
Rational Software Corporation
Addendum

RATIONAL ROSE® REALTIME

VERSION:2003.06.12
WINDOWS/UNIX/LINUX

http://www.ibm.com/support

Legal Notices
© Copyright IBM Corporation. 1999, 2004. All Rights Reserved.

Part Number: 800-026121-000
Version Number: 2003.06.12

This manual (the "Work") is protected under the copyright laws of the United States
and/or other jurisdictions, as well as various international treaties. Any reproduction
or distribution of the Work is expressly prohibited without the prior written consent
of Rational Software Corporation.

Rational, Rational Software Corporation, the Rational logo, Rational Developer
Network, AnalystStudio, ClearCase, ClearCase Attache, ClearCase MultiSite,
ClearDDTS, ClearGuide, ClearQuest, ClearTrack, Connexis, e-Development
Accelerators, DDTS, Object Testing, Object-Oriented Recording, ObjecTime,
ObjecTime Design Logo, Objectory, PerformanceStudio, PureCoverage, PureDDTS,
PureLink, Purify, Quantify, Rational Apex, Rational CRC, Rational Process
Workbench, Rational Rose, Rational Suite, Rational Suite ContentStudio, Rational
Summit, Rational Visual Test, Rational Unified Process, RUP, RequisitePro,
ScriptAssure, SiteCheck, SiteLoad, SoDA, TestFactory, TestFoundation, TestStudio,
TestMate, VADS, and XDE, among others, are trademarks or registered trademarks of
Rational Software Corporation in the United States and/or in other countries. All
other names are used for identification purposes only, and are trademarks or
registered trademarks of their respective companies.

Portions covered by U.S. Patent Nos. 5,193,180 and 5,335,344 and 5,535,329 and
5,574,898 and 5,649,200 and 5,675,802 and 5,754,760 and 5,835,701 and 6,049,666 and
6,126,329 and 6,167,534 and 6,206,584. Additional U.S. Patents and International
Patents pending.

U.S. GOVERNMENT RIGHTS. All Rational software products provided to the U.S.
Government are provided and licensed as commercial software, subject to the
applicable license agreement. All such products provided to the U.S. Government
pursuant to solicitations issued prior to December 1, 1995 are provided with
“Restricted Rights” as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFARS,
48 CFR 252.227-7013 (OCT 1988), as applicable.

WARRANTY DISCLAIMER. This document and its associated software may be used
as stated in the underlying license agreement. Except as explicitly stated otherwise in
such license agreement, and except to the extent prohibited or limited by law from
jurisdiction to jurisdiction, Rational Software Corporation expressly disclaims all
other warranties, express or implied, with respect to the media and software product
and its documentation, including without limitation, the warranties of
merchantability, non-infringement, title or fitness for a particular purpose or arising

from a course of dealing, usage or trade practice, and any warranty against
interference with Licensee’s quiet enjoyment of the product.

Third Party Notices, Code, Licenses, and Acknowledgements
Portions Copyright ©1992-1999, Summit Software Company. All rights reserved.

Microsoft, the Microsoft logo, Active Accessibility, Active Client, Active Desktop,
Active Directory, ActiveMovie, Active Platform, ActiveStore, ActiveSync, ActiveX,
Ask Maxwell, Authenticode, AutoSum, BackOffice, the BackOffice logo, bCentral,
BizTalk, Bookshelf, ClearType, CodeView, DataTips, Developer Studio, Direct3D,
DirectAnimation, DirectDraw, DirectInput, DirectX, DirectXJ, DoubleSpace,
DriveSpace, FrontPage, Funstone, Genuine Microsoft Products logo, IntelliEye, the
IntelliEye logo, IntelliMirror, IntelliSense, J/Direct, JScript, LineShare, Liquid Motion,
Mapbase, MapManager, MapPoint, MapVision, Microsoft Agent logo, the Microsoft
eMbedded Visual Tools logo, the Microsoft Internet Explorer logo, the Microsoft
Office Compatible logo, Microsoft Press, the Microsoft Press logo, Microsoft
QuickBasic, MS-DOS, MSDN, NetMeeting, NetShow, the Office logo, Outlook,
PhotoDraw, PivotChart, PivotTable, PowerPoint, QuickAssembler, QuickShelf,
RelayOne, Rushmore, SharePoint, SourceSafe, TipWizard, V-Chat, VideoFlash, Visual
Basic, the Visual Basic logo, Visual C++, Visual C#, Visual FoxPro, Visual InterDev,
Visual J++, Visual SourceSafe, Visual Studio, the Visual Studio logo, Vizact, WebBot,
WebPIP, Win32, Win32s, Win64, Windows, the Windows CE logo, the Windows logo,
Windows NT, the Windows Start logo, and XENIX, are either trademarks or
registered trademarks of Microsoft Corporation in the United States and/or in other
countries.

Sun, Sun Microsystems, the Sun Logo, Ultra, AnswerBook 2, medialib, OpenBoot,
Solaris, Java, Java 3D, ShowMe TV, SunForum, SunVTS, SunFDDI, StarOffice, and
SunPCi, among others, are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Purify is licensed under Sun Microsystems, Inc., U.S. Patent No. 5,404,499.

Licensee shall not incorporate any GLOBEtrotter software (FLEXlm libraries and
utilities) into any product or application the primary purpose of which is software
license management.

BasicScript is a registered trademark of Summit Software, Inc.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides. Copyright © 1995 by
Addison-Wesley Publishing Company, Inc. All rights reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Contents
Preface . xi
What’s New. xi

Updates to Web Site Addresses. .xii

Audience. .xii

Other Resources .xii

Rational Rose RealTime Integrations with Other Rational Products xiii

Contacting Rational Customer Support . xiv

1 Referenced Configurations .17
Requirements for Linux . 17

Requirements for Windows NT. 18

Requirements for Windows 2000 . 18

Requirements for Windows XP Pro . 19

Requirements for UNIX . 20

Referenced Configuration Requirements for the Eclipse and Rational Rose
RealTime Integration . 21

2 Installing Rational Rose RealTime on Linux.23
Before You Install . 23

Requirements for Linux. 24
Installing in Secure Environments . 24
Installing Multiple Versions of Rational Rose RealTime for Linux. 24
Stopping and Restarting an Installation . 24

Installation Instructions. 25

After You Install. 29
Installing GNU 3.2 . 29
Source the Setup Script . 29
Unmount the CD-ROM Drive . 30
ClearCase Workstation Configuration . 30

Command-line Access to the Source Control Tool . 30
Element Type Setup: type Manager . 31
Contents v

Configure the ClearCase Repository . 31
Set the Connexis Variable . 32
Verify the Connexis Installation. 32

Verifying your Installation using BasicTest .32
Host Configuration Installation Verification .32
BasicTest Server Output .34
BasicTest Client Output. .35

Starting Rational Rose RealTime on Linux. 36

3 General Issues . 37
Startup Issues .37

Starting Rational Rose RealTime When an Instance is Currently Running 37
Toolset Freezes on Startup. 38
Virus Scanning Applications Affect Startup and Shutdown 38

Uninstall Issues .38

Windows-Specific Issues .39
Service Pack Requirement Update for Windows . 39
Using Hummingbird Exceed 7.1 on a Computer Running Windows Applications

and Rational Rose RealTime . 39
Using Rational Rose RealTime on Windows XP Pro Configurations 39
Using Rational Rose RealTime without Appropriate Privileges 40
Building Dependencies on Case-Insensitive File Systems. 40
File Association for Compiled Scripts . 41
Windows CE GetSystemTime() Function Does Not Return Milliseconds. 41
Symbolic Links with TargetRTS . 42
Spaces in Directory Names . 42

UNIX-Specific Issues .43
Printing on UNIX. 43
Browser Requirements for UNIX . 43
Troubleshooting when the Toolset Freezes on UNIX . 44
Rational Rose RealTime Crashes when You Debug Using

Tornado 2.2 on UNIX. 45
Refresh Problems with Exceed. 45
Specifying a Location or File Name Containing Spaces (UNIX). 45
Starting vi as an External Editor from Rational Rose RealTime. 46
Unable to Open Some Links in the Online Help . 46
Exceptions Occur When You Use Configuration Management in Rational Rose

RealTime . 46
vi Contents

Case Sensitivity within Paths . 46
Window Order Policy . 46
Non-GUI-based External Editors . 47
Setting the Stack Space Limit . 47
Rational Rose RealTime Fails to Build a Component on Solaris 2.6 47

Linux-Specific Issues .47
Using the C++ Analyzer on Linux. 48
Displaying the Version Tree on Linux . 48
Using Connexis Viewer on Linux . 48
Updating GNU Libraries on Linux 7.3 . 48
Using Shortcut Keys to Cycle Through Open Specification Dialog Boxes

on Linux . 49
Using Web Publisher on Linux . 49
Viewing the Online Help on Linux . 49
Using Context-Sensitive Help on the Preferences Dialog in Eclipse on Linux . . 49

Cross-Platform Issues .49
Synchronizing Code between Rational Rose RealTime and Eclipse. 50
Rational Rose RealTime and Eclipse Integration Does Not Support Java. 50
Using Rational Rose RealTime with a Node Locked License Does Not Warn User

About Expiration . 50
Using Pathmaps in Rational Rose RealTime . 51
Limitations on the Number of Open Windows . 51
Limitations in the Specification History List . 52
Loading a Workspace might Cause Default Color Settings to

Change Permanently . 52
Do Not Use $& When You Define a PathMap . 52
Use Caution When Modifying OutPutDirectory . 52
Using Rational Rose RealTime on Non-English Installations Causes an

Unreadable Font When Viewing Generated Code . 53
Unable to use Parameters with the cm_getcaps Script 53
Problems Compiling Java Models . 53
Problems Connecting to a Target . 53
Using Sequence Diagrams . 53
Using the Debugger-xxgdb Tool and Running your Component Instance 53
Using C and C++ Add-ins . 54
Code Generator Runs Out of Memory When Generating Very Large Models . . 54
Using the Get and Set Methods in the Attribute and Operation Tools 54
Web Publisher Applet Does Not Load Properly . 55
Using the Frameworks Dialog . 55
Contents vii

Scoping Descriptors for Nested Classes . 55
No Codesync Support for Java . 56
Using the GetSelected Functions . 56
Using the Find Command Might Return Too Many Results 58
No Support for Automatic Unwired Port Registration for Java 58
Error Occurs When Printing a Diagram . 58
ROSERT_NO_FEEDBACK - Prompting for Information When an Exception

Occurs . 58
ROSERT_TORNADO_TIMEOUT - Modifying the Default Timeout for wtx

Commands . 59
Referenced Configuration for Nucleus Does Not Include Socket Support 59

Online Help Issues .60
Navigating Through the Online Help. 60
Viewing Animated Demonstrations. 60
Problems Accessing Rational Rose Help while Running Rational Rose RealTime

on Windows . 61
Using Context Sensitive Help Might Cause Message to Display 61
Maintaining a Single Favorites List . 61
Using the Index Tab in the Online Help . 62

Documentation Updates .62
Update to Abort Documentation . 62
Update to Code for Example RTMessage_getPortIndex 63
Update to Code for Example RTMessage_getData . 64
Update to Documentation for Launching Model Integrator 64
Code Example for rts and RTCapsule_context Causes Compilation Errors . . . 65
Update to Example Model for Type Descriptors . 66
Update to Referenced Host Configurations Information 66
Updated Reference to Example Model for Type Descriptors 67

Using Type Descriptor Functions .67

4 Using Globally Unique Identifiers (GUIDs). 69
Advanced Handling of Globally Unique Identifiers (GUIDs).69

Generating GUIDs .71
Recommended Steps for Enabling GUIDs in Multi-Stream Development 71

Managing GUIDs .72

Known Issues with GUIDs .75
viii Contents

5 Eclipse and Rational Rose RealTime Integration. 77
Integration Overview .77

Communication Overview .79
Configuring a Listener . 80
Configuring a Connector . 80

Installing the Eclipse and Rational Rose RealTime Integration Software . . .80

Configuring Preferences in Eclipse .81
Communication Tab . 82

Features Tab . 84
Path Mappings Tab . 86

Specifying Path Mappings . 88

Configuring Preferences in Rational Rose RealTime.89

Generating Code from Rational Rose RealTime .92

Removing Generated Code from Rational Rose RealTime92

Refreshing an Eclipse Project .93

Synchronizing Code Between Rational Rose RealTime and Eclipse 93

Editing Code in Eclipse .94
Before You Edit. 95
Editing Choice Point, State (Entry and Exit), and Transition Code in Eclipse . . 96
Editing Operation Code in Eclipse . 96
Editing Capsule and Class Code in Eclipse . 97

Configuring Build Settings in Rational Rose RealTime 98

Configuring Build Settings in Eclipse .100

Building in Eclipse .101

Navigating to Build Errors .103

Navigating From Rational Rose RealTime to Eclipse 104
Navigating from a State Diagram . 104
Navigating from a State Diagram or State Diagram Browser 106
Navigating from the Model View Tab in the Browser . 107

Navigating from Eclipse to Rational Rose RealTime108

Getting Started. .110

Example Workflow .113

Troubleshooting .131
Contents ix

6 OSEK/VDX Support in Rational Rose RealTime 133
Overview of OSEK/VDX Support in Rational Rose RealTime133

Introduction to the OSEK OIL Files .134

Configuring the TargetRTS and Adapting it for a Particular OSEK/VDX
Operating System .135

Updating Tasks .136

Index . 139
x Contents

Preface
This addendum provides important information about this specific release of Rational
Rose RealTime. The information in this addendum supersedes the information in the
online Help and hardcopy documentation included in Rational Rose RealTime
version 2003.06.00.

This addendum is organized as follows:

■ Referenced Configurations on page 17
■ Installing Rational Rose RealTime on Linux on page 23
■ General Issues on page 37
■ Using Globally Unique Identifiers (GUIDs) on page 69
■ Eclipse and Rational Rose RealTime Integration on page 77
■ OSEK/VDX Support in Rational Rose RealTime on page 133

What’s New

This release includes the following new features:

■ Eclipse and Rational Rose RealTime Integration on page 77
■ OSEK/VDX Support in Rational Rose RealTime on page 133

This release includes the following updates in the following chapters:

■ Referenced Configurations on page 17
■ General Issues on page 37
xi

Updates to Web Site Addresses

The following table identifies some of the Rational Web addresses that were updated
in this release. If you encounter a link that is no longer active, use the
http://www.ibm.com/ link and perform a search on your desired topic.
.

Audience

This guide is intended for all readers, including managers, project leaders, analysts,
developers, and testers.

Other Resources

■ Online Help is available for Rational Rose RealTime.

Select an option from the Help menu.

All manuals are available online, either in HTML or PDF format. To access the
online manuals for Windows configurations, click Help > Contents, Help > Index, Help
> Search, or for other configurations, you can select the desired .pdf document file
from the <ROSERT_HOME/Help directory.

■ To access Rational Rose RealTime support online, see: http://www.ibm.com/support/.

■ To provide feedback on documentation for Rational products, see
http://www.ibm.com/software/rational/support/documentation/.

Area Web Address Phone Number

Support http://www.ibm.com/support/ 1-800-IBM-SERV

AccountLink http://www.ibm.com/software/rational/support/licensing/ 1-800-IBM-SERV

Training and
Education

http://www.ibm.com/services/learning/ 1-800-IBM-TEACH

Technical
Publications

http://www.ibm.com/software/rational/support/
documentation/

1-800-IBM-SERV

Rational
Software
Products

http:www.ibm.com/software/rational/ 1-800-IBM-SERV
xii Preface

■ For more information about Rational Software technical publications, see
http://www.ibm.com/software/rational/support/documentation/.

■ For more information on training opportunities, see the Rational University Web
site: http://www.ibm.com/services/learning/.

■ For articles, discussion forums, and Web-based training courses on developing
software with Rational Suite products, join the Rational Developer Network by
selecting Start > Programs > Rational Suite > Logon to the Rational Developer Network.

Rational Rose RealTime Integrations with Other Rational
Products

Integration Description Where it is Documented

Rational Rose
RealTime–
ClearCase

You can archive Rational Rose RealTime
components in ClearCase.

■ Toolset Guide: Rational Rose
RealTime

■ Guide to Team
Development: Rational Rose
RealTime

Rational Rose
RealTime–
UCM

Rose RealTime developers can create
baselines of Rose RT projects in UCM
and create Rose RealTime projects from
baselines.

■ Toolset Guide: Rational Rose
RealTime

■ Guide to Team
Development: Rational Rose
RealTime

Rose RealTime–
Purify

When linking or running a Rational
Rose RealTime model with Purify
installed on the system, developers can
invoke the Purify executable using the
Build > Run with Purify command.
While the model runs and when it
completes, the integration displays a
report in a Purify Tab in Rational Rose
RealTime.

■ Rational Rose RealTime
Help

■ Toolset Guide: Rational Rose
RealTime

■ Installation Guide: Rational
Rose RealTime
Rational Rose RealTime Integrations with Other Rational Products xiii

http://www.rational.com/documentation/
http://www.rational.com/university

Contacting Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
Rational Customer Support.

Note: If you encounter any difficulty with the information in the preceding table,
contact IBM General Services at 1-800-426-4968.

Rational Rose
RealTime–
RequisitePro

You can associate RequisitePro
requirements and documents with
Rational Rose RealTime elements.

■ Add-ins, Tools, and Wizards
Reference: Rational Rose
RealTime

■ Using RequisitePro

■ Installation Guide: Rational
Rose RealTime

Rational Rose
RealTime–
SoDA

You can create reports that extract
information from a Rose RealTime
model.

■ Installation Guide: Rational
Rose RealTime

■ Rational SoDA User’s
Guide

■ SoDA Help

Integration Description Where it is Documented

Your Location Phone Number E-mail

North, Central, and South
America

1 - 800 IBM-SERV

(toll free)

sw_support@us.ibm.com

Europe, Middle East, Africa 1 - 800 IBM-SERV

(toll free)

sw_support_emea@nl.ibm.com

Asia Pacific 1 - 800 IBM-SERV

(toll free)

sw_support_ap@au.ibm.com
xiv Preface

When you contact Rational Customer Support, be prepared to supply the following
information:

■ Your IBM customer number (ICN)

■ Your name, company name, telephone number, and e-mail address

■ Your operating system, version number, and any service packs or patches you
have applied

■ Product name and release number

■ Your Service Request number (PMR#) if you are following up on a previously
reported problem

If you send e-mail about a previously reported problem, include the following in the
subject field:

[PMR XXXXX YYY ZZZ]

where XXXXX YYY ZZZ is the request number of the issue. For example:

[PMR 12345 678 999] - New data on Rational Rose RealTime install issue
Contacting Rational Customer Support xv

xvi Preface

1Referenced
Configurations
Contents

This chapter is organized as follows:

■ Requirements for Linux on page 17
■ Requirements for UNIX on page 20
■ Requirements for Windows NT on page 18
■ Requirements for Windows 2000 on page 18
■ Requirements for Windows XP Pro on page 19
■ Referenced Configuration Requirements for the Eclipse and Rational Rose RealTime

Integration on page 21

Requirements for Linux

The minimum supported configuration for running Rational Rose RealTime on Linux
is as follows:

■ Red Hat 7.3 and 8.0.

■ For Linux operation, the minimum workstation is a 450 MHz Pentium III.

■ The minimum is 256 MB of RAM. We recommend 512 MB of RAM with
approximately three times this amount of swap space.

■ Minimum 450 MB of free disk space for the Rational Rose RealTime installation.

For a list of the required Linux patches applicable to your operating system, see the
Rational Rose RealTime Web site (http://www.ibm.com/software/rational/), or run the
check_rose_reqs script in the $ROSERT_HOME/bin folder.

The GNU libraries included with Red Hat Linux version 7.3 are not current enough
for this version of Rational Rose RealTime. To run Rational Rose RealTime on Red Hat
Linux version 7.3, you must first install GCC 3.2 or later, because Rational Rose
RealTime depends on the run-time libraries included with the new versions of GCC
(GNU Compiler Collection).
17

You can download GCC from http://gcc.gnu.org/.

Note: After you complete the GCC installation, ensure that the lib directory from the
GCC installation is included in LD_LIBRARY_PATH. If the libraries are missing, you will
receive errors.

Requirements for Windows NT

The minimum supported configuration for running Rational Rose RealTime on
Windows NT is as follows:

■ Windows NT 4.0, with service pack 6a and SRP

■ Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of free disk space for the Rational Rose RealTime installation

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccountLink is not accessible using Netscape 4.x browsers.

For additional information on requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows 2000

The minimum supported configuration for running Rational Rose RealTime on
Windows 2000 is as follows:

■ Windows 2000 Professional, with service pack 3 or 4.

■ Minimum Pentium II 150 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of disk space for the Rational Rose RealTime installation
18 Chapter 1 - Referenced Configurations

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccountLink is not accessible using Netscape 4.x browsers.

For additional information on requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.

Requirements for Windows XP Pro

The minimum supported configuration for running Rational Rose RealTime on
Windows XP Pro is as follows:

■ Windows XP Pro with service pack 1

■ Minimum Pentium II 300 MHz. We recommend 500 MHz or faster CPU

■ Minimum 128 MB of RAM. We recommend 256 MB or more of RAM

■ Minimum 325 MB of free disk space for the Rational Rose RealTime installation

■ Minimum display 1024 X 768. We recommend 1280 X 1024 or higher

■ Postscript printer for printing

■ Browser requirement - Internet Explorer 5.5 or 6.0 or Netscape Navigator 4.72-4.78
or 7.0. We recommend Internet Explorer 5.5 or 6.0

Note: AccountLink is not accessible using Netscape 4.x browsers.

For additional information on requirements for installing Rational Suite
DevelopmentStudio, see the book Installation Guide Rational Suite.
Requirements for Windows XP Pro 19

Requirements for UNIX

The minimum supported configuration for running Rational Rose RealTime on UNIX
is as follows:

■ Solaris 2.6, Solaris 2.7, Solaris 2.8, or Solaris 2.9

❑ For Solaris operation, the minimum workstation is an UltraSparc 10 with 500
MB or RAM. We recommend an UltraSparc 60 with 600 MB of RAM. We
recommend the Solaris 2.8 operating system.

❑ For a list of the required UNIX patches applicable to your operating system, see
the Rational Rose RealTime Web site (http://www.ibm.com/software/rational/), or run
the check_rose_reqs script in the $ROSERT_HOME/bin folder.

■ The minimum is 256 MB of RAM. We recommend 512 MB of RAM with
approximate three times this amount of swap space.

■ Minimum 370 MB of free disk space for the Rational Rose RealTime installation.

■ Browser requirement - Netscape Navigator 4.78 - 4.8.

For additional information on requirements for installing Rational Suite
DevelopmentStudio, see the book Installing Rational Suite DevelopmentStudio.
20 Chapter 1 - Referenced Configurations

Referenced Configuration Requirements for the Eclipse and
Rational Rose RealTime Integration

The Rational Rose RealTime and Eclipse integration is supported on the following
platforms:

■ Linux (RedHat 8)

■ Windows (2000 and XP Pro)

■ UNIX (Sun Solaris 8 and 9)

The Rational Rose RealTime and Eclipse integration requires you to install Eclipse
(SDK 2.1.1) and CDT (C/C++ Development Tools 1.2.1 and C/C++ Standard make
build 1.2.1). In addition, you must also install software required by Eclipse and CDT,
such as a JRE and Cygwin (Windows).
Referenced Configuration Requirements for the Eclipse and Rational Rose RealTime Integration 21

22 Chapter 1 - Referenced Configurations

2Installing Rational Rose
RealTime on Linux
Contents

This chapter is organized as follows:

■ Before You Install on page 23
■ Installation Instructions on page 25
■ After You Install on page 29

Before You Install

Before you install Rational Rose RealTime on Linux, refer to the items in Table 1 to
direct you to information that can help you perform pre-installation tasks.

Table 1 Linux Pre-installation Tasks

Note: If you use Linux with Exceed, the BACKSPACE key does not function. Instead of
using the BACKSPACE key, use CTRL + h.

Task Reference

License your Rational
software

See Specifying the Rational License Server on page 29 of
the Installation Guide, Rational Rose RealTime, and UNIX
Licenses on page 87 of the Installation Guide, Rational
Rose RealTime.

Note: The AccountLink link has changed to
http://www.ibm.com/software/rational/support/licen
sing

Ensure that your system
meets the minimum or
recommended system and
software requirements

See Requirements for Linux on page 24

System Requirements for
Linux

See Requirements for Linux on page 17
23

Requirements for Linux

The minimum supported configuration for running Rational Rose RealTime on Linux
is as follows:

■ Red Hat 7.3 and 8.0.

■ For Linux operation, the minimum workstation is a 450 MHz Pentium III.

■ The minimum is 256 MB of RAM. We recommend 512 MB of RAM with
approximately three times this amount of swap space.

■ Minimum 450 MB of free disk space for the Rational Rose RealTime installation.

■ For a list of the required Linux patches applicable to your operating system, see
the Rational Rose RealTime web site
(http://www.ibm.com/software/rational/support/licensing/), or run the
check_rose_reqs script in the $ROSERT_HOME/bin folder.

Installing in Secure Environments

Problems may occur when you perform a remote installation of Rational Rose
RealTime for Linux in a secure environment (for example, remote access to other
machines is through ssh) that does not have access to rsh or remsh. To install Rational
Rose RealTime for Linux in this situation, perform a local installation of the software
rather than a remote installation. If you experience further problems, contact Rational
Customer Support.

Installing Multiple Versions of Rational Rose RealTime for Linux

If you want to install different versions of Rational Rose RealTime for Linux on the
same file server, we recommend that you install them in different Rational directories
(referred to as <rational_dir>). If you install them in the same Rational directory, you
cannot uninstall a specific version because the uninstall script removes all versions in
the same Rational directory.

Stopping and Restarting an Installation

To stop an installation, type q. If you type q, most of your input is saved to a user
defaults file in <rational_dir>/config/defaults. The file name is in the following
format:

rs_install.release_name.user_name
24 Chapter 2 - Installing Rational Rose RealTime on Linux

The defaults file contains general purpose defaults that relate to the username and the
license server that you configure. It also records the product-specific information for
the installation of this specific product and version.

Note: If you type q!, only some of your entries are saved to the user defaults file.

To restart the installation, run rs_install again. Many of your entries appear as the
default value. Press the ENTER key to continue with the installation.

Installation Instructions

Unless otherwise specified, your system administrator will perform these steps.

Note: For environments where there is more than one user of Rational Rose RealTime
for Linux, we strongly recommend that you install the Rational Rose RealTime files on
a centralized file server.

During the installation process, the default values are prefixed with the following
notation:

- - >

To accept the default value and continue with the installation, press ENTER.

To Install Rational Rose RealTime on Linux:

Note: The directory and file names indicated in the following steps are for example
purposes only.

1 Log on to the install client. This can be any Linux computer that:

➑ Gives you access to a CD-ROM drive

➑ Mounts the file system into which you will load the Rational Rose RealTime
for Linux release

➑ Runs the operating system specified on the Rational Rose RealTime for Linux
CD (Red Hat 7.3, or 8.0)

2 Place the Rational Rose RealTime for Linux CD in the CD-ROM drive.

Note: If the CD-ROM drive is not mounted, mount the CD-ROM drive.
Installation Instructions 25

As the root user, create a directory (if one does not exist already) to be the mount
point for the CD-ROM drive. The following examples for each platform use the
directory /cdrom. Ensure that you know the device name of the CD-ROM drive. If
you do not know the device name, consult your system administrator.

The mounting commands for different operating systems are as follows:

❑ Linux with Volume Management

Linux with volume management mounts to the /cdrom directory automatically
when you load the CD-ROM drive. You have volume management if the vold
daemon is running on the system.

❑ Linux without Volume Management

mkdir /cdrom
mount -t iso9660 -r /dev/cdrom /mnt/cdrom

3 From a shell window, change the directory to the root level of the mounted
CD-ROM device. For example: cd /cdrom, and press ENTER.

4 To run the setup script, type the following command:

rs_install

The rs_install command is a complete installer that includes licensing setup, license
checking, product installation, and product setup. Rational recommends that you
follow the menus and prompts and allow rs_install to guide you through the
installation process.

Note: You can invoke rs_install with a number of options. For example, you can
use the -no_log (-nl) option to stop rs_install from creating a log file. To see a listing
of all available options, type rs_install -help.

5 After the Using RS Install script displays, press ENTER to continue.

In the Enter Install Location script, the installation process searches for Rational
directories.

6 Press ENTER to continue.
26 Chapter 2 - Installing Rational Rose RealTime on Linux

7 Specify the directory in which to install Rational Rose RealTime for Linux,
according to your type of installation:

Note: An arrow (- - >) opposite a number indicates the default used for this
installation. Press ENTER to select the default.

❑ First time installation - If you are installing Rational Rose RealTime for Linux
for the first time, you are automatically prompted to specify a directory for the
installation, and then press ENTER.

❑ Existing single installation - If the installation process detects an existing
Rational Rose RealTime directory, you can press ENTER to select that directory,
or type 0 (zero) to specify a new directory.

❑ Multiple existing installations - If the Rational Rose RealTime installation
detects multiple Rational Rose RealTime directories, type 0 to specify a new
directory, or type a value associated with a listed directory, and then press
ENTER.

If you specify a new directory, rs_install copies the Rational files to this location.
The directory name must be specified as an absolute path name. The directory
must be visible on all computers from which you want to run Rational Rose
RealTime, and must be writable by the installer’s user name.

Next, the license agreements appear and you are prompted to accept or reject the
license agreements. You must accept both license agreements to proceed with the
installation.

8 If you agree with the terms of the Rational Rose RealTime License Agreement, type
Y and press ENTER.

9 If you agree with the terms of the Third Party License Agreement, type Y and press
ENTER.

Note: If you do not agree with the terms of the license agreements, the installation
stops. You should return all software and documentation to IBM Rational
Software.

10 On the Product and License Configuration menu, type the number associated
with Rational Rose RealTime for Linux, and then press ENTER.

Note: If the installation process detects any existing license configurations, you
can specify their use and continue with the installation prompts. Otherwise, you
must obtain and specify a valid license and continue with Step 11. For additional
information on licenses, see Specifying the Rational License Server on page 29 of the
Installation Guide, Rational Rose RealTime, and UNIX Licenses on page 87 of the
Installation Guide, Rational Rose RealTime.
Installation Instructions 27

11 On the Rational Rose RealTime - Licensing Options menu, select a licensing
option.

Depending on the licensing option you select, answer the questions and follow the
directions.

12 After licensing, on the Rational Rose RealTime - Product Customization menu,
verify that Rational Rose RealTime for Linux will be installed, and that you have
enough space to install it.

13 Press f to continue.

14 Select an installation option. Typical installs all components, and Custom allows
you to specify only those components that you want installed.

15 In Rational Rose RealTime - Enter Install Mode menu, indicate how you want
rs_install to deal with components that are already installed.

16 Press ENTER to continue.

rs_install installs Rational Rose RealTime for Linux. If there is not sufficient disk
space, the installation process stops.

17 After the installation process completes, press ENTER to continue.

Option Description

1 Use an existing Rational license (FLEXlm) file or a server that is already
configured.

2 Set up a permanent or term license(s).
■ Request Node-Locked or floating keys through AccountLink

(http://www.ibm.com/software/rational/support/licensing/).

■ After you request Node-Locked key(s) from AccountLink, you will
receive an e-mail from Rational that contains an attachment (a .upd
file). You must save this file to a secure location on your workstation.

3 Set up a temporary license file.
28 Chapter 2 - Installing Rational Rose RealTime on Linux

After You Install

After you install, complete these steps:

■ Installing GNU 3.2 on page 29
■ Source the Setup Script on page 29
■ Unmount the CD-ROM Drive on page 30
■ ClearCase Workstation Configuration on page 30
■ Configure the ClearCase Repository on page 31
■ Set the Connexis Variable on page 32
■ Verify the Connexis Installation on page 32

Installing GNU 3.2

The GNU libraries included with Red Hat Linux version 7.3 are not current enough
for this version of Rational Rose RealTime. To run Rational Rose RealTime on Red Hat
Linux version 7.3, you must first install GCC 3.2 or later, because Rational Rose
RealTime depends on the run-time libraries included with the new versions of GCC
(GNU Compiler Collection).

You can download GCC from http://gcc.gnu.org/.

Note: After you complete the GCC installation, ensure that the lib directory from the
GCC installation is included in LD_LIBRARY_PATH. If the libraries are missing, you
will receive errors similar to the following:

RoseRT: error while loading shared libraries: libstdc++.so.5:
cannot open shared object file: No such file or directory.

Source the Setup Script

After you install Rational Rose RealTime for Linux, you should source your rs_setup
script to automatically set your environment variables.

■ For the Rational Rose RealTime point product, type the following:

source <rational_dir>/rosert_setup.csh

or
. <rational_dir>/rosert_setup.sh
After You Install 29

Unmount the CD-ROM Drive

For CD-ROM installations, unmount the CD-ROM drive with the following
command:

umount /Name

where Name is the name of the device or resource.

Note: You cannot eject the CD if you are at the directory /cdrom or /cdrom/cdrom0. If
you receive a "Device busy" error, change your directory location to a location other
than the CD-ROM and repeat the preceding commands.

ClearCase Workstation Configuration

The following setup must take place on all workstations that will be accessing a VOB
or view. For Linux, this includes all machines that are view servers.

These steps will also need to run on all machines that act as view servers for the
ClearCase views used by Rational Rose RealTime. If you use ClearCase MultiSite, you
will need to do this at all the sites where the VOBs containing the Rose RealTime
elements are replicated.

You can determine which machines are view servers by typing:

cleartool lsview

in a command window. The second item on each output line indicates the machine
name where the view server is running. For example, if you see the following line in
the output of the lsview command:

myview \\mymachine\vws\myview.vws

then "mymachine" is the name of the computer on which the view server for myview
exists.

For further details, see your ClearCase administrator.

Command-line Access to the Source Control Tool

For any user who wants to use the Rational Rose RealTime integration with
ClearCase, cleartool must be accessible from the command prompt.
30 Chapter 2 - Installing Rational Rose RealTime on Linux

Element Type Setup: type Manager

The following steps are required for making ClearCase clients aware of the new
element type.

Linux

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to install the
type manager in each ClearCase installation. To configure the extensions and tool
mappings, the user who runs the script must have write access to the following
directories in the ClearCase installation:

<CC_HOME>/lib/mgrs

<CC_HOME>/config/ui/icons

<CC_HOME>/config/ui/bitmaps

<CC_HOME>/config/magic

Use the following command-line to configure the proper file extensions and tool
invocations:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install-server

Configure the ClearCase Repository

Each VOB must be configured to allow files of the new element type to be created.
Follow the steps that apply to your platform below for each VOB that will be storing
Rational Rose RealTime files.

Linux

Use the $ROSERT_HOME/bin/$ROSERT_HOST/cc/mi_typeman script to register
the rosert_unit element type in each VOB using the following syntax:

<ROSERT_HOME>/bin/<ROSERT_HOST>/cc/mi_typeman.sh install-eltype -vob
<vob_path>

Test the Type Manager

To determine if the rosert_unit element type has been successfully registered in the
VOB, perform the following command from a command prompt after changing to a
directory contained in the VOB:

cleartool lstype -long eltype:rosert_unit

A listing of the type details will verify that it is correctly registered.
After You Install 31

Set the Connexis Variable

After you install Rational Rose RealTime, you must set the environment variable for
CONNEXIS_HOME to the appropriate location, such as:

setenv CONNEXIS_HOME $ROSERT_HOME/Connexis

Note: Set this environment variable after $ROSERT_HOME is created (either by
setenv ROSERT_HOME or in a rs_install setup), and then type:

source <rational_dir>/rosert_setup.csh

or

. <rational_dir>/rosert_setup.sh

Verify the Connexis Installation

To increase efficiency and eliminate improper installations, or misconfigurations, you
are strongly encouraged to verify your installation.

Verifying your Installation using BasicTest

You can verify your Connexis installation by using the BasicTest model provided with
Connexis in $ROSERT_HOME/Connexis/C++/Examples. This model uses the CDM
transport.

Host Configuration Installation Verification

The following instructions are for the Linux host platform.

To verify your host configuration installation:

Note: Use the information in Table 2 and Table 3, when you complete the following
steps:

1 Start Rational Rose RealTime.

2 Load the BasicTest model from $ROSERT_HOME/Connexis/C++/examples.

3 From the Component View, expand the component package that corresponds to
your host platform.

4 Select the client component and from its item menu, click Build > Rebuild All to
recompile it.

5 Select the server component and from its item menu, click Build > Rebuild All to
recompile.
32 Chapter 2 - Installing Rational Rose RealTime on Linux

6 In the Deployment View package, expand the processor that corresponds to your
host platform.

The client will use port 9100 and the server will use port 9900. If these ports are being
used by other another application on your workstation, you will need to change them.

7 Open the server component instance's specification sheet and change the 9900 in
the -CNXep startup parameter to an available port number.

8 Open the client Component Instance Specification dialog box and change 9900
specified in the -s argument to the server's port number.

9 Change the 9100 in the -CNXep startup parameter to an available port number.

10 Save your changes.

11 Select the server component instance and click Run.

12 On the RunTime View tab of the instance, click Start to execute the server.

13 On the Model View tab, select the client component instance and click Run from
its item menu. On the Runtime View tab of the instance, click Start to execute the
client.

14 Verify that the output for client and server looks similar to the output shown in
sections BasicTest Server Output on page 34 and BasicTest Client Output on page 35.

Table 2 Components for Referenced Configurations

Component Package Client Component Server Component

Linux REDHAT73-X86-gnu-3-2 basicTestClient_43 basicTestServer_43

Linux REDHAT80-X86-gnu-3-2 basicTestClient_44 basicTestServer_44

Table 3 Component Instances for Referenced Configurations

Component
Package

Client Component
Client
Component
Instance

Server
Component
Instance

Linux Red Hat 7.3 MyRedHat73Workstation basicTestClient_43
Instance

basicTestServer_43
Instance

Linux Red Hat 8.0 MyRedHat80Workstation basicTestClient_44
Instance

basicTestServer_44
Instance
After You Install 33

BasicTest Server Output
Rational Rose RealTime C++ Target Run Time System

Release 6.50.B.82 (+c)

Copyright (c) 1993-2004 Rational Software

rosert: observability listening at tcp port 30399

* Please note: STDIN is turned off. *

* To use the command line, telnet to the above mentioned port. *

* The _output_ of any command will be displayed in _this_ window. *

Rational Software Corp. Connexis(tm) - Distributed Connection

Service (dcs)

Release 6.50.B.82

Copyright (c) 1999-2004 Rational Software Corporation

dcs: CRM Transport : enabled

dcs: CDM Transport : enabled

dcs: CRM listening at [crm://192.139.251.167:2005]

dcs: CDM listening at [cdm://192.139.251.167:9900]

dcs: target agent enabled

dcs: locator service not available

dcs: metric service enabled

BasicTest-Server-started:

Server : Received simple greeting message... sending it back

Server : test cycle completed, received rtunbound !

Server : Received simple greeting message... sending it back

Server : test cycle completed, received rtunbound !

Note: The preceding output results represents a partial listing of the BasicTest Server
Output.
34 Chapter 2 - Installing Rational Rose RealTime on Linux

BasicTest Client Output
Rational Rose RealTime C++ Target Run Time System

Release 6.50.B.82 (+c)

Copyright (c) 1993-2004 Rational Software

rosert: observability listening at tcp port 30380

* Please note: STDIN is turned off. *

* To use the command line, telnet to the above mentioned port. *

* The _output_ of any command will be displayed in _this_ window. *

Rational Software Corp. Connexis(tm) - Distributed Connection

Service (dcs)

Release 6.50.B.82

Copyright (c) 1999-2004 Rational Software Corporation

BasicTest-Client-started:

dcs: CRM Transport : enabled

dcs: CDM Transport : enabled

dcs: CRM listening at [crm://192.139.251.167:2010]

dcs: CDM listening at [cdm://192.139.251.167:9100]

dcs: target agent enabled

dcs: locator service not available

dcs: metric service enabled

Client : sending a greeting message...

->Client: received message:

RTString"Hello, Welcome to the Connexis world!"

Client : unbound received
After You Install 35

Client : reregistering SAP

Client : sending a greeting message...

->Client: received message:

RTString"Hello, Welcome to the Connexis world!"

Client : unbound received

Note: The preceding output results represents a partial listing of the BasicTest Client
Output.

Starting Rational Rose RealTime on Linux

To start Rational Rose RealTime on Linux configurations, run the command displayed
at the end of the rs_install process. For example:

/myInstall/Rose RealTime/bin/RoseRT

Note: The installation process creates rosert_setup.csh or rosert_setup.sh.

You can source the setup file to help you start the programs from this installation. If
you install Rational Rose RealTime for other users, they should add one of these
commands to their login environment:

■ Users of csh, tcsh and other csh-compatible shells must add the following
command:

source /myInstall/Rose RealTime/rosert_setup.csh

■ Users of sh, ksh, bash and other bourne-compatible shells must add the following
command:

. /myInstall/Rose RealTime/rosert_setup.sh
36 Chapter 2 - Installing Rational Rose RealTime on Linux

3General Issues
Contents

This chapter is organized as follows:

■ Startup Issues on page 37
■ Uninstall Issues on page 38
■ Windows-Specific Issues on page 39
■ UNIX-Specific Issues on page 43
■ Linux-Specific Issues on page 47
■ Cross-Platform Issues on page 49
■ Online Help Issues on page 60
■ Documentation Updates on page 62
■ Using Type Descriptor Functions on page 67

Startup Issues

If you encounter startup issues for Rational Rose RealTime, review the following
topics:

■ Starting Rational Rose RealTime When an Instance is Currently Running on page 37
■ Toolset Freezes on Startup on page 38
■ Virus Scanning Applications Affect Startup and Shutdown on page 38

Starting Rational Rose RealTime When an Instance is Currently Running

If you encounter problems starting Rational Rose RealTime, look at the Task Bar and
use the Task Manager to see if other copies of Rational Rose RealTime are running.
Close any other copies to allow the new copy of the tool to start properly.

More than one copy of Rational Rose RealTime can run at the same time; however, if
you have start-up problems, find and terminate any runaway processes.

Note: On UNIX, if a Rational Rose RealTime version 2003.06.12 (version 6.5) closes
unexpectedly, prior to starting an earlier version of Rational Rose RealTime
(2002.05.xx), we strongly recommend that you delete the Windows directory in your
$HOME directory. If you do not delete the Windows directory, you will not be able to
print.
37

Toolset Freezes on Startup

Under certain configurations, when starting Rational Rose RealTime on Solaris and
displaying to a Hummingbird Exceed X-server, the "Welcome to ..." window appears
momentarily, and then disappears. After this, the main application GUI is locked out
and freezes.

To work around this problem:

1 Stop the Rational Rose RealTime process.

2 Edit the RoseRT.ini file in the ~/.registry.2003.06.00 directory and change
ShowStartupDialog=Yes to ShowStartupDialog=No.

3 Run RoseRT -cleanup.

4 Run RoseRT.

Virus Scanning Applications Affect Startup and Shutdown

On startup or shutdown, virus scanning applications, such as McAfee VirusScan and
Trend, will scan the RoseRT.ini file many times, causing a very slow startup or
shutdown. To enable a much faster startup and shutdown, exclude the file RoseRT.ini
from your virus scanning software.

Uninstall Issues

Occasionally, files remain after you uninstall Rational Rose RealTime. For example, if
a model was saved in one of the Rational Rose RealTime subdirectories, the
subdirectory and its parent directories are not removed. To return your system to a
clean state, you must manually remove these directories.

Note: After you uninstall, your license files will remain in your /Common directory,
for example, C:/Program Files/Rational/Common. We strongly recommend that you
copy the license files to another secure location before deleting the /Common
directory.
38 Chapter 3 - General Issues

Windows-Specific Issues

For information on Windows-specific issues, review the following topics:

■ Service Pack Requirement Update for Windows on page 39
■ Using Hummingbird Exceed 7.1 on a Computer Running Windows Applications and

Rational Rose RealTime on page 39
■ Using Rational Rose RealTime on Windows XP Pro Configurations on page 39
■ Using Rational Rose RealTime without Appropriate Privileges on page 40
■ Building Dependencies on Case-Insensitive File Systems on page 40
■ File Association for Compiled Scripts on page 41
■ Windows CE GetSystemTime() Function Does Not Return Milliseconds on page 41
■ Symbolic Links with TargetRTS on page 42
■ Spaces in Directory Names on page 42

Service Pack Requirement Update for Windows

Rational Rose RealTime now supports Windows 2000 service pack SP4; however,
Windows 2000 service pack SP2 is no longer supported.

Using Hummingbird Exceed 7.1 on a Computer Running Windows
Applications and Rational Rose RealTime

If you use a computer running Microsoft Windows XP Pro, Microsoft Office XP
Service Pack 1, Microsoft Word (selected as editor for Microsoft Outlook), while
Microsoft Outlook is open, if you start Rational Rose RealTime from a Hummingbird
Exceed (version 7.1) window, shortly after launching Rational Rose RealTime,
Microsoft Outlook, Microsoft Word, and spoolsv.exe, CPU activity increases to near
100%. These applications remain at that level for approximately one minute after
Rational Rose RealTime closes, then your Rational Rose RealTime session will begin to
function normally after approximately one minute. However, Microsoft Outlook and
any open Microsoft Word documents become unusable.

Using Rational Rose RealTime on Windows XP Pro Configurations

Before you install Rational Rose RealTime on any Windows XP Pro configuration,
ensure that you have service pack 1 installed. The Installation Guide, Rational Rose
RealTime is incorrect because it indicates that you can install Rational Rose RealTime
on Windows XP Pro and Windows XP Pro with service pack 1.
Windows-Specific Issues 39

Using Rational Rose RealTime without Appropriate Privileges

To run Rational Rose RealTime on Windows 2000, you must log on with local
Administrator or Power User privileges. You will encounter the following types of
problems running Rational Rose RealTime 2003.06.00 on Windows 2000 if you log on
as a user without local Administrator or Power User privileges:

■ When opening Rational Rose RealTime, you may see the error message, "Failed to
Update the System Registry. Try using REGEDIT."

■ The configuration of the Add-in manager cannot be restored.

■ The two menu items Add Class Dependencies and Component Wizard are
missing from the Build menu.

■ When creating a component, you are not able to define the Environment in the
Component Specification for the C++ TargetRTS.

■ When selecting Rebuild from the Build menu, or clicking the Build tool from the
Toolbar, there is no activity.

■ After selecting Run from the Build menu, and then clicking Yes to select Build the
component, you will receive the error message "Operation not allowed".

■ When clicking Help > About, there is no Version or Company information.

■ You will not be allowed to set a top capsule in the Component Specification
dialog.

Building Dependencies on Case-Insensitive File Systems

During a build, Rational Rose RealTime detects and records build dependencies for
comparison during subsequent builds. This is done to facilitate build-avoidance by
only regenerating or recompiling targets when a build dependency changes. These
build dependencies preserve the case of the file names involved, including situations
when the underlying file system (for example, NTFS) is case-insensitive. This may
cause problems when using names that are distinct within the toolset, and distinct on
case-sensitive file systems, but indistinct on case-insensitive file systems. In most
cases, the toolset or code-generator will identify and avoid or warn against potential
case-insensitive name collisions.
40 Chapter 3 - General Issues

However, some case-insensitive file name collisions cannot be detected. For example,
if a component is renamed from "myComponent" to "MyComponent", a build may
incorrectly reuse all previous build results, since the underlying build dependencies
will be indistinct according to the file system.

Note: We recommend that you use case-sensitive file-systems wherever possible, and
avoid case-insensitive name collisions when you create or rename classes,
components, or controllable units.

File Association for Compiled Scripts

On Windows NT, Rational Rose RealTime does not install a file association for
compiled scripts (.ebx). This means that compiled script file cannot automatically run
by double-clicking the file in Windows Explorer.

Windows CE GetSystemTime() Function Does Not Return Milliseconds

Some Windows CE targets do not return milliseconds in the GetSystemTime() call.
This causes the resolution of the clock, which is used for timers, to be 1 second. If
milliseconds timers are required, you must modify the getclock.cc function to use
GetTickCount().

For example, in the getlock.cc file in the directory
$RTS_HOME/src/target/WINCE/RTTimerspec/getclock.cc, you will change the
GetSystemTime() call and replace it with GetTickCount() as follows:

#include <RTDiag.h>

#include <RTTimespec.h>

#include <windows.h>

void RTTimespec::getclock(RTTimespec & ts)

{

DWORD ticks = GetTickCount();

ts.tv_sec = ((long)ticks / 1000L);

ts.tv_nsec = 1000000L * ((long)ticks % 1000L);

}

Note: GetTickCount() is the system uptime and will wrap around after 49.7 days. For
systems that are up for longer, a combination of GetSystemTime() and
GetTickCount() could be used to gain the desired length and resolution of clock time.
This implementation is system dependent.
Windows-Specific Issues 41

Symbolic Links with TargetRTS

When using LynxOS 3.1.0, do not install Visual Lynx 3.1.0 for Windows NT on a
network (NFS) disk. It should only be installed on a local NTFS drive; otherwise,
symbolic links to some include directories will not work properly. Compilation errors
will occur if you re-compile the TargetRTS.

If you installed Visual Lynx 3.1.0 on a network disk, and if you see compilation errors
stating that the include directories netinet/in.h or net/if.h are not found, locate the net
and netinet entries in the following directory:

$LYNX_HOME/usr/lynx/3.1.0/ppc/usr/include

If these entries are text files containing the following text: !<symlink>bsd, rename
these files, create new symbolic links called net and netinet, and have both of them
point to the directory called bsd.

Spaces in Directory Names

To enable the use of cross-compilers that do not allow spaces in the path names, use
the subst command and map a drive to the value of %ROSERT_HOME% after the
installation. For example, if you want to use the K: drive, and your Rational Rose
RealTime installation directory is:

ROSERT_HOME=C:\Program Files\Rational\Rose RealTime

you must map this directory to the drive by running the following commands from a
console window:

subst K: "%ROSERT_HOME%"
set ROSERT_HOME=K:

Spaces in directory names can cause problems with the following "operating
system.compiler library set.development platform" systems:

■ OSE411T.ppc603-Diab-4.3f.NT4

■ VRTX4T.ppc603-Microtec-1.4.NT40

■ TORNADO2T.ppc630-GreenVX-1.8.9.NT40

■ TORNADO2T.ppc630-GreenVX-2.0.NT40

■ TORNADO2T.m68040-cygnus-2.7.2-960126.NT40

■ TORNADO2T.ppc-cygnus-2.7.2-960126.NT40

■ TORNADO2T.ppc860-cygnus-2.7.2-960126.NT40

For Tornado configurations, you should also use the substituted drive to point to the
load script directory when running Target Observability.
42 Chapter 3 - General Issues

On the Detail tab of the Processor Specification dialog, ensure that the Load Script
path does not contain any spaces. If spaces are present, when you attempt to load the
executable in Basic or Debugger-Tornado2 modes, you will receive the error message
"Unable to Execute". This does not occur when loading the executable in Manual
mode.

Note: Spaces in directory names can also cause problems with ClearMake.

UNIX-Specific Issues

For information on UNIX-specific issues, review the following topics:

■ Printing on UNIX on page 43
■ Browser Requirements for UNIX on page 43
■ Troubleshooting when the Toolset Freezes on UNIX on page 44
■ Rational Rose RealTime Crashes when You Debug Using Tornado 2.2 on UNIX on

page 45
■ Specifying a Location or File Name Containing Spaces (UNIX) on page 45
■ Starting vi as an External Editor from Rational Rose RealTime on page 46
■ Unable to Open Some Links in the Online Help on page 46
■ Exceptions Occur When You Use Configuration Management in Rational Rose RealTime

on page 46
■ Case Sensitivity within Paths on page 46
■ Window Order Policy on page 46
■ Non-GUI-based External Editors on page 47
■ Setting the Stack Space Limit on page 47
■ Rational Rose RealTime Fails to Build a Component on Solaris 2.6 on page 47

Printing on UNIX

If you click the Print icon in the Toolbar, the Print Topics dialog appears with two
options: Print the selected topic and Print the selected heading and all subtopics.
Because the Print the selected heading and all subtopics option is not available, it is
not possible to print all of the subtopics on a Solaris configuration.

Browser Requirements for UNIX

The Installation Guide, Rational Rose RealTime indicates that the browser requirement
for UNIX is Netscape 7.0. This is not correct. The correct browser requirements for
UNIX are Netscape 4.78 and Netscape 4.8.
UNIX-Specific Issues 43

Troubleshooting when the Toolset Freezes on UNIX

In the unlikely event that the Rational Rose RealTime toolset freezes on UNIX, the
toolset does not respond to user input, or the window does not refresh.

To recover from a toolset freeze:

1 Run /usr/proc/bin/pstack [Rose RealTime pid] > [outfile].

2 Run /bin/truss -o [output file] -p [Rose RealTime pid] for 15 seconds.

3 Stop the Rational Rose RealTime process by running:
kill -SEGV [Rose RealTime pid]

You are also prompted to do the following:

❑ Provide information on how to reproduce this problem.

❑ Run a resource cleanup utility on your session.

❑ Indicate whether you want to be contacted by Rational Customer Service.

If you answer Yes to "Would you like to be contacted by Rational Customer
Service", a Rational Customer Support engineer will contact you shortly. You are
also prompted to provide the information you gathered in steps 1 through 6.

4 Click Help > About Rational Rose RealTime and obtain the Rational Rose
RealTime build number, (for example, 6.5.444.0).

5 Attempt to reproduce the problem:

❑ If you can reproduce the steps that caused the toolset freeze, note these steps.

❑ If you are unable to reproduce the steps that caused the toolset freeze, any
information you can provide on the activities you were doing at the time of the
toolset freeze will be helpful to the investigation.

6 If you use ClearCase, and were in a ClearCase view at the time of the toolset
freeze, record the version of ClearCase that you are using.

Forward the preceding information to Rational Customer Service (for contact
information, see Contacting Rational Customer Support on page xiv). Ensure that you
include "Rose RealTime" in the subject of your email.
44 Chapter 3 - General Issues

Rational Rose RealTime Crashes when You Debug Using Tornado 2.2 on
UNIX

If you are using debugger integration with Tornado 2.2, Rational Rose RealTime will
crash when it loads a component instance. To resolve this problem, go to the
WindRiver Web site (www.windriver.com) and download the latest patch for
Tornado 2.2 that includes an update to the file libwtxapi.so.

Refresh Problems with Exceed

Occasionally, the screen does not refresh completely when you run the UNIX version
of Rational Rose RealTime on a PC using Hummingbird Exceed.

To change your Exceed settings:

1 Start Xconfig.

2 Open the Performance dialog.

3 Use these settings:

❑ Save Unders = No

❑ Maximum Backing Store = When Mapped

❑ Default Backing Store = None

❑ Minimum Backing Store = None

Specifying a Location or File Name Containing Spaces (UNIX)

To properly process a location or file name that contains one or more spaces, the
command line must be properly quoted. You need two levels of quotation marks: the
first set of quotation marks (’) encloses the second ("). Specifying this type of
quotation marks ensures that the RoseRT script does not interpret the space character,
and that it passes the file name (including space characters) as a single argument to
the RoseRT executable. For example, given the following path and file name:

Test with Spaces/Model with spaces.rtmdl

you would invoke the toolset using the following command:

RoseRT '"Test with Spaces/Model with spaces.rtmdl"'
UNIX-Specific Issues 45

The file name parameter is quoted as follows:

<open single quote><open double quote> path/filename<close double
quote><close single quote>

Note: You must use the quotation marks as described. If you use double quotation
marks to wrap the single quotation marks, the string for the file name is processed as
a command and it will produce errors.

Starting vi as an External Editor from Rational Rose RealTime

While using Rational Rose RealTime on Solaris version 2.9, if you perform an action
that starts the vi editor (the vi editor starts in a separate xterm window), clicking on
the "X" on this window displays the following message:

This will terminate your X client session.

If you click OK, the vi xterm window does not close.

Unable to Open Some Links in the Online Help

Some links to multimedia content do not work on UNIX. Where possible, an
alternative method for opening certain files is included in the online help.

Exceptions Occur When You Use Configuration Management in Rational
Rose RealTime

If an exception occurs when you are working with models under source control on
UNIX, your temporary file, /var/tmp, is likely full.

Case Sensitivity within Paths

The UNIX temporary directory name is translated to lowercase. If you set the
environment variable TEMP, ensure that the path name is all lowercase; otherwise,
the directory will not be found. This will cause problems when you open the online
Help.

Window Order Policy

When you use the CDE window manager, to ensure that the proper Secondary and
Transient window policy is in effect, in .Xdefaults, set the following environment
variable:

Dtwm*secondariesOnTop: True
46 Chapter 3 - General Issues

Setting this variable to True ensures that an opened secondary window in Rational
Rose RealTime for UNIX (such as an external editing window) does not appear
behind the main primary window. Since the secondary window is the active window,
you may be unable to regain focus of this secondary window.

When you use CDE as your XWindow manager, the Allow Primary Windows on Top
and Raise Windows When Made Active options are enabled by default. These
options should be disabled when setting the Dtwm*secondariesOnTop option to
True.

Non-GUI-based External Editors

On UNIX, the toolset will freeze if you specified /bin/vi as the external editor and you
attempt to start the external editor from the Code edit window. If you use a
non-GUI-based external editor, to ensure that the editor has a terminal (tty) to display
to, specify xterm -e /bin/vi.

Setting the Stack Space Limit

Some operations with large models might require a value larger than 32 MB to be set
manually. If your UNIX administrator set a hard limit on the stack size, you can set a
higher limit by using the limit command in csh, or the ulimit command in sh or ksh.

Rational Rose RealTime Fails to Build a Component on Solaris 2.6

Rational Rose RealTime displays an error when you attempt to build a component on
Solaris 2.6 when you use the default make command.

Linux-Specific Issues

For information on Linux-specific issues, review the following topics:

■ Using the C++ Analyzer on Linux on page 48
■ Displaying the Version Tree on Linux on page 48
■ Using Connexis Viewer on Linux on page 48
■ Updating GNU Libraries on Linux 7.3 on page 48
■ Using Shortcut Keys to Cycle Through Open Specification Dialog Boxes on Linux on

page 49
■ Using Web Publisher on Linux on page 49
■ Viewing the Online Help on Linux on page 49
■ Using Context-Sensitive Help on the Preferences Dialog in Eclipse on Linux on page 49
Linux-Specific Issues 47

Using the C++ Analyzer on Linux

Although Rational Rose RealTime for Linux supports Red Hat versions 7.3 and 8.0,
the C++ Analyzer is not available for these versions.

Rational Rose RealTime uses the C++ Analyzer for reverse engineering and the Code
Import feature. Consequently, these features will not function in this version of
Rational Rose RealTime for Linux. Alternatively, you can launch the C++ Analyzer
from a UNIX or Windows version of Rational Rose or Rational Rose RealTime, and
then import the code from the Linux version of Rational Rose RealTime.

Displaying the Version Tree on Linux

Rational Rose RealTime uses the ClearCase version tree feature to display a version
tree from the toolset. Currently, this feature will not display the version tree because
ClearCase 2002.05.00 on Linux Red Hat 8.0 does not support Unicode.

To display the version tree in Rational Rose RealTime, use a non-Unicode locale such
as C, from a Linux command window, and then type the following:

setenv LC_ALL C

Using Connexis Viewer on Linux

When using Connexis Viewer with RedHat Linux versions 7.3 and 8.0, the data is not
legible. Alternatively, you can launch Connexis Viewer using Exceed as your Xserver,
or run Connexis Viewer on Linux and use a Solaris computer as your Xserver.

Updating GNU Libraries on Linux 7.3

The GNU libraries included with Red Hat Linux version 7.3 are not current enough
for this version of Rational Rose RealTime. To run Rational Rose RealTime on Red Hat
Linux version 7.3, you must first install GCC 3.2 or later, because Rational Rose
RealTime depends on the run-time libraries included with the new versions of GCC
(GNU Compiler Collection).

You can download GCC from http://gcc.gnu.org/.

Note: After you complete the GCC installation, ensure that the lib directory from the
GCC installation is included in LD_LIBRARY_PATH. If the libraries are missing, you
will receive errors.
48 Chapter 3 - General Issues

Using Shortcut Keys to Cycle Through Open Specification Dialog Boxes
on Linux

When using Red Hat Linux 7.3, the SHIFT+ALT+RIGHT ARROW (next Specification
dialog box) and SHIFT+ALT+LEFT ARROW (previous Specification dialog box)
shortcut keys do not cycle between open Specification dialogs. Instead, specify these
shortcuts to cycle through Linux workspaces.

Using Web Publisher on Linux

When using Web Publisher with RedHat Linux versions 7.3 and 8.0, if the publishing
process fails, change the display to use a lower color depth. For example, if the current
color depth is set to 24 bits, change the value to 16 bits.

When using Web Publisher with Exceed, Rational Rose RealTime crashes.

Viewing the Online Help on Linux

When Viewing the online Help, you might encounter only Windows and UNIX
buttons and links. For Linux, you can select the UNIX buttons and links.

Using Context-Sensitive Help on the Preferences Dialog in Eclipse on
Linux

If you press F1 on any of the options on the Preferences dialog in Eclipse, the
context-sensitive help does not display. Use the Index tab in the online help to search
for help on these options.

Cross-Platform Issues

For information on cross-platform issues, review the following topics:
■ Synchronizing Code between Rational Rose RealTime and Eclipse on page 50
■ Rational Rose RealTime and Eclipse Integration Does Not Support Java on page 50
■ Using Rational Rose RealTime with a Node Locked License Does Not Warn User About

Expiration on page 50
■ Using Pathmaps in Rational Rose RealTime on page 51
■ Limitations on the Number of Open Windows on page 51
■ Limitations in the Specification History List on page 52
■ Loading a Workspace might Cause Default Color Settings to Change Permanently on

page 52
■ Do Not Use $& When You Define a PathMap on page 52
■ Use Caution When Modifying OutPutDirectory on page 52
Cross-Platform Issues 49

■ Using Rational Rose RealTime on Non-English Installations Causes an Unreadable Font
When Viewing Generated Code on page 53

■ Unable to use Parameters with the cm_getcaps Script on page 53
■ Problems Compiling Java Models on page 53
■ Problems Connecting to a Target on page 53
■ Using Sequence Diagrams on page 53
■ Using the Debugger-xxgdb Tool and Running your Component Instance on page 53
■ Using C and C++ Add-ins on page 54
■ Code Generator Runs Out of Memory When Generating Very Large Models on page 54
■ Using the Get and Set Methods in the Attribute and Operation Tools on page 54
■ Web Publisher Applet Does Not Load Properly on page 55
■ Using the Frameworks Dialog on page 55
■ Scoping Descriptors for Nested Classes on page 55
■ No Codesync Support for Java on page 56
■ Using the GetSelected Functions on page 56
■ Using the Find Command Might Return Too Many Results on page 58
■ No Support for Automatic Unwired Port Registration for Java on page 58
■ Error Occurs When Printing a Diagram on page 58
■ ROSERT_NO_FEEDBACK - Prompting for Information When an Exception Occurs on

page 58
■ ROSERT_TORNADO_TIMEOUT - Modifying the Default Timeout for wtx Commands

on page 59
■ Referenced Configuration for Nucleus Does Not Include Socket Support on page 59

Synchronizing Code between Rational Rose RealTime and Eclipse

In Rational Rose RealTime, codesync only occurs when a single source file is updated
and saved in Eclipse. In Eclipse, do not use the File > Save All menu option to save
your changes. You must save one file at a time for codesync to occur in Rational Rose
RealTime.

Rational Rose RealTime and Eclipse Integration Does Not Support Java

The Rational Rose RealTime and Eclipse integration does not support Java models;
the integration only works with C and C++ models.

Using Rational Rose RealTime with a Node Locked License Does Not
Warn User About Expiration

Previously, Rational Rose RealTime prompted users before the expiration date of
their node locked license. Now, Rational Rose RealTime does not warn users before
the license expires. When the license expires, you receive the following error message:

Unable to Obtain License.
50 Chapter 3 - General Issues

Using Pathmaps in Rational Rose RealTime

When using pathmaps in Rational Rose RealTime, you can use the following symbols:

■ @ - Represents the path where the model file (for example, the .rtmdl file) is stored.

■ & - This symbol represents the path where the controlled unit's file is stored, and it
can be applied to any controlled unit.

For example, for a model named C:\Models\myModel.rtmdl, the symbol @ maps to
C:\Models. The root logical view file LogicalView.rtlogpkg is located in the child
directory of the model. Therefore, for the root logical view, the symbol & maps to
C:\Models\myModel.

To use the file identified in the example:

1 Add an external file reference to any model element by right-clicking on a model
element in the model explorer, and click New > File.

2 After adding the file, save the model and open the appropriate model file in a text
editor.

3 If there are no controlled units, open the model file. If there are controlled units,
open the file of the unit in which you added the external file reference.

4 Look for the name of the external file you added in the toolset. If the external file
reference is located in a path that is under the model's file structure, use the & or @
symbols instead of an absolute path.

Note: You can a define a pathmap variable in Rational Rose RealTime that maps to
the & symbol. For example, CURDIR=&. If this pathmap exists, use CURDIR instead
of the & symbol.

Limitations on the Number of Open Windows

GDI handles are required to create graphic objects (such as windows, menus, cursors,
and bitmaps). Opening windows consumes handles. We recommend that you open a
reasonable number of windows. This means that on Windows platforms, do not to
exceed 200 open windows at any given time.
Cross-Platform Issues 51

Limitations in the Specification History List

The following limitations apply to items in the Specification History list:

■ If an RTS object (Runtime View) is locked, it will not be loaded into the
Specification History window with the workspace the next time the model is
opened.

■ RTS objects are visible in the Specification History window after RTS shutdown.
However, if you attempt to open this object with no Runtime View running, the
object is removed from the Specification History list (this also occurs when using
the Refresh menu item).

Loading a Workspace might Cause Default Color Settings to Change
Permanently

When opening a model and its corresponding workspace, if the workspace specifies a
different color scheme for the Line and Fill colors (the third and fourth color boxes in
the Custom colors area in the Color dialog box), it causes the default color settings in
the file RoseRT.ini to change permanently.

To restore the default colors:

1 Click Tools > Options.

2 Click the Font/Colors tab.

3 In the Custom Colors area, set the following options:

❑ For Line Color, select burgundy.

❑ For Fill color, select light yellow.

Alternatively, you can choose not to open the workspace when you open a model.

Do Not Use $& When You Define a PathMap

Do not use $& in your PathMap definitions. If you define a PathMap that includes $&,
you will receive a build error similar to the following:

Error: INTERNAL ERROR: File I/O error while trying to open
$&/ComponentView.rtcmppkg

Use Caution When Modifying OutPutDirectory

Do not prepend OutputDirectory if ExecutableName appears to be an absolute path.
52 Chapter 3 - General Issues

Using Rational Rose RealTime on Non-English Installations Causes an
Unreadable Font When Viewing Generated Code

When you use Rational Rose RealTime on non-English installations, if the specified
font s not available, the default font is mapped to an equivalent that is unreadable. To
resolve this problem, click Tools > Options, click the Fonts tab, and then select
another font.

Unable to use Parameters with the cm_getcaps Script

The cm_getcaps script returns a set of capabilities supported by a source control
system. The Rational Rose RealTime toolset does not implement the Parameters
button for this operation. This means that you cannot specify any parameters for the
UnCheckout operation specified for cm_getcaps scripting.

Problems Compiling Java Models

If you have QuickTime for Java installed, you might encounter problems when you
compile your Java models because QuickTime for Java embeds double quotation
marks in CLASSPATH. If you remove the double quotation marks, Rational Rose
RealTime for Java will compile your models.

If your CLASSPATH is too long, you will receive the error message "Unable to
execute."

Problems Connecting to a Target

If you receive the message "Unable to connect to target" when you attempt to connect
to a target (both host and embedded), change the value for the Connect Delay box on
the Component Instance Specification dialog by increasing the value by two or more
seconds.

Using Sequence Diagrams

There are a few conditions under which a Sequence Diagram will incorrectly draw
messages and FOCs (Focus of Control). If a message or FOC appears to be drawn
incorrectly, select the message (or the message that starts the FOC) and, using the
center re-orient handle, move the message slightly. Moving the message causes the
Sequence Diagram to recalculate the correct display values for that message.

Using the Debugger-xxgdb Tool and Running your Component Instance

When you use the xxgdb tool, to enable breakpoints, run your component instance,
add any breakpoints, and then restart xxgdb.
Cross-Platform Issues 53

Using C and C++ Add-ins

You cannot use the C and C++ add-ins at the same time in Rational Rose RealTime.

Code Generator Runs Out of Memory When Generating Very Large
Models

When you attempt to generate a very large model, the code generator might run out
of memory. To improve memory usage when you generate very large models, we
recommend that you control all the controllable elements in your model as individual
units.

To control elements in your model:

1 On the Model View tab in the browser, select a model.

2 Right-click and click either File > Control Units or File > Control Child Units.

3 When prompted to control all child units recursively, click Yes.

4 Click Yes in the subsequent confirmation dialog.

For details on controlled units, see the topic, "What is a controllable Element?" in the
Guide to Team Development, Rational Rose RealTime.

Using the Get and Set Methods in the Attribute and Operation Tools

In the Attribute and Operations tools, you can clear the Get method and Set method
check boxes.

To prevent the deletion of modified code for the Get and Set methods:

1 Open the Specification dialog for an Attribute or Operation.

2 Click the General tab.

3 In the Documentation box, delete the following text:

//GENERATED BY ATTRIBUTE TOOL

or

//GENERATED BY OPERATION TOOL

Deleting this text prevents the deletion of the modifications you made to the Get or
Set methods if you cleared either the Get method or Set method options.
54 Chapter 3 - General Issues

Web Publisher Applet Does Not Load Properly

When you use Microsoft Internet Explorer with Microsoft JIT, the Documentation
window and the Scroll Bar will not appear the first time you start Rational Rose
RealTime. Also, if you use JDK version 1.3.3, the Scroll Bar will not appear.

If you perform a refresh, the Documentation window and the Scroll Bar will appear.
If you use appletviewer on JDK version 1.2.2, the Documentation window and the
Scroll Bar will appear.

Using the Frameworks Dialog

If you create a framework whose name comes alphabetically before the Empty, RTC,
and RTC++, by default, on the Frameworks dialog the highlighted icon is the RTC++
icon, but the text on the Description tab is for the RTC framework. If you click Open,
the RTC framework is loaded.

Workaround

Always use your mouse to select a framework, and then click Open.

Scoping Descriptors for Nested Classes

If you have the following externally defined classes:

class ExternalClassA

{

 public:

 int x;

 class ExternalClassB

{

public:

int y;

}

}

Cross-Platform Issues 55

when you model them in Rational Rose RealTime by ExternalClassA and a nested
ExternalClassB, for both, generateClass is cleared and generateDescriptor is
selected. The type descriptor for ExternalClassB is not generated.

The descriptor for the nested class must be scoped within the top-level class because
the nested class is not necessarily public. Because the top-level class is not generated,
the descriptor for the nested class (which must be part of the declaration of top-level
class), cannot be generated.

No Codesync Support for Java

Although codesync options might appear on the menus, Rational Rose RealTime does
not support codesync for Java.

Using the GetSelected Functions

In Rational Rose RealTime, the browser selections only apply when the browser
window has focus (Rational Rose RealTime uses a different definition of what is
selected than Rational Rose). In all other cases, the selection is from the active diagram
window (if any). When you run a script, you are in the script window; the browser
window does not have focus. To return focus to the browser window, you can add a
delay to your script.

The GetSelected functions (for example,
RoseRTApp.CurrentModel.GetSelectedClasses) only find the selected elements in
the model browser if the model browser is active. This means that if you select
elements in the browser, and then run your script (from the Script Editor, or the Tools
menu), the model browser is no longer active (the selected elements are gray, not
blue) and these functions will not find anything.
56 Chapter 3 - General Issues

For example, if you open the following script in Rational Rose 2000, select your classes
in the model browser, and then run the following script:

Sub Main ()

Dim theSelectedClasses As ClassCollection

Viewport.Open

Viewport.Clear

Print "Selected classes from model browser:"

Set theSelectedClasses = RoseApp.CurrentModel.GetSelectedClasses()

If theSelectedClasses.Count > 0 Then

For i = 1 To theSelectedClasses.Count

Print "Class name: "; theSelectedClasses.GetAt(i).Name

Next i

Else

Print " No classes have been selected "

End If

End Sub

However, this script will not work in Rational Rose RealTime. It will only work in
Rational Rose RealTime if you make the model browser active. For example, if you
add the sleep line to the following script, run the script, select the classes in the model
browser, and wait 5 seconds, it will find the selected classes.

Sub Main ()

Dim theSelectedClasses As RoseRT.ClassCollection

Viewport.Open

Viewport.Clear

Sleep(5000)

Print "Selected classes from model browser:"

Set theSelectedClasses =

RoseRTApp.CurrentModel.GetSelectedClasses()

If theSelectedClasses.Count > 0 Then

For i = 1 To theSelectedClasses.Count

Print "Class name: "; theSelectedClasses.GetAt(i).Name

Next i
Cross-Platform Issues 57

Else

Print " No classes have been selected "

End If

End Sub

Using the Find Command Might Return Too Many Results

When using the Find command, the results returned may be more than expected. We
recommend that you refine your searches whenever possible.

No Support for Automatic Unwired Port Registration for Java

In Rational Rose RealTime for Java, rtBound messages do not work because there is
no support for unwired port registration.

Error Occurs When Printing a Diagram

If you use an 8 bit, 256 color terminal, you may receive the following error message
when you print a diagram from your model if the graphics use the default gray
shading:

Error Writing to print file <file_name>.

To print diagrams within your models, you must redefine the default fill color.

To redefine your fill color:

1 On the Tools menu, select Options.

2 Click the Font/Color tab.

3 Click Fill Color.

4 Select a color other than the default gray.

ROSERT_NO_FEEDBACK - Prompting for Information When an
Exception Occurs

On Windows-hosted versions of Rational Rose RealTime, a dialog appears after an
exception occurs that allows you to specify information about the steps leading up to
the exception, your current system configuration, and whether you want to be
contacted.
58 Chapter 3 - General Issues

On Linux-hosted and UNIX-hosted versions of Rational Rose RealTime, a script runs
after an exception occurs, that has the same functionality as that provided by
Windows-hosted versions. Whether you specify the requested information or decide
not to specify any information, the script runs RoseRT -cleanup.

Note: After any Rational Rose RealTime UNIX exception, you must run
RoseRT -cleanup to ensure that any remaining crash artifacts are removed.

On Linux -hosted and UNIX-hosted versions, if you do not want to be prompted for
information after exceptions, set the environment variable
ROSERT_NO_FEEDBACK to True. When this variable is set, RoseRT -cleanup will
continue to run after an exception. Later, if you want to be prompted to provide
feedback, set the variable ROSERT_NO_FEEDBACK to False.

ROSERT_TORNADO_TIMEOUT - Modifying the Default Timeout for wtx
Commands

By default, when you download a VxWorks module to a target, the timeout value for
wtx commands is set to 30 seconds (ROSERT_TORNADO_TIMEOUT=30000). This
default value might not be sufficient when you download large modules, or when
you use a slow network. You might receive an error if the timeout value is exceeded.
Use this variable to increase the timeout period, if required.

Referenced Configuration for Nucleus Does Not Include Socket Support

The reference configuration for Nucleus does not include socket support. This can be
seen by the definition of HAVE_INET in
$ROSERT_HOME/C++/TargetRTS/target/NUCLEUS11T/RTTarget.h. If
HAVE_INET is set to zero (0), Target Observability will not work. For example, the
following definition will not work:

#define HAVE_INET 0

You can use the source code included in
$ROSERT_HOME/C++/TargetRTS/src/target/NUCLEUS/RTinet for socket support
as a starting point; however, the code has not been tested and is not supported.
Cross-Platform Issues 59

Online Help Issues

For information on online Help issues, review the following topics:
■ Navigating Through the Online Help on page 60
■ Viewing Animated Demonstrations on page 60
■ Problems Accessing Rational Rose Help while Running Rational Rose RealTime on

Windows on page 61
■ Using Context Sensitive Help Might Cause Message to Display on page 61
■ Maintaining a Single Favorites List on page 61
■ Using the Index Tab in the Online Help on page 62

Navigating Through the Online Help

You can either select a topic on the Contents tab or click the Next or Previous buttons,
and the topic appears in the main window. As you click Previous, although the
previous topic appears in the main window, the incorrect topic might be highlighted
on the Contents tab. However, this does not affect the navigation to the selected topic.

Viewing Animated Demonstrations

Rational Rose RealTime includes animated demonstrations of various topics. To see
the current list of animated demonstrations, on the Help menu, click Contents. The
Rational Rose RealTime Online Help Start Page appears. Click the Animated
Demonstrations button for your specific platform.

You can view Viewlets on several platforms. However, your browser must have Java
1.1 and JavaScript support to play a Viewlet. Additionally, Java must be enabled in
your browser.

It is normal for some larger Viewlets to take 10 to 15 seconds to load. Ensure that your
browser cache is not disabled; otherwise, some Viewlets may take longer to load.

If a Viewlet takes a long time to open, or a gray box appears instead of the Viewlet, try
running the Viewlet in your browser.

To run a Viewlet from your browser:

1 In your browser, navigate to the <ROSERT_HOME >/Help directory.

2 Select rosert_watch_demos.htm.

3 Select a Viewlet to run that demonstration.
60 Chapter 3 - General Issues

Problems Accessing Rational Rose Help while Running Rational Rose
RealTime on Windows

If you run Rational Rose RealTime and Rational Rose at the same time, Rational Rose
might not have access to its Help files. When accessing the online Help for the
Rational Rose RealTime toolset, Rational Rose RealTime temporarily replaces a
registry key value that is installed by Rational Rose. This registry key is located in
[HKEY_LOCAL_MACHINE\Software\Rational Software\Rose] and is named
HelpFileDir. When the toolset starts, it substitutes this key’s value for its own Help
directory. The value installed by the Rational Rose installation program is backed up
and restored when the last instance of the running toolset closes.

Workaround

You can disable this behavior by setting the value of the key in
[HKEY_LOCAL_MACHINE\Software\Rational Software\Rose RealTime\6.5],
whose name is ReplaceRoseHelpDir, to No.

Using Context Sensitive Help Might Cause Message to Display

If you have version 4.7.3 of the HTML Help compiler installed on your computer, you
will receive the following message:

The window name "Default" passed to HH_GET_WIN_TYPE has not been
specified.

To solve this problem, install version 4.7.4 of the HTML Help compiler.

Maintaining a Single Favorites List

The Rational Rose RealTime online Help is modularized. If you select Add on the
Favorites tab to add the current Help topic to your favorites list, this entry only
appears in the favorites list for that component of the online Help.

To maintain a single list of favorite Help topics:

1 Use the Search or Index tabs to find the desired online Help topic.

2 Click the Locate button in the Toolbar to see where this Help topic appears in the
Contents tab.

3 Close the online Help.

4 Open the online Help by clicking Help > Contents.
Online Help Issues 61

5 From the Contents tab only, find the Help topic.

6 Click the Favorites tab.

7 Click Add.

Using the Index Tab in the Online Help

When using the Rational Rose RealTime online Help system, if the Index tab has no
index entries, close the online Help, and then open the online Help again. If the Index
tab remains empty, delete the file %ROSERT_HOME%/Help/rosert_rrtolhst.chw,
and then open the online Help again.

Documentation Updates

For information about updates to the documentation, review the following topics:

■ Update to Abort Documentation on page 62
■ Update to Code for Example RTMessage_getPortIndex on page 63
■ Update to Code for Example RTMessage_getData on page 64
■ Update to Documentation for Launching Model Integrator on page 64
■ Code Example for rts and RTCapsule_context Causes Compilation Errors on page 65
■ Update to Example Model for Type Descriptors on page 66
■ Update to Referenced Host Configurations Information on page 66
■ Updated Reference to Example Model for Type Descriptors on page 67

Update to Abort Documentation

The online documentation for abort is incorrect. Currently, it states the following:

RTController::abort

void abort(void);

Calling this operation on any controller terminates the controller on which the
capsule instance runs. The results is that it will destroy all capsule instances running
on that controller. Messages that have not been processed are deleted. Calling this
operation on the main thread causes the destruction of all threads, and the process
quits. Instead, you can call context()->abort(). This operation also terminates the main
thread, all threads are destroyed, and then the process quits. Messages that were not
processed are deleted.

Note: Depending on the implementation used, the debugger thread may continue to
run.
62 Chapter 3 - General Issues

Update to Code for Example RTMessage_getPortIndex

The following code from the online Help example for RTMessage_getPortIndex
located in /C/C Reference /Services Library API Reference /Minimally Configured
Services Library/RTMessage_getPortIndex causes compilation errors.

Currently, the example is as follows:

const RTMessage * msg = RTCapsule_getMsg(this);

/* reply to message */

RTPort_sendAt(

 port,

 RTMessage_getPortIndex(msg),

 RTPort_createOutSignal(port, reply),

 RTPriority_High,

 &someData,

 &RTType_typeOfSomeData);

To avoid compilation errors, change the example to the following:

const RTMessage * msg = RTCapsule_getMsg(&this->std);

/* reply to message */

RTPort_sendAt(

 &this->port,

 RTMessage_getPortIndex(msg),

 RTPort_createOutSignal(port, reply),

 RTPriority_High,

 &someData,

 &RTType_typeOfSomeData);
Documentation Updates 63

Update to Code for Example RTMessage_getData

The code from the online Help example for RTMessage_getData in /C/C
Reference/Services Library API Reference Minimally Configured Services
Library/RTMessage_getData causes a compilation error.

Currently, the example is as follows:

aDataType dt =

*(aDataType *)RTMessage_getData(RTCapsule_getMsg(this));

Change that code to this code:

aDataType dt =

*(aDataType *)RTMessage_getData(RTCapsule_getMsg(&this->std));

Update to Documentation for Launching Model Integrator

The online Help for Model Integrator (from the Contents tab, click Model Integrator
Guide > Introduction > Using Model Integrator from the Command Line) is as
follows:

To Launch Model Integrator from the command line:

 For Windows, type modelintRT.

 For UNIX, type RoseRT -modelintRT.

The correct UNIX command to start Model Integrator from the command line is as
follows:

RoseRT -modelint
64 Chapter 3 - General Issues

Code Example for rts and RTCapsule_context Causes Compilation
Errors

The code from the online Help example for rts and RTCapsule_context in /C /C
Reference/ Services Library API Reference/Minimally Configured Services
Library/rts and RTCapsule_context causes compilation errors.

The code example is as follows:

int result =

RTPort_send(port,RTPort_createOutSignal(port, hey),

RTPriority_General, (void *)0, (RTObject_class

*)0);

if(! result)

{

 RTController * context = RTCapsule_context(this);

 log.show("Error on physical thread: ");

 RTLog_show(RTController_name(context));

 RTController_perror(context, "send");

}

The following corrections are required for the online Help example to compile
without errors:

■ Change the first parameter of the method RTPort_send() to be a const RTPort *.
Use &this->port because port refers to the name of the port.

■ The method RTCapsule_context(const RTCapsule *) expects a parameter that is
a pointer to a RTCapsule. The parameter this in the example points to a capsule's
instanceData struct. Use &this->std as a pointer to the RTCapsule.

■ There is no log.show() method. Use RTLog_show_string().

■ There is no RTLog_show() method. Use RTLog_show_string().
Documentation Updates 65

After you apply the changes, the example will look as follows:

int result =

RTPort_send(&this->port,RTPort_createOutSignal(talk, ack),
RTPriority_General, (void *)0,

(RTObject_class *)0);

if(! result)

{

 RTController * context = RTCapsule_context(&this->std);

 RTLog_show_string("Error on physical thread: ");

 RTLog_show_string(RTController_name(context));

 RTController_perror(context, "send");

}

Update to Example Model for Type Descriptors

The Help for type descriptors (from the Contents tab, C++ Reference > Model
Properties Reference > Type Descriptors > Example Usage Patterns and Associated
Type Descriptors) refers to an model Example.rtmdl. The correct model to use is as
follows:

$ROSERT_HOME/Examples/Models/C++/TypeDescriptors/typedescript.rtmdl

Update to Referenced Host Configurations Information

In the online Help, from the Installation and Getting Started Guide, select the topic
Referenced Configurations and Toolchain Requirements then Referenced Host
Configurations. Table 6 states the following:

Host Configuration(s): Windows

Target RTOS: Nucleus 1.1

Compiler/Processor: Diab 4.2b, ppc

RTS Library: C++

Connexis DCS Library : -
66 Chapter 3 - General Issues

The correct information is as follows:

Host Configuration(s): Solaris, Windows

Target RTOS: Nucleus 11

Compiler/Processor: Diab 4.2b, ppc

RTS Library: C++

Connexis DCS Library : -

Updated Reference to Example Model for Type Descriptors

On the Contents tab in the online Help, the type descriptor topic C++ Reference >
Model Properties Reference > Type Descriptors > Example Usage Patterns and
Associated Type Descriptors refers to a model Example.rtmdl. The correct name and
location for the example model file for type descriptors is as follows:

$ROSERT_HOME/Examples/Models/C++/TypeDescriptors/typedescript.rtmdl

Using Type Descriptor Functions

The TargetRTS Services Library uses type descriptors when it manipulates objects of a
class type. The five generated type descriptor functions for a given class are init, copy,
destroy, encode, and decode.

When the object is... The following functions are used...

Output to the System Log, trace window, or
watch window

encode

Modified at run-time in the watch window init, copy, destroy, decode

Injected in a message init, copy, destroy, decode

Sent by value (without Connexis) copy, destroy

Sent by value (with Connexis) init, copy, destroy, decode,
encode

Sent by value (with Connexis, but in the same
process)

copy, destroy
Using Type Descriptor Functions 67

If the class is a subclass of RTDataObject or used in RTSequenceOf, or RTWrapper
operations, the five type descriptor functions can also be used.

Note: For ObjecTime models converted into Rational Rose RealTime, only use the
RTDataObject, RTSequenceOf, and RTWrapper classes for backward compatibility.
68 Chapter 3 - General Issues

4Using Globally Unique
Identifiers (GUIDs)
Contents

This chapter is organized as follows:

■ Advanced Handling of Globally Unique Identifiers (GUIDs) on page 69
■ Generating GUIDs on page 71
■ Managing GUIDs on page 72
■ Known Issues with GUIDs on page 75

Advanced Handling of Globally Unique Identifiers (GUIDs)

Rational Rose RealTime assigns Globally Unique Identifiers (GUIDs) to primary
model elements (such as classes, packages, components, and use cases). These unique
identifiers allow Model Integrator to easily identify model changes (such as when a
model element is renamed or moved) and merge elements from contributor models.

In previous releases of Rational Rose RealTime, all GUIDs were computed using a
time-based algorithm to ensure that the GUIDs were unique. GUIDs for additional
element properties (such as operations, attributes, states, transitions, and triggers) are
optional and, by default, are not set. Enabling and then disabling optional GUIDs
resulted in the removal of any previously existing optional GUIDs from the model.

Most model elements (such as classes, capsules, and protocols) always have GUIDs
generated; however, the generation of GUIDs for a number of other elements can be
enabled or disabled through the user interface. Rational Rose RealTime generates
GUIDs for these model elements when you select the option Generate for all
elements in the Unique Identifiers area on the General tab of the Model
Specification for Model dialog box for the top model file.
69

Problem

Before enabling the feature to turn on GUIDs on in a multi-stream or multi-model
environment, it was necessary to collapse all the models and streams into a single
model. If a model element with a unique ID was imported into a model with this
feature not set, the optional GUIDs were removed. If a model element without a
unique ID was imported into a model with this feature set, a unique ID was added.
Because the unique ID was not always preserved, it was important to ensure that all
models had this feature enabled to ensure that unique identifiers were preserved.

Resolution

The current GUIDs feature provides a controlled mechanism for propagating optional
GUIDs into a multi-stream model environment. This feature supports a one-time
upgrade of a model to enable GUIDs without having to create a single master model.
It introduces an alternate position-based, not time-based, algorithm for GUID
generation, which guarantees that the optional GUID for a property will be the same
in all models where the element property has the same name and resides in the same
location. For example, NewClass1 in model A and B has a state machine. Each state
machine has a state S1. The old behavior of GUID generation would have assigned a
time-based GUID in each model causing merge conflicts. The new algorithm uses a
name-position algorithm to assign the same GUID in each model.

If a model element property has a GUID and it is loaded into a model with optional
GUIDs disabled, the GUID will be preserved. If a model element property without a
GUID is loaded into a model with optional GUIDs enabled, a GUID will not be added.
It is possible to have optional GUIDs enabled, but no GUIDs present in the model.
This new feature provides an easy method to determine if optional GUIDs are missing
from a model, and it also provides you with an easy method to add additional
alternate GUIDs if optional GUIDs are not present. In rare circumstances, the alternate
GUID algorithm can generate a GUID which conflicts with a time-based GUID. For
these situations, the new feature supports the generation of a single GUID. To activate
the GUIDS feature for optional model elements, see Managing GUIDs on page 72.

Note: By default, all models created from Rational Rose RealTime Frameworks will
have the GUIDs feature activated. We strongly recommend that you do not change the
default settings for generating GUIDs in your models to ensure optimal Model
Integrator merge sessions.
70 Chapter 4 - Using Globally Unique Identifiers (GUIDs)

Generating GUIDs

Previously, before you could enable the Generate for all model elements option, all
development streams had to be merged into a single stream. Rational Rose RealTime
now includes a new method of GUID generation which attempts to generate the same
GUIDs for the same elements across development streams.

Recommended Steps for Enabling GUIDs in Multi-Stream Development

To avoid conflicts between time-based GUIDs and alternate GUIDs, you can enable
optional GUIDs in a single model in a single stream. If you have a multi-stream
development environment where GUIDs are not enabled, we recommend that you
merge all streams into a single stream before enabling optional GUIDs. (For a detailed
explanation, see the topic To set the Generate unique identifiers for all elements option in
the online Help.)

For those cases where merging into a single stream is not practical, this feature also
supports the incremental introduction of GUIDs into a multi-stream environment.
When optional GUIDs are added incrementally in a multi-stream environment, there
is a higher risk for a GUID collision (where different model elements share the same
GUID).

To minimize the change and impact of collisions:

You want to ensure that no duplicate GUIDs (different model elements with the same
GUID) exist in any of the streams because duplicate GUIDs will complicate the
process.

1 Open each model from the development streams and select Add/turn on unique
identifiers.

Note: We recommend adding optional GUIDs one model at a time and then
propagating the results across a team before starting the next model.

2 Open Model Integrator and perform a trial merge of the models.

3 Load the resulting model you created from the trial merge process into Rational
Rose RealTime.

Note: If you receive the following error message:

Warning: This model has multiple objects with the same unique id
(XXXXXXXXXXXX).

record the duplicate unique IDs, and then identify them in the stream in which
they appear.
Generating GUIDs 71

4 For each of the duplicate IDs you encounter, open the model corresponding to the
ID and then select Regenerate unique identifier to regenerate it.

Note: This scenario is not likely to occur.

5 Perform a merge again to ensure that all duplicate GUIDs have been resolved. If
there are no errors, save the result as the new baseline.

Managing GUIDs

The General tab in the Model Specification for Model dialog box includes the
Generate for all elements option that specifies the current state of a model for
generating unique identifiers for the model: ON or OFF. By default, this option is set
to ON.
72 Chapter 4 - Using Globally Unique Identifiers (GUIDs)

Click Advanced to select an action to perform with the unique identifiers.

Add/turn on unique identifiers

Activates the GUIDs feature and adds optional GUIDs to the elements that support
optional GUIDs, but do not currently have a GUID.

When you select this option, the following dialog box appears:

Click Yes to start the process.

Note: To see details in the log, ensure that the toolset option for command logging is
enabled. Click Tools > Options, and then set the Log commands option on the
General tab. The Log tab in the Output window shows the number of GUIDs
generated using a message similar to the following:

Generated NNN hash GUIDs.

where NNN represents the actual number of GUIDs generated in the current model
by Rational Rose RealTime.
Managing GUIDs 73

Check unique identifiers presence

Rational Rose RealTime will report the number of model elements that support
optional GUIDs that do not currently have optional GUIDs assigned. If Rational Rose
RealTime encounters any model elements that do not have optional GUIDs assigned,
you must click the Add/turn on unique identifiers option.

Regenerate unique identifier

When this option is selected, you can regenerate an alternate GUID for a model
element.

When you select this option, the following dialog box appears:

When you specify the GUID to regenerate, type it exactly as it appears in the model
file or in the duplicate ID error message. For example:

3EC115960177

If a GUID cannot be found in the model, the model will not be modified and the
following error message appears:

If a valid GUID was found in the model, a GUID is regenerated for the first model
element found that matches the supplied GUID, and references to the old GUID are
replaced with references to the new GUID.
74 Chapter 4 - Using Globally Unique Identifiers (GUIDs)

If the model contains more than one element with the specified GUID, the GUID is
regenerated for the model element that has an optional GUID.

Note: To see details in the log, ensure the toolset option for command logging is
enabled. Click Tools > Options, and then set the Log commands option on the
General tab. After the process of regenerating GUIDs completes, check the log for
messages.

Remove/turn off unique identifiers

This option deactivates the GUIDs feature and removes optional GUIDs from the
model.

Note: We recommend that optional GUIDs always be enabled. Use this feature to
remove GUIDs in situations where optional GUIDs are already enabled and you want
to replace them with alternate GUIDs.

Known Issues with GUIDs

■ Adding or removing unique identifiers might force Rational Rose RealTime to
check out controlled units from your source control tool that will not be modified.
Typically, those are units that use elements with changing GUIDs, but do not use
that GUID to reference the element.

■ When using alternate GUIDs, it is possible to have more than one object with the
same GUID, which is referred to as a collision. We estimate that the number of
collisions is approximately one collision per 10 MB of model for each development
stream. This feature automatically resolves collisions in a single model; however,
you can expect GUID collisions when enabling GUIDs in different streams. See
Recommended Steps for Enabling GUIDs in Multi-Stream Development on page 71.

■ Naming of junction points on State Diagrams and connectors on Collaboration and
Structure Diagrams:

❑ Previously, junction points on State Diagrams, and connectors on Collaboration
and Structure Diagrams were named Junction n, and connectors were named
Cn (where n represents a number assigned to the element). Now, these
elements are named J<GUID> for junction points and C<GUID> for
connectors, where GUID is replaced with the GUID of the object. This change
affects only UI operations and will not change existing models.
Known Issues with GUIDs 75

❑ The new naming of junction points on State Diagrams and connectors on
Collaboration and Structure Diagrams prevents Model Integrator merge
conflicts. For example contributor 1 adds a transition t1 from state S1 to state
S2. Contributor 2 adds a transition t2 from state S1 to S3. This should be a
non-conflicting change, but previous versions of Rational Rose RealTime
named the originating junction in S1 for t1 and t2 with the same name (for
example, JUNCTION1), which results in a merge conflict requiring user
intervention during the merge process. Using the new naming convention, the
merge would be a non-conflicting change and Model Integrator is capable of
automatically resolving the changes.
76 Chapter 4 - Using Globally Unique Identifiers (GUIDs)

5Eclipse and Rational
Rose RealTime
Integration
Contents

This chapter is organized as follows:

■ Integration Overview on page 77
■ Communication Overview on page 79
■ Installing the Eclipse and Rational Rose RealTime Integration Software on page 80
■ Configuring Preferences in Eclipse on page 81
■ Configuring Preferences in Rational Rose RealTime on page 89
■ Generating Code from Rational Rose RealTime on page 92
■ Removing Generated Code from Rational Rose RealTime on page 92
■ Refreshing an Eclipse Project on page 93
■ Synchronizing Code Between Rational Rose RealTime and Eclipse on page 93
■ Editing Code in Eclipse on page 94
■ Configuring Build Settings in Rational Rose RealTime on page 98
■ Configuring Build Settings in Eclipse on page 100
■ Building in Eclipse on page 101
■ Navigating to Build Errors on page 103
■ Navigating From Rational Rose RealTime to Eclipse on page 104
■ Navigating from Eclipse to Rational Rose RealTime on page 108
■ Getting Started on page 110
■ Example Workflow on page 113
■ Troubleshooting on page 131

Integration Overview

The Eclipse and Rational Rose RealTime integration links these applications so that
they can communicate with each other. The seamless integration lets you leverage the
strengths of both applications in a single workflow. This means that you can do your
model-centric development in Rational Rose RealTime, while using Eclipse for your
code-centric development.
77

The Eclipse and Rational Rose RealTime integration lets you easily navigate between
the two applications, and view data in various formats (Model View in Rational Rose
RealTime, and Code View in Eclipse). Meanwhile, your development remains
synchronized across the two applications.

Figure 1 shows the integration between Rational Rose RealTime and Eclipse, as well
as the different configuration options available for installing the applications.

Figure 1 Eclipse and Rational Rose RealTime Integration
78 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Both applications can run on the same physical computer, or on two different
computers. Additionally, when running the applications on two different computers,
they can be on different configurations (Linux, UNIX, and Windows). For example,
Eclipse can run on a computer with a Windows configuration, while Rational Rose
RealTime runs on a computer with a UNIX configuration. However, the following
requirements must be met:

■ Both computers must have access to a common file system, where the generated
code will be stored.

■ To perform a build in Eclipse, Rational Rose RealTime and Cygwin must be
installed on the computer that runs Eclipse. Rational Rose RealTime does not have
to be running because Eclipse only requires access to the libraries and header files
in Rational Rose RealTime; the build process requires access to the Rational Rose
RealTime Runtime system because it must be able to compile for all targets.

■ In Rational Rose RealTime, preferences are associated with a model, and stored in
the same directory as the model file, with the extension .rteri. Running two or
more Rational Rose RealTime sessions simultaneously on the same computer is
supported, provided that each session uses its own model file.

■ If Eclipse and Rational Rose RealTime are running on two different computers,
both computers cannot be located behind two different firewalls, unless one of the
computers has port forwarding enabled.

■ The integration supports running two or more Eclipse sessions simultaneously on
the same computer, provided that each session uses its own workspace.

Note: For additional information about the referenced configurations required for the
Eclipse and Rational Rose RealTime integration, see the topic Referenced Configuration
Requirements for the Eclipse and Rational Rose RealTime Integration on page 21.

Communication Overview

To establish communication between Rational Rose RealTime and Eclipse, one of the
applications must be designated as a listener, and the other must be the connector.
Both the Rational Rose RealTime plug-in in Eclipse and the Eclipse Add-in in Rational
Rose RealTime can act as either a TCP/IP listener, or connect to a listener. The listener
has one parameter that specifies the port number to listen to. The connector has two
parameters; the host name or IP address, and the port number to connect to.
Communication Overview 79

After a connection is established, it does not matter whether Eclipse or Rational Rose
RealTime is designated the listener or the connector. The information sent across the
established link is exactly the same regardless of which application is the listener and
which application is the connector. By default, Eclipse is designated the listener, and
Rational Rose RealTime is the connector.

Configuring a Listener

The listener runs on a separate thread. Once enabled, the listener (either Eclipse or
Rational Rose RealTime) starts to listen on a specified port. For Eclipse, the port is
specified on the Communication tab in the Preferences dialog box, and for Rational
Rose RealTime, the port is specified on the Eclipse Integration Settings dialog. When
a connection is made to the listener, that thread services the established connection.
Therefore, there can be only one (or no) entity connected to a listener. If an established
connection becomes disabled, the listener reverts to its listening state.

Configuring a Connector

The connector runs on a separate thread. Once enabled, the application designated as
the connector (either Eclipse or Rational Rose RealTime) attempts to connect to a
specified host name or IP address, and port number. For Eclipse, this information is
specified on the Communication tab in the Preferences dialog box, and for Rational
Rose RealTime, this information is on the Eclipse Integration Settings dialog. If the
specified host is not found, or the connection is rejected, the connector waits for ten
seconds before attempting another connection. If an established connection becomes
disabled, the connector attempts to connect every ten seconds until it establishes a
connection.

Installing the Eclipse and Rational Rose RealTime Integration
Software

For instructions on installing the Eclipse plug-in and the Rational Rose RealTime
add-in, see the following Rational Rose RealTime patch note file:

rosert_2004_06_12_GA04_patch_note.html.

You can find this file on the FTP site where you downloaded this patch.
80 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Configuring Preferences in Eclipse

Although the Eclipse plug-in and the Rational Rose RealTime add-in have basic
connectivity configured, you may want to modify these settings from their default
values, or verify the current status of your connection.

To access the integration settings in Eclipse, click Window > Preferences, and then
select Rose RealTime Integration. Figure 2 on page 81 shows Eclipse listening
(waiting for a connection).

Figure 2 Eclipse - Preferences Dialog Box
Configuring Preferences in Eclipse 81

Enable Rose RealTime Integration

This check box determines whether or not integration occurs. When this check box is
selected, Eclipse is able to establish a connection to Rational Rose RealTime. When
this check box is cleared, no integration functionality will be available.

Communication Tab

Use the Communication tab (Figure 3) to specify how Eclipse will connect to Rational
Rose RealTime and to view the current status of the connection. For additional
information about connectivity issues, see the topic Troubleshooting on page 131.

To access the communication settings in Eclipse, click Window > Preferences, select
Rose RealTime Integration, and then click the Communication tab.

Figure 3 Eclipse - Communication Tab
82 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Connection Mode

Specifies whether Eclipse should listen for a connection, or connect to another
computer. Either Eclipse or Rational Rose RealTime can act as the listener; however, if
one application is the listener, the other must be the connector. By, default, Eclipse is
set as the listener to establish socket communication at start-up.

Port Number

Specifies the port number that Eclipse listens on, or connects to. The valid range for
the port number is between 1024 and 65535. The default value is 21145.

Note: Only one listener can use any specified port number; multiple listeners on the
same port are not permitted.

Host name or IP address

Specifies the computer name or the IP address that Eclipse should connect to. When
Eclipse is designated as the listener, this option is grayed out.

Current status

Specifies the current state of the connection from Eclipse. The state can be one of the
following options:

■ Connected to <hostname_or_IP_address> - A successful connection was made
between Eclipse and Rational Rose RealTime. This message occurs in Eclipse and
Rational Rose RealTime while the connection remains established.

■ Connecting to <hostname_or_IP_address>:<port_number> - Eclipse is attempting to
connect to the other end (Rational Rose RealTime). For additional information
about connectivity issues, see the topic Troubleshooting on page 131.

■ Can’t connect to <hostname or IP address>:<port_number> - Eclipse could not
connect to the other end (Rational Rose RealTime) because Rational Rose RealTime
was not running, or it is not configured to listen to the specified port. For
additional information about connectivity issues, see the topic Troubleshooting on
page 131.
Configuring Preferences in Eclipse 83

■ Can’t listen to port <port_number> - Eclipse cannot listen on the specified port
number because that port is currently in use. Choose a different port number. For
additional information about connectivity issues, see the topic Troubleshooting on
page 131.

■ Feature not enabled - The Enable Rose RealTime Integration option is currently
disabled.

■ Host <hostname or IP address> can’t be resolved - The host cannot be found, or the
IP address is invalid. For additional information about connectivity issues, see the
topic Troubleshooting on page 131.

■ Listening on port <port_number> - Eclipse is currently listening for a connection
on the specified port number, but a connection has not yet been made. Eclipse will
continue to listen until a connection is established. This message occurs when
Eclipse is the listener (Connection mode is set to Listen for a connection).

Restore to Defaults

Returns all modified settings to their default values.

Features Tab

Use the Features tab to specify how Eclipse selects elements, and to specify whether a
codesync is performed when you save in Eclipse.

To access the feature settings in Eclipse, click Windows > Preferences, select Rose
RealTime Integration, and then click the Features tab.

Figure 4 shows the default settings for the Features tab in Eclipse.
84 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Figure 4 Eclipse - Features Tab

Do a codesync on save

Specifies that Rational Rose RealTime will perform a codesync when you save code
changes in Eclipse. For large components, you may not want this option selected
because of the delay involved in synchronizing; however, if this feature is not
enabled, synchronization does not occur.

Note: In Eclipse, if you select Save > Save All, a codesync will not be performed if
more than one file was saved; codesync occurs only when you save one file at a time.
For additional information about codesync, see the topic Synchronizing Code Between
Rational Rose RealTime and Eclipse on page 93.

Select elements from C/C++ Projects View

Specifies when you select a method from the C/C++ Projects view in Eclipse, the
corresponding model element in Rational Rose RealTime (if any) is selected from its
State Diagram.

Note: Some elements selected from the C/C++ Projects view in Eclipse do not have a
corresponding element in Rational Rose RealTime. Navigation can only occur for
user-defined operations, choice points, states (entry and exit), and transitions.
Configuring Preferences in Eclipse 85

Select elements from Outline View

Specifies when you click on a method from the Outline view in Eclipse, the
corresponding model element in Rational Rose RealTime (if any) is selected from its
State Diagram.

Note: Some elements selected from the C/C++ Projects view in Eclipse do not have a
corresponding element in Rational Rose RealTime. Navigation can only occur for
user-defined operations, choice points, states (entry and exit), and transitions.

Also select elements in browsers

Specifies when you click a method from either the Outline view or the C/C++
Projects view in Eclipse, that model element is selected in the State Diagram, in the
State Diagram browser, and on the Model View tab from the main browser in
Rational Rose RealTime.

Note: Some elements selected from the C/C++ Projects view in Eclipse do not have a
corresponding element in Rational Rose RealTime. Navigation can only occur for
user-defined operations, choice points, states (entry and exit), and transitions.

Path Mappings Tab

Use the Path Mappings tab to specify the settings for differences in paths between
Eclipse and Rational Rose RealTime. You only need to specify differences to the
common storage area where the model and code reside.

Note: The path mappings identified on Path Mapping tab in Eclipse are not related to
the pathmaps specified for a model in Rational Rose RealTime.
86 Chapter 5 - Eclipse and Rational Rose RealTime Integration

To access the path mapping settings in Eclipse, click Window > Preferences, select
Rose RealTime Integration, and then click the Path Mappings tab.

Figure 5 Eclipse Path Mappings Tab

Note: In Rational Rose RealTime, you must modify the value for the
TargetServicesLibrary on the C++ Compilation tab (C Compilation tab for the C
Language) for a component if you generate code on one computer and build it on
another, and the computers are on different configurations. For example, if you
generate a Rational Rose RealTime model on a Windows computer, and attempt to
build it on a computer with a Linux configuration, the build will not be successful. To
successfully build when doing cross-platform development, open the Component
Specification dialog and click the C++ compilation tab. Typically, the value for
TargetServicesLibrary is $ROSERT_HOME/C++/TargetRTS. The code generator
will generate a make file and expand the $ROSERT_HOME environment variable to
the actual value (for example, C:\Program Files\Rational\Rose Realtime). This
value may not be valid on the computer doing the build. You must modify the
environment variable so that it is not expanded by inserting round brackets around
the environment variable name. For example:

$(ROSERT_HOME)/C++/TargetRTS
Configuring Preferences in Eclipse 87

Path in Eclipse end

Specifies the path mapping to the location of the file system where the model and
code reside for the computer that runs Eclipse.

Path in Rose RealTime end

Specifies the path mapping to the location of the file system where the model and
code reside for the computer that runs Rational Rose RealTime.

Specifying Path Mappings

For a successful integration between Eclipse and Rational Rose RealTime, both
applications must have to access the file system where the model and code reside.
Because Eclipse and Rational Rose RealTime can run on different computers, as well
as on different configurations, the Eclipse plug-in and the Rational Rose RealTime
add-in must be aware of these path mapping differences in the file system. The
following examples show the path mappings required for different configuration
options:

■ Eclipse and Rational Rose RealTime are on two computers with different
configurations (Windows and UNIX)

If Rational Rose RealTime runs on a computer with a Microsoft Windows XP
configuration, and the model file mymodel.rtmdl is stored on a network drive
mapped to W:\ in the following directory:

\user\data\

the path to the model file is as follows:

W:\user\data\mymodel.rtmdl

Note: On Windows configurations, you must map the path to a drive letter.

And, if Eclipse runs on a computer with a UNIX configuration, its fully qualified
file location is as follows:

//mystorage/user/data/mymodel.rtmdl

In this example, Eclipse and Rational Rose RealTime will reference the same
location if the following path mappings are specified:

Path in Eclipse end: //mystorage/

Path in Rational Rose RealTime end: W:\

Note: You can use "/" or "\" interchangeably when specifying path mappings.
88 Chapter 5 - Eclipse and Rational Rose RealTime Integration

■ Eclipse and Rational Rose RealTime are on the different computers with the
same configuration (Windows)

If Eclipse and Rational Rose RealTime are on a Windows configuration, you want
to specify the path differences (in this example, the drive letter) between the two
computers. If Rational Rose RealTime runs on a computer with a Windows XP
configuration, and the fully qualified location for the model is as follows:

K:\shared\models\mymodel.rtmdl

And, if Eclipse runs on a different computer with a Windows XP configuration
where the same networked drive (K:) is mapped to S:, the fully qualified file
location for the model is as follows:

S:\shared\models\mymodel.rtmdl

In this example, Eclipse and Rational Rose RealTime know that they reference the
same location if the following path mappings are specified:

Path in Eclipse end: S:\

Path in Rational Rose RealTime end: K:\

■ Eclipse and Rational Rose RealTime are on the same computer

In this example, Rational Rose RealTime and Eclipse will not require any path
mappings to the file storage location because there will be no differences.

Note: If an existing project is refreshed after the storage location specified on the Path
Mappings tab changes, Eclipse prompts you to change to the new location. Changes
in location can occur if you modify the path mappings in Eclipse, or if you click File >
Save Model As in Rational Rose RealTime.

Configuring Preferences in Rational Rose RealTime

Although the Eclipse plug-in and the Rational Rose RealTime add-in have basic
connectivity configured, you may want to modify these settings from their default
values, or verify the current status of the connection.
Configuring Preferences in Rational Rose RealTime 89

To configure the integrations settings for Eclipse in Rational Rose RealTime, click
Tools > Eclipse Integration Settings.

Figure 6 Rational Rose RealTime - Eclipse Integration Setting Dialog Box

Enable Eclipse Integration

This check box determines whether or not integration occurs. When this check box is
selected, Rational Rose RealTime is able to establish a connection to Eclipse. When
this check box is cleared, no integration functionality will be available.

Connection Mode

Specifies whether Rational Rose RealTime listens for a connection, or connects to
another computer. Either Eclipse or Rational Rose RealTime can act as the listener;
however, if one application is the listener, the other must be the connector. By,
default, Connect to another machine is selected, and Eclipse is set as the listener.

Port Number

Specifies the port number that Rational Rose RealTime listens on, or connects to. The
valid range for the port number is between 1024 and 65535. The default value is 21145.

Note: Only one listener can use any specified port number; multiple listeners on the
same port are not permitted.
90 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Host name or IP address

Specifies the computer name or the IP address that Rational Rose RealTime should
connect to. By default, the address of the local host (127.0.0.1) is specified to ensure
that if Rational Rose RealTime and Eclipse run on the same computer, the
connectivity is automatic at start-up. When Rational Rose RealTime is designated the
listener, this option is not available.

Current status

Specifies the current state of the connection from Rational Rose RealTime to Eclipse.
The state can be one of the following options:

■ Connected to <hostname_or_IP_address> - A successful connection was made
between Eclipse and Rational Rose RealTime.

■ Connecting to <hostname_or_IP_address>:<port_number> - Rational Rose RealTime
is attempting to connect to the other end (Eclipse).

■ Can’t connect to <hostname or IP address>:<port_number> - Rational Rose RealTime
could not connect to the other end because Eclipse was not running, or it is not
configured to listen to the specified port. For additional information about
connectivity issues, see the topic Troubleshooting on page 131.

■ Can’t listen to port <port_number> -Rational Rose RealTime cannot listen on the
specified port number because that port is already in use. Choose a different port
number. For additional information about connectivity issues, see the topic
Troubleshooting on page 131.

■ Feature not enabled - The Enable Eclipse Integration option is currently disabled.

■ Host <hostname or IP address> can’t be resolved - The host cannot be found, or the
IP address is invalid. For additional information about connectivity issues, see the
topic Troubleshooting on page 131.

■ Listening on port <port_number> - Rational Rose RealTime is currently listening
for a connection on the specified port number, but a connection has not yet been
made. Rational Rose RealTime will continue to listen until a connection is
established.

Component

This field contains a list of all of the components available in the current model, sorted
alphabetically. In Eclipse, a component is referred to as a project. If you select a new
component from the drop-down list, the Eclipse project also updates to use the new
component.
Configuring Preferences in Rational Rose RealTime 91

Generating Code from Rational Rose RealTime

Before any navigation can occur between Eclipse and Rational Rose RealTime,
generated code must exist for the desired Rational Rose RealTime component.
Without generated code, navigation to and from both applications is not possible.

Note: The component used must have settings for the C++ Generation tab in Rational
Rose RealTime that allows the code generator to function.

To generate code for a Rational Rose RealTime component:

1 In Rational Rose RealTime, right-click on a component.

2 Do one of the following:

❑ For a model that was previously built, you can click Build > Clean, and then
click Build > Build, and select Generate. All the generated code files are
removed from the project in Eclipse and from the common file storage location,
and then new files are generated.

❑ For a model that was not previously built, click Build > Build, and then select
Generate. The updates and any new generated code files display in the Eclipse
project, and in the common file storage location.

Note: Allow the code generation process to complete before you proceed. Ensure that
the last entry on the Build Log tab in the Output window in Rational Rose RealTime
indicates a successful build.

After the generation process completes in Rational Rose RealTime, the corresponding
project in Eclipse refreshes to show the generated code files.

Removing Generated Code from Rational Rose RealTime

It may be necessary to remove generated code for a component. Removing generated
code updates the C/C++ Project view in Eclipse by removing all generated files,
excluding the Eclipse file Makefile.eric which will continue to be available for the
Eclipse project.

To remove all the generated code for a particular component in Rational Rose
RealTime:

1 In Rational Rose RealTime, right-click on a component.

2 Click Build > Clean.

3 Click OK.
92 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Refreshing an Eclipse Project

To refresh an Eclipse project from Rational Rose RealTime:

1 In Rational Rose RealTime, right-click on a component.

2 Select Refresh Eclipse.

In Eclipse, the corresponding project refreshes to show the current elements in the
project.

Synchronizing Code Between Rational Rose RealTime and
Eclipse

By default, when you save your code in Eclipse, a codesync is automatically
performed. You can disable this feature by clearing the Do a codesync on save option
on the Features tab in the Preferences dialog box in Eclipse.

Note: In Eclipse, the Do a codesync on save option is successful only when saving
one file at a time. This means that if you make changes to two or more source files,
selecting File > Save All in Eclipse does not perform a codesync on all files. We
strongly recommend that you save files individually.

The code synchronization process in Eclipse is silent. This means that no confirmation
dialog displays in Rational Rose RealTime. The changes are unconditionally
synchronized into the model.

Note: Because Eclipse and Rational Rose RealTime share a common file system, you
must use caution when modifying code and building. For example, you can modify
code for a model element in Rational Rose RealTime, and then modify the same
method in Eclipse for that corresponding model element. Saving the changes in
Eclipse (which will cause a codesync to be performed in Rational Rose RealTime) will
overwrite the initial changes you made to the model element in Rational Rose
RealTime. In addition, if you modify a method in Eclipse without saving, generating
the component in Rational Rose RealTime overwrites the modifications you made in
Eclipse. We strongly recommend that you save and build your changes as often as
possible.
Refreshing an Eclipse Project 93

Editing Code in Eclipse

In Eclipse, you can edit user-defined operations, choice point, state (entry and exit),
and transition code. To edit method code in Eclipse, the method must contain the
// {{{USR and // }}}USR tags. This means that the typical rules for a codesync apply;
that is, changes in the code must be between // {{{USR and // }}}USR tags for the code
associated with the element.

Figure 7 Location for Insertion Code

Note: You cannot edit a non-user operation generated by Rational Rose RealTime, or
methods that do not contain USR tags. Additionally, you cannot modify attributes.
Modifications are only supported for those elements in a .cpp or .c file.
94 Chapter 5 - Eclipse and Rational Rose RealTime Integration

From Eclipse, you can edit the following code from Rational Rose RealTime:

■ Editing Choice Point, State (Entry and Exit), and Transition Code in Eclipse on page 96
■ Editing Operation Code in Eclipse on page 96
■ Editing Capsule and Class Code in Eclipse on page 97

After editing code in Eclipse, you can synchronize those changes into a Rational Rose
RealTime model. When you save code in Eclipse, Rational Rose RealTime
automatically performs a codesync. For information on synchronizing changes made
to code, see Synchronizing Code Between Rational Rose RealTime and Eclipse on page 93.

Note: In Eclipse, if you select Save > Save All, a codesync will not be performed if
more than one file was saved; codesync occurs only when you save one file at a time.
You can disable the Do a codesync on save feature on the Features tab in the
Preferences dialog box in Eclipse.

Before You Edit

You can only edit code after Eclipse has created a project containing the generated
files from the initial Rational Rose RealTime build.

Note: If the CodeSyncEnabled option on the C++ Generation tab is disabled in
Rational Rose RealTime, USR tags are not created when the component is generated.
Although there are no USR tags, you can navigate to that corresponding element in
Eclipse. Instead of positioning the cursor after the // {{{USR tag and before the
// }}}USR tag, the cursor is positioned at the top of the file.

When you open a model in Rational Rose RealTime, and that model has been used
previously with an established connection to Eclipse, a connection will automatically
be established. Rational Rose RealTime will send the model name and the component
name to Eclipse after the following items occur:

■ The appropriate path maps were configured on the Path Mappings tab in the
Preferences dialog in Eclipse.

■ A successful connection is made between Eclipse and Rational Rose RealTime.

■ A component is selected in the Eclipse Integration Settings dialog in Rational
Rose RealTime.
Editing Code in Eclipse 95

Upon receiving the model name and the component name, Eclipse creates a C/C++
project with the same name as the component.

Note: If generated files exist from a previous build, in Rational Rose RealTime, click
Build > Clean before performing a build. Cleaning the generated files removes all
generated files in the common files system excluding the file Makefile.eric.

Editing Choice Point, State (Entry and Exit), and Transition Code in
Eclipse

To edit choice point, state (entry and exit), and transition code:

1 In Rational Rose RealTime, open a State Diagram for a classifier (capsule or class)
with any combination of choice points, states, or transitions.

2 Right-click on the element and do one of the following:

❑ For choice point code, select Edit Choice Point code in Eclipse.

❑ For state entry code, select Edit Entry code in Eclipse. Additionally, you can
select any state with entry code from the State Diagram browser.

❑ For state exit code, select Edit Exit code in Eclipse. Additionally, you can select
any state with exit code from the State Diagram browser.

❑ For transition code, select Edit Transition code in Eclipse.

If not currently open, an editor shows the source code for the classifier (capsule or
class) associated with the selected choice point, state, or transition, and the cursor
moves to the beginning of the first line of code in the method following the // {{{USR
tag.

Editing Operation Code in Eclipse

To edit operation code:

1 In Rational Rose RealTime:

❑ Open a State Diagram for a classifier (capsule or class), and right-click on an
operation in the State Diagram browser.

Or,

❑ From the Model View tab in the global browser, right-click on an operation.

2 Select Edit Operation code in Eclipse.
96 Chapter 5 - Eclipse and Rational Rose RealTime Integration

If not currently open, an editor shows the source code for the operation, and the
cursor moves to the beginning of the first line of code in the method following the
// {{{USR tag.

3 Edit the code after the // {{{USR tag and before the // }}}USR tag.

Note: Overloaded operations (same name, different signatures) are supported, and
the cursor will be positioned in the correct version of the operation.

Editing Capsule and Class Code in Eclipse

To edit code for a capsule or class, from the Model View tab in the global browser,
right-click on a capsule and select Edit Capsule code in Eclipse, or right-click on a
class and select Edit Class code in Eclipse.

If not currently open, an editor shows the source code for the selected capsule or class,
and the cursor moves to the top of the file.

Note: While it is possible to navigate from a classifier (capsule or class) to its source,
implementation, or body file by right-clicking on the classifier and selecting Edit
Capsule code in Eclipse or Edit Class code in Eclipse, it is not possible to navigate to
its corresponding header file. This includes all the HeaderPreface, HeaderEnding,
PublicDeclarations, ProtectedDeclarations and PrivateDeclarations items. For a
classifier, it is not possible to navigate directly to its ImplementationPreface or
ImplementationEnding code segments; however, you can navigate to the top of the
file.
Editing Code in Eclipse 97

Configuring Build Settings in Rational Rose RealTime

In Rational Rose RealTime, you want to ensure the configuration of the basic build
settings before you attempt to generate code.

To verify your build settings:

1 Right-click on a component and select Open Specification.

2 Click the C++ Generation tab (C Generation tab for the C language).

3 In the OutputDirectory box, you can change the default to set another directory
into which the generated files resulting from a component build are written. By
default, this property is set to $@/$name, where $@ is the model file directory, and
$name is the name of the component.
98 Chapter 5 - Eclipse and Rational Rose RealTime Integration

4 Optional: Although is field can be blank, in the CodeGenDirName box, specify
the name of the directory that the build created to store the generated source code
for the component elements. This directory is generated as a subdirectory of
<output directory>/src.

5 Click the C++ Compilation tab (C Compilation tab for the C language).

The following modifications to the C++ Compilation tab are for a Cygwin on a
Windows configuration only. For additional information about modifying these
setting, see Example Workflow on page 113.

6 In the TargetConfiguration box, type NT40CygwinT.x86-cygwin-gnu-3.2.

7 In the CompilationMakeType box, select Gnu_make.

8 In the CompilationMakeCommand box, type make.
Configuring Build Settings in Rational Rose RealTime 99

Configuring Build Settings in Eclipse

Before a build can occur in Eclipse, there are activities which must occur in both
Rational Rose RealTime and Eclipse. For additional information on the build settings
in Rational Rose RealTime, see Configuring Build Settings in Rational Rose RealTime on
page 98. To build from Eclipse, both Cygwin and Rational Rose RealTime must to be
installed on the computer that runs Eclipse.

Note: For a Windows configuration, after you install Cygwin, you must add
<CygwinInstallLocation>:\bin to your Path environment variable. Rational Rose
RealTime must be installed on the computer running Eclipse, but it does not have to
be running.

In Rational Rose RealTime, the settings on the C++ Generation tab (C Generation tab
for the C language), are only for the computer running Rational Rose RealTime.
Additionally, the settings in the C++ Compilation tab (C Compilation tab for the C
language) must be configured for the computer building in Eclipse. This means that if
you select a component in Rational Rose RealTime for a specific configuration (for
example, a Windows-specific component) and you want to build for a different
configuration (for example Linux) you must modify the compilation settings on the
C++ Generation tab in Rational Rose RealTime. Additionally, you must modify the
$ROSERT_HOME environment variable in the TargetServicesLibrary box by
inserting round brackets around the environment variable name. For example:

Note: $(ROSERT_HOME)/C++/TargetRTS

For additional information about configuring these settings, see Example Workflow on
page 113.

Building in Eclipse

In Eclipse, right-click on a project and select Build Project. The C/C++ Project
perspective changes focus to the C-Build console view which shows the build output.
Any compilation errors or warnings display in the Tasks list.

Note: When a project is created in Eclipse, Eclipse modifies the C/C++ Build settings
to facilitate the building of Rational Rose RealTime code from Eclipse. Eclipse
generates a new makefile, Makefile.eric. This makefile enables the re-use of the
makefiles generated by Rational Rose RealTime.

For information about building in Eclipse, see the Eclipse online Help.
100 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Building in Eclipse

To perform a build in Eclipse, Rational Rose RealTime must be installed on the
computer that runs Eclipse, but it does not have to be running. Rational Rose
RealTime must be installed because Eclipse must have access to the libraries and
header files in Rational Rose RealTime. The build process requires access to the
Rational Rose RealTime Runtime system because it must be able to compile for all of
the targets.

Note: To use the Build Project option in Eclipse, you must first clear the generated
files from the existing project.

To build clean code in Eclipse:

1 From the C/C++ Project view, right-click on a project (known as a component in
Rational Rose RealTime).

2 Click Delete, and select the Also delete contents option.

3 Click OK.

4 In Rational Rose RealTime, right-click on the component, and click Build > Build.

5 Select Generate.

Eclipse generates a clean set of project files for the selected Rational Rose RealTime
component.

Note: When Eclipse creates a project from building a Rational Rose RealTime
component, Eclipse changes to the C/C++ Development perspective, and it
changes the make build command to use the generated code and the generated
makefile (makefile.eric). Now, when you perform a build in Eclipse, the build
uses the make file makefile.eric.

Now, you are ready to build in Eclipse.

6 In Eclipse, right-click to select the project for the component you generated in
Rational Rose RealTime.

7 Select Build Project.
Building in Eclipse 101

Compilation starts, using the special makefile Makefile.eric. While the code compiles,
you can view the output in the C-Build output window. If there are any compilation
errors or warnings, they appear in the Tasks list.

Note: If there are build errors in Eclipse caused by syntax errors in your code (the
code between the //{{{USR and // }}}USR tags), you can easily navigate to that
corresponding element in Rational Rose RealTime. For more information on
navigating from build errors in Eclipse, see Navigating to Build Errors on page 103.

Note: In Rational Rose RealTime, you will need to modify the value for the
TargetServicesLibrary on the C++ Compilation tab for a component if you generate
code on one computer and build it on another, and the computers are on different
configurations. For example, if you generate a Rational Rose RealTime model on a
Windows computer, and attempt to build it on a computer with a Linux
configuration, the build will not be successful. To successfully build when doing
cross-platform development, open the Component Specification dialog and click the
the C++ compilation tab. Typically, the value for TargetServicesLibrary is
$ROSERT_HOME/C++/TargetRTS. The code generator will generate a make file and
expand the $ROSERT_HOME environment variable to the actual value (for example,
C:\Program Files\Rational\Rose Realtime). This value may not be valid on the
computer doing the build. You must modify the environment variable so that it is not
expanded by inserting round brackets around the environment variable name. For
example:

$(ROSERT_HOME)/C++/TargetRTS
102 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Navigating to Build Errors

After you build a component in Rational Rose RealTime or Eclipse, you may
encounter compilation errors. If there are errors, you can easily navigate to that code
and investigate.

To navigate from build errors in Rational Rose RealTime to the corresponding
code in Eclipse:

1 In Rational Rose RealTime, right-click on any build error in the Build Errors list in
the Output window.

2 Select Edit Code in Eclipse.

The corresponding source file opens in an Eclipse editor, with the cursor positioned
on the line where the error occurred.

To navigate from build errors in Eclipse to the corresponding element in
Rational Rose RealTime for items on the State Diagram:

1 In Eclipse, build a project. For instructions on building a project see Building in
Eclipse on page 101.

If the compilation process encountered any errors, they appear in the Task list.

2 From the Task list, right-click on a build error and select Navigate to Rose
RealTime.

If not currently open, a diagram for the capsule or class corresponding to the source
file opens, and that model element is selected.
Navigating to Build Errors 103

Navigating From Rational Rose RealTime to Eclipse

In Rational Rose RealTime, you can navigate from classifiers (capsule and class),
user-defined operations, choice points, state (entry and exit), and transitions.

Note: It is not possible to navigate to any source, header, or generated code for a
component. It is also not possible to navigate directly to any documentation
generated in the source code.

You can easily navigate methods in Eclipse in the following ways:

■ Navigating from a State Diagram on page 104
■ Navigating from a State Diagram or State Diagram Browser on page 106
■ Navigating from the Model View Tab in the Browser on page 107

Navigating from a State Diagram

From Rational Rose RealTime, you can navigate to Eclipse by selecting a choice point,
state, or transition in the State Diagram dialog box.

Right-click on an element from a State Diagram (a transition, state, or choice point)
that currently has user code generated for that element, and then select Edit
<element> code in Eclipse.
104 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Figure 8 Navigating from a State Diagram

The source file for the corresponding element opens in an Eclipse editor, with
the cursor positioned on the first line of the user code for the model element.

Note: If there is no existing code to edit for the selected element, the
corresponding Edit <element> code in Eclipse menu item is grayed out. If the
CodeSyncEnabled option on the C++ Generation tab is disabled in Rational
Rose RealTime, USR tags are not created when the component is generated.
Although there are no USR tags, you can navigate to that corresponding
element in Eclipse. Instead of positioning the cursor after the // {{{USR tag and
before the // }}}USR tag, the cursor is positioned at the top of the file.
Navigating From Rational Rose RealTime to Eclipse 105

Navigating from a State Diagram or State Diagram Browser

In a State Diagram browser, you can navigate to Eclipse by selecting a user-defined
operation. In Rational Rose RealTime, right-click on any operation and select Edit
Operation Code in Eclipse, Edit Entry Code in Eclipse, Edit Entry Code in Eclipse,
or Edit Choice Point Code in Eclipse.

Figure 9 Rational Rose RealTime - Navigation to Eclipse from an Operation

The source file opens in an Eclipse editor, with the cursor positioned on the first
line of the operation.

Note: Overloaded operations are supported.
106 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Navigating from the Model View Tab in the Browser

On the Model View tab, you can navigate to Eclipse by selecting a user-defined
operation, class, or capsule. To navigate from an operation, in Rational Rose RealTime,
right-click on any operation and select Edit Operation Code in Eclipse. The source
file for the selected operation opens in an Eclipse editor, with the cursor positioned on
the first line of the operation. Overloaded operations are supported.

To navigate from a class or capsule, right-click any class or capsule and select Edit
<classifier> Code in Eclipse.

Figure 10 Rational Rose RealTime - Navigating to Eclipse from a Capsule
Navigating From Rational Rose RealTime to Eclipse 107

The source file for the selected classifier opens in an Eclipse editor, with the cursor
positioned on the first line.

Note: If the CodeSyncEnabled option on the C++ Generation tab is disabled in
Rational Rose RealTime, USR tags are not created when the component is generated.
Although there are no USR tags, you can navigate to that corresponding element in
Eclipse. Instead of positioning the cursor after the // {{{USR tag and before the
// }}}USR tag, the cursor is positioned at the top of the file.

Navigating from Eclipse to Rational Rose RealTime

From user-defined operations, choice points, state (entry and exit), and transition
methods in Eclipse, you can easily navigate to the corresponding element in Rational
Rose RealTime.

To navigate from an operation, choice point, state (entry and exit), or transition
method:

1 In Eclipse, click Window > Preferences.

2 Click Rose RealTime Integration and select the Features tab.

3 Ensure that the Select elements from C/C++ Projects View option is selected.

4 Optional: To automatically select an element from the Rational Rose RealTime
browser, select the Also select element in browsers option.

5 In the C/C++ Projects view, navigate through the generated source code for any
capsule or class with an operation, choice point, state (entry and exit), or transition.

The generated methods are in the directory you specified in the
CodeGenDirName box on the C++ Generation tab specified in Rational Rose
RealTime.
108 Chapter 5 - Eclipse and Rational Rose RealTime Integration

6 Select any method for a user-defined operation, choice point, state (entry and exit),
or transition.
Navigating from Eclipse to Rational Rose RealTime 109

Note: You can recognize valid methods by the following patterns:

■ For a choice point method, the method name pattern is:

❑ In the C/C++ Projects view, <class>::choicePoint<number>_<name>

❑ In the Outline view, <class>::choicePoint<number>_<name>(<arguments>)

■ For a state entry method, the method name pattern is:

❑ In the C/C++ Projects view, <class>::enter<number>_<name>(<arguments>)

❑ In the Outline view, <class>::enter<number>_<name>(<arguments>)

■ For a state exit method, the method name pattern is

❑ In the C/C++ Projects view, <class>::exit<number>_<name>

❑ In the Outline view, <class>::exit<number>_<name>(<arguments>)

■ For a transition method, the method name pattern is

❑ In the C/C++ Projects view, <class>::transition<number>_<name>

❑ In the Outline view, <class>::transition<number>_<name>(<arguments>)

Note: Because the names of operations are specified by the user, there is no method
name pattern specified.

If not currently open, the diagram containing the classifier (capsule or class)
associated with the source file for the selected operation, choice point, state (entry and
exit), or transition method displays in Rational Rose RealTime. The corresponding
operation, choice point, state (entry or exit), or transition is also selected in the main
browser.

Getting Started

The following example will help you get started with the Rational Rose RealTime and
Eclipse integration. This example guides you through the basic connectivity features
of the integration.
110 Chapter 5 - Eclipse and Rational Rose RealTime Integration

To start using the Eclipse and Rational Rose RealTime integration:

1 Start Rational Rose RealTime.

2 In Rational Rose RealTime, do one of the following:

❑ Create a new model and configure its Eclipse Integration settings in Rational
Rose RealTime (Tools > Eclipse Integration Settings). For information on
configuring the Eclipse Integration settings, see the topic Configuring Preferences
in Rational Rose RealTime on page 89.

Note: When you click File > New in Rational Rose RealTime, the Rational Rose
RealTime settings are restored to their default values.

❑ Load a model that has not had a previous connection to Eclipse, and modify its
Eclipse Integration settings in Rational Rose RealTime (Tools > Eclipse
Integration Settings).

❑ Load a model that has had a previously established connection to Eclipse.

Note: When you load a model that has had a previous connection to Eclipse,
that connection will automatically be established after the model loads.
Additionally, after a successful connection is established between Rational
Rose RealTime and Eclipse, the previously built component in Rational Rose
RealTime displays as a project in Eclipse, along with any generated source files.

3 In Rational Rose RealTime, ensure that the settings on the Configuration tab and
Generation tab for the selected component are set correctly. For additional
information about configuring these settings in Rational Rose RealTime, see
Configuring Build Settings in Rational Rose RealTime on page 98, and Configuring
Build Settings in Eclipse on page 100.

4 Start Eclipse.

5 Ensure that the Rational Rose RealTime Integration settings allow Rational Rose
RealTime and Eclipse to connect. For information on configuring the Eclipse
Integration settings, see the topic Configuring Preferences in Eclipse on page 81.

In Eclipse, if not currently open, the C/C++ Development perspective opens and
the selected component for the model displays as a C/C++ project.
Getting Started 111

6 Do one of the following:

❑ If the model is new and has not been built previously in Rational Rose
RealTime, click Build > Build, and then select Generate. The updates and any
new generated code files display in the Eclipse project, and in the common file
storage location.

❑ For a model that was built previously, you can click Build > Clean, and then
click Build > Build, and select Generate,. All the generated code files are
removed from the project in Eclipse, and from the common file storage
location, and then new files are generated.

Note: Allow the code generation process to complete. Ensure that the last entry on
the Log tab in the Output window indicates a successful build.

After the generation process completes in Rational Rose RealTime, the corresponding
project in Eclipse refreshes to show the generated code.
112 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Now, you can navigate to and from Rational Rose RealTime and Eclipse by selecting
user-defined operations, choice points, state (entry and exit), transitions, classes and
capsules in Rational Rose RealTime, or by selecting user-defined operations, choice
point, state (entry and exit), and transition methods in Eclipse.

Note: Because Eclipse and Rational Rose RealTime share a common file system, you
must use caution when modifying code and building. Do not modify the same
method in Rational Rose RealTime and Eclipse. Saving in one application will
overwrite any change you made in the other application. We strongly recommend
that you save and build you changes as often as possible.

Example Workflow

The following example will help you get started with the Rational Rose RealTime and
Eclipse integration. This example guides you through the features of the integration
using the TrafficLights.rtmdl model file included with Rational Rose RealTime.

This example, makes use of the following assumptions:

■ Rational Rose RealTime is running on a Windows configuration.

■ Eclipse is running a UNIX configuration.

■ The computer running Rational Rose RealTime is the listener, and Eclipse is the
connector.

■ The TrafficLights.rtmdl model has not been built previously or used in an Eclipse
and Rational Rose RealTime integration.

To observe a simple example of the Eclipse and Rational Rose RealTime
Integration:

1 Start Rational Rose RealTime.

2 Click File > New.

3 Click the RTC++ framework.

The default setting for a C or C++ model is to connect to Eclipse.
Example Workflow 113

When Rational Rose RealTime starts, it loads a blank model. The default Rational
Rose RealTime integration setting for a blank model is disabled.

4 Start Eclipse.

When Eclipse starts, if the Rational Rose RealTime Integration is enabled, it
automatically attempts to establish a connection. Because this example has Eclipse
and Rational Rose RealTime on two different computers with different
configurations (UNIX and Windows), the default settings must be modified to
establish communication, and to specify path mapping for both configurations.

5 In Eclipse, click Window > Preferences.

6 Click Rose RealTime Integration and click the Communication tab.
114 Chapter 5 - Eclipse and Rational Rose RealTime Integration

By default, Eclipse is the listener and the port number is 21145.

7 Select Connect to another machine.

8 Specify the host name or IP address of the computer running Rational Rose
RealTime.

In this example, Rational Rose RealTime is on a Windows XP computer and the model
files are stored in the directory \user\data\ on a network drive mapped to S:. The
fully qualified path to the model file is W:\user\data\mymodel.rtmdl. Eclipse is
running on a computer with a UNIX configuration and the fully qualified file location
is //mystorage/user/data/mymodel.rtmdl. Eclipse and Rational Rose RealTime need
to reference the same location.

9 Click the Path Mappings tab.
Example Workflow 115

10 Set Path in Eclipse end to //mystorage/.

11 Set Path in Rational Rose RealTime end to W:\.

Note: You can use "/" or "\" interchangeably when specifying path mappings.

12 Click Apply.
116 Chapter 5 - Eclipse and Rational Rose RealTime Integration

13 In Rational Rose RealTime, open the sample model file
<$ROSERT_HOME>/examples/models/C++/TrafficLights.rtmdl.

Next, you will create a duplicate

14 Right-click the NorthAmericanIntersection_sparcgnu281 component from the
SUN5T Component View package in the Model View tab in the main browser
and click Duplicate.

15 Right-click on the new component and click Rename.

16 Type NorthAmericanIntersection_sparcgnu281example.
Example Workflow 117

17 Click Tools > Eclipse Integration Settings.

By default, Rational Rose RealTime is the connector.

18 In the Connection mode area, select Connect to another machine.

19 In the Host name or IP address box, specify the host name or IP address of the
UNIX computer running Eclipse.

20 Click Apply.

21 In the Current Status box, verify that the connection to Eclipse is established. For
information about troubleshooting connectivity errors, see Troubleshooting on
page 131.

22 In the Component drop-down list, select the component called
NorthAmericanIntersection_sparcgnu281example.

23 Click OK.

24 Right-click the NorthAmericanIntersection_sparcgnu281example component
from the SUN5T Component View package in the Model View tab in the main
browser and select Open Specification.
118 Chapter 5 - Eclipse and Rational Rose RealTime Integration

25 Click the C++ Generation tab.

26 In the OutputDirectory box, you can change the default to set another directory
into which the generated files resulting from a component build are written. By
default, this property is set to $@/$name, where $@ is the model file directory, and
$name is the name of the component.

27 Optional. In the CodeGenDirName box, specify the name for the directory to store
the generated source code for the component elements. This directory is generated
as a subdirectory of <output directory>/src.
Example Workflow 119

28 Click the C++ Compilation tab.

Earlier, you opened the Windows component for which the settings on the
C++ Generation tab are correct. Because your compilation settings are going to be
different, you will need to modify the settings on the C++ Compilation tab.

29 In the TargetServicesLibrary box, add round brackets around the
ROSERT_HOME environment variable.

30 In the CompilationMakeCommand box, type make.

31 In the CompilationMakeType box, type <default>.

32 In the TargetConfiguration box, select SUN5T.sparc-gnu-2.8.1.
120 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Your C++ Compilation tab should look like the following:

33 Click OK.

34 In Rational Rose RealTime, right-click the
NorthAmericanIntersection_sparcgnu281example component, click
Build > Clean, and then click OK.

All previously generated code files for the TrafficLights.rtmdl model (if any) are
removed from the output directory (our common file storage location).
Example Workflow 121

35 Click Build > Build, click Generate, and then click OK.

Note: While Rational Rose RealTime builds the selected component, there will be a
delay in Eclipse proportionate to the amount of code being generated.

The updated files list, and any new generated code files, display in the Eclipse
project and the common file storage location.
122 Chapter 5 - Eclipse and Rational Rose RealTime Integration

36 In Rational Rose RealTime, on the Model View tab in the main browser, open the
State Diagram for the capsule TrafficLightNA from the VariantNA package.
Example Workflow 123

37 Right-click the timeout transition line and select Edit Transition Code in Eclipse.
124 Chapter 5 - Eclipse and Rational Rose RealTime Integration

In Eclipse, the source file for the corresponding transition opens in an Eclipse
editor, with the cursor positioned on the first line of the user code after the USR
tag for the model element.
Example Workflow 125

38 Between the USR tags, the following comment and code is added.

//adding additional code to example

offsetTime = 1;

39 In Eclipse, click File > Save.
126 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Eclipse saves the file containing the changes and a codesync is performed with
Rational Rose RealTime. Although the last line of the Build Log tab in the Output
window indicates a successful build, only a codesync was performed. If you select
the timeout transition in Rational Rose RealTime, the Code tab in the
Documentation window includes the code added earlier.

Next, you will build the project.

40 In Eclipse, right-click the NorthAmericanIntersection_sparcgnu281 project and
click File > Build Project.

Eclipse generates the executable IntersectionNA.EXE for the selected project.

Next, you will introduce an error in the code so that you can navigate to that error.
Example Workflow 127

41 Remove the semicolon at the end of the code for offsetTime = 1;

42 In Eclipse, right-click the NorthAmericanIntersection_sparcgnu281 project and
click File > Build Project.

The Tasks lists contains the error that you introduced.
128 Chapter 5 - Eclipse and Rational Rose RealTime Integration

43 Double-click the error in the Task list to locate the error in Eclipse, or right-click
the error and select Navigate to Rose RealTime.

If you navigate to Rational Rose RealTime, the element (timeout transition)
containing the error is highlighted.

Next, you will navigate from an operation, choice point, state (entry or exit), or
transition in Eclipse to the corresponding element in Rational Rose RealTime.
Example Workflow 129

Earlier, we saw that the CodeGenDirName box on the C++ Generation tab in
Rational Rose RealTime contained rtg. This is the location where the generated source
files for the selected Rational Rose RealTime component appear in the corresponding
Eclipse project.

44 In Eclipse, expand the rtg folder under build.

45 In the C/C++ Projects view, navigate through the generated source code to find
the transition TrafficLightNA_Actor::transition21_greenTimeout.

T

Note: For information about valid pattern names, see Navigating from Eclipse to
Rational Rose RealTime on page 108.

46 Single-click on the transition to navigate to Rational Rose RealTime.

In Rational Rose RealTime, the transition is highlighted.
130 Chapter 5 - Eclipse and Rational Rose RealTime Integration

Troubleshooting

Refer to the following table to help troubleshoot building, connectivity, and
navigation problems that might occur.

Area Problem Description Possible Resolution

Building In the C-Build window, you
encounter the error message "Error
launching builder (make -f
Makefile.eric all) (Exec
error:Launching failed)" when you
attempt to build a C/C++ project
from Eclipse.

Add C:\cygwin\bin (or wherever
you installed Cygwin) to your Path
environment variable.

Connectivity In Eclipse, the Current Status box
on the Communication tab shows
Listening to port <port_ number>
for a long period of time without
establishing a connection.

Ensure that the port numbers are the
same.

In Eclipse, the Current Status box
on the Communication tab shows
Can’t connect to <hostname or IP
address>:<port_ number>.

Only one listener can use the specified
port number; multiple listeners are not
permitted. Ensure that another
connection with the same port number
has not been made.

In Eclipse, the Current Status box
on the Communication tab shows
Feature is not enabled.

The Rational Rose RealTime
Integration option is currently
disabled. In Rational Rose RealTime,
click Tools > Eclipse Integration
Settings, and then set the Enable
Eclipse Integration option.

In Eclipse, the Current Status box
on the Communication tab shows
Can’t connect to <hostname or IP
address>:<port_ number>.

Verify that the Port number specified
in Eclipse and Rational Rose RealTime
are the same.

Navigation In Eclipse, if you select an element
from the list and right-click and
select the option to edit that code in
Rational Rose RealTime, you do not
navigate to that code segment.

Some generated code, and some
elements may not have existing code
to edit. If a code segment for a
corresponding element does not
contain any USR tags, you will not be
able to navigate to that element.
Troubleshooting 131

Navigation In Eclipse, if you select a choice
point method, state (entry or exit)
method, or transition method, but
nothing is selected in Rational Rose
RealTime.

You can recognize valid methods by
the following patterns:
■ For a choice point method, the method

name pattern is
<class>::choicePoint<number>_<na
me>

■ For a state entry method, the method
name pattern is
<class>::enter<number>_<name>(<
arguments>)

■ For a state exit method, the method
name pattern is
<class>::exit<number>_<name>

■ For a transition method, the method
name pattern is
<class>::transition<number>_<nam
e>
132 Chapter 5 - Eclipse and Rational Rose RealTime Integration

6OSEK/VDX Support in
Rational Rose RealTime
Contents

This chapter is organized as follows:

■ Overview of OSEK/VDX Support in Rational Rose RealTime on page 133
■ Introduction to the OSEK OIL Files on page 134
■ Configuring the TargetRTS and Adapting it for a Particular OSEK/VDX Operating

System on page 135
■ Updating Tasks on page 136

Overview of OSEK/VDX Support in Rational Rose RealTime

Rational Rose RealTime for the C language includes support for operating systems
adhering to the OSEK/VDX standard. The basic conformance classes for OSEK are:

■ BCC1 - (Basic Conformance Class 1) Supports basic tasks with one request per
task, and one task per priority. Every task has a different priority.

■ BCC2 - (Basic Conformance Class 2) Allows for more than one basic task per
priority, as well as multiple task-activation requests.

In Rational Rose RealTime, the supported conformance class is BCC2; however, you
can use BCC1 with some restrictions, described later. In addition, you can also use the
extended conformance classes ECC1 (similar to BCC1, but it permits extended tasks)
and ECC2 (follows BCC2 without the multiple-task-request facility), if required.

Note: To use an OSEK/VDX operating system with Rational Rose RealTime, we
recommend that you become familiar with the OSEK/VDX standard, the TargetRTS
in Rational Rose RealTime, and the book Adapting Rational Rose RealTime for Target
Environments (<$ROSERT_HOME>/Help/rosert_adapting_targets.pdf).
133

Rational Rose RealTime includes the following directories (located in
$RTS_HOME/src/target/) for OSEK/VDX support:

■ OSEK_VDX_BCC1
■ OSEK_VDX_BCC2
■ OSEKWorks

All source files necessary to support the BCC1 conformance class of OSEK/VDX
standard v. 2.1.1 are located in /OSEK_VDX_BCC1. Additional files for the BCC2
conformance are located in /OSEK_VDX_BCC2. The example provided with the
TargetRTS for C is for OSEKWorks 3.0 and is located in the /OSEKWorks directory.
The files in the OSEK_VDX_BCC1 and OSEK_VDX_BCC2 directories are based on
the OSEK/VDX standard and can be used for any operating system that follows this
standard. Every operating system will require some additional files specific to that
operating system.

Note: If you use OSEKWorks, you must rebuild the TargetRTS libraries included with
Rational Rose RealTime.

Introduction to the OSEK OIL Files

The OSEKWorks target base directory contains two OIL files: TargetRTS.oil for
multi-threaded targets, and TargetRTS_single.oil for single-threaded targets. You
can modify these OIL files as required. Single-threaded configurations and
multi-threaded configurations without the timing service can use the BCC1
conformance class. Multi-threaded configurations used with the Rational Rose
RealTime timing service must use the BCC2 target base because the BCC1
conformance class guarantees only one resource (RES_SCHEDULER), and the
default timing service makes use of a resource protected by another resource.

Note: Single-threaded configurations and multi-threaded configurations without the
timing service can use the BCC1 conformance class; however, multi-threaded
configurations that are used with the timing service must use the BCC2 target base.

Every OSEK application must have its system objects specified in an OIL file. In the
TargetRTS for C, the OIL file must reside in the OS-specific target base directory. For
OSEKWorks, this directory is $RTS_HOME/src/target/OSEKWorks/.
134 Chapter 6 - OSEK/VDX Support in Rational Rose RealTime

The OIL preprocessor is called by the command in the $postprocessor variable in the
configuration's setup.pl file. For example,
$RTS_HOME/config/OSEKWorks30T.ppc555-Diab-4.4b/setup.pl contains line:

$postprocessor = "rtperl ../target/OSEKWorks30T/oil.pl

../src/target/OSEKWorks/TargetRTS.oil OSEKWorks30T.ppc555-Diab-4.4b

$target_base";

In this example, the OIL preprocessor is called through the oil.pl script in the
OSEKWorks target directory. The setup.pl file also contains the following
$target_base variable that specifies how the Target RTS uses source from two or more
different target bases. For example, if the setup.pl file specifies the following:

$target_base = 'OSEKWorks,OSEK_VDX_BCC2,OSEK_VDX_BCC1';

this means that the TargetRTS configuration uses files from
$RTS_HOME/src/target/OSEKWorks/ whenever possible, and then it will use files
from $RTS_HOME/src/target/OSEK_VDX_BCC2/, and then from
$RTS_HOME/src/target/OSEK_VDX_BCC1.

By default, the multi-threaded TargetRTS OIL file is configured with eight tasks. This
is the maximum guaranteed by the BCC1 configuration class. The operating system
you use determines the maximum number of tasks; however, you can modify the
number of tasks, as required. For information about modifying these tasks, see
Configuring the TargetRTS and Adapting it for a Particular OSEK/VDX Operating System
on page 135.

Typically, every physical thread in a Rational Rose RealTime application corresponds
to a thread (task) on the target OS. This is not the case with OSEK/VDX. If a model
has two or more physical threads with the same priority, these TargetRTS threads will
alternate running on the same OSEK/VDX OS task. In the TargetRTS code, the
Rational Rose RealTime physical threads are represented by RTThread, whereas the
real OS tasks are represented by RTTask. This arrangement is necessary because the
BCC1 conformance class permits only one task per priority.

Configuring the TargetRTS and Adapting it for a Particular
OSEK/VDX Operating System

To port the TargetRTS for C to other OSEK/VDX operating systems, use the
OSEKWorks example provided with Rational Rose RealTime. The new configuration
should use the OSEK_VDX_BCC1 target base (and the OSEK_VDX_BCC2, if
necessary), and provide any OS-specific changes and OIL files in a separate target
base directory. The OIL files included with Rational Rose RealTime are for
Configuring the TargetRTS and Adapting it for a Particular OSEK/VDX Operating System 135

OSEKWorks, and they will require modifications to work with different operating
systems. In particular, any ISR definitions are not portable, and the definition for the
SystemTimer counter is also specific to the hardware used.

Note: The SystemTimer counter is necessary if you want to use any timing service.

The multi-threaded version of the OIL file defines eight tasks: RTTask0 through
RTTask7. The single-threaded OIL file defines only one task: RTTask0. These tasks
correspond to start-up task functions defined in
$RTS_HOME/src/target/OSEK_VDX_BCC1/Main/main.c. They are RTTask0func
through RTTask7func. All of the task definitions have the following structure:

 TASK RTTask0 {

 SCHEDULE = FULL;

 PRIORITY = 0;

 ACTIVATION = 1;

 AUTOSTART = TRUE;

 STACKSIZE = 512;

 RESOURCE = RES_SCHEDULER;

 RESOURCE = RTUserRes;

 };

Note: The resource RTUserRes is required for multi-threaded applications that use
the Rational Rose RealTime timing service. The RTUserRes resource is implemented
in $RTS_HOME/src/target/OSEK_VDX_BCC2/UsrMutex/. If used, it must be
defined in the OIL file as:

 RESOURCE RTUserRes;

Note: This additional resource is the only thing that breaks BCC1 conformance class
compatibility.

Updating Tasks

If you want to use fewer tasks, you must delete the tasks with the highest IDs first. For
example, if a system has N tasks, the tasks are numbered 0 to N - 1. You want to start
by deleting task RTTask(N-1) first.

Note: You must set the alarm RTTimerAlarm to activate the highest priority task.

The file $RTS_HOME/src/target/OSEK_VDX_BCC1/RTPriv/OSEK_VDX.h contains
a macro called RT_OSEK_NUM_TASKS. If you change the number of tasks, you
must redefine this number.
136 Chapter 6 - OSEK/VDX Support in Rational Rose RealTime

To delete (or add) tasks from the system:

1 Change the macro RT_OSEK_NUM_TASKS in
$RTS_HOME/src/target/OSEK_VDX_BCC1/RTPriv/OSEK_VDX.h to the correct
number of tasks.

2 Delete (or add) tasks in the OIL file.

Note: Number the tasks sequentially. The first task must have a priority of 0 (the
lowest priority). This means that if the application is to have N tasks, the tasks
must have priorities 0 through N - 1.

Each task has a start-up function defined in
$RTS_HOME/src/target/OSEK_VDX_BCC1/Main/main.c . The start-up functions
are called RTTasks<task_number>func (for example, RTTask1func). You can delete
any unused startup functions. The main.c file also contains the function initRTTasks
that is responsible for initializing the RTTasks array. If you modify the number of
tasks, change the initialization to only initialize the elements in the array that are
used.

3 Delete (or add) corresponding task start-up functions in
$RTS_HOME/src/target/OSEK_VDX_BCC1/Main/main.c.

4 Change the function initRTTasks in
$RTS_HOME/src/target/OSEK_VDX_BCC1/Main/main.c to initialize the
RTTasks array for the appropriate number of tasks.

5 Take note of the entry for the alarm in the OIL file. For example:

 ALARM RTTimerAlarm {

 COUNTER = SystemTimer;

 ACTION = ACTIVATETASK {

 TASK = RTTask7;

 };

 };

The RTTimerAlarm has to activate the highest priority task.

The example OIL files specify that the application is to use extended status:

 OS _OS {

 STATUS = EXTENDED;

 };
Updating Tasks 137

Specifying an EXTENDED status is useful during the development because the
operating system will perform better error checking, but it will degrade performance.
For the final version of the application, specify a STANDARD status to improve
performance. For example:

 OS _OS {

 STATUS = STANDARD;

 };

Note: Task stack sizes are defined in the OIL files, so the thread stack sizes in
component's Physical Threads Specification dialog box in the model are ignored.
138 Chapter 6 - OSEK/VDX Support in Rational Rose RealTime

Index
Symbols
$& 52
$target_base 135

A
Abort 62
Abort documentation 62
adding

GUIDs 73
OSEK/VDX tasks 137

Attribute tool
Get method 54
Set method 54

B
Basic Conformance Class 133
BasicTest server output 34
BCC1 133
BCC2 133
browser requirements 43
building

component on Solaris 2.6 47
Eclipse 101

C
C Add-ins 54
C++ Add-ins 54
C++ Analyzer

using (Linux) 48
CD-ROM

mounting instructions 25
unmount 30

CLASSPATH 53
-cleanup 59

ClearCase
command-line access 30
element type 31
repository setup 31
workstation setup 30

cm_getcaps script 53
code generator 54
codesync 85
collision of GUIDs 71
color

restoring defaults 52
settings 52

command-line access to ClearCase 30
CompilationMakeCommand 99
CompilationMakeType 99
Component 91
configuration management on UNIX 46
configuration requirements

UNIX 20
Windows 2000 18
Windows XP Pro 19

configuring
build settings in Eclipse 100
build settings in Rational Rose RealTime 98

Connection Mode 83, 90
Connector 80
Connexis

verifying the installation 32
contacting Rational Customer Support xiv
Context Sensitive Help 61
cross-platform issues 49
Current status 83, 91
Cygwyn 100

D
Debugger-Tornado2 43
Debugger-xxgdb 53
debugging

using Tornado 2.2 on UNIX 45
Index 139

deleting
OSEK/VDX tasks 137

dependencies 40
descriptors for nested classes 55
directory names 42
documentation updates 62

E
ECC1 133
ECC2 133
Eclipse

building 101
Communication Overview 79
Communication settings 82
Configuring Build Settings 100
configuring build settings 100
configuring preferences 81
Connection tab

Connection Mode 83
Current status 83
Host name or IP address 83
Port number 83
Restore to Defaults 84

connector 80
editing code 94
Enable Rose RealTime Integration 82
establishing a connector 80
Features tab 84

Also select elements in browsers 86
Do a codesync on save 85
Select elements from C/C++ Projects

View 85
Select elements from Outline View 86

Generating Code 92
Integration Overview 77
integration with Rational Rose RealTime 77
method name patterns 110
navigating from Rational Rose RealTime 104
navigating to Build Errors 103
Path Mappings tab 86

Path in Eclipse end 88
Path in Rose RealTime end 88

preferences 81
referenced configuration requirements 21
removing generated code 92
synchronizing code 93
troubleshooting integration 131

Eclipse integration
example workflow 113
getting started 110

editing
code in Eclipse 94

element type setup (Linux) 31
Enable Eclipse Integration 90
enabling

GUIDs 71
example workflow (Eclipse integration) 113
Exceed

refresh issues 45

F
Favorites list 61
Find command 58
font issues 53
Frameworks dialog 55

G
generating

code in Eclipse 92
GUIDs 71
large models 54

Get method 54
GetSelected 56
GetSelected functions 56
GetSystemTime 41
GetTickCount 41
getting started

Eclipse and Rational Rose RealTime
integration 110

Globally Unique Identifiers
see GUIDs 69

GNU libraries
updating 48
140 Index

GUIDs
adding 73
advanced handling of 69
check unique identifiers presence 74
collisions 71
enabling 71
generating 71
issues 75
known issues 75
managing 72
minimizing impact of collisions 71
regenerating 74
removing 75
setting 73
turning off 75
turning on 73
using 69

H
Help issues 60
Host Configurations 66
Host Name 83
Host name or IP address 91
host platform installation 32

I
Index tab 62
initRTTasks 137
installation

disk space requirements 17, 24
host platform 32
restarting (Linux) 24
stopping (Linux) 24

installing
Linux instructions 25
multiple versions 24
Rational Rose RealTime on Linux 25

integration
Enable Eclipse Integration 90
Rational Rose RealTime and Eclipse 77

IP address 83

issues
cross-platform 49
displaying the version tree (Linux) 48
Linux 47
online Help 60
start-up 37
uninstalling 38
UNIX 43
updating GNU libraries (Linux) 48
using the C++ Analyzer (Linux) 48
Windows 39

J
Java

CLASSPATH 53
compiling models 53
no automatic unwired port registration 58
no codesync support 56

L
Launching Model Integrator 64
LD_LIBRARY_PATH 29, 48
licenses

expiration of 50
licensing options (Linux) 28
Linux

after you install 29
before you install 23
C++ Analyzer 48
Connexis Viewer 48
displaying the version tree 48
installation instructions 25
issues 47
requirements 17, 24
set Connexis Variable 32
setup script 29
shortcut keys 49
starting Rational Rose RealTime 36
unmount CD-ROM 30
updating GNU libraries 48
using shortcut keys 49
Index 141

using Web Publisher with Exceed 49
viewing the online Help 49

Listener 80

M
Makefile.eric 100
managing

GUIDs 72
unique identifiers 72

method name patterns 110
Model Integrator

launching 64
models

generating 54
mounting

CD-ROM 25
Mutex 136

N
netinet 42
node -ocked licenses 50

O
OIL files (OSEK) 134
oil.pl 135
online Help

navigating 60
viewing animated demonstrations 60

Operation tool
Get method 54
Set method 54

OSEK
OILfiles 134
using 133

OSEK_VDX_BCC1 134
OSEK_VDX_BCC2 134
OSEK_VDX.h 136
OSEK/VDX

add tasks 137
BCC1 133

BCC2 133
configuring the TargetRTS 135
delete tasks 137
EXTENDED status 138
initRTTasks 137
main.c 137
oil.pl 135
OSEK_VDX_BCC1 134
OSEK_VDX_BCC2 134
OSEK_VDX.h 136
Physical Threads Specification 138
RES_SCHEDULER 134
RT_OSEK_NUM_TASKS 136
RTTask 135
RTTask0 136
RTTask7func 136
RTThread 135
setup.pl 135
STANDARD status 138
SystemTimer 136
TargetRTS_single.oil 134
TargetRTS.oil 134
tasks update 136

OSEK/VDX Support 133
OutPutDirectory 52

P
path mappings 88

between Windows and UNIX 88
between Windows configurations 89
specifying (example) 88

PathMap 52
paths 46
permissions

Rose RealTime 40
Port Number 83, 90
preferences

configuring 89
printing diagrams 58
printing on UNIX 43
142 Index

R
RAM requirements 17, 24
Rational Customer Support

contacting xiv
Rational Rose RealTime

Communication Overview 79
configuring preferences 89
Integration Overview 77
Integration with Eclipse 77
troubleshooting integration with Eclipse 131

rational_dir 24
Referenced Configuration for Nucleus 59
referenced configuration requirements

Eclipse integration 21
Windows 2000 18
Windows NT 18
Windows UNIX 20
Windows XP Pro 19

referenced configurations 18
referenced host configurations 66
regenerating

GUIDs 74
removing

generated code 92
GUIDs 75

ReplaceRoseHelpDir 61
repository setup for ClearCase 31
requirements

disk space 17, 24
Linux installation 17, 24
RAM 17, 24
referenced configurations 18, 19, 20
UNIX installation 20
updates 39
Windows NT installation 18

RES_SCHEDULER 134
restarting

installation 24
restoring default colors 52
ROSERT_NO_FEEDBACK 58
ROSERT_TORNADO_TIMEOUT 59
rs_install 26
RT_OSEK_NUM_TASKS 136
RTCapsule_context 65

RTMessage_getData 64
RTMessage_getPortIndex 63
RTTask 135
RTTask0 136
RTTask0func 136
RTTasks 137
RTThread 135
RTTimerAlarm 136
RTUserRes 136
run

install program 26

S
saving

codesync 85
script

check_rose_reqs 17, 20, 24
scripts

file association 41
Sequence Diagrams 53
service pack updates 39
Set method 54
setting

GUIDs 73
setup script 29
setup.pl 135
shortcut keys on Linux 49
source control

command-line access to ClearCase 30
stack space limit 47
starting

Rational Rose RealTime (Linux) 36
Rose RealTime when one instance is

running 37
Rose RealTime when using virus scanning

software 38
toolset freezes on startup 38
vi editor from Rational Rose RealTime 46

startup-issues 37
stopping an Installation 24
synchronizing code 93
SystemTimer 136
Index 143

T
target

connecting problems 53
TargetConfiguration 99
TargetRTS

configuring for OSEK/VDX 135
symbolic links with 42

TargetRTS_single.oil 134
TargetRTS.oil file 134
Timeout for wtx commands 59
toolset

freezes on startup 38
Troubleshooting

integration settings between Eclipse and Rose
RealTime 131

toolset freezing on UNIX 44
type descriptors

example model update 66
using 67
when to use 67

type manager 31

U
uninstall issues 38
UNIX 46

browser requirements 43
case sensitivity within paths 46
configuration requirements 20
debugging using Tornado 2.2 45
editors 47
exceptions when using CM 46
file names containing spaces 45
issues 43
printing 43
recovering from toolset freeze 44
refresh problems with Exceed 45
requirements 20
stack space limit 47
starting vi editor 46
troubleshooting when the toolset freezes 44

unmount CD-ROM 30

updating
GNU libraries (Linux) 48

UsrMutex 136

V
verifying

Connexis installation 32
host platform installation 32
Linux installation 32

version tree
displaying 48

vi
editor 46
starting 46

virus software affects startup 38

W
Web Publisher 49

applet not loading 55
window limitations 51
window order policy 46
Windows

building dependencies 40
file associations for compiled scripts 41
issues 39
links with TargetRTS 42
permissions 40
privileges 40
service pack requirements 39
service pack update 39
spaces in directory names 42
using Hummingbird Exceed 39
using Rose RealTime on Windows XP

configurations 39
Windows 2000 18
Windows CE

GetSystemTime function 41
GetTickCount 41

Windows NT
configuration requirements 18
144 Index

Windows XP Pro
configuration requirements 19

wtx 59

X
-xxgdb debugger 53
Index 145

	Addendum
	Preface
	What’s New
	Updates to Web Site Addresses
	Audience
	Other Resources
	Rational Rose RealTime Integrations with Other Rational Products
	Contacting Rational Customer Support

	Referenced Configurations
	Requirements for Linux
	Requirements for Windows NT
	Requirements for Windows 2000
	Requirements for Windows XP Pro
	Requirements for UNIX
	Referenced Configuration Requirements for the Eclipse and Rational Rose RealTime Integration

	Installing Rational Rose RealTime on Linux
	Before You Install
	Requirements for Linux
	Installing in Secure Environments
	Installing Multiple Versions of Rational Rose RealTime for Linux
	Stopping and Restarting an Installation

	Installation Instructions
	After You Install
	Installing GNU 3.2
	Source the Setup Script
	Unmount the CD-ROM Drive
	ClearCase Workstation Configuration
	Command-line Access to the Source Control Tool
	Element Type Setup: type Manager

	Configure the ClearCase Repository
	Set the Connexis Variable
	Verify the Connexis Installation
	Verifying your Installation using BasicTest
	Host Configuration Installation Verification
	BasicTest Server Output
	BasicTest Client Output

	Starting Rational Rose RealTime on Linux

	General Issues
	Startup Issues
	Starting Rational Rose RealTime When an Instance is Currently Running
	Toolset Freezes on Startup
	Virus Scanning Applications Affect Startup and Shutdown

	Uninstall Issues
	Windows-Specific Issues
	Service Pack Requirement Update for Windows
	Using Hummingbird Exceed 7.1 on a Computer Running Windows Applications and Rational Rose RealTime
	Using Rational Rose RealTime on Windows XP Pro Configurations
	Using Rational Rose RealTime without Appropriate Privileges
	Building Dependencies on Case-Insensitive File Systems
	File Association for Compiled Scripts
	Windows CE GetSystemTime() Function Does Not Return Milliseconds
	Symbolic Links with TargetRTS
	Spaces in Directory Names

	UNIX-Specific Issues
	Printing on UNIX
	Browser Requirements for UNIX
	Troubleshooting when the Toolset Freezes on UNIX
	Rational Rose RealTime Crashes when You Debug Using Tornado 2.2 on UNIX
	Refresh Problems with Exceed
	Specifying a Location or File Name Containing Spaces (UNIX)
	Starting vi as an External Editor from Rational Rose RealTime
	Unable to Open Some Links in the Online Help
	Exceptions Occur When You Use Configuration Management in Rational Rose RealTime
	Case Sensitivity within Paths
	Window Order Policy
	Non-GUI-based External Editors
	Setting the Stack Space Limit
	Rational Rose RealTime Fails to Build a Component on Solaris 2.6

	Linux-Specific Issues
	Using the C++ Analyzer on Linux
	Displaying the Version Tree on Linux
	Using Connexis Viewer on Linux
	Updating GNU Libraries on Linux 7.3
	Using Shortcut Keys to Cycle Through Open Specification Dialog Boxes on Linux
	Using Web Publisher on Linux
	Viewing the Online Help on Linux
	Using Context-Sensitive Help on the Preferences Dialog in Eclipse on Linux

	Cross-Platform Issues
	Synchronizing Code between Rational Rose RealTime and Eclipse
	Rational Rose RealTime and Eclipse Integration Does Not Support Java
	Using Rational Rose RealTime with a Node Locked License Does Not Warn User About Expiration
	Using Pathmaps in Rational Rose RealTime
	Limitations on the Number of Open Windows
	Limitations in the Specification History List
	Loading a Workspace might Cause Default Color Settings to Change Permanently
	Do Not Use $& When You Define a PathMap
	Use Caution When Modifying OutPutDirectory
	Using Rational Rose RealTime on Non-English Installations Causes an Unreadable Font When Viewing ...
	Unable to use Parameters with the cm_getcaps Script
	Problems Compiling Java Models
	Problems Connecting to a Target
	Using Sequence Diagrams
	Using the Debugger-xxgdb Tool and Running your Component Instance
	Using C and C++ Add-ins
	Code Generator Runs Out of Memory When Generating Very Large Models
	Using the Get and Set Methods in the Attribute and Operation Tools
	Web Publisher Applet Does Not Load Properly
	Using the Frameworks Dialog
	Scoping Descriptors for Nested Classes
	No Codesync Support for Java
	Using the GetSelected Functions
	Using the Find Command Might Return Too Many Results
	No Support for Automatic Unwired Port Registration for Java
	Error Occurs When Printing a Diagram
	ROSERT_NO_FEEDBACK - Prompting for Information When an Exception Occurs�
	ROSERT_TORNADO_TIMEOUT - Modifying the Default Timeout for wtx Commands
	Referenced Configuration for Nucleus Does Not Include Socket Support

	Online Help Issues
	Navigating Through the Online Help
	Viewing Animated Demonstrations
	Problems Accessing Rational Rose Help while Running Rational Rose RealTime on Windows
	Using Context Sensitive Help Might Cause Message to Display
	Maintaining a Single Favorites List
	Using the Index Tab in the Online Help

	Documentation Updates
	Update to Abort Documentation
	Update to Code for Example RTMessage_getPortIndex
	Update to Code for Example RTMessage_getData
	Update to Documentation for Launching Model Integrator
	Code Example for rts and RTCapsule_context Causes Compilation Errors
	Update to Example Model for Type Descriptors
	Update to Referenced Host Configurations Information
	Updated Reference to Example Model for Type Descriptors

	Using Type Descriptor Functions

	Using Globally Unique Identifiers (GUIDs)
	Advanced Handling of Globally Unique Identifiers (GUIDs)
	Generating GUIDs
	Recommended Steps for Enabling GUIDs in Multi-Stream Development

	Managing GUIDs
	Known Issues with GUIDs

	Eclipse and Rational Rose RealTime Integration
	Integration Overview
	Communication Overview
	Configuring a Listener
	Configuring a Connector

	Installing the Eclipse and Rational Rose RealTime Integration Software
	Configuring Preferences in Eclipse
	Communication Tab
	Features Tab
	Path Mappings Tab

	Specifying Path Mappings

	Configuring Preferences in Rational Rose RealTime
	Generating Code from Rational Rose RealTime
	Removing Generated Code from Rational Rose RealTime
	Refreshing an Eclipse Project
	Synchronizing Code Between Rational Rose RealTime and Eclipse
	Editing Code in Eclipse
	Before You Edit
	Editing Choice Point, State (Entry and Exit), and Transition Code in Eclipse
	Editing Operation Code in Eclipse
	Editing Capsule and Class Code in Eclipse

	Configuring Build Settings in Rational Rose RealTime
	Configuring Build Settings in Eclipse
	Building in Eclipse
	Navigating to Build Errors
	Navigating From Rational Rose RealTime to Eclipse
	Navigating from a State Diagram
	Navigating from a State Diagram or State Diagram Browser
	Navigating from the Model View Tab in the Browser

	Navigating from Eclipse to Rational Rose RealTime
	Getting Started
	Example Workflow
	Troubleshooting

	OSEK/VDX Support in Rational Rose RealTime
	Overview of OSEK/VDX Support in Rational Rose RealTime
	Introduction to the OSEK OIL Files
	Configuring the TargetRTS and Adapting it for a Particular OSEK/VDX Operating System
	Updating Tasks

	Index

