

Introduction to the
IBM Service Management
Framework

Kevin Gilhooly

May 30, 2003

© Copyright IBM Corporation 2003. All Rights Reserved.

 Introduction to the IBM Service Management Framework

Page 2 of 7

The IBM Service Management Framework (SMF) is an implementation of the OSGi
Service Platform specification and provides a production-ready software management
framework for network-delivered applications. IBM designed SMF to meet the needs of
Internet-ready device manufacturers and service providers (for example,
telecommunication providers, Internet Service Providers, cable companies, and power
utilities).

SMF 3.5 (released in April, 2003) implements OSGi Service Platform Release 3 (SPR3).
It is available from http://www.ibm.com/embedded as a stand-alone toolkit and as a plug-
in for WebSphere Studio Device Developer (WSDD) 5.5. The previous release, SMF 3.1,
was an implementation of OSGi SPR2, and shipped as a stand-alone toolkit as well as a
plug-in to WSDD 5.0. (The WSDD plug-ins are also available through the Update
Manager.)

OSGi SPR3 defines a number of specifications which define the core functions of the
platform and an application lifecycle, and provide a services registry, package and
version management, and remote management ability. These specifications are then
implemented by OSGi Service Platform implementations such as SMF. The original
target platforms for an OSGi implementation were service gateways, vehicle telematics
and in-cabin information & entertainment systems, telephone switches, industrial
controllers, home set-top boxes, and similar devices. However, current OSGi
implementations (including SMF) are able to run on many different platforms.

The OSGi Alliance (http://www.osgi.org/) is an independent worldwide organization,
founded in March, 1999, by IBM, Sun, Ericsson and Oracle. Its objectives are to enable
open specification participation and process, and provide market and ISV education
programs for widespread adoption of its platform. The OSGi Service Platform is a Java
framework for developing remotely deployed service applications. The framework is
designed to provide reliability, large-scale distribution, support for a wide range of
devices and collaboration between modules. The platform specifications are available at
their website.

An OSGi bundle implementation provides services, and is the equivalent of an
application. Services are defined by specifications (a Java interface) and implemented by
one or more implementations (Java classes that implement the interface.) Because there is
a strict separation between specification and implementation, a service could have
multiple implementations for different environments. For example, a logging service
could write to a file in one implementation, to an expanding memory buffer in another,
and to a circular buffer in a third. All of these implementations would have the same
specification (by implementing the same Java interface); so that a consumer of the
service need not know which specific implementation was providing the service, or how
the service was implemented.

 Introduction to the IBM Service Management Framework

Page 3 of 7

The OSGi platform was designed to provide reliability, since it will typically be used in
large-scale deployments. The platform is portable to attract third-party developers to
create services for it. It is dynamic, allowing configurations to adapt to user and operator
needs over time. It is secure, protecting service providers from each other. It is scalable,
since the size of the implementations may vary over time, and since members have very
different configurations for their deployment of OSGi frameworks.

The OSGi architecture is based on Java, since its portable byte code format produces
deliverables that are independent of operating system or processor. Java is a relatively
safe environment, since security is integral to the language, and it provides integrity by
not allowing dangerous functions. Finally, it is a relatively mature platform, with an
active developer community and broad industry support.

Using Java does have some considerations. Its integrity is cooperative, not like an
operating system, which may have guarantees. Its security implementation is usually
performance intensive, which adds performance cost. It requires a runtime (the Java
Virtual Machine) which adds to the deployment size. It also lacks resource management
in the core language. (However, IBM provides the jclRM class library within the
WebSphere Custom Environment that does provide resource management.) Java’s
strengths outweigh its weaknesses in this case.

SMF is IBM's implementation of the OSGi specification. It is a componentized
implementation, optimized for embedded use, to enable viable deployment on resource
constrained devices. (For example, we have run the framework and applications on
Linux-based PDAs and PocketPC devices.) It is integrated with IBM WebSphere
Everyplace family for deployment, and the IBM WebSphere Studio for a development
environment.

SMF 3.5 runs on any environment that supports Java 2 (for example, WSDD 5.5 and
above.)

SMF allows applications to share a single Java Virtual Machine, and manages the
applications it controls. Since all applications run within the framework, SMF can install,
start, stop, update and uninstall applications without affecting other applications
executing within the framework. This makes it an excellent deployment platform in an
environment where recycling the entire JVM just to reload an application should be
avoided. This was one of the major design points, since the original deployment
platforms for the OSGi framework (and therefore, SMF) were service gateways, vehicle
telematics and in-cabin information & entertainment systems, telephone switches,
industrial controllers, home set-top boxes, and similar devices.

 Introduction to the IBM Service Management Framework

Page 4 of 7

OSGi architecture

Hardware

Bundle
Bundle

Bundle

Operating System

OSGi

Java VM

Bundle (Application)

Driver Driver Driver

= service interface
exported and
imported
by bundles

Bundles may also
export (and
import) packages

OSGi (and SMF) applications are called “bundles.” A bundle is a JAR file (or a JXE file
for the WebSphere Micro Environment and WebSphere Custom Environment) containing
the resources to implement zero or more services, a manifest file with bundle information
(dependencies on other resources, identifiers, etc.), and an optional Bundle Activator. A
bundle can also act as a library, and only export Java packages. The SMF platform can
install, update, and uninstall bundles dynamically. A service is specified in a Java
interface and may be implemented by multiple bundles. The Framework itself is
represented as the System bundle. Code within bundles can execute searches to find
services registered by other bundles. The bundle lifecycle contains six states: installed,
resolved, starting, active, stopping, and uninstalled.

 Introduction to the IBM Service Management Framework

Page 5 of 7

Bundle Lifecycle

Installed Uninstalled

Resolved

Active

Starting Stopping

Install

Uninstall

Start

Stop

Update

Uninstall

Automatic

Explicit

When a bundle is installed into the runtime, it will enter the installed state. After all of its
prerequisites (other bundles or packages) are available, it will automatically change to the
resolved state. At this point, it may be started, updated, or uninstalled dynamically and
asynchronously to any other bundles within the JVM.

When a resolved bundle is started, its Bundle Activator class’ start method is invoked.
After it returns successfully, the bundle is active. An active bundle can be stopped at any
time (and its Bundle Activator’s stop method invoked), and will return to the resolved
state. An update to a bundle will return it to the installed state (after the update
completes), and at that point, the bundle could also automatically move into the resolved
state, if all prerequisites are available. When a resolved bundle is uninstalled, it changes
to the uninstalled state, and can be garbage collected.

Each bundle contains a manifest file (MANIFEST.MF), located in the META-INF
directory inside the bundle JAR file. This file contains data the framework needs to
correctly install and activate it. The OSGi specification defines a set of headers that must
be used to define this data.

The SMF Bundle Developer is a WebSphere Studio Workbench feature that is designed
and tested to run within WSDD, and provides a graphical user interface for creating
bundles and editing manifest files. This plug-in provides a SMF Perspective, Smart
Guides, SMF Runtime and Bundle Server Views and an SMF Bundle Server. Its basic
features will run on standard JREs and can be used in a WSAD or vanilla Eclipse

 Introduction to the IBM Service Management Framework

Page 6 of 7

environment. However, some features are dependent on the WebSphere Micro
Environment (or WebSphere Custom Environment), and therefore WSDD, such as
launching a flash store-based runtime, and resource management. WSDD is the only
environment that IBM supports for running the SMF Bundle Developer, however WSDD
will also act as a plug-in for WebSphere Studio Application Developer, so it will run
under WSAD, as well.

The SMF perspective provides a graphical interface to identify bundle packages, imports
and exports. It also has an editor to construct the OSGi manifest file. It allows developers
to tag a bundle with device characteristics to differentiate target devices. It also allows
developers to connect to an SMF Bundle Server, view the server’s contents, and submit
bundles to the server. After bundles are on the server, it provides an interface to launch an
SMF runtime, connect to local or remote runtimes and install bundles into the runtime for
testing.

As a WSDD plug-in, the SMF Bundle Developer requires WSDD 5.0 (or above) and
either the Custom Gateway Plus, Custom Resource Managed Gateway Plus, or Custom
Max library, if using the WebSphere Custom Environment, or the Foundation
configuration, if using the WebSphere Micro Environment.

The SMF Bundle Server maintains a bundle catalog, and can be shared by multiple
developers. It interacts with a management agent for the SMF runtime, and can manage
an unlaunched SMF platform. It provides bundle “snapshots” (to store the runtime’s state
for recovery or reset), and dependency checking for loading bundles.

Snapshots are a way to store the current state of the runtime for later use. A typical use
for snapshots is for developers to load all of the bundles needed on a particular target
runtime and then to save the snapshot so that they can test different configurations and
still be able to return to the previous state.

The SMF Bundle Server is included as both a stand-alone server running under the
WebSphere Micro Environment and as a web application that can be installed under
Apache’s Tomcat servlet engine.

You can configure the Bundle Server to store its repository either in the file system (the
default) or in a SQL database.

The file-based implementation does not support groups (sets of users, stations or bundles)
and permissions. It is generally intended for an individual or small development team
environment The bundle threshold is somewhat subjective, but it is expected that
exceeding somewhere between 100 and 150 bundles in the repository will likely degrade
performance enough to warrant moving to an SQL-based configuration.

 Introduction to the IBM Service Management Framework

Page 7 of 7

The SQL-based configuration can be used by individuals or small teams but scales better
in larger development teams than the file-based configuration. Choose an SQL
configuration when the server is to be used by more than a few developers, or when the
number of bundles in the repository grows to a level that the performance of a file-based
configuration is no longer adequate.

The SMF Runtime that ships with WSDD integrates with the SMF Bundle Developer
integrated development environment, and provides pluggable platform implementations,
a file-based one, and a Flash-based one (based on a Flash memory simulator.)

The Bundle Developer uses the Safe Bundle Install Protocol to install bundles into the
runtime. This protocol has the runtime provide the SMF bundle server with its
configuration data and a list of currently-installed bundles. The bundle server then
determines the correct version of a bundle, resolves the bundle before it is downloaded by
determining whether all the required packages and services are available in the runtime,
and provides a list of prerequisite bundles needed by the runtime.

The Safe Bundle Install Protocol provides two important functions: it minimizes the
amount of traffic between the server and runtime, and it ensures to the greatest extent
possible that bundles that are downloaded will have the necessary prerequisite bundles to
execute.

In a production environment, the application’s bundles generally would be pre-loaded on
the device, to avoid transfer time. Updated or additional bundles would typically be
served from an HTTP server to provide load balancing and other options. There is an
SMFAdmin servlet available which allows system administrators to perform many of the
framework’s administrative tasks through a browser interface.

The Service Management Framework is a flexible development and deployment
environment for multiple platforms, with tightly integrated development support within
WebSphere Studio Device Developer.

