
Peeling the Knowledge Onion:
Development of a Bond Tool Operation

Using VB Automation
Design Creation and Validation

Product Development

August 2004

Collaborative Product
Development Associates, LLC
222 Grace Church Street
Port Chester, NY 10573
(800) 573-4756
www.cpd-associates.com

CPDA: Collaborative Product Development Associates, LLC
CPDA’s Product Lifecycle Management (PLM) research programs target the critical
decisions in Product Lifecycle Management challenging Design, Engineering,
Manufacturing, and Information Technology managers and executives. CPDA’s PLM
collaborative research programs provide in-depth analysis of strategies, products, issues,
processes, technologies, trends, case studies, and surveys for assessing technology, business
goals and objectives, and implementation road maps.

The cohesive suite of collaborative programs clarify and evaluate new capabilities,
frameworks standards, and development issues; they highlight the most advanced uses of
leading technologies, and they link the technical effort to the realization of business value.
The four collaborative research programs include:

• Design Creation and Validation: A bottom-up view of engineering requirements
from the desktop across the enterprise.

• Product Definition: A top-down view providing a conceptual framework for tightly
coupled collaboration across different product development perspectives, bridging
Customer Needs, Systems Engineering and Tradeoffs, Design Solutions, and
Fulfillment and Manufacturing.

• Product Value Management: Mapping business process modeling to an IT
integration infrastructure in a Federated Enterprise Reference Architecture (FERA)™
loosely couples multiple touch points within and between enterprises extending across
the supply chain.

• PLM Infrastructure: Integration and interoperability in complex PLM environments
pose substantial hurdles. The rapid transition to cross-enterprise collaboration, at all
levels of design and supply, intensifies the pressure on existing, inwardly focused IT
architectures to support and enable new modes of doing business.

Collaborative Product Development Associates was formed by the PLM research team of
D.H. Brown Associates, Inc. (DHBA). CPDA now supports and fulfills the PLM research
services of D.H. Brown Associates.

Collaborative Product Development Associates, LLC www.cpd-associates.com
A summary of this report is available to all of our subscribers. Sponsors of our collaborative programs in Design
Creation and Validation, and Product Development receive the full report as part of our comprehensive services.
Those interested in the programs should contact cust_service@cpd-associates.com.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation

Using VB Automation
Gregory A. Premetz, Technical Project Manager,

Product Design – KBE Applications,
Vought Aircraft Industries, Inc.

EXECUTIVE SUMMARY
Gregory A. Premetz, the Technical Project Manager of the KBE Applications Group
responsible for the development and implementation of Knowledge Based Engineering for Vought
Aircraft Industries, as well as for the investigation into Knowledge Management, shared the
Vought team’s experience in the development of a bond tool operation using Visual Basic (VB)
automation at the Product Lifecycle Management Road Map™ conference. Their growth in
understanding best practices and pitfalls encountered during the application development process
is a story called “The Tale of the Knowledge Onion.”

Knowledge-based engineering (KBE) is the use of advanced software techniques
to capture and reuse product and process knowledge in an integrated way. In the
context of CAD there are actually two approaches for applying KBE. The first, a
process-centric approach, relies on rules-based heuristics to automate or define
the product. The second, a CAD-centric method, employs parametrics rather
than rules. The parametric alternative is much simpler, and ultimately not as
powerful as the process-centric approach.

Rule-based engineering requires three basic components – rules, objects, and
process modeling. Rules, or heuristics, represent most of the “active” intelligence
within the application. An object is a self-contained entity that consists of both
discrete data and procedures to manipulate that data. Process modeling represents
the “passive” intelligence in the application, and involves describing the flow of
information in the context of business processes. The application uses the process
interactions within the model to map out an implementation framework for the
rules. Understanding all three components – rules, objects, and process modeling
– is essential for generating an application.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

2 Copyright 2004 Collaborative Product Development Associates, LLC

KBE tools apply best to a well-defined process. Applying KBE while designing a
process will likely fail; rather it should be used for simply automating what is
currently known. In an ill-defined process, you cannot automate what you do not
know. Also, KBE does not fare well when there is a judgmental process involved,
artistic in nature. As of yet, KBE cannot create new processes or make subjective
decisions based on unexpected information combined with experience.

A major goal of knowledge-based engineering is the capture and reuse of corporate
knowledge through automation. This drives two steep learning curves – how to
acquire the knowledge, and how to codify the knowledge. Knowledge acquisition
includes knowledge mapping, process modeling, and managing the requirements.
After capturing or acquiring knowledge, you need to convert the knowledge from a
form understood by humans into a form that can be understood by the computer.
Another aspect of codifying that needs to be learned is when to stop. Due to
obvious budget, time, and resource constraints, you must balance between
“perfection” and what can be considered good enough.

There is a real danger in KBE because the KBE application in itself does not
represent a viable goal. Once a KB (knowledge-based) organization is created, it is
often assumed the product of that organization is the KBE application. The
application becomes the goal, rather than the product itself. Absolutely wrong.
The product is the goal. The product and the process of creating the product, the
optimal design process, represent the goal.

The automation of PLM and/or the optimal design process allows more
innovation, and innovation should be the second fundamental goal of KBE. If
the only goal is to automate, to take a process from thirty hours down to ten
minutes, then the real goal has been missed. KBE saves real money, but does
nothing for the product. The time savings generated from the use of KBE should
be used to innovate, to create new and better products. Understanding these two
items as the objective provides companies more mileage out of KBE.

Incorporating knowledge requires learning a unique skill set – a “knowledge
engineer” skill set. Automate the well known. Political land mines and/or
antiquated processes are sometimes best left alone. Ask the right questions. Over
time you will learn to create a “logic tree” while interviewing the subject-matter
experts. You will follow that logic and see holes in the tapestry, or missing steps,
and you will fill them with the right questions. Also, maintain an ongoing
communication with experts during the development process to continually
capture hidden knowledge.

Knowledge engineers must understand the entire process, and need to identify all
requirements. Any missing knowledge will impact the outcome of an application.
Removing barriers to innovation requires getting the experts to agree and work
collectively towards the best process, hopefully all within the constraints of
existing procedures.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 3

Finally, there are elements of knowledge management (KM) in KBE. Knowledge
management is the conscious strategy of getting the right knowledge, and the
right people, at the right time, and helping people share, and put information or
knowledge into action, in ways that will improve organizational performance. A
KBE application contains knowledge that will need to be managed. Managing
knowledge deals with truth maintenance (testing), knowledge half-life (new
knowledge is continually created replacing the knowledge in the application), and
additional concepts that will improve the application like knowledge acquisition,
knowledge mapping, complexity theory, semantics, and ontology.

This document is copyrighted by Collaborative Product Development Associates, LLC (CPDA) and is protected by U.S. and international
copyright laws and conventions. This document may not be copied, reproduced, stored in a retrieval system, transmitted in any form, posted on a
public or private website or bulletin board, or sublicensed to a third party without the written consent of CPDA. No copyright may be obscured or
removed from the paper. Collaborative Product Development Associates, LLC and CPDA are trademarks of Collaborative Product Development
Associates, LLC All trademarks and registered marks of products and companies referred to in this paper are protected.

This document was developed on the basis of information and sources believed to be reliable. This document is to be used “as is.” CPDA
makes no guarantees or representations regarding, and shall have no liability for the accuracy of, data, subject matter, quality, or timeliness of
the content.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

4 Copyright 2004 Collaborative Product Development Associates, LLC

TABLE OF CONTENTS
EXECUTIVE SUMMARY ..1

INTRODUCTION...5
KBE BASICS (CAD RELATED)..7
KBE BASICS (IN GENERAL) ..8
PLM TO KBE ..9
TRANSITION FROM DATA TO KNOWLEDGE ...10
BUILDING A FOUNDATION ...11
FOCUSING ON PRODUCT AND PROCESS GOALS ..12

KBE APPLICATION DEVELOPMENT PROCESS..13
KBE APPLICATION SELECTION ...14
COMPOSITE BOND TOOL ..15
KBE METRICS...16

THE TALE OF THE KNOWLEDGE ONION ..18

LESSONS LEARNED – ONION WISDOM ..22

QUESTIONS AND ANSWERS...24

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 5

 Peeling the Knowledge Onion:
Development of a Bond Tool
Operation Using VB Automation

INTRODUCTION
My team at Vought Aircraft has gone far with the tools we work with in KBE,
and I would like to present that journey this morning. In the presentation, I will
provide a brief description of my company to help understand our context; I will
show you what a bond tool is, and I will review the metrics to illustrate the value
we found in the KB application. You may be familiar with Steve Denning, and his
book called The Springboard.1 A former World Bank executive, he professes that
you should use a story to transfer knowledge and to get your company to rally
around your cause. At Vought, we developed our own KB (knowledge-based)
process, and using Steve’s suggestion, I will present that development process in a
story called “The Tale of the Knowledge Onion.”

You may not be familiar with Vought Aircraft Industries, but I’m sure you are
familiar with our products. The Vought name extends back to the military aircraft
company founded by aviation pioneer Chance Milton Vought. In 1917, with
Birdseye B. Lewis, Vought organized the Lewis & Vought Corporation. Among
the more than 15,000 aircraft produced by Chance Vought’s legacy companies,
some notable ones include the VE-7 Bluebird, the OS2U Kingfisher, the F4U
Corsair, the F-8 Crusader, and the A-7 Corsair II.

Over the years, the company went through various ownership changes. Some of
the heritage companies with ties to Chance Vought’s original company include
Vought-Sikorsky, Ling-Temco-Vought, and LTV Aerospace. In 1994, Northrop
Grumman purchased Vought Aircraft Company. In 2000, Northrop Grumman
sold the majority of its aerostructures business to the Carlyle Group, which
established Vought Aircraft Industries as an independent company.

Today, Vought Aircraft Industries is a major subcontracting partner on many
commercial and military aircraft programs. The company offers a full range of
design, testing, manufacturing, and support capabilities. Vought is positioned as a
Tier I Integrator – filling the gap between prime contractors and traditional
subcontractors by providing large, complex aerostructures on a turnkey basis.

What do those assemblies look like? Figure 1 illustrates some of our products,
which are highlighted in blue and green. Our customers include Airbus, Boeing,
Hawker; G5 is Gulfstream Citation.

1 Denning, Stephen. The Springboard: How Storytelling Ignites Action in Knowledge-Era Organizations. Butterworth-

Heinemann, Woburn, Mass., 2001.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

6 Copyright 2004 Collaborative Product Development Associates, LLC

Figure 2 displays our military products, C17, C5. Our facilities span the country.

FIGURE 1
Vought Aircraft
Commercial Products

FIGURE 2
Vought Aircraft
Military Products

Courtesy Vought Aircraft Industries, Inc.

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 7

What is knowledge-based engineering? Knowledge-based engineering (KBE) is
the use of advanced software techniques to capture and reuse product and
process knowledge in an integrated way. In the context of CAD there are actually
two approaches for applying KBE. The first, a process-centric approach, relies on
rules-based heuristics to automate or define the product. The second, a CAD-
centric method, employs parametrics rather than rules. The parametric alternative
is much simpler, and ultimately not as powerful as the process-centric approach.

KBE BASICS (CAD RELATED)
Figure 3 illustrates one of our rules-based applications, a form block. Rule-based
engineering requires three basic components – rules, objects, and process
modeling. Rules, or heuristics, represent most of the “active” intelligence within
the application. They are primarily conditional and logic statements that define
the outcome. An object is a self-contained entity that consists of both discrete
data and procedures to manipulate that data. It is difficult to write code or
applications for KBE without objects. By defining their functions and
characteristics, they are able to carry their own “intelligence” as they move
throughout the code, passing in and out of various sub-routines as bits of
information rather than just data. Process modeling represents the “passive”
intelligence in the application, and involves describing the flow of information in
the context of business processes. The application uses the process interactions
within the model to map out an implementation framework for the rules.
Understanding all three components – rules, objects, and process modeling – is
essential for generating an application.

FIGURE 3
KBE Basics
(CAD Related)

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

8 Copyright 2004 Collaborative Product Development Associates, LLC

When do rules make sense? When you are faced with unpredictable geometric
topology or large-scale systems. Unpredictable topology requires numerous rules
to accommodate all of the possible outcomes, and applications that encompass
multiple systems increase the level of complexity in the process modeling part of
the code. These fall well out of the scope of simple parametrics. Parametrics make
sense when you just have geometric information. You can automate geometry
quite easily within CAD. It does not make sense to write code when the
assemblies are small or uncomplicated. It is more cost effective to let simple parts
morph themselves using parametrics or auto-generate themselves with
“intelligence” contained in the CAD model.

KBE BASICS (IN GENERAL)
In general, where is KBE good? KBE is good in a well-defined process. I cannot
emphasize this point enough. If you do not have a well-defined process, you do
not know what you are going to automate. You do not want to be doing KBE
while designing a process, rather it should be used for simply automating what
you currently know. To get a sophisticated integration between many parts, you
need a deep understanding of that integration provided by a well-defined process.
Obviously, when the knowledge is well defined, KBE can really shine.

Where is KBE not good? In the ill-defined process; you cannot automate what
you do not know. Another place KBE does not fare well is when there is a
judgmental process involved, artistic in nature. As of yet, KBE cannot create new
processes or make subjective decisions based on unexpected information
combined with experience. For example, there are still many manufacturing
processes that depend as much on “the feel of the wheel” as they do on the
process specifications. On the other hand, many times the shop floor or other
functional groups will assert that automation in impossible because their process
is highly judgmental. Even though their processes are well defined, they tell us the
results will always differ and ultimately depend upon their “expert” manipulation
of that process.

Through further investigation (mapping the knowledge, flowcharting the process,
and creating a preliminary logic tree), it becomes apparent that the process is a
good candidate for automation. As it turns out, they just want to retain the
judgmental part of the process for a perceived improvement in job security. With
improvements in machinery and our ability to capture repetitive processes,
allowing judgment to remain in a process that does not need it will result in
instability and variation. Therefore you do not attempt to automate the process
that took the individual five years to learn, rather target the job that would be
given to the new hire.

You do need to be sensitive to the apprehensions of the workers because
ultimately they will be your subject-matter experts. Automation should be used to
free people up for other work that is more productive – getting stuck with low
productivity does not add to job security. And it does not necessarily result in a

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 9

loss of job – we all move around. Bottom line, it is important to automate
processes to remain competitive.

Where is KBE overkill? When other technologies can create the product
definition faster and maintain it more easily, there is no sense to do KBE. Today’s
CAD will record your every function into a macro which can easily be distributed
and maintained. With parametrics, you only need a spreadsheet to quickly morph
part features or create an entire family of parts. You do not want to spend a lot of
money developing code when a simpler method can produce the same results.

PLM TO KBE
Given this is a PLM Road Map Conference, Figure 4 is my attempt to better
frame KBE within the context of PLM. These are different definitions of PLM I
took from the Internet. Through similar language, they all refer to the concepts of
managing and integrating something. That something has been defined as product-
related data, information, knowledge, and finally intellectual capital. I organized the
definitions from data to knowledge as a segue to the next slide and to better
illustrate where KBE can influence PLM. What can you make of the fact that to
some PLM is nothing more than data, but to others it is actual knowledge?

I look at the functional specialties as islands of automation. You have a CAD
island; it can be automated. You can automate the CAE and the CAM, as well as
non-engineering islands such as ERP, SCM, and CRM. But what pulls them all
together? I am not talking about the seamless movement of data or information

FIGURE 4
PLM to KBE

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

10 Copyright 2004 Collaborative Product Development Associates, LLC

from one system to another. I am talking about intelligent products or objects
that know which island to contact next and when. They autonomously complete
all of the repetitive non-judgmental tasks on that island and then they either
contact the owner for input or move on to the next island. Ultimately it will be
some Knowledge-based application that creates these links. Whether it is KBE or
KBM, the acronym of Knowledge-based engineering or management, is not
important; it will ultimately be knowledge based in nature.

TRANSITION FROM DATA TO KNOWLEDGE
In order to speak about KBE, you need to have a common understanding of
knowledge. Figure 5 is based on the work of Thomas Davenport and David
Prusak,2 who identified key attributes that distinguish the difference between data,
information, and knowledge. I took these attributes, added some of my own, and
then tied them to an aerospace example to provide my company with a simple
illustration of the migration from data, to information, to knowledge. Since each
has its own unique set of attributes, if you can recognize which one you are
working with (data, information, or knowledge), then you have a better
understanding of how to automate it, and a better understanding of its lifecycle.

The first column, Data, simply presents facts. It is a table of facts, numbers,
available sizes on a particular fastener, its material; nothing more than facts. Once

2 Davenport, Thomas H. and Prusak, Laurence. Working Knowledge: How Organizations Manage What They Know.

Harvard Business School Publishing, May 2000.

FIGURE 5
Transition from DATA
To KNOWLEDGE

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 11

I calculate that data and put it in context relative to other data, and then condense it
for my particular purpose, and finally categorize it for re-use, I have transitioned to
information. I can now describe the data as a 95 KSI load, swage-locking, pin that
is used in shear for composites. This is information I would not have known
without going through the transition process of converting the data into
information. When I talk to another person about that pin, I have in-depth
information to describe its function, capability, and application. To someone
looking at the graphic, they could conclude that it is a screw, but when I convey
information, the one thousand words that are spoken by the picture are
condensed into a specific definition.

How do I get to knowledge? To transition from information to knowledge, I do
comparisons between different sets of information and prior experience; I broaden
that experience through conversations with others, and I then make connections and
determine consequences. In essence, the process takes information and provides
another level of context. This process of identifying relationships and drawing
conclusions (typically outside of a vacuum) is the creation of knowledge.

Back to our example, I now know what to do with the pin, as well as what not to
do. I know what to expect and how to install that pin, that perhaps I need to use a
sealant, a certain force, or a particular tool. This is more than information; it is
knowledge. Through this process, you start with lots of data, funnel down to
information, and then arrive at knowledge. It is really a funneling process.

BUILDING A FOUNDATION
A major goal of knowledge-based engineering is the capture and reuse of
corporate knowledge through automation. This drives two steep learning curves –
how to acquire the knowledge, and how to codify the knowledge.

You have to learn how to acquire the knowledge, which is a skill set in itself. I no
longer just call my team “engineers,” rather I call them “knowledge engineers,”
because they now have the skills on how to acquire knowledge. Knowledge
engineers must know how to quickly gain a subject matter expert’s trust and push
them to provide knowledge rather than just information. They need to know how
to extract only relevant knowledge and how to select the right knowledge when
subject-matter experts disagree. Knowledge acquisition includes knowledge
mapping, process modeling, and managing the requirements.

You must also learn to codify. After capturing or acquiring knowledge, the
engineer will need to convert the knowledge from a form understood by humans
into a form that can be understood by the computer. We typically do this through
the creation of rules, which can look radically different as you move from one
program language to another. Learning which tool to use, whether it is Visual
Basic (VB), or C++, or LISP, or a macro, and how to use it is included in this
learning curve. We started KBE by using Visual Basic, which is easier than most
languages. This allowed us to spend time learning how to acquire knowledge at

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

12 Copyright 2004 Collaborative Product Development Associates, LLC

the same time. We have plans to migrate to more complex object-oriented
languages as our needs require more sophisticated applications.

The question comes up as to when the computer science staff should codify the
knowledge, versus when engineers should be trained in programming to codify
knowledge? There is no escaping the programming aspect of this job, so it
becomes a difficult choice. I have seen different companies go either way. We use
our engineers, because they can speak the language of the subject-matter experts.
We feel it is easier for them to capture and codify the knowledge from other
engineers because they share the same experience. It can be difficult to train them
how to program and we may suffer from less efficiency, but the programming
does not matter as much in engineering as capturing the right knowledge and
having it applied correctly.

There is another aspect of codifying that needs to learned, and that is when to
stop. Due to obvious budget, time, and resource constraints, you must balance
between “perfection” and what can be considered good enough. This has always
been an issue, even in design. Engineers want to go the extra mile and sometimes
that is neither practical nor affordable. In a perfect world, we would follow each
step for application development, make sure all relevant knowledge is captured,
have selected the best language or tool, and have optimized the code. You cannot
always fulfill all of these requirements, particularly when you talk about
incorporating relevant old and new knowledge. That is a difficult target to hit the
first time out.

FOCUSING ON PRODUCT AND PROCESS GOALS
There is a real danger in KBE – a danger in using CAD, for that matter – because
the KBE application in itself does not represent a viable goal. People lose sight of
that. Once they create a KB organization, they assume the product of that
organization is the application. The application becomes the goal, rather than the
product itself. Absolutely wrong, just like the CAD-generated model is not the
goal either.

It was not long after our first CAD workstations were installed that our upper
management started to look at the CAD-generated models as the product of
engineering. They would create metrics based on how many models were being
produced per week. The 3-D digital representation is not the goal. Nor is the best
code in the world the goal. The product is the goal. The product and the process
of creating the product, the optimal design process, represent the goal.

So for KBE, the automation of the PLM process becomes the goal, because at its
core ideology, PLM professes to be a product-centric environment. KBE
applications only improve that process by automating the redundant activities so
that the important human tasks can be done better and faster. But the minute you
do KBE you run the risk of losing sight of the real goal and focusing on the
application or the technology, rather than on the product.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 13

The automation of PLM and/or the optimal design process allows me to
innovate more. This should be the second fundamental goal of KBE. Again, if
our only goal is to automate, to take a process from thirty hours down to ten
minutes, then we have missed the real goal. I have saved the company some real
money, but have done nothing for the product. I should take that time savings
and use it to innovate, to create new and better products. If you understand these
two items as the objective, you can get a lot more mileage out of KBE than if you
simply aim for the application.

KBE APPLICATION DEVELOPMENT PROCESS
It is widely accepted in the Knowledge Management community that there are
two kinds of knowledge, tacit and explicit. Tacit is typically described as the
knowledge in a person’s head, the know-how, while explicit knowledge is anything
that can be documented, archived, and codified, or the know-that. As we create
knowledge, we cycle through four separate transition states where we either
convert tacit knowledge to tacit-or-explicit, or convert explicit knowledge to tacit-
or-explicit.

Ikujiro Nonaka and Hirotaka Takeuchi put forth this idea in their book, The
Knowledge-Creating Company.3 The authors called converting tacit to explicit
knowledge “externalization,” and defined it as doing it and then describing it. The next
stage is explicit-to-explicit, and is referred to as “combination.” It is defined as
finding it and combining it. The next stage is explicit-to-tacit, referred to as
“internalization,” and is defined as hearing it and believing it. The last stage is tacit-
to-tacit, called “socialization,” and is defined as watching it and then doing it. Then
the cycle starts all over again. I provide this background information because the
definitions of each stage come very close to describing the activities in the KBE
application development process.

The process illustrated in Figure 6 (on the following page) is one we had
developed internally, but we have found that most everyone doing KBE falls
upon the same process. I color-coded the figure so that you can link a knowledge-
creating activity to a corresponding step in the KBE development process. As you
go around the outside perimeter, you will see the specific KBE activities
associated with each step, but deepen the meaning of these activities by applying
the knowledge creation descriptions at the same time. On the inside perimeter, I
show the outputs between each step.

3 Nonaka, Ikujiro and Takeuchi, Hirotaka. The Knowledge-Creating Company: How Japanese Companies Create the

Dynamics of Innovation. Oxford University Press, May 1995.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

14 Copyright 2004 Collaborative Product Development Associates, LLC

Briefly going through the process, I would strongly recommend that you start by
doing the ROI, to determine if it is worth writing the application. At this stage
you would determine whether or not there is a well-defined process, how you
would do it (whether in parametrics or with code), and the magnitude of risk.
Then you need to collect all the data by capturing all the information and
knowledge from your subject-matter experts. The next step is to formalize the
information you have gathered into a state the computer can use, and then to
package it by writing the actual code, and then activate the system by deploying to
the users. Then the cycle starts all over again.

I will not pretend this is how the process takes place in real life. Often, if we
identify a hot project, we will jump right to the Capture phase, or to a formulized
Package. Sometimes, the engineer will get really excited and go right from Identify
to Package. Then we have to come back and Capture and Formalize later. But the
figure does represent the most optimized sequence of events.

KBE APPLICATION SELECTION
How do you select a process for automation? Boeing taught us to select the most
redundant activity, the one you would give the first year college graduate. This is
typically the activity that the experienced engineer hates to do because it is repetitious,
procedural, and mundane. Although this sounds like we are maligning the graduate,
we all have to start somewhere. And this becomes a great place to start KBE
because it is usually easy to automate. Consider this the low hanging fruit.

FIGURE 6
KBE Application
Development

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 15

One of the places that we started this process was with a wing. We broke it down
and created a taxonomy of it. The taxonomy grouped the parts into categories of
similar configuration. Similar configurations were based on how the parts are
made. Our resulting taxonomy is illustrated as a pie chart in Figure 7.

Copyright VAI, Inc.

KBE Application Selection
• Select Most Redundant & Easy to Automate

Nomenclature
Part

Category
SHEAR TIE 1.0
TEE 1.0
STRAP 2.0
WEB 2.0
FACE SHEET 2.0
PLATE 2.0
DOUBLER 2.0
SKIN 2.0
SKIN PANEL 2.0
CHORD 3.0
STRINGER 3.0
FILLER 4.0
SHIM 4.0
ANGLE 5.0
CLIP 5.0
TENSION CLIP 5.0
ZEE 5.0
BRACKET 5.0
GUSSET 5.0
SILL 5.0
CHANNEL 5.0
SUPPORT 5.0

Category PercentagesNomenclature
Part

Category
STIFFENER 6.0
RIB POST 6.0
CORE ASSY 7.0
CORE KIT 7.0
BONDED WEB ASSY 7.0
SPLICE PLATE 8.0

We looked for the largest number parts in any one category, which happens to be
Category 6, for the stiffeners. Stiffeners, rib posts, and stringers all share design
similarities that allow us to create any one of them with the same application. In
other words, this application will create twenty-seven percent of the wing parts
and, given the parts follow a well defined and redundant process, is clearly worthy
of automation.

COMPOSITE BOND TOOL
Figure 8 (on the next page) shows a composite bond tool. We selected the bond
tool for this presentation because it is made with both rules and parametrics. The
top half of it uses Visual Basic to create the geometry, and the base, or bottom
half, is created using templates that are supported by parametrics. Our current
estimate for creating the top of the tool would be three weeks for one man, in a
V4 environment. The time improves with V5, but certainly not to the degree we
would like. Note that the design of the tool is well documented and covers ninety
percent of the situations encountered by the tool designer. The base is not
included in that estimate, because it is simply provided as a rectangular volume,
which the shop creates itself by using a design in a shop standard. Through
automation we have reduced the process to fifteen minutes from three weeks,

FIGURE 7
KBE Application
Selection

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

16 Copyright 2004 Collaborative Product Development Associates, LLC

including the base. We realized an additional benefit after our data was
transmitted to the shop. They found a substantial timesaving in using our data
because every model was standardized from tool to tool. They no longer had to
figure out an individual engineer’s style as they interpreted the design intent or
find data at different locations within the model.

Remember my caveat that the application is not the goal. After we got the process
down to fifteen minutes, we approached upper management and asked for an
additional four weeks. We felt we could get the process down to ten minutes. We
learned a lot and had greatly improved our object-oriented programming skills, and
we wanted to go back and add all of the “bells and whistles.” But as far as upper
management was concerned, they had just won the lottery and did not care about
the other five minutes. They were looking towards the next product and its KBE
application where three weeks could be reduced to fifteen minutes. For the rest of
us, it was easy to get wrapped up in the application and lose sight of the real goal.

KBE METRICS
Figure 9 (on the next page) shows some of our metrics for the bond tools on one
of our programs. It was a quick program, so the tooling department lacked an
opportunity to examine each tool and properly estimate the design time to
completion. As a result, they estimated a time of sixty hours for each tool across
the board. It was not a realistic estimate, because a manually created tool can
range anywhere from 40 to 240 hours, but they threw 60 hours out as a target to
meet our non-recurring cost requirements.

FIGURE 8
KBE Composite
Bond Tool

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 17

As the figure shows, when we started using the bond tool application for the first
time in production, the actual hours were almost as high as the estimates. This
was mostly due to some bugs and working out the process of incorporating KBE-
generated models into our system. As these issues were worked out, the hours
came down. The spike for the seventh tool was caused by its large size. We had to
add rules to accommodate splices and special headers. The spikes for the last two
tools were caused by additional knowledge that had to be incorporated into the
bond tool application. These tools were a particular configuration that we had not
seen before.

Some of you might be wondering how we can say that we went from three weeks
to fifteen minutes and then show metrics averaging twenty to thirty hours upon
completion. This is because the program we were supporting required 2D
drawings, as well as models, and the three weeks considered only modeling time.
Also there are portions of the model that are very difficult to automate, like
tooling balls, so they are put on manually after the KBE application is complete.
So a good lesson learned is the eighty-twenty rule, where you can typically
automate eighty percent of the completed product at a very reasonable
development cost. But attacking the last twenty percent could be costly, and
usually can only be justified with high volume or special circumstances. When you
consider that realistic estimates for the tools I am showing was between one
hundred and fifty to two hundred hours, then obtaining the twenty to thirty hours
through automating eighty percent of the process starts to make sense.

FIGURE 9
KBE Metrics

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

18 Copyright 2004 Collaborative Product Development Associates, LLC

THE TALE OF THE KNOWLEDGE ONION
I would like to share a story called “The Tale of the Knowledge Onion” (see
Figure 10). It is a story in metaphor for our experience implementing KBE. It
starts with the purchase of new tools to do KBE; everybody is happy, because we
have brand new technology, which causes great excitement. It is like buying a new
shiny and smooth onion from the grocery store. It looks and feels like a baseball,
and who doesn’t like baseball? We learn Visual Basic, C++, the interfaces, and we
pick a project. We select a well-defined process. We talk to all our subject-matter
experts, those we call the gray beards. We start writing code. This is a good time, a
fun time in the KB application process.

It has been a wild ride back from the store, but now we are home with our new
onion and it is time to use it. We started peeling off the shiny outer skin of the
onion, and our eyes started to water. What is happening? We had actually
completed an application, and we discovered the limitations of the CAD system.
The API is not as open as we would like, and we had to write some workarounds
because we could not access certain CAD operations or the accessible operations
did not perform as advertised. New knowledge starts to crop up. We thought we
gathered everything the first time out with the experts, but we found something
was missing. Now we had to rewrite code, and a feeling of disillusionment fell
over us like a thick fog.

What kind of new knowledge comes up? When we created the original bond tool
shown in the upper right-hand corner of Figure 11, the experts were finally able

FIGURE 10
KBE Application
Development

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 19

to visualize the parts in 3D and we were ready to send them to downstream
functional groups. When we sent the header out, the tool fabrication group
wanted to know where the tooling holes were, which confused us since they were
not in the design standard. It turns out they always put in the holes in order to
line up all the headers, but never got around to requesting an update to the
standard. We were able to add those without a problem.

Then we gave the header to NC Programming for preparation to machine, and
they were happy because we put the header in the format they had requested. But
right away they went into the CAD and they added a chamfer on each of the
headers. Again, the chamfer was not in the spec, but it was something they always
added internally. Apparently, they had not told us about it because we had not
asked. We put the chamfer on, which saved them time. Then, during the design
reviews for two different configurations, we were asked to add a horizontal
member in one and splices in the other. To us these tools looked no different
than any previous tool, however they had exceeded some unwritten limit in height
or length that required horizontal members or splices. Because there was no
written definition of where to put the horizontal members or splices, we had to
confer with the experts. Pretty soon we were rewriting code, lots of code.

Back to our onion. We have the cover off and we are peeling the layers. By now,
we are squinting our eyes and wiping away the tears. But we now encounter
another attack on our senses that was not expected, and we are totally taken aback
by a strong odor. Where is that smell coming from? Up to now, we have been
able to rewrite the application without too much trouble. But even a balloon has

FIGURE 11
KBE Composite Bond
Tool

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

20 Copyright 2004 Collaborative Product Development Associates, LLC

limits to its flexibility, and we have reached that limit in our code. Adding splices
is going to require a totally different approach in the code and an entire
subroutine will need to be revised. The experts have now had a chance to fully
exploit the application and they want more. They offer more “hidden” knowledge
and ask that it gets incorporated into the application. Where were they when you
asked the first time? “We have not made tall tools in years,” they lament, as we try
to work horizontal members into the headers. The new knowledge drives another
major re-write of the code and reality begins to set in.

Missing knowledge during the acquisition process can certainly hurt, but
uncovering undocumented knowledge, what we like to call “tribal knowledge,”
and quickly using it can be equally painful. Figure 12 shows our bond tool built to
the design standard on the left, and the way the shop fabricated the base on the
right.

Remember that originally they never got the base as a 3D model or a 2D drawing.
They were allowed to do whatever they wanted within the constraints of the shop
standard. Typically the length of the tool runs parallel with the centerline that
aligns headers in a row. This is because the headers act as support ribs and their
number is determined by the length of the part. But when the part requires few
headers because its width exceeds its length, then the tool is shallow, and the shop
would turn the I-beams ninety degrees from what was stipulated in the shop
standard, as shown in the right-hand-side view. The I-beams are steel extrusions
that in cross section form an “I.” The shop did this on their own initiative
because it helped them to install the L-brackets. From their perspective it had

FIGURE 12
KBE Composite Bond
Tool
Standard vs. Revised

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 21

little impact on the tool since the headers supported the bond surface of the tool.
They had been doing this for five or six years, and because there were so few
tools requiring this adaptation, they never fed it back to Tool Design to get the
shop standard revised; basically no one outside of Tool Fabrication was aware of it.

When we learned about it, we were pretty excited, thinking we had uncovered
some new tribal knowledge. We incorporated it into our application and then
presented it to upper management to show them how the application created one
base, but then based on shop best practices, it automatically converted to another.

We thought it was wonderful. But it turns out this was not the best design
practice. We typically do not have stress engineers analyze our bond tools; it
would not be cost effective. But if their analysis could be captured in the
application, then we could offer an added bonus to the application and learn how
to incorporate stress analysis into KBE at the same time. The stress engineer on
our team looked at the bases and started developing the code to analyze the bond
tool inputs (size and weight of part), and then output bond tool face sheet
thickness, header count, and base direction. Through his analysis, he found out
that when you rotate that base, the torsional capabilities fall off dramatically. The
shop was accidentally creating unstable tools that were prone to movement
without special handling. As it turns out, the users of the tools (the Bond Shop)
had developed their own workarounds for these tools. We had to pull all that
code back out once we added the stress routine. The experts did not agree, and
we had to rewrite the code.

We are at the end of our story (see Figure 13), and we have been pretty intimate
with our onion for quite some time. We are starting to gain a new appreciation for
our onion, or at the very least a new perspective. It is certainly pungent, affecting
more senses than we expected. It is very strong and we have learned that we need
to know how to use that strength to our advantage. But this is our first onion, and
as much as we would have liked to avoid the adverse affects, the story is pretty
much over (except for the crying and a total collapse in discipline). We did not
waste any time peeling our onion and now we get to rewrite more code. However,
next time our application will be more modular, and we will test our tribal
knowledge to make sure all experts agree, and we will keep a better eye out for
service packs in the CAD that impact our code, and we will ultimately rewrite less
code.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

22 Copyright 2004 Collaborative Product Development Associates, LLC

LESSONS LEARNED – ONION WISDOM
I hope that my story will help you remember the lessons learned, what we like to
call onion wisdom. For emphasis I have summarized some of the more important
lessons as follows:
• Incorporating knowledge typically falls somewhere between challenging and

frustrating. It is not easy and it requires someone to learn a unique skill set, a
“knowledge engineer” skill set.

• You would think that the deeper you dig for knowledge the better. However,
oddly enough, sometimes you can dig too deep. There are political land mines
and/or antiquated processes that are sometimes best left alone. Your mission
is to automate the well known. Redesigning the product or its process is best
left to the subject matter expert. Should you uncover an “ugly” under a rock,
assess its impact to your ROI and to the company, then either let upper
management buy off on the risk, cancel the project, or put the rock back,
quickly.

• You need to ask the right questions, as I hope I have illustrated. Easier said
than done, but over time you learn to create a “logic tree” in your mind while
interviewing the subject matter experts. You follow that logic and see holes in
the tapestry or missing steps, and you fill them with the right questions.

• You need to continually ask. Most of us do not realize the number of
decisions we make daily as we go about our business. These are the decisions
you may want to capture. Often the experts will leave something out simply

FIGURE 13
KBE Application
Development (Not)

Courtesy Vought Aircraft Industries, Inc.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 23

because to them it is unimportant or they do not understand your needs. So
you must maintain an ongoing communication with your experts during the
development process so that you can continually capture hidden knowledge.

• Not every input (be it information or knowledge) is necessarily a good input.
Everyone’s process is “tweaked” continually by the users. Chasing “best
practices” can become as elusive as chasing butterflies. So when in doubt, test
your inputs by having them examined by all of the subject matter experts,
from the authors to the users.

• Knowledge engineers must understand the entire process, and they need to
identify all the requirements. Any missing knowledge will obviously impact
the outcome of your application. We are investigating the use of design
structure matrix (DSM) and axiomatic design to help us manage all of the
requirements we need to codify into our applications.

• You need to remove barriers to innovation. That can be a real issue with the
subject matter experts, who are as wary of each other as they are of you. But
you will find yourself in a unique situation as you try to automate a process.
Procedures will be questioned and plenty of waste will become apparent.
People will want to cling to their regular routine and protect their turf. But the
computer does not care about any of these issues; it just wants the facts so it
can generate an outcome. Your job is to get the experts to agree and work
collectively toward the best process, hopefully all within the constraints of
your existing procedures.

• There are elements of knowledge management (KM) in KBE. This is an issue
because the KM people do not know what KBE is doing, and the KBE
people do not follow what knowledge management is doing. Both disciplines
are practicing similar skills, but there are very few who see the advantage of
maintaining a strong relationship between the two. Knowledge management
is the conscious strategy of getting the right knowledge, and the right people,
at the right time, and helping people share, and put information or knowledge
into action, in ways that will improve organizational performance. This is
huge when applied to KBE, and you need to keep it in mind. Like it or not,
your application contains knowledge that will need to be managed. Managing
knowledge deals with truth maintenance (testing), knowledge half-life (new
knowledge is continually created replacing the knowledge in your application),
and additional concepts that will improve your application like knowledge
acquisition, knowledge mapping, complexity theory, semantics, and ontology.

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation
Design Creation and Validation, Product Development

24 Copyright 2004 Collaborative Product Development Associates, LLC

QUESTIONS AND ANSWERS
Question: What was the impetus within your company to start your group, and to
capture the knowledge? Did it come from engineering management, from
information systems, from upper management?

Premetz: It came from upper management. After Carlyle purchased us, they
wanted to examine our internal capabilities and our ability to accept new work.
Upper management identified neglected areas in our manufacturing (Shop Floor),
engineering (Design, Manufacturing, Planning), and technologies (Stress,
Materials & Processes). They approached middle management to find out which
technologies or initiatives were immediately needed that would not just match our
competitors’ level, but would hopefully leapfrog them by five years. That was the
impetus to get us going. KBE was identified as one of those initiatives.

Question: As you mentioned, knowledge acquisition is the most critical part of
knowledge-based engineering application. How do you organize your group to
support this kind of application – do you have one engineer on the project start
knowledge acquisition as well as coding? Or do you organize your group with
some dedicated to knowledge acquisition and others to the coding?

Premetz: There are only seven people in my group, so we do the acquisition and
the coding concurrently. It is important to me that they learn both skills. We find
a person can do a better job of codifying the knowledge if they know how to
acquire it, and have an easier time codifying if they are the ones doing the
acquisition. Also, due to the way we acquire knowledge by going back to the
subject-matter experts at various stages of development, it ends up being more
efficient to have the same person do both tasks for their particular application. So
one engineer does both.

Question: In regard to the ROI and the justification, if you look at the other
lifecycle events, isn’t it very difficult to quantify the overall savings? How do you
handle that case?

Premetz: You are absolutely right. For instance, in the case of the base, what I did
not mention were some savings that were totally unanticipated. Our original goal
was to obtain a reduction in hours in tool design through the creation of the 3D
digital model. But feedback about a month later from the shop floor identified
twenty-five percent savings in the cost of the materials. How did we do that?
Before our application, the base was made by using a shop standard. But
Procurement could not predict what to order in materials until Tool Fabrication,
the people who actually build the base, had sketched the base out for them. So
they ordered a lot more material than what was needed rather than risk schedule
by not having enough. This created either scrap or over stock. Now they can
order exactly what they need, which resulted in the twenty-five percent savings in
materials. We then found out from Tool Fabrication that because they did not

Peeling the Knowledge Onion:
Development of a Bond Tool Operation Using VB Automation

Design Creation and Validation, Product Development

Copyright 2004 Collaborative Product Development Associates, LLC 25

actually have to go through the shop standard and put the base together, we saved
about sixty percent of their time. It is difficult to identify those savings up front,
because you only realize them when the application actually goes out. On the
other hand, having never experienced the benefits of KBE, I would have had a
difficult time getting the experts to sign up for savings on such a dramatic scale.
But now that we have done it once, we know better, and will have an easier time
talking to those experts and identifying the savings.

