging based on Card
Manager keys. After a successful personalization the life cycle of the application is
transitioned to “PERSONALIZED”. See the description of the command below for
details of the personalization process.
This process is necessary to initially put keys and PINs onto the card in a secure manner.
Typically one would open up another secure channel based on these keys later on to do
further personalization of the token (e.g. generating keys) if necessary.

11.2.1 Open Platform INITIALIZE UPDATE Command

This command initiates the personalization process. Together with the Open Platform
EXTERNAL AUTHENTICATE COMMAND it carries out mutual authentication
between the card and the host application and sets up a Open Platform secure channel.
This is based on symmetric keys of the Open Platform Card Manager. See [9] for details.
After successful processing of the command the card is authenticated and it expects the
Open Platform EXTERNAL AUTHENTICATE COMMAND.

Command APDU:

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

10

Code Value [HEX] Remarks
CLA 80 Proprietary
INS 50 INITIALIZE UPDATE command
P1 00 or 01 to 7F Key set version
P2 00 Key index
LC 08 Length of data
Data XX Host challenge
LE 00

Response APDU:

As defined in [9].

11.2.2 Open Platform EXTERNAL AUTHENTICATE Command

This command authenticates the host and completes the setting up of the secure channel.
A previous and successful INITIALIZE UPDATE COMMAND is necessary prior to
processing this command. The security level “Encryption and MAC” is mandatory for
token personalization. See [9] for details.

Command APDU:

Code Value [HEX] Remarks
CLA 84 Proprietary with secure messaging
INS 82 EXTERNAL AUTHENTICATE command
P1 03 Security level
P2 00 Parameter
LC 10 Length of data
Data XX Host cryptogram and MAC
LE - Not present

Response APDU:

Empty (status word 9000HEX only).

11.2.3 INITIALIZE TOKEN Command

Once the secure channel is set up the token can be personalized. Using this command the
initial secure messaging keys (for ISO secure messaging) and the initial PIN values are
set on the token. Upon successful processing of this command the life cycle state of the
application is set to “PERSONALIZED”.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

11

Command APDU:

Code Value [HEX] Remarks
CLA 84 Proprietary with secure messaging
INS F0 INITIALIZE TOKEN command
P1 00
P2 00
LC 51 Length of data
Data XX MACed and encrypted (Open Platform secure

messaging):
16 byte - MAC key
16 byte - ENC key
16 byte – PIN 1
16 byte – PIN 2
16 byte – PIN 3
1 byte – reference number of the authentication
object, which protects the secure messaging key
files (value: 2,3,4,5 or 6 as defined in security
attributes below)

LE - Not present

Response APDU:

Empty (status word 9000HEX only).

11.3 File System Commands

The following commands represent a subset of the ISO/IEC standards [2]/[6]/[7]. The
format is described for the case when they are sent in clear (no secure messaging). All
commands can also be sent in the context of a secure channel using secure messaging.
This affects the format of the commands as defined previously. In the case of secure
messaging the token expects a class byte of 0CHEX.

11.3.1 PUT DATA Command

This command can be used to set the MODIFY access flag of a file to NEVER. The
command can be performed only if the security status for MODIFY is satisfied.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS DA PUT DATA command

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

12

P1 01
P2 00

Indicates proprietary
application data

LC 02 Length of data
Data XX File identifier
LE - Not present

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 82 File not found
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length

11.3.2 CREATE FILE Command

This command allows creating new transparent files under DF PKCS#15. The operation
is bound to one of the authentication objects (as defined during token installation) and
thus can only be performed upon successful authentication. The file identifier, the file
size and the access conditions must be defined in the command. The requested size plus
eight additional bytes for file information must be available in the pool of overall file
system space (allocated during applet installation). It’s not allowed to allocate files of
zero length. After successful processing of the command the newly created file becomes
the currently selected file. Duplicated file identifiers are not allowed. Upon allocation the
file data is set to all bytes zero.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS E0 CREATE FILE command
P1 00
P2 00

Require file identifier in
command data

LC 12 Length of data
Data XX File Control Parameters (FCP)
LE - Not present

The command data defines the file control parameters in accordance to [2] and [9]. The
expected format is defined below.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

13

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 80 Invalid file descriptor byte
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length
6A 89 File already exists
6A 84 File system full

11.3.2.1 Command Data

Byte Value[HEX] Remarks

1 62 FCP tag
2 10 FCP length
3 80 File size tag
4 02 File size length
5 XX File size high byte
6 XX File size low byte
7 82 File descriptor byte tag
8 01 File descriptor byte length
9 01 Transparent EF
10 83 File identifier tag
11 02 File identifier length
12 XX File identifier high byte
13 XX File identifier low byte
14 86 Security attributes, proprietary format tag
15 03 Security attributes length
16 XX Security attributes (byte 1) as defined below
17 XX Security attributes (byte 2) as defined below
18 XX Security attributes (byte 3) as defined below

Security Attributes

The security attributes of a file are encoded in three bytes whereas each nibble represents
the access conditions for a certain type of operation as can bee seen below:

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

14

Byte 1 Byte 2 Byte 3
READ MODIFY SIGN ENCIPHER DECIPHER DELETE

The access conditions encoded in each of the nibbles are defined as follows:

Bit 4 Bit 3 Bit 2 Bit 1 Condition
- 0 0 0 ALWAYS
- 0 0 1 NEVER
X 0 1 0 PIN 1
X 0 1 1 PIN 2
X 1 0 0 PIN 3
- 1 0 1 AUTH
- 1 1 0 SM
- 1 1 1 RFU

Bit 4 is the “one-time” bit. If this bit is set the PIN will be invalidated after each
operation for which it is required. This allows, for instance, enforcing PIN validation
before each key usage for signature generation (as required in [8]).
It is to be noted that the access conditions AUTH and SM both relate to the secure
channel (established via a MUTUAL AUTHENTICATE command). AUTH indicates a
secure channel with no encryption (mutual authentication only) and SM indicates
authentication with subsequent secure messaging. Consequently, if secure messaging is
done (SM) the AUTH condition is satisfied as well but not vice versa.

11.3.3 DELETE FILE Command

This command allows to either delete a specific file, by passing its file identifier in the
command data, or to delete the current selected file. The command can be performed only
if the security status for DELETE is satisfied. After successful processing of the
command DF PKCS#15 is selected (no EF is selected).

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS E4 DELETE FILE command
P1 00 or 02 (see Select File command in [2])
P2 00
LC none or 02 Length of data
Data XX File identifier
LE -

Response APDU:

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

15

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong APDU data length
69 86 No EF selected
6A 82 File not found

11.3.4 CHANGE REFERENCE DATA Command

This command allows to either update the value of a PIN, which is already validated, or
to verify the PIN first and then update its value if the verification was successful. After
successful processing of the command the PIN in question is always validated. The
command will fail if the PIN is blocked (see RESET RETRY COUNTER command for
PIN unblocking).

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 24 CHANGE REFERENCE DATA command
P1 00 or 01 00 – verify PIN first and then update

01 – update only
P2 XX PIN number coded in bit 1 - bit 5
LC 10 or 20 Length of data
Data XX LC = 20 – old PIN value followed by new PIN

value
LC = 10 – new PIN value

LE -

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length
69 83 PIN blocked

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

16

11.3.5 RESET RETRY COUNTER Command

This command allows to either reset the retry counter of a PIN (explicit unblock) or to
update a PIN value (implicit unblock). This functionality might be used by a security
officer to unblock a user PIN or to set a new user PIN, therefore the command can only
be processed if the security officer PIN (PIN 3) is already validated or the PIN value of
the security officer PIN is sent in the command data. After the operation the security
officer PIN is always validated and the target PIN is invalidated. The target PIN cannot
be the security officer PIN since only user PINs can be unblocked.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 2C RESET RETRY COUNTER command
P1 00 – 03 See table of P1/LC combinations below
P2 01 - 03 PIN number coded in bit 1 - bit 5
LC none or 10 or 20 Length of data
Data XX LC = 10 – security officer PIN (P1=1) or new

PIN (P1=2)
LC = 20 - security officer PIN followed by new
PIN

LE -

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length

11.3.5.1 Valid P1/LC combinations

P1[HEX] LC[HEX] Description

00 20 The provided security officer PIN is verified. If it is correct the
user PIN in question is updated (the new value is set).

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

17

01 10 The provided security officer PIN is verified. If it is correct the
user PIN in question is unblocked (the retry counter is reset).

02 10 The user PIN in question is updated (the new value is set), if the
security officer PIN is already validated.

03 None The user PIN in question is unblocked (the retry counter is
reset), if the security officer PIN is already validated.

11.3.6 READ BINARY Command

This command allows reading up to 256 bytes of data from the currently selected
transparent EF. The command can be performed only if the security status for READ is
satisfied and an EF is selected. Be aware that if the token operates in the context of a
secure channel using secure messaging less than 256 can be read. In this case payload +
padding + 17 byte must be less or equals to 256. This means the maximum payload is
231 bytes.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS B0 READ BINARY command
P1 XX
P2 XX

Offset to the first byte to be read in data units from the
beginning of the file.

LC -
Data -
LE XX Number of bytes to be read (00 means 256)

Response APDU:

The data bytes from the file.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
69 86 No EF selected
6A 86 Incorrect P1,P2 (out of bounds)

11.3.7 UPDATE BINARY Command

This command allows updating up to 255 bytes in the currently selected transparent EF
with the data passed in the command. The command can be performed only if the

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

18

security status for MODIFY is satisfied and an EF is selected. Be aware that if the token
operates in the context of a secure channel, less than 255 can be updated. In this case
payload + padding + 13 byte must be less or equals to 255. This means the maximum
payload is 239 bytes.
If the token (Java Card compatible version) is configured to prevent RSA private key
import, it does not process this command on files, which are greater than 257 bytes and
allow signature or decipher operations. Only files with these properties can be used for
RSA private key operations. DES/AES keys or RSA public keys are still importable since
they fit in smaller files.
If the token (BlueZ JCOP compatible version) is configured to prevent RSA private key
import, it does not process this command on files, which are greater than 129 bytes and
allow the sign or decipher operation. Only files with these properties can be used for RSA
private key operations. (RSA public keys are still importable since they are only used for
encipher operations).

If the target file is one of the secure messaging key files, secure messaging is mandatory.
The file update is transactional.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS D6 UPDATE BINARY command
P1 XX
P2 XX

Offset to the first byte to be updated in data units from
the beginning of the file.

LC 01-FF Length of data
Data XX Data to be written
LE -

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
69 86 No EF selected
6A 86 Incorrect P1,P2 (out of bounds)
67 00 Wrong APDU data length
69 86 Command not allowed (RSA private key not importable)

11.3.8 ERASE BINARY Command

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

19

This command sets (part of) the content of the currently selected transparent file to its
logical erased state, sequentially, starting from a given offset. If command data is sent, it
codes the offset of the first byte not to be erased. Otherwise the command erases up to the
end of the file. The command can be performed only if the security status for MODIFY is
satisfied and an EF is selected. The file modification is not transactional.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 0E ERASE BINARY command
P1 XX
P2 XX

Offset to the first byte to be erased in data units from the
beginning of the file.

LC None or 02 Length of data
Data XX Empty or end offset
LE -

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
69 86 No EF selected
6A 86 Incorrect P1,P2 (out of bounds)

11.3.9 SELECT FILE Command

This command allows selecting a transparent EF under the DF PKCS#15. If the file in
question is found, it is set as selected and corresponding file control information is
returned. After application reset (e.g. application selection) DF PKCS#15 is selected (no
EF is selected).

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS A4 SELECT FILE command
P1 00 or 02 (see Select File command in [2])
P2 00 Return FCI

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

20

LC 02 Length of data
Data XX File identifier
LE 00

Response APDU:

File control information (FCI) as defined below.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 82 File not found
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length

11.3.9.1 EF FCI

Byte Value[HEX] Remarks

1 6F FCI tag
2 13 FCI length
3 80 File size tag
4 02 File size length
5 XX File size high byte
6 XX File size low byte
7 82 File descriptor byte tag
8 01 File descriptor byte length
9 01 File descriptor byte (transparent EF)
10 83 File identifier tag
11 02 File identifier length
12 XX File identifier high byte
13 XX File identifier low byte
14 86 Security attributes, proprietary format
15 03 Security attributes length
16 XX Security attributes (byte 1) (see CREATE FILE command)
17 XX Security attributes (byte 2) (see CREATE FILE command)
18 XX Security attributes (byte 3) (see CREATE FILE command)
19 85 Proprietary information
20 06 Proprietary information length
21 XX Command processing counter high byte
22 XX Command processing counter low byte
23 XX Modification counter high byte
24 XX Modification counter low byte

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

21

25 XX Signature counter high byte
26 XX Signature counter low byte
27 90 SW1
28 00 SW2

11.3.10 VERIFY Command

This command verifies the provided PIN value and either sets the PIN status to
‘validated’ or decrements the retry counter and sets the PIN status to ‘invalid’. The value
passed in the command data must be padded with 00HEX bytes to a length of 16 bytes. If
the PIN in question is already blocked the token returns an error. If the verification fails
the token returns an error code of 63CXHEX, where X is the number of remaining tries
before the PIN is blocked.
If the command is sent without command data and the PIN is not yet validated also
63CXHEX is returned or (if the PIN is validated) 0x9000 is returned. This allows checking
the state and the remaining retries without sending reference data (tying to validate).

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 20 VERIFY command
P1 00
P2 XX PIN number coded in bit 1 - bit 5
LC 10 or none Length of data
Data XX or none Padded PIN value
LE -

Response APDU:

Empty (status word 9000HEX only) or 63CXHEX as described above.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
63 CX Verification failed, X remaining tries
6A 86 Incorrect P1,P2
67 00 Wrong APDU data length
69 83 PIN blocked

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

22

11.3.11 GET CHALLENGE Command

This command allows getting an eight byte true random challenge from the token to be
used in authentication (via MUTUAL AUTHENTICATE command) or otherwise.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 84 GET CHALLENGE command
P1 00
P2 00
LC -
Data -
LE 08

Response APDU:

The eight bytes challenge.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 86 Incorrect P1,P2

11.4 Commands To Perform Security Operations

The commands outlined here provide access to the cryptographic capabilities of the
token. For details see also [6].

11.4.1 MUTUAL AUTHENTICATE Command

This command, in combination with a previous GET CHALLENGE command, allows to
do mutual authentication between the host and the card and to set up a secure channel.
Since the challenge is only valid for one command, the mutual authentication must take
place right after the GET CHALLENGE command. Upon successful processing of
command the token has authenticated the host, session keys are derived and the token is
ready to accept commands via the secure channel. If the secure channel was established
with P1 equals zero then the token doesn’t process plain commands anymore. All
subsequent command must be encrypted and MACed. This state corresponds to the
access condition “SM”. If P1 was not equals zero the token continues to expect plain

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

23

commands (no secure messaging). This state corresponds to the access condition
“AUTH”. The secure channel can be terminated by either setting up a new secure channel
(out of the current secure channel) or by resetting the token (application selection). For
details on secure messaging see section 12.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 82 MUTUAL AUTHENTICATE command
P1 XX zero means secure messaging required, plain otherwise
P2 00
LC 10 Length of data
Data XX Eight bytes host challenge followed by eight bytes host

cryptogram
LE 00

Response APDU:

Eight bytes card cryptogram, which authenticates the card.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or cryptogram invalid
69 84 Challenge invalid
67 00 Wrong APDU data length

11.4.2 MANAGE SECURITY ENVIRONMENT Command

This command is used to set up certain parameters on the card before security operations
(e.g. sign, encipher etc.) are executed. The Security Environment is initially (after token
reset) empty.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 22 MANAGE SECURITY ENVIRONMENT command
P1 XX C1 - SET target CRT

F3 – RESTORE an empty security environment

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

24

P2 XX Tag of target CRT (if SET command):
B4 – cryptographic checksum template (CCT)
B6 – digital signature template (DST)
AA – hash template (HT)
B8 – confidentiality template (CT)
(for details see [6])

Zero if RESTORE command.
LC 00,0A,0B,14 or 1C Length of data
Data XX CRT data (CRDOs) as defined below. Empty if

RESTORE command.
LE -

Response APDU:

Empty (status word 9000HEX only).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect
6A 86 Incorrect P1, P2
6A 81 Function not supported (only SET/RESTORE command allowed)

11.4.2.1 Command Data

The token expects the following command data format. The hatched data is optional. This
leads to a command data length of 10, 20 or 28 bytes. Which Control Reference Data
Objects (CRDO) are required for which Control Reference Template (CRT) can be seen
in the section “Required CRDOs in CRTs”. CRDOs not required for a CRT but not
optional in the command data can be set to zero since they will be ignored by the token.

Byte Value[HEX] Remarks

1 80 Algorithm identifier tag
2 01 Algorithm identifier length
3 XX Algorithm identifier (as defined in Token Info file)
4 81 File reference tag
5 02 File reference length
6 XX File identifier of key to be used in operation (high byte)
7 XX File identifier of key to be used in operation (low byte)
8 84 Key reference tag
9 01 Key reference length
10 XX Key reference (this value is ignored and can be zero)

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

25

11 87 Initialization Vector (IV) tag
12 08 or 10 IV length

(IV length is 8 bytes for DES and 16 bytes for AES)
13 XX
… …

20/28 XX

IV bytes

To prepare the token for RSA key pair generation the following command data format
with the length of 11 bytes must be used:

Byte Value[HEX] Remarks

1 80 Algorithm identifier tag
2 01 Algorithm identifier length
3 XX Algorithm identifier (as defined in Token Info file)
4 81 File reference tag
5 02 File reference length
6 XX File identifier of file to receive public key (high byte)
7 XX File identifier of file to receive public key (low byte)
8 81 Key reference tag
9 02 Key reference length
10 XX File identifier of file to receive private key (high byte)
11 XX File identifier of file to receive private key (low byte)

11.4.2.2 Required CRDOs in CRTs

CRT\CRDO Algorithm

reference
File reference

1
File reference

2
IV (optional -
default is zero)

Key
referece

CCT X X - X -
DST X X X(for key

gen. only)
- -

HT X - - - -
CT X X - X -

11.4.3 COMPUTE CRYPTOGRAPHIC CHECKSUM Command

This command initiates the computation of a cryptographic checksum. This typically
means the card generates an 8/16 bytes MAC using DES/AES in CBC mode (see section
Supported Cryptographic Algorithms). The command can be performed only if the
security conditions for SIGN (of the key file referenced in the Security Environment) are
satisfied. Before submitting this command the parameters for the desired operation
(algorithm reference, key reference, IV) must be set in the Security Environment. The
input data must be a multiple of the block length of the algorithm. Command chaining is
not supported.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

26

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 2A PERFORM SECURITY OPERATION command
P1 8E Output data is the cryptographic checksum
P2 80 Input is plain data
LC XX Length of data
Data XX Input data (multiple of block length)
LE 00

Response APDU:

The cryptographic checksum (typically 8 bytes for DES and 16 bytes for AES).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong data length (not multiple of block length)
69 88 Algorithm reference or key material invalid
6A 82 Key file not found

11.4.4 ENCIPHER Command

This command enciphers data using various algorithms (see section 8). The command
can be performed only if the security conditions for ENCIPHER are satisfied. Before
submitting this command the parameters for the desired operation (algorithm reference,
key reference, IV) must be set in the Security Environment. For algorithms not providing
automatic padding the input data must be a multiple of the block length of the algorithm.
For RSA operations with PKCS#1 padding the input data must be less or equals modulus
length - 11 bytes, since only one block can be returned in the response data. Command
chaining is not supported. Enciphering using RSA private keys is not allowed.
If the input data has a length of 256 bytes, P2 holds the first byte of the input data. Also,
if 256 bytes are to be returned, the response APDU does not hold the padding indicator
byte. This allows processing 2048 bit operations with one command response pair.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 2A PERFORM SECURITY OPERATION command

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

27

P1 86 Output data is one padding indicator byte
followed by the plain cryptogram.
Padding indicator byte can be:

02HEX – no padding
80HEX – PKCS#1

P2 XX 80 – Input is plain data
XX – first byte of input data if 2048 bit

LC XX Length of data
Data XX Input data (multiple of block length for algorithms

without padding)
LE 00

Response APDU:

Padding byte followed by plain cryptogram or cryptogram only if 256 bytes are to be
returned.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong data length
69 88 Algorithm reference or key material invalid
6A 82 Key file not found

11.4.5 DECIPHER Command

This command deciphers data using various algorithms (see section 8). The command
can be performed only if the security conditions for DECIPHER are satisfied. Before
submitting this command the parameters for the desired operation (algorithm reference,
key reference, IV) must be set in the Security Environment. The input data must always
be a multiple of the block length of the algo rithm. For RSA operations with PKCS#1
padding the output data is less than the block length since padding bytes are
automatically removed. The token returns the general error code 6F00HEX if it encounters
malformed padding. Command chaining is not supported. Deciphering using RSA public
keys is not allowed.
If the input data has a length of 256 bytes, P2 holds the first byte of the input data. Also,
the padding indicator byte is suppressed. The type of padding is implicitly known from
the algorithm identifier in the security environment. This allows processing 2048 bit
operations with one command response pair.

Command APDU:

Code Value [HEX] Remarks

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

28

CLA 00 Plain according to [2]
INS 2A PERFORM SECURITY OPERATION command
P1 80 Output data is plain (padding is removed)
P2 XX 86 - Input data is one padding indicator byte followed by

the plain cryptogram.
Padding indicator byte can be:
02HEX – no padding
80HEX – PKCS#1

XX - first byte of input data if 2048 bit
LC XX Length of data
Data XX Input data (multiple of block length + padding indicator

byte)
(no padding indicator byte if 2048 bit)

LE 00

Response APDU:

Decrypted data (padding is removed).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong data length
69 88 Algorithm reference or key material invalid
6A 82 Key file not found

11.4.6 COMPUTE DIGITAL SIGNATURE Command

This command computes a digital signature for the given input data using a RSA private
key. Depending on the algorithm used the input data can be a hash, digest info structure
and hash, full block (PKCS#1 padded) or plain data. Command chaining is not supported.
If the input data has a length of 256 bytes, P2 holds the first byte of the input data. This
allows processing 2048 bit operations with one command response pair.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 2A PERFORM SECURITY OPERATION command
P1 9E Output data is the digital signature

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

29

P2 XX 9A - Input data is the plain data to be integrated in the
signing process

XX - first byte of input data if 2048 bit
LC XX Length of data
Data XX Input data for digital signature
LE 00

Response APDU:

The digital signature.

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong data length
69 88 Algorithm reference or key material invalid
6A 82 Key file not found

11.4.7 HASH Command

This command initiates the calculation of a hash code (SHA-1 or MD5). For this
command the token supports command chaining (see [6]) so that an arbitrary amount of
data can be feed into the hash engine. All blocks but the last must have a size that is a
non-zero multiple of 64 byte. Upon receipt of the last block the token finalizes the hash
and returns it in the response APDU. The command chaining is initiated by setting the
chaining bit. The final command is indicated by sending a HASH command without the
chaining bit set. Any other command than a HASH command terminates command
chaining (the hash state is destroyed).

Command APDU:

Code Value [HEX] Remarks
CLA 00 or 10 Plain according to [2]

Command chaining:
00 – for the last (or only command)
10 – for a command which is not the last command

INS 2A PERFORM SECURITY OPERATION command
P1 90 Output data is the hash code (upon final or only

command)
P2 80 Input data is the plain data to be hashed
LC XX Length of data
Data XX Input data for hash calculation

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

30

LE 00

Response APDU:

The hash code (empty for intermediate commands during command chaining).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
67 00 Wrong data length
69 88 Algorithm reference invalid

11.4.8 GENERATE PUBLIC KEY PAIR Command

This command initiates the generation and storing of a RSA public key pair in the token.
The token supports key generation with a public key value of either 3 or 65537 (Fermat-
4). The command requires two files to be present (previously set in the DST CRT of the
Security Environment), which can receive the resulting public key and private key values.
The size of the public key file defines indicates the desired key length. The token always
generates a private key in the CRT format. This means the target file for the private key
must be of appropriate size (e.g. 322 bytes for a 1024 bit key). The command can be
performed only if the security conditions for MODIFY (of both files) are satisfied. If the
LE byte of the command APDU is zero the access conditions for the two files are
modified during key generation. The MODIFY access condition of both files is set to
NEVER and the READ access condition of the private key file is also set to NEVER. If
the token does not allow importing RSA key material this is always the case (independent
of LE).
Upon successful key generation the token returns the public key in the response APDU.
If the key length is greater than 1984 bit only the modulus is returned. The public
exponent is implicitly known anyway. This indicates that the key material is successfully
stored. The key generation process is not transactional. For a detailed description of the
key format see section 9.

Command APDU:

Code Value [HEX] Remarks
CLA 00 Plain according to [2]
INS 46 GENERATE PUBLIC KEY PAIR command
P1 00
P2 00

Generate and store PK pair

LC -
Data -
LE XX Zero or length of public key value

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

31

Response APDU:

Public key value encoded as defined in section 9 (modulus only if key length > 1984 bit).

Status conditions:

SW1HEX SW2HEX Remarks

69 82 Secure messaging incorrect or PIN not verified
6A 86 Incorrect P1,P2
69 88 Algorithm reference or key file invalid
6A 82 Key file not found

12 Secure Messaging

Secure Messaging defines a cryptographic protocol that allows setting up a secure
channel, which ensures integrity and confidentiality of the APDU communication
between the smart card and the reader device. The cryptographic operations for secure
messaging like mutual authentication, session key generation, data encryption and MAC
generation are as defined in Open Platform ([9]) since the ISO specifications leave this
open. The secure messaging format, however, is as defined in [3]. This section provides
an overview of the secure messaging protocol implemented by the BlueZ PKCS#15
application. For further details please contact the BlueZ Secure Systems team.

12.1 Mutual Authentication

To do mutual authentication between a host and the card (PKCS#15 application) two
command response pairs must be exchanged. At first the host sends the GET
CHALLENGE command to the card to get an 8 byte true random value known as the
“card challenge” (Crnd). The host then also generates an 8 byte random value known as
the “host challenge” (Hrnd) and calculates the “host cryptogram” (Hcg) as follows:

Hcg = DES3MAC(KeySES_ENC , Crnd|Hrnd|0x8000000000000000)

where

KeySES_ENC = DES3ENC(KENC, Cl | Hf) | DES3ENC(KENC, Cf | Hl)

and

Hf/Hl : host challenge (first/last 4 bytes)
Cf/Cl : card challenge (first/last 4 bytes)
KENC : static encryption and authentication key (ENC key)

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

32

KeySES_ENC : encryption and authentication session key
DES3MAC : triple DES CBC MACing (as described in next chapter) with zero ICV
DES3ENC : triple DES CBC Encryption (as described in next chapter) with zero ICV

The host then sends the host challenge along with host cryptogram to the card using the
MUTUAL AUTHENTICATE command. The card verifies the host cryptogram and
calculates the “card cryptogram” (Ccg) as follows:

Ccg = DES3MAC(KeySES_ENC , Hrnd|Crnd|0x8000000000000000)

The card cryptogram is returned as response to the MUTUAL AUTHENTICATE
command so that the host can verify it.
As part of this mutual authentication process both, the card and the host, calculate the
MAC session key (KeySES_MAC) as follows:

KeySES_MAC = DES3ENC(KMAC, Cl | Hf) | DES3ENC(KMAC, Cf | Hl)

 where

KMAC : static encryption and authentication key (MAC key)

The MUTUAL AUTHENTICATE command indicates whether the secure channel shall
be secured (encrypted and MACed) or plain. If it is to be secured all subsequent APDU
are secured as described in the following using the two session keys established during
mutual authentication. Therefore, in the following it is assumed that the secure channel
setup already took place and the session keys (KeySES_ENC and KeySES_MAC) are available.

12.2 Cryptographic Algorithms
All cryptographic operations described are based on the triple DES algorithm using a
double length (16 byte) key.

12.2.1 Padding Algorithm

Padding is used for MAC generation as well as for data encryption, whereas in case of
MAC generation the padding bytes are not to be transmitted. Padding shall consist of one
mandatory byte valued to 80HEX followed, if needed, by 0 to k-1 bytes set to 00HEX, until
the respective data block is filled up to k bytes (k is a multiple of 8 bytes). This represents
the padding algorithm defined in [2] and [10].

12.2.2 Data Encryption

The encryption of APDU command and response data is done using triple DES
encryption in CBC mode as outlined below. The Initial Chaining Vector (ICV) is always
8 bytes of binary zero (00HEX).

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

33

Encrypted data block 1
(8 bytes)

Clear data block 1
(8 bytes)

Clear data block 2
(8 bytes)

Clear data block 3
(8 bytes)

Encrypted data block 2
(8 bytes)

Encrypted data block 3
(8 bytes)

DES3ENC

DES3ENC

DES3ENC

KeySES_ENC
(16 bytes)

ICV(8 bytes)

Step 1 Step 2

Step 3 Step 4

Step n-1 Step n

12.2.3 Authentication Cryptogram (MAC) Generation

To sign APDUs a triple DES based MAC algorithm operating in CBC mode is used. To
generate a MAC for a command APDU the MAC of the previous command APDU is
used as the ICV. To generate a MAC for a response APDU the MAC of the previous
response APDU is used as the ICV. This chaining process does not span multiple secure
channel sessions. For the first MAC generated for a command APDU in the context of a
secure channel session the host cryptogram is used as the ICV. For the first MAC
generated for a response APDU in the context of a secure channel session the card
cryptogram is used as the ICV.

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

34

Clear data block 1
(8 bytes)

Clear data block 2
(8 bytes)

Clear data block 3
(8 bytes)

DES3ENC

DES3ENC

DES3ENC

KeySES_MAC
(16 bytes)

ICV(8 bytes)

Step 1 Step 2

Step 3 Step 4

Step n-1 Step n

Signature (MAC)
(8 bytes)

Previous MAC or
binary zero

12.3 Secure Messaging Format

The format of the secure messaging used to maintain the secure channel is defined in [3].
Nevertheless, the exact impact of secure messaging on the structures of APDU messages
is again described below.
In the context of a Secure Channel all command and response APDUs must be signed
(status words and command headers need to be protected). Furthermore, in those cases
where they hold command or response data, this data must be encrypted.

12.3.1 Abbreviations

CC cryptographic checksum (triple DES MAC)
CG cryptogram (padded and encrypted command or response data)
CLA* class byte indicating secure messaging (value 0CHEX)
Tcc tag indicating a CC (value 8EHEX)
Lcc length of a CC (value 08HEX)
CH command header (CLA* INS P1 P2)
PB padding bytes
Tsw tag indicating a status word (value 99HEX)
Lsw length of a status word (value 02HEX)
TLE tag indicating a Le field (value 96HEX)
LLE length of a Le field (value 01HEX)
TPI CG tag indicating a PI followed by a CG (value 86HEX)
LPI CG length of a PI followed by a CG

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

35

PI padding indicator byte (value 01HEX)

12.3.2 Case 1 APDU

The unsecured command-response pair is as follows.

Command header Command body
CLA INS P1 P2 Empty

Response body Response trailer

Empty SW1 SW2

The secured command APDU is as follows.

Command header Command body
CLA* INS P1 P2 New Lc field (value 0AHEX) ||

New data field (10 bytes) ||
New Le field (value 00HEX)

New data field = One data object = Tcc || Lcc || CC

Data covered by CC = One block = CH || PB

The secured response APDU is as follows.

Response body Response trailer
New data field SW1 SW2

New data field = Two data objects = Tsw || Lsw || SW1 SW2 ||

Tcc || Lcc || CC

Data covered by CC = One block = Tsw || Lsw || SW1 SW2 || PB

12.3.3 Case 2 APDU

The unsecured command-response pair is as follows.

Command header Command body
CLA INS P1 P2 Le field

Response body Response trailer

Data field SW1 SW2

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

36

The secured command APDU is as follows.

Command header Command body
CLA* INS P1 P2 New Lc field (value 0DHEX) ||

New data field (13 bytes) ||
New Le field (value 00HEX)

New data field = Two data objects = TLE || LLE || LE ||

Tcc || Lcc || CC

Data covered by CC = Two blocks = CH || PB || TLE || LLE || LE || PB

Note: LE is the value of the Le field in the unsecured command

The secured response APDU is as follows.

Response body Response trailer
New data field SW1 SW2

New data field = Three data objects = TPI CG || LPI CG || PI || CG ||

Tsw || Lsw || SW1 SW2 ||
Tcc || Lcc || CC

Data covered by CC = One or more blocks = TPI CG || LPI CG || PI || CG ||

Tsw || Lsw || SW1 SW2 || PB

12.3.4 Case 3 APDU

The unsecured command-response pair is as follows.

Command header Command body
CLA INS P1 P2 Lc field || Data field

Response body Response trailer

Empty SW1 SW2

The secured command APDU is as follows.

Command header Command body
CLA* INS P1 P2 New Lc field ||

New data field ||
New Le field (value 00HEX)

New data field = Two data objects = TPI CG || LPI CG || PI || CG ||

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

37

 Tcc || Lcc || CC
Data covered by CC = Two or more blocks = CH || PB ||

TPI CG || LPI CG || PI || CG || PB

The secured response APDU is as follows.

Response body Response trailer
New data field SW1 SW2

New data field = Two data objects = Tsw || Lsw || SW1 SW2 ||

Tcc || Lcc || CC

Data covered by CC = One block = Tsw || Lsw || SW1 SW2 || PB

12.3.5 Case 4 APDU

The unsecured command-response pair is as follows.

Command header Command body
CLA INS P1 P2 Lc field || Data field || Le field

Response body Response trailer

Data field SW1 SW2

The secured command APDU is as follows.

Command header Command body
CLA* INS P1 P2 New Lc field ||

New data field ||
New Le field (value 00HEX)

New data field = Three data objects = TPI CG || LPI CG || PI || CG ||
 TLE || LLE || LE ||
 Tcc || Lcc || CC

Data covered by CC = Two or more blocks = CH || PB ||

TPI CG || LPI CG || PI || CG ||
TLE || LLE || LE || PB

The secured response APDU is as follows.

Response body Response trailer
New data field SW1 SW2

New data field = Three data objects = TPI CG || LPI CG || PI || CG ||

BlueZ PKCS#15 – An implementation for Open Platform Java Cards

38

Tsw || Lsw || SW1 SW2 ||
Tcc || Lcc || CC

Data covered by CC = One or more blocks = TPI CG || LPI CG || PI || CG ||

Tsw || Lsw || SW1 SW2 || PB

13 References

[1] PKCS#15 v1.1: Cryptographic Token Information Syntax Standard, RSA

Laboratories, June 6 ,2000
[2] ISO/IEC 7816-4, Part 4: Interindustry commands for interchange, First edition

1995-09-01
[3] ISO/IEC 7816-4, Part 4: Interindustry commands for interchange, First edition

1995-09-01, Amendment 1: Impact of secure messaging on the structures of
APDU messages

[4] ISO/IEC 7816-5, Part 5: Numbering system and registration procedure for
application identifiers, First edition 1994-06-15

[5] ISO/IEC 7816-6, Part 6: Interindustry data elements, First edition 1996-05-15
[6] ISO/IEC 7816-8, Part 8: Security related interindustry commands, First edition

1999-10-01
[7] ISO/IEC 7816-9, Part 9: Additional interindustry commands and security

attributes, First edition 2000-09-01
[8] PKCS#15: Conformance Profile Specification, RSA Laboratories, August 1, 2000
[9] Visa Open Platform, Card Specification, Version 2.0.1
[10] ISO/IEC 9797-1 (1999): Message Authentication Codes (MACs) – Part 1:

Mechanisms using a block cipher.

