
Debugging with WebSphere Studio
Device Developer

Technical Information Paper – v1.0

8 November 2004

This documentation is proprietary to IBM and may be distributed UNMODIFIED to third
parties without the prior written permission of IBM. Any unauthorized use or modification of
this document is strictly prohibited. IBM owns all right, title, and interest in and to this
documentation. Copyright © 2004, IBM All rights reserved.

Authors:
Name Contact eMail
Sue Estrada wctmepvc@us.ibm.com

Attention: This document was printed from an online system and may be used only for reference
purposes. The online document must be considered as the current valid version. Please ensure
that this printed document is current, and to preserve its integrity, do not remove any pages.

 Page 2 of 6

Overview of debugging with WebSphere Studio Device Developer

Debugging is an essential step in the process of software development. A program
debugger provides you with a tool to assist you in performing these tasks. It helps to
eliminate the need to find errors through visual inspection of the code or using other
techniques. The debugger in WebSphere® Studio Device Developer (WSDD) enables
you to control the execution of your program by setting breakpoints, suspending launched
programs, stepping through code, and examining the contents of variables. These
functions enable you to detect and diagnose errors in your programs.

In addition, WSDD provides a set of tools that enables you to debug a program
independent of its physical location. You can debug a program locally while it is running
on the same system as WSDD in a Java™ Virtual Machine (JVM) or in an emulator that
is integrated into WSDD. You can also debug the program remotely while it is running
on a physical device accessible through a network or while it is running in an emulator
that is not integrated into WSDD, such as a UEI emulator.

Local Debugging

Local debugging is the method most often used by developers. Before you can debug
however, you must create your Java program, build it and then create a launch
configuration for it. Launch configurations are used in WSDD to run programs. You can
run your program as a Java application or you can choose to simulate execution on your
device by using a Java on Device launch configuration. In the case of a Java on Device
launch, there are two types of launch configurations that are used to associate a project
with a particular build and a particular device. A MIDlet Suite launch configuration is
used to launch a MIDlet. A Java on Device launch configuration is used to run a non-
MIDlet application.

For local debugging, the same launch configuration can be used to run or to debug a
program. To debug, launch the program using the Run > Debug menu item on the
Workbench menu bar. Launching the program in this way establishes a connection
between the debugger and the Java program that you are launching. You can then use
breakpoints, stepping, or expression evaluation to debug your program.

Remote Debugging

Remote debugging is made possible through the client/server design of the debugger.
This design makes it possible to launch a Java program on a device or a computer on the
network and then debug it from a workstation running WSDD. This is particularly useful
when developing applications for small devices that are not capable of running a
development platform or a debugger themselves. In this type of scenario, a Debug Info
Server, j9dbgserv, is available for use as a repository for debug information and symbol
files. When j9dbgserv is used, the VM must be configured to connect to this Debug Info
Server using a particular TCP/IP port. Debug information and symbol files can be

 Page 3 of 6

resident in the same location where the remote program is run; however this is typically
not practical when dealing with resource-constrained devices.

When debugging remotely, there are two types of launch configurations that you can use:
Remote Java Application and Remote Java on Device. Use the Remote Java
Application launch configuration when you are debugging an application that is running
on a remote VM. Because the application is started on the remote system, the launch
configuration does not specify the usual information about the JRE, program arguments,
or VM arguments. Instead, information about connecting to the application is supplied.
To debug a program remotely in this manner you must be able to launch the program in
debug mode so that it waits for a connection from your debugger.

The Remote Java on Device launch configuration starts the Java debugger that is
configured to wait for a connection from the device. The following figure shows the
architecture of the Remote Java Application and Remote Java on Device launches.

Remote Java on Device Example

To debug a program remotely using the Remote Java on Device, perform the following
steps:

 J9dbgserv

 Remote
Application

Debug Server In I DE

j9dbgserv - port:<J9dbgservP ortnumber > - symfiles:< symfilePath>

*.sym

 IDE REMOTE HOST OR TARGET

1

2

1. Remote Java Application 2. Remote Java on Device

DBG Info Server

DBG Server

Figure 1: Launch Architecture

 Page 4 of 6

1. Manually start a j9dbgserv Debug Info Server in a command window using the
following command:

j9dbgserv -port:<J9dbgservPortnumber> -symfiles:<symfilePath>

where the symfilePath is required to debug JXE-build applications and the
J9dbgservPortnumber defaults to 8888.

2. Create and configure a Remote Java on Device debug launch configuration on
WSDD. Click Run>Debug from the Workbench menu bar, select Remote Java
on Device for the configuration and then click New. Enter a value for WSDD
Host IP address (or localhost) & WSDD Host debug Port in the debug
connection properties port section of the dialog.

3. Manually deploy the application to the remote device and start the application

from a command window, adding the following debug options for use by the VM:

-debug:address =<WSDD Host IP>:<WSDD Host port> -Xrdbginfo:<WSDD
HOST IP>:<J9dbgservPortnumber>

Note: For some devices, such as for PocketPC, WSDD has integrated the device in such
way that the user can debug using a Java on Device launch configuration. Under such
circumstances, WSDD performs the steps required in the Remote Java on Device
example given above in a manner that is transparent to the user. This enables programs
for the PocketPC to be debugged using the local scenario.

The Debug perspective in WSDD contains several views, including one for Debug,
Variables/Breakpoints/Expressions/Display, Editor, Outline, and Console/Tasks. When
debugging a PocketPC program, additional views appear in the Debug perspective for the
device, as shown in the following figure.

 Page 5 of 6

Figure 2: WSDD Debug Perspective

 Page 6 of 6

Trademarks

The following terms are trademarks of the International Business Machines Corporation
in the United States, other countries, or both:

WebSphere

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of
others.

