
WebSphere® IBM WebSphere IP Multimedia Subsystem Connector

IBM WebSphere IP Multimedia Subsystem Connector

Version 6.2

���

Fourth Edition (April 2010)

This edition applies to IBM WebSphere IP Multimedia Subsystem Connector , Version 6.2, and to all subsequent
releases and modifications until otherwise indicated in new editions.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation
Department 6R4A
P.O. Box 12195
Research Triangle Park, North Carolina
27709-2195

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. IBM WebSphere IMS Service
Control Interfaces Component 1

Chapter 2. Trust Association Interceptor
security component 3
Introduction to TAI 3
Configuring the Trust Association Interceptor . . . 5

Chapter 3. Introduction to the IBM
WebSphere Diameter Enabler
Component 13
The Diameter Enabler base 13
Diameter Enabler Web services 13

Introduction to the Rf accounting Web service . . 14
Introduction to the Ro online charging Web
service 15
Introduction to the Sh subscriber profile Web
service 15

Connections, routes, channels, and call flows . . . 16
Implementation in an existing network 17

Chapter 4. Planning for IBM
WebSphere Diameter Enabler
Component 19
Hardware and software requirements. 19

Hardware requirements 19
Software requirements 20

Planning your software topology 21
Supported network elements (CCF, OCS, and HSS) 24
Evaluating your hardware environment 24
Scaling and reliability 25
Security considerations 26
Configuration considerations for the WebSphere IMS
Connector 27

Chapter 5. Installing 31
Enabling the application profiling service 31
Standalone installation of WebSphere IMS Connector 32

Preparing the environment 32
Preparing the database 33
Installing Diameter Enabler base (Standalone) . . 36
Verifying the Diameter Enabler base installation
(Standalone) 38
Connecting to the database 40
Installing the services 47
Verifying the connection 53

Clustered installation of IBM WebSphere Diameter
Enabler Component 54

Preparing the environment (Cluster) 55
Preparing the database 56
Installing Diameter Enabler base (Cluster) . . . 60
Verifying the Diameter Enabler base installation
(Cluster) 62

Connecting to the database 65
Creating the cluster. 72
Installing the Rf accounting Web service 74
Installing the Ro online charging Web service . . 76
Installing the Sh subscriber profile Web service 80
Starting the cluster 83

Installing updates 84
Uninstalling IBM WebSphere Diameter Enabler
Component from the WebSphere Application Server . 85

Chapter 6. Configuring IBM WebSphere
Diameter Enabler Component 89
Configuring Diameter Enabler base 89
Configuring listener ports for IBM WebSphere
Diameter Enabler Component 90
Configuring connections and routes 91
Channels and channel chains 94
Diameter Enabler configuration files 94

Chapter 7. Securing IBM WebSphere
Diameter Enabler Component 101
Channel security 101
Configuring channel security 102
Modifying channel security. 102

Chapter 8. Administering IBM
WebSphere Diameter Enabler
Component 105
Stopping and starting the server 105

Stopping a cluster 105
Stopping a server (console) 106
Stopping a server (command line) 106
Stopping the node agent (console) 107
Stopping the node agent (command line) . . . 107
Stopping the deployment manager (console) . . 107
Stopping the deployment manager (command
line) 108
Starting the deployment manager 108
Starting the node agents 109
Starting a cluster 109
Starting a server (console) 109
Starting a server (command line) 110

Restarting applications 110
Modifying logging. 111
Viewing channel chains 112
Monitoring threads 113
Adjusting heap size for subscription database
handling 113
Modifying the watchdog timeout interval 114
Modifying the pending queue maximum 115
Modifying the source port 116
Modifying the reconnect interval 117
Modifying the maximum packet size 117
Modifying the Work Manager settings 118

© Copyright IBM Corp. 2010 iii

Modifying the subscription purging interval . . . 119
Modifying the user mapped to the RunAs role . . 120
Using IBM Tivoli License Manager 121

Chapter 9. Troubleshooting IBM
WebSphere Diameter Enabler
Component 123
Using ISA 4.0 add-ons to communicate with IBM
Support 123
Monitoring log messages 123

Viewing and modifying logs 124
Hang detection policy 125
Enabling trace 126
Selecting trace loggers 128

Messages 129
Message key. 129

Chapter 10. Developing applications
that use Diameter Web services . . . 131
Rf accounting Web service 131

Rf accounting Web service call flows 132
Rf accounting Web service methods 133
Rf High-Level API. 134
Rf Raw API 150

Ro online charging Web service 154
Ro online charging Web service call flows . . . 155
Ro online charging Web service methods . . . 156
Ro High-Level API 157
Ro High-Level API Integrated Examples . . . 164
Ro Raw API 168

Sh subscriber profile Web service 172
Transaction types 172
User data types. 173
Data operations 173
Sh subscriber profile Web service call flows . . 175
Sh subscriber profile Web service 176

WSDLs 206
Result codes 207
Experimental result codes 211

Chapter 11. Reference information 215
Changes to this edition 215
Documentation conventions 215
Directory conventions 215
Glossary 216

Notices 227
Trademarks 228

iv WebSphere Diameter Enabler

Chapter 1. IBM WebSphere IMS Service Control Interfaces
Component

IBM® WebSphere® IMS™ Service Control Interfaces Component (also referred to as
ISC Interfaces) is an integral part of WebSphere Application Server versions 6.1 and
7.0. It defines how an IMS CSCF interacts with service platforms, and it is licensed
for use only through the IBM WebSphere IP Multimedia Subsystem Connector
Version 6.2 license.

ISC Interfaces define how the WebSphere Application Server communicates with
the Call Session Control Function (CSCF) in the IMS control plane. ISC Interfaces is
not a callable application programming interface (API): rather it is a defined
mechanism that specifies the way in which the CSCF and the IMS Application
Server interact with each other.

The ISC interface is formally defined by 3GPP and 3GPP2 in the following
standards:

3GPP: 3GPP TS 23.228 Technical Specification Group Services and System
Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 6)
3GPP2: 3GPP2 X.S0013-002 All-IP Core Network Multimedia Domain (MMD);
IP Multimedia Subsystem; Stage 2

ISC Interfaces is a bidirectional interface that uses SIP and is based upon IETF RFC
3261, which gives specifications for standardized SIP messages exchanged between
the CSCF and IMS Application Server. The role of the ISC Interfaces is to support
service invocation, present SIP parameters to applications, and interact with the
service proxy for service provisioning.

Service Invocation and Interaction

The service platform triggers an initial SIP request to the Serving Call
Session Control Function (S-CSCF). The CSCF proxies the service request to
the corresponding application based on triggers. The IMS Application
Server acts as a user agent, proxy server, and B2BUA (back-to-back user
agent). The IMS Application Server may record and route SIP requests to
stay in the signaling path, and the CSCF maintains the states between
dialogs sent to or from applications, and it interacts with the service proxy
for service provisioning.

Presentation of SIP Parameters

The ISC interface supports Service Point Triggers (SPT) for the SIP methods
at the CSCF (for example: REGISTER, INVITE, SUBSCRIBE, MESSAGE).
Data in the SPTs include:
v Presence or absence of any header
v Content of any header
v Direction of the request
v Session description information (SDP)

Service Proxy Function
In the IMS architecture, the S-CSCF provides a common protocol to
SIP-based application services running on platforms such as WebSphere
Application Server (and legacy services running on Intelligent Network
(IN) and Open System Architecture (OSA) platforms). Filter criteria, which

© Copyright IBM Corp. 2010 1

are based on SPTs and described in XML, are downloaded to the S-CSCF
from the Home Subscriber Server (HSS), thereby defining which service
platform or platforms are used; and in which order, based on information
received by the S-CSCF. Initial or subsequent triggers may be applied in
the IMS Application Server itself. The CSCF then forwards the request to
the appropriate IMS Application Server, such as WebSphere Application
Server. The IMS Application Server receives the request, applies the
business logic for the application, and appropriately routes the request. The
ISC interface governs these interactions between the IMS Application
Server and the CSCF.

Based on the ISC interface, there are several ways in which the IMS
Application Server might interact with the CSCF:
v Act as a terminating user agent (UA)
v Act as an originating user agent to originate traffic on behalf of a user
v Receive requests
v Serve as a proxy function
v Act as a third party call control applet

3GPP defines a list of Private Headers (P-Headers) to SIP, which allow for control
mechanisms and others in an IMS environment. As SIP requests and messages are
processed in the IMS control plane, these P-Headers are inserted and made
available to the IMS Application Server. The IMS Application Server can then act
on them, enhance them, and provide information using P-Headers.

The following P-Headers are the most relevant to the IMS Application Server:
v P-Asserted-Identity (RFC3325): carries valid and authenticated public user

identity from the IMS control plane to the IMS Application Server.
v P-Charging-Vector (RFC3455): carries charging correlation information from IMS

control plane to the IMS Application Server.
v P-Charging-Function-Addresses (RFC3455): carries offline and online charging

function addresses from the IMS control plane to the IMS Application Server.

The following P-Headers are also visible to the IMS Application Server and the
user environment.
v P-Access-Network-Info (RFC3455): carries information of the access network

from the user environment to the IMS control plane and from the IMS control
plane to the IMS Application Servers, which allows the user environment to
provide information related to the access network it is using (such as cell ID).

v P-Called-Party-ID (RFC3455): carries the target public user identity from the IMS
control plane to the user environment, which allows the terminating user
environment to learn the dialed public user identity that triggered the call. This
field may be seen at the IMS Application Server when the IMS Application
Server is the called party (such as the destination of the session), but not in
other scenarios (such as when the IMS Application Server is just a proxy in the
chain of proxies in the path towards a user environment).

2 WebSphere Diameter Enabler

Chapter 2. Trust Association Interceptor security component

The Trust Association Interceptor security component is shipped with the IBM
WebSphere IP Multimedia Subsystem Connector and is intended to enhance the
overall authentication security for the IBM WebSphere software for Telecom.

Introduction to TAI
The Trust Association Interceptor provides a way for users to become known to
WebSphere Application Server without having to re-authenticate. The result is a
simpler, yet still secure, authentication process for requests flowing throughout the
network.

Overview

When a user was authenticated by an authentication system other than WebSphere
Application Server, it is possible to inform WebSphere Application Server of the
user’s identity information without requiring the user to re-authenticate. This is
known as identity assertion.

The Trust Association Interceptor component intercepts HTTP and SIP service
requests to all IMS service plane components, verifies the pre-hop sender,
consumes identity information passed to it in HTTP/SIP headers, and propagates
this information as WebSphere Application Server-rich security information.

Supporting trust association generally implies that WebSphere Application Server
processes service requests in conjunction with a reverse proxy security server
(RPSS). Typically, WebSphere Application Server and the proxy server engage in a
contract in which the product gives its full trust to the proxy server and the proxy
server applies its authentication policies on every Web request that is dispatched to
WebSphere Application Server. This trust is validated by the interceptors that
reside in the product environment for every request received. The method of
validation is agreed upon by the proxy server and the interceptor.

The Trust Association Interceptor implementation does not require the presence of
an RPSS, but is designed with a security proxy in mind. The Trust Association
Interceptor processes all authenticated requests originating in the trusted network
that contain the expected HTTP/SIP asserted identity headers. It is assumed that a
user is authenticated prior to the invocation of the interceptor by the security
proxy or a control plane element. The interceptors do not perform authentication
themselves.

The purpose of an interceptor is to validate requests based on HTTP/SIP headers
and map user information to WebSphere Application Server-rich security
information. Running in trust association mode does not prohibit WebSphere
Application Server from accepting requests that did not pass through the proxy
server. An interceptor is not needed for validating trust. However, it is possible to
configure WebSphere Application Server to strictly require that all HTTP requests
go through a reverse proxy server. In this case, all requests that do not come from
a proxy server are immediately denied by WebSphere Application Server. In the
IMS network, requests from the Internet to the service platform, coming through
the Telecom Web Services Server (TWSS) Access Gateway, are allowed to bypass
the security proxy, as are previously authenticated calls from the control plane.

© IBM Corporation 2009 3

System Structure

As this diagram shows, the solution includes a DMZ (dual firewall) to isolate
protected service plane elements in the trusted domain from potential threats. A
security proxy (RPSS) is implemented as a border element within the DMZ that
authenticates users and propagates user information for all requests that pass
through. This security proxy is not formally specified nor required by the IBM
solution, except that its interface requirements must correspond with the Trust
Association Interceptor implementation.

The figure also shows that a common, custom Trust Association Interceptor exists
within WebSphere Application Server to intercept HTTP and SIP traffic in the
IMS-trusted domain.

This implementation requires all IMS elements (base WebSphere Application
Server, the control plane, security proxy, and the invoked service plane application)
to propagate asserted identity tokens on every service request to any other service
plane component within the trusted domain. This dependency is important to note
because it requires coordination among all of the IBM WebSphere software for
Telecom products.

X-3GPP-Asserted-Identity and P-Asserted-Identity headers are supported, by
default, for HTTP and SIP requests, respectively. (Refer to the 3GPP
implementation for IETF RFC 3325.) However, the type of asserted identity header
is configurable for both HTTP and SIP requests to support components with
different standard asserted identity headers. For example, the Aggregation Proxy
component passes an X-XCAP-Asserted-Identity header to the IBM XDMS
application.

Service plane

Control plane

Internet

Elements not part of IBM Solution

IBM Solution elements

Control
Plane

Element

Trusted
partner

Control
Plane

Element

Legend:

Security
Proxy

Access
Gateway TAI

Service
Platform

TAI
Service
Plane

Element

TAI
Service
Plane

Element

TAI
Service
Plane

Element

Web Services Asserted-

Identity

Asserted-

Identity

Asserted-

Identity

Asserted-

Identity

Asserted-Identity Asserted-Identity

Asserted-
Identity

DMZ

4 WebSphere Diameter Enabler

The IMS control plane inserts a P-Asserted-Identity header for authenticated
subscribers and may or may not go through the security proxy. All
device-originating traffic is routed through the control plane (S-CSCF) before
reaching the IBM service plane.

For Web services access on the service platform, the TWSS Access Gateway is used
for front-end authentication and the DMZ/security proxy is circumvented.

Configuring the Trust Association Interceptor
The Trust Association Interceptor (TAI) contains two interceptors to process the
incoming requests: HttpInterceptor and SipInterceptor. Each interceptor has
properties associated with it. Use the WebSphere Integrated Solutions Console to
set the properties.

The interceptor properties are created and configured from the Integrated Solutions
Console during the installation process by entering the interceptor Name, Value,
and Description.

Note:

v The allowedSenderList property is required at a minimum.
v For information about the installation process, refer to the Installing

section for each component.

This topic provides the description of the properties and their default values.

HTTP Properties

The HttpInterceptor for the Trust Association Interceptor security component
contains the following properties:

Table 1. HttpInterceptor properties

Parameter Type Description

enableSenderVerification Boolean Default: true. When true, enables the
verification of the identity of the pre-hop
sender of the incoming request. The user may
want to disable this verification when
transport-level security or IPSec is enabled on
the service platform.

Chapter 2. Trust Association Interceptor 5

Table 1. HttpInterceptor properties (continued)

Parameter Type Description

allowedSenderList string Default: null. Comma-delineated list of hosts
that the interceptor considers trusted. When the
enableSenderVerification property is false, this
property is ignored. Acceptable input is
hostname or IP address.

Wildcards and masking are allowed. The
following is a list of acceptable examples:

Hostnames:

*@us.example.com, *.example.com,
dyn94158159.example.com

IPv4 addresses:

9.41.x.x, 9.41.57.154, 9.41.57.154/20,
9.41.57.154/255.255.240.0

IPv6 addresses:

2002:092A:8F7A:0000:0000:0020:0000:0001,
2002:92A:8F7A:0:0:20:0:1
2002:92A:8F7A:0:0:20::1, 2002:92A:8F7A::20:0:1

(the four addresses are different representations
of the same address) 2002:92A:8F7A::20:0:1/60

The following indicates that ALL prehop
senders will be allowed: *, x.x.x.x

assertedIdentityHeaderType string Default: X-XCAP-Asserted-Identity,
X-3GPP-Asserted-Identity. Comma-delineated
list of allowed types of asserted identity
headers supported in this interceptor
implementation. For example, a different
X-XCAP-Asserted-Identity header may be
required in the IBM XDMS implementation.
Multiple values are allowed to accommodate
ambiguous specification guidelines.

A maximum of 2 entries is allowed.

enableDefaultRoleMapping Boolean Default: true. Enables default role mapping,
which maps all users to the All authenticated
group. Enabling this property prevents
WebSphere Application Server from invoking
the user registry to create a Subject.
Applications that depend on WebSphere
Application Server roles may want to disable
this property.

enableMultipleIDMapping Boolean Default: true. Enables stripping the protocol
scheme from the SIP URI, to obtain an ID that
may match other IDs belonging to the same
user. This applies to situations where there are
multiple public IDs for a single user.

6 WebSphere Diameter Enabler

Table 1. HttpInterceptor properties (continued)

Parameter Type Description

handleUnauthenticatedUser Boolean Default: false. Enables processing of messages
from unauthenticated users. The
unauthenticated user will be mapped to the
Principal with the value defined in the
unauthenticatedPrincipal property.

anonymousUserID string Default: anonymous. The user ID that identifies
an anonymous user.

anonymousPrincipal string Default: anonymous.invalid. The value that is
mapped to the WebSphere Application Server
Principal for an anonymous user.

unauthenticatedPrincipal string Default: anonymous.invalid. The value that is
mapped to the WebSphere Application Server
Principal for an unauthenticated user. The
default is to handle unauthenticated users the
same as anonymous users.

allowedAssertedProxyUsers string Default: null. Comma-delineated list of allowed
asserted identity values that indicate the
request originates with a proxy, not an end
user. Accepted format is hostname, email name,
or URI.

Wildcards are acceptable (for example:
*@us.example.com, *.example.com).

A maximum of 30 entries is allowed.

enableLTPABypass Boolean Default: False. When set to true, the TAI
includes a WSCredential in the TAIResult’s
Subject. This prevents a JAAS login and a
look-up in a user registry downstream by
WebSphere security. It further prevents WAS
from adding an LTPA token to the message
header. Avoiding expensive LTPA calls by
WebSphere, might improve IMS systems
performance.

When this is set to true, you must also disable
security attribute propagation from the
Integrated Solutions Console:

1. Click Security → Secure Administration →
web security → single sign-on (SSO), and
clear the Web inbound security attribute
propagation check box.

2. Click Security → Secure Administration →
RMI/IOP security → CSIv2 inbound
authentication, and clear the security
attribute propagation check box.

3. Click Security → Secure Administration →
RMI/IOP security → CSIv2 outbound
authentication, and clear the security
attribute propagation check box.

Chapter 2. Trust Association Interceptor 7

SIP Properties

The SipInterceptor for the Trust Association Interceptor security component
contains the following properties:

Table 2. SipInterceptor properties

Parameter Type Description

enableSenderVerification Boolean Default: true. When true, enables the
verification of the identity of the pre-hop
sender of the incoming request. The user
may want to disable this verification when
transport-level security or IPSec is enabled
on the service platform.

allowedSenderList string Default: null. Comma-delineated list of
hosts that the interceptor considers trusted.
When the enableSenderVerification
property is false, this property is ignored.
Acceptable input is hostname or IP
address.

Wildcards and masking are allowed. The
following is a list of acceptable examples:

Hostnames:

*@us.example.com, *.example.com,
dyn94158159.example.com

IPv4 addresses:

9.41.x.x, 9.41.57.154, 9.41.57.154/20,
9.41.57.154/255.255.240.0

IPv6 addresses:

2002:092A:8F7A:0000:0000:0020:0000:0001,
2002:92A:8F7A:0:0:20:0:1
2002:92A:8F7A:0:0:20::1,
2002:92A:8F7A::20:0:1

(the four addresses are different
representations of the same address)
2002:92A:8F7A::20:0:1/60

The following indicates that ALL prehop
senders will be allowed: *, x.x.x.x

assertedIdentityHeaderType string Default: P-Asserted-Identity.
Comma-delineated list of allowed types of
asserted identity headers supported in this
interceptor implementation. For example, a
different X-XCAP-Asserted-Identity header
may be required in the IBM XDMS
implementation. Multiple values are
allowed to accommodate ambiguous
specification guidelines.

A maximum of 2 entries is allowed.

8 WebSphere Diameter Enabler

Table 2. SipInterceptor properties (continued)

Parameter Type Description

enableDefaultRoleMapping Boolean Default: true. Enables default role
mapping, which maps all users to the All
authenticated group. Enabling this
property prevents WebSphere Application
Server from invoking the user registry to
create a Subject. Applications that depend
on WebSphere Application Server roles
may want to disable this property.

pAssertedIdentityURIType string Default: sip. When two P-Asserted-Identity
headers are present in the message, the
user has the option of choosing which SIP
URI type is used for the asserted identity.
Possible values: sip, sips, and tel.

enableMultipleIDMapping Boolean Default: true. Enables stripping the
protocol scheme from the SIP URI, to
obtain an ID that may match other IDs
belonging to the same user. This applies to
situations where there are multiple public
IDs for a single user.

handleUnauthenticatedUser Boolean Default: false. Enables processing of
messages from unauthenticated users. The
unauthenticated user will be mapped to
the Principal with the value defined in the
unauthenticatedPrincipal property.

anonymousUserID string Default: anonymous. The user ID that
identifies an anonymous user.

anonymousPrincipal string Default: anonymous.invalid. The value that
is mapped to the WebSphere Application
Server Principal for an anonymous user.

unauthenticatedPrincipal string Default: anonymous.invalid. The value that
is mapped to the WebSphere Application
Server Principal for an unauthenticated
user. The default is to handle
unauthenticated users the same as
anonymous users.

allowedAssertedProxyUsers string Default: null. Comma-delineated list of
allowed asserted identity values that
indicate the request originates with a
proxy, not an end user. Accepted format is
hostname, email name, or URI.

Wildcards are acceptable (for example:
*@us.example.com, *.example.com).

A maximum of 30 entries is allowed.

Chapter 2. Trust Association Interceptor 9

Table 2. SipInterceptor properties (continued)

Parameter Type Description

enableErrorMessageReception Boolean Default: false. Enables processing of error
messages that are sent from the SIP
container to itself. An example is where a
SIP message is sent to a SIP destination
that is no longer attached. When the
message times out, the SIP container sends
an error message to itself. These messages
lack p-asserted-identity headers and, as a
result, are not normally processed by the
TAI.

If true, enables the processing of error
messages that lack p-asserted-identity
headers and are generated by the
localhost. If false, any error messages sent
by the SIP container to itself are processed
using the same rules as all other messages.

Use errorMessageStatusCodeList to
designate which SIP error messages are to
be processed.

errorMessageStatusCodeList string Default: 4xx. Comma-delineated list of
message codes within the range of 400-499
(Client Error) and 500-599 (Server Error) to
be processed when
enableErrorMessageReception is true.

You can use a wild card of ″*″, ″x″, or ″X″
to indicate a substitution for a single digit.
For example, 4** would represent all 4xx
error status Codes (400-499). A value of ***
would represent all 4xx and 5xx codes.

A maximum of 20 entries is allowed.

enableLTPABypass Boolean Default: False. When set to true, the TAI
includes a WSCredential in the TAIResult’s
Subject. This prevents a JAAS login and a
look-up in a user registry downstream by
WebSphere security. It further prevents
WAS from adding an LTPA token to the
message header. Avoiding expensive LTPA
calls by WebSphere, might improve IMS
systems performance.

When this is set to true, you must also
disable security attribute propagation
from the Integrated Solutions Console. For
details, refer to the section titled Disabling
security attribute propagation, later in this
topic.

Disabling security attribute propagation

Follow these steps to disable security attribute propagation. This is required when
enableLTPABypass is set to true.

10 WebSphere Diameter Enabler

If you are using WebSphere Application Server version 7.0.0.1:
1. Click Security → Global Security → Web and SIP security → single sign-on

(SSO), and clear the Web inbound security attribute propagation check box.
2. Click Security → Global Security → RMI/IOP security → CSIv2 inbound

communications, and clear the propagate security attributes check box.
3. Click Security → Global Security → RMI/IOP security → CSIv2 outbound

communications, and clear the propagate security attributes check box.

If you are using WebSphere Application Server version 6.1.0.21:
1. Click Security → Secure Administration → Web security → single sign-on (SSO),

and clear the Web inbound security attribute propagation check box.
2. Click Security → Secure Administration → RMI/IOP security → CSIv2 inbound

authentication, and clear the security attribute propagation check box.
3. Click Security → Secure Administration → RMI/IOP security → CSIv2 outbound

authentication, and clear the security attribute propagation check box.

Chapter 2. Trust Association Interceptor 11

12 WebSphere Diameter Enabler

Chapter 3. Introduction to the IBM WebSphere Diameter
Enabler Component

The Diameter Enabler is an integral part of an IP multimedia subsystem (IMS)
network solution in situations where applications need to retrieve and update
network subscriber data.

Using the Diameter Enabler, you can build applications that:
v Send and receive subscriber profile information
v Send accounting information from your Home Subscriber Server (HSS)
v Send accounting information to your Charging Collection Function (CCF)
v Send subscriber account information between the Charging Trigger Function

(CTF) and the Online Charging System (OCS)

The Diameter Enabler includes the following subcomponents:
Diameter Enabler base
Rf accounting Web service
Ro online charging Web service
Sh subscriber profile Web service

The Diameter Enabler base
The Diameter Enabler base interacts with one or more of the following entities,
which are referred to as Diameter peers or simply peers: Home Subscriber Server
(HSS), Charging Collection Function (CCF), Online Charging System (OCS), and
Diameter agents.

The Diameter Enabler base establishes direct TCP connections with these entities
and acts as a Diameter gateway: receiving and replying to Web service requests on
the one side while sending and receiving Diameter packets on the other. This
eliminates the need for you to develop applications that use the Diameter protocol.

Diameter Enabler supports inbound and outbound connections initiated by peers
and external applications:
v Inbound: a connection is initiated by a remote peer to the Diameter Enabler

base.
v Outbound: a connection is initiated by the Diameter Enabler base to a Diameter

peer.

The connection is classified either as an inbound or outbound connection based on
the side that initiates it. When the connection has been established, packets can be
sent and received over that connection.

Diameter Enabler Web services
The Diameter Enabler provides application programming interfaces (APIs) that use
Web services to help developers rapidly develop and deploy applications to access
data from the Home Subscriber Server (HSS) and update data for the Charging
Collection Function (CCF) and Online Charging System (OCS).

© Copyright IBM Corp. 2010 13

The Web Services Description Language (WSDL) is included for Rf accounting Web
service, Ro online charging Web service, and Sh subscriber profile Web service.
Each WSDL file describes the operations, parameters, and data types that comprise
the interfaces of these Web services that can be executed by other applications.

The Rf accounting Web service serves as the interface for offline charging by
implementing support for offline session charging and event charging. Rf provides
the IMS Application Server application a Diameter messaging interface to enable
sending accounting messages to the accounting or billing servers. The Rf
accounting Web service receives Web service requests from the IMS Application
Server, builds the appropriate Diameter message, sends the message to the
Diameter Enabler base in the form of an accounting request, receives accounting
answers from the Diameter Enabler base, and sends the accounting answers back
to the IMS Application Server.

The Ro online charging Web service serves as the interface for online session and
event charging. Ro provides the IMS Application Server application with a
Diameter messaging interface to enable sending credit control authorization
messages to the online charging servers. The Ro online charging Web service
receives Web service requests from the IMS Application Server, builds the
appropriate Diameter message, sends the message to the OCS, receives
authorization answers from the OCS, and sends the results back to the IMS
Application Server.

The Sh subscriber profile Web service serves as the interface between an IMS
Application Server and the HSS where subscriber data is centrally stored. It
provides retrieval and update APIs so that IMS Application Servers can upload
data to and download data from the HSS; and it provides a subscription and
notification service, so that the IMS Application Server can subscribe to data
changes stored in the HSS.

The Sh subscriber profile Web service constructs Diameter messages on behalf of
the IMS Application Server and sends them to the HSS by using the Diameter
protocol. The Sh subscriber profile Web service sends the results of these Diameter
message exchanges back to the IMS Application Server that initially called the Sh
subscriber profile Web service. The IMS Application Server may or may not be
located on the same machine as the Sh Web service.

The Diameter Enabler includes the following WSDLs:
v DiameterRfService.wsdl
v DiameterRoService.wsdl
v DiameterRoNotifyService.wsdl
v DiameterShService.wsdl
v DiameterShNotifyService.wsdl

For detailed information on WSDLs, refer to the topic WSDL architecture in the
WebSphere Application Server Network Deployment information center.

Introduction to the Rf accounting Web service
IMS Application Server applications use the Rf accounting Web service to send
accounting information to a Charging Collection Function (CCF). The Rf
accounting Web service implements the operations required to perform offline
accounting transactions. The operations allow an application to send event and
session accounting records to the CCF.

14 WebSphere Diameter Enabler

The Rf accounting Web service interface is used only for offline charging. It
includes the ability to send Accounting-Start, Accounting-Stop, and
Accounting-Interim messages to an accounting server. It also has the ability to send
an Accounting-Event notification to the accounting server. Offline charging can be
used to track a single event, such as purchasing a cell phone ring tone, or to track
a service that is used over time such as the start and end of a conference call. The
DiameterImsRfApi defines the offline accounting transactions available through Web
services.

Introduction to the Ro online charging Web service
IMS Application Server applications use the Ro online charging Web service to
send authorization information to an Online Charging System (OCS). The Ro
online charging Web service implements the operations required to perform online
charging transactions. The operations allow an application to send session and
event credit control charging information to the OCS. These operations are used to
deplete quota from a subscriber’s account while the service is being used.

The Ro online charging Web service interface is used for online charging and
includes the ability to send Credit Control-Initial, Credit Control-Update, and
Credit Control-Termination messages to an online charging server. It also has the
ability to send a Credit Control-Event notification to the online charging server.
Online charging can be used to interactively charge a subscriber while a service is
being provided. For example, a subscriber may have purchased 200 minutes for
access to an online gaming service. The service depletes the subscriber’s quota as
they use the service, and discontinues the service when the subscriber has used all
200 minutes. The DiameterImsRoApi defines the online charging transactions
available through Web services.

In addition to the online event and session charging operations, the Ro online
charging Web service interface also includes subscription and notification
operations with which an IMS Application Server can subscribe to be notified
when the CTF must reauthenticate with the OCS or when a reauthorization
subscription expires.

Introduction to the Sh subscriber profile Web service
The Sh subscriber profile Web service provides IMS Application Servers secure
access to subscriber data centrally stored on the Home Subscriber Server (HSS).
This includes a subscription and notification service, so that the IMS Application
Server instances can subscribe to data changes that occur in the HSS.

Although the Diameter Cx interface is used during authentication–between a Call
Session Control Function (CSCF) and the Home Subscriber Server (HSS)–the IBM
WebSphere Diameter Enabler Component does not implement this capability.
Instead, the Diameter Enabler is used by an Application Server (AS) application to
retrieve and update information about subscribers stored in a Home Subscriber
Server (HSS).

This interface gives the IMS Application Server the ability to query location
information, presence information, and subscriber entitled services.

The Sh subscriber profile Web service is an interface between the IMS Application
Server and the HSS. The interface allows for four transaction types with a request
and response transaction for each. These transactions provide the following
functions:

Chapter 3. Introduction 15

v Sh-Pull (retrieving the profile of a subscriber) allows the WebSphere Application
Server to query transparent and non-transparent data pertaining to a specific
Subscriber or user. The WebSphere Application Server queries the HSS for this
information.

v Sh-Update (updating the profile of a subscriber) allows the WebSphere
Application Server to update the transparent information retained on the HSS
for a specific subscriber or user.

v Sh-Subs-Notif (subscribing for notifications when a subscriber’s profile changes)
allows the IMS Application Server to register for notifications when particular
transparent and/or non-transparent information is updated. There is an
unsubscribe capability to end a particular subscription for notifications.

v Sh-Notif (The Notification initiated from the HSS when the subscriber’s profile
changes) is the transaction used by the HSS to inform the WebSphere
Application Server that the information (transparent and non-transparent)
specified by an earlier Sh-Subs-Notif request has been updated.

Connections, routes, channels, and call flows
The Diameter Enabler base utilizes connections as links between a Diameter
Enabler base and a peer, as routes to determine the connection on which a
Diameter packet should be sent, as channels to convert byte streams to and from
Diameter packets, and as call flows to transmit and receive these packets.

A connection is the link between a Diameter Enabler base and a peer. The peer
may be a Diameter server or a Diameter agent that is a hop in the path to the
Diameter server. For each configured connection, there is exactly one TCP
connection between the Diameter Enabler base and the peer that it communicates
with.

Connections remain as long as both the Diameter Enabler base and the peer are
operating. If neither party sends a packet over the connection for a specified period
of time, a watchdog message is sent to ensure that both sides are still operating.

The Diameter layer uses routes to determine which connection it should send a
packet on. To send Diameter application packets to a specific realm, you must
configure at least one connection and one route that uses that connection.

Note: If the specified connection’s destination is a Diameter agent, rather than a
Diameter server, the Diameter packet passes through this connection as a
single hop on its way to the Diameter server.

Each connection represents a chain of channels. These channel chains operate
within the Channel Framework Architecture (CFA) and are comprised of Diameter
Channels, SSL/TLS channels (optional), and TCP channels.

At the top of the channel chains, there are three applications: Rf accounting Web
service, Ro online charging Web service, and Sh subscriber profile Web service. All
three of these applications export APIs to external applications through Web
services interfaces.
v The Diameter Enabler base manages connections, routes, and state machines to

insure compliance with the Diameter protocol.
v Diameter Web services use the Diameter Enabler base to handle packets as they

pass through the CFA.

16 WebSphere Diameter Enabler

v The Diameter channel is a serialization and de-serialization layer that converts
inbound byte streams into Diameter packets and outbound Diameter packets
into byte streams. No state is kept within the Diameter channel.

Diameter applications use call flows to transmit and receive packets for accounting,
online charging, subscriber profile retrieval and updates, or subscribe and notify
messages for subscriber profiles.
v For accounting messages, the Diameter Enabler base passes information through

the Rf accounting Web service when sending messages to the CCF. The CCF
receives the messages and sends its response back to the Rf accounting Web
service, which responds to the client that initiated the Web service request.

v For online service requests, the Ro online charging Web service interface receives
the Web service request from the client. The request is then processed and
forwarded through the Diameter Enabler base to the appropriate OCS. The OCS
receives the message and sends its response to the Ro online charging Web
service, which responds to the client that initiated the Web service request.

v For subscribe/notify messages:
– The Sh subscriber profile Web service interface receives subscription requests

from the IMS Application Server. The requests are then forwarded as
subscriptions to the HSS using the Diameter protocol. When an update occurs
at the HSS, the HSS sends a notification to the Diameter Enabler informing it
of the update. The Sh subscriber profile Web service then forwards the update
to all IMS Application Servers that have subscribed to the update.

– The Ro online charging Web service interface provides subscription and
notification messages to the IMS Application Server. Notifications are sent
when the CTF must reauthenticate with the OCS or when a reauthorization
subscription expires.

Implementation in an existing network
The Diameter Enabler integrates with your existing network to enable access to a
Home Subscriber Server (HSS), provide accounting data to a Charging Collection
Function (CCF), and provide online charging data to an Online Charging System
(OCS).

When the Diameter Enabler integrates with your existing network to enable access
to HSSs, CCFs, and OCSs, you can configure the Diameter Web services to control
the Diameter network to which they attach.

You can specify different Diameter networks (connections and routes) for the Rf
accounting Web service, the Ro online charging Web service, and the Sh subscriber
profile Web service. The network configurations are stored in files called
Diameter_Rf.properties, Diameter_Ro.properties, and Diameter_Sh.properties,
respectively.

The properties files are located in the following directory locations:
was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Chapter 3. Introduction 17

18 WebSphere Diameter Enabler

Chapter 4. Planning for IBM WebSphere Diameter Enabler
Component

For planning and installation, you must understand the hardware and software
requirements, supported servers, installation topologies, security considerations,
and configuration considerations.

Diameter Enabler includes Rf accounting Web service, Ro online charging Web
service, and Sh subscriber profile Web service. If you are using the Ro or Sh Web
services, you might have additional considerations identified in the planning and
installation information.

Hardware and software requirements
Specific hardware and software is required before you can begin the installation
process.

Hardware requirements
Hardware requirements vary, depending on the operating system on which you
plan to deploy the IBM WebSphere software for Telecom products.

Before you begin the installation, one of the following operating-system platforms
must be installed and configured. Choose a platform to display a detailed list of
hardware requirements.

“AIX”
“Linux on PowerPC”
“Linux on Intel” on page 20

This information represents the minimum requirements. For greater performance
and scalability, additional hardware may be needed.

AIX®

Processor
Power 4 or Power 5

Physical memory
4 GB minimum, 2 GB per JVM recommended

Disk space
2 GB of free space (minimal)

4 GB of free space recommended

Other: CD-ROM or access to shared network drive where CD images are
available

Linux® on PowerPC®

Processor
Power 4 or Power 5

L2 cache
L2 cache for 2.8 GHz processor must be 512 KB

© Copyright IBM Corp. 2010 19

L2 cache for 3.4 GHz processor must be 1 M

Physical memory
4 GB minimum, 2 GB per JVM recommended

Disk space
2 GB of free space (minimal)

4 GB of free space recommended

Linux on Intel®

The following configuration is supported for Intel x86 platforms:

Processor
Pentium® 4, a minimum of 2 processors is required

2.8 GHz (32- and 64-bit)

L2 cache
L2 cache for 2.8 GHz processor must be 512 KB

L2 cache for 3.4 GHz processor must be 1 M

Physical memory
4 GB minimum, 2 GB per JVM recommended

Disk space
2 GB of free space (minimal)

4 GB of free space recommended

Other CD-ROM or access to shared network drive where CD images are
available

Hyper-threading should be enabled

Software requirements
Required software includes the operating system, the WebSphere Application
Server Network Deployment product (also referred to as WebSphere Application
Server), Java, and a database component.

The information provided here is intended for a basic installation that is not scaled
or fully deployed.

The following software should be installed and configured before you begin the
installation process:

“Operating systems”
“Application servers” on page 21
“Java version” on page 21
“Databases” on page 21

Operating systems

The following operating systems are supported:
Red Hat Enterprise Linux AS 5.0 Update 2
SUSE Linux Enterprise Server 10 SP 1
AIX 5L 5.3 TL 07 SP 4

20 WebSphere Diameter Enabler

Application servers

One of the following application server offerings is required:
v WebSphere Application Server Network Deployment, version 7.0.0.1

Note: WebSphere IMS Connector interim fix 1 is required if you plan to deploy
on this version of WebSphere Application Server Network Deployment.

v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme file,
WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

Java™ version

The following IBM SDK versions are required:
v WebSphere Application Server version 7.0.0.1 requires JDK version 1.6.0 SR 3.
v WebSphere Application Server version 6.1.0.21 requires JDK version 1.5.0 SR 8.

Databases

Diameter Enabler requires a database only if you are using the subscribe and
notify functions of Sh subscriber profile Web service or using Ro online charging
Web service reauthorization.

The following databases are supported:

v IBM DB2® Enterprise Server Edition, version 9.5 FixPak 1

v Oracle Database, version 10.2.0.4 or 11.1.0.7

Planning your software topology
Before you start the installation process, it is important to understand the software
topologies.

Diameter Enabler is deployed on the WebSphere Application Server. Before
beginning the installation you must have WebSphere Application Server Network
Deployment version 7.0.0.1 or 6.1.0.21 installed on the server.

Web services

Diameter Enabler provides the following Web services:
v Rf accounting Web service
v Ro online charging Web service
v Sh subscriber profile Web service

You can put the Rf accounting Web service, Ro online charging Web service, and
Sh subscriber profile Web service in the same application server in a WebSphere
Application Server installation. While the Rf, Ro, and Sh Web services reside on the
same application server, each service will have a unique routing table.

Based on their configuration, the Rf accounting Web service, Ro online charging
Web service, and Sh subscriber profile Web service can access entirely different
Diameter server networks. They can also access the same Diameter server
networks if those Diameter servers support Rf, Ro, and Sh interfaces.

Chapter 4. Planning 21

RFC 3588 defines a maximum of one connection between any two Diameter peers.
Therefore, if Rf, Ro, and Sh are used to access a peer, they must share a single
connection. For shared connections, the connection configuration information must
be identical in the Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties files.

The Rf, Ro, and Sh Web services are configured to define the realms and
connections to the Diameter network. You can specify different realms and
connections for each of the Web services.

Restrictions

The IMS Application Server application is typically not installed on the same
application server as the Rf accounting Web service, Ro online charging Web
service, and Sh subscriber profile Web service. You must install the Rf, Ro, and Sh
Web services on the same server as Diameter Enabler base.

An IMS Application Server can be installed in a different distributed environment.
The Diameter interfaces are Web services and can be called remotely from any
server.

Do not install Diameter Enabler on both a cluster and a single server instance that
are running in the same physical computer.

Database requirements

Database support is not needed for the Rf accounting Web service and for most of
the Sh and Ro Web services. However, a database is required to use the subscribe
and notify capabilities of the Sh subscriber profile Web service. The database
provides reliable retention of the active subscriptions and the endpoints to contact
when the Home Subscriber Server (HSS) issues a notification that subscriber data
has changed.

A database is also required when you use the Ro online charging Web service
reauthorization request (RAR) notification. This is an unsolicited message sent from
the online charging server to the Charging Trigger Function. If you do not require
the subscribe and notify functions of the Sh and Ro Web services, no database is
required.

If you require a database, the database should be remote from the server where the
Diameter Enabler base and the Sh and/or Ro Web services reside before you create
a clustered server.

If you require a database, you must install the database clients or provide the
JDBC JAR files on all servers where Diameter Enabler is installed.

Agents and servers

Diameter Enabler can interact directly with the Home Subscriber Server (HSS), the
Online Charging System (OCS), or the Charging Collection Function (CCF) server.
Alternatively, it can interact with Diameter agents–including proxies and relays.
When there is a direct TCP connection between the Diameter Enabler and a
Diameter server or Diameter agent, the server or agent is referred to as a Diameter
peer or simply a peer.

Diameter Enabler can have exactly one connection to each Diameter peer.

22 WebSphere Diameter Enabler

The Rf accounting Web service provides an interface to the CCF, the Ro online
charging Web service provides an interface to the OCS, and the Sh subscriber
profile Web service provides an interface to the HSS. In most cases the CCF, OCS,
and HSS will be on different physical servers.

Diameter Enabler converts a Web service request into one or more Diameter
messages that it sends to the CCF, OCS, or HSS. Diameter Enabler also receives
Diameter messages from the CCF, OCS, or HSS which it processes and returns to
the applications on the IMS Application Server. The messages are returned through
the Diameter Enabler Web services.

Routes

When Diameter Enabler sends a packet, it consults a routing table. The routing
table is a simple structure based on the realm and Application Id that determines
which connection to use when sending the packet. The route ties the final
destination realm to the next hop connection for a given packet. Without a route in
the routing table, the packet will not be forwarded even if a direct connection to
the Diameter server is established.

Only one primary route to a destination realm can be configured within an
environment (Rf, Ro, or Sh). A primary route is used to transmit Diameter packets
whenever its underlying connection is active. Secondary routes are not required,
but are recommended. A secondary route is used to transmit Diameter packets
only when the primary route does not have an active or open connection. You can
configure one or more secondary routes.

When the underlying connection of a primary route fails, the routing table
automatically fails over to a secondary route where there is an active connection. If
that connection fails and additional secondary routes are configured, the next
secondary route is used until no more routes remain. If no primary or secondary
routes are available, then a default route is used if one is defined. If no routes are
available to carry the packet, an exception is sent to the user. If the primary route
recovers from the failure, then all of the traffic is again routed through the primary
route.

If no specific route is configured, you can configure a default route to forward
packets. The algorithm selects a specific route first. If it is unable to find a match
for the destination realm, it uses a default route. The default route can also be
configured as a primary or secondary route.

The Rf accounting Web service, Ro online charging Web service, and Sh subscriber
profile Web service have independent routing tables. Although all of these Web
services use the Diameter Enabler base, the configuration and usage of the routing
tables remain independent. Because of this, each Web service application can be
started and stopped independently.

Realms

You must configure at least one realm, which can be either a specific realm or a
default realm. Each Web service can support up to 10 realms. According to RFC
3588, you should have a primary and secondary route for each realm. The
Diameter Enabler supports 10 realms for the Rf accounting Web service, 10 for the
Ro online charging Web service, and 10 for the Sh subscriber profile Web service.

Chapter 4. Planning 23

Therefore, you can configure 10 primary and 10 secondary routes for a total of 20
routes per Web service. If you are using all of the Web services (Rf, Ro, and Sh),
then you can have a maximum of 60 routes total.

Supported network elements (CCF, OCS, and HSS)
Diameter Enabler functions as a Diameter client to the Charging Collection
Function (CCF), Online Charging System (OCS), and Home Subscriber Server
(HSS). The CCF, OCS, and HSS act as Diameter servers.

Diameter Enabler supports servers that adhere to the following specifications:

Charging Collection Function servers

v RFC 3588
v ETSI TS 132.260 V6.7.0 (2006-09)
v ETSI TS 132.299 V6.9.0 (2006-12)

Online Charging System servers

v RFC 3588
v RFC 4006
v ETSI TS 132.260 V6.7.0 (2006-09)
v ETSI TS 132.299 V6.9.0 (2006-12)

Home Subscriber Server

v RFC 3588
v ETSI TS 129.328 V6.12.0 (2006-12)
v ETSI TS 129.329 V6.7.0 (2006-09)

Evaluating your hardware environment
Diameter Enabler installs and runs as an application on WebSphere Application
Server. It can be deployed on various hardware configurations.

WebSphere Application Server supports numerous deployment topologies. It is
beyond the scope of this documentation to provide detailed steps for each
topology. Therefore deployment information has been grouped into a number of
broad categories. Throughout the documentation the categories are used to provide
a reference point. Each component has a unique deployment strategy. Prior to
deployment, review all of the planning and installation information.

Here is a list of the most commonly used topologies in a WebSphere Application
Server environment:

Note: The single server topology can be used for development or the proof of
concept.

Single-server topology
The components are installed on the same server. You can use this type of
installation to evaluate your system for a proof-of-concept, simple
interoperability testing, or simple functionality testing of the solution.

In conjunction with the single-server topology, an IBM WebSphere Telecom
Toolkit development environment can help you rapidly develop and
deploy IMS Application Server applications. This toolkit is available as a
free download. It is designed to reduce the time to develop applications
that use the Diameter Enabler and other IBM WebSphere software for

24 WebSphere Diameter Enabler

Telecom. The toolkit includes sample applications that demonstrate how to
invoke the Diameter Enabler Web services.

Vertical scaling topology
Members of a cluster exist on the same physical machine. Some services
perform better with a small or moderate size Java heap. This may not
utilize all of the resources of a powerful machine, so a vertically scaled
deployment allows the processor and memory to be more fully utilized,
while each instance can run more efficiently in a smaller JVM heap.

Frequently, vertical scaling is combined with horizontal scaling to allow
both the efficient use of resources and the benefits of physical redundancy.

Horizontal scaling topology
Members of a cluster exist on multiple physical machines, effectively and
efficiently distributing the workload of a single instance. HTTP redirector
products can also be used to implement horizontal scaling. Clustering is
most effective in environments that use horizontal scaling because of the
ability to build in redundancy and failover, to easily add new horizontal
cluster members to increase capacity, and to improve scalability by adding
heterogeneous systems into the cluster.

You can combine vertical and horizontal scaling techniques to increase
efficiency in the environment.

The database is shared and clustered.

Development topology
An IBM WebSphere Telecom Toolkit development environment can help
you rapidly develop and deploy IMS Application Server applications. This
toolkit is available as a free download. It is designed to reduce the time to
develop applications that use the Diameter Enabler and other IBM
WebSphere software for Telecom program products. The toolkit includes
sample applications that demonstrate how to invoke the Diameter Enabler
Web services.

Scaling and reliability
Diameter Enabler can be configured to run in horizontal and vertical clusters.

To achieve scalability and reliability, Diameter Enabler utilizes the clustering ability
provided with the WebSphere Application Server Network Deployment product.
When you use databases, they should be configured for failover in order to
increase reliability.

Other WebSphere Application Server methods, such as an IP sprayer or edge
server, and other resource configurations, such as database or network topologies,
can also be employed.

Scaling may be vertical only, horizontal only, or a combination. For both horizontal
and vertical clusters, each server must have a unique OriginHostName and a
unique HostIpAddress and port number pair.

Horizontal cluster

Horizontal clusters are servers on separate physical servers. Each server
must have a unique IP address. Each server may be configured to listen on
the same port number. 3868 is the recommended port number because the
RFC references that port for Diameter connections.

Chapter 4. Planning 25

Vertical cluster

Vertical clusters are application servers on the same physical server. Each
application server may have the same IP address. The IP address and TCP
port combination must be unique for every cluster member. If the IP
address is the same for two or more vertical cluster members, the port
must be different.

You can install the components into an existing cell environment where cell
security is already configured. Alternatively, you can install the components in a
local environment and then add the node to a cell later on.

Security considerations
Diameter Enabler uses the security provided by WebSphere Application Server
Network Deployment. You should consider securing access to the various Diameter
Enabler Web services, J2EE access to the internal Diameter Enabler infrastructure,
security on connections, and end-to-end security for messages.

Application level security

Each Web service application has the ability to enable or disable application
security. Because Diameter Enabler is an AAA protocol, it is recommended that
these Web services be secured. You should enable WebSphere Application Server
security for the Rf accounting Web service, Ro online charging Web service, and Sh
subscriber profile Web service.

Once they are secured, to invoke any of the Web services provided by the
Diameter Enabler, you need to include the WebSphere Application Server principal
and credentials.

Diameter Enabler uses basic authentication to protect its Web services. It is
recommended that you use Secure Sockets Layer (SSL)/Transport Layer Security
(TLS) on your HTTP Transport chains if you want to have your Web service calls
encrypted.

J2EE Access to internal Diameter Enabler infrastructure

Install the Diameter Web services (Rf, Ro, and Sh) on the same server as the
Diameter Enabler base.

For a secure system, you should not install applications unless you are certain of
their origin. Diameter Enabler extends the Channel Framework Architecture of
WebSphere Application Server. Any application or plug-in to WebSphere
Application Server has the ability to access a set of Diameter Enabler connections.

A rogue application could potentially bring up or down any of the Diameter
Enabler connections, thus affecting the applications that use the connections.
Therefore, an IMS Application Server application should not be installed on the
same application server as the Rf accounting Web service, Ro online charging Web
service, or Sh subscriber profile Web service.

Connections

You can use Transport Layer Security (TLS) or another security mechanism to
create secure connections. TLS allows authentication for the client and server using

26 WebSphere Diameter Enabler

certificates and encrypts the packets using the connection. If TLS is disabled, the
connection must be secured with IPsec or by isolating your network so that it does
not require transport or network layer security. Enabling TLS may affect
performance.

Messages

A Diameter packet might pass through several hops to get to the final destination.
After each hop in the path, the packet is decrypted and can be read by each device
that receives it. The Base Diameter protocol (RFC 3588) does not provide
end-to-end security. If your application requires end-to-end security, you can
establish a direct connection between the client and server and use transport layer
security or IPsec for this connection.

Configuration considerations for the WebSphere IMS Connector
The IBM WebSphere IP Multimedia Subsystem Connector provides interfaces and
services used when developing applications that must interact with elements
within the IMS core environment.

Overview of WebSphere IMS Connector

The IBM WebSphere IP Multimedia Subsystem Connector–consisting of the IBM
WebSphere IMS Service Control Interfaces Component (ISC Interfaces), the
Diameter Enabler, and the Trust Association Interceptor (TAI) security
component–provides interfaces and services for use in developing applications that
interact with elements in the IMS core environment.

The interfaces and services include the following:
v Serving-Call Session Control Function (S-CSCF)
v Home Subscriber Server (HSS)
v Charging functions: Online Charging System (OCS) and Charging Collection

Function (CCF).

The WebSphere IMS Connector also provides authentication services and
management services. The standard WebSphere IMS Connector configuration
appears in the following diagram, where Diameter represents the Diameter Enabler,
and IMS Enabler represents other IBM WebSphere software for Telecom products
like the IBM WebSphere Presence Server and the IBM WebSphere XML Document
Management Server Component.

Note: It is not necessary that all of these components reside on the same
WebSphere Application Server instance.

Chapter 4. Planning 27

ISC reference point support

Use of the WebSphere IMS Connector enables the application programmer to write
applications that run in the WebSphere Application Server environment and
interact with the IMS Control Plane through communication with an S-CSCF. This
reference point between an application server and the S-CSCF is called IMS Service
Control (ISC).

Because this reference point defines SIP as the protocol for communication, and
because SIP is built into the base WebSphere Application Server product, there is
no need to install additional code from the WebSphere IMS Connector. The
Connector provides supporting services for such applications, and provides the
license for future maintenance and support for such applications.

ISC Toolkit support

While it is not strictly a part of the WebSphere IMS Connector, the IBM WebSphere
Telecom Toolkit provides sample applications. These applications demonstrate how
to develop ISC applications that run in an application server with the WebSphere
IMS Connector installed.

Diameter support

The IBM WebSphere Diameter Enabler Component, consisting of the Diameter
Enabler base and Diameter Web services, is a major component of the WebSphere
IMS Connector. The Diameter Enabler provides a Web service interface that allows
Diameter applications to send and receive subscriber profile information, send
accounting information, and manage online charging.

Security interface support

The WebSphere IMS Connector provides a TAI security component that provides
integration for the IBM WebSphere software for Telecom products and other
applications into the authentication protocols of the IMS core network. This
component intercepts HTTP and SIP service requests to all IMS service plane

28 WebSphere Diameter Enabler

components, verifies the sending element, consumes IMS-compliant identity
information passed to it in HTTP/SIP headers, and propagates this information in
a format compatible with WebSphere Application Server-based security.

Support for key performance indicators

The WebSphere IMS Connector includes the IBM Tivoli® Configuration Access
Management (ITCAM) for J2EE Operations components for purposes of extracting
and presenting key performance indicators (KPIs). This component is included as a
convenience, and it provides the ability to integrate with a Tivoli or SNMP
network manager. (The SNMP support is the Netcool®/System Service Monitors
[SSM] 4.0 package.) Refer to the documentation provided as part of the product
bundle.

Note: The following documentation is available for the installation and
administration of the SNMP support:
v Netcool/SSM Release Notes
v Netcool/SSM Administration Guide
v Netcool/SSM Reference Guide
v Netcool/SSM PDF Documentation

For additional details about installing and removing Netcool fix packs, refer
to the Netcool/SSM Patch Installation Guide.

For other updates and suggestions, search the IBM Technotes for
Netcool/SSM 4.0 updates.

Chapter 4. Planning 29

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.netcool_ssm.doc/rn/topic/rn.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.netcool_ssm.doc/ag/topic/ag.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp?topic=/com.ibm.netcool_ssm.doc/ag/topic/ag.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.netcool_ssm.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.netcool_ssm.doc/pig/topic/pig.html

30 WebSphere Diameter Enabler

Chapter 5. Installing

IBM WebSphere Diameter Enabler Component has four subcomponents to install:
Diameter Enabler base, Rf accounting Web service, Ro online charging Web service,
and Sh subscriber profile Web service.

Diameter Enabler base must be manually installed into an existing WebSphere
Application Server. All of the required files are packaged in the file
DHAImsConnectorInstallPackage_6.2.0.tar. This package needs to be copied to
was_root directory and unpacked on each node in Network Deployment
environment. This places the required files in the appropriate directories.

Note: was_root is the installation root directory for WebSphere Application Server
Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

Install the IMS Connector product updates (fix packs and interim fixes) to the
latest levels. Product fix packs are cumulative, so it is necessary to install only the
latest available fix pack and any interim fixes that are available for that fix pack.
Interim fix 1 will enable the WebSphere IMS Connector product to run on
WebSphere Application Server version 7.0.0.1. Refer to the topic Installing Updates
for details.

During the Diameter Enabler base installation, you will use the
DiameterChannelInstall.py script to configure the TCP connections.

Note: The Rf accounting Web service, Ro online charging Web service, and Sh
subscriber profile Web service are separate applications that can be installed
and run independently or together. You need to install only the protocols
that you plan to use.

The Rf accounting Web service, Ro online charging Web service, and Sh subscriber
profile Web service are enterprise applications (EAR files) that are installed using
the Integrated Solutions Console. You can find these installable EAR files in the
following directory location: was_root/installableApps/ImsConnector.

If you are planning to use the subscribe and notify features of the Sh subscriber
profile Web service or the Ro online charging Web service, you should install a
database to store subscription information.

Enabling the application profiling service
If the underlying version of WebSphere Application Server is 7.x, you must enable
the application profiling service for each application server that will run the
WebSphere IMS Connector application.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.

© Copyright IBM Corp. 2010 31

port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Servers → Server Types → WebSphere application servers.
3. Click the name of the server where you plan to deploy the WebSphere IMS

Connector application.
4. Expand Container Services and click Application profiling service.
5. Select the Enable service at server startup check box.
6. Click OK and to save your changes.
7. Repeat these steps for each server where you plan to deploy the WebSphere

IMS Connector application.

What to do next

You are now ready to proceed with the installation of the full WebSphere IMS
Connector product.

Standalone installation of WebSphere IMS Connector
Installing IBM WebSphere Diameter Enabler Component is a multiple step process.
A standalone (non clustered) installation consists of preparing your environment,
installing the subcomponents, and configuring Diameter Enabler base.

Preparing the environment
To install the Diameter Enabler successfully, you must first install and configure
the prerequisite software. Also, you must first configure the application server
platform and whichever of the following that you plan to use: Charging Collection
Function (CCF), Online Charging System (OCS), and Home Subscriber Server
(HSS).

Before you begin

Before beginning this task, you should review and verify that all hardware and
software prerequisites have been met.

About this task

Complete the following steps to prepare the environment for the installation.

Note: was_root is the installation root directory for WebSphere Application Server
Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

1. Verify that your CCF, OCS, or HSS is configured properly to listen to the
Diameter Enabler.

2. Open a command prompt.
3. Stop the application server.

32 WebSphere Diameter Enabler

4. On the server where WebSphere Application Server is installed, copy the
installation file (IBM_WebSphere_IMS_Connector/
DHAImsConnectorInstallPackage_6.2.0.tar) from the CD to the was_root
directory.

5. Change (cd) to the was_root directory.
6. Unpack the file by typing the following command: tar -pxvf

DHAImsConnectorInstallPackage_6.2.0.tar

Note: Remember to apply any relevant fix packs for the TAI.

Preparing the database
Sh subscriber profile Web service and Ro online charging Web service require a
database to store subscriber notification data for the subscribe and notify functions
of the Web service. A database is required only if you plan to use the subscribe
and notify capabilities of the Sh subscriber profile Web service or the
subscribe/reauthorization notification capabilities of the Ro online charging Web
service.

Preparing DB2
Create a DB2 database before installing Diameter Enabler.

Before you begin

Before you begin:
v DB2 should be installed and running

About this task

Some initial tuning values are provided; however, additional database tuning may
be needed for optimal performance. Complete the following steps to create,
configure, and connect to the database:
1. Log in to the DB2 server with a user ID that has database administrator

authority, such as db2inst1.
2. Create a database named diameter by entering the following command from the

command line:
db2 "CREATE DATABASE diameter USING CODESET UTF-8 TERRITORY US
COLLATE USING SYSTEM DFT_EXTENT_SZ 64"

3. To verify the database was created, type the following command:
db2 "LIST DATABASE DIRECTORY"

You should see a database entry for the diameter database.
4. Configure the database manager.

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MAXAGENTS 1000"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING SHEAPTHRES 20000"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MON_HEAP_SZ 512"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MAX_QUERYDEGREE 1"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_BUFPOOL off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_LOCK off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_SORT off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_STMT off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_TABLE off"

Chapter 5. Installing 33

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_TIMESTAMP
off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_UOW off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING HEALTH_MON off"

5. Configure the database using the following series of commands:
db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DBHEAP 8192"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING CATALOGCACHE_SZ
512"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGBUFSZ 2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING PCKCACHESZ
2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING APPLHEAPSZ
2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING APP_CTL_HEAP_SZ
4096"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING STAT_HEAP_SZ
8192"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING STMTHEAP 2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING SORTHEAP 512"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOCKLIST 10000"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING MAXLOCKS 45"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGFILSIZ 5000"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGPRIMARY 20"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGSECOND 20"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING MAXAPPLS 500"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AVG_APPLS 1"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING NUM_IOCLEANERS
3"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING NUM_IOSERVERS
3"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING SOFTMAX 100"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_DEGREE 1"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_PREFETCH_SZ
16"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_EXTENT_SZ
64"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING CHNGPGS_THRESH
60"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_MAINT ON"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_TBL_MAINT
ON"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_RUNSTATS
ON"

6. Connect to the database and create all necessary tables using the following
commands where dbuser represents the database user for the diameter database
and dbpassword represents the password for the database user:

db2 "CONNECT TO diameter USER dbuser USING dbpassword"

db2 "create bufferpool BP_32K all nodes size 1000 pagesize 32K"

34 WebSphere Diameter Enabler

db2 "create regular tablespace SUBSCRIPTIONTS pagesize 32K managed by
system using ('SUBSCRIPTIONTS') extentsize 256 prefetchsize 64
bufferpool BP_32K"

db2 "create regular tablespace ROSUBSCRIPTIONTS pagesize 32K managed
by system using ('ROSUBSCRIPTIONTS') extentsize 256 prefetchsize 64
bufferpool BP_32K"

db2 "CREATE TABLE DIAMETERSHSUBSCRIPTION (SERVERNAME VARCHAR(250) NOT
NULL, PUBLICIDENTITY VARCHAR(250) NOT NULL, DATAREFERENCE INTEGER NOT
NULL, SERVICEINDICATION VARCHAR(250) NOT NULL, CALLBACKURL
VARCHAR(250) NOT NULL, DATESUBSCRIBED TIMESTAMP, USERID VARCHAR(250),
PASSWORD1 VARCHAR(250), SUBSCRIBEUSERDATA SMALLINT NOT NULL) IN
SUBSCRIPTIONTS"

db2 "ALTER TABLE DIAMETERSHSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERSHSUBS2 PRIMARY KEY (PUBLICIDENTITY, DATAREFERENCE,
CALLBACKURL, SUBSCRIBEUSERDATA, SERVICEINDICATION, SERVERNAME)"

db2 "CREATE TABLE DIAMETERROSUBSCRIPTION (SESSIONID VARCHAR(250) NOT
NULL, DESTINATIONREALM VARCHAR(250) NOT NULL, CALLBACKURI
VARCHAR(250), DATESUBSCRIBED TIMESTAMP, DATEEXPIRESSECONDS BIGINT NOT
NULL, USERID VARCHAR(250), PASSWORD1 VARCHAR(250)) IN
ROSUBSCRIPTIONTS"

db2 "ALTER TABLE DIAMETERROSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERROSUBS2 PRIMARY KEY (SESSIONID, DESTINATIONREALM)"

7. Restart DB2 using the following commands:
db2stop force

db2start

Preparing Oracle
Create an Oracle database user and tables before installing Diameter Enabler.

Before you begin

Before you begin:
v Oracle should be installed and running.
v Oracle database should be created, and is referred to in the following procedure

as diameter.

About this task

Some initial tuning values are provided; however, additional database tuning may
be needed for optimal performance. Complete the following steps to create the
appropriate user ID and database table:
1. Log in to the Oracle server with a user ID that has database administrator

authority, such as oracle.
2. Start SQLPlus and connect to the diameter database with SYSTEM authority.
3. Create an ID for the Diameter Enabler to access the database. The following

commands create the user and gives the user the appropriate privileges:
create user diameter_user identified by password;

grant create session, create table, create sequence,
exp_full_database, imp_full_database, unlimited tablespace to
diameter_user;

Where:

Chapter 5. Installing 35

diameter_user is the new Oracle user ID Diameter Enabler will use to
access the database.
password is the password for the diameter_user.

4. Verify the correct users are created and have the correct privileges by typing
the following command in SQLPlus:

select username from DBA_USERS;

This command will list the existing users that have database privileges.
5. Connect to the database with diameter_user using the following command:

connect diameter_user/password@diameter

Where:
diameter_user is the new Oracle user ID Diameter Enabler will use to
access the database.
password is the password for the diameter_user.
diameter is the database name

6. Create the DIAMETERSHSUBSCRIPTION database table and the primary key using
the following commands:

create table DIAMETERSHSUBSCRIPTION (SERVERNAME VARCHAR2(250) NOT
NULL, PUBLICIDENTITY VARCHAR2(250) NOT NULL, DATAREFERENCE INT NOT
NULL, SERVICEINDICATION VARCHAR2(250) NOT NULL, CALLBACKURL
VARCHAR2(250) NOT NULL, DATESUBSCRIBED DATE, USERID VARCHAR2(250),
PASSWORD VARCHAR2(250), SUBSCRIBEUSERDATA SMALLINT NOT NULL) PCTFREE
0 PCTUSED 0 LOGGING;

ALTER TABLE DIAMETERSHSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERSHSUBSCRIPTION PRIMARY KEY (PUBLICIDENTITY, DATAREFERENCE,
CALLBACKURL, SUBSCRIBEUSERDATA, SERVICEINDICATION, SERVERNAME);

7. Create the DIAMETERROSUBSCRIPTION database table and the primary key using
the following commands:

create table DIAMETERROSUBSCRIPTION (SESSIONID VARCHAR2(250) NOT
NULL, DESTINATIONREALM VARCHAR2(250) NOT NULL, CALLBACKURI
VARCHAR2(250), DATESUBSCRIBED DATE, DATEEXPIRESSECONDS NUMBER(19 ,
0) NOT NULL, USERID VARCHAR2(250), PASSWORD VARCHAR2(250)) LOGGING;

ALTER TABLE DIAMETERROSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERROSUBSCRIPTION PRIMARY KEY (SESSIONID, DESTINATIONREALM);

What to do next

To improve performance, you may need to create a separate table space for the
DIAMETERSHSUBSCRIPTION and DIAMETERROSUBSCRIPTION tables and
complete additional database tuning.

Installing Diameter Enabler base (Standalone)
Diameter Enabler base is installed into the plugins directory in your WebSphere
Application Server Network Deployment path. The installation process includes
minor configuration steps necessary to run the Diameter Enabler base.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

36 WebSphere Diameter Enabler

v If you require subscribe and notify functions for either Ro or Sh, one of the
following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2

In addition, you should have:
v Completed the environment preparation steps, which includes unpacking the

DHAImsConnectorInstallPackage_6.2.0.tar file into the was_root directory

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v Prepared the database

You will need the following files for this installation task:
v com.ibm.ws.diameter_6.2.0.jar (in was_root/plugins)
v DiameterChannelInstall.py (in was_root/installableApps/ImsConnector/

install)

You will need the following information to complete this task:
v WebSphere Application Server user name and password. You only need this

information if security is enabled.
v Cell name and node name where the WebSphere Application Server server is

installed; the default server is server1.
v Fully qualified host name where the node is installed.
v Port number for the Diameter inbound channel. Port 3868 is the preferred port

defined in RFC 3588. You should use this port unless it is already in use.

Tip:

v To locate your host name and node name, refer to the
AboutThisProfile.txt in the following node profile directory:

was_profile_root/logs/

was_profile_root/logs/

Note: was_profile_root is the directory for a WebSphere Application
Server Network Deployment profile called profile_name. By default,
this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment.
v To locate your cell name, refer to the directory name found in the following

location:
was_profile_root/config/cells/cell_name

was_profile_root/config/cells/cell_name

Where:
cell_name is your actual cell name

Chapter 5. Installing 37

About this task

Complete the following steps to install the Diameter Enabler base:
1. Log in to the server where WebSphere Application Server is installed.
2. If you have not already done so, unpack the

DHAImsConnectorInstallPackage_6.2.0.tar file as described in preparing the
environment. Otherwise, open a command prompt and verify that the file
com.ibm.ws.diameter_6.2.0.jar was correctly copied to the plugins directory:

was_root/plugins

3. Start the application server.
4. Configure the Diameter channels. Run the following command:

Important: Enter the following parameters on a single line.
was_profile_root/bin/wsadmin.sh -username user_name -password

password -f script_path/DiameterChannelInstall.py cell_name node_name
server_name host_name port_number standalone [debug]

Where:
user_name represents your WebSphere Application Server user ID. This
parameter is required if security is enabled.
password represents the password associated with your user_name. This
parameter is required if security is enabled.
script_path represents the path to DiameterChannelInstall.py. After the
unpack operation, script_path is was_root/installableApps/ImsConnector/
install.
cell_name represents the name of cell where the server is installed
node_name represents the name of node where the server is installed
server_name represents the name of the application server where you are
installing Diameter Enabler base
host_name represents the fully qualified host name the Diameter TCP
channel will bind to. To specify any host name, type "*" (including the
quotes) for the value.
port_name represents the port number for the Diameter inbound TCP
channel, 3868 preferred
standalone indicates that the script is running in a standalone environment
debug enables debugging for the configuration script (optional)

5. Stop the server where you have installed Diameter Enabler base.
6. Start the server.

Verifying the Diameter Enabler base installation (Standalone)
Once the Diameter Enabler base is installed into the plugins directory, you should
verify the installation.

Before you begin

Before you can verify the installation, you must have completed the installation
process.

About this task

Complete the following steps to verify the installation of the Diameter Enabler
base:

38 WebSphere Diameter Enabler

1. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://

host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Servers → Application servers.
3. Click server_name.
4. Under Communications, click Ports.
5. Verify the end point is properly configured:

a. Verify the DiameterNamedEndPoint appears in the list and has the
following values:

Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

6. Verify the DiameterChain is properly configured:
a. Click View associated transports on the DiameterNamedEndPoint row.
b. Verify DiameterChain appears in the list and has the following values:

Enabled: Enabled
Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)
SSL Enabled: Disabled

7. Verify the SecureDiameterChain appears in the list and is properly configured
with the following values:

Enabled: Enabled
Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter inbound
channel.)
SSL Enabled: Enabled

8. Verify the DiameterChain channel is properly configured:
a. Click DiameterChain.
b. Verify the following information is correct in the Transport Channels

section:
v TCP inbound channel (DiameterTCPInboundChannel)

– Host: * or server_name

– Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

– Thread pool: DiameterThreadPool
v Generic inbound channel (DiameterGenericInboundChannel)

Chapter 5. Installing 39

c. Click Generic inbound channel (DiameterGenericInboundChannel).
d. Verify the following values are correct:

Transport Channel Name: DiameterGenericInboundChannel
Discrimination weight: 10
JAR file: com.ibm.ws.diameter_6.2.0.jar
Channel type identifier: DiameterInboundChannel
Configuration URI should be empty.

e. Click Cancel on the DiameterChain panel, and click Cancel to return to
the Transport chain panel.

9. Verify the SecureDiameterChain channel is properly configured:
a. Click SecureDiameterChain.
b. Verify the following information is correct in the Transport Channels

section:
v TCP inbound channel (DiameterTCPInboundChannel)

– Host: * or server_name

– Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

– Thread pool: DiameterThreadPool
v SSL inbound channel (DiameterSSLInboundChannel)

– SSL Configuration: Diameter
v Generic inbound channel (SecureDiameterGenericInboundChannel)

c. Click Generic inbound channel
(SecureDiameterGenericInboundChannel).

d. Verify the following values are correct:
Transport Channel Name: SecureDiameterGenericInboundChannel
Discrimination weight: 1
JAR file: com.ibm.ws.diameter_6.2.0.jar
Channel type identifier: DiameterInboundChannel
Configuration URI should be empty.

e. Click Cancel on the SecureDiameterChain panel, and click Cancel to
return to the Transport chain panel.

10. Verify the SSL configuration object has been created and configured properly:
a. In the navigation pane, click Security → SSL certificate and key

management → SSL configurations.
b. Click Diameter in the list of SSL configurations.
c. Under Additional Properties, click Quality of protection (QoP) settings.
d. Verify the following values are correct:

Client authentication: Required
Protocol: SSL_TLS

e. Click Cancel.

Connecting to the database
After the database and WebSphere Application Server Network Deployment are
installed, you must create the data source in the application server for the Sh
subscriber profile Web service and Ro online charging Web service to be able to
access the database for the subscribe and notification functions. To connect to the

40 WebSphere Diameter Enabler

database, you must create a JAAS authentication alias for the database, create the
JDBC provider, and define the data source using the Integrated Solutions Console.

The database client allows the database server and the application server to
communicate. When the database is not on the same server as WebSphere
Application Server Network Deployment, the JDBC JAR file (or the full database
client) must be installed on each WebSphere Application Server Network
Deployment server. This applies to all nodes.

Creating an authentication alias
Use an authentication alias to define authentication data used to access the
database. The authentication alias is created using the Integrated Solutions
Console.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the application server
v Created the database

About this task

Complete the following steps to create an authentication alias for the Diameter
database:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Security → Global security to display the Global security window.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Security → Secure administration,
applications, and infrastructure.

Chapter 5. Installing 41

3. Expand Java Authentication and Authorization Service, and click J2C
authentication data.

4. Click New.
5. In the Alias field, type diameter_alias. Note of the name of the alias; you will

need it later.
6. In the User ID field, type the database administrator user ID that can be used

to access the Diameter database. This is the same user ID used in the Preparing
the database topics.

7. In the Password field, type the password that corresponds to the user ID.
8. Optional: In the Description field, type a description for the alias.
9. Click OK.

10. Click Save to save changes to the master configuration.

Creating a JDBC provider (Standalone)
To access a database, you must first create a JDBC provider in the Integrated
Solutions Console.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the application server
v Created the database
v Created an authentication alias for the database

About this task

Complete the following steps to create a JDBC provider:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.

42 WebSphere Diameter Enabler

3. Select cell_name from the Scope drop-down list.
4. Click New.
5. Create the JDBC provider:

a. Select your database type from the drop-down list.

DB2

Oracle
b. Select the Provider type for your database:

DB2 Universal JDBC Driver Provider

Oracle JDBC Driver
c. Select Connection pool data source for the Implementation type.
d. Click Next.

6. Enter the value for the Directory location for the database client JAR files,
which is saved as a WebSphere variable. For the path, use the following format
where db_client_root is the path where you installed the database client:

/db_client_root/java

/db_client_root/jdbc/lib

This path is where you would find the following JAR files:

db2jcc.jar and db2jcc_license_*.jar

classes*.jar and ojdbc14*.jar

Note: If the location ever requires updating, make sure that the
DB2UNIVERSAL_JDBC_DRIVER_PATH or
ORACLE_JDBC_DRIVER_PATH variable is updated at both the cell and
node scope from Environment → WebSphere Variables in the Integrated
Solutions Console.

Click Next.
7. Verify that all values are correct, and click Finish.
8. Click Save to save changes to the master configuration.
9. Click OK when node synchronization has completed.

Defining the data source
Data sources are the resources that provide connections to your relational database.
Use the Integrated Solutions Console to define data sources.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the application server

Chapter 5. Installing 43

v Created the database
v Created WebSphere variables
v Created an authentication alias for the database
v Created the JDBC provider

About this task

Complete the following steps to define the data source to map the connection to
the Diameter database:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.
3. Click the name of the JDBC provider for which you are configuring the data

source, to display its properties. The JDBC provider was created in the
previous task.

4. Under Additional Properties, click Data sources.
5. Click New.
6. Type Diameter in the Data source name field.
7. Type jdbc/diameter in the JNDI name field.
8. Select diameter_alias from the Component-managed authentication alias

drop-down list, and click Next.

9. Configure the database properties:
a. Type jdbc:oracle:thin:@host_name:port_number:database_sid in the URL

field. Where:
host_name represents the host name of the server where Oracle
Database is installed
port_number represents the port number used to access the database
server (1521 is the default port)
database_sid represents the system identifier for the database you
created

b. Select Oracle10g data store helper from the Data store helper class name
drop-down list.

c. Click Next.

10. Configure the database properties:
a. Type database_name in the Database name field. This is the name of the

database you created.

44 WebSphere Diameter Enabler

b. Click 4 in the Driver type drop-down list to specify the connectivity type
of the data source. This value corresponds with the driver type property in
the data source class.

c. Type server_name in the Server name field. This is the fully qualified host
name for the DB2 server.

d. Type port_number in the Port number field. This is the port the DB2 server
is listening on. (Port 50000 is the default port.)

e. Click Next.
11. Select the Use this data source in container managed persistence (CMP)

check box. Click Next.
12. Verify that the values are correct, and click Finish.
13. Click Save to save changes to the master configuration.
14. Click OK when node synchronization has completed.
15. Restart the application server.

a. Stop the application server. Run the following command:
was_profile_root/bin/stopServer.sh server_name -username

user_name -password password

was_profile_root/bin/stopServer.sh server_name -username
user_name -password password

Note: The user_name and password parameters are required only when
security is enabled.

Where:
The was_profile_root path contains the name of the application server
profile (for example, AppSrv01).
server_name is name of the application server.
user_name represents your WebSphere Application Server administrator
user ID.
password represents the password associated with your user_name.

b. Start the application server. Run the following command:
was_profile_root/bin/startServer.sh server_name -username

user_name -password password

was_profile_root/bin/startServer.sh server_name -username
user_name -password password

Note: The user_name and password parameters are required only when
security is enabled.

Where:
The was_profile_root path contains the name of the application server
profile (for example, AppSrv01).
server_name is name of the application server.
user_name represents your WebSphere Application Server administrator
user ID.
password represents the password associated with your user_name.

Testing the database connection
After creating the data source, use the Integrated Solutions Console to test the
connection to the database.

Chapter 5. Installing 45

Before you begin

Note: This procedure should only be used if the database client or JDBC JAR files
are present, which may not be the case on the deployment manager.

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, you should have already completed the following steps:
v Started the application server
v Created the database
v Created WebSphere variables
v Created an authentication alias for the database
v Created the JDBC provider
v Defined the data source

About this task

Complete the following steps to test the mapped database connection:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.
3. Click the name of the JDBC provider for the component you are installing.
4. Under Additional Properties, click Data sources.
5. Select the associated check box for the data source to test the connection.
6. Click Test connection. A message similar to the following indicates a successful

connection:
Test connection for data source datasource_name on server server_name at node node_name was successful.

Where:
datasource_name represents the name of the data source you created
server_name represents the name of the server where you created the data
source

46 WebSphere Diameter Enabler

node_name represents the node that contains server_name

Installing the services
Rf accounting Web service, Ro online charging Web service, and Sh subscriber
profile Web service are deployed as enterprise applications on your WebSphere
Application Server Network Deployment node.

Installing Rf accounting Web service (Standalone)
Rf accounting Web service is a messaging interface to enable an application to send
accounting messages to a Charging Collection Function (CCF).

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v Diameter Enabler base

Verify that you have the following files needed for the installation:
v DHADiameterRfWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v Diameter_Rf.properties (in was_root/installableApps/ImsConnector/
properties)

1. Log in to the server where WebSphere Application Server is installed.
2. Copy Diameter_Rf.properties to the following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01.
3. Open Diameter_Rf.properties in a text editor.
4. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

5. Find the OriginRealmName property. Type the realm name to match the realm
of the application server where Diameter Enabler base is installed.

6. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a

Chapter 5. Installing 47

multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

7. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

8. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://

host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
9. Install DHADiameterRfWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterRfWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.
e. If security is enabled, click Step 7: Map security roles to users or groups,

and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Rf accounting Web service.

f. Click Step 8: Summary, and verify all options have the correct values.
g. Click Finish.
h. Click Save to save changes to the master configuration.

10. In the navigation panel, click Applications → Enterprise applications.
11. Select the check box corresponding to DHADiameterRfWebServiceEAR.
12. Click Start. You should receive the following message: Application

DHADiameterRfWebServiceEAR on server server_name and node node_name
started successfully.

13. Verify Application status for DHADiameterRfWebServiceEAR is started. After
the application is started, Diameter Enabler base will start to establish
connections.

Installing Ro online charging Web service (Standalone)
Ro online charging Web service is a messaging interface to enable an application to
send credit control messages to an Online Charging System (OCS).

48 WebSphere Diameter Enabler

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following supported databases:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Completed the environment preparation steps.
v Started the application server.
v Connected to the database.

Verify that you have the following files needed for the installation:
v DHADiameterRoWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v Diameter_Ro.properties (in was_root/installableApps/ImsConnector/
properties)

1. Log in to the server where WebSphere Application Server is installed.
2. Copy Diameter_Ro.properties to the following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01.
3. Open Diameter_Ro.properties in a text editor.
4. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

5. Find the OriginRealmName property. Type the realm name to match the realm
of the application server where Diameter Enabler base is installed.

6. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a

Chapter 5. Installing 49

multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

7. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

8. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://

host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
9. Install DHADiameterRoWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterRoWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.
e. Optional: If you are using the subscribe and notification functions, click

Step 3: Provide options to perform the EJB Deploy.
v Deploy EJB option - Database type: Choose your database:

DB2UDB_V91

ORACLE_V10G
v Database schema: Type your database user name. This is the same user

name used in Preparing the database section; for example, if you are using
the default DB2 user name, type db2inst1.

f. Optional: If you are using the subscribe and notification functions, click
Step 9: Map data sources for all 2.x CMP beans, and click Browse to select
the Target Resource JNDI Name for the module. The JNDI name was
created in the Defining the data source section.

g. If security is enabled, click Step 13: Map security roles to users or groups,
and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Ro online charging Web
service.

h. If security is enabled, click Step 14: Map RunAs roles to users, and map a
user that is assigned the Diameter_Role to the RunAs role. The
RoNotification EJB will run as this user when a notification is received.

50 WebSphere Diameter Enabler

Note: Any future password changes need to be updated in this enterprise
application’s settings as well.

i. Click Step 15: Summary, and verify all options have the correct values.
j. Click Finish.
k. Click Save to save changes to the master configuration.

10. In the navigation panel, click Applications → Enterprise applications.
11. Select the check box corresponding to DHADiameterRoWebServiceEAR.
12. Click Start. You should receive the following message: Application

DHADiameterRoWebServiceEAR on server server_name and node node_name
started successfully.

13. Verify Application status for DHADiameterRoWebServiceEAR is started. After
the application is started, Diameter Enabler base will start to establish
connections.

Installing Sh subscriber profile Web service (Standalone)
Sh subscriber profile Web service is used by an application server to download
user profile data from the Home Subscriber Server.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following supported databases:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Completed the environment preparation steps.
v Started the application server.
v Connected to the database.

Verify that you have the following files needed for the installation:
v DHADiameterShWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v Diameter_Sh.properties (in was_root/installableApps/ImsConnector/
properties)

v ShDataType.xsd (in was_root/installableApps/ImsConnector/xsd)
1. Log in to the server where WebSphere Application Server is installed.
2. Copy ShDataType.xsd to the following directory:

was_profile_root

Chapter 5. Installing 51

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01.
3. Copy Diameter_Sh.properties to the following directory:

was_profile_root/properties

4. Open Diameter_Sh.properties in a text editor.
5. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

6. Find the OriginRealmName property. Type the realm name to match the realm
of the application server where Diameter Enabler base is installed.

7. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a
multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

8. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

9. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://

host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
10. Install DHADiameterShWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterShWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.

52 WebSphere Diameter Enabler

e. Optional: If you are using the subscribe and notification functions, click
Step 3: Provide options to perform the EJB Deploy.
v Deploy EJB option - Database type: Choose your database:

DB2UDB_V91

ORACLE_V10G
v Database schema: Type your database user name. This is the same user

name used in Preparing the database section; for example, if you are using
the default DB2 user name, type db2inst1.

f. Optional: If you are using the subscribe and notification functions, click
Step 9: Map data sources for all 2.x CMP beans, and click Browse to select
the Target Resource JNDI Name for the module. The JNDI name was
created in the Defining the data source section.

g. If security is enabled, click Step 13: Map security roles to users or groups,
and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Sh subscriber profile Web
service.

h. If security is enabled, click Step 14: Map RunAs roles to users, and map a
user that is assigned the Diameter_Role to the RunAs role. The
ShNotification EJB will run as this user when a notification is received.

Note: Any future password changes need to be updated in this enterprise
application’s settings as well.

i. Click Step 15: Summary, and verify all options have the correct values.
j. Click Finish.
k. Click Save to save changes to the master configuration.

11. In the navigation panel, click Applications → Enterprise applications.
12. Select the check box corresponding to DHADiameterShWebServiceEAR.
13. Click Start. You should receive the following message: Application

DHADiameterShWebServiceEAR on server server_name and node node_name
started successfully.

14. Verify Application status for DHADiameterShWebServiceEAR is started. After
the application is started, Diameter Enabler base will start to establish
connections.

Verifying the connection
After you complete the installation, you should verify that the Diameter Enabler is
able to connect with other Diameter peers. Diameter peers include the Charging
Collection Function (CCF), Online Charging System (OCS), Home Subscriber
Server (HSS), and agents.
1. Verify the TCP listener port is active by typing the following command:

netstat -na

You should see a list of active listening ports, including 3868, the default
listening port for Diameter Enabler base.
tcp 0 0 0.0.0.0:3868 0.0.0.0:* LISTEN

2. Verify the connection is established between the Diameter peer and the
Diameter Enabler base by reissuing the netstat command.
When the Diameter Enabler base initiates a connection with a Diameter peer,
you will see the following result:
tcp 1 0 9.42.125.21:32861 209.132.177.100:3868 ESTABLISHED

Chapter 5. Installing 53

Where:
9.42.125.21 represents the IP address of the Diameter Enabler base
32861 represents the ephemeral source port from theDiameter Enabler base,
which will remain the same as long as the connection is active. If
configurable source port is enabled, then it will show that port number
instead.
209.132.177.100 represents the IP address of the Diameter peer
3868 represents the listener port of the Diameter peer

When the Diameter peer initiates a connection with Diameter Enabler base, you
will see the following result:
tcp 1 0 9.42.125.21:3868 209.132.177.100:43125 ESTABLISHED

Where:
9.42.125.21 represents the IP address of the Diameter Enabler base
3868 represents the listener port of the Diameter Enabler base
209.132.177.100 represents the IP address of the Diameter peer
43125 represents the ephemeral source port from the Diameter peer, which
will remain the same as long as the connection is active

Clustered installation of IBM WebSphere Diameter Enabler Component
IBM WebSphere Diameter Enabler Component utilizes horizontal and vertical
clustering capabilities provided with WebSphere Application Server Network
Deployment. Using clustering techniques, you can achieve a high-availability
system environment.

Scaling may be vertical only, horizontal only, or a combination. For both horizontal
and vertical clusters, each server must have a unique OriginHostName and a
unique HostIpAddress and port number pair.

Horizontal cluster

Horizontal clusters are servers on separate physical servers. Each server
must have a unique IP address. Each server may be configured to listen on
the same port number. 3868 is the recommended port number because the
RFC references that port for Diameter connections.

Vertical cluster

Vertical clusters are application servers on the same physical server. Each
application server may have the same IP address. The IP address and TCP
port combination must be unique for every cluster member. If the IP
address is the same for two or more vertical cluster members, the port
must be different.

Before beginning a clustered installation, the following tasks must be complete:
v Installed and configured all prerequisite software for the environment
v Copied the required installation files onto the appropriate application server
v Created a deployment manager profile
v Added (federated) all nodes into the deployment manager cell

For the Diameter Enabler clustered installation procedure, the documentation
assumes you have already created a deployment manager profile and federated all

54 WebSphere Diameter Enabler

nodes into the deployment manager cell. For this installation path, you install and
configure Diameter Enabler base. Then, you create the cluster and install the Web
services applications into the cluster.

Additionally, you must have a proxy server for Diameter Enabler. Additional
information for the proxy server is referenced when you create the cluster in the
procedure.

The high-level steps for the clustered installation procedure are as follows:

Preparing the environment (Cluster)
To install the Diameter Enabler successfully, you must first install and configure
the prerequisite software. You must also configure the application server platform,
along with whichever of the following that you plan to use, for a clustered
installation: Charging Collection Function (CCF), Online Charging System (OCS),
and Home Subscriber Server (HSS).

Before you begin

Before beginning the installation, you must have completed the following tasks on
WebSphere Application Server Network Deployment:
v Created a deployment manager profile
v Federated all nodes into the deployment manager cell

About this task

Complete the following steps to prepare the environment for the installation.

Note: was_root is the installation root directory for WebSphere Application Server
Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

1. Verify that your CCF, OCS, or HSS is configured properly to listen to the
Diameter Enabler.

2. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://host_name:port/

ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
3. Verify that the console preferences are set to synchronize changes across the

nodes:
a. In the navigation panel, click System administration → Console Preferences.
b. Select Synchronize changes with Nodes.

Chapter 5. Installing 55

c. Click Apply.
4. Stop the deployment manager.
5. Stop the node agent for each federated node.
6. Unpack the installation tar file to the was_root directory on the deployment

manager and on each federated node. Perform the following steps:

Note: If these are on separate machines, repeat these steps for each machine.
a. Log in to the server where the deployment manager or federated node is

installed.
b. Copy the installation file from the CD (IBM_WebSphere_IMS_Connector/

DHAImsConnectorInstallPackage_6.2.0.tar) to the was_root directory.
c. Change (cd) to the was_root directory.
d. Unpack the file by typing the following command: tar -pxvf

DHAImsConnectorInstallPackage_6.2.0.tar

Preparing the database
Sh subscriber profile Web service and Ro online charging Web service require a
database to store subscriber notification data for the subscribe and notify functions
of the Web service. A database is required only if you plan to use the subscribe
and notify capabilities of the Sh subscriber profile Web service or the
subscribe/reauthorization notification capabilities of the Ro online charging Web
service.

Preparing DB2
Create a DB2 database before installing Diameter Enabler.

Before you begin

Before you begin:
v DB2 should be installed and running

About this task

Some initial tuning values are provided; however, additional database tuning may
be needed for optimal performance. Complete the following steps to create,
configure, and connect to the database:
1. Log in to the DB2 server with a user ID that has database administrator

authority, such as db2inst1.
2. Create a database named diameter by entering the following command from the

command line:
db2 "CREATE DATABASE diameter USING CODESET UTF-8 TERRITORY US
COLLATE USING SYSTEM DFT_EXTENT_SZ 64"

3. To verify the database was created, type the following command:
db2 "LIST DATABASE DIRECTORY"

You should see a database entry for the diameter database.
4. Configure the database manager.

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MAXAGENTS 1000"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING SHEAPTHRES 20000"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MON_HEAP_SZ 512"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING MAX_QUERYDEGREE 1"

56 WebSphere Diameter Enabler

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_BUFPOOL off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_LOCK off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_SORT off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_STMT off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_TABLE off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_TIMESTAMP
off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING DFT_MON_UOW off"

db2 "UPDATE DATABASE MANAGER CONFIGURATION USING HEALTH_MON off"

5. Configure the database using the following series of commands:
db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DBHEAP 8192"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING CATALOGCACHE_SZ
512"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGBUFSZ 2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING PCKCACHESZ
2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING APPLHEAPSZ
2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING APP_CTL_HEAP_SZ
4096"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING STAT_HEAP_SZ
8192"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING STMTHEAP 2048"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING SORTHEAP 512"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOCKLIST 10000"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING MAXLOCKS 45"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGFILSIZ 5000"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGPRIMARY 20"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING LOGSECOND 20"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING MAXAPPLS 500"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AVG_APPLS 1"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING NUM_IOCLEANERS
3"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING NUM_IOSERVERS
3"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING SOFTMAX 100"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_DEGREE 1"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_PREFETCH_SZ
16"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING DFT_EXTENT_SZ
64"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING CHNGPGS_THRESH
60"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_MAINT ON"

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_TBL_MAINT
ON"

Chapter 5. Installing 57

db2 "UPDATE DATABASE CONFIGURATION FOR diameter USING AUTO_RUNSTATS
ON"

6. Connect to the database and create all necessary tables using the following
commands where dbuser represents the database user for the diameter database
and dbpassword represents the password for the database user:

db2 "CONNECT TO diameter USER dbuser USING dbpassword"

db2 "create bufferpool BP_32K all nodes size 1000 pagesize 32K"

db2 "create regular tablespace SUBSCRIPTIONTS pagesize 32K managed by
system using ('SUBSCRIPTIONTS') extentsize 256 prefetchsize 64
bufferpool BP_32K"

db2 "create regular tablespace ROSUBSCRIPTIONTS pagesize 32K managed
by system using ('ROSUBSCRIPTIONTS') extentsize 256 prefetchsize 64
bufferpool BP_32K"

db2 "CREATE TABLE DIAMETERSHSUBSCRIPTION (SERVERNAME VARCHAR(250) NOT
NULL, PUBLICIDENTITY VARCHAR(250) NOT NULL, DATAREFERENCE INTEGER NOT
NULL, SERVICEINDICATION VARCHAR(250) NOT NULL, CALLBACKURL
VARCHAR(250) NOT NULL, DATESUBSCRIBED TIMESTAMP, USERID VARCHAR(250),
PASSWORD1 VARCHAR(250), SUBSCRIBEUSERDATA SMALLINT NOT NULL) IN
SUBSCRIPTIONTS"

db2 "ALTER TABLE DIAMETERSHSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERSHSUBS2 PRIMARY KEY (PUBLICIDENTITY, DATAREFERENCE,
CALLBACKURL, SUBSCRIBEUSERDATA, SERVICEINDICATION, SERVERNAME)"

db2 "CREATE TABLE DIAMETERROSUBSCRIPTION (SESSIONID VARCHAR(250) NOT
NULL, DESTINATIONREALM VARCHAR(250) NOT NULL, CALLBACKURI
VARCHAR(250), DATESUBSCRIBED TIMESTAMP, DATEEXPIRESSECONDS BIGINT NOT
NULL, USERID VARCHAR(250), PASSWORD1 VARCHAR(250)) IN
ROSUBSCRIPTIONTS"

db2 "ALTER TABLE DIAMETERROSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERROSUBS2 PRIMARY KEY (SESSIONID, DESTINATIONREALM)"

7. Restart DB2 using the following commands:
db2stop force

db2start

Preparing Oracle
Create an Oracle database user and tables before installing Diameter Enabler.

Before you begin

Before you begin:
v Oracle should be installed and running.
v Oracle database should be created, and is referred to in the following procedure

as diameter.

About this task

Some initial tuning values are provided; however, additional database tuning may
be needed for optimal performance. Complete the following steps to create the
appropriate user ID and database table:
1. Log in to the Oracle server with a user ID that has database administrator

authority, such as oracle.
2. Start SQLPlus and connect to the diameter database with SYSTEM authority.

58 WebSphere Diameter Enabler

3. Create an ID for the Diameter Enabler to access the database. The following
commands create the user and gives the user the appropriate privileges:

create user diameter_user identified by password;

grant create session, create table, create sequence,
exp_full_database, imp_full_database, unlimited tablespace to
diameter_user;

Where:
diameter_user is the new Oracle user ID Diameter Enabler will use to
access the database.
password is the password for the diameter_user.

4. Verify the correct users are created and have the correct privileges by typing
the following command in SQLPlus:

select username from DBA_USERS;

This command will list the existing users that have database privileges.
5. Connect to the database with diameter_user using the following command:

connect diameter_user/password@diameter

Where:
diameter_user is the new Oracle user ID Diameter Enabler will use to
access the database.
password is the password for the diameter_user.
diameter is the database name

6. Create the DIAMETERSHSUBSCRIPTION database table and the primary key using
the following commands:

create table DIAMETERSHSUBSCRIPTION (SERVERNAME VARCHAR2(250) NOT
NULL, PUBLICIDENTITY VARCHAR2(250) NOT NULL, DATAREFERENCE INT NOT
NULL, SERVICEINDICATION VARCHAR2(250) NOT NULL, CALLBACKURL
VARCHAR2(250) NOT NULL, DATESUBSCRIBED DATE, USERID VARCHAR2(250),
PASSWORD VARCHAR2(250), SUBSCRIBEUSERDATA SMALLINT NOT NULL) PCTFREE
0 PCTUSED 0 LOGGING;

ALTER TABLE DIAMETERSHSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERSHSUBSCRIPTION PRIMARY KEY (PUBLICIDENTITY, DATAREFERENCE,
CALLBACKURL, SUBSCRIBEUSERDATA, SERVICEINDICATION, SERVERNAME);

7. Create the DIAMETERROSUBSCRIPTION database table and the primary key using
the following commands:

create table DIAMETERROSUBSCRIPTION (SESSIONID VARCHAR2(250) NOT
NULL, DESTINATIONREALM VARCHAR2(250) NOT NULL, CALLBACKURI
VARCHAR2(250), DATESUBSCRIBED DATE, DATEEXPIRESSECONDS NUMBER(19 ,
0) NOT NULL, USERID VARCHAR2(250), PASSWORD VARCHAR2(250)) LOGGING;

ALTER TABLE DIAMETERROSUBSCRIPTION ADD CONSTRAINT
PK_DIAMETERROSUBSCRIPTION PRIMARY KEY (SESSIONID, DESTINATIONREALM);

What to do next

To improve performance, you may need to create a separate table space for the
DIAMETERSHSUBSCRIPTION and DIAMETERROSUBSCRIPTION tables and
complete additional database tuning.

Chapter 5. Installing 59

Installing Diameter Enabler base (Cluster)
Diameter Enabler base is installed into the plugins directory in the WebSphere
Application Server path on each federated node. The installation process includes
creating and configuring a template application server for the cluster.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v If you require subscribe and notify functions for either Ro or Sh, one of the
following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2

In addition, you should have:
v Completed the environment preparation steps, which includes unpacking the

DHAImsConnectorInstallPackage_6.2.0.tar file into the was_root directory

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v Prepared the database

You will need the following files for this installation task:
v com.ibm.ws.diameter_6.2.0.jar (in was_root/plugins)
v DiameterChannelInstall.py (in was_root/installableApps/ImsConnector/

install)

You will need the following information to complete this task:
v WebSphere Application Server user name and password. You only need this

information if security is enabled.
v Cell name and node name that will contain the first cluster member.
v Fully qualified host name that will contain the first cluster member.
v Port number for the Diameter inbound channel. Port 3868 is the preferred port

defined in RFC 3588. You should use this port unless it is already in use.

Tip:

v To locate your host name and node name, refer to the
AboutThisProfile.txt in the following node profile directory:

was_profile_root/logs/

was_profile_root/logs/

Note: was_profile_root is the directory for a WebSphere Application
Server Network Deployment profile called profile_name. By default,
this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

60 WebSphere Diameter Enabler

For example, Custom01 is the name of the federated node’s profile which
contains the application server diameter0, created below.

v To locate your cell name, refer to the directory name found in the following
location:

was_profile_root/config/cells/cell_name

was_profile_root/config/cells/cell_name

Where:
cell_name is your actual cell name

Important: The combination of port number and IP address must be unique for
each cluster member where you plan to install Diameter Enabler base.
For horizontal clusters, the same port number should be used as the IP
address will be different for each server in the cluster. For vertical
clusters with two or more cluster members configured to run on a
single physical server with a single IP address, one cluster member can
use the default Diameter port number of 3868. The additional cluster
members must use different port numbers, such as 3890 or 3891. The
IP address is identified as the HostIpAddress in the Web services
application properties file, such as Diameter_Sh.properties.

About this task

Complete the following steps to install Diameter Enabler base in a clustered
environment:
1. Add the Diameter Enabler base files to the deployment manager and to each

federated node. Complete the following steps:

Note: If these are on separate machines, repeat these steps for each machine.
a. Log in to the server where the deployment manager or federated node is

installed.
b. If you have not already done so, unpack the file

DHAImsConnectorInstallPackage_6.2.0.tar as described in preparing the
environment. Otherwise, open a command prompt and verify that the
filecom.ibm.ws.diameter_6.2.0.jar was correctly copied to theplugins
directory:

was_root/plugins

2. Start the deployment manager.
3. Start the node agent for each federated node.
4. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

Chapter 5. Installing 61

c. Click Log in.
5. Create an application server named diameter0. This application server will

serve as the first cluster member and as a template for creating additional
cluster members.
a. In the navigation panel, click Servers → Application servers.
b. Click New.
c. Select the federated node where you want the new server created.
d. Type diameter0 for the Server name, and click Next.
e. Select default for the server template, and click Next.
f. Select Generate Unique Ports, and click Next.
g. Click Finish.
h. Click Save to save changes to the master configuration. You should see the

following message: The configuration synchronization complete for cell.
i. Click OK.

6. Configure the Diameter channels. Run the following command from the
deployment manager profile directory:

Important: Enter the following parameters on a single line.
was_profile_root/bin/wsadmin.sh -username user_name -password

password -f script_path/DiameterChannelInstall.py cell_name node_name
diameter0 host_name port_number cluster [debug]

Where:
user_name represents your WebSphere Application Server user ID. This
parameter is required if security is enabled.
password represents the password associated with your user_name. This
parameter is required if security is enabled.
script_path represents the path to DiameterChannelInstall.py. After the
unpack operation, script_path is was_root/installableApps/ImsConnector/
install.
cell_name represents the name of cell where diameter0 is installed
node_name represents the name of node where diameter0 is installed
diameter0 indicates the name of the application server
host_name represents the fully qualified host name the Diameter TCP
channel will bind to. To specify any host name, type "*" (including the
quotes) for the value.
port_name represents the port number for the Diameter inbound TCP
channel, 3868 preferred
cluster indicates that the script is running in a clustered environment
debug enables debugging for the configuration script (optional)

Verifying the Diameter Enabler base installation (Cluster)
Once the Diameter Enabler base is installed into the plugins directory, you should
verify the installation.

Before you begin

Before you can verify the installation, you must have completed the installation
process.

62 WebSphere Diameter Enabler

About this task

Complete the following steps to verify the installation of the Diameter Enabler
base:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Servers → Application servers.
3. Click diameter0.
4. Under Communications, click Ports.
5. Verify the end point is properly configured:

a. Verify the DiameterNamedEndPoint appears in the list and has the
following values:

Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

6. Verify the DiameterChain is properly configured:
a. Click View associated transports on the DiameterNamedEndPoint row.
b. Verify DiameterChain appears in the list and has the following values:

Enabled: Enabled
Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)
SSL Enabled: Disabled

7. Verify the SecureDiameterChain appears in the list and is properly configured
with the following values:

Enabled: Enabled
Host: * or host_name

Port: 3868 (This is the port number you defined for the Diameter inbound
channel.)
SSL Enabled: Enabled

8. Verify the DiameterChain channel is properly configured:
a. Click DiameterChain.
b. Verify the following information is correct in the Transport Channels

section:
v TCP inbound channel (DiameterTCPInboundChannel)

– Host: * or server_name

Chapter 5. Installing 63

– Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

– Thread pool: DiameterThreadPool
v Generic inbound channel (DiameterGenericInboundChannel)

c. Click Generic inbound channel (DiameterGenericInboundChannel).
d. Verify the following values are correct:

Transport Channel Name: DiameterGenericInboundChannel
Discrimination weight: 10
JAR file: com.ibm.ws.diameter_6.2.0.jar
Channel type identifier: DiameterInboundChannel
Configuration URI should be empty.

e. Click Cancel on the DiameterChain panel, and click Cancel to return to
the Transport chain panel.

9. Verify the SecureDiameterChain channel is properly configured:
a. Click SecureDiameterChain.
b. Verify the following information is correct in the Transport Channels

section:
v TCP inbound channel (DiameterTCPInboundChannel)

– Host: * or server_name

– Port: 3868 (This is the port number you defined for the Diameter
inbound channel.)

– Thread pool: DiameterThreadPool
v SSL inbound channel (DiameterSSLInboundChannel)

– SSL Configuration: Diameter
v Generic inbound channel (SecureDiameterGenericInboundChannel)

c. Click Generic inbound channel
(SecureDiameterGenericInboundChannel).

d. Verify the following values are correct:
Transport Channel Name: SecureDiameterGenericInboundChannel
Discrimination weight: 1
JAR file: com.ibm.ws.diameter_6.2.0.jar
Channel type identifier: DiameterInboundChannel
Configuration URI should be empty.

e. Click Cancel on the SecureDiameterChain panel, and click Cancel to
return to the Transport chain panel.

10. Verify the SSL configuration object has been created and configured properly:
a. In the navigation pane, click Security → SSL certificate and key

management → SSL configurations.
b. Click Diameter in the list of SSL configurations.
c. Under Additional Properties, click Quality of protection (QoP) settings.
d. Verify the following values are correct:

Client authentication: Required
Protocol: SSL_TLS

e. Click Cancel.

64 WebSphere Diameter Enabler

Connecting to the database
After the database and WebSphere Application Server Network Deployment are
installed, you must create the data source in the application server for the Ro
online charging Web service to be able to access the database for the subscribe and
notification functions.To connect to the database, you must create a JAAS
authentication alias for the database, create the JDBC provider, and define the data
source using the Integrated Solutions Console.

The database client allows the database server and the application server to
communicate. When the database is not on the same server as WebSphere
Application Server Network Deployment, the JDBC JAR file (or the full database
client) must be installed on each WebSphere Application Server Network
Deployment server. This applies to all nodes.

Creating an authentication alias
Use an authentication alias to define authentication data used to access the
database. The authentication alias is created using the Integrated Solutions
Console.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the deployment manager
v Started the node agents
v Created the database

About this task

Complete the following steps to create an authentication alias for the Diameter
database:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.

Chapter 5. Installing 65

2. Click Security → Global security to display the Global security window.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Security → Secure administration,
applications, and infrastructure.

3. Expand Java Authentication and Authorization Service, and click J2C
authentication data.

4. Click New.
5. In the Alias field, type diameter_alias. Note of the name of the alias; you will

need it later.
6. In the User ID field, type the database administrator user ID that can be used

to access the Diameter database. This is the same user ID used in the Preparing
the database topics.

7. In the Password field, type the password that corresponds to the user ID.
8. Optional: In the Description field, type a description for the alias.
9. Click OK.

10. Click Save to save changes to the master configuration.

Creating a JDBC provider (Cluster)
To access a database, you must first create a JDBC provider in the Integrated
Solutions Console.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the deployment manager
v Started the node agents
v Created the database
v Created an authentication alias for the database

About this task

Complete the following steps to create a JDBC provider:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

66 WebSphere Diameter Enabler

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.
3. Select cell_name from the Scope drop-down list.
4. Click New.
5. Create the JDBC provider:

a. Select your database type from the drop-down list.

DB2

Oracle
b. Select the Provider type for your database:

DB2 Universal JDBC Driver Provider

Oracle JDBC Driver
c. Select Connection pool data source for the Implementation type.
d. Click Next.

6. For database client JAR files, perform one of the following:
v If you have database client JAR files installed in the same location on all of

the federated nodes in your cell, enter that directory location path, which is
saved as a WebSphere variable.

v If you do not have database client JAR files in the same directory location on
all nodes in your cell, leave this field blank.

Note:

– By leaving this field blank, you will need to create or modify the
WebSphere variables at the node level to represent the correct path
for database client JAR files for each node.

– In the case where the location is given here, then if it ever requires
updating, make sure that the
DB2UNIVERSAL_JDBC_DRIVER_PATH or
ORACLE_JDBC_DRIVER_PATH variable is updated at both the cell
and each node scope from Environment → WebSphere Variables in
the Integrated Solutions Console.

Then click Next.
7. Verify that all values are correct, and click Finish.
8. Click Save to save changes to the master configuration.
9. Click OK when node synchronization has completed.

Creating WebSphere variables
WebSphere variables define a parameter for the system. To enable communication
between the application server and the database, you must create WebSphere
variables to specify the path to the JAR files on the database client.

Before you begin

Note: In the previous topic, Creating a JDBC provider, you may have already
entered the directory location path to these files because they are in the

Chapter 5. Installing 67

same location on all of the federated nodes in your cell. If the directory
location path was entered, the variable has already been created; skip this
procedure and proceed to the following topic, Defining the data source. In the
future, updates to the directory location path must be made to the variable
from both the cell scope and from each node’s scope.

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following supported databases:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v JDBC JAR file or full database client for communicating with the database server

Before you begin, the following steps should be completed:
v Started the application server
v Created the database
v Created JDBC provider

About this task

After you have installed the database client on the server where you installed
WebSphere Application Server, you must create a WebSphere variable to enable
communication between the application server and the database server.

Important: Install the database client in the same location on each physical server.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Environment → WebSphere Variables.
3. Select node_name from the Scope drop-down list.
4. Create the JDBC driver path variable:

a. Perform one of the following:
v If the variable is not defined, click New.
v If the variable is already defined, click its name.

b. In the Name field, type:

DB2UNIVERSAL_JDBC_DRIVER_PATH

68 WebSphere Diameter Enabler

ORACLE_JDBC_DRIVER_PATH

c. In the Value field, type the path to the database client JAR files. For the
path, use the following format where db_client_root is the path where you
installed the database client:

/db_client_root/java

/db_client_root/jdbc/lib

This path is where you would find the following JAR files:

db2jcc.jar and db2jcc_license_*.jar

classes*.jar and ojdbc14*.jar
d. Click OK.

5. Repeat steps 3 and 4 for each node.
6. Click Save to save changes to the master configuration.

Defining the data source
Data sources are the resources that provide connections to your relational database.
Use the Integrated Solutions Console to define data sources.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Started the deployment manager
v Started the node agents
v Created the database
v Created WebSphere variables
v Created an authentication alias for the database
v Created the JDBC provider

About this task

Complete the following steps to define the data source to map the connection to
the Diameter database:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Chapter 5. Installing 69

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.
3. Click the name of the JDBC provider for which you are configuring the data

source, to display its properties. The JDBC provider was created in the
previous task.

4. Under Additional Properties, click Data sources.
5. Click New.
6. Type Diameter in the Data source name field.
7. Type jdbc/diameter in the JNDI name field.
8. Select diameter_alias from the Component-managed authentication alias

drop-down list, and click Next.

9. Configure the database properties:
a. Type jdbc:oracle:thin:@host_name:port_number:database_sid in the URL

field. Where:
host_name represents the host name of the server where Oracle
Database is installed
port_number represents the port number used to access the database
server (1521 is the default port)
database_sid represents the system identifier for the database you
created

b. Select Oracle10g data store helper from the Data store helper class name
drop-down list.

c. Click Next.

10. Configure the database properties:
a. Type database_name in the Database name field. This is the name of the

database you created.
b. Click 4 in the Driver type drop-down list to specify the connectivity type

of the data source. This value corresponds with the driver type property in
the data source class.

c. Type server_name in the Server name field. This is the fully qualified host
name for the DB2 server.

d. Type port_number in the Port number field. This is the port the DB2 server
is listening on. (Port 50000 is the default port.)

e. Click Next.
11. Select the Use this data source in container managed persistence (CMP)

check box. Click Next.
12. Verify that the values are correct, and click Finish.
13. Click Save to save changes to the master configuration.
14. Click OK when node synchronization has completed.
15. Restart the deployment manager and the node agents.

a. Stop the deployment manager. Run the following command:
was_profile_root/bin/stopManager.sh -username user_name

-password password

70 WebSphere Diameter Enabler

was_profile_root/bin/stopManager.sh -username user_name
-password password

Note: The user_name and password parameters are required only when
security is enabled.

Where:
The was_profile_root path contains the name of the deployment
manager profile (for example, Dmgr01).
user_name represents your WebSphere Application Server administrator
user ID.
password represents the password associated with your user_name.

b. Stop the node agent on each federated node. Run the following command:
was_profile_root/bin/stopNode.sh -username user_name

-password password

was_profile_root/bin/stopNode.sh -username user_name
-password password

Note: The user_name and password parameters are required only when
security is enabled.

Where:
The was_profile_root path contains the name of a federated node
profile (for example, Custom01).
user_name represents your WebSphere Application Server administrator
user ID.
password represents the password associated with your user_name.

c. Start the deployment manager. Run the following command:
was_profile_root/bin/startManager.sh

was_profile_root/bin/startManager.sh

Where:
The was_profile_root path contains the name of the deployment
manager profile (for example, Dmgr01).

d. Start the node agent on each federated node. Run the following command:
was_profile_root/bin/startNode.sh

was_profile_root/bin/startNode.sh

Where:
The was_profile_root path contains the name of a federated node
profile (for example, Custom01).

Testing the database connection
After creating the data source, use the Integrated Solutions Console to test the
connection to the database.

Before you begin

Note: This procedure should only be used if the database client or JDBC JAR files
are present, which may not be the case on the deployment manager.

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 7.0.0.1
v One of the following supported databases:

Chapter 5. Installing 71

– IBM DB2 Enterprise Server Edition, version 9.5 FixPak 1
– Oracle Database, version 10.2.0.4, 10.2.0.6, or 11.1.0.7

v JDBC JAR file or full database client for communicating with the database server
v Diameter Enabler base

Before you begin, you should have already completed the following steps:
v Started the application server
v Created the database
v Created WebSphere variables
v Created an authentication alias for the database
v Created the JDBC provider
v Defined the data source

About this task

Complete the following steps to test the mapped database connection:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Resources → JDBC → JDBC Providers.
3. Click the name of the JDBC provider for the component you are installing.
4. Under Additional Properties, click Data sources.
5. Select the associated check box for the data source to test the connection.
6. Click Test connection. A message similar to the following indicates a successful

connection:
Test connection for data source datasource_name on server server_name at node node_name was successful.

Where:
datasource_name represents the name of the data source you created
server_name represents the name of the server where you created the data
source
node_name represents the node that contains server_name

Creating the cluster
To create the cluster, you convert an existing application server to become the first
cluster member and generate additional cluster members using the original cluster
member as a template.

72 WebSphere Diameter Enabler

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

In addition, you should have:
v Completed the environment preparation steps
v Prepared the database
v Created an application server named diameter0

About this task

Create the first cluster member from the diameter0 application server you have
already created. Additional cluster members are added using Integrated Solutions
Console.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://
host_name:port/ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation panel, click Servers → Clusters.
3. Click New.
4. Type Diameter for the Cluster name.
5. Select Prefer local.
6. Click Next.
7. Click Create the member by converting an existing application server, and

select diameter0 from the drop-down list.
8. Click Next.
9. Add additional cluster members. Repeat the following steps for each cluster

member you would like to add.
a. Type cluster_member_name. For federated nodes with multiple cluster

members, you will need to know the names of each of the cluster
members. Name each additional cluster member in the convention of
diameter+n, such as diameter1 and diameter2.

Chapter 5. Installing 73

b. Select node_name from the Select node drop-down list. The node_name is
the node you want the cluster to reside on.

c. Select Generate unique HTTP ports.
d. Click Add member to add the cluster member.

10. Click Next, and click Finish.
11. Click Save to save changes to master configuration. You should see the

following messages:
ADMS0200I: The configuration synchronization started for cell.
ADMS0208I: The configuration synchronization complete for cell.

12. Click OK.
13. Verify the HTTP transport ports are properly defined.

a. In the navigation panel, click Servers → Application servers.
b. Click server_name for the cluster member you want to verify.
c. Expand Ports.
d. Verify the ports listed are correct. For vertical clusters, WebSphere

Application Server automatically increments the port numbers, including
the DiameterNamedEndPoint, to ensure they remain unique.

What to do next

You must create a proxy server and associate the proxy server with the cluster that
you have created. Refer to the WebSphere Application Server Information Center
for additional information on setting up the proxy server.

Installing the Rf accounting Web service
Rf accounting Web service is a messaging interface to enable an application to send
accounting messages to a Charging Collection Function (CCF).

Installing Rf accounting Web service (Cluster)
Rf accounting Web service is installed as an enterprise application on WebSphere
Application Server Network Deployment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v Diameter Enabler base

Verify that you have the following file needed for the installation:
v DHADiameterRfWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

1. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://host_name:port/

ibm/console.

74 WebSphere Diameter Enabler

Where:
host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Install DHADiameterRfWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterRfWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.
e. Click Step 2: Map modules to servers, and select all modules.
f. Click WebSphere:cell=cell_name,cluster=Diameter to select the cluster. If

you have a Web server, also, click
WebSphere:cell=cell_name,node=node_name,server=web_server.

g. Click Apply.
h. If security is enabled, click Step 7: Map security roles to users or groups,

and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Rf accounting Web service.

i. Click Step 8: Summary, and verify all options have the correct values.
j. Click Finish.
k. Click Save to save changes to the master configuration.

Configuring Rf accounting Web service
You need to configure Rf accounting Web service to work in your environment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v Diameter Enabler base
v Rf accounting Web service

Verify that you have the following file needed:
v Diameter_Rf.properties (in was_root/installableApps/ImsConnector/

properties)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

Chapter 5. Installing 75

About this task

You must complete the following steps on each federated node that belongs to the
cluster.
1. Log in to the server where WebSphere Application Server is installed.
2. Copy Diameter_Rf.properties to the following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, Custom01.
3. Optional: If you are using vertical clustering, copy Diameter_Rf.properties,

and rename the file based on the cluster member name. You must have a
separate Diameter_Rf.properties for each cluster member. Each file must have
a unique name and unique information within the file. Naming the file based
on the cluster member name associates the configuration file with the cluster
member. For example, for a cluster member named diameter0, name the
configuration file Diameter_Rf.properties.diameter0. For a cluster member
named diameter1, name the configuration file
Diameter_Rf.properties.diameter1.

4. Open Diameter_Rf.properties in a text editor.
5. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

6. Find the OriginRealmName property. Type the realm name to match the realm of
the application server where Diameter Enabler base is installed.

7. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a
multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

8. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

Installing the Ro online charging Web service
Ro online charging Web service is a messaging interface to enable an application to
send online charging messages to an Online Charging System (OCS).

76 WebSphere Diameter Enabler

Note: Before installing the Web service, make sure you have completed the steps
for connecting to the database.

Installing Ro online charging Web service (Cluster)
Ro online charging Web service is installed as an enterprise application on
WebSphere Application Server Network Deployment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following supported databases:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Completed the environment preparation steps.
v Started the application server.
v Connected to the database.

Verify that you have the following file needed for the installation:
v DHADiameterRoWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

1. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://host_name:port/

ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Install DHADiameterRoWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterRoWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.

Chapter 5. Installing 77

e. Click Step 2: Map modules to servers, and select all modules.
f. Click WebSphere:cell=cell_name,cluster=Diameter to select the cluster. If

you have a Web server, also, click
WebSphere:cell=cell_name,node=node_name,server=web_server.

g. Click Apply.
h. Optional: If you are using the subscribe and notification functions, click

Step 3: Provide options to perform the EJB Deploy.
v Deploy EJB option - Database type: Choose your database:

DB2UDB_V91

ORACLE_V10G
v Database schema: Type your database user name. This is the same user

name used in Preparing the database section; for example, if you are using
the default DB2 user name, type db2inst1.

i. Optional: If you are using the subscribe and notification functions, click Step
9: Map data sources for all 2.x CMP beans, and click Browse to select the
Target Resource JNDI Name for the module. The JNDI name was created in
the Defining the data source section.

j. If security is enabled, click Step 13: Map security roles to users or groups,
and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Ro online charging Web
service.

k. If security is enabled, click Step 14: Map RunAs roles to users, and map a
user that is assigned the Diameter_Role to the RunAs role. The
RoNotification EJB will run as this user when a notification is received.

Note: Any future password changes need to be updated in this enterprise
application’s settings as well.

l. Click Step 15: Summary, and verify all options have the correct values.
m. Click Finish.
n. Click Save to save changes to the master configuration. You should see the

following two messages:
ADMS0200I: The configuration synchronization started for cell.
ADMS0208I: The configuration synchronization complete for cell.

o. Click OK.

Configuring Ro online charging Web service
You need to configure Ro online charging Web service to work in your
environment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

78 WebSphere Diameter Enabler

v Ro online charging Web service

Verify that you have the following file needed:
v Diameter_Ro.properties (in was_root/installableApps/ImsConnector/

properties)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

About this task

You must complete the following steps on each federated node that belongs to the
cluster.
1. Log in to the server where WebSphere Application Server is installed.
2. Copy Diameter_Ro.properties to the following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, Custom01.
3. Optional: If you are using vertical clustering, copy Diameter_Ro.properties,

and rename the file based on the cluster member name. You must have a
separate Diameter_Ro.properties for each cluster member. Each file must have
a unique name and unique information within the file. Naming the file based
on the cluster member name associates the configuration file with the cluster
member. For example, for a cluster member named diameter0, name the
configuration file Diameter_Ro.properties.diameter0. For a cluster member
named diameter1, name the configuration file
Diameter_Ro.properties.diameter1.

4. Open Diameter_Ro.properties in a text editor.
5. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

6. Find the OriginRealmName property. Type the realm name to match the realm of
the application server where Diameter Enabler base is installed.

7. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a
multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

8. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

Chapter 5. Installing 79

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

Installing the Sh subscriber profile Web service
Sh subscriber profile Web service is used by an application server to download
user profile data from the Home Subscriber Server (HSS).

Note: Before installing the Web service, make sure you have completed the steps
for connecting to the database.

Installing Sh subscriber profile Web service (Cluster)
Sh subscriber profile Web service is installed as an enterprise application on
WebSphere Application Server Network Deployment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following supported databases:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

Before you begin, the following steps should be completed:
v Completed the environment preparation steps.
v Started the application server.
v Connected to the database.

Verify that you have the following files needed for the installation:
v DHADiameterShWebServiceEAR (in was_root/installableApps/ImsConnector)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

v ShDataType.xsd (in was_root/installableApps/ImsConnector/xsd)
1. Copy ShDataType.xsd to the was_profile_root directory on each federated

node.

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

2. Log in to the Integrated Solutions Console:

80 WebSphere Diameter Enabler

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
3. Install DHADiameterShWebServiceEAR by completing the following steps:

a. In the navigation panel, click Applications → Install new application.
b. Click Browse to locate DHADiameterShWebServiceEAR.
c. Select Show me all installation options and parameters.
d. Click Next → Next → Continue.
e. Click Step 2: Map modules to servers, and select all modules.
f. Click WebSphere:cell=cell_name,cluster=Diameter to select the cluster. If

you have a Web server, also, click
WebSphere:cell=cell_name,node=node_name,server=web_server.

g. Click Apply.
h. Optional: If you are using the subscribe and notification functions, click

Step 3: Provide options to perform the EJB Deploy.
v Deploy EJB option - Database type: Choose your database:

DB2UDB_V91

ORACLE_V10G
v Database schema: Type your database user name. This is the same user

name used in Preparing the database section; for example, if you are using
the default DB2 user name, type db2inst1.

i. Optional: If you are using the subscribe and notification functions, click Step
9: Map data sources for all 2.x CMP beans, and click Browse to select the
Target Resource JNDI Name for the module. The JNDI name was created in
the Defining the data source section.

j. If security is enabled, click Step 13: Map security roles to users or groups,
and select the check box corresponding to Diameter_Role to map the user
and groups that you wish to grant access to the Sh subscriber profile Web
service.

k. If security is enabled, click Step 14: Map RunAs roles to users, and map a
user that is assigned the Diameter_Role to the RunAs role. The
ShNotification EJB will run as this user when a notification is received.

Note: Any future password changes need to be updated in this enterprise
application’s settings as well.

l. Click Step 15: Summary, and verify all options have the correct values.
m. Click Finish.
n. Click Save to save changes to the master configuration. You should see the

following two messages:

Chapter 5. Installing 81

ADMS0200I: The configuration synchronization started for cell.
ADMS0208I: The configuration synchronization complete for cell.

o. Click OK.

Configuring Sh subscriber profile Web service
You need to configure Sh subscriber profile Web service to work in your
environment.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base
v Sh subscriber profile Web service

Verify that you have the following file needed:
v Diameter_Sh.properties (in was_root/installableApps/ImsConnector/

properties)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

About this task

You must complete the following steps on each federated node that belongs to the
cluster.
1. Log in to the server where WebSphere Application Server is installed.
2. Copy Diameter_Sh.properties to the following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, Custom01.
3. Optional: If you are using vertical clustering, copy Diameter_Sh.properties,

and rename the file based on the cluster member name. You must have a
separate Diameter_Sh.properties for each cluster member. Each file must have
a unique name and unique information within the file. Naming the file based
on the cluster member name associates the configuration file with the cluster
member. For example, for a cluster member named diameter0, name the

82 WebSphere Diameter Enabler

configuration file Diameter_Sh.properties.diameter0. For a cluster member
named diameter1, name the configuration file
Diameter_Sh.properties.diameter1.

4. Open Diameter_Sh.properties in a text editor.
5. Find the OriginHostName property. Type the host name to match the host name

of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

6. Find the OriginRealmName property. Type the realm name to match the realm of
the application server where Diameter Enabler base is installed.

7. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a
multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

8. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

Starting the cluster
After you have created the cluster, installed, and configured the applications, you
must start the cluster to synchronize the changes across the cluster and make the
applications active.

Before you begin

Before you begin, the following software should be installed:
v WebSphere Application Server Network Deployment, version 6.1.0.21

For a list of required WebSphere Application Server fixes, refer to the readme
file, WebSphereSoftwareForTelecomReadme.html, on the QuickStart CD.

v One of the following databases for storing subscriber notification data:

IBM DB2 Enterprise Server Edition, version 9.1 FixPak 2

Oracle Database, version 10.2.0.2
v Diameter Enabler base

You must have completed the following tasks:
v Created the cluster
v Installed the applications
v Configured the applications
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.

Chapter 5. Installing 83

Where:
host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation panel, click Servers → Clusters.
3. Select the check box corresponding to the Diameter cluster.
4. Click Start.
5. Verify Status for the Diameter cluster is started.

Installing updates
Updates and fixes to the WebSphere IMS Connector are installed using the
WebSphere Application Server version 6.1.0.x update installer.

About this task

For additional information regarding the WebSphere Application Server update
installer, refer to the topic Installing maintenance packages.

The installation process consists of the following steps:
1. For each WebSphere Application Server installation being updated, install the

Update Installer Plugin for IBM WebSphere products for Telecom 6.2, in .pak
file format.
This plug-in defines each component to the WebSphere Application Server
update installer.

Note: This step should be performed only one time.
2. Apply any fix packs and interim fixes that are available for the Update Installer

Plugin for IBM WebSphere products for Telecom 6.2

Note: This step should be performed only one time.
3. Use the WebSphere Application Server update installer to install the packs and

interim fixes that are available for the WebSphere IMS Connector component, in
.pak file format.
These updates are installed using the standard procedure. For detailed
instructions about the fix installation, refer to the Readme file that is included
with every fix.

Example

Here’s an example... Insert tab A into slot B.

What to do next

Now, you too can do this...

84 WebSphere Diameter Enabler

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass&product=was-base-dist&topic=tins_ptfLevels

Uninstalling IBM WebSphere Diameter Enabler Component from the
WebSphere Application Server

Uninstalling the IBM WebSphere Diameter Enabler Component will remove the
IBM WebSphere Diameter Enabler Component and associated Web services.

About this task

You will need the following file for this uninstallation task:
v DiameterChannelUninstall.py (in was_root/installableApps/ImsConnector/

install)

Note: was_root is the installation root directory for WebSphere Application
Server Network Deployment. By default, this directory is:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

Complete the following steps to uninstall Diameter Enabler from the WebSphere
Application Server:
1. Start the application server. In case of a clustered installation (Network

Deployment environment), start the deployment manager, all node agents,
and then all application servers.

2. Uninstall all of the Diameter Enabler applications (Rf, Ro, and Sh Web
services) from the administrative console:
a. Open the WebSphere Application Server administrative console.
b. In the navigation panel, click Applications → Enterprise Application.
c. Select all of the Diameter Web service applications (for example,

DHADiameterRfWebServiceEAR, DHADiameterRoWebServiceEAR, or
DHADiameterShWebServiceEAR).

d. Click Uninstall.
e. Click OK.
f. Click Save.

3. Uninstall the Diameter base from the wsadmin command line.

Important: Enter the following parameters on a single line.

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Dmgr01 in a
clustered environment.

was_profile_root/bin/wsadmin.sh -username user_name
-password password -f script_path/DiameterChannelUninstall.py
cell_name node_name server_name install_type

Where:
user_name represents your WebSphere Application Server user ID. This
parameter is required if security is enabled.
password represents the password associated with your user_name. This
parameter is required if security is enabled.

Chapter 5. Installing 85

script_path represents the path to DiameterChannelUninstall.py

cell_name represents the name of cell where the server is installed
node_name represents the name of node where the server is installed
server_name represents the name of the application server where Diameter
Enabler base is installed (first cluster member in case of a clustered
installation)
install_type represents the environment in which the script is running,
use standalone for a standalone environment, and cluster for a clustered
environment

For example:
wsadmin.sh -f ./DiameterChannelUninstall.py west107Node01Cell west107Node01 server1 standalone

4. For a clustered installation only, remove the cluster.

Note: Removing the cluster deletes the cluster and any servers associated
with it. Make sure you do not have applications other than Diameter
Web services applications installed on the cluster.

a. In the navigation panel, click Servers → Cluster.
b. Select Diameter cluster.
c. Click Delete.
d. Click Save.

5. Remove the Diameter Enabler data source:
a. In the navigation panel, click Resources → JDBC → Data Sources.
b. Select Diameter DataSource.
c. Click Delete.
d. Click Save.

6. Remove the authentication definition for the Diameter Enabler data source:
a. In the navigation panel, click Security → Secure Administration,

Applications, and infrastructure → Java Authentication and Authorization
service → J2C Authentication Data.

b. Select the database alias (<nodename>/diameter_alias).
c. Click Delete.
d. Click Save.

7. Remove definitions for the DB2 database variables created during
the installation process:
a. In the navigation panel, click Environment → WebSphere Variables.
b. Perform one of the following:

v On a standalone installation or on a clustered installation which
modified this variable at the cell level, select the cell scope and click the
DB2UNIVERSAL_JDBC_DRIVER_PATH variable.

v On a clustered installation which modified this variable at each node
level, select the node scope and click the
DB2UNIVERSAL_JDBC_DRIVER_PATH variable.

c. Clear the value field for this variable; then, click OK.
d. On a clustered installation which modified this variable at each node level,

repeat b. and c. for each node.
e. Click Save.

8. Remove definitions for the Oracle database variables created
during the installation process:

86 WebSphere Diameter Enabler

a. In the navigation panel, click Environment → WebSphere Variables.
b. Perform one of the following:

v On a standalone installation or on a clustered installation which
modified this variable at the cell level, select the cell scope and click the
ORACLE_JDBC_DRIVER_PATH variable.

v On a clustered installation which modified this variable at each node
level, select the node scope and click the
ORACLE_JDBC_DRIVER_PATH variable.

c. Clear the value field for this variable; then, click OK.
d. On a clustered installation which modified this variable at each node level,

repeat b. and c. for each node.
e. Click Save.

9. Stop the application server. In case of clustered installation (Network
Deployment environment), stop all application servers, all node agents and
then deployment manager.

10. Remove the file com.ibm.ws.diameter_6.2.0.jar from the plugins directory:
was_root/plugins

Note: In case of a clustered installation, repeat this step for each node in the
cluster.

11. Remove the Diameter properties files (Diameter_Rf.properties,
Diameter_Ro.properties, and Diameter_Sh.properties) from the properties
directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the
name of a federated node profile in a clustered environment.

Note: In case of a clustered installation, repeat this step for each node in the
cluster.

12. Remove was_root/installableApps/ImsConnector.

Note: In case of a clustered installation, repeat this step for each node in the
cluster.

13. Remove was_root/lib/ext/DHAIMSConnectorTAI.jar. In case of a clustered
installation, repeat this step for each node in the cluster.

Note: For more information, refer to the Trust Association Interceptor
Information Center.

14. Remove version information:
v was_root/properties/version/IMSConnector.component

v was_root/properties/version/IMSConnector.product

v was_root/properties/version/nif/componentmaps/
componentmap.ImsConnector.core.xml

Chapter 5. Installing 87

Note: In case of a clustered installation, repeat this step for each node in the
cluster.

15. Clear the contents of DB2 database tables whenever you reinstall the
WebSphere IMS Connector. Optionally, you can also perform this task when
uninstalling the WebSphere IMS Connector. See database specific references
for information on clearing database tables, removing tables and removing a
database.

16. Clear the contents of Oracle database tables whenever you reinstall the
WebSphere IMS Connector. Optionally, you can also perform this task when
uninstalling the WebSphere IMS Connector. See database specific references
for information on clearing database tables, removing tables and removing a
database.

88 WebSphere Diameter Enabler

Chapter 6. Configuring IBM WebSphere Diameter Enabler
Component

As the network changes, the configuration for IBM WebSphere Diameter Enabler
Component may need to be updated.

Configuring Diameter Enabler base
Diameter Enabler base is configured with a unique identity during the installation
process. However, changes in the network may require updates to the
configuration.

Before you begin

If Diameter Enabler is moved to a different server, the configuration should be
updated. Also if a proxy server is added to or removed from the network, the
configuration may need to be updated.

About this task

The unique identity of Diameter Enabler is defined using the OriginHostName,
OriginRealmName, and HostIpAddress properties in the Diameter_Rf.properties,
Diameter_Ro.properties, and Diameter_Sh.properties files.

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open the Diameter_Rf.properties in a text editor. This file is located in the
following directory:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the
name of a federated node profile in a clustered environment.

2. Find the OriginHostName property. Type the host name to match the host name
of the application server where Diameter Enabler base is installed. The
OriginHostName must be unique between a Diameter node and all of its peers.
Typically, the fully qualified domain name of WebSphere Application Server
where Diameter Enabler is installed can be used. However, if you are using
vertical clustering, then you must alter this name for each server on that
cluster. This value does not have to be identical to the fully qualified domain
name of WebSphere Application Server.

3. Find the OriginRealmName property. Type the realm name to match the realm
of the application server where Diameter Enabler base is installed.

4. Find the HostIpAddress property. Type the IP address where the Diameter
Enabler base is installed. If Diameter Enabler base is installed on a
multi-homed machine, the HostIpAddress should be one of the network
interfaces that is present on WebSphere Application Server.

© Copyright IBM Corp. 2010 89

5. Find the ProxySupport property.
v Type true to enable proxy support
v Type false to turn off proxy support.

The default value is true. If you are not using proxy servers in your
environment, set the value to false. Because the proxy support settings are
independent for each Web service, you can enable proxy support for one or
more of the Web services.

6. Save the file and close it.
7. Open the Diameter_Ro.properties in a text editor. The file is located in the

following directory:
was_profile_root/properties

8. Repeat steps 2 on page 89 through 6.
9. Open the Diameter_Sh.properties in a text editor. The file is located in the

following directory:
was_profile_root/properties

10. Repeat steps 2 on page 89 through 6.
11. Restart the Rf, Ro, and Sh applications to make the configuration changes take

affect.
a. Log in to the Integrated Solutions Console.
b. Navigate to the Enterprise applications page. Click Applications →

Enterprise applications in the console navigation tree.
c. Select the check box for the DHADiameterRfWebServiceEAR, the

DHADiameterRoWebServiceEAR, and the
DHADiameterShWebServiceEAR applications.

d. Click Stop.
e. Click Start to restart the application.

Configuring listener ports for IBM WebSphere Diameter Enabler
Component

Listener ports receive incoming connections. Use the Integrated Solutions Console
to view or modify the configuration of the listener ports.

About this task

You will configure listener ports during the installation process. However, as the
network configuration changes, you may need to modify the listener port
configuration. To configure the properties of a listener port, use the Integrated
Solutions Console.

Display the collection list of listener ports.
1. In the navigation, select Servers → Application Servers.
2. In the content pane, click the name of the application server.
3. Under Communications, click Ports.
4. Click DiameterNamedEndPoint.
5. Change the properties for your listener port as needed.
6. Click OK.
7. Click Save to save changes to the master configuration.

90 WebSphere Diameter Enabler

8. Stop and restart the application server to make a changed configuration
effective.

Configuring connections and routes
Connections and routes to Diameter peers must be configured in the
Diameter_Rf.properties, Diameter_Ro.properties, and Diameter_Sh.properties
files.

About this task

Connections and routes are initially configured when you install and set up
Diameter Enabler. You can configure additional connections and routes as needed.
Independently configure each connection by substituting the connection number
for the x in conx. Configure the remotePeerOriginHostName for your first
connection using con1.remotePeerOriginHostName=name.domain.com. All other
properties for that connection begin with con1. Use con2 for the next connection,
and continue numbering the connections sequentially. Add routes to the routing
table for each of Rf accounting Web service, Ro online charging Web service, and
Sh subscriber profile Web service. A route ties the final destination (realm name) to
the specific connection where Diameter Enabler will send the Diameter packet.

Important:

RFC 3588 defines a maximum of one connection between any two
Diameter peers. Therefore, if you are using Rf accounting Web service,
Ro online charging Web service, and Sh subscriber profile Web service
to access a peer, they must share a single connection. For shared
connections, the connection configuration information must be identical
in each of the properties files that plans to use the connection.

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties in a text editor. The files can be found in the
following location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the
name of a federated node profile in a clustered environment.

2. Modify the value of conx.remotePeerOriginHostName to change the name of the
peer that you will be setting your TCP connection with. The
remotePeerOriginHostName is required for the connection conx, and must be a
fully qualified domain name.

3. Optional: Modify the value of conx.remotePeerIpAddress to set the IP address of
the peer. If you do not configure the remotePeerIpAddress, Diameter Enabler
base will perform a name resolution on the remotePeerOriginHostName. If
Diameter Enabler base performs the resolution successfully, it will use the
resolved IP address to set up the connection.

Chapter 6. Configuring 91

http://www.ietf.org/rfc/rfc3588.txt

4. Optional: Modify the value of conx.remotePeerPort to change the TCP port
number of the peer. The default value is 3868. If specified, Diameter Enabler
base will set up the TCP connection using this port number.

5. Optional: Modify the value of conx.inbandSecurityPolicy to change whether or
not TLS is required for all transactions. Valid settings are 0 or 1. The value 0 =
PROHIBIT_TLS will not allow Diameter Enabler base to use TLS for this
connection. The value 1 = REQUIRE_TLS requires Diameter Enabler base to
use TLS for this connection. The default value is 0 (PROHIBIT_TLS).

6. Optional: Modify the value of conx.watchDogTimeout to change the number of
seconds a connection can be inactive before Diameter Enabler base sends a
watchdog packet to the peer. Valid values are 0 and any whole integer
between 6 and 2147483647. The default value is 30. If you set the value to 0,
Diameter Enabler base does not send a watchdog packet to the peer.

7. Optional: Modify the value of conx.maxWatchDogExpirations to change the
number of watchdog timeouts after which Diameter Enabler base declares the
connection suspect and starts failover processing to the secondary connection.
The default value is 2. The valid values are 0, and any value between 2 to
2147483647. If you set this value to 0, Diameter Enabler base will suspend the
failure monitoring, and it will not start failover processing on this connection.
Example: For a setting of 2, when the watchdog timeout occurs, Diameter
Enabler will send the first watchdog request. When the second watchdog
timeout occurs, this connection and the associated routes will start failover
processing.

8. Optional: Modify the value of conx.includeOriginStateId to indicate whether or
not Diameter Enabler should transmit the Origin-State-Id AVP in Diameter
base packets (CER/CEA) for this connection. A setting of true indicates
Diameter Enabler should transmit the Origin-State-Id AVP in Diameter base
packets (CER/CEA). A setting of false indicates the WebSphere Diameter
Enabler should not transmit the Origin-State-Id AVP in Diameter base packets
(CER/CEA). The default value is false.

9. Optional: Modify the value of conx.includeFirmwareRevision to indicate whether
or not Diameter Enabler should transmit the Firmware-Revision AVP in
Diameter base packets (CER/CEA) for this connection. A setting of true
indicates Diameter Enabler should transmit the Firmware-Revision AVP in
Diameter base packets (CER/CEA). A setting of false indicates the WebSphere
Diameter Enabler should not transmit the Firmware-Revision AVP in Diameter
base packets (CER/CEA). The default value is false.

10. Optional: Modify the value of conx.maxPendingQueueLength to change the
number of requests the pending queue stores before rejecting new requests.
The default setting is 30.
Each request, when processed by the Diameter Enabler, is stored to the
Pending Queue until the response to that request is received back or the
request times out. So, if you are designing a system that requires a large
number of requests, you may want to increase this value to a large number
such as 15000. However, large queues will take up a greater amount of
memory depending on the sizes of the messages held in these queues.
Consequently, fine-tuning may be required to balance the trade-off in memory
usage versus the number of packet transactions that can be in progress at any
one time.

11. Optional: Modify the value of conx.sourcePort to change the source port that is
used when initiating a connection to a Diameter peer. The default value is 0.
Valid values are any integer from 1 to 65535 that is not already in use. A value
of zero (0) is valid, but configures the connection to be set up with an

92 WebSphere Diameter Enabler

ephemeral source port chosen by the operating system. An ephemeral source
port changes every time the connection is brought up.

12. Optional: Modify the value of conx.reconnectInterval to change the number of
seconds a connection will wait before attempting to reconnect with a peer. The
default setting is 30. Valid values are any integer between 30 and 2147483647.

13. Optional: Modify the value of conx.packetTimeout to indicate the number of
seconds that a request packet will remain on the pending queue waiting for a
response packet before Diameter Enabler removes it and notifies the
application of a timeout. The default value is 30.
The packet timeout works in conjunction with the pending queue length to
keep the system from backing up. You should set the timeout based on the
expected response times from the Diameter Server that you are working with.
In general, you should set this value substantially higher than the expected
average response time. Packets that expire are removed from the pending
queue, and an exception is thrown to the application that placed the initial
request.

14. Set three values for each of a maximum 20 routes with the property named
routex, where x is a number between 1 and 20. All three fields are required:
v The first field is the realm name that the route represents.
v The second field is the connection that the packet should go through to get

to this realm.

Note: The connection identifier must match the conx identifier that you
used to configure the associated connection.

v The third field is an indication that this route will be either a primary or a
secondary route.

15. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

16. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

Example

Here is a example of one connection configuration:
con1.remotePeerOriginHostName = shserver.yourcompany.com
con1.remotePeerIpAddress = 1.2.3.4
con1.remotePeerPort = 3868
con1.inbandSecurityPolicy = 1
con1.watchDogTimeout = 30
con1.maxWatchDogExpirations = 2
con1.includeOriginStateId = false
con1.includeFirmwareRevision = false
con1.maxPendingQueueLength = 30
con1.sourcePort = 4444
con1.reconnectInterval = 30
con1.packetTimeout = 30

Here is an example of three possible route configurations:
route1 = DEFAULT:con1:PRIMARY
route2 = serviceprovider.example.com:con2:PRIMARY
route3 = serviceprovider.example.com:con3:SECONDARY

Chapter 6. Configuring 93

Channels and channel chains
Diameter Enabler uses WebSphere Application Server Channel Framework
Architecture.

Channels are used to transport data between the network and Diameter Enabler.
Channels are linked together to form a channel chain. Diameter Enabler supports
two channel chain configurations, unsecure and secure.

During the installation process, Diameter Enabler creates two inbound channel
chains, secure and unsecure. The unsecure channel chain (DiameterChain) uses TCP
channels. The secure channel chain (SecureDiameterChain) adds a TLS channel on
top of the TCP channel.
v The DiameterChain channel chain does not provide any channel security.
v The SecureDiameterChain channel chain is secure and uses TLS.

When Diameter Enabler attempts to establish a connection, the first packet
successfully exchanged on a connection determines the direction of the chain. If
Diameter Enabler initiates the connection, the chain is an outbound chain. All
future packets exchanged on this connection will use this outbound chain. If the
Diameter peer initiates the connection, it is an inbound chain. All future packets
exchanged on this connection will use this inbound chain.

Security is configured on each connection using the inbandSecurityPolicy
property in the Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties files. If you plan to use secure connections, then you must
have a secure channel chain configured.

Diameter Enabler base checks the first packet sent on an inbound chain to see if
the data is encrypted. If the data is encrypted, the SecureDiameterChain channel
chain is used. If the data is not encrypted, the DiameterChain is used. The packet
security must match the chain security for the connection to be successfully
established. If the packet does not match the chain, the connection will be closed.

Table 3. Channel chain configurations and resulting actions

Channel chain configuration
Diameter Enabler
configuration Resulting action

Secure inbound
(SecureDiameterChain)

PROHIBIT_TLS Connection is closed

REQUIRE_TLS Connection is successful

Unsecure inbound (DiameterChain) PROHIBIT_TLS Connection is successful

REQUIRE_TLS Connection is closed

Diameter Enabler configuration files
Use the Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties files to configure which Diameter peers Diameter Enabler
will communicate with, and what characteristics the associated connections will
have.

The Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties files are located in the properties directory:

was_profile_root/properties

94 WebSphere Diameter Enabler

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name of
a federated node profile in a clustered environment.

After making changes to these files you will need to restart the associated
enterprise application using the Integrated Solutions Console.

In the following table every connection property that begins with the prefix conx is
associated with the same connection and with naming the route that is using that
connection. Replace the x in conx with the number of the connection that your are
configuring. The value of x can any integer between 1 through 20.

Table 4. Property information for the Diameter_Rf.properties, Diameter_Ro.properties and
Diameter_Sh.properties files

Property Value

OriginHostName Used to identify this Diameter node to those Diameter
peers it shares connections with.

v The OriginHostName is required and should be a
fully-qualified domain name.
Note: In a vertical cluster, you may have only one IP
address and fully-qualified domain name. In this case,
create a unique OriginHostName for each server in the
vertical cluster. For example, add diam1 to the FQDN
to create diam1.yourcompany.com for the first instance,
diam2 to the FQDN to create diam2.yourcompany.com
for the second instance, and so on.

v The OriginHostName can be the same as the DNS
hostname.

v The OriginHostName must be unique for each
Diameter client instance.

v Only one Diameter client instance can be running on
a given server instance.

v Recommended value: use the same hostname as the
DNS hostname.

v Example: OriginHostName =
server.test.yourcompany.com

OriginRealmName The realm the Diameter client resides in.

v The OriginRealmName is required and should be a
fully-qualified domain name.

v The OriginRealmName is only used as information
exchanged in the Capabilities Exchange (CER/CEA)
transaction.

v Recommended value: use your current realm name.

v Example: OriginRealmName = yourcompany.com

Chapter 6. Configuring 95

Table 4. Property information for the Diameter_Rf.properties, Diameter_Ro.properties and
Diameter_Sh.properties files (continued)

Property Value

HostIpAddress The IP address of this Diameter client instance.

v The HostIpAddress is required and the value will be
verified against the valid IP addresses for this host
server.

v If the Diameter client is running on a multi-honed
server, the HostIpAddress may be any of the IP
addresses listed for that host.

v This value is used as information exchanged in the
Capabilities Exchange (CER/CEA) transaction. and is
verified for correctness.

v Recommended value: use your current host IP
address.

v Example: HostIpAddress = 9.3.4.6.

ProxySupport A Boolean value that indicates whether this Diameter
client will allow requests made from it to potentially be
passed through a proxy agent in the Diameter network.

v True: if set to true, packets may have the P bit set
depending on the command code in use.

v False: if set to false, no packets originating from the
Diameter client will have the P bit set.

v Default value: True.

v Example: ProxySupport = true

conx.remotePeerOriginHostName The Origin-Host name of the peer that Diameter will
setup the TCP connection to.

v The remotePeerOriginHostName is required for the
connection ″conx″, and must be a fully-qualified
domain name.

v The remotePeerOriginHostName must match exactly
with the configuration value on the peer as the
Diameter client will only allow connections with a
peer whose origin-host name matches this configured
property.

v Recommended value: use the host name of the remote
server you are connecting to

v Example: con1.remotePeerOriginHostName =
shserver.yourcompany.com

conx.remotePeerIpAddress IP address of the peer.

v If the remotePeerIpAddress is not configured, a name
resolution will be performed on the
remotePeerOriginHostName.

v If the name resolution is successful, the received IP
address will be used to set up the connection.

v Recommended value: use the host IP address of the
remote server you are connecting to.

v Example: con1.remotePeerIpAddress = 1.2.3.4

96 WebSphere Diameter Enabler

Table 4. Property information for the Diameter_Rf.properties, Diameter_Ro.properties and
Diameter_Sh.properties files (continued)

Property Value

conx.remotePeerPort The TCP port number of the Peer. The default port
number for the TCP connection can be overridden with
a different port number.

v Default value (port number): 3868.

v Example: con1.remotePeerPort = 3868

conx.inbandSecurityPolicy Identifies if TLS is required for all transactions.

v Valid values are 0 or 1. 0 = PROHIBIT_TLS will not
allow TLS to be used for this connection. 1 =
REQUIRE_TLS requires that TLS is used for this
connection.

v Default value: 0.

v Example: con1.inbandSecurityPolicy = 1

conx.watchDogTimeout Number of seconds that can occur on an unused
connection before a WatchDog packet (DWR) is sent to
the peer.

v Valid values are 0 and any value between 6 to
2147483647.

v If set to zero, there will be no DWR sent to the peer.

v Default value: 30 seconds.

v Example: con1.watchDogTimeout = 40

conx.maxWatchDogExpirations Number of consecutive watchdog timeouts that can
occur before declaring this connection suspect and
failing over to another available route.

v Valid values are 0 and any value between 2 to
2147483647.

v For a setting of 2 the DWR packet will be sent when
the first watchDogTimeout occurs. When the second
watchDogTimeout occurs this connection and the
associated routes will start failover processing.

v If set to zero the failure monitoring is suspended and
failover will not occur on this connection.

v Default value: 2 periods.

v Example: con1.maxWatchDogExpirations = 2

conx.includeOriginStateId Indicates whether or not the Origin-State-Id AVP should
be transmitted in Base packets (CER/CEA).

v True: indicates the Origin-State-Id AVP should be
transmitted.

v False: indicates the Origin-State-Id AVP should not be
transmitted.

v Default value: false.

v Example: con1.includeOriginStateId = false.

Chapter 6. Configuring 97

Table 4. Property information for the Diameter_Rf.properties, Diameter_Ro.properties and
Diameter_Sh.properties files (continued)

Property Value

conx.includeFirmwareRevision Indicates whether or not the Firmware-Revision AVP
should be transmitted in Base packets (CER/CEA).

v True: indicates that the Firmware-Revision AVP
information will be sent.

v False: indicates that the Firmware-Revision AVP
information will not be sent.

v Default value: false.

v Example: con1.includeFirmwareRevision = false

conx.maxPendingQueueLength Maximum number of requests to be stored on the
pending queue. If the pending queue is full, any new
requests will be rejected until room becomes available
on the queue.

v Default value: 30.

v Example: con1.maxPendingQueueLength = 100

conx.sourcePort Source port used when initiating a connection to the
Diameter peer. If zero (0) is specified, an ephemeral
source port is used.

v Valid values are zero (0) and any integer from 1 to
65535 that is not already in use.

v Default value: 0.

v Example: con1.sourcePort = 4444

conx.reconnectInterval Number of seconds the connection will wait before
attempting to reconnect with a peer.

v Valid values are any integer between 30 and
2147483647.

v Default value (seconds): 30.

v Example: con1.reconnectInterval = 30

conx.packetTimeout Number of seconds that a request packet will remain on
the pending queue waiting for a response packet before
it is removed and the application is notified of a
timeout.

v Default value (seconds): 30.

v Example: con1.packetTimeout = 30.

98 WebSphere Diameter Enabler

Table 4. Property information for the Diameter_Rf.properties, Diameter_Ro.properties and
Diameter_Sh.properties files (continued)

Property Value

routex Defines routes used in the configuration file to link a
realm to the next-hop connection.

v Each route property value contains three fields
separated by a colon (:). All three fields are required
for a valid route.

v For each realm there should be one primary route.
There can be any number of secondary routes up to
the maximum total of 20. The maximum number of
primary routes is 10.

v The first field is the realm name this route represents.

v The second field is the connection that the packet to
be sent to this realm should go through. The
connection identifier must match the conx identifier
that you used to configure the associated connection.

v The third field is an indication this route will be
either a primary or a secondary route. A secondary
route will only be used for forwarding traffic if no
primary route can be reached.

v Example:

route1 = DEFAULT:con1:PRIMARY
route2 = example.com:con2:PRIMARY
route3 = example.com:con3:SECONDARY

subscriptionPurgingInterval This property only applies to Ro.

In a clustered installation, this property should only be
enabled on a single application server.

Defines the interval in which expired subscriptions to
receive Reauthorization Requests are purged from the
database. The minimum value is 30 seconds, and the
maximum value is 32,000,000 seconds.

If the property is missing or commented out (default),
purging will not occur.

v Default value: Purging is suspended

v Example: subscriptionPurgingInterval = 30.

Chapter 6. Configuring 99

100 WebSphere Diameter Enabler

Chapter 7. Securing IBM WebSphere Diameter Enabler
Component

IBM WebSphere Diameter Enabler Component utilizes the security functionality
provided in WebSphere Application Server Network Deployment.

Note: The Trust Association Interceptor (TAI) security component is not intended
to be used with the IBM WebSphere Diameter Enabler Component. The TAI
is intended for extending security trust through a virtual cloud on the front
end of an application server that is servicing HTTP and SIP requests. These
are HTTP and SIP requests that have passed through a Reverse Proxy
Security Server (RPSS) that has performed some level of authentication on
the source. The RPSS notion is not applicable to Diameter Web service
transactions. Therefore, the TAI should not be configured on the same
platform that you run the Diameter Enabler.

Channel security
Diameter Enabler supports IPsec or transport layer security (TLS) on each
connection in the channel chain. If TLS is enabled, then the signer certificates on
the WebSphere Application Server must support the inbound signer key certificate.

You may use IPsec or TLS to secure Diameter connections between the WebSphere
Diameter Enabler and its peers. Implement IPsec as either the operating system
configuration or an external device that encrypts and decrypts the encoded
messages. In this capacity, IPsec usage is invisible to the WebSphere Diameter
Enabler. If you are using IPsec, configure the Diameter connections in the
Diameter_Rf.properties, Diameter_Ro.properties, and Diameter_Sh.properties to
PROHIBIT_TLS, because it is unnecessary in an IPsec environment. If you do not
have IPsec, configure the connections to be secured through TLS. Otherwise,
Diameter Enabler will send Diameter messages through an unsecure network.

IPsec is the default security protocol that Diameter Enabler will look for when
establishing a connection. If IPsec is not present and security has been configured
in the properties file, then a secure channel will be used. IPsec is implemented
using either the operating system configuration, or an external device that encrypts
and decrypts the encoded messages.

In order for the SecureDiameterChain to work properly, the peer and the
application server must exchange signer certificates. According to RFC 3588, the
Diameter nodes must mutually authenticate. This means that the client
authentication parameter in the SSL configuration must be set to Required.
Diameter Enabler nodes must support the following cipher suites:

SSL_RSA_WITH_AES_128_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA

Both ends of the connection must supply certificates so that authentication is
performed in both directions. This is handled through the SSL channel
configuration. If TLS is used, it must be supported by all the Diameter Enabler

© Copyright IBM Corp. 2010 101

devices. If TLS is used, both the WebSphere Diameter Enabler and the Diameter
peer that it is connecting to should be configured for TLS.

Configuring channel security
You can enable transport layer security by modifying the properties file for Rf
accounting Web service, Ro online charging Web service, or Sh subscriber profile
Web service.

About this task

The inbandSecurityPolicy property is in the Diameter_Rf.properties,
Diameter_Ro.properties, and Diameter_Sh.properties files. Prior to establishing a
connection to a remote Diameter peer using TLS, the WebSphere Application
Server and the remote Diameter peer must perform a certificate exchange. The
Diameter protocol requires mutual authentication between the Diameter peers,
which is a two-step process: the WebSphere Application Server Exports a signer
certificate and the Diameter peer imports it into the keystore; the Diameter peer
exports the signer certificate and the WebSphere Application Server imports it into
the keystore. The installation process creates a new SSL configuration object called
Diameter that is associated with the TLS channel that is part of the
SecureDiameterChain channel chain. As a default, the SSL configuration called
Diameter is set up to use the NodeDefaultKeyStore and NodeDefaultTrustStore.

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties. The files are in the following location:

was_profile_root/properties

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile, in a clustered environment.

2. Set the value for inbandSecurityPolicy.
v To enable TLS on a specific connection, set the value for the property to 1.
v To disable TLS on a specific connection, set the value for the property to 0.

3. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

4. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

What to do next

Note: If you enable TLS, the WebSphere Application Server must support the
inbound signer key certificate.

Modifying channel security
Diameter Enabler supports the ciphers supported by the RFC 3588 specification.

102 WebSphere Diameter Enabler

About this task

The installation process creates a new SSL configuration object called Diameter that
is associated with the TLS channel that is part of the SecureDiameterChain channel
chain. As a default, the SSL configuration called Diameter is set up to use the
NodeDefaultKeyStore and NodeDefaultTrustStore. You can modify these, but you
must import the signer certificate from the Diameter peer into the keystore
associated with this configuration. Additionally, you must export the default signer
associated with the trust store from the trust store associated with this
configuration and import it to the Diameter peer trust keystore. The installation
process sets the Client authentication on the SSL configuration to Required.
Because it is required by RFC 3588, this should not be modified.
1. Log in to the Integrated Solutions Console.
2. Click Security → SSL certificate and key management → SSL configurations.
3. Click Diameter, the SSL configuration created during the installation process.
4. Click Quality of protection (QoP) settings.
5. Select Required in the Client authentication drop-down.
6. Modify the ciphers as needed.
7. Click OK to save your changes.

Chapter 7. Securing 103

104 WebSphere Diameter Enabler

Chapter 8. Administering IBM WebSphere Diameter Enabler
Component

Various IBM WebSphere Diameter Enabler Component usage can be monitored
using the Integrated Solutions Console, while other component features can be
modified by changing the appropriate properties file.

You can monitor thread usage using the Integrated Solutions Console and modify
the watchdog timeout, pending queue maximum, and reconnect interval by
changing values in Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

Stopping and starting the server
After making changes to the server configuration, you must restart the application
server.

About this task

In a clustered environment, some tasks require you to restart the deployment
manager for changes to take effect. To stop the deployment manager, you must
stop all application servers, all node agents, and then the deployment manager. To
restart the deployment manager, you must start the deployment manager, all node
agents, and then the cluster (which starts all application servers).

The following instructions describe how to stop and restart resources both from the
Integrated Solutions Console and from a command-line prompt.

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Stopping a cluster
About this task

When you stop a cluster, all application servers on the cluster are stopped.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

© Copyright IBM Corp. 2010 105

c. Click Log in.
2. Stop the cluster:

a. In the Integrated Solutions Console, click Servers → Clusters → WebSphere
application server clusters.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Servers → Clusters.

b. Select the check box associated with the name of the cluster.
c. Click Stop.

Stopping a server (console)
About this task

Stopping an application server stops all applications automatically.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Stop the application server:

a. In the Integrated Solutions Console, click Servers → Server Types →
WebSphere application servers.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Servers → Application servers.

b. Select the check box associated with the name of the server.
c. Click Stop.

Stopping a server (command line)

Run the following command:
was_profile_root/bin/stopServer.sh server_name -username user_name

-password password

was_profile_root/bin/stopServer.sh server_name -username user_name
-password password

Note: The user_name and password parameters are required only when security is
enabled.

Where:
The was_profile_root path contains the name of the application server profile
(for example, AppSrv01).

106 WebSphere Diameter Enabler

server_name is name of the application server.
user_name represents your WebSphere Application Server administrator user ID.
password represents the password associated with your user_name.

Stopping the node agent (console)
About this task

When stopping the deployment manager and application servers, you must also
stop the node agents. If you are stopping a cluster, you must stop all node agents.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Stop one or more nodes:

a. In the Integrated Solutions Console, click System administration → Node
agents.

b. Select the check boxes associated with each node.
c. Click Stop.

Stopping the node agent (command line)

Run the following command:
was_profile_root/bin/stopNode.sh -username user_name -password

password

was_profile_root/bin/stopNode.sh -username user_name -password
password

Note: The user_name and password parameters are required only when security is
enabled.

Where:
The was_profile_root path contains the name of a federated node profile (for
example, Custom01).
user_name represents your WebSphere Application Server administrator user ID.
password represents the password associated with your user_name.

Stopping the deployment manager (console)
About this task

When stopping the servers and node agents in a cluster, you must also stop the
deployment manager. When the deployment manager is stopped, you will not be

Chapter 8. Administering 107

able to access the Integrated Solutions Console.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Stop the deployment manager:

a. In the Integrated Solutions Console, click System administration →
Deployment manager.

b. Click Stop.

Stopping the deployment manager (command line)

Run the following command:
was_profile_root/bin/stopManager.sh -username user_name -password

password

was_profile_root/bin/stopManager.sh -username user_name -password
password

Note: The user_name and password parameters are required only when security is
enabled.

Where:
The was_profile_root path contains the name of the deployment manager
profile (for example, Dmgr01).
user_name represents your WebSphere Application Server administrator user ID.
password represents the password associated with your user_name.

Starting the deployment manager
About this task

Start the deployment manager before starting the node agents and application
servers. When the deployment manager is started, you will have access to the
Integrated Solutions Console.

Run the following command:
was_profile_root/bin/startManager.sh

was_profile_root/bin/startManager.sh

Where:
The was_profile_root path contains the name of the deployment manager
profile (for example, Dmgr01).

108 WebSphere Diameter Enabler

Starting the node agents
Before you begin

After starting the deployment manager, you must start the node agents before you
can start the cluster or the application server.

Run the following command:
was_profile_root/bin/startNode.sh

was_profile_root/bin/startNode.sh

Where:
The was_profile_root path contains the name of a federated node profile (for
example, Custom01).

Starting a cluster
About this task

When you start a cluster, all application servers on the cluster are started.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Start the cluster:

a. In the Integrated Solutions Console, click Servers → Clusters → WebSphere
application server clusters.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Servers → Clusters.

b. Select the check box associated with the name of the cluster.
c. Click Start.

Starting a server (console)
About this task

Applications that were running when the server was stopped are restarted
automatically.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

Chapter 8. Administering 109

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Start the application server:

a. In the Integrated Solutions Console, click Servers → Server Types →
WebSphere application servers.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach
this window by clicking Servers → Application servers.

b. Select the check box associated with the name of the server.
c. Click Start.

Starting a server (command line)

Run the following command:
was_profile_root/bin/startServer.sh server_name -username user_name

-password password

was_profile_root/bin/startServer.sh server_name -username user_name
-password password

Note: The user_name and password parameters are required only when security is
enabled.

Where:
The was_profile_root path contains the name of the application server profile
(for example, AppSrv01).
server_name is name of the application server.
user_name represents your WebSphere Application Server administrator user ID.
password represents the password associated with your user_name.

Restarting applications
You can restart one or more applications at a time using the Integrated Solutions
Console.
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

110 WebSphere Diameter Enabler

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Applications → Enterprise Applications.
3. Select the check box adjacent to each application that you want to stop. You can

select more than one application.
4. Click Stop. The Application Status column shows that the application is

stopped.
5. Select the check box adjacent to each application that you want to start. You

can select more than one application.
6. Click Start. The Application Status column shows that the application is

started.

Modifying logging
Use the Integrated Solutions Console to specify how data is logged, where the log
data is stored, and the output format to use for log data.

About this task

You can modify the general properties of each log, which specifies the output type
or location of the log. Use the following steps to adjust the properties for each log
type:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Servers → Server Types → WebSphere application

servers.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach this
window by clicking Servers → Application servers.

3. Click the name of the server you want to manage.
4. Under Troubleshooting, click Logging and Tracing.
5. Click one of the log types. Then click the Configuration tab to make a static

change to the system log configuration, or click the Runtime tab to change the
configuration dynamically.

Note: Separate logs for each log type exist for all Java virtual machines (JVMs)
on a node, including all application servers and their node agent, if
present, as well as for a deployment manager in its own logs directory.

Chapter 8. Administering 111

Here is a list of the available log types:

Option Description

Diagnostic Trace Provides information in the trace.log about
how the WebSphere Application Server
components run.

JVM Logs Used to view and modify the settings for the
Java Virtual Machine (JVM). The System.out
log (SystemOut.log) is used to monitor the
health of the WebSphere Application Server.
The System.err log (SystemErr.log) contains
exception stack trace information used to
perform problem analysis.

Process Logs Created when redirecting the standard out
and standard error streams of a process to
independent log files, the native_stdout.log
and native_stderr.log, respectively.

IBM Service Logs Also known as the activity log. Records the
WebSphere Application Server messages that
are written to the System.out stream and
special messages that contain extended
service information that you can use to
analyze problems.

Change Log Detail Levels Controls which events are processed by Java
logging, by using log levels. You can assign
logging levels to individual trace loggers or
to trace groups. (Trace loggers and groups
are listed in the topic Trace loggers.)

6. When you are finished making your changes, click Apply.
7. Click OK.
8. Click Save to save changes to the master configuration.
9. Optional: If you made a static change to the configuration, restart the

application for your changes to take effect.

Viewing channel chains
You can view the Channel chains configured for Diameter Enabler through the
administration console.

About this task

For more information on what type of security a DiameterNamedEndPoint is using,
complete the following steps to view the associated transport information in the
Integrated Solutions Console:

Note: Repeat the following steps for each server, if more than one.
1. Log in to the Integrated Solutions Console.
2. Click Servers → Application Servers → server_name → Ports

3. Find the entry for port name equal to DiameterNamedEndPoint. Click View
associated transports.

112 WebSphere Diameter Enabler

Monitoring threads
You can monitor and log IBM WebSphere Diameter Enabler Component thread
usage.

About this task

Complete the following steps:

Note: If you plan to monitor an application server that is in a cluster, make sure
that both the server and its node agent are running before proceeding with
the following steps.

1. Log in to the Integrated Solutions Console:
a. Open a browser and navigate to the following URL: https://host_name:port/

ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Monitor And Tuning → Performance Viewer → Current Activity.
3. Click server_name.
4. Expand Performance Modules.
5. Expand Thread Pools

6. Select DiameterThreadPool

7. Click View Modules.
8. Click Start Logging to start logging performance data. Once you start

monitoring for your server, you will be able to view real time operation in the
Tivoli Performance Viewer panels. Click More information about this page for
more information about logging and the Tivoli Performance Viewer.

Adjusting heap size for subscription database handling
You can adjust your heap size for subscription database handling by changing the
maximum heap size in WebSphere Application Server.

About this task

The purging thread is intended to periodically remove subscription entries that
have expired in the database. The proper handling is for an application to
subscribe for an Ro Reauthorization Notification immediately before it starts using
a session ID and then unsubscribing for that session ID once the authorization
session has finished. If the application does not unsubscribe and the
subscriptionDuration interval has passed, then that subscription entry is a
candidate for deletion by the purging thread.

Chapter 8. Administering 113

The purging thread does not run by default. If a subscriptionPurgingInterval is
configured, the purging thread will run repeatedly with a delay of the
purgingInterval in between runs. The purging thread retrieves all expired
subscriptions in the subscription table and deletes them each pass. If the table is
very large, and the number of expired subscriptions is expected to be very large,
then the configured heap size must also be very large to handle these large reads.

While the heap size varies depending on the mix of application data and IMS
Connector data that is present, the following basic guidelines will help you
determine the size of heap that is required:
v Each subscription record varies in size, but a reasonable estimate is a 550 byte

entry. If you expect the system to be able to purge 1,000,000 entries at a time,
then you must add 550 MB of heap to your existing heap to handle this surge in
entries. Likewise, if you expect to purge 2,000,000 entries at a time, you must
add 1100 MB of heap space to the existing heap.

v Purging a table where more than 2,000,000 entries are expired should be handled
through an independent database script where the script periodically deletes all
entries that are expired through an SQL query.

Note: For information about changing the maximum heap size, see the ″Java
virtual machine settings″ topic, located in the Reference section, in the
WebSphere Application Server 7.0 Information Center.

If you wish to continue to use the purging thread for large queries, you should
make the subscriptionPurgingInterval as small as possible (e.g., 30 seconds). This has
the affect of processing the expired entries more frequently; consequently, the
number of entries to be purged at a time is less. If entries expire at a faster rate
than they can be removed, then the number of expired entries will grow
indefinitely. The result will be that the heap space will be eventually exhausted
and an out of memory condition will occur.

Modifying the watchdog timeout interval
You can modify the watchdog timeout by changing the connection timeout time,
which is the time a connection can be inactive before a watchdog message is sent.
You can also change the number of consecutive unanswered watchdog requests
that can occur before a connection is placed on a Suspect Peer Connections List.

About this task

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties in a text editor. The files can be found in the following
location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile in a clustered environment.

114 WebSphere Diameter Enabler

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass

2. Modify the value of conx.watchDogTimeout to change the number of seconds a
connection can be inactive before Diameter Enabler base sends a watchdog
packet to the peer. Valid values are 0 and any whole integer between 6 and
2147483647. The default value is 30. If you set the value to 0, Diameter Enabler
base does not send a watchdog packet to the peer.

3. Modify the value of conx.maxWatchDogExpirations to change the number of
watchdog timeouts after which Diameter Enabler base declares the connection
suspect and starts failover processing to the secondary connection. The default
value is 2. The valid values are 0, and any value between 2 to 2147483647. If
you set this value to 0, Diameter Enabler base will suspend the failure
monitoring, and it will not start failover processing on this connection.
Example: For a setting of 2, when the watchdog timeout occurs, Diameter
Enabler will send the first watchdog request. When the second watchdog
timeout occurs, this connection and the associated routes will start failover
processing.

4. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

5. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

Example

Example:
con1.watchDogTimeout = 40

con1.maxWatchDogExpirations = 2

Modifying the pending queue maximum
You can modify the maximum number of requests the pending queue stores before
rejecting new requests.

About this task

Each connection in Diameter Enabler environment contains a pending queue which
holds references to all of the requests on that connection. When Diameter Enabler
receives a response, it will remove the corresponding request from the queue. If a
packet is in the queue longer than the packetTimeout, Diameter Enabler will
remove it from the queue and return an error to the sending Application. If the
number of requests in the queue reaches this maxPendingQueueLength value,
Diameter Enabler will reject any new requests until room is available on the queue.

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties in a text editor. The files can be found in the following
location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Chapter 8. Administering 115

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile in a clustered environment.

2. Modify the value of conx.maxPendingQueueLength to change the number of
requests the pending queue stores before rejecting new requests. The default
setting is 30.
Each request, when processed by the Diameter Enabler, is stored to the Pending
Queue until the response to that request is received back or the request times
out. So, if you are designing a system that requires a large number of requests,
you may want to increase this value to a large number such as 15000. However,
large queues will take up a greater amount of memory depending on the sizes
of the messages held in these queues. Consequently, fine-tuning may be
required to balance the trade-off in memory usage versus the number of packet
transactions that can be in progress at any one time.

3. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

4. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

Example

Example:
con1.maxPendingQueueLength = 30

Modifying the source port
You can modify the source port used when initiating a connection to the Diameter
peer.

About this task

The conx.sourcePort setting is used to force the source port to be a specific, fixed
value when initiating a connection to the Diameter peer. This is helpful when
configuring firewalls to screen traffic based on source port information.

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties in a text editor. The files can be found in the following
location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile in a clustered environment.

2. Modify the value of conx.sourcePort to change the source port that is used when
initiating a connection to a Diameter peer. The default value is 0.
Valid values are any integer from 1 to 65535 that is not already in use. A value
of zero (0) is valid, but configures the connection to be set up with an

116 WebSphere Diameter Enabler

ephemeral source port chosen by the operating system. An ephemeral source
port changes every time the connection is brought up.

3. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

4. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

Example

Example:
con1.sourcePort = 4444

Modifying the reconnect interval
You can modify the number of seconds a connection will wait before attempting to
reconnect with a peer.

About this task

Note: In case of a clustered installation, repeat these steps for each node in the
cluster.

1. Open Diameter_Rf.properties, Diameter_Ro.properties, and
Diameter_Sh.properties in a text editor. The files can be found in the following
location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile in a clustered environment.

2. Modify the value of conx.reconnectInterval to change the number of seconds a
connection will wait before attempting to reconnect with a peer. The default
setting is 30. Valid values are any integer between 30 and 2147483647.

3. Save and close Diameter_Rf.properties, Diameter_Ro.properties, or
Diameter_Sh.properties.

4. Restart Rf accounting Web service, Ro online charging Web service, or Sh
subscriber profile Web service.

Example

Example:
con1.reconnectInterval = 30

Modifying the maximum packet size
Modify the channel chains to regulate the maximum packet size, in bytes, that
Diameter Enabler can send or receive.

Chapter 8. Administering 117

About this task

The maxPacketSize parameter is primarily intended to protect the system from
excessive resource use by a rogue or erroneous applications or Diameter peers.

You can modify the custom property maxPacketSize for Diameter Enabler. If a
peer attempts to send a packet that is larger than the defined maxPacketSize
value, Diameter Enabler will log an error and close the connection with the peer. If
one of the Diameter applications attempts to use Diameter Enabler to send a
packet that exceeds the defined maxPacketSize, the send request will fail, and
Diameter Enabler will return an error to the application and keep the connection
open. If the maxPacketSize value is not defined, Diameter Enabler will use a
default value of 10000 bytes.

You must set the maxPacketSize value separately on each of the Diameter channel
chains, DiameterChain and SecureDiameterChain. After you set the
maxPacketSize, you must restart the application server for the change to take
effect. Therefore you may need to schedule that update to the application server.
1. Log in to the Integrated Solutions Console.
2. Click Servers → Application Servers → server_name → Ports.
3. In the Port Name column, find the DiameterNamedEndPoint.
4. In the Transport Details column, click View associated transports.
5. Click DiameterChain or SecureDiameterChain.
6. Click Generic inbound channel (DiameterGenericInboundChannel).
7. Click Custom Properties.
8. Click New.
9. Under General Properties, type maxPacketSize in the Name field.

10. Type a value for this property in the Value field. The packets are measured in
bytes.

11. Optional: You can also specify a description of this property in the Description
field.

12. Click Apply or OK.
13. Click Save to save your configuration changes.
14. Restart the application server.

Modifying the Work Manager settings
Modify the Work Manager to regulate the number of threads that handle outbound
Web service notifications to application clients.

About this task

You can modify the minimum and maximum number of threads for the Diameter
Enabler Work Manager. In Ro online charging Web service, this has a direct impact
on the number of threads that can process incoming Reauthorization Requests at
any given time. In Sh subscriber profile Web service, this has a direct impact on
the number of threads that can process incoming Push-Notification-Requests.

If the rate of notifications is greater than the rate that the application server can
process them with the allotted thread pool and work request queue size, the
application will log an error and the notifications will fail with a
WorkRejectedException. In this scenario, the minimum number and maximum

118 WebSphere Diameter Enabler

number of threads can be raised to allow the processing of more simultaneous
requests. Raising the number of threads will increase memory and CPU utilization.
Consequently, the trade-off between resource utilization and performance should
be evaluated.

After updating any Work Manager settings, you must restart the application server
for the change to take effect. Therefore, you may need to schedule that update to
the application server.
1. Log in to the Integrated Solutions Console.
2. Click Resources → Asynchronous beans → Work managers →

DiameterWorkManager.
3. In the Minimum Number of Threads field, type the following: min_num_threads
4. In the Maximum Number of Threads field, type the following: max_num_threads
5. Click Apply or OK.
6. Click Save to save your configuration changes.
7. Restart the application server.

Modifying the subscription purging interval
You can modify the interval in which expired subscriptions set to receive
reauthorization requests are purged from the database. This property only applies
to Ro online charging Web service.

About this task

If the subscriptionPurgingInterval property is missing or commented out (default),
purging will not occur. The default value is Purging is suspended. The minimum
value is 30 seconds, and the maximum value is 32,000,000 seconds. If you are
designing a system that requires a large number of subscription requests, you may
want to adjust the purging interval to prevent large numbers of records from being
purged at one time. If a large number of records require purging when the end of
interval is reached, the performance of the overall system may be affected.

Important: In a clustered installation, this property should only be enabled on a
single application server.

1. Open Diameter_Ro.properties in a text editor. The file can be found in the
following location:

was_profile_root/properties/

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name
of a federated node profile in a clustered environment.

2. Modify the value of subscriptionPurgingInterval to change the interval in which
expired ″subscriptions to receive ReAuth Requests″ are purged from the
database. If the property is missing or commented out (default), purging will
not occur. The default value is Purging is suspended. The minimum value is 30
seconds, and the maximum value is 32,000,000 seconds.

3. Save and close Diameter_Ro.properties.

Chapter 8. Administering 119

4. Restart Ro online charging Web service.

Example

Example:
subscriptionPurgingInterval = 30

Modifying the user mapped to the RunAs role
You can modify the user mapped to the RunAs security role.

About this task

If security is enabled, then the Diameter Enabler Web service enterprise
applications will have one or more users or groups assigned to the security role,
″Diameter_Role.″ One of these users, or members of these groups, will be mapped
to the RunAs role. These settings are normally configured during the install of the
enterprise applications. However, if a different user must be mapped to the RunAs
role or if the existing user’s password changes, then the enterprise applications
settings must be updated to match.

If the user ID password is changed in the user registry but not in the enterprise
application settings, then you may see messages in System.out similar to the
following:
v SECJ0055E: Authentication failed for user ID. The user ID or password may

have been entered incorrectly or misspelled. The user ID may not exist,
the account could have expired or disabled. The password may have
expired.

v SECJ0336E: Authentication failed for user user ID because of the
following exception
com.ibm.websphere.security.PasswordCheckFailedException: Authentication
failed for user: user ID

To modify this user ID or password, perform the following steps:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. Click Applications → Enterprise Application → application_name → User RunAs

roles

3. Select the Diameter_Role check box.
4. Enter the current RunAs user ID or a new user ID in the Username field.

120 WebSphere Diameter Enabler

5. Enter the current password for this user ID in the Password field.
6. Click Apply.

Note: The user ID/password combination must be valid in the user registry
that is configured and must already be assigned to the security role
(Diameter_Role); if not, this step will fail.

7. Click OK.
8. Click Save to save your configuration changes.
9. Restart the application server.

Using IBM Tivoli License Manager
The IBM Tivoli License Manager (ITLM) product is used to detect where IBM
products are both installed and running. ITLM is installed with each of the IBM
WebSphere software for Telecom products.

Compatibility

This release of IBM WebSphere Diameter Enabler Component runs with ITLM
server version 2.2.

Note: The ITLM agent version 2.2 might not be compatible with all versions of the
operating systems supported by Diameter Enabler. Review the ITLM
documentation carefully to determine which operating systems, maintenance
levels, and Linux kernel versions are supported.

Installation

During the installation of Diameter Enabler, the inventory signatures for ITLM are
installed in the following directory:

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

For example, AppSrv01 in a standalone environment, or Custom01 as the name of
a federated node profile in a clustered environment.

was_profile_root/installedApps/cell_name/DHADiameterXxWebServiceEAR.ear/
itlm

Where:
cell_name is your configuration cell name
Xx is either Rf, Ro or Sh

Inventory Signature

For Diameter Enabler, an ITLM inventory signature file uniquely identifies each
subcomponent and is installed with the Diameter Enabler EAR into WebSphere
Application Server. The file names are as follows:

Rf subcomponent: IMSDRF0602.SYS2
Ro subcomponent: IMSDRO0602.SYS2
Sh subcomponent: IMSDSH0602.SYS2

Chapter 8. Administering 121

License file

Each Diameter Enabler subcomponent comes with a license file that is not
associated with ITLM enablement, but is still important for licensing purposes.
This text file specifies the customer’s entitlement of installation and use of a
specific subcomponent. The licenses are located in the License subdirectory on the
CD.

Usage Signature

The ITLM usage signature, generated by the Software Catalogue Signature team, is
used to identify each component as a J2EE product.

122 WebSphere Diameter Enabler

Chapter 9. Troubleshooting IBM WebSphere Diameter Enabler
Component

Logs store information to help you troubleshoot problems installing, configuring,
and using IBM WebSphere Diameter Enabler Component.

Using ISA 4.0 add-ons to communicate with IBM Support
To help you communicate with IBM Support, an IBM Support Assistant (ISA) 4.0
product add-on is available on the Web for IBM WebSphere IP Multimedia
Subsystem Connector. You can install the add-ons for selected products and
features using the ISA graphical user interface.

About this task

You can open electronic service requests using the ISA add-ons. If you want to
send log files associated with the service request, you must install and use the
add-on for the version of WebSphere Application Server that you are running. It
collects logs, trace files, and configuration information to send to IBM Support.

To install the product add-ons, perform the following steps:
1. Download and install ISA, using the instructions found on the IBM Support

Assistant Web site.
2. Launch the IBM Support Assistant Workbench.
3. Click Update → Find new → Product Add-ons.
4. In the Product Add-ons window, select the ISA product add-ons you want to

install. The add-ons are categorized by product family.
a. Expand the WebSphere product family.
b. Check one or more products for which you want to install add-ons.
c. Click Next.

5. In the Tools Add-ons window, select any additional ISA add-ons you want to
install. Then click Next.

6. Review the license information for the add-ons you have selected, and click I
accept the terms in the license agreements.

7. Click Next.
8. Click Finish.
9. Restart the IBM Support Assistant when the installation has completed.

Monitoring log messages
IBM WebSphere Diameter Enabler Component can write system messages to
several general purpose logs. Logging provides information about important
lifecycle events, warnings, and errors that should be addressed by an
administrator.

By default, IBM WebSphere Diameter Enabler Component logs its messages to the
WebSphere Application Server JVM log (SystemOut.log) and its trace messages to
the WebSphere Application Server trace log (trace.log). Both log files are located
in the logs directory:

© IBM Corporation 2006 123

http://www.ibm.com/software/support/isa/
http://www.ibm.com/software/support/isa/

was_profile_root/logs/server_name

was_profile_root/logs/server_name

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

In a standalone environment, profile_name is the name of the application server
profile (for example, AppSrv01). In a clustered environment, profile_name is the
name of a federated node profile (for example, Custom01).

Each error, warning, or informational log message should include a message code
which is used to identify the message. Additionally, each message can be identified
by the date, timestamp, thread number, and severity. IBM WebSphere Diameter
Enabler Component messages are also identified with a class name. For example:

[4/8/09 10:45:14:773 EDT] 00000031 DiameterState I DHAC0100I: Connection
has transitioned to the Open state. Peer Host: hostname.myco.com
ApplicationId[0] = VendorId = 10415; Auth Application Id = 16777217;
Supported vendor ids = 10415

Comprehensive information about working with message logs may be found in the
WebSphere Application Server Network Deployment information center.

Viewing and modifying logs
Use the Integrated Solutions Console to specify how data is logged, where the log
data is stored, and the output format to use for log data.

About this task

You can modify the general properties of each log, which specifies the output type
or location of the log. Use the following steps to adjust the properties for each log
type:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Servers → Server Types → WebSphere application

servers.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach this
window by clicking Servers → Application servers.

124 WebSphere Diameter Enabler

3. Click the name of the server you want to manage.
4. Under Troubleshooting, click Logging and Tracing.
5. Click one of the log types. Then click the Configuration tab to make a static

change to the system log configuration, or click the Runtime tab to change the
configuration dynamically.

Note: Separate logs for each log type exist for all Java virtual machines (JVMs)
on a node, including all application servers and their node agent, if
present, as well as for a deployment manager in its own logs directory.

Here is a list of the available log types:

Option Description

Diagnostic Trace Provides information in the trace.log about
how the WebSphere Application Server
components run.

JVM Logs Used to view and modify the settings for the
Java Virtual Machine (JVM). The System.out
log (SystemOut.log) is used to monitor the
health of the WebSphere Application Server.
The System.err log (SystemErr.log) contains
exception stack trace information used to
perform problem analysis.

Process Logs Created when redirecting the standard out
and standard error streams of a process to
independent log files, the native_stdout.log
and native_stderr.log, respectively.

IBM Service Logs Also known as the activity log. Records the
WebSphere Application Server messages that
are written to the System.out stream and
special messages that contain extended
service information that you can use to
analyze problems.

Change Log Detail Levels Controls which events are processed by Java
logging, by using log levels. You can assign
logging levels to individual trace loggers or
to trace groups. (Trace loggers and groups
are listed in the topic Trace loggers.)

6. When you are finished making your changes, click Apply.
7. Click OK.
8. Click Save to save changes to the master configuration.
9. Optional: If you made a static change to the configuration, restart the

application for your changes to take effect.

Results

After your configuration changes take effect, you will be able to view log data in
the locations, and in the output formats, that you have specified. Note that certain
logging settings can affect the performance of your system.

Hang detection policy
The WebSphere Application Server has a hang detection policy for monitoring
threads that have been active longer than the time defined by the thread monitor
threshold.

Chapter 9. Troubleshooting 125

Each Diameter Enabler connection is associated with a thread that remains active
for the duration of the connection. Since this duration is typically much larger than
the thread monitor threshold, warnings are logged in the WebSphere Application
Server System.Out log file that indicate the name of the thread that is hung and
how long it has already been active. The warning messages are in the following
format:
WSVR0605W: Thread threadname has been active for hangtime and may be hung.
There are totalthreads threads in total in the server that may be hung.

Disabling the hang detection policy disables the monitoring of all thread pools
residing in WebSphere Application Server and is not recommended. However, you
can configure the hang detection policy using the procedure Detecting hung threads
in J2EE applications in the WebSphere Application Server Information Center.

Enabling trace
Trace logs show trace events such as function entries and exits, component events,
and debugging activities. Use the administration console to enable trace for a
process.

About this task

You can configure the IBM WebSphere Diameter Enabler Component to start in a
trace-enabled state by setting the appropriate configuration properties.

You can control how much detail each logger records by adjusting the log level
details. Because the loggers are grouped hierarchically, setting the trace level on
one logger also sets all subsequent loggers to the same level. Altering the tracing
levels impact the performance of the system.

Enable and configure trace by completing the following steps:
1. Log in to the Integrated Solutions Console:

a. Open a browser and navigate to the following URL: https://host_name:port/
ibm/console.
Where:

host_name is the fully qualified host name of the server where the
application or the network deployment manager is deployed.
port is the secured port used to access the console. The default port is
9043.

Note: The default unsecured port is 9060. If you use 9060, you must have
″http″ instead of ″https″ in the URL.

b. Enter an administrator user ID and password. (Omit the password if
security is not enabled.)

c. Click Log in.
2. In the navigation pane, click Servers → Server Types → WebSphere application

servers.

Note: If you are using WebSphere Application Server version 6.1.0.x, reach this
window by clicking Servers → Application servers.

3. Click the name of the server you want to manage.
4. Click Troubleshooting → Logging and Tracing.
5. Click Diagnostic Trace Service.

126 WebSphere Diameter Enabler

6. Configure your trace options:
a. Display the Runtime tab.
b. To disable tracing, select File and then select None.

Note: If you are using WebSphere Application Server version 6.1.0.x, disable
tracing by selecting Enable log and then substituting disabled in
place of enabled.

c. Click Change Log Level Details.
d. Click Components to view all loggers for the individual components.
e. Click + to show the children of the logger.
f. Click logger_name to change the log details. To enable tracing on specific

components of IBM WebSphere Diameter Enabler Component, click one of
these logger groups:

com.ibm.diameter.*
com.ibm.diameter.base.*
com.ibm.diameter.cfsm.*
com.ibm.diameter.charging.*
com.ibm.diameter.packet.*
com.ibm.diameter.rf.*
com.ibm.diameter.ro.*
com.ibm.diameter.sh.*
com.ibm.ws.diameter.*

g. Choose the appropriate level of tracing.

Remember: When you change the level for a logger, the change is
propagated to the children of the logger.

For additional information regarding trace levels, click ? in the title bar of
the panel to open the help page.

7. Optional: To control logging of information about offline accounting and online
charging functions, you can configure trace options for Rf accounting Web
service and Ro online charging Web service usage information.
a. Click com.ibm.diameter.rf.usage to change the log details. The

com.ibm.diameter.rf.usage logger controls the logging of information about
the beginning and ending of offline accounting functions.

b. Click com.ibm.diameter.ro.usage to change the log details. The
com.ibm.diameter.ro.usage logger controls the logging of information about
the beginning and ending of online charging functions.

c. Click Message and Trace Levels → info to log usage information.

The messages will be logged in rfUsage_x.log and roUsage_x.log, where x is a
number from 0 to 9. The maximum size of the log file is 100 Mb. When the log
file reaches the maximum size, a new log will be created. After the tenth file
has been created, the first file will be overwritten. For example, assume
rfUsage_0.log (or roUsage_0.log) is the first file created. When rfUsage_9.log
(or roUsage_9.log) reaches the maximum size, rfUsage_0.log (or
roUsage_0.log) will be overwritten with the latest information. The
rfUsage_x.log and roUsage_x.log files will be created in the following location:

was_profile_root/logs/server_name

was_profile_root/logs/server_name

Chapter 9. Troubleshooting 127

Note: was_profile_root is the directory for a WebSphere Application Server
Network Deployment profile called profile_name. By default, this
directory is:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

In a standalone environment, profile_name is the name of the application server
profile (for example, AppSrv01). In a clustered environment, profile_name is the
name of a federated node profile (for example, Custom01).

8. Click OK.
9. Click Save.

Results

The specified traces are enabled for the current server session. To make the
changes permanent, use the Configuration tab rather than the Runtime tab when
you configure the trace options. Note that when you use the Configuration tab,
you will need to restart the server for your changes to take effect.

Selecting trace loggers
The level of tracing is determined by the log level details you select for the
loggers. Loggers are organized hierarchically. The children of the logger will inherit
the parent log level by default, but it can be changed by defining the level of
tracing on each specific logger.

Note: The table lists the names of trace loggers that are in each parent log level.
For example, if the table lists the trace group as
com.ibm.imsconnector.tai.* and the trace logger as *SipInterceptor, then
the full name of the trace logger is
com.ibm.imsconnector.tai.SipInterceptor.

To control the trace level for the Diameter Enabler component and its
subcomponents, use the options on the com.ibm.diameter.* trace group. To control
the trace level for the Diameter channel, use the options on the
com.ibm.ws.diameter.* trace group. For more specific levels of tracing, use the
following trace groups, which are relevant to Diameter Enabler:

Table 5. Diameter trace groups and trace loggers

Trace group Trace loggers

com.ibm.diameter.base.* *DiameterBaseApiHelper
*DiameterBaseApiImpl
*osgi

com.ibm.diameter.cfsm.* *DiameterCfsm
*DiameterChannelReader
*DiameterChannelWriter
*DiameterConnection
*DiameterConnectionPacketUtil
*DiameterProtectedAppIdArrayList
*DiameterState_I_Closed
*DiameterState_I_Closing
*DiameterState_I_WaitCea
*DiameterState_I_WaitConnAck
*DiameterState_RI_Open
*DiameterState_R_Closed
*DiameterThreadMgr

128 WebSphere Diameter Enabler

Table 5. Diameter trace groups and trace loggers (continued)

Trace group Trace loggers

com.ibm.diameter.charging.* *util

com.ibm.diameter.packet.* *Avp
*AvpParser
*DiameterPacket
*VsAvp

com.ibm.diameter.rf.* *avp
*base
*command
*usage
*util

com.ibm.diameter.ro.* *base
*command
*notify
*notify.subscription
*usage
*util

com.ibm.diameter.sh.* *avp
*base
*command
*notify
*notify.subscription
*util

com.ibm.ws.diameter.* *channel.impl.DiameterTcpConnection
*channel.inbound.impl.DiameterInboundChannelFactory
*channel.inbound.impl.DiameterTcpInboundChannel
*channel.outbound.impl.DiameterTcpOutboundChannel
*channel.outbound.impl.DiameterTcpOutboundConnLink

com.ibm.ims.* *normalize*

AG attachments:

v com.ibm.websphere.sca.soap.attachments.*
v com.ibm.ws.sca.soap.attachments.*

AG handlers:

v com.ibm.soa.esb.global.handlers.*
v com.ibm.sca.connections.handlers.*
v com.ibm.ws.sca.soap.attachments.handlers.*

Messages
A message explains a problem and suggests a user action. In addition, each
message ID includes a component ID, a number, and a letter that indicates the type
of message: Informational, warning, or error.

Message key
Each sub component has a unique message identifier to help you determine the
origin of the message.

Chapter 9. Troubleshooting 129

Standard format

The standard message format is: AAAANNNNS
v AAAA represents the component identifier (typically four or five characters).
v NNNN represents a four digit identifier.
v S represents the type of messages. There are three message types:

– I represents informational messages.
– W represents warning messages.
– E represents error messages.

IBM WebSphere Diameter Enabler Component messages

The following message identifiers are used for Diameter Enabler:

Table 6. Diameter Enabler

Component identifier Component description

DHAP Diameter Enabler packet messages

DHAC Diameter Enabler connection messages

DHAS Sh subscriber profile Web service messages

DHAR Rf accounting Web service messages

DHAO Ro online charging Web service messages

DHAG Common Rf accounting Web service and Ro
online charging Web service messages

130 WebSphere Diameter Enabler

Chapter 10. Developing applications that use Diameter Web
services

IBM WebSphere Diameter Enabler Component provides Rf accounting Web service,
Ro online charging Web service, and Sh subscriber profile Web service.

Rf accounting Web service, Ro online charging Web service, and Sh subscriber
profile Web service are collections of Web service methods that use SOAP over
HTTP Request and Reply interface. The collections of service methods in Rf and Ro
consist of a set of well-defined operations to perform offline and online session
and event charging. The collection of service methods in Sh provides subscriber
profile services. The Rf accounting Web service and Ro online charging Web
service include raw methods to send custom-built packets. To use the raw
methods, the user must have a basic knowledge of the Diameter protocol and
packet structure. The raw methods require use of the IBM WebSphere Telecom
Toolkit.

Diameter Web services are stateless classes that many threads can access
simultaneously. In each Web service request, the required objects for processing the
request and reply will be created. No internal state information will be retained in
the Web service classes.

Rf accounting Web service
Rf accounting Web service provides an IMS Application Server application with a
Diameter messaging interface to enable the application to send accounting
messages to Charging Collection Function (CCF). The CCF builds a Charging Data
Record (CDR) which is sent to and consumed by the billing system.

The IMS Application Server communicates with the accounting server through Rf
accounting Web service using either a session or event offline charging method as
shown here:
v Session charging - Charging for a session that takes place over a period of time.

– Start: Starts an accounting session.
– Interim: Periodically updates the accounting session.
– Stop: Stops the accounting session.

v Event charging - Accounting transaction for a single operation.

The choice of using session charging versus event charging will depend on the
applications using this interface. The actual accounting functionality is based on
other network elements, such as billing, and is not part of the Rf accounting Web
service. The Rf interface defines several external Web service methods used for
offline accounting messages, start session, interim session, stop session and event
charging.

Application overview

The following is a brief overview of the system components and how they play in
a Diameter transaction:

© Copyright IBM Corp. 2010 131

v IMS Application Server Application: The IMS Application Server Application
uses WSDL and/or helper classes to prepare a Web service request to be sent to
one of the Diameter Enabler Web service applications.
If the Diameter Enabler Web service supports notifications, the IMS Application
Server application must use the WSDL and/or helper classes to implement the
″server″ Web service that receives notifications. The URL of the ″server″ Web
service is provided to the Diameter Enabler when invoking subscription
requests.

v Diameter Enabler: The Diameter Enabler is capable of receiving Web service
requests and converting them into Diameter request packets. The Diameter
Enabler receives the Web service request, validates its contents, converts it to a
Diameter request packet, and routes it to the correct Diameter Server. The
Diameter Server responds with a Diameter response packet, which is returned as
a Web service response object to the IMS Application Server application that
performed the request.
The Diameter Enabler is also capable of receiving notification requests from a
Diameter server. The Diameter Enabler validates the contents of the Diameter
request packet and responds to the peer with a Diameter answer packet. If the
IMS Application Server Application has created a subscription to receive the
notifications, the Diameter Enabler opens an outbound Web service request to a
Web service endpoint provided in the subscription data.

v Diameter Server: The Diameter Server is a Diameter peer that exchanges
Diameter messages with the Diameter Enabler. The Diameter Server is capable of
sending and receiving Diameter request and answer packets.

Application deployment

Rf accounting Web service is deployed in a WebSphere Application Server
environment. Prior to installing Rf accounting Web service, you must install
Diameter Enabler base. Any application with the appropriate access and security
may invoke these functions while the supported transport is SOAP over HTTP. The
Rf accounting Web service are stateless and support multiple simultaneous calls.

Rf accounting Web service call flows
Rf accounting Web service call flows describe how the application transmits and
receives accounting packets and interacts with the application server, the Diameter
Enabler base, and the CCF.

Diameter Enabler base supports multiple realms. The internal routing table controls
which realm a packet is sent to.

The Rf accounting Web service routing table is independent from each of the other
services (Sh and Ro). Although all of the Web services use the Diameter Enabler
base, the configuration and usage of the routing table remains independent.

Rf accounting Web service uses a consistent flow for all Accounting messages:
1. An IMS Application Server invokes one of the Rf accounting Web service

requests, such as startRfAccounting.
2. The Rf accounting Web service application validates the parameters received

from the Web service interface and then builds an Rf Accounting Request
(ACR) message using those parameters. Diameter Enabler base then sends the
Accounting Request message to the CCF.

132 WebSphere Diameter Enabler

3. The CCF receives the Accounting Request message, updates the Charging Data
Record, and returns the result to the Diameter Enabler base in an Accounting
Answer (ACA) message.

4. The Rf accounting Web service application receives the Accounting Answer
message from the Diameter Enabler base that contains the result of the
Accounting operation. Then the Rf accounting Web service application returns
the result to the application that invoked the Web service request.

Rf accounting Web service methods
Rf accounting Web service defines several external Web service methods for
managing an offline charging session or issuing a one-time offline charging event.

According to RFC 3588 the sessionID is an agreed upon format between the IMS
Application Server and the accounting server. The same sessionID is expected to
be used for each request associated with a session. The session is terminated when
an accounting stop message is sent using stopRfAccounting.

Web service accounting methods

The following methods can be used to send offline charging information through
the Web service interface. Rf accounting Web service supports the following
external methods that are available to the IMS Application Server applications. For
detailed information on method signatures and descriptions, refer to the
com.ibm.diameter.rf.DiameterRfService_SEI section in the Javadoc.

Table 7. Web service offline charging methods

Rf accounting method Description

RfAccountingResults*
startRfAccounting(RfAccountingInfo** rfAcctInfo);

Starts an accounting offline charging
session

RfAccountingResults*
stopRfAccounting(RfAccountingInfo** rfAcctInfo);

Stops an accounting offline charging
session

RfAccountingResults*
interimRfAccounting(RfAccountingInfo** rfAcctInfo);

Updates an accounting offline charging
session

RfAccountingResults*
eventRfAccounting(RfAccountingInfo** rfAcctInfo);

Processes a one-time offline charging
event

ACAResults***
startOfflineAccounting(java.lang.String sessionId,
int recordNumber, java.lang.String userName,
int acctInterimInterval,
java.lang.String destinationRealm,
long eventTimestamp, int originStateID,
Accounting act);

Starts an accounting offline charging
session (deprecated)

ACAResults***
stopOfflineAccounting(java.lang.String sessionId,
int recordNumber, java.lang.String userName,
int acctInterimInterval,
java.lang.String destinationRealm,
long eventTimestamp, int originStateID,
Accounting act);

Stops an accounting offline charging
session (deprecated)

Chapter 10. Developing 133

Table 7. Web service offline charging methods (continued)

Rf accounting method Description

ACAResults***
interimOfflineAccounting(java.lang.String sessionId,
int recordNumber, java.lang.String userName,
int acctInterimInterval,
java.lang.String destinationRealm,
long eventTimestamp, int originStateID,
Accounting act);

Updates an accounting offline charging
session (deprecated)

ACAResults***
eventOfflineAccounting(java.lang.String sessionId,
int recordNumber, java.lang.String userName,
int acctInterimInterval,
java.lang.String destinationRealm,
long eventTimestamp, int originStateID,
Accounting act);

Processes a one-time offline charging
event (deprecated)

Avp**** rawAccounting(Avp[] avp); Provides a method for the Web services
client to manually construct the
Diameter packets

* com.ibm.diameter.charging.util.RfAccountingResults

** com.ibm.diameter.charging.util.RfAccountingInfo

*** com.ibm.diameter.rf.util.ACAResults

**** com.ibm.diameter.packet.Avp

Rf High-Level API
The Rf interface is a Web service interface to record data for offline charging. Data
for the duration of a session or for a single operational event can be tracked and
recorded.

The interface is comprised of a number of Web service methods and classes. These
classes are used to encapsulate the information in the request arguments and the
result values.

Class RfAccountingInfo
The RfAccountingInfo class includes all of the basic informational elements needed
to manage an Accounting Session or Event for offline charging.

Usage

The RfAccountingInfo class is a simple representation of the Diameter Accounting
Request (ACR) command and includes all of the basic informational elements
needed to manage an Accounting Session or Event. The Web service client creates
an instance of RfAccountingInfo and must set all required fields before initiating a
Web service request.

Depicted in the example and described in the Get and Set Methods tables:
v The sessionId must be set to a globally unique identifier for the accounting

session.
v For a single session, the record number for the start request is zero. The record

numbers for the interims are 1 through n (where there are n interim messages).
The record number for the stop is n+1 (the final message of the session).

134 WebSphere Diameter Enabler

v The destinationRealm should align with a realm defined in the routing table of
Diameter_Rf.properties. This determines the Charging Collection Function (CCF)
to which the Diameter packet will be sent.

v The userName should be included by the Web service client, if known, and
uniquely identifies the user in which accounting will be performed at the CCF.

v All other member values are consumed by the CCF and are used to manage the
accounting session or to generate Charging Data Records (CDRs). Optional
parameters should only be set as needed to ensure the correct generation of
CDRs.

Example
RfAccountingInfo acctInfo = new RfAccountingInfo();
acctInfo.setSessionId("example.example.com:44321;23433;821;0AB3F12");
acctInfo.setAccountingRecordNumber(0);
acctInfo.setDestinationRealm("example.com");
acctInfo.setUserName("alice@example.com");
RfAccountingResult results = service.startRfAccountingInfo(acctInfo);

Get methods

Method Type Returns Description

getSessionId String sessionId The sessionId that is unique for this
session.

Example:

String sessionId = acctInfo.getSessionId();

getAccountingRecordNumberint accountingRecordNumberIdentifies an accounting message within
a session.

For a typical single session, the record
number for the start is zero, the record
number for the interims are 1 through
n (where there are n interim messages),
and the record number for the stop is
n+1 (the final message of the session).

getUserName String userName The private user identity if available in
the node.

Example:

String username = acctInfo.getUserName();

getAcctInterimInterval int acctInterimInterval The amount of time in seconds
whereby the server wishes to receive
updates from the application client. It is
the responsibility of the client to
provide an interim message at the end
of each interval. The client may set this
field as a hint to the server.

getDestinationRealm String destinationRealm The administration domain that
recognizes the CCF.

Example:

String destinationRealm = acctInfo.getDestinationRealm();

getEventTimestamp long eventTimestamp The event value for time and MAY be
included in ACR and ACA messages to
record the time that the reported event
occurred. This is specified as
milliseconds since January 1, 1970 00:00
UTC.

Example:

long eventTimestamp = acctInfo.getEventTimestamp();

Chapter 10. Developing 135

Method Type Returns Description

getOriginStateId int originStateId Holds the value of our Origin-State-Id.

Example:

int originStateId = acctInfo.getOriginStateId();

getServiceInformation serviceInformationserviceInformation Service-specific 3GPP accounting
information.

Set methods

Method Parameter Name Type Description

setSessionId sessionId String Sets the Session-Id for this message.
The Session-Id is unique for a given
session. The same Session-Id value
should be used in every message of
that session.

Example:

rfAccountingInfo.setSessionId("sipclient.example.com:33041;23432;893);

setAccountingRecordNumberaccountingRecordNumberint Identifies an accounting message
within a session.

For a typical single session, the
record number for the start is zero,
the record number for the interims
are 1 through n (where there are n
interim messages), and the record
number for the stop is n+1 (the final
message of the session).

setUserName userName String The private user identity if available
in the node.

setAcctInterimInterval acctInterimInterval int The amount of time in seconds
whereby the server wishes to receive
updates from the application client.
It is the responsibility of the client to
provide an interim message at the
end of each interval. The client may
set this field as a hint to the server.

setDestinationRealm destinationRealm String The administration domain that
recognizes the CCF.

setEventTimestamp eventTimestamp long The event value for time and MAY
be included in ACR and ACA
messages to record the time that the
reported event occurred, in
milliseconds since January 1, 1970
00:00 UTC.

Example:

rfAccountingInfo.setEventTimestamp(System.currentTimeMillis());

136 WebSphere Diameter Enabler

Method Parameter Name Type Description

setOriginStateId originStateId int Sets the value of our Origin-State-Id.
Note that by setting this, your
application will indicate to the server
that the Origin State has changed
(meaning that he will void any
existing sessions). And, once you
have set it, you must use the same
value for all messages that you
initiate. Therefore, if you use this
method, you must have complete
knowledge of the applications
running, and they must be well
coordinated.

Example:

rfAccountingInfo.setOriginStateId(356777);

setServiceInformation serviceInformation serviceInformation Service-specific 3GPP accounting
information.

Class RfAccountingResults
The RfAccountingResults class is a simple representation of the Diameter
Accounting Answer (ACA) command. It contains all the pertinent information for
managing an Accounting Session.

Usage

The Rf Web Service Session and Event methods return an RfAccountingResults
object. The Web service client can query the results to further manage an
Accounting session. These values are listed in the methods tables in this topic.
They are also listed in RFC 3588.

Example
RfAccountingResults acaResults = service.startRfAccountingInfo(acctInfo);
acaResults.getAcctInterimInterval();

Get methods

Method Type Return Description

getResultCode int resultCode Successful or unsuccessful result codes
in the form of an exception. Possible
values include:

1xxx (Informational)

2xxx (Success)

getEventTimestamp long eventTimestamp The event time stamp. The event time
stamp is returned in time. It may be
included in ACR and ACA messages to
record the time that the reported event
occurred, in milliseconds since January
1, 1970 00:00 UTC.

Example:

long eventTimestamp = rfAccountingResults.getEventTimestamp();

getOriginStateID int originStateID The origin state identifier. This
Attribute Value Pair (AVP) is optional.

getAcctInterimInterval int acctInterimInterval The interval (in seconds) in which the
accounting client should send interim
requests after the start of the session.

Chapter 10. Developing 137

Set methods

Because the RfAccountingResults object is set by the Diameter Enabler based on
results it has received from the CCF, the set methods are rarely used.

Method Parameter Name Type Description

setResultCode resultCode int The result code value.

setEventTimestamp eventTimestamp long The event time stamp.

setOriginStateID originStateID int The origin state identifier.

setAcctInterimInterval acctInterimInterval int The interval (in seconds) in which the
accounting client should receive
interim requests after the start of the
session.

Class ServiceInformation (Rf)
This class is a member of RfAccountingInfo and acts as a container for
service-specific 3GPP accounting information.

Usage

The 3GPP has separated its vendor-specific AVPs into multiple service-specific
charging groups. Contained within ServiceInformation are nested classes that act as
holders for service-specific accounting data.

All of the accounting data created by an IMS node is generally located in
IMSInformation. However, in some instances, accounting data will need to be
generated for multiple services. The Web service client developer simply constructs
and sets the service-specific information objects needed to generate accounting
information, leaving the irrelevant service objects null.

Within each service-specific class are additional members that represent accounting
data that can be processed by a Charging Collection Function (CCF) to produce
Charging Data Records (CDRs). The type of data recorded will differ across
implementations to meet the needs of the accounting application. All figures and
statistics must be in a format that complies with the capabilities of the CCF. In the
following example, accounting data is created for the SUBSCRIBE event type.

For detailed information regarding the nesting of IMS accounting data, refer to the
Javadoc and the 3GPP specifications.

Example
RfAccountingInfo acctInfo = new RfAccountingInfo();
acctInfo.setSessionId("example.example.com:44321;23433;821;0AB3F12");
acctInfo.setAccountingRecordNumber(0);
acctInfo.setDestinationRealm("example.com");
acctInfo.setUserName("alice@example.com");
ServiceInformation svcInfo = new ServiceInformation();
IMSInformation imsInfo = new IMSInformation();
EventType eventType = new EventType();
eventType.setSipMethod("SUBSCRIBE");
imsInfo.setNodeFunctionality(NodeFunctionality.AS);
imsInfo.setEventType(eventType);

svcInfo.setImsInformation(imsInfo);
acctInfo.setServiceInformation(svcInfo);
service.startRfAccountingInfo(acctInfo);

138 WebSphere Diameter Enabler

Get methods

Method Type Return Description

getImsInformation IMSInformationimsInformation Accounting information generated
by an IP Multimedia Subsystem
service.

getPsInformation PSInformation psInformation Accounting information generated
by a Packet Switched service.

getLcsInformation LCSInformationlcsInformation Accounting information generated
by a Location Services service.

getMmsInformation MMSInformationmmsInformation Accounting information generated
by a Multimedia Messaging service.

getWlanInformation WLANInformationwlanInformation Accounting information generated
by a WLAN service.

getPocInformation PoCInformationpocInformation Accounting information generated
by a Push-To-Talk Over Cellular
service.

getMbmsInformation MBMSInformationmbmsInformation Accounting information generated
by a Multimedia Broadcast and
Multicast service.

Set methods

Method Parameter Type Description

setImsInformation imsInformation IMSInformationAccounting information generated
by an IP Multimedia Subsystem
service.

setPsInformation psInformation PSInformation Accounting information generated
by a Packet Switched service.

setLcsInformation lcsInformation LCSInformationAccounting information generated
by a Location Services service.

setMmsInformation mmsInformation MMSInformationAccounting information generated
by a Multimedia Messaging
service.

setWlanInformation wlanInformation WLANInformationAccounting information generated
by a WLAN service.

setPocInformation pocInformation PoCInformationAccounting information generated
by a Push-To-Talk Over Cellular
service.

setMbmsInformation mbmsInformation MBMSInformationAccounting information generated
by a Multimedia Broadcast and
Multicast service.

Deprecated Rf API
This section contains deprecated Rf classes that were used by the deprecated Web
service methods.

Class Accounting (Deprecated):

The Accounting class includes methods that get and set information for offline
charging.

Usage

The methods can get or set details about the specific transaction. This information
is used to determine how much to charge.

Chapter 10. Developing 139

This class passes charging information as a single parameter to the Charging
Collection Function.

Example
Accounting acct = new Accounting(); //create Accounting object
acct.setUserSessionId("a84b4c76e66710@test.acme.com");
acct.setServiceId("12345");
ACAResults results = service.startRfAccounting("MySessionId", "MyUserName", 0,

"example.com", 2085978496000, 0,acct);

Get methods

Method Type Returns Description

getAAppSrvInfo AppServInfo aAppSrvInfo Retrieves information about
the accounting servers and
identifies information needed
to keep track of transactions
between networks for charging
purposes.

getACauseCode CauseCode aCauseCode Retrieves the cause codes that
may have occurred during an
accounting request.

getASDPmedia SDPmedia[] aSDPmedia Retrieves information about
the type of media involved in
the accounting transaction.

getASipInfo SipInfo aSipInfo Retrieves SIP information used
in accounting to keep track of
the parties involved and the
type of transaction.

getATrunkGroup TrunkGroup aTrunkGroup Retrieves information which
identifies the Public Telephone
Switched Network (PSTN).

getAuthorisedQos String authorisedQos Retrieves the quality of
service.

getAUUSdata UUSdata aUUSdata Retrieves the information for
the User to User Protocol used
by accounting to keep track of
the amount and type of data
involved in the transaction.

getBearerService String bearerService Retrieves the used bearer
service for the PSTN.

getGgsnAddress String ggsnAddress Retrieves the IP address of the
Gateway GPRS Support Node
(GGSN) in the session.

getImsChargingIndentifier String imsChargingIndentifier Retrieves the IMS Charging
identifier (ICID) as generated
by a node for a SIP session.

Example: String icid =
accountingResults.getImsChargingIdentifier();

getRoleofNode int roleofNode Retrieves the role of the IMS
Application Server or the
CSCF. Roles include:

0 = ORIGINATING_ROLE

1 = TERMINATING_ROLE

2 = PROXY_ROLE

3 = B2BUA_ROLE

getSdpSessionDescription String sdpSessionDescription Retrieves the session of the
SDP data when it is exchanged
between the user agents in the
SIP transaction.

140 WebSphere Diameter Enabler

Method Type Returns Description

getServedPartyIPaddress String servedPartyIPaddress Retrieves the address of the
calling party or the called
party.
Note: Only the following
attribute lines for charging are
recorded:

c = connection information

Example: IN IP4
224.2.17.12/127

a = session attribute lines

Example: a = recvonly

getServiceId String serviceId Retrieves the service the media
resource function controller
(MRFC) is hosting and is the
value of the conference ID.

getUserSessionId String userSessionId Retrieves the SIP session and
contains the SIP call ID.

Set methods

Method Parameters Type Description

setAAppSrvInfo appSrvInfo AppServInfo Defines information about the
accounting servers and
identifies information needed
to keep track of transactions
between networks for
charging purposes.

setACauseCode causeCode CauseCode Defines the cause codes that
may have occurred during an
accounting request.

setASDPmedia pmedia SDPmedia[] Defines information about the
type of media involved in the
accounting transaction.

setASipInfo sipInfo SipInfo Defines SIP information used
in accounting to keep track of
the parties involved and the
type of transaction.

setATrunkGroup trunkGroup TrunkGroup Defines information which
identifies the PSTN.

setAuthorisedQos authorisedQos String Defines the quality of service.

setAUUSdata sdata UUSdata Defines the information for
the User to User Protocol
used by accounting to keep
track of the amount and type
of data involved in the
transaction.

setBearerService bearerService String Defines the used bearer
service for the PSTN.

setGgsnAddress ggsnAddress String Defines the IP address of the
GGSN in the session.

setImsChargingIndentifier imsChargingIndentifier String Defines the ICID as generated
by a node for a SIP session.

setRoleofNode roleofNode int Defines the role of the IMS
Application Server or the
CSCF. Roles include:

0 = ORIGINATING_ROLE

1 =
TERMINATING_ROLE

2 = PROXY_ROLE

3 = B2BUA_ROLE

Chapter 10. Developing 141

Method Parameters Type Description

setSdpSessionDescription sdpSessionDescription String Defines the session of the
SDP data when it is
exchanged between the user
agents in the SIP transaction.

setServedPartyIPaddress servedPartyIPaddress String Defines the address of the
calling party or the called
party.
Note: Only the following
attribute lines for charging
are recorded:

c = connection information

Example: IN IP4
224.2.17.12/127

a = session attribute lines

Example: a = recvonly

setServiceId serviceId String Defines the service the media
resource function controller
(MRFC) is hosting and is the
value of the conference ID.

setUserSessionId userSessionId String Defines the SIP session and
contains the SIP call ID.

Class ACAResults (Deprecated):

The ACAResults class is used to transfer information from the Charging Collection
Function back to the IMS Application Server application that sent a request using
the Rf accounting Web service.

Usage

ACAResults transfers information from the Charging Collection Function using the
Rf accounting Web service. When an IMS Application Server application requests a
one time charging event, such as eventOfflineAccounting, the Rf accounting Web
service will return an ACAResults object. This returns information such as whether
the operation completed successfully and other values from the ACA (Accounting
Answer). In case of failure, a Java exception will be thrown to the calling
application.

Example
accountingData = new Accounting(); //create and initialize this object with accounting data

to pass it on using the eventOfflineAccounting method.
ACAResults myResults = service.eventOfflineAccounting("MySessionId", "MyUserName", 0,

"example.com", 2085978496000, 0, accountingData);

Get methods

Methods Type Returns Description

getAAct Accounting aAct Returns the Accounting object.

getAcctInterimInterval int acctInterimInterval Retrieves the start time for the session.
The acctInterimInterval is returned in
seconds.

142 WebSphere Diameter Enabler

Methods Type Returns Description

getEventTimestamp long eventTimestamp Retrieves the event time stamp. The
event time stamp is returned in time. It
may be included in ACR or ACA
messages to record the time in
milliseconds since January 1, 1970 00:00
UTC.

Example: long eventTimestamp =
acaResults.getEventTimestamp();

getOriginStateID int originStateID Retrieves the origin state identifier. This
Attribute Value Pair (AVP) is optional.

getResultCode int resultCode Retrieves the result code value. Possible
values include:

v 2001: DIAMETER_SUCCESS

v 2002:
DIAMETER_LIMITED_SUCCESS

Set methods

Methods Parameter Name Type Description

setAAct act Accounting Defines the account

setAcctInterimInterval acctInterimInterval int Defines the interval at which each
update or interim message must be
sent.

setEventTimestamp eventTimestamp long Defines the event time stamp

setOriginStateID originStateID int Defines the origin state identifier

setResultCode resultCode int Defines the result code value

Class AppServInfo (Deprecated):

This class provides methods to identify information about the Charging Collection
Function. The information can be used to monitor transactions between the
networks for charging purposes.

Usage

AppServInfo is used as an object to transfer information about a specific
transaction to the Charging Collection Function. This object could contain
information about the parties involved in a particular transaction, such as a
conference call using cellular devices.

Example
Accounting acct = new Accounting();
AppServInfo asi = new AppServInfo();
asi.setApplicationServer("sip:appserver@operator.com"); asi.setAppCalledPartyAddr("sip:joe@operator.com");
acct.setAAppSrvInfo(asi);

Chapter 10. Developing 143

Get methods

Methods Type Returns Description

getApplicationServer String applicationServer Retrieves the SIP-URLs of the IMS
Application Server or servers
addressed during the session. For
example, for a cell phone
communicating with the IMS
Application Server, the server’s
address would be:
sip:appserver@operator.com.

getAppCalledPartyAddr String appCalledPartyAddr Retrieves the address of another
device.

Example: first.last@operator.com

getMandatoryCapability[] int mandatoryCapability Retrieves the mandatory
capabilities of the Server Call
Session Control Function (S-CSCF),
as used by event charging. The
operator assigns the unique
identifiers for mandatory
capabilities.

getOptionalCapability[] int optionalCapability Retrieves the optional capabilities
of the S-CSCF. This capability is
used by event charging.

getServerName[] String serverName Retrieves the SIP-URLs used to
identify a SIP server.

Example:
sip:servername@operator.com

getOriginatingIOI String originatingIOI Retrieves the inter-operator
identifier for the originating
network. This is generated by the
S-CSCF in the home network of
the originating end user.

getTerminatingIOI String terminatingIOI Retrieves the inter-operator
identifier for the originating
network. This is generated by the
S-CSCF in the home network of
the terminating end user.

Set methods

Methods Parameters Type Description

setApplicationServer applicationServer String Defines the SIP-URLs of the
IMS Application Server or
servers addressed during the
session.

setAppCalledPartyAddr appCalledPartyAddr String Defines the address of
another device.

setMandatoryCapability[] mandatoryCapability int Defines the mandatory
capabilities of the Server Call
Session Control Function
(S-CSCF), as used by event
charging. The operator
assigns the unique identifiers
for mandatory capabilities.

setOptionalCapability[] optionalCapability int Defines the optional
capabilities of the S-CSCF.
This capability is used by
event charging.

144 WebSphere Diameter Enabler

Methods Parameters Type Description

setServerName[] serverName String Defines the SIP-URLs used to
identify a SIP server.

setOriginatingIOI originatingIOI String Defines the inter-operator
identifier for the originating
network. This is generated by
the S-CSCF in the home
network of the originating
end user.

setTerminatingIOI terminatingIOI String Defines the inter-operator
identifier for the originating
network. This is generated by
the S-CSCF in the home
network of the terminating
end user.

Class CauseCode (Deprecated):

This class contains methods to get and set cause codes that may have occurred
during the accounting process.

Usage

This class passes errors and status codes between transactions.

Example
Accounting acct = new Accounting();
CauseCode cc = new CauseCode();
cc.setCausecode(0);
cc.setNodeFunctionality(1);
acct.setACauseCode(cc);

Get methods

Methods Type Returns Description

getCausecode int Returns one of the following
cause codes:

0 = Normal end of session

-1 = Successful transaction

-2 = SUBSCRIBE dialog

-3xx = 3xx Redirection

1 = Unspecified error

2 = Unsuccessful setup

3 = Internal error

4xx = Request failure

5xx = Server failure

6xx = Global failure

Retrieves cause codes

getNodeFunctionality int nodeFunctionality Retrieves the identifier of the
node where the causecode was
generated

Set methods

Methods Parameters Type Description

setCausecode causecode int Defines the cause code

Chapter 10. Developing 145

Methods Parameters Type Description

setNodeFunctionality nodeFunctionality int Defines the identifier of the
node

Class SDPmedia (Deprecated):

This class provides methods for getting or setting information about the media
being passed between the device to the server. For example in a music download
purchase, this class will identify the type of data in the transaction.

Usage

This class is used to get and set the media information. The Accounting class
transfers the media information to the Charging Collection Function.

Example
Accounting acct = new Accounting();
SDPmedia[] mediaArray = new SDPmedia[2];
SDPmedia media1 = new SDPmedia();
media1.setGprsChargingId("charging id 1");
media1.setSdpMediaDescription("c=IN IP4 134.134.157.81");
media1.setSdpMediaName("m=video51372");
mediaArray[0] = media1;
SDPmedia media2 = new SDPmedia();
media2.setGprsChargingId("charging id 2");
media2.setSdpMediaDescription("c=IN IP4 134.134.157.34");
media2.setSdpMediaName("m=video51372");
mediaArray[1] = media2;
acct.setASDPmedia(mediaArray);

Get methods

Method Type Returns Description

getSdpMediaName String sdpMediaName Retrieves the media name. The name
starts with m =, such as:

m = media port transport fmt list

Where:

media represents the type of
media, such as audio, video,
application, data, and control

port represents the transport port
that receives the media stream

transport represents the protocol
used, such as UDP

fmt list represents the list of
media formats

getSdpMediaDescription String sdpMediaDescription Retrieves the connection information
for media transactions.

getGprsChargingId String gprsChargingId Retrieves the IMS charging identifier.

Set methods

Method Parameter Type Description

setSdpMediaName sdpMediaName String Sets the name of media.

146 WebSphere Diameter Enabler

Method Parameter Type Description

setSdpMediaDescription sdpMediaDescription String Sets the connection information for
media transactions.

setGprsChargingId gprsChargingId String Sets the IMS charging identifier.

Class SipInfo (Deprecated):

This class includes methods that get and set information for the SIP information
protocol that is used by the Accounting class.

Usage

The methods can get or set details about the specific transaction, such as what type
of data and how much data was transferred. This information is used to determine
how much to charge.

This class transfers SIP requests. The Accounting class passes the information to
the Charging Collection Function.

Example
Accounting acct = new Accounting();
SipInfo si = new SipInfo();
si.setCalledPartyAddress("sip:alice@example.com");
si.setCallingPartyAddress("sip:bob@example.com");
si.setContentDisposition("session;handling=optional");
si.setContentLength("142");
si.setContentType("application/sdp");
si.setEvent("subscribe header");
si.setSipMethod("INVITE");
si.setSipRequest("1141094426");
si.setSipResponse("114109943");
acct.setASipInfo(si);

Get methods

Method Type Returns Description

getCalledPartyAddress String calledPartyAddress Retrieves the address for the
established session.

Example: sip@amy.example.com

getCallingPartyAddress String callingPartyAddress Retrieves the address of the third
party initiating the session.

Example: Public User ID:
sip@bob.example.com

getContentDisposition String contentDisposition Indicates how the message body is
interpreted.

Example:
contentDisposition="render"

getContentLength String contentLength Retrieves the size of the message
body. There are no size limitations.

Example: 12345678

Chapter 10. Developing 147

Method Type Returns Description

getContentType String contentType Retrieves the media type. Possible
values are application, html, sdp, or
text.

Example:
contentType="application"

getEvent String event Retrieves content of the event
handler used in SUBSCRIBE and
NOTIFY functions.

getSipMethod String sipMethod Retrieves the name of SIP method.

Example: INVITE

getSipRequest String sipRequest Retrieves the time in UTC format of
the initial SIP request.

Example: Invite

getSipResponse String sipResponse Retrieves the time in UTC format of
the response to the initial SIP
request.

Example: 200 OK

Set methods

Method Parameters Type Description

setCalledPartyAddress calledPartyAddress String Defines the address for the
established session.

setCallingPartyAddress callingPartyAddress String Defines the address of the third
party initiating the session.

setContentDisposition contentDisposition String Defines how the message body is
interpreted.

setContentLength contentLength String Defines the size of the message
body. There are no size
limitations.

setContentType contentType String Defines the media type. Possible
values are application, html, sdp,
or text.

setEvent event String Defines content of the event
handler used in SUBSCRIBE and
NOTIFY functions.

setSipMethod sipMethod String Defines the name of SIP method.

setSipRequest sipRequest String Defines the time in UTC format
of the initial SIP request.

setSipResponse sipResponse String Defines the time in UTC format
of the response to the initial SIP
request.

Class TrunkGroup (Deprecated):

This class provides methods to get and set the identify the Public Switched
Telephone Network (PSTN) that are involved in a transaction.

Usage

This class organizes information about the PSTN. The Accounting class passes the
information to the Charging Collection Function.

148 WebSphere Diameter Enabler

Example
Accounting acct = new Accounting();
TrunkGroup tg = new TrunkGroup();
tg.setIncomingTrunkGroupId("incoming trunkid");
tg.setOutgoingTrunkGroupId("outgoing trunkid");
acct.setATrunkGroup(tg);

Get methods

Method Type Returns Description

getIncomingTrunkGroupId String incomingTrunkGroupId Retrieves the incoming PSTN
leg

getOutgoingTrunkGroupId String outgoingTrunkGroupId Retrieves the outgoing PSTN
leg

Set methods

Variable name Parameter Type Description

setIncomingTrunkGroupId incomingTrunkGroupId String Defines the incoming PSTN
leg

setOutgoingTrunkGroupId outgoingTrunkGroupId String Defines the outgoing PSTN
leg

Class UUSdata (Deprecated):

This class includes methods that get and set information for the User-to-User
protocol that is used by Accounting.

Usage

The methods can get or set details about the specific transaction, such as what type
of data and how much data was transferred. This information can be used to
determine how much to charge.

This class organizes information about User-to-User protocol data. The Accounting
class passes the information to the Charging Collection Function.

Example
Accounting acct = new Accounting();
UUSdata data = new UUSdata();
data.setAmountOfUUSdata("435");
data.setDirection(0);
data.setMimeType("image/jpeg");
acct.setAUUSdata(data);

Get methods

Method Type Returns Description

getAmountOfUUSdata String amountOfUUSdata Retrieves the amount of User-to-User data
in the body of the SIP message.

getMimeType String mimeType Retrieves information about the sent
User-to-User data such as the AVP/MIME
type

Chapter 10. Developing 149

Method Type Returns Description

getDirection int direction Retrieves direction that User-to-User data
travels

UPLINK=0

DOWNLINK=1

Set methods

Method Parameters Type Description

setAmountOfUUSdata amountOfUUSdata String Defines the amount of User-to-User
data in the body of the SIP message

setMimeType mimeType String Defines AVP/MIME type for the
User-to-User data

setDirection direction int Defines the direction that User-to-User
data travels

UPLINK=0

DOWNLINK=1

Rf Raw API
The Rf Raw API is a more flexible method to send custom session and event
requests that require more knowledge of the underlying protocol.

The high-level Rf Web service methods are intended to simplify the programming
requirements to create and issue accounting requests. They follow the Augmented
Mackus-Naur Form (ABNF) structures defined by the 3GPP and Internet
Engineering Task Force (IETF). However, there are times when this ABNF is not
valid, including:
v When new versions of the 3GPP or IETF specifications are available and the new

ABNF does not match the old one.
v When an application needs to supplement the ABNF using Attribute Value Pairs

(AVPs) that are not defined by the 3GPP or IETF.

When these changes are required, then the high-level Rf Web service methods will
not be usable to meet the new ABNF needs. Instead, the rawAccounting() Web
service method must be used.

Usage

The rawAccounting() Web service allows the developer using this method to
completely control the order, type, and content of each AVP to be included in the
Diameter Accounting Request (ACR). These AVPs can be defined by the IETF, the
3GPP, or by any other vendor. The difference is that the application server
application must construct an array of these AVPs before invoking the
rawAccounting() method.

When the rawAccounting() Web service returns, the value returned is an array of
the AVPs received from the Charging Collection Function in the Accounting
Answer (ACA) packet. It is then up to the Application Server Application to parse
the AVP array and retrieve any of the information that it requires.

The rawAccounting() Web service is largely a pass-through method. It encapsulates
the array of AVPs in the request and places them in a Diameter ACR frame. When
the ACA is received, it extracts the AVPs from the ACA, places them into an array,

150 WebSphere Diameter Enabler

and returns them to the caller. There is very little checking performed by the
rawAccounting() Web service.

AVPs

The IBM WebSphere Diameter Enabler Component communicates with a Charging
Collection Function (CCF) through the Diameter Protocol. Each Diameter Packet
contains a list of AVPs, which are used to transfer information between Diameter
peers. The Attribute determines the type of information while the Value determines
its contents. The IETF has defined a variety of AVPs to be used to manage an
accounting session and the 3GPP has defined additional AVPs to report accounting
information to a CCF.

Note: The format of an AVP header is defined in RFC 3588.

Contained within the AVP header, the AVP Code in combination with the
Vendor-ID uniquely identifies the AVP. AVPs defined in the base specification (RFC
3588) use a Vendor-ID of 0 and AVPs defined by the 3GPP use a Vendor-ID of
10415. The AVP flags (VMPrrrrr) further classify the AVP. If the V(endor-Specific)
bit is set, the AVP is defined by a vendor other than the IETF. If the M(andatory)
bit is set, the AVP MUST be understood by the Diameter peer. The P bit is an
obsolete security bit, and should always be zero.

Using Helper Classes

There are several classes provided with the Toolkit to assist you in developing
applications that use the Raw interface. These classes are packaged into two main
JAR files:
v DHADiameterPacket.jar
v DHADiameterChargingUtil.jar

DHADiameterPacket.jar contains the classes that make up an AVP. You use the
com.ibm.diameter.packet.Avp class when the AVP you wish to send is a base AVP
(defined by the IETF). You use the com.ibm.diameter.packet.VsAvp class when the
AVP that you wish to send is a vendor-specific AVP. (AVPs defined by the 3GPP
are vendor-specific AVPs.)

Note: The internal data or value that the AVP contains is strongly typed. The
typing is defined for each AVP. To handle different internal data types, the
Diameter Helper classes use an abstract type of
com.ibm.diameter.packet.AvpValueUtil. The actual types extend
AvpValueUtil and are data types that match those defined by the Diameter
specifications. They include:
v AvpValueUtilGrouped
v AvpValueUtilOctetString
v AvpValueUtilUnknown
v AvpValueUtilUnsigned32
v AvpValueUtilUnsigned64
v AvpValueUtilUTF8String

These are fairly self explanatory based on their names. For example, the
AvpValueUtilUnsigned32 contains a 32 bit integer. However, the actual value in
java is signed, so you must exercise care in using the value especially if you are

Chapter 10. Developing 151

performing arithmetic with it. You would need to take the hex value and convert it
to a long through a logic operations such as an ’AND’.

There are a two AVP types that need some elaboration. The first is the Grouped
AVP. Any time the AVP you are using is of type Grouped, it contains other AVPs.
The AvpValueUtilGrouped helper class contains a vector of AVPs.

The other AVP type is AvpValueUtilUnknown. This AVP type is used by the
Diameter Enabler when it is attempting to parse the data stream, but does not
know the definition for a given AVP. A case when this might happen is when a
server defines its own, custom Vendor Specific AVP outside of the IETF or 3GPP.
The Diameter Enabler, when it receives an AVP that it does not recognize will store
all of the data for that AVP as a byte array or octet string. So, if the custom AVP
was of type unsigned 32, then the Diameter Enabler would read it into an array
with a length of 4 bytes and place this value in an AvpValueUtilUnknown object in
the AVP.

Thus, when you are using the Raw interface to create a custom frame and expect
to receive back custom AVPs. The AVPs unknown to the Diameter Enabler will
have AvpValueUtilUnknown values in them. The application must then convert
that byte array to the appropriate type.

Any AVP that is unknown to the Diameter Enabler will receive this handling
including custom Grouped AVPs. Even if some of the AVPs that a Grouped AVP
holds are known to the Diameter Enabler, they will be included as data in the byte
array that contains the payload of the owning Grouped AVP.

For more information on the helper classes and their methods, refer to the Javadoc.
These classes are provided as part of the IMS Connector CD. They are also
included in the IMS Tooling packages associated with the IMS Connector.

Defining Your Own AVPs

You can define any AVP that you wish to send in the ACR message. Most of the
AVPs defined in the IETF RFCs 3588 and 4006 are already defined within the
Diameter Enabler helper classes. You can simply create an AVP by providing the
data to an AvpFactory method. For example:
Avp originRealmAvp = AvpFactory.createOriginRealmAvp("asclient.example.com");

This example creates an Origin-Realm AVP whose value is asclient.example.com.
Many of these AVPs are vendor-specific for IMS with a vendor ID of 10415. Here is
an example of the way in which ChargingAvpFactory is used:
Avp exponentAvp = ChargingAvpFactory.createExponentAvp(-2);

The AVPs that you are able to create using the AvpFactory and
ChargingAvpFactory are limited to those defined by the Diameter Enabler. You
may want to create your own AVPs that are not included in the Diameter Enabler.

You can do this using the helper classes: com.ibm.diameter.packet.Avp and
com.ibm.diameter.packet.AvpValueUtil<type>. For example:
AvpValueUtil numberOfMembersValueUtil = new AvpValueUtilUnsigned32(20);
Avp numberOfMembersAvp = new VsAvp(NUMBER_OF_MEMBERS,

Avp.VON_MON_POFF,numberOfMembersValueUtil, VENDOR_ID_COMPANYX);

This example creates a new vendor-specific AVP of type Unsigned32 and loads it
with a value of 20. It also creates the AVP with the V-bit (vendor -specific) set to 1,

152 WebSphere Diameter Enabler

the M-bit (Mandatory) set to 1, and the P-bit set to 0. Finally, the Vendor ID is set
to COMPANYX’s vendor ID. The vendor ID should be listed in the
enterprise-numbers2 on the Internet Assigned Numbers Authority site.

Receiving and Processing the Results of Your Raw Request

You create AVPs when you wish to send a data element to the CCF. You receive
back the AVPs that the CCF sends in its ACA. The result is returned in an Array of
AVPs that occur in the order in which the AVPs were received with array[0] being
the first AVP received. The type of data that is held within the AVP is either that
defined by the IETF or 3GPP if the AVP is formally defined in the Rf definition. If
the AVP is not in any of these definitions, then the data type will be
AvpValueUtilUnknown.

Whenever you receive an AVP with data of type AvpValueUtilUnknown, the
Diameter Enabler does not have a definition of the AVP in its dictionary. Your
application must convert the byte array into data of a type that is usable by your
application. Simple types, such as Unsigned32, are straight forward. However, the
Grouped type means that AVPs including their AVP headers will be included in
the byte array. And because there can be any number of nesting levels, Grouped
AVPs will need some additional parsing algorithm to convert them from an array
of bytes into an array of AVPs or other data elements.

In general, if you wish to retrieve information from the reply frame, you will walk
through the list of AVPs received, pull the one of interest, get its AvpValueUtil, and
invoke the getAvpValue() method of the AvpValueUtil.

Limitations of the Raw Interface

If you create an AVP that is already defined by the Diameter Enabler, your AVP
will be transmitted with the type, values, and AVP header bits that you have
defined. However, if the same AVP is received by the Diameter Enabler in the
reply, the Diameter Enabler’s definition will be applied when creating the AVP.

Also, an incorrectly created AVP may affect the data stream and cause an
Out-Of-Sync error to occur. If when transmitting, the number of bytes expected
does not match the length parameters, the packet will be malformed. An error such
as this may cause the other side of the connection to determine that it no longer
knows where it is in the data stream. This generally results in the connection being
dropped and re-established. For this reason, you need to secure and limit the
access to these data services to trusted applications.

Example
DiameterRfService_SEIServiceLocator locator = new DiameterRfService_SEIServiceLocator();
DiameterRfService_SEI service = locator.getDiameterRfService(endpoint);
//create an Avp Array

Avp[] avps = new Avp[7];
//create Session-Id avp

Avp avp = new Avp(AvpConstants.SESSION_ID, Avp.VOFF_MON_POFF, new AvpValueUtilUTF8String("session"));
avps[0]=avp;

//create Origin-Host avp
avp = new Avp(AvpConstants.ORIGIN_HOST, Avp.VOFF_MON_POFF, new AvpValueUtilUTF8String(originHost));
avps[1]=avp;

//create Origin-Realm avp
avp = new Avp(AvpConstants.ORIGIN_REALM, Avp.VOFF_MON_POFF, new AvpValueUtilUTF8String(originRealm));
avps[2]=avp;

//create Destination-Realm avp
avp = new Avp(AvpConstants.DESTINATION_REALM, Avp.VOFF_MON_POFF, new AvpValueUtilUTF8String(destinationRealm));
avps[3]=avp;

//create Accounting-Record-Type avp
avp = new Avp(AvpConstants.ACCOUNTING_RECORD_TYPE, Avp.VOFF_MON_POFF, new AvpValueUtilUnsigned32(2)); //START_RECORD
avps[4]=avp;

//create Accounting-Record-Number avp
avp = new Avp(AvpConstants.ACCOUNTING_RECORD_NUMBER, Avp.VOFF_MON_POFF, new AvpValueUtilUnsigned32(0)); //0 because this is a start record
avps[5]=avp;

// create User_Name avp

Chapter 10. Developing 153

http://www.iana.org

avp = new Avp(AvpConstants.USER_NAME, Avp.VOFF_MON_POFF, new AvpValueUtilUTF8String("Neo"));
avps[6]=avp;

//Send the Web Service Request
Avp[] result = service.rawAccounting(avps)

Ro online charging Web service
Ro online charging Web service provides an IMS Application Server application
with a Diameter messaging interface to enable the application to send credit
control messages to online charging servers. The IMS Application Server
application is referred to as a client of the Web service application.

The IMS Application Server communicates with the online charging server through
Ro online charging Web service using either a session or event online charging
method as shown here:
v Session charging - Charging for a session that takes place over a period of time.

1. Initial: Starts an online charging session.
2. Update: Periodically updates the online charging session.
3. Terminate:Stops the online charging session.

v Event charging - Charging transaction for a single operation.

The Ro online charging Web service also provides subscription and notification
operations for an IMS Application Server to subscribe to receive notifications when
the Charging Trigger Function (CTF) (the IMS Application Server application) must
reauthenticate with the Online Charging System (OCS) or when a reauthorization
subscription expires.

The choice of using session charging versus event charging will depend on the
applications using this interface. The actual accounting functionality is based on
other network elements, such as billing, and is not part of the Ro online charging
Web service. The Ro interface defines several high level Web service methods used
for online charging including sendCCInitial(), sendCCUpdate(), and
sendCCTermination() for session handling and event charging with unit
reservation. The sendCCDirectDebit(), sendCCRefund(), and
getCCServicePriceEnquiry() are used for event charging without unit reservation.
And, the subscribeCCReAuth(), unsubscribeCCReAuth, and notifyCCReAuth() are
used for subscribe and notify requests. The notify request (notifyCCReAuth()) is
sent as a Web service request from the Diameter Enabler to the Application.

Application overview

The following is a brief overview of the applications used with Diameter:
v IMS Application Server Application: The IMS Application Server Application

uses WSDL and/or helper classes to prepare a Web service request to be sent to
one of the Diameter Enabler Web service applications.
If the Diameter Enabler Web service supports notifications, the IMS Application
Server application must use the WSDL and/or helper classes to implement the
client Web service that receives notifications. The URL of the client Web service
is provided to the Diameter Enabler Web service through the
subscribeCCReAuth() request.

v Diameter Enabler base: The Diameter Enabler is capable of receiving Web service
requests and converting them into Diameter request packets. The Diameter
Enabler receives the Web service request, validates its contents, converts it to a
Diameter request packet, and routes it to the correct Diameter Server. The

154 WebSphere Diameter Enabler

Diameter Server responds with a Diameter response packet, which is returned as
a Web service response object to the IMS Application Server application that
performed the request.
The Diameter Enabler is also capable of receiving notifications requests from a
Diameter Server. The Diameter Enabler validates the contents of the Diameter
request packet and responds to the peer with a Diameter answer packet. If the
IMS Application Server Application has created a subscription to receive the
notifications, the Diameter Enabler opens an outbound Web service request to a
Web service endpoint provided in the subscription data, and passes the
reauthorization notification information accordingly.

v Diameter Server: The Diameter Server is a peer connection to the Diameter
Enabler base and is capable of sending and receiving Diameter request and
answer packets.

Application deployment

Ro online charging Web service is deployed in a WebSphere Application Server
environment. Prior to installing Ro online charging Web service, you must install
Diameter Enabler base. Any application with the appropriate access and security
may invoke these functions. The supported transport is SOAP over HTTP. The Ro
online charging Web service is stateless and supports multiple simultaneous calls.

Ro online charging Web service call flows
Ro online charging Web service call flows describe how the application transmits
and receives accounting packets (credit control request (CCR), credit control
answer (CCA)) and reauthorization packets (Reauthorization Request (RAR),
Reauthorization Answer (RAA)). It also describes how the Diameter Enabler base
interacts with the Application client and the Online Charging System (OCS).

Diameter Enabler base supports multiple realms. The internal routing table controls
which realm a packet is sent to.

The Ro online charging Web service application validates the parameters received
from the Web service interface; then, builds a Diameter packet (CCR) using the
RoChargingInfo parameter. The Ro Web service application passes the Diameter
packet to the Diameter Enabler base.

Ro online charging Web service uses two key flows (request/reply and
subscribe/notify) to handle charging transactions:
v Request/Reply flow:

1. An IMS Application Server, the SIP application, invokes one of the Ro online
charging Web service methods, such as sendCCInitial.

2. The Ro online charging Web service application validates the parameters
received from the Web service interface; then, builds a Diameter packet
(CCR) using the RoChargingInfo parameter that is sent to the Diameter
Enabler base.

3. The Diameter Enabler base sends the Diameter request message to the OCS.
4. The OCS receives the request message, updates the number of ″used units″

from the subscriber’s account, reserves quota for the subscriber, and returns
the result (CCA) to the Diameter Enabler base.

5. The Diameter Enabler base passes the response to Ro online charging Web
service application.

Chapter 10. Developing 155

6. The Ro online charging Web service application validates this reply and
checks for any violations; then, once verified, extracts the information from
the CCA and builds a result using the RoChargingResults object that is
returned to the SIP application that invoked the Web service request.

7. The SIP application interprets the result and processes the charging
information.

v Subscribe/Notify flow:
1. An IMS Application service invokes the subscribeCCReAuth Web service

method, specifying a sessionId and realm, for which it wants to receive
reauthorization notifications. In addition, the caller specifies the callbackURL
of the application that implements the DiameterRoNotify Web service
interface.

2. The Ro online charging Web service application validates the request and
adds a subscription record to the data store, which will remain active for the
expiration duration specified in the subscription request.

3. The OCS sends a RAR to the Diameter Enabler to request that a user is
reauthorized for the charging session. The RAR is validated for correctness
and a ReAuthInfo object is created. The Diameter Enabler responds to the
OCS with a RAA message.

4. The Ro online charging Web service application searches the subscription
database for the Session-Id and Origin-Realm found in the RAR.

5. If the subscription is active, the callbackURL is retrieved and the Diameter
Enabler invokes the notifyCCReAuth Web service request, sending the
ReAuthInfo object to the remote DiameterRoNotify Web service.

Ro online charging Web service methods
Ro online charging Web service defines several external Web service methods used
for online, session and event charging.

According to RFC 3588 the sessionID is an agreed upon format between the IMS
Application Server and the server. The same sessionID is expected to be used for
each request associated with a session. The session is terminated when a stop
message is sent using sendCCTermination.

Web service charging methods

The following methods can be used to send online charging information through
the Web service interface. Ro online charging Web service supports the following
external methods that are available to the IMS Application Server applications. For
detailed information on method signatures and descriptions, refer to the
com.ibm.diameter.ro.DiameterRoService_SEI and
com.ibm.diameter.ro.DiameterRoNotifyService_SEI sections in the Javadoc.

Table 8. Web service online charging methods

Ro charging method Description

RoChargingResults*
sendCCInitial(RoChargingInfo** roChargingInfo);

Starts an online charging session

RoChargingResults*
sendCCUpdate(RoChargingInfo** roChargingInfo);

Updates an online charging session

RoChargingResults*
sendCCTermination(RoChargingInfo** roChargingInfo);

Stops an online charging session

156 WebSphere Diameter Enabler

Table 8. Web service online charging methods (continued)

Ro charging method Description

RoChargingResults*
sendCCDirectDebit(RoChargingInfo** roChargingInfo);

Performs an immediate subtraction of
credits from the subscriber account

RoChargingResults*
sendCCRefund(RoChargingInfo** roChargingInfo)

Performs an immediate addition of
credits to the subscriber account

RoChargingResults*
getCCServicePriceEnquiry(RoChargingInfo** roChargingInfo);

Retrieves cost information for a
specific service

void
subscribeCCReAuth(java.lang.String sessionId,
java.lang.String destinationRealm,
java.net.URI callbackUri, int subscriptionDuration,
java.lang.String userid, java.lang.String password);

Subscribes to receive reauthorization
requests for a specific sessionId

void
unsubscribeCCReAuth(java.lang.String sessionId,
java.lang.String destinationRealm,
java.net.URI callbackUri, java.lang.String userid,
java.lang.String password);

Unsubscribes to receive
reauthorization requests for a specific
sessionId

void notifyCCReAuth (RoReAuthInfo***
roReAuthInfo);

Informs the Charging Trigger Function
(CTF) that there has been a change at
the server and that the CTF needs to
reauthenticate with the Online
Charging System prior to continuing
to provide the service

void notifySubscribeExpired (java.lang.String
sessionId, java.lang.String destinationRealm);

Notification sent by the Diameter
Enabler when a subscription created
by the subscribeCCReAuth() method
has expired. The subscription duration
is specified by an argument in the
subscribeCCReAuth() request. To
avoid receiving this notification, the
application can unsubscribe using the
unsubscribeCCReAuth() method when
the session completes.

Avp**** sendCCRaw(Avp[] avp); Sends a raw Diameter message using
the Ro interface.

* com.ibm.diameter.charging.util.RoChargingResults

** com.ibm.diameter.charging.util.RoChargingInfo

*** com.ibm.diameter.charging.util.RoReAuthInfo

**** com.ibm.diameter.packet.Avp

Ro High-Level API
The Ro interface is a Web service interface to allow participation in online charging
transactions. Data for the duration of a session or for a single operational event can
be tracked and recorded.

The interface is comprised of a number of methods and helper classes that are
necessary to use those methods.

Class RoChargingInfo
The RoChargingInfo class includes all of the basic informational elements needed
to manage Session, Event or Immediate Event for online charging.

Chapter 10. Developing 157

Usage

The RoChargingInfo class includes all of the basic informational elements needed
to manage online charging for Events or Sessions. The online client (Charging
Trigger Function (CTF)) requests resource allocation and reports credit control
usage information to the Online Charging System (OCS). For online charging, the
Diameter Credit Control Application (DCCA), defined in RFC 4006, is used with
extensions based on the 3GPP IMS specifications. The following are three cases for
control of user credit for online charging:
v Immediate Event Charging (IEC) - the Credit Control Request (CCR) contains a

CC-Requested-Type of ″EVENT_REQUEST″. This request is used to make an
immediate credit or debit to the subscriber’s account.

v Event Charging with Unit Reservation (ECUR) - a reservation is made for a
single event transaction as thought it were a session transaction. The CCR
request contains a CC-Request-Type set to INITIAL for the reservation; then,
sends a request type set to TERMINATION_REQUEST when the transaction is
successfully delivered.

v Session Charging with Unit Reservation (SCUR) - is used for credit control of
sessions and uses the CC_Request-Type set to INITIAL_REQUEST,
UPDATE_REQUEST, or TERMINATION_REQUEST.

The RoChargingInfo class, a general purpose class, provides a data container for all
individual and grouped Attribute Value Pair (AVP) information that is required for
a CCR request. In some cases the definition of the AVP includes grouped AVP
members that are typically not included in the CCR. This conflict between the AVP
definition and the CCR definition is handled in the following way:
v The RoChargingInfo class is constructed based on AVPs that are defined with a

consistent AVP structure. They do not hold different definitions for different
applications. However, many of the fields are optional, and are not appropriate
for the CCR request. The actual format of the content and specific AVPs that are
to be included in the CCR will be defined between the Application that sends
the CCR and the Server that receives and interprets the CCR request.

v The RoChargingInfo allows for you to send all optional AVPs defined in the
Augmented Mackus-Naur Form (ABNF), but it also allows you to send some
AVPs that are not recommended for the CCR request. You should only set the
fields that the OCS is expecting in each CCR request. The Diameter Enabler
verifies that the minimum required information is included in the
RoChargingInfo object that is passed through the Web service request. However,
it will allow any of the additional fields to be set. It is up to the application
developer to verify the contents required to satisfy the OCS beyond those
defined in the specifications. Setting fields without an understanding of what is
required by the OCS will cause inconsistent results.

v Conversely, when the Diameter Enabler receives a Credit Control Answer (CCA)
response, it also allows additional AVPs to be included in the frame. The
Diameter Enabler verifies the minimum requirement of the frame and then
passes the results back to the application. If the minimum ABNF requirements
are not met, the Diameter Enabler returns an Error message to the OCS, will
post a message in the logs, and will return an exception back to the application.
If the OCS returns a CCA that holds optional non-mandatory AVPs that are
recognized, their values will be set in the RoChargingResults. However, if there
are AVPs that are not recognized, these AVPs will be discarded by the Diameter
Enabler and only the recognized AVP data will be returned to the Application.

158 WebSphere Diameter Enabler

Note: If the OCS has defined a custom set of AVPs or custom framing in either
what it expects for the CCR or what it returns in the CCA, then the
application must be written to use the Raw interface. The Raw interface
allows custom AVPs and framing to be used to override the high level APIs
provided for the Ro transactions.

Example
RoChargingInfo roChargingInfo = new RoChargingInfo();

//Set the Session-Id to a unique identifier.
roChargingInfo.setSessionId("FQDNServerName:servicexyz:session00001");
//Set the Destination-Realm of the OCS, which should match a route name in the Diameter_Ro.properties file.
roChargingInfo.setDestinationRealm("emulators.example.com");
//Set the CC-Request-Number to 0 for an initial request.
roChargingInfo.setCcRequestNumber(0);
roChargingInfo.setServiceContextId("12345@example.com");

//Set the subscription id to identify the end user's subscription with the OCS.
SubscriptionId subId = new SubscriptionId();
subId.setSubscriptionIdData("id0001");
subId.setSubscriptionIdType(SubscriptionIdType.END_USER_IMSI);
roChargingInfo.setSubscriptionId(subId);

MultipleServicesCreditControl mscc = new MultipleServicesCreditControl();

//Request quota in time Units
RequestedServiceUnit rsu = new RequestedServiceUnit();
rsu.setCcTime(60);
mscc.setRequestedServiceUnit(rsu);
roChargingInfo.setMultipleServicesCreditControl(mscc);

Set methods

Method Name Type Example values/comments

setSessionId() String Sets the SessionId that is unique for this session.

Example:

roChargingInfo.setSessionId("sipclient.example.com:33041;23432;893");

setOriginHost() String The fully qualified domain name of the host
initiating this request.
Note: This value is overridden by all Web service
requests except sendCCRaw().

setOriginRealm() String The fully qualified domain name of the realm
where this request originated.
Note: This value is overridden by all Web service
requests except sendCCRaw().

setDestinationRealm()String Holds the administration domain that recognizes
the OCS.

Example:

roChargingInfo.setDestinationRealm("example.com");

Note: This value will be used to route the request
to the proper OCS.

setAuthApplicationID()Integer The value for the Credit Control Application is 4.
Note: This value will be overridden if using a
non-raw method.

setServiceContextId()String The specific request document that this request
follows:

For IMS charging: ″32260@3gpp.org″

Example:

roChargingInfo.setServiceContextId("32260@3gpp.org");

Chapter 10. Developing 159

Method Name Type Example values/comments

setCCRequestType() Integer This Enumeration contains the following:

1. Initial Request

2. Update Request

3. Termination Request

4. Event Request

Note: This value will be overridden if using a
non-raw method.

setCCRequestNumber()Integer Indicates the numbered request within a session.
This should be set to 0 for Request Types of Initial
and Event. It should be incremented by one for
each subsequent request within a session. It is the
caller’s responsibility to set the proper number.

setDestinationHost() String The fully qualified domain name of the Destination
Host. This is generally not specified when using
realm routing.

setUserName() String Name of the subscriber.

setOriginStateId() Integer Holds the value to track the incremented value of
possible times the client has loss the state or
possible reboot has occurred.

setEventTimestamp()Long Holds the event value for time and MAY be
included in a CCR message to record the time that
the reported event occurred, in milliseconds since
January 1, 1970 00:00 UTC. This timestamp is
converted to the SNTP time format when sending a
request.
Note: This time is based on Java time.

Example:

roAccountingInfo.setEventTimestamp(new Long(system.currentTimeMillis()));

setSubscriptionId() SubscriptionId Grouped AVP used to specify the end user, and the
format in which the data specifying the end user is
presented.

For additional information on creating and
populating the SubscriptionId, refer to the Javadoc.

setTerminationCause()Integer The session was terminated for one of several
reasons.

1. LOGOUT

2. SERVICE_NOT_PROVIDED

3. BAD_ANSWER

4. ADMINISTRATIVE

5. LINK_BROKEN

6. AUTH_EXPIRED

7. USER_MOVED

8. SESSION_TIMEOUT

setRequestedAction()Integer This value defines the type of action if the
CCRequestType is EVENT.

1. Direct Debiting

2. Refund Account

3. Check Balance

4. Price Enquiry

160 WebSphere Diameter Enabler

Method Name Type Example values/comments

setMultipleServicesIndicator()Integer The following values are defined for the
Multiple-Services-Indicator AVP:

0: MULTIPLE_SERVICES_NOT_SUPPORTED
The client does not support independent
credit-control of multiple services within
a session or sub-session

1: MULTIPLE_SERVICES_SUPPORTED
The client supports independent
credit-control of multiple services within
a session or sub-session

setMultipleServicesCreditControl()MultipleServicesCreditControl Contains all fields for quota management. (Refer to
Javadoc.)

setUserEquipmentInfo()UserEquipmentInfo Contains information about the equipment being
used by the subscriber. (Refer to Javadoc.)

setServiceInfo() ServiceInfo Holds service-specific 3 GPP accounting and
charging information. (Refer to Javadoc.)

Class RoChargingResults
The RoChargingResults class is created from the contents of the Credit Control
Answer (CCA) response and is returned back to the application that has invoked
one of the following methods: sendCCInital(), sendCCUpdate(),
sendCCTermination(), getCCBalanceCheck(), sendCCDirectDebit(), and
getCCServicePriceEnquiry().

Usage

The RoChargingResults class is a representation of the information contained in the
AVPs of the CCA message received by the Diameter Enabler in response to the
Credit Control Request (CCR) that it sent out. The Diameter Enabler extracts the
set of AVPs held in the CCA and populates the fields of the RoChargingResults
class with the value information from each AVP. For example, if the CCA contains
a Cost-Information AVP, then the field in the RoChargingResults object will have
the Cost-Information variable set to the value of the Cost-Information AVP. Because
the Cost-Information is a grouped AVP, the data object assigned to the variable is
of type ″CostInformation″ which also contains fields representing AVPs that are
included inside the Cost-Information AVP.

An application can interrogate the contents of the RoChargingResults class with
simple getter methods. If an AVP is in the CCA frame directly, then it is included
as an instance variable of the RoChargingResults class. If the AVP is included in a
grouped AVP (for example, Cost-Information), then the grouped AVP is
represented as an instance variable of the RoChargingResults class while the AVPs
that it holds (for example, UnitValue, CurrencyCode, and CostUnit) are represented
by an instance variable of the class representing the grouped AVP (the
Cost-Information class).

Example

Session:
RoChargingResults roChargingResults = svc.sendCCInitial(roChargingInfo);

MultipleServicesCreditControl mscc = roResult.getMultipleServicesCreditControl();

//The client can request 30 more seconds of Time Quota before Reauthorization is required.
Integer timeQuotaThresh = mscc.getTimeQuotaThreshold(); //Example value = 30.

//The client has been granted 60 seconds of Time Quota.
GrantedServiceUnit gsu = mscc.getGrantedServiceUnit();
Integer grantedTimeUnits = gsu.getCcTime(); //Example value = 60

Chapter 10. Developing 161

//Unit cost is 3 US Dollars per minute
CostInformation costInfo = roResult.getCostInformation();
String costUnit = costInfo.getCostUnit(); //Example value = "Access to this service is 3.00 a minute."
Integer currencyCode = costInfo.getCurrencyCode(); //Example Value = 840 (USD)
UnitValue unitValue = costInfo.getUnitValue();
Integer exponent = unitValue.getExponent(); //Example value = 1

Get methods

Method Name Type Returns Example values/comments

getSessionId() String SessionId Gets the SessionId for this session

getResultCode() Integer getResultCode 1xxx - Information

2xxx - Success

Others - handled through exceptions.

getOriginHost() String OriginHost The fully qualified domain name of
the host orginating the CCA reply.

getOriginRealm() String OriginRealm The fully qualified domain name of
the realm where the OCS resides that
originated the CCA reply.

getAuthApplicationId()Integer AuthApplicationId A value of 4 for Credit Control
Applicaton

getCCRequestType() Integer CCRequestType This Enumeration contains the
following:

v Initial Request

v Update Request

v Termination Request

v Event Request

Note: This value will be overridden if
using a non-raw method.

getCCRequestNumber()Integer CCRequestNumber Indicates the numbered request
within a session. This should be set to
0 for Request Types of Initial and
event. It should be incremented by
one for each subsequent request
within a session.

getCCSessionFailover() Integer CCSessionFailover Indicates whether or not the OCS
Supports failover to an alternative
Server K \keeping an active session
alive. Note, if configured properly,
failover will happen automatically
through the Diameter Enabler base
for a specific destination realm.

1. Failover not supported (This is
the default.)

2. Failover supported.

getMultipleServicesCreditControl()MultipleServicesCreditControlMultipleServicesCreditControlContains all fields for quota
management.

getCostInformation() CostInformation CostInformation Contains the cost of a service that the
CTF can pass back to the subscriber.

162 WebSphere Diameter Enabler

Method Name Type Returns Example values/comments

getCreditControlFailureHandling()Integer CreditControlFailureHandlingHolds information telling the CTF
what action to take when a
transaction times out or some other
outage prevents the CTF from
completing update transactions.

1. Terminate - Immediately
terminate the service.

2. Continue - Attempt to resend the
request and continue providing
the service for some period of
time.

3. Retry and Terminate - Attempt to
resend the request if an alternative
path is available, terminate the
service.

Class ServiceInformation (Ro)
This class is a member of RoChargingInfo and acts as a container for
service-specific 3GPP accounting information.

Usage

The 3GPP has separated its vendor-specific AVPs into multiple service-specific
charging groups. Contained within ServiceInformation are nested classes that act as
holders for service-specific accounting data.

All of the accounting data created by an IMS node is generally located in
IMSInformation. However, in some instances, accounting data will need to be
generated for multiple services. The Web service client developer simply constructs
and sets the service-specific information objects needed to generate accounting
information, leaving the irrelevant service objects null.

Within each service-specific class are additional members that represent accounting
data that can be processed by an Online Charging System (OCS) to produce CDRs.
The type of data recorded will differ across implementations to meet the needs of
the accounting application. All figures and statistics must be in a format that
complies with the capabilities of the OCS. In the following example, accounting
data is created for the SUBSCRIBE event type.

For detailed information regarding the nesting of IMS accounting data, refer to the
Javadoc and the 3GPP specifications.

Example
RoChargingInfo ccaRequest = new RoChargingInfo();
acctInfo.setSessionId("FQDNServerName:servicexyz:session00001");
acctInfo.setDestinationRealm("userRealm");
acctInfo.setAuthApplicationId(new Integer(4));
acctInfo.setServiceContextId(32260@gpp.org);<codeblock></codeblock><section></section>
ServiceInformation svcInfo = new ServiceInformation();
IMSInformation imsInfo = new IMSInformation();
EventType eventType = new EventType();
eventType.setSipMethod("SUBSCRIBE");
imsInfo.setNodeFunctionality(NodeFunctionality.AS);
imsInfo.setEventType(eventType);

svcInfo.setImsInformation(imsInfo);
acctInfo.setServiceInformation(svcInfo);
service.sendCCInitial(ccaRequest);

Chapter 10. Developing 163

Get methods

Method Type Return Description

getImsInformation IMSIformationimsInformation Accounting information
generated by an IP Multimedia
Subsystem service.

getPsInformation PSInformationpsInformation Accounting information
generated by a Packet Switched
service.

getLcsInformation LCSInformationlcsInformation Accounting information
generated by a Location Services
service.

getMmsInformation MMSInformationmmsInformation Accounting information
generated by a Multimedia
Messaging service.

getWlanInformation WLANInformationwlanInformation Accounting information
generated by a WLAN service.

getPocInformation PoCInformationpocInformation Accounting information
generated by a Push-To-Talk Over
Cellular service.

getMbmsInformation MBMSInformationmbmsInformation Accounting information
generated by a Multimedia
Broadcast and Multicast service.

Set methods

Method Parameter Type Description

setImsInformation imsInformation IMSInformationAccounting information generated
by an IP Multimedia Subsystem
service.

setPsInformation psInformation PSInformationAccounting information generated
by a Packet Switched service.

setLcsInformation lcsInformation LCSInformationAccounting information generated
by a Location Services service.

setMmsInformation mmsInformation MMSInformationAccounting information generated
by a Multimedia Messaging
service.

setWlanInformation wlanInformation WLANInformationAccounting information generated
by a WLAN service.

setPocInformation pocInformation PoCInformationAccounting information generated
by a Push-To-Talk Over Cellular
service.

setMbmsInformation mbmsInformation MBMSInformationAccounting information generated
by a Multimedia Broadcast and
Multicast service.

Ro High-Level API Integrated Examples
The Integrated examples demonstrate the use of the high-level Ro API.

A typical Ro online charging session requires the use of a sendCCInitial() request,
one or more sendCCUpdate() requests, and a sendCCTermination() request. These
integrated examples demonstrate the use of the API and not the actual architecture
of the code that invokes these methods. The application that is making use of these
must have a simple state machine to periodically update the Online Charging
System (OCS) with quota used and with quota requested to continue providing the
service.

164 WebSphere Diameter Enabler

When in the middle of an online charging session, there may come a time when
the OCS needs to interrupt a service to instruct the application providing that
service to immediately reauthorize the usage of that service. This is performed by a
notifyCCReAuth() callback method provided by the application and invoked by
the Diameter Enabler when it receives a Reauthorization Request.

Initiate Credit Control Session with sendCCInitial
This example shows how to initiate a credit control session with sendCCInitial.

In the following snippet, the client application begins a credit control session by
constructing an RoChargingInfo object and invoking sendCCInitial. The client
requests 60 seconds in Time quota for the subscription identified as ″id0001.″

Example
RoChargingInfo roChargingInfo = new RoChargingInfo();

//Set the Session-Id to a unique identifier.
roChargingInfo.setSessionId("FQDNServerName:servicexyz:session00001");
//Set the Destination-Realm of the OCS, which should match a route name in the Diameter_Ro.properties file.
roChargingInfo.setDestinationRealm("emulators.example.com");
//Set the CC-Request-Number to 0 for an initial request.
roChargingInfo.setCcRequestNumber(0);
roChargingInfo.setServiceContextId("12345@example.com");

//Set the subscription id to identify the end user's subscription with the OCS.
SubscriptionId subId = new SubscriptionId();
subId.setSubscriptionIdData("id0001");
subId.setSubscriptionIdType(SubscriptionIdType.END_USER_IMSI);
roChargingInfo.setSubscriptionId(subId);

MultipleServicesCreditControl mscc = new MultipleServicesCreditControl();

//Request quota in time Units
RequestedServiceUnit rsu = new RequestedServiceUnit();
rsu.setCcTime(60);
mscc.setRequestedServiceUnit(rsu);
roChargingInfo.setMultipleServicesCreditControl(mscc);

RoChargingResults roChargingResults = svc.sendCCInitial(roChargingInfo);

Chapter 10. Developing 165

Retrieve RoChargingResults for sendCCInitial
This example shows how to retrieve the RoChargingResults object returned by the
sendCCInitial.

In the following snippet, the client application retrieves the RoChargingResults
object returned by the sendCCInitial method and examines key pieces of
information. In this example, the RoChargingResults object indicates that the
Online Charging System (OCS) has granted 60 seconds of Time Quota at the cost
of 3 US dollars per minute. The client can request 30 more seconds of Time Quota
before reauthorization is required.

Example
RoChargingResults roChargingResults = svc.sendCCInitial(roChargingInfo);

MultipleServicesCreditControl mscc = roResult.getMultipleServicesCreditControl();

//The client can request 30 more seconds of Time Quota before Reauthorization is required.
Integer timeQuotaThresh = mscc.getTimeQuotaThreshold(); //Example value = 30.

//The client has been granted 60 seconds of Time Quota.
GrantedServiceUnit gsu = mscc.getGrantedServiceUnit();
Integer grantedTimeUnits = gsu.getCcTime(); //Example value = 60

//Unit cost is 3 US Dollars per minute
CostInformation costInfo = roResult.getCostInformation();
String costUnit = costInfo.getCostUnit(); //Example value = "Access to this service is 3.00 a minute."
Integer currencyCode = costInfo.getCurrencyCode(); //Example Value = 840 (USD)
UnitValue unitValue = costInfo.getUnitValue();
Integer exponent = unitValue.getExponent(); //Example value = 1
Long valueDigits = unitValue.getValueDigits(); //Example value = 3

//The application uses the retrieved information to manage the credit control session.
processRoChargingResults(...);

Update Credit Control Session with sendCCUpdate
This example shows how to update a credit control session by invoking
sendCCUpdate.

In the following snippet, the client application updates a credit control session by
constructing a RoChargingInfo object and invoking sendCCUpdate. It is assumed
that the client has processed the credit control session information returned in
RoChargingResults, as an outcome of the sendCCInitial operation. In this example,
the client requests 30 additional seconds of Time quota and reports that 25 seconds
of Time quota has been used since the initial request.

Example
RoChargingInfo roChargingInfo = new RoChargingInfo();

//Set the Session-Id to a unique identifier.
roChargingInfo.setSessionId("FQDNServerName:servicexyz:session00001");
//Set the Destination-Realm of the OCS, which should match a route name in the Diameter_Ro.properties file.
roChargingInfo.setDestinationRealm("emulators.example.com");
//Increment the CC-Request-Number for each additional update request.
roChargingInfo.setCcRequestNumber(1);
roChargingInfo.setServiceContextId("12345@example.com");

SubscriptionId subId = new SubscriptionId();
subId.setSubscriptionIdData("id0001");
subId.setSubscriptionIdType(SubscriptionIdType.END_USER_IMSI);
roChargingInfo.setSubscriptionId("12345@example.com);

MultipleServicesCreditControl mscc = new MultipleServicesCreditControl();

//Request additional quota in time units.
RequestedServiceUnit rsu = new RequestedServiceUnit();
rsu.setCcTime(30);
mscc.setRequestedServiceUnit(rsu);

//Report used quota in time units.
UsedServiceUnit usu = new UsedServiceUnit();
usu.setCcTime(25);
mscc.setUsedServiceUnits(new UsedServiceUnit[]{usu});
roChargingInfo.setMultipleServicesCreditControl(mscc);

RoChargingResults roChargingResults = svc.sendCCUpdate(roChargingInfo);

Receive Graceful Service Termination - Redirect
This example shows the receiving of a graceful service termination request to
redirect to a top-up server

166 WebSphere Diameter Enabler

In the following snippet, the client application retrieves the RoChargingResults
object returned by the sendCCUpdate method. The client examines key pieces of
information, such as the GrantedServiceUnit and CostInformation. In this example,
the Online Charging System (OCS) also returns a Final-Unit-Indication, indicating
that the final allocation of quota has transpired. After the final used units are
reported via a sendCCUpdate, the client is to be redirected to a top-up server to
purchase more quota.

Example
RoChargingResults roChargingResults = svc.sendCCInitial(roChargingInfo);

MultipleServicesCreditControl mscc = roResult.getMultipleServicesCreditControl();

GrantedServiceUnit gsu = mscc.getGrantedServiceUnit();
Integer grantedTimeUnits = gsu.getCcTime();

CostInformation costInfo = roResult.getCostInformation();

String costUnit = costInfo.getCostUnit();
Integer currencyCode = costInfo.getCurrencyCode();

UnitValue unitValue = costInfo.getUnitValue();
Integer exponent = unitValue.getExponent();
Long valueDigits = unitValue.getValueDigits();

FinalUnitIndication finalInd = roResult.getMultipleServicesCreditControl().getFinalUnitIndication();
Integer finalAction = finalInd.getFinalUnitAction(); //Example value = REDIRECT
RedirectServer redirServer = finalInd.getRedirectServer();
Integer addressType = redirServer.getRedirectAddressType(); //Example Value = 0 (IPV4_ADDRESS)
String address = redirServer.getRedirectServerAddress(); //Example Value = An IPV4 address of a top-up server.

//The client calls sendCCUpdate to report the final used service units, incrementing the CC-Request-Number by 1.
//Use the redirect server to purchase an additional minute of Time Quota.

Retrieve RoReAuthInfo from notifyCCReAuth
This example shows how to retrieve a server-initiated reauthorization request from
the Online Charging System (OCS) in the form of a RoReAuthInfo object.

In the following snippet, the client application receives a RoReAuthInfo object from
the OCS, requesting reauthorization to continue using the service. The client can
query information about the credit pool, service identifier, and rating group.

Example
public void notifyCCReAuth(RoReAuthInfo reAuthInfo) {

GSUPoolReference gsuPoolReference = reAuthInfo.getGSUPoolReference();
Integer serviceId = reAuthInfo.getServiceIdentifier();
Integer ratingGroup = reAuthInfo.getRatingGroup();}

Reauthorize with OCS
This example shows how to initiate credit reauthorization with sendCCUpdate.

In another example (Receive Graceful Service Termination - Redirect), the client
was redirected to a top-up server to purchase more Time Quota. In the following
snippet, the client application initiates the credit reauthorization by invoking
sendCCUpdate. In this example, there are no UsedServiceUnit to report and the
client requests the newly purchased minute of Time Quota.

Example
RoChargingInfo roChargingInfo = new RoChargingInfo();

//Set the Session-Id to a unique identifier.
roChargingInfo.setSessionId("FQDNServerName:servicexyz:session00001");
//Set the Destination-Realm of the OCS, which should match a route name in the Diameter_Ro.properties file.
roChargingInfo.setDestinationRealm("emulators.example.com");
//Increment the CC-Request-Number for each additional update request.
roChargingInfo.setCcRequestNumber(3);
roChargingInfo.setServiceContextId("12345@example.com");

SubscriptionId subId = new SubscriptionId();
subId.setSubscriptionIdData("id0001");
subId.setSubscriptionIdType(SubscriptionIdType.END_USER_IMSI);
roChargingInfo.setSubscriptionId("12345@example.com);

MultipleServicesCreditControl mscc = new MultipleServicesCreditControl();

//Request additional quota in time units.
RequestedServiceUnit rsu = new RequestedServiceUnit();

Chapter 10. Developing 167

rsu.setCcTime(60);
mscc.setRequestedServiceUnit(rsu);

RoChargingResults roChargingResults = svc.sendCCUpdate(roChargingInfo);

Receive Graceful Service Termination Request - Terminate
This example shows the receiving of a graceful service termination request to
terminate the credit control session.

In the following snippet, the client application retrieves the RoChargingResults
object returned by the sendCCUpdate method. The client examines key pieces of
information, such as the GrantedServiceUnit and CostInformation. In this example,
the Online Charging System (OCS) returns a Final-Unit-Indication, indicating that
the final allocation of quota has been issued in the Granted-Service-Units. The final
unit action indicates that the client must terminate the charging session after the
granted service units have been used

Example
RoChargingResults roChargingResults = svc.sendCCUpdate(roChargingInfo);

MultipleServicesCreditControl mscc = roResult.getMultipleServicesCreditControl();

GrantedServiceUnit gsu = mscc.getGrantedServiceUnit();
Integer grantedTimeUnits = gsu.getCcTime();

CostInformation costInfo = roResult.getCostInformation();

String costUnit = costInfo.getCostUnit();
Integer currencyCode = costInfo.getCurrencyCode();

UnitValue unitValue = costInfo.getUnitValue();
Integer exponent = unitValue.getExponent();
Long valueDigits = unitValue.getValueDigits();

FinalUnitIndication finalInd = roResult.getMultipleServicesCreditControl().getFinalUnitIndication();
finalInd.getFinalUnitAction(); //Example value = TERMINATE

Terminate Credit Control Session with sendCCTermination
This example shows how to terminate a credit control session.

In the following snippet, the client application initiates a graceful termination by
invoking sendCCTermination. In this example, the client reports the
UsedServiceUnit messages received since the last interim and includes an
Event-Timestamp that contains time of session termination.

Example
//Set the Session-Id to a unique identifier.

roChargingInfo.setSessionId("FQDNServerName:servicexyz:session00001");
//Set the Destination-Realm of the OCS, which should match a route name in the Diameter_Ro.properties file.
roChargingInfo.setDestinationRealm("emulators.example.com");
//Increment the CC-Request-Number by 1 for the final termination request.
roChargingInfo.setCcRequestNumber(2);
roChargingInfo.setServiceContextId("12345@example.com");
roChargingInfo.setEventTimeStamp(System.currentTimeMillis());

SubscriptionId subId = new SubscriptionId();
subId.setSubscriptionIdData("id0001");
subId.setSubscriptionIdType(SubscriptionIdType.END_USER_IMSI);
roChargingInfo.setSubscriptionId(subId);

MultipleServicesCreditControl mscc = new MultipleServicesCreditControl();

//Report final used quota in time units.
UsedServiceUnit usu = new UsedServiceUnit();
usu.setCcTime(60);
mscc.setUsedServiceUnits(new UsedServiceUnit[]{usu});
roChargingInfo.setMultipleServicesCreditControl(mscc);

RoChargingResults roChargingResults = svc.sendCCTermination(roChargingInfo);

Ro Raw API
The Ro Raw API is a more flexible method to send custom session and event
requests that require more knowledge of the underlying protocol.

The high-level Ro Web service methods are intended to simplify the programming
requirements to create and issue online charging requests. They follow the

168 WebSphere Diameter Enabler

Augmented Mackus-Naur Form (ABNF) structures defined by the 3GPP and
Internet Engineering Task Force (IETF). However, there are times when this ABNF
is not valid, including:
v When new versions of the 3GPP or IETF specifications are available and the new

ABNF does not match the old one.
v When an application needs to supplement the ABNF using Attribute Value Pairs

(AVPs) that are not defined by the 3GPP or IETF.

When these changes are required, then the high-level Ro Web service methods will
not be usable to meet the new ABNF needs. Instead, the sendCCRaw() Web service
method must be used.

Usage

The sendCCRaw() Web service allows the developer using this method to
completely control the order, type, and content of each AVP to be included in the
Diameter Credit Control Request (CCR). These AVPs can be defined by the IETF,
the 3GPP, or by any other vendor. The difference is that the application server
application must construct an array of these AVPs before invoking the
sendCCRaw() method.

When the sendCCRaw() Web service returns, the value returned is an array of the
AVPs received from the Online Charging System (OCS) in the Credit Control
Answer (CCA) packet. It is then up to the Application Server Application to parse
the AVP array and retrieve any of the information that it requires.

The sendCCRaw() Web service is largely a pass-through method. It encapsulates
the array of AVPs in the request and places them in a Diameter CCR frame. When
the CCA is received, it extracts the AVPs from the CCA, places them into an array,
and returns them to the caller. There is very little checking performed by the
sendCCRaw() Web service.

AVPs

The IBM WebSphere Diameter Enabler Component communicates with an Online
Charging System (OCS) through the Diameter Protocol. Each Diameter Packet
contains a list of AVPs, which are used to transfer information between Diameter
peers. The Attribute determines the type of information while the Value determines
its contents. The IETF and 3GPP have defined a number of AVPs to be used to
manage a credit control session.

Note: The format of an AVP header is defined in RFC 3588.

Contained within the AVP header, the AVP Code in combination with the
Vendor-ID (if present) uniquely identifies the AVP. AVPs defined in the base
specification (RFC 3588) do not contain Vendor-IDs and AVPs defined by the 3GPP
use a Vendor-ID of 10415. The AVP flags (VMPrrrrr) further classify the AVP. If the
V(endor-Specific) bit is set, the AVP is defined by a vendor other than the IETF. If
the M(andatory) bit is set, the AVP MUST be understood by the Diameter peer.
The P bit is an obsolete security bit, and should always be zero.

Using Helper Classes

There are several classes provided with the Toolkit to assist you in developing
applications that use the Raw interface. The two main jars that hold these classes
are:

Chapter 10. Developing 169

v DHADiameterPacket.jar
v DHADiameterChargingUtil.jar

DHADiameterPacket.jar contains the classes that make up an AVP. You use the
com.ibm.diameter.packet.Avp class when the AVP you wish to send is a base AVP
(defined by the IETF). You use the com.ibm.diameter.packet.VsAvp class when the
AVP that you wish to send is a vendor-specific AVP. (AVPs defined by the 3GPP
are vendor-specific AVPs.)

Note: The internal data or value that the AVP contains is strongly typed. The
typing is defined for each AVP. To handle different internal data types, the
Diameter Helper classes use an abstract type of
com.ibm.diameter.packet.AvpValueUtil. The actual types extend
AvpValueUtil and are data types that match those defined by the Diameter
specifications. They include:
v AvpValueUtilGrouped
v AvpValueUtilOctetString
v AvpValueUtilUnknown
v AvpValueUtilUnsigned32
v AvpValueUtilUnsigned64
v AvpValueUtilUTF8String

These are fairly self explanatory based on their names. For example, the
AvpValueUtilUnsigned32 contains a 32 bit integer. However, the actual value in
java is signed, so you must exercise care in using the value especially if you are
performing arithmetic with it. You would need to take the hex value and convert it
to a long through a logic operations such as an ’AND’.

There are a two AVP types that need some elaboration. The first is the Grouped
AVP. Any time the AVP you are using is of type Grouped, it contains other AVPs.
The AvpValueUtilGrouped helper class contains a vector of AVPs.

The other AVP type is AvpValueUtilUnknown. This AVP type is used by the
Diameter Enabler when it is attempting to parse the data stream, but does not
know the definition for a given AVP. A case when this might happen is when a
server defines its own, custom Vendor Specific AVP outside of the IETF or 3GPP.
The Diameter Enabler, when it receives an AVP that it does not recognize will store
all of the data for that AVP as a byte array or octet string. So, if the custom AVP
was of type unsigned 32, then the Diameter Enabler would read it in to array with
a length of 4 bytes and place this value in an AvpValueUtilUnknown object in the
AVP.

Thus, when you are using the Raw interface to create a custom frame and expect
to receive back custom AVPs. The AVPs unknown to the Diameter Enabler will
have AvpValueUtilUnknown values in them. The application must then convert
that byte array to the appropriate type.

Any AVP that is unknown to the Diameter Enabler will receive this handling
including custom Grouped AVPs. Even if some of the AVPs that a Grouped AVP
holds are known to the Diameter Enabler, they will be included as data in the byte
array that contains the payload of the owning Grouped AVP.

For more information on the helper classes and their methods, refer to the Javadoc.
These classes are provided as part of the IMS Connector CD. They are also

170 WebSphere Diameter Enabler

included in the IMS Tooling packages associated with the IMS Connector.

Defining Your Own AVPs

You can define any AVP that you wish to send in the CCR message. Most of the
AVPs defined in the IETF RFCs 3588 and 4006 are already defined within the
Diameter Enabler helper classes. You can simply create an AVP by providing the
data to an AvpFactory method. For example:
Avp originRealmAvp = AvpFactory.createOriginRealmAvp("asclient.example.com");

This example creates an Origin-Realm AVP whose value is asclient.example.com.
Many of these AVPs are vendor specific for IMS with a vendor ID of 10415. Here is
an example of the way in which ChargingAvpFactory is used:
Avp exponentAvp = ChargingAvpFactory.createExponentAvp(2);

The AVPs that you are able to create using the AvpFactory and
ChargingAvpFactory are limited to those defined by the Diameter Enabler. You
may want to create your own AVPs that are not included in the Diameter Enabler.

You can do this using the helper classes: com.ibm.diameter.packet.Avp and
com.ibm.diameter.packet.AvpValueUtil. For example:
AvpValueUtil numberOfMembersValueUtil = new AvpValueUtilUnsigned32(20);
Avp numberOfMembersAvp = new VsAvp(NUMBER_OF_MEMBERS,

Avp.VON_MON_POFF,numberOfMembersValueUtil, VENDOR_ID_COMPANYX);

This example creates a new vendor-specific AVP of type Unsigned32 and loads it
with a value of 20. It also creates the AVP with the V-bit (vendor -specific) set to 1,
the M-bit (Mandatory) set to 1, and the P-bit set to 0. Finally, the Vendor ID is set
to COMPANYX’s vendor ID. The vendor ID should be listed in the
enterprise-numbers2 on the Internet Assigned Numbers Authority site.

Receiving and Processing the Results of Your Raw Request

You create AVPs when you wish to send a data element to the OCS. You receive
back the AVPs that the OCS sends in its CCA. The result is returned in an Array of
AVPs that occur in the order in which the AVPs were received with array[0] being
the first AVP received. The type of data that is held within the AVP is either that
defined by the IETF or 3GPP if the AVP is formally defined in the Ro definition. If
the AVP is not in any of these definitions, then the data type will be
AvpValueUtilUnknown.

Whenever you receive an AVP with data of type AvpValueUtilUnknown, the
Diameter Enabler does not have a definition of the AVP in its dictionary. Your
application must convert the byte array into data of a type that is usable by your
application. Simple types, such as Unsigned32, are straight forward. However, the
Grouped type means that AVPs including their AVP headers will be included in
the byte array. And because there can be any number of nesting levels, Grouped
AVPs will need some additional parsing algorithm to convert them from an array
of bytes into an array of AVPs or other data elements.

In general, if you wish to retrieve information from the reply frame, you will walk
through the list of AVPs received, pull the one of interest, get its AvpValueUtil, and
invoke the getAvpValue() method of the AvpValueUtil.

Chapter 10. Developing 171

http://www.iana.org

Limitations of the Raw Interface

If you create an AVP that is already defined by the Diameter Enabler, your AVP
will be transmitted with the type, values, and AVP header bits that you have
defined. However, if the same AVP is received by the Diameter Enabler in the
reply, the Diameter Enabler’s definition will be applied when creating the AVP.

Also, an incorrectly created AVP may affect the data stream and cause an
Out-Of-Sync error to occur. If when transmitting, the number of bytes expected
does not match the length parameters, the packet will be malformed. An error such
as this may cause the other side of the connection to determine that it no longer
knows where it is in the data stream. This generally results in the connection being
dropped and re-established. For this reason, you need to secure and limit the
access to these data services to trusted applications.

Example
DiameterRoService_SEIServiceLocator locator = new DiameterRoService_SEIServiceLocator();
DiameterRoService_SEI service = locator.getDiameterRoService(endpoint);

Avp[] avpArray = null;
ArrayList avpArrayList = new ArrayList();
avpArrayList.add(AvpFactory.createSessionIdAvp("session1"));
avpArrayList.add(AvpFactory.createOriginHostAvp("aaa://originhost.example.com;transport=tcp"));
avpArrayList.add(AvpFactory.createOriginRealmAvp("aaa://example.com;transport=tcp"));
avpArrayList.add(AvpFactory.createDestinationRealmAvp("example.example.com"));
avpArrayList.add(AvpFactory.createDestinationHostAvp("aaa://host1.example.example.com;transport=tcp"));
avpArrayList.add(AvpFactory.createAuthApplicationIdAvp(4)); // credit control application

avpArrayList.add(createVSApplicationIdAvp()); // Grouped

avpArrayList.add(ChargingAvpFactory.createServiceContextIdAvp("Video Share is vshare@example.com"));
avpArrayList.add(AvpFactory.createEventTimestampAvp(System.currentTimeMillis()));
avpArrayList.add(ChargingAvpFactory.createCcRequestTypeAvp(1)); // 1 = Initial
avpArrayList.add(ChargingAvpFactory.createCcRequestNumberAvp(0)); // Initial CCR number = 0

avpArrayList.add(createSubscriptionIdAvp()); // Grouped

avpArrayList.add(createImsInformationAvp()); // Grouped

avpArray = avpArrayList.toArray(avpArray);

//Send the Web Service Request
Avp[] result = service.sendCCRaw(avpArray);

Sh subscriber profile Web service
An IMS Application Server uses Sh subscriber profile Web service to get and
update user profile data from the Home Subscriber Server (HSS).

In addition to getting and updating data, the Sh subscriber profile Web service
includes methods for subscriptions and notifications to receive updates when
information in the HSS changes.

Transaction types
The Sh subscriber profile Web service is the interface between the IMS Application
Server or an Open Service Access - Service Capability Server (OSA-SCS) and the
HSS. The Sh subscriber profile Web service provides the IMS Application Server
with secure access to subscriber data centrally stored in the HSS.

Sh subscriber profile Web service provides interfaces for:
v Data handling operations for getting data from the HSS and updating repository

data to the HSS
v Subscription and notification operations for an IMS Application Server to

subscribe to receive notification from the HSS when data changes and for the
HSS to notify an IMS Application Server when data that is subscribed to
changes

172 WebSphere Diameter Enabler

User data types
The Sh application operates on user profiles. A user profile is stored in the HSS.
These profiles enable the user to perform authentication and authorization of the
user.

A user profile is bound to a Private User Identity. The Sh application uses the term
user data to refer to diverse data types in a user profile. These data types are
defined as an XML schema, ShDataType.xsd, attached to the ETSI TS 129.328
standards. The user data can refer to any of the following:
v Repository Data: This is transparent data stored on the HSS.
v IMS Public Identity: A list of Public User Identities allocated to each user.
v IMS User State: This is the registry state of the user in IMS.
v S-CSCF: This contains the address of the serving- call session control function

(S-CSCF)
v Initial Filter Criteria: Contains the triggering information that indicates the

appropriate service to be called.
v Location Information: This contains the location of a user in the packet-switched

or circuit-switched domains.
v User State: This contains the state of the user in the packet-switched or

circuit-switched domain.
v Charging information: This contains the address of the charging functions.
v PSI Activation: This contains the state of a Public Service Identity (PSI)

indicating whether or not it is active.

Data operations
The Sh subscriber profile Web service application implements four Diameter Sh
data operations that enable the exchange of user data between an application and
the Home Subscriber Server. An application interfaces with the Diameter Enabler
base through the Sh subscriber profile Web service.

The following table lists the four types of Diameter Sh data operations, with their
appropriate commands. The Diameter Sh protocol defines new AVPs and eight
new Diameter commands to support user data operations.

Chapter 10. Developing 173

Table 9. Data operations

Data operation Protocol description

Data get Allows an application server to get data from the HSS
for a particular user. The user data can be of any of
these:

v Repository Data: This is transparent data stored on
the HSS.

v IMS Public Identity: A list of Public User Identities
allocated to each user.

v IMS User State: This is the registry state of the user
in IMS.

v S-CSCF: This contains the address of the serving- call
session control function (S-CSCF)

v Initial Filter Criteria: Contains the triggering
information that indicates the appropriate service to
be called.

v Location Information: This contains the location of a
user in the packet-switched or circuit-switched
domains.

v User State: This contains the state of the user in the
packet-switched or circuit-switched domain.

v Charging information: This contains the address of
the charging functions topic.

v MSISDN: This contains the user’s MSISDN.

v PSI Activation: This contains the state of the
activation.

v User Data: This contains user profile data in an XML
string representation.

Data update Allows an application to update repository data and
PSI activation for a specific user and store them in the
HSS.

Subscribe Allows an application to subscribe to notification when
the data has been updated in the HSS. Notification can
be sent for the following data types:

v Repository data

v IMS user state

v S-CSCF name

v Initial filter criteria

v PSI Activation value

v User data

Notify Allows an HSS to notify the application that the data it
subscribed for notification have been updated. The
data are then sent to the application server by the HSS
in the notification. Notification can be sent for the
following data types:

v Repository data

v IMS user state

v S-CSCF name

v Initial filter criteria

v PSI Activation value

v User data

174 WebSphere Diameter Enabler

Sh subscriber profile Web service call flows
Call flows describe how the applications get and update data, as well as how
applications subscribe to data change notification, and how notifications about user
state are passed between the IMS Application Server, Diameter Enabler base, and
the Home Subscriber Server (HSS).

Data get (User Data Request) flow:
1. IMS Application Server invokes one of the Sh data get Web service requests,

such as getRepositoryData.
2. The Sh subscriber profile Web service application validates the parameters

received from the Web service interface and then builds a Sh User Data Request
message using the parameters. Diameter Enabler base then sends the User Data
Request message to the HSS.

3. The HSS receives the User Data Request message, retrieves the requested data,
and then returns the data to the Diameter Enabler base in a User Data Answer
message.

4. The Sh subscriber profile Web service application receives the User Data
Answer message from the Diameter Enabler base containing the requested data
in XML format. The Sh subscriber profile Web service application parses the
XML data received and returns the information to the Web service interface.

Data update (Profile Update Request):
1. IMS Application Server invokes one of the Sh data update Web service

requests, such as updateRepositoryData.
2. The Sh subscriber profile Web service application validates the parameters

received from the Web service interface and then builds a Sh Profile Update
Request message using the parameters. Diameter Enabler base then sends the
Profile Update Request message to the HSS.

3. The HSS receives the Profile Update Request message, updates the requested
profile information, and returns the result to the Diameter Enabler base in a
Profile Update Answer message.

4. The Sh subscriber profile Web service application receives the Profile Update
Answer message from the Diameter Enabler base that contains the result of the
profile update operation. The Sh subscriber profile Web service application
returns the result to the Web service interface.

Data subscribe (Subscribe Notifications Request):
1. IMS Application Server invokes one of the Sh data subscription Web service

requests, such as subscribeRepositoryData.
2. The Sh subscriber profile Web service application validates the parameters

received from the Web service interface and then builds a Sh Subscription
Notifications Request message using the parameters. Diameter Enabler base
then sends the Subscription Notifications Request message to the HSS.

3. The HSS receives the Subscription Notifications Request message, creates a
subscription to the requested profile information, and returns the result to the
Diameter Enabler base in a Subscription Notifications Answer message.

4. The Sh subscriber profile Web service application receives the Subscription
Notification Answer message from the Diameter Enabler base that contains the
result of the Subscribe Notification operation and returns the result to the Web
service interface.

Data notify (Notification Request):

Chapter 10. Developing 175

1. To receive notifications the IMS Application Server must first implement the
server side Notify WSDL and register the Web service endpoint as the callback
URI in all subscriptions.

2. When data with an associated subscription is updated in the HSS, the HSS
sends a Push Notification message including the updates to the Diameter
Enabler base.

3. The Diameter Enabler base sends the message to the Sh subscriber profile Web
service application. The Sh subscriber profile Web service application references
the subscriptions associated with the notification in the database to retrieve the
callback URI.

4. The Sh subscriber profile Web service application sends the updated data
received in the notification request to the appropriate notification Web services.

Sh subscriber profile Web service
The Sh subscriber profile Web service provides subscriber profile services.

The interface is comprised of a number of methods.

Get Web service methods
The get Web service methods are used when an IMS Application Server retrieves
user profile data from the HSS.

When using the basic Web services for the Sh operation, you should note the
following nuances in naming conventions. A data type, which consists of one or
more joined words with a capital letter starting each word, is equivalent to the
corresponding XML tag in the ShDataType.xsd. For example: data type
RepositoryData is equivalent to the XML tag RepositoryData in ShDataType.xsd.

Nine types of user data can be accessed using the get Web service methods. These
are required for compliance with the Sh specifications. The Sh subscriber profile
Web service are grouped together into two categories based on the data types of
parameters and return. An application client chooses one to use for a particular
operation depending on its preference. These three categories are:
v Simple type: these Web services take as parameter and/or return simple data

types. These data types are either Java data types or defined in the
ShDataType.xsd.

v XML type: these Web services take as parameter or return a user profile XML
data string. The user profile XML is defined in ShDataType.xsd.

getRepositoryData Web service method:

This Web service method returns the RepositoryData containing transparent data
for a particular subscriber. This data is only understood by the IMS Application
Server that implements the services.

Usage

The getRepositoryData Web service method is used to access the user profile
repository data from the HSS. The format of the RepositoryData is defined in the
ShDataType.xsd as type TransparentData. Some or all values within the
RepositoryData object may be null if the corresponding element data (defined in
ShDataType.xsd) was not received by the HSS.

176 WebSphere Diameter Enabler

Example
RepositoryData rdata = service.getRepositoryData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234@example.com", "IBM-Diameter-SH-1234567");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

serviceIndication String A unique identifier for the requested service data. Example:
IBM-Diameter-SH-1234567.

getPublicIdentifiers Web service method:

This Web service method returns a PublicIdentifiers object containing Public User
Identities, Public Service Identities, or MSISDN numbers, allocated to each IMS
subscriber. Multiple identities and MSISDN may be returned.

Usage

The getPublicIdentifiers Web service method returns an array of URI elements
specifying an IMS Public User Identity or a Public Service Identity. These will be
either a SIP or TEL URI. The getPublicIdentifiers Web service method may also
return an array of Mobile Subscriber ISDN Number (MSISDN).

Example
PublicIdentifiers myPublicIdentities = service.getPublicIdentifiers("aaa://host.example.com;protocol=diameter;-117302099;1",
"sipintel110.city.company.com", "realmA.mycompany.com", "sips:carol@ws1234.domain2.com", "0113 272 2245", 0);

Chapter 10. Developing 177

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific
session must include only one Session-Id AVP and the same
value must be used throughout the life of a session. The Session
ID must be globally and eternally unique, as it is meant to
uniquely identify a user session without reference to any other
information. This may be needed to correlate historical
authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh
subscriber profile Web service will send this request to. This
input parameter is optional. Examples include:
sipintel15.city.example.com or diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm
is a required parameter and must be a fully qualified domain
name. The value specified must match the specific realmName
property that is defined in one of the routex properties in the
Diameter_Sh.properties file. If the value does not match any of
the specific routes, and a DEFAULT route entry is defined, the
DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities,
which are created by the home operator. A public user identity is
either a SIP URL (as defined in RFC 3261) or a TEL URI (as
defined in RFC 3966) and helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

msisdn String Mobile Subscriber ISDN is the standard international telephone
number used to identify a given subscriber. The MSISDN is the
telephone number of a GSM (Global System for Mobile
Communications) cell phone that is stored in the SIM (Subscriber
Identity Module) smart card inside the phone. A public user
identity in IMS is the equivalent of the MSISDN in a GSM
network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

identitySet int The following values are defined in ShDataType.xsd:

0 = ALL_IDENTITIES

1 = REGISTERED_IDENTITIES

2 = IMPLICIT_IDENTITIES

getIMSUserState Web service method:

This Web service method returns the registry states for the user.

Usage

The user state can be registered, unregistered, pending while being authenticated,
or unregistered. A service call session control function (S-CSCF) name is allocated

178 WebSphere Diameter Enabler

to trigger services for unregistered users. The return value is an integer that
contains the IMS User State of the public identifier being referenced. The possible
values are explained in the following table:

Table 10. Return Values

Integer Value User State

0 NOT_REGISTERED

1 REGISTERED

2 REGISTERED_UNREG_SERVICES

3 AUTHENTICATION_PENDING

Example
myIMSUserStateName = service.getIMSUserState("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

getSCSCFName Web service method:

This Web service method returns the address of the Serving Call Session Control
Function Name (S-CSCF) allocated to the user.

Chapter 10. Developing 179

Usage

This Web service method returns a URI which identifies a Serving Call Session
Control Function Name where a multimedia public identity is recognized.

Example
URI scsfName = service.getSCSFName("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel110.city.company.com",
"realmA.mycompany.com", "sips:carol@ws.1234.domain2.com");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific
session must include only one Session-Id AVP and the same value
must be used throughout the life of a session. The Session ID must
be globally and eternally unique, as it is meant to uniquely identify
a user session without reference to any other information. This may
be needed to correlate historical authentication information with
accounting information. Example: aaa://
host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the
Diameter_Sh.properties file. If the value does not match any of the
specific routes, and a DEFAULT route entry is defined, the
DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can
be either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

getInitialFilterCriteria Web service method:

This Web service method returns one or more InitialFilterCriteria objects that
contain a collection of user-related information that helps a S-CSCF determine
when to invoke a particular IMS Application Server to provide a service.

Usage

Filter criteria are used to determine the services that will be provided to the
collection of Public User Identities listed in each user’s user_profile. Filter criteria
contains a collection of user-related information that helps the S-CSCF decide when
to involve a particular IMS Application Server to provide a service. For example:
the InitialFilterCriteria object contains a collection of user information that helps
the S-CSCF decide when to forward the SIP request to a particular application
server.

180 WebSphere Diameter Enabler

This Web service method returns an array of InitialFilterCriteria objects that adhere
to the InitialFilterCriteria schema defined in the ShDataType.xsd. Multiple filter
criteria may be returned from the HSS.

Example
InitialFilterCriteria[] initialFilterCriteria = service.getInitialFilterCriteria("aaa://host.example.com;protocol=diameter;-117302099;1",
"sipintel10.city.company.com", "realmA.mycompany.com", "sips:carol@ws1234.domain2.com", "sip:siphappens.domain.com");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

serverName URI The SIP URL of the application server that is providing the service of
interest.

getCSLocationInformation Web service method:

This Web service method returns the location information of a user or service in a
circuit-switched domain.

Usage

This Web service method returns a CSLocationInformation object specifying the
location information of a user or service in a circuit-switched domain. The
following data elements in the CSLocationInformation received from the HSS may
be Base64 encoded:
v LocationNumber
v CellGlobalId
v ServiceAreaId
v LocationAreaId
v GeographicalInformation

Chapter 10. Developing 181

v GeodeticInformation
v VLRNumber
v MSCNumber

Example
CSLocationInformation myCSLocationInformation = service.getCSLocationInformation("aaa://host.example.com;protocol=diameter;117302099;1",
"sipintel10.city.company.com", "realmA.mycompany.com", "0113-272-2245");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in
one of the routex properties in the Diameter_Sh.properties file. If the
value does not match any of the specific routes, and a DEFAULT route
entry is defined, the DEFAULT route will be used.

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone number
of a GSM (Global System for Mobile Communications) cell phone that is
stored in the SIM (Subscriber Identity Module) smart card inside the
phone. A public user identity in IMS is the equivalent of the MSISDN in a
GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

getPSLocationInformation Web service method:

This Web service method will return location information for a user or a service in
a packet-switched network. The content of the PSLocationInformation object is
defined in SHDataType.xsd. Some or all values within the PSLocationInformation
object may be null if the corresponding element data (defined in ShDataType.xsd)
was not received from the HSS.

Example

The following data elements in the PSLocationInformation received from the HSS
may be Base64 encoded:
v CellGlobalId
v ServiceAreaId
v LocationAreaId
v RoutingAreaId
v GeographicalInformation

182 WebSphere Diameter Enabler

v GeodeticInformation
v SGSNNumber
PSLocationInformation myPSLocationInformation = service.getPSLocationInformation("aaa://host.example.com;protocol=diameter;117302099;1",
"sipintel10@city.example.com", "realmA.example.com", "0113 272 2245");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be
used throughout the life of a session. The Session ID must be globally
and eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone
number of a GSM (Global System for Mobile Communications) cell
phone that is stored in the SIM (Subscriber Identity Module) smart card
inside the phone. A public user identity in IMS is the equivalent of the
MSISDN in a GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

getCSUserState Web service:

This Web service method returns the state of the user in the circuit-switched (CS)
domain. If a null CSUserState element is received from the HSS, the value returned
will be -1.

Usage

The user state will return an integer value which contains the state of the user in
the CS domain. The possible integer values are explained in the following tables:

Table 11. Circuit-Switched (CS) Domain Status

Integer Value CS Domain Status

0 CAMEL_BUSY

1 NetworkedDeterminedNotReachable

2 AssumeIdle

3 NotProvidedfromVLR

Chapter 10. Developing 183

Example
intgetCSUserStateName = ("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com", "0113 272 2245", "2");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone
number of a GSM (Global System for Mobile Communications) cell
phone that is stored in the SIM (Subscriber Identity Module) smart card
inside the phone. A public user identity in IMS is the equivalent of the
MSISDN in a GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

getPSUserState Web service method:

This Web service method returns the state of the user in the packet-switched (PS)
domain. If a null PSUserState element is received from the HSS, the value returned
will be -1.

Usage

The user state will return an integer value which contains the state of the user in
the PS domain. The possible integer values are explained in the following table:

Table 12. Packet-Switched (PS) Domain Status

Integer Value PS Domain Status

0 Detached

1 AttachedNotReachableForPaging

2 AttachedReachableForPaging

3 ConnectedNotReachableForPaging

4 ConnectedReachableForPaging

5 NotProvidedFromSGSN

184 WebSphere Diameter Enabler

Example
int psUserState = service.getPSUserState("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.company.com",
null, "realmA.mycompany.com", "0113 272 2245");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information. Example:
aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in one
of the routex properties in the Diameter_Sh.properties file. If the value
does not match any of the specific routes, and a DEFAULT route entry is
defined, the DEFAULT route will be used.

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone number of
a GSM (Global System for Mobile Communications) cell phone that is
stored in the SIM (Subscriber Identity Module) smart card inside the phone.
A public user identity in IMS is the equivalent of the MSISDN in a GSM
network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

getChargingInformation Web service method:

This Web service method returns the AAA (Authentication and Authorization)
URIs of the primary and secondary event charging function and CCF.

Usage

This Web service method returns a ChargingInformation object that contains the
Diameter URIs of the charging functions.

Example
ChargingInformation info = service.getChargingInformation("aaa://host.example.com;protocol=diameter;-117302099;1",
"sipintel110.city.company.com", "realmA.mycompany.com", "0113 272 2245");

Chapter 10. Developing 185

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone
number of a GSM (Global System for Mobile Communications) cell
phone that is stored in the SIM (Subscriber Identity Module) smart card
inside the phone. A public user identity in IMS is the equivalent of the
MSISDN in a GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

When requesting IMSPublicIdentity or ChargingInformation, either the
publicUserIdentity or msisdn parameter is required.

getMSISDN Web service method (Deprecated):

This deprecated Web service method returns an array of MSISDN numbers
associated with this IMS subscriber’s Public User Identity.

Usage

This deprecated Web service method returns an array of strings which contain the
mobile subscriber number. An MSISDN consists of a country code, a national
destination code, and a subscriber’s number.

Example
String[] carolMSISDNs = service.getMSISDN("aaa://host.example.com;protocol=diameter;117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com");

186 WebSphere Diameter Enabler

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

getMSISDNList Web service method:

This Web service method returns an array of MSISDN numbers associated with
this IMS subscriber’s Public User Identity or other MSISDN numbers.

Usage

This Web service method returns an array of strings which contain the mobile
subscriber number. A MSISDN consists of a country code, a national destination
code, and a subscriber’s number. A Public User Identity (PUI) may have many
MSISDN numbers associated with it. These numbers may be used to establish a
connection or session with the subscriber whose MSISDN list is retrieved. The
MSISDN list can be retrieved by specifying either the PUI or the MSISDN numbers
already associated with the PUI.

Example

Using PUI to retrieve the list:
String[] carolMSISDNList = service.getMSISDNList("aaa://host.example.com;protocol=diameter;117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com", null);

Using MSISDN to retrieve the list:
String[] carolMSISDNList = service.getMSISDNList("aaa://host.example.com;protocol=diameter;117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", null, "+919-123-4567");

Chapter 10. Developing 187

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone number
of a GSM (Global System for Mobile Communications) cell phone that is
stored in the SIM (Subscriber Identity Module) smart card inside the
phone. A public user identity in IMS is the equivalent of the MSISDN in
a GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

When requesting IMSPublicIdentity or ChargingInformation either the
public_user_identity or msisdn parameter is required.

getUserData Web service method:

This Web service method returns user profile data in an XML string representation.
The XML file adheres to the format defined in the ShDataType.xsd schema file.

Usage

This Web service method returns the following types of user profile data as an
XML string representation: Repository Data, IMSPublic Identity, IMSUserState,
S_CSCFName, InitialFilteCriteria, CSLocationInformation, PSLocationInformation,
CSUserState, PSUserState, Charging_information, MSISDN, and PSIActivation.

188 WebSphere Diameter Enabler

Example

The getUserData Web service method can be used to request different types of
data. The parameters that are required will depend on the type of data being
requested.

Note: In the following examples, the sixth parameter is used to retrieve the
specific type of User Data from the user’s profile.

Example for a request RepositoryData user data XML string:
String repositoryDataXML = service.getUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", null, 0, "IBM-Diameter-SH-1234567", -1, -1, null);

Example for request InitialFilterCriteria user data XML string:
String filterCriteriaXML = service.getUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", null, 13, null, -1, -1, new URI("sip:siphappens.example.com"));

Example for request IMSPublicIdentity user data XML string:
String publicIdentityXML = service.getUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", null, 10, null, 1, -1, null);

Example for request CSLocationInformation user data XML string:
String csLocInfoXML = service.getUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", null, "0113 272 2245", 14, null, -1, 0, null);

Example for request PSIActivation user data XML string:
String psiActivationXML = service.getUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", null, "0113 272 2245", 18, null, -1, null, -1);

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in
one of the routex properties in the Diameter_Sh.properties file. If the
value does not match any of the specific routes, and a DEFAULT route
entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and helps
route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

Chapter 10. Developing 189

Parameter Name Type Description

msisdn String Mobile Subscriber ISDN is the standard international telephone number
used to identify a given subscriber. The MSISDN is the telephone number
of a GSM (Global System for Mobile Communications) cell phone that is
stored in the SIM (Subscriber Identity Module) smart card inside the
phone. A public user identity in IMS is the equivalent of the MSISDN in a
GSM network. Example:

+919-123-4567

(919)-155-4567

0113 272 2245

0044 113 272 2245

+44 113 272 2245

When requesting IMSPublicIdentity or ChargingInformation either the
public_user_identity or msisdn parameter is required.

dataReference int Data reference values indicate the type of user data being requested:

0 = Repository Data

10 = IMSPublicIdentity

11 = IMSUserState

12 = S_CSCFName

13 = InitialFilterCriteria

14 = LocationInformation

15 = UserState

16 = Charging_Information

17 = MSISDN

18 = PSI Activation

serviceIndication String A unique identifier for the requested service data. Example:
IBM-Diameter-SH-1234567.

This parameter is only required if the dataReference value is set to 0 for
the repository data.

identitySet int The following values are defined in ShDataType.xsd:

0 = ALL_IDENTITIES

1 = REGISTERED_IDENTITIES

2 = IMPLICIT_IDENTITIES

This parameter is only required if the dataReference value is set to 10 for
the IMSPublicIdentity.

serverName URI The SIP URL of the application server that is providing the service of
interest.

This parameter is only required if the dataReference value is set to 13 for
the initialFilterCriteria.

requestedDomain int This parameter is required only if the dataReference value is set to 14 or
15 for LocationInformation or UserState.

0 = CS_Domain

1 = PS_Domain

getPSIActivation Web service method:

This Web service method returns a value indicating the current state of activation
(active or inactive) of a service provided by an application.

190 WebSphere Diameter Enabler

Usage

This Web service method returns a value indicating the current state of activation
(active = 1 or inactive = 0) of a service provided by an application. This enables the
entire IMS network to be aware whether the service is either available (active) or
not (inactive).

Example
int carolPSIActivation = service.getPSIActivation("aaa://host.example.com;protocol=diameter;117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

Update Web service methods
The update Web service methods allow an IMS Application Server to update
repository data for a specific user and stores that data in the HSS.

updateRepositoryData Web service method:

This Web service method is used by an IMS Application Server to update the
transparent data stored in the HSS for a user.

Usage

updateRepositoryData is used to update the user profile repository stored in the HSS.
The returned string contains a result code from the HSS.

Chapter 10. Developing 191

Example
String results = service.updateRepositoryData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:carol@ws1234.domain2.com", "IBM-Diameter-SH-1234567", 36, "service data");

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific
session must include only one Session-Id AVP and the same value must
be used throughout the life of a session. The Session ID must be
globally and eternally unique, as it is meant to uniquely identify a user
session without reference to any other information. This may be needed
to correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

serviceIndication String A unique identifier for the requested service data. Example:
IBM-Diameter-SH-1234567.

sequenceNumber int The sequence number of the service data that is to be updated by the
HSS. Values must be any integer in the following range: 0 - 65535.

serviceData String New data to be updated in the user repository.

updateRepositoryDataByXML Web service method:

This Web service method is used by an IMS Application Server to update the
transparent data stored in the HSS for a user.

Usage

This Web service method is used to update the XML string representation of the
user profile repository data from the HSS. This format of this data is defined as
RepositoryData in ShDataType.xsd. The string contains a result code.

Example

Example of the initial creation of user profile information. Notice the sequence
number specified is zero.
String user_data = "<?xml version=\"1.0\"
encoding=\"UTF-8\"?><Sh-Dataxmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xsi:noNamespaceSchemaLocation=\"ShDataType.xsd\"><RepositoryData><ServiceIndication>IBM-Diameter-SH-1234567</ServiceIndication>
<SequenceNumber>0</SequenceNumber><ServiceData><Data>email

192 WebSphere Diameter Enabler

bjjones@example.com *</Data></ServiceData></RepositoryData></Sh-data>";

String resultCode = service.updateRepositoryDataByXML("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", user_data);

Parameters

Parameter Name Type Description

sessionID String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in
one of the routex properties in the Diameter_Sh.properties file. If the
value does not match any of the specific routes, and a DEFAULT route
entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

userData String The XML string representation of the user profile data which must comply
with ShDataType.xsd.

updatePSIActivation Web service method:

This Web service method updates the value held by the HSS indicating the current
state of activation (active or inactive) of a service provided by an application.

Usage

This Web service updates the value held by the HSS indicating the current state of
activation (active or inactive) of a service provided by an application.

Example
String applicationPSIActivation = service.updatePSIActivation("aaa://host.example.com;protocol=diameter;117302099;1", "sipintel10.city.company.com",
"realmA.mycompany.com", "sips:app1@ws1234.domain2.com", 1);

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

Chapter 10. Developing 193

Parameter Name Type Description

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

activation int The current activation state of a specific service. Example: 0 = Inactive 1
= Active.

Subscribe Web service methods
An IMS Application Server uses the subscribe Web service methods to subscribe to
notification when data is updated from the HSS.

A subscription is allowed for the following data types:
v Repository data
v IMS user state
v S-CSCFName
v Initial filter criteria
v PSI activation value

subscribeRepositoryData Web service method:

This Web service method is used for an IMS Application Server to subscribe to
notification when user data is updated from the home subscriber server (HSS).

Usage

The subscribeRepositoryData Web service method is used by an IMS Application
Server to subscribe or unsubscribe to notifications from the HSS when repository
data for the publicIdentity and serviceIndication change. The returned string
contains a result code.

Example

Example for Subscribe to RepositoryData updates:
Callback URI = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService")
String results = service.subscribeRepositoryData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com" ,
"realmA.example.com", "sips:carol@ws1234.example.com", "IBM-Diameter-SH-1234567", 0,callbackURI , null, null);

Example for Unsubscribe to RepositoryData updates:

194 WebSphere Diameter Enabler

Callback URI = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService")
String results = service.subscribeRepositoryData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com" ,
"realmA.example.com", "sips:carol@ws1234.example.com", "IBM-Diameter-SH-1234567", 1,callbackURI , null, null);

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in one
of the routex properties in the Diameter_Sh.properties file. If the value
does not match any of the specific routes, and a DEFAULT route entry is
defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

serviceIndication String A unique identifier for the requested service data. Example:
IBM-Diameter-SH-1234567.

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

callbackUri URI The Web service URI used to deliver notification back to the subscriber; for
example: http://example.com:7676/DHADiameterShNotifyService/
services/DiameterShNotifyService

userID String If the IMS Application Server Notify Web service is protected, specify the
user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify the
password for that Web service.

subscribeIMSUserState Web service method:

This Web service method subscribes to notifications of changes in the registry
states for the public identity specified.

Usage

This Web service method is invoked by an IMS Application Server to subscribe to
notification to changes in the registry state for the associated public identity.

Example
URI callbackURI = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService")

String resultCode = service.subscribeIMSUserState("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 0, callbackURI, null, null);

Chapter 10. Developing 195

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific
session must include only one Session-Id AVP and the same value
must be used throughout the life of a session. The Session ID must be
globally and eternally unique, as it is meant to uniquely identify a user
session without reference to any other information. This may be
needed to correlate historical authentication information with
accounting information. Example: aaa://
host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP
URL (as defined in RFC 3261) or a TEL URI (as defined in RFC 3966)
and helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

callbackUri URI The Web service URI used to deliver notification back to the
subscriber; for example: http://example.com:7676/
DHADiameterShNotifyService/services/DiameterShNotifyService

userId String If the IMS Application Server Notify Web service is protected, specify
the user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify
the password for that Web service.

subscribeInitialFilterCriteria Web service method:

This Web service method is used by an IMS Application Server to subscribe to
notifications of changes in the filter criteria. The notifications are specific to a
particular public identity and application server combination.

Usage

This Web service method returns a string which contains the result code of the
action.

Example
URI callbackUri = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService");

String resultCode = service.subscribeInitialFilterCriteria("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 0, new URI("sip:siphappens.example.com"), callbackUri, null, null);

196 WebSphere Diameter Enabler

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be used
throughout the life of a session. The Session ID must be globally and
eternally unique, as it is meant to uniquely identify a user session without
reference to any other information. This may be needed to correlate
historical authentication information with accounting information.
Example: aaa://host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber profile
Web service will send this request to. This input parameter is optional.
Examples include: sipintel15.city.example.com or diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The value
specified must match the specific realmName property that is defined in
one of the routex properties in the Diameter_Sh.properties file. If the
value does not match any of the specific routes, and a DEFAULT route
entry is defined, the DEFAULT route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and helps
route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

serverName URI The SIP URL of the application server that is providing the service of
interest.

callbackUri URI The Web service URI used to deliver notification back to the subscriber;
for example: http://example.com:7676/DHADiameterShNotifyService/
services/DiameterShNotifyService

userId String If the IMS Application Server Notify Web service is protected, specify the
user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify the
password for that Web service.

subscribeUserData Web service method:

This Web service method is used to subscribe to notifications for the following
data_reference types: RepositoryData, InitialFilterCriteria, S-CSCFName, and
IMSUserState. The notification data is returned in an XML string representation,
that adheres to the schema defined in ShDataType.xsd.

Usage

The result code for the subscribe operation is returned.

Chapter 10. Developing 197

Example

An example is provided for each type of data because the parameter requirements
are different
URI callbackUri = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService");

Example for Subscribe to RepositoryData notifications:
String subscribeResult = service.subscribeUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 0, "IBM-Diameter-SH-1234567", 0, null, callbackUri, null, null);

Example for Subscribe to InitialFilterCriteria notifications:
URI serverUri = new URI("sip:siphappens.example.com");
String subscribeResult = service.subscribeUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 13, null, 0, serverUri, callbackUri, null, null);

Example for Subscribe to S-CSCFName notifications:
String subscribeResult = service.subscribeUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 12, null, 0, null, callbackUri, null, null);

Example for Subscribe to IMSUserState notifications:
String subscribeResult = service.subscribeUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 11, null, 0, null, callbackUri, null, null);

Example for Subscribe to PSIActivation notifications:
String subscribeResult = service.subscribeUserData("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10@city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 18, null, 0, null, callbackUri, null, null);

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific
session must include only one Session-Id AVP and the same value
must be used throughout the life of a session. The Session ID must
be globally and eternally unique, as it is meant to uniquely identify a
user session without reference to any other information. This may be
needed to correlate historical authentication information with
accounting information. Example: aaa://
host.example.com;protocol=diameter;-117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

destinationRealm String
The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the
Diameter_Sh.properties file. If the value does not match any of the
specific routes, and a DEFAULT route entry is defined, the DEFAULT
route will be used.

publicUserIdentity String A subscriber is allocated one or more public user identities, which
are created by the home operator. A public user identity is either a
SIP URL (as defined in RFC 3261) or a TEL URI (as defined in RFC
3966) and helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

198 WebSphere Diameter Enabler

Parameter Name Type Description

dataReference int Data reference values indicate the type of user data being requested:

0 = Repository Data

11 = IMSUserState

12 = S_CSCFName

13 = InitialFilterCriteria

18 = PSI Activation

serviceIndication String A unique identifier for the requested service data. Example:
IBM-Diameter-SH-1234567.

This parameter is only required if the dataReference value is set to 0
for the repository data.

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

serverName URI The SIP URL of the application server that is providing the service of
interest.

This parameter is only required if the dataReference value is set to 13
for the initialFilterCriteria.

callbackUri URI The Web service URI used to deliver notification back to the
subscriber; for example: http://example.com:7676/
DHADiameterShNotifyService/services/DiameterShNotifyService

userID String If the IMS Application Server Notify Web service is protected, specify
the user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify
the password for that Web service.

subscribeSCSCFName Web service:

This Web service method is used for an IMS Application Server to subscribe to
notification when the S-CSCFName for the associated public identity is updated
from the home subscriber server (HSS)

Usage

The IMS Application Server uses this Web service to subscribe or unsubscribe to
notifications from the HSS when the S-CSCFName, associated with the
publicIdentity, specifies changes.

Example

For subscribeS-SCSFName Web service:
URI callbackURI = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService")

String resultCode = service.subscribeSCSCFName("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com",
"realmA.example.com", "sips:carol@ws1234.example.com", 0, CallbackURI, null, null);

Chapter 10. Developing 199

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be
used throughout the life of a session. The Session ID must be globally
and eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

This is an optional parameter. If specified, it must be the FQDN of
destination Diameter node which handles the request.

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

callbackUri URI The Web service URI used to deliver notification back to the subscriber;
for example: http://example.com:7676/DHADiameterShNotifyService/
services/DiameterShNotifyService

userId String If the IMS Application Server Notify Web service is protected, specify
the user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify
the password for that Web service.

subscribePSIActivation Web service method:

This Web service method allows the caller to subscribe for changes to the state
(Active or Inactive) of a service provided by an application.

Usage

The IMS Application Server uses this Web service to subscribe or unsubscribe to
notifications from the HSS when the PSI Activation, associated with a specific
Public Service Identity, has changed states.

Example
URI callbackURI = new URI("http://hostname.example.com:1234/DHADiameterShNotifyTestClient/services/DiameterShNotifyService");
String resultCode = service.subscribePSIActivation("aaa://host.example.com;protocol=diameter;-117302099;1", "sipintel10.city.example.com", "realmA.example.com", "sips:carol@ws1234.example.com", 0, CallbackURI, null, null);

200 WebSphere Diameter Enabler

Parameters

Parameter Name Type Description

sessionId String Identifies a specific session. All messages pertaining to a specific session
must include only one Session-Id AVP and the same value must be
used throughout the life of a session. The Session ID must be globally
and eternally unique, as it is meant to uniquely identify a user session
without reference to any other information. This may be needed to
correlate historical authentication information with accounting
information. Example: aaa://host.example.com;protocol=diameter;-
117302099;1

destinationHost String The fully qualified domain name of the HSS that the Sh subscriber
profile Web service will send this request to. This input parameter is
optional. Examples include: sipintel15.city.example.com or
diameter.example.com

This is an optional parameter. If specified, it must be the FQDN of
destination Diameter node which handles the request.

destinationRealm String The realm that this subscriber belongs to. The destination realm is a
required parameter and must be a fully qualified domain name. The
value specified must match the specific realmName property that is
defined in one of the routex properties in the Diameter_Sh.properties
file. If the value does not match any of the specific routes, and a
DEFAULT route entry is defined, the DEFAULT route will be used.

publicIdentity String Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

subsReqType int Available subscription status values:

0 = SUBSCRIBE

1 = UNSUBSCRIBE

callbackUri URI The Web service URI used to deliver notification back to the subscriber;
for example: http://example.com:7676/DHADiameterShNotifyService/
services/DiameterShNotifyService

userId String If the IMS Application Server Notify Web service is protected, specify
the user ID for that Web service.

password String If the IMS Application Server Notify Web service is protected, specify
the password for that Web service.

Notify Web service methods
The notify Web service methods are used to send notifications to an external Web
service.

For notifications, the IMS Application Server must implement a notification Web
service. The Sh subscriber profile Web service will be a client to that notification
Web service. The Sh subscriber profile Web service application will invoke the
following methods based on the notification received from the HSS and the
subscription records for Sh subscriber profile Web service clients:
v notifyRepositoryDataChange
v notifyIMSUserStateChange
v notifySCSCFNameChange
v notifyInitialFilterCriteriaChange

Chapter 10. Developing 201

v notifyUserDataChange
v notifyPSIActivationChange

notifyRepositoryDataChange Web service method:

This Web service method will provide notification when the repository data
changes.

Usage

This Web service method is used to receive notifications when the user profile
RepositoryData for the associated subscriber changes in the HSS. The format of the
RepositoryData is defined in the ShDataType.xsd schema. If the subscriber’s profile
has been deleted by the HSS, the ServiceData field in the RepositoryData object
will be null.

Example
public void notifyRepositoryDataChange(RepositoryData newData,

String publicIdentity)
throws Exception {

// application logic
}

Parameters

Parameter
Name Type Description

newData String The modified or deleted RepositoryData received from the HSS notification
request.

publicIdentity String This parameter is the publicIdentity associated with the updated
RepositoryData.

Specifies the public user identity or public service identity. This can be either
a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

notifyIMSUserStateChange Web service method:

This Web service method receives notification requests from the Sh subscriber
profile Web service when the IMSUserState for the associated subscriber changes in
the HSS.

Usage

This Web service method is used to receive notifications when the IMSUserState
for the associated subscriber changes in the HSS. The possible values are shown in
the following table:

Table 13. Return Values

Integer
value User state

0 NOT_REGISTERED

202 WebSphere Diameter Enabler

Table 13. Return Values (continued)

Integer
value User state

1 REGISTERED

2 REGISTERED_UNREG_SERVICES

Example
public void notifyIMSUserStateChange(int newState,

String publicUserIdentity)
throws Exception {

// application logic
}

Parameters

Parameter Name Type Description

newState int One of the following integer values:

0: NOT REGISTERED

1: REGISTERED

2: REGISTERED_UNREG_SERVICES

publicUserIdentity String This parameter is the publicIdentity associated with the updated
IMSUserState.

A subscriber is allocated one or more public user identities, which are
created by the home operator. A public user identity is either a SIP URL
(as defined in RFC 3261) or a TEL URI (as defined in RFC 3966) and
helps route a SIP request. Example:

sip:Alice.Smith@example.com;transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

notifySCSCFNameChange Web service method:

This Web service method receives notification requests from the Sh subscriber
profile Web service when the address of the Serving Call Session Control Function
(S-CSCF) allocated to the subscriber changes in the HSS. Notifications can be
received for both S-CSCF modifications and deletion.

Usage

This Web service method is used to receive notifications when the address of the
Serving Call Session Control Function (S-CSCF) allocated to the subscriber changes
in the HSS. The new URI of the S-CSCF and the associated publicIdentity are sent
in the notification request. If the S-CSCF has been deleted by the HSS, the newURI
parameter will be null.

Example
public void notifySCSCFNameChange(URI newURI,

String publicIdentity)
throws Exception {

// application logic
}

Chapter 10. Developing 203

Parameters

Parameter Name Type Description

newURI URI The modified URI of the updated Serving Call Session Control Function
(S-CSCF) received from the HSS notification request. If the S-CSCF has
been deleted by the HSS this parameter will be null.

publicIdentity String This parameter is the publicIdentity associated with the updated
SCSCFName.

Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

notifyInitialFilterCriteriaChange Web service method:

This Web service method receives notification requests from the Sh subscriber
profile Web service when the filtering criteria for the associated subscriber changes
in the HSS. Notifications can be received for both filter criteria modifications and
deletions.

Usage

This Web service method is used to receive notifications when the
InitialFilterCriteria for the associated subscriber and Application Server changes in
the HSS. The format of the InitialFilterCriteria is defined in the ShDataType.xsd
schema. If the InitialFilterCriteria for this subscriber has been deleted by the HSS,
the value of the newCriteria parameter will be null.

Example
public void notifyInitialFilterCriteriaChange(InitialFilterCriteria newCriteria,

String publicIdentity)
throws Exception {

// application logic
}

Parameters

Parameter
Name Type Description

newCriteria InitialFilterCriteriaThe modified or deleted InitialFilterCriteria received from the HSS
notification request. If the InitialFilterCriteria for this subscriber has
been deleted by the HSS, this value of this parameter will be null.

publicIdentity String This parameter is the publicIdentity associated with the updated
InitialFilterCriteria.

Specifies the public user identity or public service identity. This can
be either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

204 WebSphere Diameter Enabler

notifyUserDataChange Web service method:

This Web service method receives notifications for the following types of user
profile data as an XML string representation: Repository Data, IMSUserState,
S_CSCFName, and InitialFilteCriteria. To receive notification data as an XML
string, you must subscribe to the notifications using the Sh subscriber profile Web
service subscribeUserData method. Notifications can be received for both data
modifications and deletions.

Usage

This Web service method receives notification requests from the Sh subscriber
profile Web service for the following types of user profile data: Repository Data,
IMSUserState, S_CSCFName, and InitialFilteCriteria. The type of data received is
indicated by the dataReference value; however, it is possible to receive updates for
more than one data type in the XML file. The user profile data is returned as an
XML string representation that adheres to the format defined in the
ShDataType.xsd schema file. Data that has been deleted from the HSS is indicated
by an empty element for that user data. For example, if the filter criteria for a
particular subscriber has been deleted from the HSS, the InitialFilterCriteria
element in the userData XML received will be empty or null.

Example
public void notifyUserDataChange(int dataReference,

String userData,
String publicIdentity)
throws Exception {

// application logic
}

Parameters

Parameter Name Type Description

dataReference int Data reference values indicate the type of user data received from the HSS.

0 = Repository Data

11 = IMSUserState

12 = S_CSCFName

13 = InitialFilterCriteria

17 = MSISDN

18 = PSI Activation

userData String The XML string representation of the modified or deleted user profile data
received in the HSS notification request. The XML data must comply with
the ShDataType.xsd schema.

publicIdentity String This parameter is the publicIdentity associated with the updated UserData.

Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

notifyPSIActivationChange Web service method:

Chapter 10. Developing 205

This Web service method receives notification requests from the Sh subscriber
profile Web service when the PSI Activation state for a specific service has changed
in the HSS. Notifications will be received when the PSI Activation switches from
Active to Inactive or vice versa.

Usage

This Web service method returns a value indicating the current state of activation
(active = 1 or inactive = 0) of a service provided by an application. It also returns
the Public Service Identity of that application. This function allows an application
that wishes to use the services of another application the ability to know when that
application is active and available to provide one or more services.

Example
public void notifyPSIActivationChange(int newActivation,

String publicIdentity)
throws Exception {

// application logic
}

Parameters

Parameter Name Type Description

newActivation int Indicates the current state of application or service. Possible values are:

0 = INACTIVE

1 = ACTIVE

publicIdentity String This parameter is the publicIdentity associated with the updated
RepositoryData.

Specifies the public user identity or public service identity. This can be
either a SIP URL or a TEL URL. Example:

sip:Alice.Smith@example.com:transport=tcp

sips:carol@ws1234.example.com

sip:+358-555-1234567;postd=pp22@example.com;user=phone

sip:alice;day=tuesday@example.com

tel:+919-123-4567

tel:+358-555-1234567;postd=pp22

WSDLs
The Web Services Description Language (WSDL) is an XML-based language used
to describe the interface of a Web service application. The WSDL is used to
generate serializers and deserializers to read and write Web service SOAP requests
and replies.

The WSDL separates the Web service interface definition (elements and namespace)
from the Web service implementation (service and ports). The following WSDLs
are available for use:

DiameterRfService.wsdl
Defines the Rf services used for offline charging. The Rf accounting Web
service uses a simple request and reply structure to enable interaction
between IMS Application Server applications and Charging Collection
Function.

DiameterRoService.wsdl
Defines the Ro services used for online charging. It is structured in a
fashion similar to the DiameterRfService.wsdl file. This interface allows

206 WebSphere Diameter Enabler

interactions between IMS Application Server applications and the Online
Charging System (OCS) to exchange subscriber charging information. In
addition, this interface also allows the application to subscribe for
reauthentication notifications.

DiameterRoNotifyService.wsdl
Used by an IMS Application Server application to receive notifications
from the Ro online charging Web service. Notifications are sent when the
Charging Trigger Function (CTF) must reauthenticate with the OCS or
when a reauthorization subscription expires. This WSDL file defines the
interface that the customer must make available to receive these
reauthorization notifications. You must implement the server side of this
Web service to receive notifications. Diameter Enabler is the client side for
this Web service. Notifications will only be sent if the IMS Application
Server application has subscribed to receive them.

DiameterShService.wsdl
Defines the Sh services used for subscriber profile management. It is
structured in a fashion similar to the DiameterRfService.wsdl file. This
interface allows interactions between IMS Application Server applications
and the HSS to exchange subscriber profile information.

DiameterShNotifyService.wsdl
Used by an IMS Application Server application to receive notifications
from the Sh subscriber profile Web service when information regarding a
specified subscriber has been changed. This WSDL file defines the interface
that the customer must make available in order to receive these update
notifications. You must implement the server side of this Web service to
receive notifications. Diameter Enabler is the client side for this Web
service. Notifications will only be posted if the application has made a
subscription request for these notifications.

Result codes
This section provides information on the IBM WebSphere Diameter Enabler
Component result codes.

The result code data field provides the following classes of errors:

Table 14. Diameter Result codes

Result codes and message descriptions

“1xxx (Informational)”

“2xxx (Success)” on page 208

“3xxx (Protocol errors)” on page 208

“4xxx (Transient failures)” on page 209

“5xxx (Permanent failure)” on page 209

1xxx (Informational)

Return codes within this category are used to inform the requester that a request
could not be satisfied, and additional action is required on its part before access is
granted.

Chapter 10. Developing 207

Table 15. Informational result codes

Value Message Name Description

1001 DIAMETER_MULTI_ROUND_AUTH This informational error is returned by
a Diameter server to inform the access
device that the authentication
mechanism being used requires
multiple round trips, and a subsequent
request needs to be issued in order for
access to be granted.

2xxx (Success)

Return codes within this category are used to inform a peer that a request has been
successfully completed.

Table 16. Success result codes

Value Message Name Description

2001 DIAMETER_SUCCESS The Request was successfully
completed.

2002 DIAMETER_LIMITED_SUCCESS When returned, the request was
successfully completed, but additional
processing is required by the
application in order to provide service
to the user.

3xxx (Protocol errors)

Errors within this category cause a Service Unavailable Exception to be sent to the
calling application. The WebSphere Application Server log file will show an
indication of these errors when they occur.

Table 17. Protocol error result codes

Value Message Name Description

3001 DIAMETER_COMMAND_UNSUPPORTED The Request contained a
Command-Code that the receiver did
not recognize or support.

3002 DIAMETER_UNABLE_TO_DELIVER This error is given when Diameter can
not deliver the message to the
destination.

3003 DIAMETER_REALM_NOT_SERVED The intended realm of the request is not
recognized.

3004 DIAMETER_TOO_BUSY When returned, a Diameter node
should attempt to send the message to
an alternate peer.

3005 DIAMETER_LOOP_DETECTED An agent detected a loop while trying
to get the message to the intended
recipient.

3006 DIAMETER_REDIRECT_INDICATION A redirect agent has determined that
the request could not be satisfied
locally.

3007 DIAMETER_APPLICATION_UNSUPPORTED A request was sent for an application
that is not supported.

3008 DIAMETER_INVALID_HDR_BITS A request was received whose bits in
the Diameter header were set to an
incorrect combination.

208 WebSphere Diameter Enabler

Table 17. Protocol error result codes (continued)

Value Message Name Description

3009 DIAMETER_INVALID_AVP_BITS A request was received that included an
AVP whose flag bits are set to an
unrecognized value.

3010 DIAMETER_UNKNOWN_PEER A CER was received from an unknown
peer.

4xxx (Transient failures)

Errors within this category are used to inform a peer that the request could not be
satisfied for the indicated reason. The WebSphere Application Server log file will
show an indication of these errors when they occur.

Table 18. Transient failures result codes

Value Message Name Description

4001 DIAMETER_AUTHENTICATION_REJECTED The authentication process for the user
failed, most likely due to an incorrect
password used by the user.

40002 DIAMETER_OUT_OF_SPACE A Diameter node received the
accounting request but was unable to
commit it to stable storage due to a
temporary lack of space.

4003 ELECTION_LOST The peer has determined that it has lost
the election process and has therefore
disconnected the transport connection.

4010 DIAMETER_END_USER_SERVICE_DENIED The OCS has denied this service request
due to service restrictions. If the CCR
contained Used-Service-Units, they will
be deducted from the account if
possible.

4011 DIAMETER_CREDIT_CONTROL_NOT_APPLICABLEThe OCS is indicating that the service
can be granted free of charge. No CC
session is required.

4012 DIAMETER_CREDIT_LIMIT_REACHED The OCS is denying the request because
the subscriber’s account does not
contain sufficient credit.
Used-Service-Units, if present in the
CCR, will be deducted from the
account, if possible.

5xxx (Permanent failure)

Errors within this category should not be retried because they will continue to fail
until the implementation or configuration are changed. The WebSphere Application
Server log file will show an indication of these errors when they occur.

Table 19. Permanent failure result codes

Value Message Name Description

5001 DIAMETER_AVP_UNSUPPORTED The peer received a message that
contained an AVP that is not recognized
or supported and was marked with the
Mandatory bit.

5002 DIAMETER_UNKNOWN_SESSION_ID The request contained an unknown
Session-Id.

5003 DIAMETER_AUTHORIZATION_REJECTED A request was received for which the
user could not be authorized.

Chapter 10. Developing 209

Table 19. Permanent failure result codes (continued)

Value Message Name Description

5004 DIAMETER_INVALID_AVP_VALUE The request contained an AVP with an
incorrect value in its data portion.

5005 DIAMETER_MISSING_AVP The request did not contain an AVP that
is required by the Command Code
definition.

5006 DIAMETER_RESOURCES_EXCEEDED A request was received that cannot be
authorized because the user has already
expended allowed resources.

5007 DIAMETER_CONTRADICTING_AVPS One or more Failed-AVP AVPs MUST
be present, containing the AVPs that
contradicted each other.

5008 DIAMETER_AVP_NOT_ALLOWED A message was received with an AVP
that should not be present. The
Failed-AVP AVP must be included and
contain a copy of the offending AVP

5009 DIAMETER_AVP_OCCURS_TOO_MANY_TIMES A message was received that included
an AVP that appeared more often than
permitted in the message definition.
The Failed-AVP AVP must be included
and contain a copy of the first instance
of the offending AVP that exceeded the
maximum number of occurrences.

5010 DIAMETER_NO_COMMON_APPLICATION This error is returned when a CER
message is received, and there are no
common applications supported
between the peers.

5011 DIAMETER_UNSUPPORTED_VERSION This error is returned when a request
was received, whose version number is
unsupported.

5012 DIAMETER_UNABLE_TO_COMPLY This error is returned when a request is
rejected for unspecified reasons.

5013 DIAMETER_INVALID_BIT_IN_HEADER This error is returned when an
unrecognized bit in the Diameter
header is set to one (1).

5014 DIAMETER_INVALID_AVP_LENGTH The request contained an AVP with an
incorrect length. A Diameter message
indicating this error MUST include the
offending AVPs within a Failed-AVP
AVP.

5015 DIAMETER_INVALID_MESSAGE_LENGTH This error is returned when a request is
received with an incorrect message
length.

5016 DIAMETER_INVALID_AVP_BIT_COMBO The request contained an AVP with
which is not allowed to have the given
value in the AVP Flags field. A
Diameter message indicating this error
MUST include the offending AVPs
within a Failed-AVPAVP.

5017 DIAMETER_NO_COMMON_SECURITY This error is returned when a CER
message is received, and there are no
common security mechanisms
supported between the peers.

5030 DIAMETER_UNKNOWN_USER The OCS does not recognize this user.

5031 DIAMETER_RATING_FAILED The OCS was not able to correctly rate
the service due to errors in one or more
AVPs provided in the CCR.

210 WebSphere Diameter Enabler

Experimental result codes
Experimental result codes are vendor defined result codes that indicate success and
error conditions. The Sh subscriber profile Web service and Home Subscriber
Server (HSS) define several vendor-specific failure conditions.

Experimental result codes are included inside an Experimental-Result AVP, and the
Result-Code AVP does not exist. The Sh application will retrieve the error message
and return it through an exception. These exceptions are logged in theWebSphere
Application Server SystemOut.log file.

Table 20. Sh application experimental result codes

Value Message Name Description

2001 DIAMETER_FIRST_REGISTRATION The user is authorized to
register this public identity.
The user will be assigned an
S-CSCF name.

2002 DIAMETER_SUBSEQUENT_REGISTRATION The user is authorized to
register this public identity.
This user was assigned an
S-CSCF name prior to this
registration. A new S-CSCF
name will not be selected.

2003 DIAMETER_UNREGISTERED_SERVICE The public identity is not
registered and has services
that belong to an
unregistered state. The user
will be assigned an S-CSCF
name.

2004 DIAMETER_SUCCESS_SERVER_NAME_NOT_STORED The user has been
unregistered. The S-CSCF
name will be removed from
the HSS.

2005 DIAMETER_SERVER_SELECTION The user is authorized to
register this public identity.
An S-CSCF name has been
assigned for services related
to the previously unregistered
state. The user may need to
be assigned a new S-CSCF
name.

5001 DIAMETER_ERROR_USER_UNKNOWN The user that received this
message does not exist.

5002 DIAMETER_ERROR_IDENTITIES_DONT_MATCH The HSS cannot identify the
user’s corresponding private
identity for the public
identity submitted in the
message.

5003 DIAMETER_ERROR_IDENTITY_NOT_REGISTERED A new public identity
submitted a query for
LocationInformation. The
user will not receive
LocationInformation because
its public identity has not
been registered.

5004 DIAMETER_ERROR_ROAMING_NOT_ALLOWED The user is not allowed to
roam in the visited network.

Chapter 10. Developing 211

Table 20. Sh application experimental result codes (continued)

Value Message Name Description

5005 DIAMETER_ERROR_IDENTITY_ALREADY_REGISTERED This identity has been
assigned to a server prior to
this request. The registration
status will not overwrite the
existing identity.

5006 DIAMETER_ERROR_AUTH_SCHEME_NOT_SUPPORTED The authentication scheme is
not supported.

5007 DIAMETER_ERROR_IN_ASSIGNMENT_TYPE This identity has been
assigned to the same server.
The registration status does
not allow this server
assignment type.

5008 DIAMETER_ERROR_TOO_MUCH_DATA New data will be discarded
because the volume of data
being pushed to the receiving
entity exceeds the capacity.

5009 DIAMETER_ERROR_NOT_SUPPORTED_USER_DATA The S-CSCF has informed the
HSS that the received
subscription data contained
unrecognizable or
unsupported information.

5010 DIAMETER_MISSING_USER_ID The message cannot be
processed because the HSS
has informed the S-CSCF that
the message did not contain a
private identity or a public
identity.

5011 DIAMETER_ERROR_FEATURE_UNSUPPORTED The received request
indicates the origin host
requests that the command
pair would be handled using
an unsupported feature by
the destination host.

5100 DIAMETER_ERROR_USER_DATA_NOT_RECOGNIZED The data required in the XML
schema does not match the
data specified in the HSS.

5101 DIAMETER_ERROR_OPERATION_NOT_ALLOWED The HSS has ignored the
operation because the
Sh-Update request does not
includes service data.

5102 DIAMETER_ERROR_USER_DATA_CANNOT_BE_READ The requested user data
cannot be read.

5103 DIAMETER_ERROR_USER_DATA_CANNOT_BE_MODIFIED The requested user data
cannot be updated.

5104 DIAMETER_ERROR_USER_DATA_CANNOT_BE_NOTIFIED The requested user data
cannot be notified on
changes.

212 WebSphere Diameter Enabler

Table 20. Sh application experimental result codes (continued)

Value Message Name Description

5105 DIAMETER_ERROR_TRANSPARENT_DATA_OUT_OF_SYNC The request to update the
repository data at the HSS
cannot be completed because
the requested update is based
on an out-of-date version of
the repository data. Two
actions can cause this error:

v The sequence number in
the Sh-Update request
message does not match
the immediate successor of
the associated sequence
number stored for that
repository data in the HSS.

v It is also used when the
IMS Application Server
creates a new set of
repository data when the
repository data exists in
the HSS.

4100 DIAMETER_USER_DATA_NOT_AVAILABLE The requested user data is
not available at this time to
satisfy the requested
operation.

4101 DIAMETER_PRIOR_UPDATE_IN_PROGRESS The request to update the
repository data at the HSS
could not be completed
because the related repository
data is currently being
updated by another entity.

Chapter 10. Developing 213

214 WebSphere Diameter Enabler

Chapter 11. Reference information

Information about supported standards, directory conventions, and terminology
are provided as additional reference information to help you.

Changes to this edition
Since the last edition of this information, the following changes have been made.

Table 21. Change history for the product documentation

Edition Date Changes

First Edition October 2007 First issue of the product
documentation.

Second Edition March 2008 Fix pack updates.

Third Edition April 2009 Minor updates to reflect
compatibility between IBM
WebSphere software for
Telecom, version 7.0
products, and WebSphere
IMS Connector, version 6.2.

Documentation conventions
Typographical conventions are used to make the documentation easier to
understand.

The following conventions are used throughout the documentation:
v Variables are italicized. Italicized information indicates that you should

substitute information from your environment for the value. For example:
http://host_name:port_number

v Variables are used to indicate installation directories. The variable links to
information with the default paths. For example:

was_root/logs
v Images are used to indicate information specific to one operating system or

database software. For example:
was_root/installableApps/TWSS-Services

v Values that you must type display in monospace font.
v User interface elements display as boldfaced text.
v Links to related information for each topic are provided at the bottom of the

topic.

Directory conventions
References in the documentation are for default directory locations. This topic
describes the conventions in use for WebSphere Application Server Network
Deployment.

© Copyright IBM Corp. 2010 215

Default product locations when the root user or an administrator
user installs the product

The root user or administrator is capable of registering shared products and
installing into the default system-owned directories. These file paths are default
locations, but you can install the products and create profiles in any directory
where you have write access. Multiple installations of any of these products or
components require multiple installation locations.

was_root
The following list shows default installation root directories for WebSphere
Application Server Network Deployment:

/usr/IBM/WebSphere/AppServer

/opt/IBM/WebSphere/AppServer

was_profile_root
The following list shows the default directory for a WebSphere Application
Server Network Deployment profile named profile_name:

/usr/IBM/WebSphere/AppServer/profiles/profile_name

/opt/IBM/WebSphere/AppServer/profiles/profile_name

installed_apps_root
The following list shows the default directory for installed applications
within a profile named profile_name:

/usr/IBM/WebSphere/AppServer/profiles/profile_name/
installedApps/cell_name/

/opt/IBM/WebSphere/AppServer/profiles/profile_name/
installedApps/cell_name/

db_client_root
The following list shows default installation root directories for the
database clients:

/usr/IBM/db2/V9.5

/opt/IBM/db2/V9.5

/home/oracle/app/oracle/product/11.1.0

Glossary
This glossary contains terms that pertain specifically to the IBM WebSphere
software for Telecom: IBM WebSphere IP Multimedia Subsystem Connector V6.2,
IBM WebSphere Presence Server V7.0, IBM WebSphere Telecom Web Services
Server V7.0, and IBM WebSphere XML Document Management Server V7.0.

The glossary also contains relevant terms from the IBM English Terminology
Database.

A

Administrative console
A graphical interface that guides the user through systems administration
tasks such as deployment, configuration, monitoring, starting and stopping
applications, services, and resources.

216 WebSphere Diameter Enabler

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

Application Manager
In Common Desktop Environment (CDE), a window containing objects
representing the system actions available to you.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

B

C

Call Notification
A Parlay X Web service that notifies Web clients of specific call events
established through the SIP protocol for a specific called party. Call
Notification supports regular SIP and IMS call flows.

CDMA2000
A set of 3G standards based on earlier 2G CDMA technology.

charge header support vector utility
A utility class that handles Session Initiation Protocol (SIP) messages, for
charging interactions.

Charging Collection Function (CCF)
Defined by the 3GPP group as the entity that receives information through
Diameter messages pertaining to Charging Data Records.

cluster
A group of servers that are managed together and participate in workload
management. See also horizontal cluster, vertical cluster.

code division multiple access (CDMA)
A form of multiplexing where the transmitter encodes the signal using a
pseudo-random sequence, which the receiver also knows and can use to
decode the received signal. Each different random sequence corresponds to
a different communication channel.

common base event
A specification based on XML that defines a mechanism for managing
events, such as logging, tracing, management, and business events, in
business enterprise applications.

common event infrastructure (CEI)
A core technology of the IBM Autonomic Computing initiative that
provides basic event management services, including consolidating and
persisting raw events from multiple, heterogeneous sources and
distributing those events to event consumers.

D

demilitarized zone (DMZ)
A configuration including multiple firewalls to add layers of protection
between a corporate intranet and a public network, like the Internet.

Chapter 11. Reference information 217

E

Enhanced Data Rate for GSM Evolution (EDGE)
A development of GSM that allows for the faster delivery of advance
mobile services such as full multimedia messaging.

Enterprise JavaBeans
A component architecture defined by Sun Microsystems for the
development and deployment of object-oriented, distributed,
enterprise-level applications.

event state compositor (ESC)
A server that processes PUBLISH requests and is responsible for
composing an event state into a complete, composite event state of a
resource.

F

frequency division duplex (FDD)
The application of FDMA to separate outbound and returning signals. The
uplink and downlink subbands are said to be separated by the ″frequency
offset.″

frequency division multiple access (FDMA)
An access technology that is used by radio systems to share the radio
spectrum. The terminology “multiple access” implies the sharing of the
resource among users, and “frequency division” describes how the sharing
is done by allocating users with different carrier frequencies of the radio
spectrum.

G

General Packet Radio Service (GPRS)
A mobile data service available to users of GSM mobile telephones. It is
often described as ″2.5G.″ that is, a technology between the second (2G)
and third (3G) generations of mobile telephony. It provides moderately fast
data transfer by using unused TDMA channels in the GSM network.

Global System for Mobile Communications (GSM)
A second-generation (2G) standard for digital cellular telephone systems,
which originated in Europe and is now used in countries across the globe.
GSM networks use digital signals and narrowband TDMA, in conformance
to a standard developed by the 3GPP, to support voice, data, text, and
facsimile transmissions. The world’s most popular standard for mobile
telephones, GSM service is used by more than 1.5 billion people across
more than 210 countries and territories.

Groupe Special Mobile (GSM)
See Global System for Mobile Communications (GSM).

H

home subscriber server (HSS)
The server that manages the database of all subscriber and service data in
an IMS network. Parameters include user identity, allocated S-CSCF name,
roaming profile, authentication parameters, and service information.

horizontal cluster
A cluster in which the cluster members exist on multiple physical servers,
effectively and efficiently distributing the workload of a single instance.
Horizontal clustering provides the ability to build in redundancy and

218 WebSphere Diameter Enabler

failover, to easily add new members to increase capacity, and to improve
scalability by adding heterogeneous systems into the cluster. See also
vertical cluster.

hypertext transfer protocol (HTTP)
An Internet protocol that is used to transfer and display hypertext and
XML documents on the Web. Hypertext Transfer Protocol Secure (HTTPS).

I

IMS Application Server (AS)
Defined by the 3GPP to be the functional component that invokes
applications (usually SIP applications) that provide services to IMS users.

Institute of Electrical and Electronics Engineers (IEEE)
A professional society accredited by the American National Standards
Institute (ANSI) to issue standards for the electronics industry.

Internet Engineering Task Force (IETF)
The task force of the Internet Architecture Board (IAB) that is responsible
for solving the short-term engineering needs of the Internet. The IETF
consists of numerous working groups, each focused on a particular
problem. Internet standards are typically developed or reviewed by
individual working groups before they can become standards.

IP Multimedia Subsystem (IMS)
A network services architecture defined by 3GPP that enables support for
IP multimedia applications based on SIP and IETF Internet protocols. IMS
can use a variety of access methods, including wire-line IP, IEEE 802.11,
802.15, CDMA, and packet data transmission systems such as GSM, EDGE,
and UMTS.

J

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications,
defined by Sun Microsystems Inc.

Java API for XML-based RPC (JAX-RPC)
A specification that describes application programming interfaces (APIs)
and conventions for building Web services and Web service clients that use
remote procedure calls (RPC) and XML. JAX-RPC is also known as JSR
101.

Java authentication authorization service (JAAS)
In J2EE technology, a standard API for performing security-based
operations. Through JAAS, services can authenticate and authorize users
while enabling the applications to remain independent from underlying
technologies.

Java Database Connectivity (JDBC)
An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call-level API for SQL-based and XQuery-based database access.

Java Management Extensions (JMX)
A means of doing management of and through Java technology. Developed
by Sun Microsystems, Inc., and other leading companies in the
management field, JMX is a universal, open extension of the Java
programming language for management that can be deployed across all
industries, wherever management is needed.

Chapter 11. Reference information 219

Java Messaging Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

Java Naming and Directory Interface (JNDI)
An extension to the Java platform that provides a standard interface for
heterogeneous naming and directory services.

Java virtual machine (JVM)
A software implementation of a central processing unit that runs compiled
Java code (applets and applications).

K

L

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory.

location generator
The entity that initially determines or gathers the location of the target and
creates location objects that describe the location of the target.

location object
An object that conveys location information (and possibly privacy rules) to
which Geopriv security mechanisms and privacy rules are to be applied.

location recipient
The entity that receives location information. It might have asked for this
location explicitly (by sending a query to a location server), or it might
receive this location asynchronously.

location server
an element that receives publications of Location Objects from Location
Generators and may receive subscriptions from Location Recipients. An
entity that receives location objects published by a location generator,
receives queries from location recipients, and applies privacy rules
designed by the rule maker, typically the target to whose location
information the rules apply.

M

mediation primitives
Program components that can be assembled into customized
message-processing flows in conjunction with the IBM WebSphere Telecom
Web Services Server (TWSS) Access Gateway.

message-driven bean (MDB)
An enterprise bean that provides asynchronous message support and
clearly separates message and business processing.

mixed-media multilink transmission group (MMMLTG)
A multilink transmission group that contains links of different medium
types (for example, token-ring, switched SDLC, nonswitched SDLC, and
frame-relay links).

220 WebSphere Diameter Enabler

MLP Mobile Location Protocol, an Open Mobile Alliance (OMA) specification.

N

natural language support (NLS)
The ability for a user to communicate with hardware and software
products in a language of choice to obtain results that are culturally
acceptable.

O

Open Mobile Alliance (OMA)
A standards body that develops open standards for the mobile phone
industry.

P

Parlay A set of specifications for application programming interfaces (APIs) for
managing network services such as call control, messaging, and
content-based charging.

Parlay Connector
A Parlay Connector is the primary system component of Telecom Web
Services Server (TWSS) that provides connectivity to a Parlay gateway by
using a distributed communication protocol, most commonly Common
Object Request Broker Architecture (CORBA).

Parlay gateway
A server that hosts the service implementations for the Parlay API. The
TWSS Parlay Connector communicates with the Parlay gateway over
CORBA. The Parlay API consists of various telecom service APIs which
provide an abstract interface to network elements deployed in the service
provider network. Some TWSS Web service implementations utilize the
Parlay Connector to enable using the Parlay API to support the functions
exposed as Parlay X Web services.

Parlay X
A set of Web services designed to enable software developers to use
telecommunication capabilities in applications.

Presence
A Parlay X Web service that allows client applications to use Web services
to subscribe to a presentity, synchronously query the current presence
information for a presentity, receive asynchronous notifications about
changes in the presence information for a presentity, and unsubscribe from
a presentity.

presence agent (PA)
A SIP user agent that is capable of receiving SUBSCRIBE requests,
responding to them, and generating notifications of changes in presence
state. A presence agent must have knowledge of the presence state of a
presentity. This means that it must have access to presence data
manipulated by PUAs for the presentity.

presence information
Information comprising one or more presence tuples.

presence server
A service that accepts, stores, and distributes presence information.

Chapter 11. Reference information 221

presence tuple
A set of data comprising a status, an optional communication address, and
optional other presence information.

presence user agent (PUA)
A SIP user agent that manipulates presence information for a presentity.
This manipulation can be the side effect of some other action (such as
sending a SIP REGISTER request to add a new Contact) or can be done
explicitly through the publication of presence documents. A presentity can
have one or more PUAs. This means that a user can have many devices
(such as a cell phone and personal digital assistant (PDA), each of which is
independently generating a component of the overall presence information
for a presentity. PUAs push data into the presence system but are outside
it; they do not receive SUBSCRIBE messages or send NOTIFY messages.

presentity
A presence entity, a software entity that provides presence information to a
presence service.

public switched telephone network (PSTN)
A communications common carrier network that provides voice and data
communications services over switched lines.

Q

R

registrar server
An SIP server that keeps track of where a user can be contacted and
provides that information to callers. A SIP phone must register its current
location with a registrar server to allow calls to be made to it using a
phone number or alias. Without a registrar server, the caller would need to
know the correct IP address and port of the telephone.

resource list server (RLS)
A server that accepts subscriptions to resource lists and sends notifications
to update subscribers of the state of the resources in a resource list.

S

Service Component Architecture (SCA)
A set of specifications, published by the Open Service Oriented
Architecture collaboration (OSOA), that describe a model for building
applications and systems that builds on Service-Oriented Architecture
(SOA) specifications.

Service Data Object (SDO)
An open standard for enabling applications to handle data from
heterogeneous data sources in a uniform way. SDO incorporates J2EE
patterns but simplifies the J2EE data programming model.

Service Policy Manager
A component of WebSphere Telecom Web Services Serverthat provides a
storage capability and access mechanism to enable the definition of
requesters, services, and subscriptions that associate services with
requesters.

service-oriented architecture (SOA)
A conceptual description of the structure of a software system in terms of

222 WebSphere Diameter Enabler

its components and the services they provide, without regard for the
underlying implementation of these components, services and connections
between components.

serving-call session control function (S-CSCF)
A server that acts as the central node of the signalling plane in a SIP
network to register users and determine routing of messages. The S-CSCF
also performs additional functions like providing routing services,
enforcing policies, and providing billing information.

servlet
A Java program that runs on a Web server and extends the server’s
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

Session Initiation Protocol (SIP)
An Internet Engineering Task Force (IETF) standard protocol for initiating
an interactive user session that involves multimedia elements such as
video, voice, chat, gaming, and virtual reality.

Short Message Peer-to-Peer Protocol (SMPP)
A telecommunications industry protocol for exchanging Short Message
Service (SMS) messages between SMS peer entities such as short message
service centers.

Short Message Service (SMS)
A service that is used to transmit text to and from a mobile phone.

Simple Object Access Protocol (SOAP)
A lightweight, XML-based protocol for exchanging information in a
decentralized, distributed environment. SOAP can be used to query and
return information and invoke services across the Internet.

SIP Instant Messaging and Presence Leveraging Extensions (SIMPLE)
An architecture for the implementation of a traditional buddylist-based
instant messaging and presence application with SIP.

stateless SIP proxy
A proxy that receives SIP requests and forwards the request to a particular
SIP container in a cluster, based on SIP dialog affinity, load balancing, and
failover considerations.

T

target (1) The destination for an action or operation. (2) An entry point into
Partner Gateway. It is an instance of a receiver configured for a particular
deployment; each target supports documents sent using a single transport
type and multiple targets can exist for a given transport type, one for each
document format. See also receiver.

Telecom Web Services Access Gateway
Provides policy-driven traffic monitoring, message capture, authorization,
and management capabilities. These services are provided at the
application layer, and they are enforced for each Web service request using
knowledge of the requester, target service, and invoked operation.

WebSphere Telecom Web Services Server (TWSS)
WebSphere Telecom Web Services Server provides a middleware
infrastructure for managing Web service access and an environment for

Chapter 11. Reference information 223

hosting Web service API implementations, which provides flexibility for
construction of tailored message processing logic in accordance with
service provider network policies.

Terminal Location
A component of WebSphere Telecom Web Services Server that enables
applications to send Web services requesting the Terminal Location services
defined by the Parlay X 2.1 specification, and to register for Terminal
Location Notifications.

Third Party Call
A Parlay X Web service that provides the ability to initiate a call from a
network entity between two different users or user agents

time division multiple access (TDMA)
A technology for shared-medium (usually radio) networks. It allows
several users to share the same frequency by dividing it into different time
slots. The users transmit in rapid succession, one after the other, each using
their own timeslot. This lets multiple users share the same transmission
medium (for example, radio frequency) while using only the part of its
bandwidth they require. In radio systems, TDMA is almost always used
alongside frequency division multiple access (FDMA) and frequency
division duplex (FDD); the combination is referred to as
FDMA/TDMA/FDD.

U

Universal Mobile Telecommunications System (UMTS)
The third generation mobile telecommunications standard, defined by the
ITU, that increases transmission speed to 2 Mbps per mobile user and
establishes a global roaming standard.

user agent client (UAC)
In SIP, a client application that initiates the SIP request.

V

vertical cluster
A cluster in which the cluster members exist on a single physical server.
Vertical clustering can be an effective way to take full advantage of a
multiprocessor server. See also horizontal cluster.

W

W-CDMA (wideband code division multiple access)
A wideband spread-spectrum 3G mobile telecommunication air interface
that uses CDMA. W-CDMA is the technology behind UMTS and is one of
the interfaces used in cellular networks.

Web Services Description Language (WSDL)
An XML-based specification for describing networked services as a set of
endpoints operating on messages containing either document-oriented or
procedure-oriented information.

WebSphere Integration Developer (WID)
An integrated development and test environment and can be used as a

224 WebSphere Diameter Enabler

visual editor when working with WebSphere Telecom Web Services Server
mediation primitives to create customized flows.

WebSphere software for Telecom (WsT)
An IBM product suite that extends the industry leading WebSphere
Application Server platform to deliver a fully IMS standards-compliant SIP
application server, helping customers develop and deploy IP Multimedia
Subsystem (IMS) compliant applications.

X

XCAP server
An HTTP server that acts as a repository for collections of XML
documents. It manipulates user data such as authorization policy, resource
list, and other XML resources and provides access to these resources
through the HTTP protocol.

XML Configuration Access Protocol (XCAP)
An IETF specification (RFC 4825) that allows a client to read, write, and
modify application configuration data stored in XML format on a server.

XML Document Management (XDM)
An OMA specification for accessing and manipulating XML documents
that are stored in repositories in a network. Using XDM, an application can
work with individual XML elements and attributes instead of entire
documents. The XDM specification is based on the IETF XML
Configuration Access Protocol (XCAP).

Y

Z

Numerics

3rd Generation Partnership Project (3GPP)
A collaboration agreement established in December 1998 through which
ETSI (Europe), ARIB/TTC (Japan), CCSA (China), ATIS (North America),
and TTA (South Korea) are making a globally applicable third-generation
(3G) mobile phone system specification within the scope of the ITU’s
IMT-2000 project. 3GPP specifies the standards for UMTS.

3rd Generation Partnership Project 2 (3GPP2)
A collaboration agreement established in December 1998 through which
ARIB/TTC (Japan), CCSA (China), TIA (North America), and TTA (South
Korea) are making a globally applicable third-generation (3G) mobile
phone system specification within the scope of the ITU’s IMT-2000 project.
3GPP2 specifies the standards for CDMA2000.

Chapter 11. Reference information 225

226 WebSphere Diameter Enabler

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of

© Copyright IBM Corp. 2010 227

performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX
DB2
IBM
pSeries
Tivoli
WebSphere

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Other company, product, or service names may be trademarks or service marks of
others.

228 WebSphere Diameter Enabler

Readers’ Comments — We’d Like to Hear from You

IBM WebSphere IP Multimedia Subsystem Connector
IBM WebSphere IP Multimedia Subsystem Connector
Version 6.2

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: 1-800-227-5088 (US and Canada)

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department 6R4A
P.O. Box 12195
Research Triangle Park, NC 27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

	Contents
	Chapter 1. IBM WebSphere IMS Service Control Interfaces Component
	Chapter 2. Trust Association Interceptor security component
	Introduction to TAI
	Configuring the Trust Association Interceptor

	Chapter 3. Introduction to the IBM WebSphere Diameter Enabler Component
	The Diameter Enabler base
	Diameter Enabler Web services
	Introduction to the Rf accounting Web service
	Introduction to the Ro online charging Web service
	Introduction to the Sh subscriber profile Web service

	Connections, routes, channels, and call flows
	Implementation in an existing network

	Chapter 4. Planning for IBM WebSphere Diameter Enabler Component
	Hardware and software requirements
	Hardware requirements
	Software requirements

	Planning your software topology
	Supported network elements (CCF, OCS, and HSS)
	Evaluating your hardware environment
	Scaling and reliability
	Security considerations
	Configuration considerations for the WebSphere IMS Connector

	Chapter 5. Installing
	Enabling the application profiling service
	Standalone installation of WebSphere IMS Connector
	Preparing the environment
	Preparing the database
	Preparing DB2
	Preparing Oracle

	Installing Diameter Enabler base (Standalone)
	Verifying the Diameter Enabler base installation (Standalone)
	Connecting to the database
	Creating an authentication alias
	Creating a JDBC provider (Standalone)
	Defining the data source
	Testing the database connection

	Installing the services
	Installing Rf accounting Web service (Standalone)
	Installing Ro online charging Web service (Standalone)
	Installing Sh subscriber profile Web service (Standalone)

	Verifying the connection

	Clustered installation of IBM WebSphere Diameter Enabler Component
	Preparing the environment (Cluster)
	Preparing the database
	Preparing DB2
	Preparing Oracle

	Installing Diameter Enabler base (Cluster)
	Verifying the Diameter Enabler base installation (Cluster)
	Connecting to the database
	Creating an authentication alias
	Creating a JDBC provider (Cluster)
	Creating WebSphere variables
	Defining the data source
	Testing the database connection

	Creating the cluster
	Installing the Rf accounting Web service
	Installing Rf accounting Web service (Cluster)
	Configuring Rf accounting Web service

	Installing the Ro online charging Web service
	Installing Ro online charging Web service (Cluster)
	Configuring Ro online charging Web service

	Installing the Sh subscriber profile Web service
	Installing Sh subscriber profile Web service (Cluster)
	Configuring Sh subscriber profile Web service

	Starting the cluster

	Installing updates
	Uninstalling IBM WebSphere Diameter Enabler Component from the WebSphere Application Server

	Chapter 6. Configuring IBM WebSphere Diameter Enabler Component
	Configuring Diameter Enabler base
	Configuring listener ports for IBM WebSphere Diameter Enabler Component
	Configuring connections and routes
	Channels and channel chains
	Diameter Enabler configuration files

	Chapter 7. Securing IBM WebSphere Diameter Enabler Component
	Channel security
	Configuring channel security
	Modifying channel security

	Chapter 8. Administering IBM WebSphere Diameter Enabler Component
	Stopping and starting the server
	Stopping a cluster
	Stopping a server (console)
	Stopping a server (command line)
	Stopping the node agent (console)
	Stopping the node agent (command line)
	Stopping the deployment manager (console)
	Stopping the deployment manager (command line)
	Starting the deployment manager
	Starting the node agents
	Starting a cluster
	Starting a server (console)
	Starting a server (command line)

	Restarting applications
	Modifying logging
	Viewing channel chains
	Monitoring threads
	Adjusting heap size for subscription database handling
	Modifying the watchdog timeout interval
	Modifying the pending queue maximum
	Modifying the source port
	Modifying the reconnect interval
	Modifying the maximum packet size
	Modifying the Work Manager settings
	Modifying the subscription purging interval
	Modifying the user mapped to the RunAs role
	Using IBM Tivoli License Manager

	Chapter 9. Troubleshooting IBM WebSphere Diameter Enabler Component
	Using ISA 4.0 add-ons to communicate with IBM Support
	Monitoring log messages
	Viewing and modifying logs
	Hang detection policy
	Enabling trace
	Selecting trace loggers

	Messages
	Message key

	Chapter 10. Developing applications that use Diameter Web services
	Rf accounting Web service
	Rf accounting Web service call flows
	Rf accounting Web service methods
	Rf High-Level API
	Class RfAccountingInfo
	Class RfAccountingResults
	Class ServiceInformation (Rf)
	Deprecated Rf API

	Rf Raw API

	Ro online charging Web service
	Ro online charging Web service call flows
	Ro online charging Web service methods
	Ro High-Level API
	Class RoChargingInfo
	Class RoChargingResults
	Class ServiceInformation (Ro)

	Ro High-Level API Integrated Examples
	Initiate Credit Control Session with sendCCInitial
	Retrieve RoChargingResults for sendCCInitial
	Update Credit Control Session with sendCCUpdate
	Receive Graceful Service Termination - Redirect
	Retrieve RoReAuthInfo from notifyCCReAuth
	Reauthorize with OCS
	Receive Graceful Service Termination Request - Terminate
	Terminate Credit Control Session with sendCCTermination

	Ro Raw API

	Sh subscriber profile Web service
	Transaction types
	User data types
	Data operations
	Sh subscriber profile Web service call flows
	Sh subscriber profile Web service
	Get Web service methods
	Update Web service methods
	Subscribe Web service methods
	Notify Web service methods

	WSDLs
	Result codes
	Experimental result codes

	Chapter 11. Reference information
	Changes to this edition
	Documentation conventions
	Directory conventions
	Glossary

	Notices
	Trademarks

	Readers’ Comments — We′d Like to Hear from You

